
Revision 1.0 Page 1

CardView Widget
User’s Guide & Cookbook

The purpose of this document is to give you an overview of the features and facili-
ties provided by CardView Widget and how to access them programmatically. It starts
with an introductory chapter. Subsequently step-by-step instructions show how to build
applications employing CardView widgets.

Contents

Introduction 2
User Interface 2
Advanced Features 3
Summary 4

Cookbook: How to deploy a CardView 5
Advanced: Adding a CardView 5
Conventional: Adding a CardView 9
Conventional: Changing the Page Layout (Subcanvas) 13
Setting the Starting Page 15
Determining which tab is selected 16
Setting the Tabs’ Appearance 18

Index 19

Copyright © 1997 by Fraunhofer Institute IITB
Revision 1.0, August 7, 1997

Introduction

Page 2 User’s Guide & Cookbook

Introduction

CardView widget provides functionality of tabbed controls. It is an al-
ternative to the Notebook widget delivered with VisualWorks. As such it
conforms to the method interface of Notebook widget, i.e. a CardView uses
a SelectionInList as its model and a SubCanvas for displaying the view’s
contents. The differences to the Notebook widget are on the one hand a dif-
ferent look & feel, that rather adopts that of the Windows 95 tab controls.
On the other hand, CardView doesn’t support vertical tab bars nor does it
support two separate tab bars at all.

User Interface

The principal behaviour of a CardView or tab control is assumed to be
well known: Selecting a tab changes the view’s contents to display the in-
formation associated with this tab. Changing the contents can mean either to
change the contents of the widgets displayed in the card view client area or
displaying a new client page (subcanvas) with completely different widgets.

The tabs are arranged in a single row at the widget‘s top1. If the tabs’
width exceeds the widget’s boundaries, scroller buttons are displayed at the

1 CardView does not support stacked rows of index tabs as known from certain
Windows 95 tabbed dialogs, e.g. My Computer → Properties.

Advanced Features

Revision 1.0 Page 3

top right corner. Clicking on the right scroller button causes the tabs to be
shifted to the left such that the obscured tabs to the right become visible.
The left scroller button shifts the tabs to the right.

In addition to selecting an index tab with the mouse one can use key-
board shortcuts to navigate to a certain tab:

• Ctrl-PgUp/PgDn moves the selection to the next/previous
tab.

• Ctrl-Home/End moves the selection to the first/last tab.

A CardView’s tabs can have the keyboard focus. This is indicated by
rectangular a border around the selected tab’s label string. Having the key-
board focus results in additional keyboard shortcuts to be available. In par-
ticular:

• PgUp/PgDn moves the selection to the next/previous tab.
• Left/Right moves the selection to the next/previous tab.
• Ctrl-Tab moves the selection to the next tab.
• Ctrl-Shift-Tab moves the selection to the previous tab.
• Home/End moves the selection to the first/last tab.

Advanced Features

Basically, CardView provides the same interface for building sub-
canvases as Notebook does: An application model sends #client:#spec: – or
variants of this message – to the notebook widget as result to a selection
changed notification from the tabs’ selection index holder. This in turn re-
sults in the client app model’s window spec being traced and rebuilt each
time a tab is selected.

CardView provides advanced features in order to simplify the task of
swapping CardView pages:

• Building sub-canvases automatically
• Caching sup-canvases.

Building sub-canvases automatically

A CardView can be configured in Canvas Painter to automatically build
the corresponding page when a tab is selected, without any intervention of
the application model. The necessary information to do so is provided in the
widget’s aspect, a SelectionInList, by using associations with the key speci-
fying the tab’s label and the value specifying the app model and spec to use
for building the page. The app model can be specified either as an Applica-
tionModel subclass or as an instance of which. The spec can be omitted if it
is #windowSpec.

Introduction

Page 4 User’s Guide & Cookbook

Caching sub-canvases

CardView is capable to cache the contents of a page and reuse them
when the same tab is selected again subsequently. Whenever a new tab is
selected, the view copies the contents of the formerly displayed page to a
private dictionary. When this page’s associated tab is selected again, the
cached components are re-installed in the subcanvas instead of rebuilding
them from the client’s window spec. This results in a notably faster display
and can be particularly useful in certain cases, e.g. where a rebuild would
require an entirely new client instance, such as with UIFinderVW2.

Summary

CardView …
• Conforms to the Notebook widget’s message interface.
• Adopts the Look and Feel of Windows 95 tab controls,
• Provides advanced support for building pages automatically.
• Provides support for caching pages.
• Doesn’t support vertical tab bars.

Advanced: Adding a CardView

Revision 1.0 Page 5

Cookbook:
How to deploy a CardView

In this chapter we will describe how to deploy CardView widgets in
VisualWorks applications. This description can be divided into descriptions
of the advanced features introduced with CardView and in conventional
steps. Since CardView complies to the interface of Notebook, the conven-
tional ways to deploy a CardView are quite the same as those to deploy a
Notebook widget. You may compare those steps to the VisualWorks Cook-
book chapter on Notebooks (Chapter 17).

Advanced: Adding a CardView

Strategy

Most often a CardView is used for displaying a separate page — i.e. a
different subcanvas — for each selected tab. The most convenient way to
achieve this is by exploiting the advanced feature of configuring a CardView
to automatically build a subcanvas’s contents. The basic steps show how a
CardView is added using this approach.

Basic Steps

Tutorial Example: CardViewExample

1. Use a Palette to add a CardView widget to your canvas. Leave the
CardView selected.

2. In a Properties Tool (Basics page), fill in the CardView’s Aspect
property with the name of a method (tabs) to return a SelectionInList
containing the labels for the index tabs.

Cookbook: How to deploy a CardView

Page 6 User’s Guide & Cookbook

3. Turn on the CardView’s View builds Pages property.

4. Use a System Browser or the canvas’s define command to create the
instance variable (tabs) and accessing method (tabs) for the Card-
View’s list of index labels.

tabs
^tabs

5. Initialize the aspect variable, either in the accessing method or in an
initialize method (as in the example), with a SelectionInList, con-
taining Associations. The key of each association specifies the tab’s
label string, the value specifies the parameters to build the associ-
ated subcanvas (details are described in “Analysis”).

Advanced: Adding a CardView

Revision 1.0 Page 7

initialize

tabs := SelectionInList
with: (List new

add: 'Setup' -> (Array with: self with: #canvas1Spec);
add: 'System Browser' -> Browser new;
add: 'Resources' -> UIFinderVW2;
add: 'File List' -> FileBrowser;
add: 'My Implementation' -> (Array

with: (Browser new onClass: self class)
with: #classBrowserSpec);

yourself).

Analysis

As described above each association’s value specifies the necessary pa-
rameters to build the subcanvas associated with a tab. This is basically an
instance of ApplicationModel and a Symbol denoting the window spec that
defines the interface of the subcanvas. These two parameters are basically
provided by means of a two-elements array, as shown in the example’s
“Setup” page.

For the purpose of convenience, these rules can be applied:

• If the canvas’s window spec is #windowSpec, the window
spec parameter can be left out. Only the application model
has to be specified as the association’s value (as shown in
the example’s “System Browser” page).

• The application model can be specified either as an instance
of ApplicationModel or as an application model class (as
shown in the example’s “Resources” page).

Specifying the application model by means of its class, results in re-
instantiating the application model each time the associated tab is selected
(only unless the “Cache built Pages” property is turned on). This is in many
cases not desirable, thus you should use instances in these cases. However,
in certain situations this very behavior is necessary. An example is the Re-
source Finder (class UIFinderVW2). Due to the implementation of this class,
if the same instance would be used to repeatedly built ever new subcan-
vases, the subcanvas would not display spec or resource icons after a second
build in the right list.

Variant A:
Setting the Starting Page

By default, a CardView shows up with a blank page (such as a Note-
book does). You can set the starting page by changing the CardView aspect’s
selection index.

Cookbook: How to deploy a CardView

Page 8 User’s Guide & Cookbook

Tutorial Example: CardViewExample

1. In a method in the application model (such as postOpenWith:), send
a selectionIndex: message to the SelectionInList that holds the
CardView’s aspect (in the example this is tabs). The argument is the
index number of the desired page to be displayed initially.

postOpenWith: aBuilder
tabs selectionIndex: 1

Variant B:
Using Page Caching

CardView is capable to cache the contents of a page and reuse them
when the same tab is selected again subsequently. Whenever a new tab is
selected, the view would copy the contents of the formerly displayed page
to a private dictionary. When this page’s associated tab is selected again,
the cached components are re-installed in the subcanvas instead of re-
building them from the client’s window spec. This results in a notably
faster display and can be particularly useful in certain cases, e.g. where a
rebuild would require an entirely new client instance, such as with UI-
FinderVW2.

Tutorial Example: CardViewExample

1. In a Properties Tool (Basics page), turn on the CardView’s Cache
built Pages property.

Conventional: Adding a CardView

Revision 1.0 Page 9

Conventional: Adding a CardView

Strategy

Since CardView complies to the interface of Notebook, the conven-
tional steps to add a CardView to a canvas are quite the same as those to add
a Notebook widget. In particular, a CardView also uses an instance of Se-
lectionInList to hold the list of tab labels, along with a selection index
holder. The major difference in this regard is that CardView does not sup-
port a secondary list of tabs. The steps described below are for the most
parts copied from the VisualWorks Cookbook section on Notebooks (Chap-
ter 17).

Basic Steps

Tutorial Example: CardViewExample1

1. Use a Palette to add a CardView widget to your canvas. Leave the
CardView selected.

2. In a Properties Tool (Basics page), fill in the CardView’s Aspect
property with the name of a method (tabs) to return a SelectionInList
containing the labels for the index tabs.

3. In the CardView’s ID property enter an identifying name for the
widget (tabs).

4. Apply the properties and install the canvas.

5. Use a System Browser or the canvas’s define command to create the
instance variable (tabs) and accessing method (tabs) for the Card-
View’s list of index labels.

tabs
^tabs

6. Initialize the variable, either in the accessing method or in an ini-
tialize method (as in the example), with a SelectionInList, containing
either strings or associations.

Cookbook: How to deploy a CardView

Page 10 User’s Guide & Cookbook

initialize

tabs := SelectionInList
with: #('Views' 'Controllers' 'Models' 'Application Models').

tabs selectionIndexHolder onChangeSend: #pageChanged to: self.

classes := SelectionInList new.

7. Create a second canvas for the interface that is to be shown inside
the CardView. Install this canvas in its own resource method (can-
vasSpec).

8. Use a System Browser or the canvas’s define command to create
any variables and methods needed by the subcanvas. (In the example
there are the classes variable, the classes method and the initialize
method).

9. In the initialize method, use a onChangedSend:to: message to ar-
range for the CardView to send a message (pageChanged) to the ap-
plication model whenever the user selects an index tab.

initialize

tabs := SelectionInList
with: #('Views' 'Controllers' 'Models' 'Application Models').
tabs selectionIndexHolder onChangeSend: #pageChanged to:

self.

classes := SelectionInList new.

10. Create the change notification method (pageChanged) in which
the subcanvas contents are updated, based on the index tab that has
been selected. (In the example, the classes list is updated with ap-
propriate classes).

Conventional: Adding a CardView

Revision 1.0 Page 11

pageChanged

| chosenTab rootClass |
chosenTab := tabs selection.
chosenTab = 'Views' ifTrue: [rootClass := View].
chosenTab = 'Controllers' ifTrue: [rootClass := Controller].
chosenTab = 'Models' ifTrue: [rootClass := Model].
chosenTab = 'Application Models' ifTrue: [rootClass := Application-

Model].
classes list: rootClass withAllSubclasses

11. Create a postOpenWith: method. In this method, first get the
CardView from the application model’s builder, using the Card-
View’s ID (tabs). Then install the subcanvas by sending a cli-
ent:spec: message to the CardView. The first argument is the sub-
application’s application model (in the example it’s self). The sec-
ond argument is the name of the spec method (listSpec) that de-
fines the desired canvas.

postOpenWith: aBuilder

(aBuilder componentAt: #tabs) widget
client: self
spec: #canvasSpec.
tabs selectionIndex: 1

12. In the postOpenWith: method send message selectionIndex: to the
CardView’s aspect variable to arrange for initial contents to be
displayed (see above).

Variant A:
Using a list of associations as the CardView’s tab labels

Tutorial Example: CardViewExample2

Instead of providing a simple list of label strings, you can initialize a
CardView with a list of Associations. The key of each association specifies a
tab’s label string. The associated value can carry any information of use for
application model to identify a selected tab. (Compare “Determining which
tab is selected, Variant C”).

Cookbook: How to deploy a CardView

Page 12 User’s Guide & Cookbook

initialize

classes := SelectionInList new.

tabs := SelectionInList with:
(List new

add: 'Views' -> View;
add: 'Controllers' -> Controller;
add: 'Models' -> Model;
add: 'Application Models' -> ApplicationModel;
add: 'My Examples' -> #myExamples;

yourself).
tabs selectionIndexHolder onChangeSend: #pageChanged to: self.

Conventional: Changing the Page Layout (Subcanvas)

Revision 1.0 Page 13

Conventional: Changing the Page Layout (Subcanvas)

Strategy

The conventional way — as opposed to automatically building pages —
of displaying a different interface on a page is supported by sending a cli-
ent:spec: message to the CardView. This is also compliant to the Notebook
alternative. Thus again, the steps described below are for the most parts
copied from the VisualWorks Cookbook section on Notebooks (Chapter 17).

Basic Steps

Tutorial Example: CardViewExample3

1. In the application model’s initialize method, arrange for the Selec-
tionInList that holds the CardView’s aspect to notify the application
model when a tab is selected by sending onChange:Send: to the se-
lectionIndexHolder. (In the example, a pageChanged method is trig-
gered.)

initialize

tabs := SelectionInList with: #(First Second Third).
tabs selectionIndexHolder onChangeSend: #pageChanged to:

self.

2. In the notification method (pageChanged), get the CardView widget
from the application model’s builder via componentAt:. Send a cli-
ent:spec: message to the CardView.

pageChanged

| wrapper subcanvasSpec |
subcanvasSpec := 'canvas' , tabs selectionIndex printString ,

'Spec'.
(wrapper := builder componentAt: #tabs) isNil ifTrue: [^self].
wrapper widget

client: self
spec: subcanvasSpec asSymbol

Cookbook: How to deploy a CardView

Page 14 User’s Guide & Cookbook

Analysis

A CardView forwards the client:spec: messages — including variants
such as client: and client:spec:builder — to a private subcanvas. The first
argument (client) is an instance of the desired application model (in the ex-
ample, this is the example class itself). The second argument (spec) is the
name of the desired window spec (in the example this is canvas1Spec, can-
vas2Spec or canvas3Spec). The third argument is a UIBuilder to be used for
building the subcanvas. If the spec argument is omitted (message client:),
#windowSpec is assumed. If the builder argument is omitted (message cli-
ent:spec:), a new builder is created.

Setting the Starting Page

Revision 1.0 Page 15

Setting the Starting Page

Strategy

By default, a CardView shows up with a blank page (such as a Note-
book does). You can set the starting page by changing the CardView aspect’s
selection index.

Basic Steps

Tutorial Example: CardViewExample

1. In a method in the application model (such as postOpenWith:), send
a selectionIndex: message to the SelectionInList that holds the
CardView’s aspect (in the example this is tabs). The argument is the
index number of the desired page to be displayed initially.

postOpenWith: aBuilder
tabs selectionIndex: 1

Cookbook: How to deploy a CardView

Page 16 User’s Guide & Cookbook

Determining which tab is selected

Strategy

Detecting which tab of a CardView is selected is done in exactly the
same way as with Notebook widgets, i.e. getting and comparing the selected
tab’s label string, its index number or its associated value. (Compare the
following with the corresponding section in the VisualWorks Cookbook).

Variant A:
Getting the selected tab’s label

Tutorial Example: CardViewExample1

1. In a method in the application model, get the selected tab’s label
string by sending a selection message to the CardView’s aspect
variable (a SelectionInList).

pageChanged

| chosenTab rootClass |
chosenTab := tabs selection.
chosenTab = 'Views' ifTrue: [rootClass := View].
chosenTab = 'Controllers' ifTrue: [rootClass := Controller].
chosenTab = 'Models' ifTrue: [rootClass := Model].
chosenTab = 'Application Models' ifTrue: [rootClass := Application-

Model].
classes list: rootClass withAllSubclasses

Variant B:
Getting the selected tab’s index number

Tutorial Example: CardViewExample1

1. In a method in the application model, get the selected tab’s index
number by sending a selectionIndex message to the CardView’s as-
pect variable (a SelectionInList).

pageChanged

| chosenTab rootClass |
chosenTab := tabs selectionIndex.
rootClass := #(View Controller Model ApplicationModel) at: chosenTab.
classes list: (Smalltalk at: rootClass) withAllSubclasses

Determining which tab is selected

Revision 1.0 Page 17

Variant C:
Getting the value associated with the selected tab

Tutorial Example: CardViewExample2

1. Initialize the CardView’s aspect variable with a list of associations
as shown in section “Adding a CardView, Variant A” above.

2. In a method in the application model, get the selected tab’s associa-
tion by sending a selection message to the CardView’s aspect vari-
able (a SelectionInList).

3. Send a value message to the resulting association. (In the example
the value is either the symbol #myExamples or a class.

pageChanged

| newContents selection |
selection := tabs selection value.

newContents :=
(selectedTab == #myExamples)

ifTrue: [Smalltalk keys select: [:each | 'CardViewExample*' match:
each]]

ifFalse: [selection withAllSubclasses collect: [:each | each name]].
classes list: newContents asSortedCollection

Cookbook: How to deploy a CardView

Page 18 User’s Guide & Cookbook

Setting the Tabs’ Appearance

Strategy

The CardView class can be configured to either display the tabs in a
Windows 95 conformant look or in an appearance that resembles that of
CardViews in NextStep.

Basic Steps

Tutorial Example: CardViewExample

1. Send message tabStyle: to the CardView class. The argument is ei-
ther the Symbol #slanted for Nextstep-like tabs or #straight for
Windows 95-like tabs.

CardView tabStyle: #slanted.

“or”

CardView tabStyle: #straight.

(You can inquire the current tab style by sending message tabStyle to class
CardView.)

Setting the Tabs’ Appearance

Revision 1.0 Page 19

Index

A
ApplicationModel 7
Association 6, 11, 16

C
Caching 4, 8
client:spec: 11, 12

K
keyboard shortcuts 3

N
NextStep 17
Notebook 2, 5, 9

O
onChange:Send: 12
onChangedSend:to: 10

S
selectionIndex: 8, 11
SelectionInList 2, 6, 9
slanted 17
straight 17
SubCanvas 2

T
tabStyle 17
tabStyle: 17

W
Windows 95 2, 17
windowSpec 7

