
Page 1

New DataSet Widget
User’s Guide & Cookbook

The purpose of this document is to give you a comprehensive overview of the fea-
tures and facilities provided by New DataSet Widgets and how to access them program-
matically. It starts with an introductory chapter. Subsequently step-by-step instructions
show how to build applications employing new data set widgets.

Contents

Introduction 2
New features compared to old implementation 2
User Interface 4
Programming Interface 6
Summary of Features 6

Cookbook: How to employ new data set views 8
Adding a New Data Set View 9
Allowing for Multiple Selections 12
Toggle editing and browsing mode 13
Validating changes in edited cells 14
Storing and restoring the column layout 16
Sorting entries programmatically 17
Configuring for auto-appending new entries 20
Adding/Removing columns programmatically 21
Allowing or disallowing for column dragging and sorting 24
Programmatically modifying the appearance 25
Setting a column label's text programmatically 26
Setting alignment of column labels programmatically 27
Setting the line grid programmatically 28
Customizing rendering of cell contents 29
Customizing the labels’ background color 29
Customizing the overall behavior 30
Using new data sets in Lens Applications 31

Index 35

Copyright © 1998 by Fraunhofer Institute IITB
Revision 1.5, December 21, 1998

Introduction

Page 2

Introduction

New DataSet Widget is a re-implementation of the existing data set
widget as being shipped with VisualWorks. Originally, the sole reason for
this re-implementation was the need for multiple selection facilities in data
set views. Unlike the data set implementation shipped with VisualWorks this
new implementation is based on a View class derived from MultiSelection-
SequenceView, thus inheriting support for multiple selections. However,
New DataSet Widget not only supports multiple selection of entries but also
conforms to the method interface of the old implementation. Thus, the new
data set widgets can …

a) be created and configured in Interface Painter as before, and
b) be used in place of any old data set.

In the following sections we will discuss the enhanced features pro-
vided by this new implementation, when compared to the old one. We will
also have a look at how this affects the user interface and the programming
interface of data set views.

New features compared to old implementation

Browsing and Editing mode

An application using a new data set view can switch the widget between
browsing behavior and editing behavior at runtime. In browse mode, the
widget behaves very much like an ordinary SequenceView, except for the
tabular layout, the column labels and the resizable columns. If multiple se-
lection facility is enabled, you can select more than one row in this mode.

In edit mode, there’s always only one cell selected and active in the data
set view. You can edit the text in this cell. As in the old implementation, you
can exclude individual columns from editing by making them read-only.

Manipulating appearance

NewDataSet widgets provide manifold ways to manipulate their ap-
pearance at runtime of an application. In particular, an application can ar-
range for enabling or disabling …

• horizontal and vertical grid lines
• column labels
• row selectors

New features compared to old implementation

Page 3

• decorated cell editors (vs. plain editors without borders)
• column dragging
• sorting entries by columns

The last two issues will be discussed in detail in the following sections.

Sorting entries

A user can sort the entries in a new data set view by clicking on a col-
umn’s label. This facility works in a general and adaptive way, without re-
quiring any explicit actions from the application programmer. It simply uses
the column values retrieved by the column aspect as being configured in the
interface painter.

If the values retrieved for a column respond to the comparison operator
message ‘<’, this operator is used to provide a type specific sorting. If this
message is not supported directly, the entries’ display strings are used. E.g. if
a column displays date values, the entries will be correctly sorted by this
column, since class Date implements ‘<’. This wouldn’t be the case if dis-
play strings would be used for dates.

Changing the column layout

Besides column resizing, new data set also supports interactive modifi-
cation of the column order by clicking on a column label and dragging it to
the new position. This is possible for non-frozen columns only. The column
layout (column widths and order) can be stored when a window is closed
and restored on opening a window containing a new data set.

Automatic appending of new entries

New data set widgets can be configured to automatically insert a new
entry when a user moves the cell editor past the last edited entry. Applica-
tion programmers initialize a new data set view with a so called „auto new
block“ which is responsible for returning an entry to be used as the template.

Support for Drag & Drop

New data set view inherits support for drag & drop from its superclass
SequenceView. A developer can follow the steps described in the Visual-
Works Cookbook to enable drag & drop for new data set views.

Introduction

Page 4

User Interface

The look and feel of new data set views differs from that of the old im-
plementation. It adopts to that of table controls in Windows 95 or NT 4.0.
This has the result of presenting the end user with a more familiar user inter-
face. Part of this are some new keyboard shortcuts supported.

Sorting entries

A user can sort the entries in a new data set view by clicking on a col-
umn’s label. The first click on a label sorts the entries by the contents of the
selected column in an ascending order. Subsequent clicks on the same col-
umn label reverses the sort order. An icon is displayed in the column label to
indicate the sort order.

Column dragging

A user can reposition a column by clicking on a column label and drag-
ging it to the new position. Clicking and releasing the mouse button without
moving the mouse invokes the sorting function. When the mouse is moved
horizontally a short distance, the mode changes to column dragging. This is
indicated by the column label following the mouse pointer visually.

In the process of dragging the column label horizontally the labels' or-
der will change gradually as the label is moved beyond the position of the
other columns. The label can be moved a vertically within a certain ‘corri-
dor’. If the vertical distance exceeds a certain amount, however, the label
following the mouse will disappear, indicating that the dragging operation
will be cancelled. The label snaps back to its old position.

Appending new entries
(AutoAppend)

New data set widgets can be configured to automatically insert a new
entry when a user moves the cell editor past the last edited entry. This fea-
ture works like comparable facilities, e.g. that in MS Access table controls:
A template entry is always appended as the last entry. If row selectors are
enabled, this entry is marked with a special asterisk icon (‘*’).

When the user edits the template entry and subsequently moves the
editor to the next entry using Tab or Return, a new template entry is auto-
matically appended. However, no new templates are added if no changes are
made to an already existing template entry. The editor won’t move past an
unchanged template entry.

User Interface

Page 5

Keyboard Shortcuts

Keyboard shortcuts available in editing and browsing mode:

• Up / Down moves the selection to the previous / next entry
• Page Up / Page Down moves the selection one page up /

down

Keyboard shortcuts available in browsing mode only:

• Home / End moves the selection to the first/last entry in the
list. (In editing mode these keys move the cursor to the be-
gin/end of the edited text.)

Keyboard shortcuts available in editing mode only:

• Tab / Shift Tab moves the editor to the next/previous cell.
• Return / Enter moves the editor to the next cell.
• Ctrl-Tab / Ctrl-Shift-Tab moves keyboard focus to the

next/previous widget.

Differences in appearance

The appearance of new data set views is quite different from that of old
ones. It is more closer to table controls in Windows 95. The most obvious
differences in appearance are:

• Button-like row selector and column labels.
• Optional use of non-decorated (without border) cell editors.

Except for the tabular layout, the entries in a new data set widget are
displayed just as they would be displayed in a list box. Together with the
browsing mode supported by new data set views, this gives it a more ‘entry-
oriented’ character than the cell-oriented character of the old appearance.
The following picture shows a new data set view in browsing mode.

Introduction

Page 6

Programming Interface

From a programmer's point of view, a new data set view behaves very
much like a SequenceView. In fact class NewDataSetView is derived from
SequenceView and inherits most of its functionality — and hence its pro-
gramming interface — from its superclass. Moreover, the very most of the
messages of the old implementation’s interface is supported too. This allows
a developer to replace an old data set view by a new one without changing
code, that was already written to access the widget.

New messages are provided for additional features, that are not sup-
ported neither by the old data set view nor by sequence views. These fea-
tures are described above. The next chapter provides examples which show
how to use the new features in own applications.

Integration with Interface Painter

The conformance to the old DataSetView interface also allows the new
widget to be created and configured within the Interface Painter exactly as
you would do this with old data set widgets. In particular you can add a
NewDatasetView to your canvas from PaletteTool and configure it using the
familiar settings in PropertyTool.

NewDatasetView provides you with some additional pages and proper-
ties. Most of those settings are inherited from SequenceView, such as the
check box which tells the widget whether to enable multiple selections or
not, and the Drag&Drop properties page.

Summary of Features

These are the pro's of the new implementation that are important for
you as a developer:

• Allows you to select between single selection or multiple se-
lection behavior.

• Allows you to switch between browsing mode and editing
mode at runtime.

• Inherits most of its behavior — and hence its programming
interface — from MultiSelectionSequenceView (including
Drag&Drop!).

• Conforms to the old DataSetView interface (→ in principal
you can use it anywhere you used to use the old widgets)

Summary of Features

Page 7

• Acts more efficiently concerning display, browsing, and edit-
ing.

• Seamless integration with Lens Objects and Database Tools
(Canvas Composer, …)

And these are the pro's important for you as an end user:

• Adopts the Look and Feel of Windows 95 table controls,
• Allows the user to resize columns in real time using the col-

umn labels.
• Allows the user to reposition columns by dragging them to a

new position.
• Allows the user to sort the rows by any column using the la-

bels.
• Supports automatic appending of new entries.
• Acts more efficiently concerning display, browsing, and edit-

ing.

Cookbook: How to employ new data set views

Page 8

Cookbook:
How to employ new data set views

In this chapter we will describe how to employ new data set widgets in
a VisualWorks application. We will thereby concentrate on the new features
introduced. To learn more about the basic steps, you may refer to the corre-
sponding chapter in your VisualWorks documentation (Cookbook, Chapter.
11). It will be shown how a new data set view is added to a canvas, how to
toggle between browsing and editing mode, how auto-append blocks can be
provided, etc.

The code shown in the single steps is provided in the tutorial applica-
tion class NewDatasetExample. This class is itself derived from OldDa-
tasetExample. The latter contains all the code that is not specific for new
data sets but depends on the common interface of old and new implementa-
tion. If you start it, it shows up with an old data set. NewDatasetExample
employs a new data set view. It inherits from its superclass all the basic code
to employ a data set view, whether it is an old or a new one. Additionally,
new methods are provided to address the new features.

The separation between the two example classes clearly shows the dis-
tinction between the common interface, defined by the old implementation
and also supported by new data sets, and the new interface provided to ad-
dress the new features introduced.

Adding a New Data Set View

Page 9

Adding a New Data Set View

Strategy

Since NewDataSetView supports the interface of the old implementa-
tion, the basic steps to add a data set to a canvas remain the same. A new
data set also uses an instance of SelectionInList to hold the list of objects to
be displayed, along with a selection holder. However, if you enable the mul-
tiple selection mode, you should provide an instance of MultiSelectionInList
instead.

Basic Steps

Tutorial Example: NewDatasetExample

1. Use a Palette to add a new data set
widget to the canvas.

All the remaining steps are the same as those being listed in Visual-
Works Cookbook in chapter 11, section „Adding a Dataset“.

Variant A: Replacing an old data set view by a new one

If you want to modify an existing application to use a new data set view,
you can do this by replacing „DataSetSpec“ with „NewDataSetSpec“ in the
application’s window spec. There should principally be no further changes
to your code necessary.

1. Use a system browser to edit your application’s windowSpec method.
Search for string „DataSetSpec“ and replace it with „NewDataSet-
Spec“.

2. Apply the changes and start up the application to test if it works.

3. You can now edit the modified window spec in Canvas Painter, us-
ing all the new properties.

Variant B: Enabling or disabling display of row and column labels

Per default a new data set is pre-configured to display columns labels
and row selectors. You can disable this selectively in the Properties Tools.

Cookbook: How to employ new data set views

Page 10

1. Open the window spec containing the new data set in Canvas Pain-
ter and select the widget.

2. In the Properties Tool’s Enhanced Page, turn on the data set’s Show
Column Labels and Show Row Selectors properties appropriately.

Variant C: Enable Displaying of Grid Lines

You can configure a new data set to display grid lines horizontally, ver-
tically or both.

1. Open the window spec containing the new data set in Canvas Pain-
ter and select the widget.

Adding a New Data Set View

Page 11

2. In the Properties Tool’s Enhanced Page, turn on the data set’s Show
Grid Lines properties appropriately.

Variant D: Enabling editing mode initially

If you have replaced an old data set widget with a new one as described
in the steps before, the application will start up with the new data set being
in browsing mode. Since your application hasn’t any code to enable editing
mode, you may want to configure the data set to use editing mode initially.

1. Open the modified window spec in Canvas Painter and select the
data set widget.

2. In the Properties Tool’s Enhanced Page, turn on the data set’s Ini-
tially use Editing Mode property.

Variant E: Use decorated editors

New data set widgets are configured to use non decorated editors as the
default. This means that no borders are displayed around the input fields
used to edit the contents of cells in editing mode. This allows the display
and traversal of new data sets to be much faster than that of the old ones that
always display a border. However, you can also configure a new data set
widget to display bordered editors.

1. Open the window spec containing the new data set in Canvas Pain-
ter and select the widget.

2. In the Properties Tool’s Enhanced Page, turn on the data set’s Use
Decorated Editors property.

Variant F: Disabling interactive sorting and/or column dragging

The built-in facilities for interactive sorting and column dragging are
initially enabled when a new data set is added to a canvas. However, you can
switch off these facilities.

1. Open the window spec containing the new data set in Canvas Pain-
ter and select the widget.

2. In the Properties Tool’s Enhanced Page, turn on/off the data set’s
Allow for Sorting and/or Allow for Column Dragging properties.

Cookbook: How to employ new data set views

Page 12

Allowing for Multiple Selections

Strategy

In order to enable multiple selection facility for your new data set, you
first turn on the appropriate properties in the Properties Tool and then pro-
vide an instance of MultiSelectionInList instead of SelectionInList in the
data set’s aspect method. The properties to turn on for multiple selection are
the same as in case of list boxes (Multi Select, Use Modifier Keys for Multi
Select).

Basic Steps

Tutorial Example: NewDatasetExample

1. In the Properties Tool’s Details Page, turn on the data set’s Multi
Select property. (Leave Use Modifier Keys for Multi Select se-
lected for standard behavior.)

2. In the application model initialize the widget’s aspect variable with
an instance of MultiSelectionInList instead of SelectionInList:

entries

entries isNil
ifTrue:

[entries := MultiSelectionInList new.
entries selectionIndexHolder

compute: [:v | self row value: entries selection]].
^entries

Analysis

Note that normally, a data set view (at least old ones) expect the aspect
to be an instance of SelectionInList. You can recognize this by having a
closer look at the aspect method above: To ensure compatibility with old
data sets, a new data set also uses a second aspect, a so called row holder
which holds the selected entry (Generally, you don’t care about this row
holder). This row holder is updated by a BlockValue, which is computed
each time the selection changes. Traditionally this happens via a message
like rowHolder value: entries selection. In this message entries selection re-
fers to a single selection, which is normally not supported by instances of
MultiSelectionInList.

Toggle editing and browsing mode

Page 13

The implementation of new data sets however, include minor enhance-
ments to MultiSelectionInList to unify its interface with that of SelectionIn-
List. In fact these enhancements allow you to have a new data set view using
single selection mode initialized with an instance of MultiSelectionInList as
its aspect. Thus, when the data set is in editing mode, you can securely use
selection or selectionIndex to access the only selected entry (During editing
no multiple selections are possible). However, when a data set allowing
multiple selections is in browsing mode, you should use selections or selec-
tionIndexes instead.

Toggle editing and browsing mode

Strategy

If an application is to be designed to use a new data set view in both
editing and browsing mode, it has to be equipped with code to switch be-
tween the two modes. This is done by sending the widget’s controller corre-
sponding messages. These messages are:

startEditing to enable editing mode when the widget is in browsing
mode. If the widget is already in editing mode, this message has no ef-
fect.

stopEditing to return to browsing mode when the widget is in editing
mode. If changes have been made to the currently edited entry, these
changes are committed. If the widget is already in browsing mode,
this message has no effect.

abortEditing to return to browsing mode when the widget is in editing
mode. Changes to the currently edited entry are canceled. If the wid-
get is already in browsing mode, this message has no effect.

toggleEditing to switch to editing mode when the widget is in browsing
mode or to switch to browsing mode when the widget is in editing
mode. If it was in editing mode and changes have been made to the
currently edited entry, these changes are committed.

In our example application starting and ending editing is done via a key
press on F2 (conforming to file name editing in Windows 95 explorer). The
steps described below show how this is achieved.

Basic Steps

Tutorial Example: NewDatasetExample

1. Use a system browser to edit the application model’s postBuildWith:
method as shown below.

Cookbook: How to employ new data set views

Page 14

postBuildWith: aBuilder

aBuilder keyboardProcessor
keyboardHook: [:ev :ctrl | self keyPress: ev].

super postBuildWith: aBuilder

2. Use a system browser to implement method keyPress: to handle key
presses as follows: F2 toggles between browsing and editing mode,
Return starts editing if we are in browsing mode, Esc aborts editing
and returns to browsing mode if the widget is in editing mode, and
F12 accepts changes and returns to browsing mode.

keyPress: aKeyboardEvent

| keyValue ctrl |
keyValue := aKeyboardEvent keyValue.
ctrl := (builder componentAt: #entries) widget controller.
keyValue == #F2 ifTrue: [ctrl toggleEditing] ifFalse: [
keyValue == Character cr1 ifTrue: [ctrl startEditing] ifFalse: [
keyValue == Character esc ifTrue: [ctrl abortEditing] ifFalse: [
keyValue == #F12 ifTrue: [ctrl stopEditing]
ifFalse: [^aKeyboardEvent]]]].
^nil

Validating changes in edited cells

Frequently, an application will have to validate the changes made in an
edited cell. The basic steps below show how this can be done by means of
change validation and exit validation callbacks. Change validation prevents
input from being passed to the cell’s value model unless it is valid. Exit
validation prevents the user from moving the focus out of the cell until ei-
ther an invalid input is corrected or the editing is aborted. Most often, both
kinds of validation will have to be performed, usually with the same call-
back method.

Validation as described in this section can be applied to both, the old
and the new implementation. However, since the VisualWorks documenta-
tion doesn’t talk about this with respect to Data Sets, we will provide some

1 In fact, the test for this is (keyValue == Character cr and: [ctrl isBrowsing]),
since presses on Return should only be processed by the application if we are in
browsing mode. Otherwise this event would not be passed to the widget’s controller,
which itself handles Return as next field when in browsing mode.

Validating changes in edited cells

Page 15

explanation here. You may want to compare the explanations given here
with the more comprehensive explanations on validation for Input Fields in
VisualWorks Cookbook, Chapter 6.

Basic Steps

Tutorial Example: OldDatasetExample

1. Open the window spec containing the new data set in Canvas Pain-
ter and select the widget.

2. Select the column you want to validate input for.

3. In the Properties Tool’s Validation Page, enter a method selector for
both, change validation and exit validation. In this example, the
same method (validateProductName:) is used for both.

4. Use a system browser to implement the validation callback method
corresponding to the selector you specified in step 1 (validate-
ProductName:). Return true if the input is valid. Note that, because
we specified a method selector with a colon, the method takes a
controller as an argument.

validateProductName: aController

| newName oldName |
newName := aController editValue.

 „If no changes were made, we don’t need to perform the
 validation tests“

aController textHasChanged ifFalse: [^true].

newName isEmpty
ifTrue:

[Screen default ringBell.
Dialog warn: 'You must enter a name for that product!'.
^false].

 ^true. „Ok, validation succceeded ...“

Cookbook: How to employ new data set views

Page 16

Variant: Testing for duplicates

We enhance the validation tests shown in basic step 2 by an additional
test for duplicates. If a duplicate is detected, we ask the user if he really
wants to use the name he entered. If he confirms this, the validation returns
true.

validateProductName: aController

[...]

 „It is ok, if the name was edited but remains the same ...“
oldName := row value at: 2.
newName = oldName ifTrue: [^true].

 „Otherwise we have to look for duplicates ...“
entries list detect: [:each | (each at: 2) = newName] ifNone: [^true].

 „A duplicate was found; ask the user if he insists
 on this product name ...“

Screen default ringBell.
(Dialog

confirm:
'There''s already an entry with product name ''', newName, '''
Are you sure you want to insert another one?')

ifFalse: [^false].

 „The user confirmed the duplicate name. We’ll have to reset
 the change flag and accept the changes here, otherwise the
 user will be asked twice.“

 aController textHasChanged: false.
 aController accept.

 ^true. „Ok, validation succceeded ...“

Storing and restoring the column layout

Strategy

If a user can change the order and the widths of the columns in a data
set view interactively, he or she would certainly want the application to re-
member these changes and use the same column layout, the next time the
application is started. New data set view supports this by the new messages

Sorting entries programmatically

Page 17

columnLayout to retrieve the current column layout information and co-
lumnLayout: to restore a formerly stored column layout.

Basic Steps

Tutorial Example: NewDatasetExample

1. Add a class variable (in this example we call it ColumnLayout) to
your application model.

2. Use a system browser to create/edit the application model’s no-
ticeOfWindowClose: method. This method is always called when an
application’s window is closed. In the method’s implementation use
columnLayout to get the current column widths from the data set
view. Store the answer in the class variable provided in step 1 (Co-
lumnLayout).

noticeOfWindowClose: aWindow

ColumnLayout := (builder componentAt: #entries)
 widget columnLayout.

^super noticeOfWindowClose: aWindow

3. Use a system browser to create/edit the application model’s post-
BuildWith: method. In the method’s implementation use co-
lumnLayout: to set the data set view’s column widths from the class
variable provided in step 1 (ColumnLayout).

postBuildWith: aBuilder

| widget |
widget := (builder componentAt: #entries) widget.
ColumnLayout notNil

 ifTrue: [widget columnLayout: ColumnLayout].
super postBuildWith: aBuilder

Sorting entries programmatically

Strategy

As described in the introduction, new data set widget supports auto-
matic sorting of entries without requiring any additional code to be provided

Cookbook: How to employ new data set views

Page 18

for this purpose. However, sometimes you may want to sort the entries pro-
grammatically, such as in result to some menu commands (e.g. Sort by …).
You can do this by sending message orderBy: to a data set view. This mes-
sage expects a column index as the argument. Index 1 refers to the first data
column, row selector columns are ignored.

Basic Steps

Tutorial Example: NewDatasetExample

1. Open the application’s window spec in Canvas Painter and select
the data set widget.

2. In the Properties Tool’s Basics Page, fill in the widget’s Menu as-
pect (listMenu).

3. Apply changes and save the canvas.

4. Use a system browser to add an instance variable to the application
model to hold a menu for the aspect selector (listMenu).

5. Use a system browser to create an aspect method (listMenu) that
builds a menu with entries for the columns to sort by. The items’ la-
bels are the column names, the items’ values are the column in-
dexes.

listMenu

listMenu isNil
ifTrue:

[| mb |
(mb := MenuBuilder new)

beginSubMenuLabeled: 'Sort by ...\b';
add: 'Date' -> 1;
add: 'Name' -> 2;
add: 'Amount' -> 3;
add: 'Price' -> 4;

endSubMenu.
listMenu := mb menu asValue].

^listMenu

6. Use a system browser to create/edit the application model’s post-
BuildWith: method. In the method’s implementation provide a block
to be used as the new data set controller’s menu performer. This
block takes a menu value — in case of the listMenu shown above,
these are column indexes — as its argument and uses this index to
call orderBy:.

Sorting entries programmatically

Page 19

postBuildWith: aBuilder

| widget |
widget := (builder componentAt: #entries) widget.
widget controller performer: [:i | widget orderBy: i].
super postBuildWith: aBuilder

Variant A: Specifying the initial sort column

When an application employing a new data set view starts up, the first
data column is used as the initial sort column to sort the entries in an as-
cending order. If you want to specify another column as the initial sort col-
umn, you can use message sortColumn: to do so. This message expects a
column index as the argument. Index 1 refers to the first data column, row
selector columns are ignored.

1. Use a system browser to edit the application model’s postBuildWith:
method. In the method’s implementation send sortColumn: with a
column index to the data set view.

postBuildWith: aBuilder

| widget |
widget := (builder componentAt: #entries) widget.
widget controller performer: [:i | widget orderBy: i].
widget sortColumn: 2.
super postBuildWith: aBuilder

Variant B: Providing a default sort block

When a data set’s entries are sorted by a certain column, only the values
in this column are used to determine the entries’ order. Sometimes however,
you may want the entries to be sorted with a secondary sort criterion, such
that a range of entries with equal values in the primary sort column is sorted
according to that secondary criterion. New data set view supports this by
means of a default sort block.

1. Use a system browser to edit the application model’s postBuildWith:
method. In the method’s implementation send defaultSortBlock:
with a sort block to the data set view. The sort block takes two ar-
guments each one standing for an entry to compare for ordering. The
block’s return value is expected to be a boolean which tells whether
the first argument is considered less than the second.

Cookbook: How to employ new data set views

Page 20

postBuildWith: aBuilder

| widget |
widget := (builder componentAt: #entries) widget.
widget controller performer: [:i | widget orderBy: i].
widget sortColumn: 2.
„Provide a default sort block which compares two entries’
product names ...“
widget defaultSortBlock: [:a :b | (a at: 2) < (b at: 2)].
super postBuildWith: aBuilder

Configuring for auto-appending new entries

Strategy

New Data Set Widgets can be configured to automatically insert a new
entry when a user moves the cell editor past the last edited entry. This fea-
ture works like comparable facilities, e.g. that in MS Access table controls.
If this feature is used, a template entry is appended as the last entry. If row
selectors are enabled, this template entry is marked with a special asterisk
icon (‘*’). Application programmers initialize a new data set view with a so
called „auto new block“ which is responsible for returning an entry to be
used as the template.

When the user edits that entry and subsequently moves the editor to the
next entry using Tab or Return, a new template entry is automatically ap-
pended. However, no new templates are added if no changes are made to an
already existing template entry. The editor won’t move past an unchanged
template entry.

Basic Steps

Tutorial Example: NewDatasetExample

1. Use a system browser to edit the application model’s postBuildWith:
method. In the method’s implementation send autoNewBlock: to the
data set view. This message expects a block as its argument. The
block’s return value is expected to be an entry with template values
— these values can be empty — to be appended the end of the list
each time a new entry is required.

Adding/Removing columns programmatically

Page 21

postBuildWith: aBuilder

| widget |
widget := (builder componentAt: #entries) widget.
widget autoNewBlock: [self templateEntry]
super postBuildWith: aBuilder

2. Use a system browser to create method templateEntry which is re-
sponsible for creating the template entries.

templateEntry

^(Array new: 5)
at: 1 put: Date today;
at: 2 put: '[new]';
at: 3 put: nil;
at: 4 put: -9999;
at: 5 put: false;

yourself.

Analysis

Note that the template entries must each be a different object, since they
might be changed when a user edits that entry in order to add a new one.
You may not use objects stored class variables or literal objects (e.g. a literal
array). The template entries will be compared by the data set view using the
equality operator (=) in order to detect if the entry has changed and a new
entry should be appended, if the user tries to move the editor past the cur-
rently last entry.

Adding/Removing columns programmatically

Strategy

In certain application you might need to arrange for dynamic adding and
removing of separate columns. One can distinguish two different cases: One
case are applications in which all columns are known and can be pre-
configured in Canvas Painter. Single columns are then to be hidden and re-
displayed dynamically during runtime of the application. Another case are
applications in which you don't know about all the columns which might be
displayed later on. On contrary, your application will need to construct and

Cookbook: How to employ new data set views

Page 22

add certain columns based on evaluation of some specific configuration in
your application model dynamically.

In the tutorial example we will add a menu command "Show Prices"
which dynamically shows or hides the Prices column in the data set. Method
showPrices: aBoolean will arrange for this.

Basic Steps

Tutorial Example: NewDatasetExample

1. In your application code send insertColumn:at: to the TreeView to
add a column at a certain position given by index. Send remove-
ColumnAt: to remove a column.

showPrices: aBoolean

| dataset |
dataset := builder componentAt: #entries.
aBoolean

ifTrue: [dataset widget insertColumn: (dataset spec columns at: 5) at: 4]
ifFalse: [dataset widget removeColumnAt: 4]

Analysis

In the code shown above, a certain column is added or removed de-
pending on the parameter aBoolean. Both methods, insertColumn:at: and
removeColumnAt:, expect an index denoting the position at which the col-
umn is to be inserted or removed. This index refers to data columns, the row
label column is ignored. Furthermore, insertColumn:at: expects either an in-
stance of NewDataSetColumn or of DataSetColumnSpec. In the example it
is the latter which is obtained from the widget's spec. Both method take care
for appropriate update of the view's display.

Variant A: Hiding and redisplaying pre-configured columns

The given implementation of showPrices: could be modified to store
the instance of NewDataSetColumn in an instance variable before hiding it,
and then using this instance variable for redisplaying the column, instead of
doing this via the column spec.

1. Add an instance variable pricesColumn to class NewDatasetExam-
ple.

2. Modify implementation of method showPrices: as shown below:

Adding/Removing columns programmatically

Page 23

showPrices: aBoolean

| dataset |
dataset := builder componentAt: #entries.
aBoolean

ifTrue: [dataset widget insertColumn: pricesColumn at: 4]
ifFalse: [pricesColumn := dataset widget removeColumnAt: 4]

In the code you see that removeColumnAt: returns the instance of New-
DataSetColumn which has been removed. This instance can be used to re-
insert that very column subsequently.

Variant B: Dynamically construct and display new columns

If the more complicated situation arises, that you need to construct and
add completely new columns based on some dynamic state in your applica-
tion model, you would provide an instance of DataSetColumnSpec as a pa-
rameter to insertColumn:at:. You will configure this instance with all the
necessary attributes, such as column aspect, label, editor spec, fonts and
column width.

1. Modify implementation of method showPrices: to use a separate
method pricesColumn to dynamically construct the appropriate in-
stance of DataSetColumnSpec.

showPrices: aBoolean

| dataset |
dataset := builder componentAt: #entries.
aBoolean

ifTrue: [dataset widget insertColumn: self pricesColumn at: 4]
ifFalse: [dataset widget removeColumnAt: 4]

2. Implement pricesColumn to dynamically construct the appropriate
instance of DataSetColumnSpec.

Cookbook: How to employ new data set views

Page 24

pricesColumn

"This could as well be taken from the widget spec, such as in:
((builder componentAt: #entries) spec columns at: 5)
Note: index 1 = rowSelector"

^(DataSetColumnSpec new
model: #'row 4'; "The column's aspect ..."
width: 72; "and its width"
label: 'Price'; "The label ..."
labelFont: #DataSetLabel; "and its font (text style)"
editorType: #InputField; "The editor spec ..."
type: #fixedpoint;
alignment: #right;
font: #DataSetEntries;
formatString: '$#,##0.00;[Red]-$#,##0.00')

If you are not sure how to specify certain attributes of a column spec, it
is a good idea to first paint a dummy data set with a corresponding column
spec in Canvas Painter and then look up all the attributes. Usually, all you
have to do is removing the leading # characters from the attribute names to
obtain the appropriate method selectors.

Allowing or disallowing for column dragging and sorting

Strategy

At runtime, an application can configure a new data set widget to allow
or disallow for column dragging and interactive sorting. This can be done in
an all or none way for all the columns in a data set or on a per-column basis.
The basic steps below lists the messages to be sent to a NewDataSetView or
to a NewDataSetColumn to fulfil these tasks.

Basic Steps

Use the messages listed below for enabling/disabling ...

Column Dragging:
aNewDataSetView allowForColumnDragging: aBoolean
aNewDataSetColumn canBeDragged: aBoolean

Programmatically modifying the appearance

Page 25

Interactive Sorting:
aNewDataSetView allowForSorting: aBoolean
aNewDataSetColumn allowForSorting: aBoolean

Analysis

In general all these methods expect a boolean as a parameter denoting
whether to enable or disable the respective facility. All methods provide for
appropriate invalidation and updating. An example for using these messages
from within an application model methods is:

(builder componentAt: #myDataSet) widget allowForSorting: false.
((builder componentAt: #myDataSet) widget columnAt: 2)

canBeDragged: false.

Disabling column dragging or interactive sorting on the NewDataSet-
View for all columns has precedence over per-column enabling of these fea-
tures. E.g., if you would want to disallow for column dragging on certain
columns, you would generally allow for column dragging on the NewDa-
taSetView (the default for non-frozen columns) and then disallow for column
dragging on the desired columns.

Programmatically modifying the appearance

Strategy

At runtime, an application can arrange for enabling or disabling …
• horizontal and vertical grid lines
• display of column labels
• display of row selectors
• decorated cell editors (vs. plain editors without borders)
• column dragging
• sorting entries by columns
• alignment of column labels

The basic steps below lists the messages to be sent to a NewDataSet-
View to fulfil these tasks.

Basic Steps

Use the messages listed below for enabling/disabling ...

Cookbook: How to employ new data set views

Page 26

Display of Grid lines:
aNewDataSetView showHorizontalLines: aBoolean
aNewDataSetView showVerticalLines: aBoolean
aNewDataSetView showLines: aBoolean

Display of Column labels:
aNewDataSetView showLabels: aBoolean

Display of Row selectors:
aNewDataSetView useRowSelectors: aBoolean

Decorated Editors:
aNewDataSetView useDecoratedEditors: aBoolean

Analysis

In general all these methods expect a boolean as a parameter denoting
whether to enable or disable the respective facility. All methods provide for
appropriate invalidation and updating. An example for using these messages
from within an application model methods is:

(builder componentAt: #myDataSet) widget showLines: true.

Setting a column label's text programmatically

Strategy

An application model can override the column label texts as being con-
figured in the window spec at any time.

Basic Steps

1. In a method of your application model use method labelAt:put: to
change the label's text.

Setting alignment of column labels programmatically

Page 27

(aBuilder componentAt: #entries) widget labelAt: 2 put: 'New Title'.

Analysis

The methods labelAt: and labelAt:put: allow to access/modify a column
label's displayed text. Both methods expect an index denoting the column's
position. This index refers to data columns, the row label column is ignored.

Setting alignment of column labels programmatically

Strategy

An application model can change the column labels’ (default: left) pro-
grammatically at runtime.

Basic Steps

1. In a method (e.g. postBuildWith) of your application model use
method aNewColumnLabelVisual align: to change the label's text.

((aBuilder componentAt: #entries) widget columnAt: 2)
labelVisual align: #center.

Analysis

The method aNewColumnLabelVisual align: allows to change a column
label's alignment. The parameter is expected to be one of #left, #right or
#center.

Cookbook: How to employ new data set views

Page 28

Setting the line grid programmatically

Strategy

New data set automatically determines its line spacing from the text
style used to display the entries. Sometimes however, you may want to
specify a different line grid explicitly.

Basic Steps

1. Open the window spec containing the new data set in Canvas Pain-
ter and select the widget.

2. In the Properties Tool’s Basics Page, fill in the ID property (e.g.
with #entries).

3. Use a System Browser to create/edit a postBuildWith: method in
your application model class as follows:

postBuildWith: aBuilder

(aBuilder componentAt: #entries) widget lineGrid: 24.

Customizing rendering of cell contents

Page 29

Customizing rendering of cell contents

Strategy

NewDataSet provides support for custom painting of cell contents by
means of so called display blocks. E.g. this can be used to paint a cell’s
background in a specific colour before continuing with the rendering of the
cell’s contents.

Basic Steps

Tutorial Example: NewDataSetExample

1. Use a System Browser to set the widget’s display blocks in the Ap-
plicationModel’s postBuildWith: method:

postBuildWith: aBuilder

| widget |
widget := (aBuilder componentAt: #entries) widget.

widget visualBlockAtColumn: 1
put:

[:view :cell :gc :box |
TreeView folderIcon displayOn: gc at: box origin + (2@0).
box left: box left + 14].

widget selectedVisualBlockAtColumn: 1
put:

[:view :cell :gc :box |
TreeView folderIcon displayOn: gc at: box origin + (2@0).
box left: box left + 14].

Analysis

The visualBlock and selectedVisualBlock are somewhat 'abused' in
NewDataSetView to hold either a single visual block or an array of vb's, one
for each column. In contrast to SequenceView the display blocks don't return
a visual but provide for direct rendering using a graphics context as a block
parameter.

A display block is evaluated in method NewDataSetView displayVisu-
alAt:... The block may return false if it displays the cell's contents com-
pletely. Otherwise the standard cell contents display method (NewDataSet-
View displayCellAt:...) is executed after the block returns. In the example,
the visual block displays an icon in the cell's upper left corner and changes

Cookbook: How to employ new data set views

Page 30

the cell's left bound temporarily, such that the default display method will
display the cell contents with an horizontal offset of 14 pixels.

Customizing the labels’ background color

Strategy

Per default, NewDataSetView uses SymbolicPaint pushButtonBack-
ground to display the background of column labels and row selectors. This
looks fine on UI Looks like Motif, OS/2, Windows 95, etc. On Windows 3.x
and Mac UI Looks however, the background color is white. You can change
this by re-configuring class NewRowVisual.

Basic Steps

1. Use a Workspace to type in and evaluate this:

NewRowVisual backgroundColor: Color veryLightGray.

Customizing the overall behavior

Strategy

Several overall settings can be customized with class methods. In par-
ticular you can customize ...

• selection hiliting
• handling of re-selecting an entry
• the minimum allowed column width

Customizing Selection Hiliting

Display of selection hiliting can be customised selectively in class En-
hancedSequenceView and its subclasses (TreeView, NewDataSetView) by
sending useStandardHiliting: aBoolean to the respective class. The default
is to display the selected entry/entries in a reverse appearance regardless of

Using new data sets in Lens Applications

Page 31

whether the widget has the input focus or not (useStandardHiliting: true).
This is also the default behaviour of list boxes in VisualWorks.

You can configure class EnhancedSequenceView, and hence all its sub-
classes — namely TreeView and NewDataSetView — , or each subclass se-
lectively to adopt the Win95-style behaviour of hiliting the selected entry
only if the respective widget has the input focus by sending useStandardHi-
liting: false.

Customizing handling of re-selecting an entry

Handling of repeated selection can be customised selectively in class
EnhancedSequenceView and its subclasses (TreeView, NewDataSetView) by
sending deselectOnReselection: aBoolean to the respective class. The de-
fault is to deselect a selected entry if it is re-selected, with the subclasses
sharing this configuration with EnhancedSequenceView.

Adjusting the minimum allowed column width

You can adjust the minimum allowed column width to be kept on col-
umn resize. This can be adjusted system-wide by evaluating something like:

NewDataSetView minCellWidth: 12.

Using new data sets in Lens Applications

Strategy

Data sets are frequently used in database applications. Object Lens,
VisualWorks persistence framework, comes with specialized application
models for database applications (LensApplicationModel, LensDataMan-
ager). In particular, LensDataManager provides a comprehensive function-
ality to use data set views for displaying and editing sets of data either in
forms one by one, or in data sets. Furthermore, advanced tools, such as Can-
vasComposer are provided to automatically generate applications and user
interfaces based on a given lens data model.

New data set includes a subclass of LensDataManager which is spe-
cialized on using new data set views in a tabular database editor form.
LensDataSetManager — this is the name of that subclass — seamlessly in-
tegrates new data sets into the lens machinery described above. It enhances
certain methods of its superclass to automatically switch the data set to ed-
iting or browsing mode. Such as:

Cookbook: How to employ new data set views

Page 32

• When the application starts up and records are fetched, the
data set is initially in browsing mode.

• When the Edit button is pressed — or when editing is
started in general— , the data set is switched to editing
mode.

• When the New button is pressed — or when a new row is
added in general— , the new row is selected and the data set
is switched to editing mode.

• When the Accept or Cancel button is pressed — or when
editing is stopped in general— , the data set is returns to
browsing mode.

All this is done in a transparent way. The lens application is doesn’t
have to notice that it is derived from LensDataSetManager instead of Lens-
DataManager. The picture below shows an example of a Lens Application
employing a new data set view.

Basic Steps

Tutorial Example: LensDatasetExample

1. Select Database → New Data Form… from the VisualLauncher
menu bar to open a dialog which helps you to create a new subclass
of LensDataManager.

2. In the dialog’s Name field type in the name of the new class (Lens-
DatasetExample).

Using new data sets in Lens Applications

Page 33

3. In the dialog’s Superclass field type LensDataSetManagaer as the
name of the superclass to derive from.

4. Complete the steps as described in the Database Cookbook (select a
data model, entities, etc.).

5. Press OK to generate the class. ⇒ The class is created and a canvas
composer dialog shows up to specify the user interface.

6. Select „Tabular Editor“ or „Tabular Viewer“ as the template to use.

7. Complete the steps as described in the Database Cookbook (select
an edit policy, select the columns to display, etc.).

Cookbook: How to employ new data set views

Page 34

8. Press OK to generate the interface. ⇒ A canvas displaying the new
interface shows up. It already contains a fully configured new data
set widget. You can immediately test drive your new Lens applica-
tion by selecting Open from the canvas tool.

Analysis

Note that the data set view’s ID property in the Properties Tool’s Basics
Page must contain the symbol #list. This is because LensDataSetManager
must access the new data set view, and it does so by means of its ID. It as-
sumes the data set’s ID to be named #list. However you can choose another
ID (say #rows), if you re-implement method dataSetID in your application
model like this:

dataSetID
^#rows

Using new data sets in Lens Applications

Page 35

Index

A
abortEditing 13
allowForColumnDragging: 24,
25
allowForSorting: 25
auto-append 20
Auto-Append 3, 4
autoNewBlock: 20

B
background color 29, 30
backgroundColor: 30
BlockValue 12
browsing 13
Browsing 2

C
CanvasComposer 31
change validation 14
Column Labels 5
Column layout 16
columnlayout 16
columnLayout: 16

D
DataSetColumnSpec 22, 24
dataSetID 34
DataSetView 6
decorated editors 9, 10, 11
Decorated Editors 5, 11
Default sort block 19
defaultSortBlock: 19
deselectOnReselection: 31
display blocks 29
Drag & Drop 3, 6

E
editing 10, 13
Editing 2

EnhancedSequenceView 30
exit validation 14

I
ID 34
Initially use Editing Mode 11
insertColumn:at: 22

K
Keyboard shortcuts 5

L
labelAt 27
labelAt:put: 27
Lens 31
LensApplicationModel 31
LensDataManager 31
LensDataSetManager 31, 34
line grid 28

M
Multi Select 12
multiple selection 2
MultiSelectionInList 9, 11, 12
MultiSelectionSequenceView 2,
7

N
NewDataSetColumn 22, 24
NewDataSetSpec 9
NewDataSetView 2, 6, 9, 30
NewRowVisual 30

O
Object Lens 31
orderBy: 17, 18

R
removeColumnAt: 22
Row holder 12
row selectors 4
Row Selectors 5

S
selection 12
selectionIndex 12
selectionIndexes 12
SelectionInList 9, 11, 12
selections 12
SequenceView 2, 3, 6
showHorizontalLines: 26
showHorizontalLines: 26
showLabels: 26
showLines: 26
showVerticalLines: 26
Sort Column 18
sortColumn: 18
Sorting 3, 4, 17
startEditing 13
stopEditing 13

T
template entry 20
textHasChanged 15
toggleEditing 13

U
Use Modifier Keys for Multi
Select 12
useDecoratedEditors: 26
useRowSelectors: 26
useStandardHiliting: 30

V
Validation 14
View 2

