
SQL Overview

Previous Page

Next Page

SQL tutorial gives unique learning on Structured Query Language and it helps to make practice on SQL

commands which provides immediate results. SQL is a language of database, it includes database creation,
deletion, fetching rows and modifying rows etc.

SQL is an ANSI (American National Standards Institute) standard but there are many different versions of the
SQL language.

What is SQL?
SQL is Structured Query Language, which is a computer language for storing, manipulating and retrieving data
stored in relational database.

SQL is the standard language for Relation Database System. All relational database management systems like
MySQL, MS Access, Oracle, Sybase, Informix, postgres and SQL Server use SQL as standard database
language.

Also, they are using different dialects, such as:

 MS SQL Server using T-SQL,

 Oracle using PL/SQL,

 MS Access version of SQL is called JET SQL (native format) etc.

Why SQL?

 Allows users to access data in relational database management systems.

 Allows users to describe the data.

 Allows users to define the data in database and manipulate that data.

 Allows to embed within other languages using SQL modules, libraries & pre-compilers.

 Allows users to create and drop databases and tables.

 Allows users to create view, stored procedure, functions in a database.

 Allows users to set permissions on tables, procedures, and views

History:
 1970 -- Dr. Edgar F. "Ted" Codd of IBM is known as the father of relational databases. He described a relational

model for databases.

 1974 -- Structured Query Language appeared.

 1978 -- IBM worked to develop Codd's ideas and released a product named System/R.

 1986 -- IBM developed the first prototype of relational database and standardized by ANSI. The first relational

database was released by Relational Software and its later becoming Oracle.

SQL Process:

http://www.tutorialspoint.com/sql/index.htm
http://www.tutorialspoint.com/sql/sql-rdbms-concepts.htm

When you are executing an SQL command for any RDBMS, the system determines the best way to carry out
your request and SQL engine figures out how to interpret the task.

There are various components included in the process. These components are Query Dispatcher, Optimization
Engines, Classic Query Engine and SQL Query Engine, etc. Classic query engine handles all non-SQL queries
but SQL query engine won't handle logical files.

Following is a simple diagram showing SQL Architecture:

SQL Commands:
The standard SQL commands to interact with relational databases are CREATE, SELECT, INSERT, UPDATE,
DELETE and DROP. These commands can be classified into groups based on their nature:

DDL - Data Definition Language:
Command Description

CREATE Creates a new table, a view of a table, or other object in database

ALTER Modifies an existing database object, such as a table.

DROP Deletes an entire table, a view of a table or other object in the database.

DML - Data Manipulation Language:
Command Description

SELECT Retrieves certain records from one or more tables

INSERT Creates a record

UPDATE Modifies records

DELETE Deletes records

DCL - Data Control Language:
Command Description

GRANT Gives a privilege to user

REVOKE Takes back privileges granted from user

What is RDBMS?
RDBMS stands for Relational Database Management System. RDBMS is the basis for SQL and for all modern

database systems like MS SQL Server, IBM DB2, Oracle, MySQL, and Microsoft Access.

A Relational database management system (RDBMS) is a database management system (DBMS) that is based
on the relational model as introduced by E. F. Codd.

What is table ?
The data in RDBMS is stored in database objects called tables. The table is a collection of related data entries

and it consists of columns and rows.

Remember, a table is the most common and simplest form of data storage in a relational database.

What is field?
Every table is broken up into smaller entities called fields. The fields in the CUSTOMERS table consist of ID,
NAME, AGE, ADDRESS and SALARY.

A field is a column in a table that is designed to maintain specific information about every record in the table.

What is record or row?
A record, also called a row of data, is each individual entry that exists in a table. For example, there are 7 records
in the above CUSTOMERS table.

A record is a horizontal entity in a table.

What is column?
A column is a vertical entity in a table that contains all information associated with a specific field in a table.

What is NULL value?
A NULL value in a table is a value in a field that appears to be blank which means A field with a NULL value is a
field with no value.

It is very important to understand that a NULL value is different than a zero value or a field that contains spaces.
A field with a NULL value is one that has been left blank during record creation.

SQL Constraints:
Constraints are the rules enforced on data columns on table. These are used to limit the type of data that can go
into a table. This ensures the accuracy and reliability of the data in the database.

Constraints could be column level or table level. Column level constraints are applied only to one column where
as table level constraints are applied to the whole table.

SQL Syntax:
SQL is followed by unique set of rules and guidelines called Syntax. This tutorial gives you a quick start with SQL
by listing all the basic SQL Syntax:

All the SQL statements start with any of the keywords like SELECT, INSERT, UPDATE, DELETE, ALTER,
DROP, CREATE, USE, SHOW and all the statements end with a semicolon (;).

Important point to be noted is that SQL is case insensitive which means SELECT and select have same

meaning in SQL statements but MySQL make difference in table names. So if you are working with MySQL then
you need to give table names as they exist in the database.

SQL SELECT Statement:
SELECT column1, column2....columnN

FROM table_name;

SQL DISTINCT Clause:
SELECT DISTINCT column1, column2....columnN

FROM table_name;

SQL WHERE Clause:
SELECT column1, column2....columnN

FROM table_name

WHERE CONDITION;

SQL AND/OR Clause:
SELECT column1, column2....columnN

FROM table_name

WHERE CONDITION-1 {AND|OR} CONDITION-2;

SQL IN Clause:
SELECT column1, column2....columnN

FROM table_name

WHERE column_name IN (val-1, val-2,...val-N);

SQL BETWEEN Clause:
SELECT column1, column2....columnN

FROM table_name

WHERE column_name BETWEEN val-1 AND val-2;

SQL Like Clause:
SELECT column1, column2....columnN

FROM table_name

WHERE column_name LIKE { PATTERN };

SQL ORDER BY Clause:
SELECT column1, column2....columnN

FROM table_name

WHERE CONDITION

ORDER BY column_name {ASC|DESC};

SQL GROUP BY Clause:
SELECT SUM(column_name)

FROM table_name

WHERE CONDITION

GROUP BY column_name;

SQL COUNT Clause:
SELECT COUNT(column_name)

FROM table_name

WHERE CONDITION;

SQL HAVING Clause:
SELECT SUM(column_name)

FROM table_name

WHERE CONDITION

GROUP BY column_name

HAVING (arithematic function condition);

SQL CREATE TABLE Statement:
CREATE TABLE table_name(

column1 datatype,

column2 datatype,

column3 datatype,

.....

columnN datatype,

PRIMARY KEY(one or more columns)

);

SQL DROP TABLE Statement:
DROP TABLE table_name;

SQL CREATE INDEX Statement :
CREATE UNIQUE INDEX index_name

ON table_name (column1, column2,...columnN);

SQL DROP INDEX Statement :
ALTER TABLE table_name

DROP INDEX index_name;

SQL DESC Statement :
DESC table_name;

SQL TRUNCATE TABLE Statement:
TRUNCATE TABLE table_name;

SQL ALTER TABLE Statement:
ALTER TABLE table_name {ADD|DROP|MODIFY} column_name {data_ype};

SQL ALTER TABLE Statement (Rename) :
ALTER TABLE table_name RENAME TO new_table_name;

SQL INSERT INTO Statement:
INSERT INTO table_name(column1, column2....columnN)

VALUES (value1, value2....valueN);

SQL UPDATE Statement:
UPDATE table_name

SET column1 = value1, column2 = value2....columnN=valueN

[WHERE CONDITION];

SQL DELETE Statement:
DELETE FROM table_name

WHERE {CONDITION};

SQL CREATE DATABASE Statement:
CREATE DATABASE database_name;

SQL DROP DATABASE Statement:
DROP DATABASE database_name;

SQL USE Statement:
USE DATABASE database_name;

SQL COMMIT Statement:
COMMIT;

SQL ROLLBACK Statement:
ROLLBACK;

SQL - Operators:

SQL Arithmetic Operators:
Assume variable a holds 10 and variable b holds 20, then:

Show Examples

Operator Description Example

+ Addition - Adds values on either side of the operator
a + b will

give 30

- Subtraction - Subtracts right hand operand from left hand operand
a - b will

give -10

* Multiplication - Multiplies values on either side of the operator
a * b will

give 200

/ Division - Divides left hand operand by right hand operand
b / a will

http://www.tutorialspoint.com/sql/sql-arithmetic-operators.htm

give 2

%
Modulus - Divides left hand operand by right hand operand and returns

remainder

b % a

will give

0

SQL Comparison Operators:
Assume variable a holds 10 and variable b holds 20, then:

Show Examples

Operator Description Example

=
Checks if the values of two operands are equal or not, if yes then condition

becomes true.

(a = b) is

not true.

!=
Checks if the values of two operands are equal or not, if values are not

equal then condition becomes true.

(a != b)

is true.

<>
Checks if the values of two operands are equal or not, if values are not

equal then condition becomes true.

(a <> b)

is true.

>
Checks if the value of left operand is greater than the value of right operand,

if yes then condition becomes true.

(a > b) is

not true.

<
Checks if the value of left operand is less than the value of right operand, if

yes then condition becomes true.

(a < b) is

true.

>=
Checks if the value of left operand is greater than or equal to the value of

right operand, if yes then condition becomes true.

(a >= b)

is not

true.

<=
Checks if the value of left operand is less than or equal to the value of right

operand, if yes then condition becomes true.

(a <= b)

is true.

!<
Checks if the value of left operand is not less than the value of right

operand, if yes then condition becomes true.

(a !< b)

is false.

!>
Checks if the value of left operand is not greater than the value of right

operand, if yes then condition becomes true.

(a !> b)

is true.

SQL Logical Operators:
Here is a list of all the logical operators available in SQL.

Show Examples

Operator Description

http://www.tutorialspoint.com/sql/sql-comparison-operators.htm
http://www.tutorialspoint.com/sql/sql-logical-operators.htm

ALL The ALL operator is used to compare a value to all values in another value set.

AND
The AND operator allows the existence of multiple conditions in an SQL statement's

WHERE clause.

ANY
The ANY operator is used to compare a value to any applicable value in the list

according to the condition.

BETWEEN
The BETWEEN operator is used to search for values that are within a set of values,

given the minimum value and the maximum value.

EXISTS
The EXISTS operator is used to search for the presence of a row in a specified table

that meets certain criteria.

IN
The IN operator is used to compare a value to a list of literal values that have been

specified.

LIKE
The LIKE operator is used to compare a value to similar values using wildcard

operators.

NOT
The NOT operator reverses the meaning of the logical operator with which it is used.

Eg: NOT EXISTS, NOT BETWEEN, NOT IN, etc. This is a negate operator.

OR
The OR operator is used to combine multiple conditions in an SQL statement's WHERE

clause.

IS NULL The NULL operator is used to compare a value with a NULL value.

UNIQUE
The UNIQUE operator searches every row of a specified table for uniqueness (no

duplicates).

