
Copyright © 1997 by Fraunhofer Institute IITB
Rev. 1.1, June 9, 1997

Revision 1.1 Page 1

Stored Images
User’s Guide & Cookbook

The purpose of this document is to give you a comprehensive overview of the fea-
tures and facilities provided by Stored Images and how to access them programmatically.
It starts with an introductory chapter. Subsequently step-by-step instructions show how to
build applications employing new data set widgets.

Contents

Introduction 2
Programming Interface 2
Summary of Features 4

Cookbook: Deploying Stored Images 5
Setting up image search paths 5
Deploying Stored Images programmatically 6
Deploying Stored Images in Canvas Painter 7

Introduction

Page 2 Stored Images User’s Guide & Cookbook

Introduction

“Stored Images” provide you with a convenient way to incorporate im-
ages and icons stored in bitmap files on disk into your applications. An in-
stance of StoredImage acts as a proxy for a real image which is to be loaded
from a file and converted into a legal VisualWorks image as soon as it’s
needed (accessed) the first time. This means you can use an instance of
StoredImage in each and every place where you would use a normal instance
of class Image.

You create a new instance of StoredImage by giving a filename from
where the image is to be loaded:

myImage := StoredImage on: 'C:\Images\Magnifier.gif'

This creates the new instance but doesn't do anything else. The image
isn’t loaded at that time. This happens only when the image receives a mes-
sage, which is intended to go to the real image and not to the proxy itself;
such as this one:

myImage displayOn: Window currentWindow graphicsContext.

This leads to the image being loaded from file and converted into a le-
gal VisualWorks image, more precisely, into an instance of CachedImage.
The real image is stored in an instance variable of the StoredImage, provid-
ing a form of caching mechanism. After that, in succeeding accesses, there’s
no need to reload it from file, since it’s already cached in memory. All sub-
sequent image specific messages are forwarded to the real image. However,
you can flush and force a stored images’s target image to be reloaded by
sending message flush to the StoredImage instance, or you can flush all im-
age caches by sending flushImageCache to class StoredImage.

Programming Interface

Since an instance of StoredImage acts as a proxy for real images, the
programming interface of stored images corresponds to that of class Image
(and subclasses). The only messages specific to stored images are messages
to flush image caches (see above) and class messages to create new in-
stances of StoredImage. The primary instance creation method is StoredI-

Programming Interface

Revision 1.1 Page 3

mage>>on: aFilename, which configures a new instance to read the image
data from the specified file on demand. Further class messages allow to
specify search paths used to look up image files.

If you load images from a bitmap file that includes transparency infor-
mation, and you have an according ImageReader, images loaded via a
StoredImage proxy will also be images with transparent background. A sub-
class of StoredImage, called StoredOpaqueImage, is provided for Im-
ageReaders/file formats that don’t support transparency information. This
class allows you to load and construct an instance of OpaqueImage from
two different files. One containing the image’s figure the other containing its
(1 bit plane) mask.

Class StoredImage maintains a search path to image files on disk. This
allows you to omit long path names, but rather specify the relative name of
an image file, provided the referred file resides within a directory registered
in the search path.

Using Stored Images in Canvas Painter

Package "Stored Images" includes minor changes to class Application-
Model, that enables you to enter filenames of images stored on disk in the
selector field of a label's or button's properties page. You do this by simply
preceding the filename you enter with a ‘@’-character. This tells the
changed method in ApplicationModel to use the StoredImage machinery to
load the referred image from disk. If you put in two ‘@’-characters, Store-
dOpaqueImage is deployed.

The changes to class ApplicationModel introduced with stored images
are essentially enhancements to the built-in management facility for visuals.
In particular ApplicationModel’s class messages visualAt:ifAbsent: is en-
hanced to look up stored images if the leading character of a visual’s selec-
tor is the ‘@’-character. When a stored image is loaded using the visual key
approach, it is cached within class ApplicationModel’s visuals registry
(compare VisualWork Cookbook, Chapter 5, Section “Building a Registry of
Labels”).

VisualWorks Image Readers

“Stored Images” itself does not provide any functionality for loading
images from bitmap files. It rather depends on an external ImageReader
package being installed. Image readers are foreseen in the VisualWorks class
library by means of the abstract base class ImageReader. However, there’s
only one specific image reader shipped with VisualWorks (2.5), to read
Windows BMP image files.

You may want to watch out for additional image readers, in particular
for GIF files. The GIF image format is interesting not only because it’s om-

Introduction

Page 4 Stored Images User’s Guide & Cookbook

nipresent in the web, but also because it has the built-in feature to store
transparency information.

In case you are restricted to image readers for formats which don’t sup-
port transparency (such as BMP), class StoredOpaqueImage provides a way
to construct images with transparent background from two single image
files, one serving as the image’s figure, the other serving as it’s shape.

Summary of Features
• Stored Images seamlessly provide facilities to load images

from bitmap files on disk.
• Due to the proxy approach, deployment of stored images is

completely transparent. An application principally doesn’t
have to be aware that it uses stored images.

• Minor enhancements to class ApplicationModel provide a
convenient and transparent way to deploy stored images
from within Canvas Painter.

• Advanced caching mechanisms reduce the effort and ex-
pense of image loading, gratefully accelerating applications
using images stored on disk. This feature also works in a
completely transparent way.

Setting up image search paths

Revision 1.1 Page 5

Cookbook:
Deploying Stored Images

In this chapter we will describe how to deploy Stored Images in a Visu-
alWorks application. We assume that image readers for GIF files have been
installed.

Setting up image search paths

Strategy

In order to ease the use of stored images, you can configure search paths
with class StoredImage. Whenever an image is to be loaded, it is looked up
in the search paths.

Basic Steps

1. Send message searchPath: to the StoredImage. The methods expects
a single String or Filename or a collection of Strings or Filenames as
the parameter. This is converted internally to an ordered collection.

StoredImage searchPath: ‘V:\etc\images’.
StoredImage searchPath: #(‘C:\Nt’ ‘V:\etc\images’).

2. If you also want to provide a search path for looking up shapes, send
shapesPath: to the StoredOpaqueImage.

StoredOpaqueImage shapesPath: ‘V:\etc\shapes’.

Cookbook: Deploying Stored Images

Page 6 Stored Images User’s Guide & Cookbook

Variant A: Expanding the search path

You can add a path to the search paths by something like

StoredImage searchPath add: ‘D:\ images’.

Deploying Stored Images programmatically

Strategy

An instance of StoredImage acts as a proxy for an image stored in a
bitmap file on disk. The image is automatically loaded on demand. This is,
when a message is being sent to the proxy which is intended to go to the im-
age itself.

Basic Steps

1. Create an instance of StoredImage as a proxy for a file on disk with
instance creation method on: or variants. The image isn’t loaded at
that time. Only the filename is looked up in the search paths and
registered with the instance.

myImage := StoredImage on: ‘myImage.bmp’.

2. When a method intended to go to the real image is sent to the proxy,
the image is loaded from disk and the message is forwarded to the
image.

myImage displayOn: aGraphicsContext.

Deploying Stored Images in Canvas Painter

Revision 1.1 Page 7

3. You can release a StoredImage’s previously loaded real image, by
sending flush to an instance. Alternatively, you can release and un-
load all images loaded by existing instances of StoredImage by
sending flushImageCache to the class.

myImage flush.
StoredImage flushImageCache.

Analysis

Due to the proxy pattern, StoredImages provide essentially the same
interface as instances of class Image and subclasses. This means that you
can use stored images in each and every place where you would use in-
stances of Image. Examples are images held in instance variables, in class
variables, or in ApplicationModel’s visuals registry.

You can install instances of StoredImages permanently in your image
without concern that you may either end up with lot of image loading or
with a lot of memory wasted by loaded images. On one hand, once loaded,
instances of StoredImage retain their images, thus acting as an image cache.
On the other hand, you can selectively unload loaded images by means of
the flush messages.

Deploying Stored Images in Canvas Painter

Strategy

The enhancements to class ApplicationModel provided with Stored Im-
ages, allows you to refer to images from within the properties page of a label
or a button in Canvas Painter.

Cookbook: Deploying Stored Images

Page 8 Stored Images User’s Guide & Cookbook

Basic Steps

1. Add a button to a canvas, select it and open the „Basics“ properties
page.

2. Turn on check box „Label is Image“

3. Enter the filename of the image you want to appear as the buttons
label into the Message aspect, preceding the filename with a ‘@’
character.

4. Ensure that you enter a valid filename. This is either an absolute
path, or the name of a bitmap file, residing in one of the directories
registered as StoredImage’s search path.

Variant

Provide for a StoredOpaqueImage to be created by preceding the file-
name with ‘@@’. In this case you must have configured both, a search path

Deploying Stored Images in Canvas Painter

Revision 1.1 Page 9

and a shapes path. Two different bitmap files, a figure and a shape file, are
expected to exist in these two search paths.

Analysis

When an instance of StoredImage is created as result to a @-reference
from within an application’s window spec, it is registered in class Applica-
tionModel’s visuals registry (ApplicationModel class>>visualAt:put:). This
ensures that the image won’t be reloaded each time the application is
restarted. However, you may want to remove these entries from the visuals
registry when your application is closed. Do so by something like ...

ApplicationModel visuals removeKey:#’@find.gif’

