
Page 1

TreeView Widget
User’s Guide & Cookbook

The purpose of this document is to give you a comprehensive overview of the fea-
tures and facilities provided by TreeView Widgets and how to access them programmati-
cally. It starts with an introductory chapter. Subsequently step-by-step instructions show
how to build applications employing new data set widgets.

Contents

Introduction 3
User Interface 3
Programming Interface Concepts 4
Summary of Features 7

Tutorial Example 1: A Simple Class Hierarchy Browser 8
Adding a TreeView 8
Expanding and collapsing entries programmatically 12
Expanding along a path 15
Adding and removing entries in a hierarchy 16
Pre-fetching child nodes 18
Explicit manufacturing of tree nodes 19
Using identity comparison for TreeNodes 22
Using a multi-parent tree adaptor 23

Tutorial Example 2: A Class Protocol Browser 24
Using a two parameters children block 25
Using user defined icons 25
Selecting an entry's parent entry 28
Updating a tree view's contents 28
Customizing the overall behavior 30

Object Reference 32
Overview 32
Class SelectionInTree 34
Class TreeAdaptor 35
Class TreeNode 42

Copyright © 1998 by Fraunhofer Institute IITB
Revision 1.5, December 21, 1998

Introduction

Page 2

Class IdentityTreeNode 48
Class MultipleParentTreeAdaptor 49
Class TreeView 51

Index 55

User Interface

Page 3

Introduction

The classes in this package are designed to provide the functionality of
TreeView widgets. It enables you to enrich your application with facilities to
display and manage hierarchical structures in a consistent and familiar way.
TreeView widget adopts the Look and Feel of Tree Controls known from
Windows 95 applications, such as explorer.

You can manipulate the appearance of a TreeView in various ways: You
can enable or disable each, the use of icons, lines or expand-collapse buttons
([+], [-]). All this is done within the TreeView’s properties page. Further-
more you can either use pre defined icons or prepare a TreeView to use your
own application specific icons.

User Interface

The user interface of a TreeView widget allows a user to browse
through a hierarchy by means of selecting and expanding or collapsing en-
tries. A hierarchy displayed in a TreeView may have one or more top level
entries comprising the roots. Each subordinate entry of a root is indented by
an offset according to its level within the hierarchy.

TreeView inherits its standard behavior from SequenceView. Thus all
the user interface details of list boxes (scrolling, target selection by typing in
leading characters, etc.) are available in TreeView too. Additionally you can
expand/collapse entries either by mouse or by keyboard shortcuts.

You can toggle the expand/collapse status of an entry by one of these:

• Double Click on an entry
• Single Click on an entry’s expand-collapse button ([+], [-])

(doesn’t change the selection)
• Pressing Return / Enter
• Pressing Cursor Left / Right (if the actually selected entry is

already collapsed / expanded, selection is moved to its par-
ent / first child)

Further keyboard shortcuts are:

• Up / Down moves the selection to the previous/next entry
• Ctrl Up / Ctrl Down moves the selection to the previ-

ous/next entry at the same level of hierarchy, skipping chil-
dren entries on lower levels.

Introduction

Page 4

• Ctrl Left moves the selection to the currently selected en-
try’s parent entry.

• Page Up/Page Down moves the selection one page up/down

If you hold down the Shift key while expanding or collapsing an entry
(both, either by mouse or by keyboard), the complete subtree starting at that
entry will be expanded or collapsed.

Programming Interface Concepts

From a programmer's point of view, a TreeView widget behaves very
much like a SequenceView. In fact class TreeView is derived from Se-
quenceView and inherits most of its functionality — and hence its program-
ming interface — from its superclass. As with SequenceViews, instances of
SelectionInList are used as models to a TreeView.

The more specific concepts of the TreeView programming interface are
described in the following. This is a brief summary of these concepts:

• Tree adaptors and children blocks
• Tree nodes and node subjects
• Manufacturing of tree nodes
• Fetching child entries
• Equality vs. identity comparison of tree nodes
• Single- vs. multiple-parent hierarchies

Tree adaptors and children blocks

The subject (list) of a SelectionInList that is used as model of a Tree-
View, is an instance of class TreeAdaptor. This class basically provides the
means to express and adapt to arbitrary hierarchical relationships in a uni-
form way; i.e. you might use a TreeAdaptor to adapt your tree view widget
to the directory hierarchy of your file system, or as well configure it to be
used to navigate through the VisualWorks class hierarchy.

In principle, you configure a TreeAdaptor with an object comprising the
root(s) of the hierarchy and a so called children block that is responsible for
retrieving and returning a collection of subordinate hierarchy entries or
nodes (the children) to a given node (the parent). This children block will be
evaluated by the TreeView/TreeAdaptor automatically whenever the chil-
dren of a certain entry need to be fetched for the first time, such as on ex-
panding a node. The following examples illustrate the use of TreeAdaptors
and children blocks:

Programming Interface Concepts

Page 5

TreeAdaptor new
 childrenBlock [:aClass | aClass subclasses];
 root: Object

TreeAdaptor new
 childrenBlock: [:aDirectory | aDirectory asFilename directoryContents];
 root: Object

TreeAdaptor inherits from SequencableCollection and thus provides
you with the familiar enumeration and accessing protocols used with collec-
tions. Not least, this makes it possible for instances of TreeAdaptor to be
used as subjects to a SelectionInList.

Tree nodes and node subjects

Each domain model object to be shown in a TreeView is finally
wrapped in an instance of class TreeNode. The object wrapped by a Tree-
Node is called a tree node’s subject. A TreeNode keeps track of an entry’s
expand/collapse status and caches the children once fetched by a children
block. It also provides various options to additionally describe an entry.
These options allow to specify:

• The type of node (is used to determine the icon to display).
• A specific icon for this node (overrides the default icon de-

tection by type).
• A specific display string to use as the entry’s label.
• Information about whether children can be fetched or not.

Automatic vs. explicit manufacturing of tree nodes

When returning child entries in a children block, the collection returned
can contain either instances of domain model entity classes or tree nodes
wrapping the domain model object in arbitrary combination. In case of the
latter, the tree adaptor will manufacture appropriate tree nodes automati-
cally, one for each hierarchy entry. Automatically manufactured tree nodes
will have default property values (type = #folder, the subjects displayString,
etc.).

Instead of having the tree adaptor manufacture the TreeNode instances
automatically, you may decide to provide for explicit manufacturing of tree
nodes in your application and return collections of readily configured Tree-
Node instances from your children block. This gives you more control over
the kind of tree nodes to be used (e.g. instances of IndentityTreeNode or
specialized subclasses) and the node properties to be set.

Introduction

Page 6

Fetching children on demand vs. pre-fetching children

As mentioned above, a tree adaptor’s children block is used to auto-
matically fetch a node’s child entries on demand, such as on the first expan-
sion of a node. Thus, once having provided a tree adaptor with an appropri-
ate children block, you will never have to explicitly fetch a node’s children
in your application.

However, there may arise situations in which you would want to pre-
fetch a node’s children. An example is an application that doesn’t know
whether to display an expand button for a node or not, unless the node’s
children have been fetched. In this case you can arrange for pre-fetching a
node’s children at the moment it is returned from a children block.

Equality vs. identity comparison of TreeNodes

There are several occasions for a TreeView to look up a tree node for a
given domain model object, i.e. to fetch the very instance of TreeNode that
has a certain domain model object as its subject. To detect the tree node in
question, each registered node’s subject has to be compared to the specified
domain model object. This comparison can be based on either equality or on
identity of subjects.

The default, as being implemented in class TreeNode, arranges for
equality comparison. Identity comparison is supported in class IdentityTree-
Node, a subclass of TreeNode. On principle, identity comparison results in a
faster processing and behaviour, but may not be appropriate in each case.
Equality comparison, on the other hand, is less efficient but more general in
will thus work in each case.

Single- vs. multiple-parent hierarchies

Principally, tree views are designed to display single-parent hierarchies,
i.e. each entry in an hierarchy is expected to have exactly one and only one
parent node. In consequence a TreeNode keeps a reference to exactly one
parent node and each domain model hierarchy entry is represented in a
TreeView by exactly one instance of TreeNode.

The basic difficulty when dealing with multiple-parent hierarchies in a
TreeView is, that a certain entry may be displayed several times in the
TreeView. This is because if a node has more than one parent, it would have
to be displayed in each of these parents’ children branches. In result, there
may be more than one instances of TreeNode for a certain domain model
hierarchy entry.

There is some basic-level support for adapting to multiple-parent hier-
archies through class MultipleParentTreeAdaptor a subclass of TreeAdaptor.
This class cares for correct detection and manipulation of each instance of

Summary of Features

Page 7

TreeNode for a given domain model object in the common operations, such
as on adding or removing nodes.

Summary of Features
• TreeView enriches your applications with capabilities to display

and manage varying hierarchical structures in a consistent and fa-
miliar way,

• Allows you to affect the appearance through the use of icons, lines,
and expand-collapse buttons.

• Adopts the Look and Feel of Windows 95 tree controls,
• Inherits most of its programming interface from SequenceView.
• Allows to express and adapt to arbitrary forms of hierarchies

through the concept of tree adaptors,
• Provides automatic manufacturing of tree nodes and fetching of

child entries on demand.

Tutorial Example 1: A Simple Class Hierarchy Browser

Page 8

Tutorial Example 1: A Simple Class Hierarchy
Browser

This example shows the basic steps to employ a TreeView widget in a
VisualWorks application. As an example application, we shall implement a
simple class browser which uses a TreeView to display the inheritance hier-
archy of the classes being present in your image. It will be shown how a tree
view is added to a canvas, how entries can be expanded and collapsed pro-
grammatically and how entries can be added and removed dynamically.

Adding a TreeView

Strategy

Since tree view widget inherits from list widget, it depends on two
value models, a selection holder and a selection index holder, supplied
through an instance of SelectionInList. Unlike a list box however, instead of
a List, a tree view expects an instance of TreeAdaptor as the list in the Se-
lectionInList in-stance.

Adding a TreeView

Page 9

TreeAdaptors provide the means to express and adapt to varying hierar-
chical relationships in a uniform way. Basically a TreeAdaptor is configured
with an object comprising the root(s) of the hierarchy and a block — the so
called childrenBlock — that is responsible for retrieving and returning a
collection of subordinate hierarchy entries or nodes (the children) to a given
node (the parent).

A TreeAdaptor wraps all entries returned by the children block in in-
stances of TreeNode. Basically, a TreeNode keeps track of an entry’s ex-
pand/collapse status. It is also responsible for providing a string to display
as an entry’s label. As a default the entry’s displayString method is used for
this purpose.

Basic Steps

Tutorial Example: SimpleClassBrowser

1. Use a Palette to add a TreeView widget to the
canvas. (The TreeView placed on the canvas will
show some ex-ample hierarchy to give you a preview of how it will
look like. The contents of this example hierarchy will always remain
the same.)

2. In the Properties Tool’s Basics Page, fill in the TreeView’s Aspect
property with the name of the method that will return an instance of
SelectionInList. (In this example we’ll call it classes)

Tutorial Example 1: A Simple Class Hierarchy Browser

Page 10

(You may also want to try out different modes of appearance by checking
or un-checking the „Display Images“, „Display Lines“ and „Display
Buttons“ check boxes.)

3. Use the canvas’s define command or a System Browser to add an
in-stance variable (classes) to the application model to hold the Se-
lec-tionInList.

4. Use the canvas’s define command or a System Browser to create the
aspect method you named in step 2 (classes).

classes
 ^classes

5. Use a System Browser to initialize the instance variable you created
in step 3 (classes), usually in an initialize method. You initialize the
variable with an instance of SelectionInList that is itself initialized
with an instance of TreeAdaptor:

initialize
super initialize.
classes := SelectionInList with:

(TreeAdaptor new
childrenBlock: [:aClass | aClass subclasses];
root: Object)

Variant A: Expanding the root node

You may want your class inheritance browser to start up not just show-
ing a single entry initially, but also the first level of children to that entry.
You can achieve this by initially expanding the root entry programmatically.
Use one of the TreeAdaptor’s expand: messages to do so:

Adding a TreeView

Page 11

initialize

 super initialize.
 classes := SelectionInList with:
 (TreeAdaptor new
 childrenBlock: [:aClass | aClass subclasses];
 root: Object).
 classes list expand: classes list rootNode.

You could as well use other variants of the expand: messages provided
by TreeAdaptor class, such as:

 classes list expand: Object.

This will cause the TreeAdaptor to search for the TreeNode instance for
entry Object (it does so by using equality comparison) and then expanding
that node. This would correspond to:

 classes list expand: (classes list nodeFor: Object).

You can also access (and thus expand or collapse) entries by index:

 classes list expandAt: 1.

Variant B: Using more than one root

Instead of starting the display of the classes’ inheritance hierarchy at
class Object you can insert any other class in place of Object in basic step 5.
You can also provide more than one root entry by sending a collection of
root objects to the TreeAdaptor:

Tutorial Example 1: A Simple Class Hierarchy Browser

Page 12

initialize

 | roots |
 super initialize.
 roots := #(Model View Controller) collect: [:each | Smalltalk at: each].
 classes := SelectionInList with:
 (TreeAdaptor new
 childrenBlock: [:aClass | aClass subclasses];
 roots: roots)

Analysis

In the basic steps of this example we have added a TreeView widget to
a canvas and configured it to adapt to the inheritance hierarchy of the
classes present in your image. The key point of this was to provide and ini-
tialize an instance of TreeAdaptor. This TreeAdaptor instance is initialized
with a childrenBlock which returns the subordinate entries to a given node.
This block is being evaluated whenever a node is expanded for the first
time. It returns a collection of sub entries, the children of the expanded
nodes. Each entry in this collection is then being wrapped by an instance of
TreeNode. This TreeNode instance is manufactured automatically in the
TreeAdaptor.

The collection of resulting TreeNodes are kept in the children instance
variable of the parent’s TreeNode. When a node which has previously been
expanded will be expanded again (after being collapsed), its collection of
children will be obtained from that instance variable. The children block
won’t be evaluated a second time. However, situations may occur in which a
re-evaluation of the children block for already fetched children becomes
necessary. You can achieve this by sending the TreeAdaptor an invalidate
message such as in:

classes list invalidate: Collection.

Expanding and collapsing entries programmatically

Strategy

Applications employing TreeViews will often have to access entries
within the tree view in order to expand or collapse them as a reaction to

Expanding and collapsing entries programmatically

Page 13

some user interaction external to the tree view widget. In this example we
will add a list menu to the tree widget containing menu commands for ex-
panding and collapsing selected entries.

Tutorial Steps

Tutorial Example: SimpleClassBrowser

1. In the Properties Tool’s Basics Page, fill in the TreeView’s Menu
property with the name of the method that will return an appropriate
menu. (In this example we’ll call it classesMenu)

2. Use the Menu Editor to create and install the classesMenu with the
following entries:

Label Value

Expand expand

Collapse collapse
Expand / Collapse Subtree toggleExpandSubtree
Expand All expandAll

Basic Steps

Tutorial Example: SimpleClassBrowser

1. Use a System Browser to create the methods for the menu com-
mands given above:

Tutorial Example 1: A Simple Class Hierarchy Browser

Page 14

expand
classes list expandAt: classes selctionIndex

collapse
classes list collapseAt: classes selectionIndex

toggleExpandSubtree
classes list toggleExpandSubtreeAt: anIndex

expandAll
classes list expandAll

Variant: Using SelectionInTree instead of SelectionInList

In order to provide a more convenient way to access, expand and col-
lapse the selected entry, a subclass of SelectionInList is provided, called Se-
lectionInTree. This class enhances SelectionInList by some methods to give
you easier access to selected entries and nodes.

1. Replace SelectionInList in the initialize method by SelectionInTree
as shown below:

initialize
super initialize.
classes := SelectionInTree with:

(TreeAdaptor new
childrenBlock: [:aClass | aClass subclasses];
root: Object)

classes list expand:list rootNode

2. Now you can change some of the expand/collapse methods as fol-
lows:

Expanding along a path

Page 15

expand
classes expandSelectedNode.

collapse
classes collapseSelectedNode

Analysis

You can use the messages in the TreeAdaptor class's 'expand-collapse'
protocol to expand and collapse entries programmatically. Note that these
messages all send changed: to the TreeAdaptor which cause a corresponding
update: message to be sent to the TreeView. This allows the TreeView's dis-
play to update appropriately whenever an entry is being expanded or col-
lapsed.

Expanding along a path

Strategy

Entries in a TreeView can only be expanded if they have been retrieved
before by a children block. Sometimes however, an application needs to ex-
pand up to a certain object which has not yet been retrieved. Often, not even
the parent objects of the requested object have been retrieved and expanded.

Thus, expanding and selecting up to the requested objects needs all par-
ent objects to be expanded. Class TreeAdaptor supports this through mes-
sage expandPath:, which expects a collection of objects comprising the
components of the path.

Tutorial Steps

Tutorial Example: SimpleClassBrowser

1. In our example we will enhance the classesMenu created before by a
new menu item to search for a class. Use the Menu Editor to do this
as follows:

Label Value
Find Class… findClass

Tutorial Example 1: A Simple Class Hierarchy Browser

Page 16

Basic Steps

Tutorial Example: SimpleClassBrowser

1. Use a System Browser to create the notification method findClass as
shown below:

findClass

| aClass |
aClass := Smalltalk at:className value ifAbsent: [^self].
Classes list expandPath: aClass withAllSuperclasses reverse.
Classes selction: aClass.

Analysis

In order to use expandPath, your application must be able to deter-
mine all the parents to a certain entry up to the root of the hierarchy.

Adding and removing entries in a hierarchy

Strategy

Applications employing TreeViews will sometimes have to add and re-
move entries. Adding means that a new entry is to be inserted somewhere in
the hierarchy. This implies that it has to be specified where the entry should
be added, more precisely, which the entry's parent should be. Removing
means that all subordinate entries — if any — of a selected entry will be
removed, too.

Tutorial Steps

Tutorial Example: SimpleClassBrowser

1. In our example we will enhance the classesMenu created before by
two menu items Add and Remove. Use the Menu Editor to do this as
follows:

Label Value
Add… AddEntry

Remove RemoveEntry

Adding and removing entries in a hierarchy

Page 17

Basic Steps

Tutorial Example: SimpleClassBrowser

1. Use a System Browser to create the methods for the new menu
commands given above:

addEntry

| newEntry selectedEntry |
selectedEntry := classes selction.
newEntry := Dialog request: 'Enter a name for the new sub
entry'.
newEntry isEmpty if True: [^self].
newEntry := Smalltalk at: newEntry ifAbsent: [newEntry].
classes list

add: newEntry asChildOf: selectedEntry;
expand: selectedEntry.

classes selection: newEntry.

removeEntry

classes list removeAtIndex: classes selectionIndex
"Or: classes list remove: classes selection."

The code for addEntry not only adds a new entry, but also selects it by
first making sure that the parent entry is expanded, and then updating the
selection holder. Note also, due to dependency mechanisms supported by
TreeAdaptor's add and remove messages, the widgets display updates ap-
propriately whenever entries are inserted or removed.

Variant

The addEntry method given above simply adds class or string objects to
the hierarchy of classes displayed in the TreeView widget. If you try to ex-
pand one of these new entries, you will run into an error. This is because the
TreeAdaptor's children block expects all entries to be of instances of Class.
As a workaround we may prevent children block from being evaluated for
those String entries by explicitly adding information that these entries do not
have children. We do so by explicitly constructing and adding an instance of
TreeNode instead of letting TreeAdaptor providing for a default TreeNode to
wrap and manage the new entry:

Tutorial Example 1: A Simple Class Hierarchy Browser

Page 18

addEntry

| newEntry selectedEntry newNode |
selectedEntry := classes selction
newEntry := Dialog request: 'Enter a name for the new sub entry'.
newEntry isEmpty if True: [^self].
newEntry := Smalltalk at: newEntry ifAbsent: [newEntry].
newNode := newEntry asTreeNode hasChildren: false.
classes list

add: newEntry asChildOf: selectedEntry;
expand: selectedEntry.

classes selection: newEntry.

This ensures that the new tree node is marked as having no children.
However, you can still add new entries to those marked as having no chil-
dren earlier. When you do so, you consequently can also expand and col-
lapse the String entries added manually.

Pre-fetching child nodes

Strategy

Sometimes, you won't want the children of a certain node to be fetched
dynamically through evaluation of a children block. Instead you may want to
provide the children in advance and to statically assign them to the node. In
our example this is the case for the direct children of the root entry. The root
entry will be some kind of dummy labeled 'Volumes'. Its children are the
volumes in your file system. Since we know this and want the volumes to be
displayed at startup, we can as well fetch them in advance. At last, this also
keeps our children block simpler. All other children being fetched through
the children block are then entries in a directory.

Basic Steps

Tutorial Example: SimpleFileBrowser

1. Use a System Browser to edit an initialize method which provides
and initializes the TreeAdaptor instance used as the tree view wid-
get's aspect:

Explicit manufacturing of tree nodes

Page 19

initialize

| treeAdaptor root |
root := TreeNode for: #root label: 'Volumes'.
root children: (Filename volumes

collect: [:each | TreeNode for: each asFilename label: each]).

treeAdaptor := TreeAdaptor new
childrenBlock: [:aDirectory | self childrenOf: a Directory];
root: root;
expandAt: 1

tree := SelectionInList with: treeAdaptor

Analysis

You can use method children: to assign a collection of children to a
node statically. This collection will be kept in the tree node's instance vari-
able children. When this node is to be expanded, TreeAdaptor detects this
and does not evaluate the children block. Thus, in you children block, you
do not have to care about those entries which have statically assigned chil-
dren. This keeps your children block leaner.

Variant

Instead of constructing the collection of child entries explicitly and as-
sign it to a node. You can also have the TreeAdaptor do this based on the
children block provided on initialization. This is an example:

aTreeAdaptor fetchChildrenFor: aTreeNode

Explicit manufacturing of tree nodes

Strategy

In the previous class browser example we have shown how to initialize
a tree view widget with a TreeAdaptor which itself was provided with a
children block to adapt to the application specific hierarchy. Therefore we

Tutorial Example 1: A Simple Class Hierarchy Browser

Page 20

initialized the TreeAdaptor with a children block that returned a collection
of child entries to a parent entry to be expanded.

A TreeAdaptor wraps all entries returned by the children block in in-
stances of TreeNode. The real entry wrapped by a TreeNode is called a
TreeNode's "subject". Basically, a TreeNode keeps track of an entry's ex-
pand/collapse status. It also provides various options to store additional in-
formation about an entry. These options allow to assign explicitly:

• the type of node (is used to determine the icon to display)
• a specific icon for this node (overrides icon detection via

type)
• a specific display string to use as the entry's label
• information about whether children can be fetched or not

When a TreeAdaptor automatically manufactures TreeNodes for entries
fetched through a children block, these TreeNodes are initialized with de-
fault values which are:

• type of node: #folder
• display string: the entry's displayString
• icon: determined according to the node's type
• has children: true

In order to explicitly set one of these options, we may initialize
TreeAdaptor with a children block that already wraps the child entries with
TreeNodes.

Basic Steps

Tutorial Example: SimpleFileBrowser

2. Use a System Browser to edit an initialize method which provides
and initializes the TreeAdaptor instance used as the tree view wid-
get's aspect:

Explicit manufacturing of tree nodes

Page 21

initialize

| treeAdaptor root |
root := TreeNode for: #root label: 'Volumes'.
root children: (Filename volumes

collect: [:each | TreeNode for: each asFilename label: each]).

treeAdaptor := TreeAdaptor new
childrenBlock [:aDirectory | self childrenOf: a Directory];
root: root;
expandAt: 1

tree := SelectionInList with: treeAdaptor

The children node block1 provided calls method childrenOf: which is
implemented as shown below. When this block is evaluated as a reaction to
an expand action initiated by the user, the block parameter each is the File-
name instance comprising the parent node to fetch the children for.

childrenOf: a Directory

^aDirectory directoryContents
collect:
[:each || file |
file := aDirectory construct: each.
(file asTreeNode) label: each; isParent: self isDirectory: file)]

The method returns a collection of instances of Filename, each wrapped
in a specific TreeNode. Fetching the children is primarily done through
Filename’s directoryContents method which returns a collection of strings.
These strings are the local file names relative to the parent directory. They
are expanded to full path names (which is necessary, because they will be
used in successive expands) using the construct: method.

Finally an instance of TreeNode is created for each resulting child File-
name. The TreeNode’s label (its display string) is set to the local file name,
omitting the leading path name. Furthermore, method isParent: is used to
tell the TreeNode whether children can be fetched or not. We do the latter to
suppress evaluation of the children block for entries which are not directo-
ries.

1 We will use the term "children node block" to refer to a block returning a collection
of TreeNode instances, each wrapping one of the children of an entry to be ex-
panded. On contrary we will use the term "children block" to refer to a block which
returns the children objects themselves (not yet wrapped in TreeNodes).

Tutorial Example 1: A Simple Class Hierarchy Browser

Page 22

Analysis

There are two reasons in this example, which make it necessary to use a
children node block instead of a children block. One reason is that we need
to supply the TreeNodes with alternative label strings (different from what
the entries’ displayString would provide). If we wouldn’t do this, the entries’
labels would be full path names (This is what is returned by a Filename’s
displayString method.) The other reason is that we have to use isParent: to
pre-determine that children shall only be fetched for directories, not for
files. We wouldn’t be able to do this with a simple children block. Note that
in the example above, message isParent: false has the side effect of setting a
TreeNodes type to #leaf instead of the default value of #folder. This in turn
causes the pre-installed leaf icon to be displayed for those entries, which is
desired in the case of this example. However, if you only want to specify
that a TreeNode definitely has no children, without impacting the type of
node, you may use message hasChildren: instead of is-Parent:.

Using identity comparison for TreeNodes

Strategy

When a TreeNode’s subject has to be looked up in a TreeAdaptor’s
collection of nodes, this is done by the means of equality comparison. I.e. if
you send indexOf: anObject to a TreeAdaptor, each node’s subject is
checked whether it’s equal to anObject. Alternatively, you can provide for
identity comparison to be used by wrapping the entries in instances of Iden-
tityTreeNode instead of TreeNode.

Basic Steps

Tutorial Example: SimpleClassBrowser

1. In method initialize provide a TreeAdaptor with a children block
that returns instances of IdentityTreeNode.

Using a multi-parent tree adaptor

Page 23

initialize

 super initialize.
 classes := SelectionInList with:
 (TreeAdaptor new
 childrenBlock [:aClass | aClass subclasses

collect: [:each | each asIdentityTreeNode]];
 root: Object asIdentityTreeNode).
 classes list expand: classes list rootNode.

Variant

In the method above message asIdentityTreeNode is used to manufac-
ture the instances of IdentityTreeNode for the root entry and for each child
entry. However, it is sufficient to only provide the root entry as a TreeNode
and let the TreeAdaptor manufacture all the children nodes accordingly:
Each time a new TreeNode has to be created, TreeAdaptor will use the root
entry’s TreeNode class. Thus the following would be sufficient:

initialize

classes := SelectionInList with:
 (TreeAdaptor new
 childrenBlock [:aClass | aClass subclasses];

root: Object asIdentityTreeNode).
 classes list expand: classes list rootNode.

Using a multi-parent tree adaptor

Strategy

To adapt to a multiple parent hierarchy you would use a MultiplePar-
entTreeAdaptor instead of its superclass TreeAdaptor in your Application-
Model.

Basic Steps

1. ... PENDING ...

Tutorial Example 2: A Class Protocol Browser

Page 24

Tutorial Example 2: A Class Protocol Browser

We will now build a more comprehensive example dealing with some
more facilities provided by tree view widgets. Subject of this example will
be a simple combined class categories and protocols browser. The applica-
tion will use a single tree view to display a hierarchy, the top level of which
are the class categories in your VisualWorks image. The second level are the
classes within these categories. The third level are the method protocols
within each class, as well as one folder for each, the instance and class vari-
ables. The fourth and final level are the methods with each protocol of a
class or the instance and class variables respectively. The user can browse
through the classes, their instance variables, class variables and methods by
expanding first a class category, then a class entry, a protocol, etc.

The particularity of this example application is, that there are entries of
different kinds placed in one single hierarchy, displayed in one single tree
view. This raises the necessity to find a way to distinguish the different
kinds of entries. This will be done by using different icons for each type of
entry.

Using a two parameters children block

Page 25

Using a two parameters children block

Strategy

This example includes a rather complex children block: In each fetch
for children we will have to first detect the type of parent entry for which
children are to be fetched, and then do the appropriate action. Therefore,
each entry must be equipped with a tag to distinguish the type of object. We
will use TreeNode’s instance variable type for this purpose.

The block given as parameter to childrenBlock can either have one
block parameter or two. In case of a two parameter block, the second pa-
rameter will be set to the type of the node/entry to be expanded.

Basic Steps

Tutorial Example: CategoriesBrowser

2. In method initialize the tree view’s TreeAdaptor is initialized with a
children node block that takes two parameters, which are the
nodes’s subject (the entry itself) and its type. This block simply
sends message childrenFor:type: in order to fetch for children of the
entry to be expanded. The hierarchy’s root is a single dummy entry
#root with label „Class Categories“.

initialize

super initialize
categories := SelectionInTree with:

(TreeAdaptor new
childrenBlock:

[:anEntry :type | self childrenFor: anEntry type: type]).
root: (TreeNode for: #root label: 'Class Categories');
expandAt: 1)

Using user defined icons

Strategy

Each entry in a tree view can be displayed with an associated icon.
Moreover, a different icon can be displayed when an entry is expanded.
Generally, which icon will be displayed is determined by the nodes type.
Each TreeView can therefore be equipped with an image list, a dictionary

Tutorial Example 2: A Class Protocol Browser

Page 26

of icons with the types of nodes as the dictionary keys. If no image list is
specified explicitly, TreeView uses a default image list. This default im-
age list has entries for the pre-defined types #folder and #leaf. It is con-
figured in TreeView class>> initialize and can be accessed through Tree-
View class>> defaultImageList. This is how the default image list is de-
fined:

initialize
"Initialize the default image list"

DefaultImageList := IdentityDictionary new
at: #folder put: self folderIcon -> self open folderIcon;
at: #leaf put: self leafIcon;

yourself.

Basic Steps

Tutorial Example: Categories Browser

3. In the application model's postBuildWith: method configure the
TreeView instance with a user defined image list:

postBuildWith: aBuilder

| myImageList |
myImageList := IdentityDictionary new

add: #category -> (TreeView defaultImageList at: #folder);
add: #class -> (self class classIcon ->self class openClassI-
con);
add: #variables -> self class variablesIcon;
add: #protocol -> self class protocolIcon;
add: #method -> self class methodIcon;
add: #instvar -> self class instvarIcon;
add: #classvar -> self class instvarIcon;

yourself.
(builder componentAt: #categories) widget imageList: myIma-
geList.

4. In the children node block ensure that each TreeNode is initialized
with a correct type, selected from one of the keys in your image list.
In our example the children node block dispatches the fetch for chil-
dren to different methods specialized for fetching children of certain
types. This is how the fetch for children of a class entry looks like:

Using user defined icons

Page 27

childrenForClass: aClass

| answer |
answer := .OrderedCollection new .

answer add: ((TreeNode for: (#instvars -> aClass)) type: #variables;
displayString: ’Instance Variables’).

answer add: ((TreeNode for: (#classvars -> aClass)) type: #variables;
displayString: ’Instance Variables’).

answer addAll: (aClass organization categories
collect:

[:each | (TreeNode for: (each -> aClass))
type: #protocol;
displayString: each]).

aClass isMeta ifFalse: [answer add: ((TreeNode for: aClass class)
type: #class)].

^answer

Analysis

An image list is a dictionary with the node types as the dictionary keys.
The entries’ values are either a single image or an Association of two im-
ages. If there is only one image specified for a type, this image will be used
in both collapsed and expanded state of an entry. If there is an association of
two images given for a type, the first one (key) will be used for entries in
collapsed state and the second one (value) for entries in expanded state.

TreeView provides a default image list with entries for the pre-defined
types #folder and #leaf. Type #folder is the default type of each TreeNode as
being initialized by TreeNode’s instance creation methods (for:label). Type
#leaf will be used if you send a TreeNode the message isLeaf: true (or is-
Parent: false, resp.). You can access the pre-built icons in class TreeView
with the messages folderIcon, openFolderIcon and leafIcon.

Tutorial Example 2: A Class Protocol Browser

Page 28

Selecting an entry's parent entry

Strategy

In applications employing a tree view with large hierarchies it may be
useful to provide the user with a facility to jump from the currently selected
entry in a tree view to that entry's parent entry. In the categories browser ex-
ample we do this by a menu entry "Go to -> Parent"2.

Basic Steps

Tutorial Example: CategoriesBrowser

1. Get the currently selected node from the SelectionInTree instance
using method selectedNode.

2. Get the node's parent node using aNode parent.

3. Change selection to the parent node's subject.

gotoParent

| selectedNode parentNode |
selectedNode := categories selectedNode. "Step 1"
parentNode := selectedNode parent. "Step 2"
categories selection: parentNode subject. "Step 3"

Updating a tree view's contents

Strategy

When a hierarchy displayed in a tree view in result to some external ac-
tions you will have to update the tree view’s display. This means re-fetching
children of nodes which have previously been expanded. Since a tree node
caches the children of its entry, you will need to tell it to drop the cached

2 Since the TreeView already comes with built-in support for moving the selection to
the currently selected entry's parent entry(keyboard shortcut Ctrl Left), there is no
real need for this function. But anyway,...

Updating a tree view's contents

Page 29

children and re-fetch them using the children block. You can use the
TreeAdaptor’s invalidate messages to do so.

Basic Steps

Tutorial Example: CategoriesBrowser

1. Send message invalidate to the TreeAdaptor

refreshDisplay

categories list invalidate.
categories list expandAt: 1.

Variant A: Invalidating and re-expanding the currently expanded entries

A problem with the solution shown in the basic steps is that all the ex-
panded entries and branches will collapse and your current selection gets
lost. You can choose to re-expand all the entries which were expanded be-
fore the invalidation. TreeAdaptor supports this by method invalidate-
AndReExpand. This method will first collect the subjects of all the currently
expanded entries. Then an invalidation is performed. After that the new
contents are searched for the entries which were expanded before. Each en-
try found will be expanded again. Additionally, this keeps the selection in
the right place. If a formerly expanded entry can’t be found anymore in the
place it was before, it is ignored.

refreshDisplay

parcels list invalidateAndReExpand.

Variant B: Invalidating only a part of an hierarchy

Sometimes you may not want to invalidate the whole hierarchy, but
rather a part of it, of which you know something has changed. You can do
this by invalidating only the subtree beyond a certain entry or node.
TreeAdaptor provides three messages, invalidate: anEntryOrNode and in-
validateAt: anIndex for this purpose. Here is an example.

Tutorial Example 2: A Class Protocol Browser

Page 30

invalidate: aFile

"Something of aFile has changed. Ensure that the children block is re-
evaluated for the file's directory entry in order to retrieve the correct
information about aFile.

| parent |
parent := aFile directory.
hierarchy list invalidateAndReExpand: parent.

You can also use a variant of invalidate to re-expand the currently ex-
panded entries after an invalidation:

invalidate: aFile

"Something of aFile has changed. Ensure that the children block is re-
evaluated for the file's directory entry in order to retrieve the correct
information about aFile.

| parent |
parent := aFile directory.
hierarchy list invalidateAndReExpand: parent.

Customizing the overall behavior

Strategy

Several overall settings can be customized with class methods. In par-
ticular you can customize ...

• selection hiliting
• handling of re-selecting an entry
• when to display the opened folder symbol

Customizing Selection Hiliting

Display of selection hiliting can be customised selectively in class En-
hancedSequenceView and its subclasses (TreeView, NewDataSetView) by
sending useStandardHiliting: aBoolean to the respective class. The default
is to display the selected entry/entries in a reverse appearance regardless of
whether the widget has the input focus or not (useStandardHiliting: true).
This is also the default behaviour of list boxes in VisualWorks.

Customizing the overall behavior

Page 31

You can configure class EnhancedSequenceView, and hence all its sub-
classes — namely TreeView and NewDataSetView — , or each subclass se-
lectively to adopt the Win95-style behaviour of hiliting the selected entry
only if the respective widget has the input focus by sending useStandardHi-
liting: false.

Customizing handling of re-selecting an entry

Handling of repeated selection can be customised selectively in class
EnhancedSequenceView and its subclasses (TreeView, NewDataSetView) by
sending deselectOnReselection: aBoolean to the respective class. The de-
fault is to deselect a selected entry if it is re-selected, with the subclasses
sharing this configuration with EnhancedSequenceView.

Customizing when to display the opened folder symbol

As a default, the opened folder symbol (or user-defined opened sym-
bols) are displayed only for the selected entry. This is in line with the be-
haviour of Tree Controls in Windows 95. You can change this behaviour to
display the opened folder symbol for each expanded entry by evaluating:

TreeView displayOpenFolderWhenSelectedOnly: false.

Object Reference

Page 32

Object Reference

This section is a reference manual giving detailed description of the TreeView Widget
programming interface. Only the public classes, protocols and methods are listed and
explained, comprising the programming interface for deployment and reuse. All the
classes and methods not listed in here should be considered private to the implementation
and are subject to change in future releases.

Overview

The classes providing the functionality of TreeView widgets are mainly
a View/Controller pair along with special adapter classes providing the
means to express and adapt to varying hierarchical relationships in a uni-
form way. In particular those classes are:

Internal Classes

TreeView

is responsible for handling the view part of the widget,
inherits from SequenceView.

TreeController

is responsible for handling the user interaction,
inherits from SequenceController.

TreeViewSpec

makes the new widget accessible from Palette Tool and Canvas
Painter,
inherits from SequenceViewSpec.

TreeViewDirectorySelector

implements a TreeView-based directory selector dialog,
inherits from SimpleDialog.

Adaptor Classes

SelectionInTree

Overview

Page 33

Instances may serve as specialised aspect models in an Applica-
tionModel,
inherits from SelectionInList.

TreeAdaptor

provides the means to express and adapt to arbitrary and varying
hierarchical relationships in a uniform way,

inherits from SequencableCollection.

TreeNode

Instances wrap domain model objects to be displayed in a Tree-
View. Uses equality comparisons on node subjects.

IdentityTreeNode

A subclass of TreeNode that allows to adapt to hierarchies based
on object identity comparisons rather than object equality.

MultipleParentTreeAdaptor

A subclass of TreeAdaptor that provides additional operations for
dealing with non-strict hierarchies, i.e. hierarchies containing
entries that may have more than one parent entry.

In the very most cases you won’t be concerned much about the internal
classes. Instead you will employ a tree view widget by adding it from the
Palette Tool to a user interface canvas and configuring it in Properties Tool.

In this chapter we will describe the public interface of each class con-
taining the messages, which may be used in an application employing a tree
view. Messages not described here are considered private and subject to
change.

How to read the methods

The descriptions of the various methods are given in a certain schema.
They consist of a title with the method selector(s) and parameters, an ex-
planatory text and one or more closing lines denoting possible exceptions
that can be raised during execution of this method and the method's return
value. An example:

indexOf: anElement
indexOf: anElement ifAbsent: notFoundBlock

Searches for anElement among the entries in the receiver’s hierarchy (the
nodes’ subjects). Equality comparison (=) is used to compare the entries. Only
entries in expanded branches are searched. If no matching entry can be found, ei-
ther signal notFoundError is raised (variant 1) or the notFoundBlock is evaluated.

Object Reference

Page 34

! notFoundError when no matching entry was found
(only in variant one).
^ <TreeNode> | nil

You can read this method description as follows:

Described are two separate but similar methods with identical purpose
but a varying number parameters. Usually one method calls the other one
with some default values for missing parameters.

During execution an exception with Signal notFoundError might be
raised. You should somehow handle those exceptions in your code.

The method's return value is guaranteed to be either an instance of class
TreeNode or nil. If there is no closing line specifying the return value of a
method. This method is supposed to return self.

Class SelectionInTree

Inherits from: SelectionInList

This class enhances SelectionInList by some methods to give you more
convenient access to selected entries and nodes. SelectionInTree instances
are initialized with an instance of TreeAdaptor, such as in SelectionInTree
with: aTreeAdaptor.

Accessing

selectedNode

Get the currently selected node.
^ list nodeAt: selectionIndex <nil or TreeNode>

Expand - Collapse

expandSelectedNode

Expand the currently selected node. Implemented as list expandAt:
selectionIndex

collapseSelectedNode

Collapse the currently selected node. Implemented as list collap-
seAt: selectionIndex

Class TreeAdaptor

Page 35

toggleExpandSelectedNode

Toggle the expand status of the currently selected node. Imple-
mented as list toggleExpandAt: selectionIndex

Selection in List

selectParent

Move selection to the parent node of the currently selected entry.
The returned value is the subject of the selected parent node or nil if no
parent node was found.
^ <Object> | nil

Class TreeAdaptor

Inherits from: SequenceableCollection

TreeAdaptors provide the means to express and adapt to varying hierar-
chical relationships in a uniform way. In principal a TreeAdaptor is config-
ured with an object comprising the root(s) of the hierarchy and a block —
the so called children block — that is responsible for retrieving and return-
ing a collection of subordinate hierarchy entries or nodes (the children) to a
given node (the parent). TreeAdaptors are used as the subject (list) to a Se-
lectionInList or SelectionInTree for a tree view.

TreeAdaptor inherits from SequencableCollection and thus provides
you with the familiar enumeration and accessing protocols used with collec-
tions. Not least, this makes it possible for instances of TreeAdaptor to be
used as subjects to a SelectionInList.

aNodeOrAnObject

Many of the messages described below either expect an Instance of
TreeNode or a domain model entity (a node’s subject) as a parameter. In
case of the latter, the TreeAdaptor has to first look up the corresponding
TreeNode. This is done by comparing each TreeNode’s subject to the pro-
vided element using the object equality operator message (=)3.

On the contrary if the parameter specifies an instance of TreeNode, the
node is uniquely identified, and no search for the TreeNode is required.
Thus, it is strongly recommended that you provide instances of TreeNode

3 Note that the object identity operator (=) is overloaded in TreeNode to compare the
node subjects. Furthermore, it is overloaded in IdentityTreeNode to use object iden-
tity comparison on the subjects instead of object equality.

Object Reference

Page 36

instead of plain elements as parameters for the respective messages wher-
ever possible.

Variables

roots <Collection>

The hierarchy’s roots. Can be accessed via roots and roots:. A tree
view can display a hierarchy with more than on root entries. However,
most often, there will only be one root entry corresponding to roots re-
ferring to a one-element collection. Therefore convenience methods are
provided (root, root:, rootNode), which assume that there is only one
element in roots. The first root’s species determines the TreeNode class
to use for automatic manufacturing of tree nodes.

childrenBlock <BlockClosure>

This holds a block which is responsible for fetching the children of
a given entry and wrapping each children in an instance of TreeNode.
The block can take one parameter, the subject of the node to fetch chil-
dren for, or two, wherein the second parameter is set to the parent
node’s type. The block returns a collection of child entries. The ele-
ments of this collection may either be plain entries, in which case
TreeNodes will automatically be created for each entry, or TreeNodes,
each of which wrapping a child entry. This collection may be empty if
no children are found.

Initialise – Release

childrenBlock: aBlockClosure

Set the childrenBlock to be aBlockClosure. The block can take one
parameter — the subject of the node to fetch children for — or two,
wherein the second parameter is set to the parent node’s type. The
block’s return value is expected to be a collection of child entries which
may be empty. The elements may already be wrapped in instances of
TreeNode. If not, a TreeNode will automatically be created for each
entry. In this case, the automatically manufactured TreeNode will be of
the same class (species) as the first root entry.

roots: aCollection

Set the roots of the hierarchy to be aCollection. The elements in
the hierarchy can be instances of TreeNodes or any other kind of Object
(plain entries). If the elements are not TreeNodes they are automatically
wrapped with TreeNodes.

Class TreeAdaptor

Page 37

root: anNodeOrAnObject

Convenience for: roots: (Array with: anNodeOrAnObject)

Accessing

childrenBlock

Get the receiver’s children block.
^ childrenBlock <BlockClosure>

fetchChildrenFor: aNode

Uses the configured children block to fetch the children for aNode.
This method is generally used internally in a tree adaptor. Applications
may use this method in order to provide for pre-fetching child entries.
^the resulting collection of child nodes <Collection>

at: anIndex

Get the hierarchy entry at the given index. The index corresponds
to the index of the entry as displayed in the tree view. Entries are in-
dexed depth-first starting at the first root. Only entries in expanded
branches are indexed. The returned value is the subject of the TreeNode
at anIndex.
^the node's subject <Object>

indexOf: aNodeOrAnObject
indexOf: aNodeOrAnObject ifAbsent: notFoundBlock

Searches for aNodeOrAnObject among the entries in the receiver’s
hierarchy and returns its index. Equality comparison (=) is used to
compare the entries if aNodeOrAnObject is a node's subject, identity
comparison (==) is used if it is an instance of TreeNode. Only entries
in expanded branches are searched. If no matching entry can be found,
either signal notFoundError is raised (variant 1) or the notFoundBlock
is evaluated.
! notFoundError when no matching entry was found
(only in variant one).
^ <TreeNode>

nodeAt: anIndex

Get the node at the given index. This method does quite the same
as at: anIndex does, only in this case it returns not the node’s subject,
but the node itself. Note: Only entries in expanded branches are in-

Object Reference

Page 38

dexed.
^ <TreeNode>

nodeFor: anObject
nodeFor: anObject ifNone: notFoundBlock

Searches for anObject among the entries in the receiver’s hierarchy
(the nodes’ subjects). Equality comparison (=) is used to compare the
entries. All the already fetched entries in both, collapsed and expanded
state, are compared. If no matching entry can be found, either signal
notFoundError is raised (variant 1) or the notFoundBlock is evaluated.
! notFoundError when no matching entry was found (only in variant
one).
^ <TreeNode>

roots

Get the collection of root entries.
^ root <Collection<TreeNode>>

root

Get the first root entry. This is a convenient method for hierarchies
which do have only one root. The returned value is the first root node’s
subject.
^ root <Object>

rootNode

Get the first root node. This is a convenient method for hierarchies
which do have only one root.
^ root <TreeNode>

Enumerating

The messages in this protocol allow to enumerate over the elements or
nodes within the receiver’s hierarchy. In each case, only expanded branches
of the hierarchy are visited. Based on enumeration method do:, all the other
enumeration messages inherited from SequenceableCollection (collect:, se-
lect:, reject:, etc.) are available for instances of TreeAdaptor too.

countChildrenAt: anIndex
countChildrenOf: aNodeOrAnObject

Count all the children and children’s children in the subtree start-
ing at anIndex or at aNodeOrAnObject. Only expanded branches are

Class TreeAdaptor

Page 39

visited.
^ <Integer>

detect: aBlock
detect: aBlock ifNone: anotherBlock

Evaluate aBlock with each of the receiver's elements (node sub-
jects) as the argument. Answer the first element (node subject) for
which aBlock evaluates to true. The block may optionally expect two
arguments, in which case each element’s indent level within the hierar-
chy is passed as the second block parameter.

The variants allow to specify a block to evaluate when no matching
element is found. Only expanded branches are visited.
! notFoundError when no entry was found (only in variant 1 and 3).
^ <Object>

detectNode: aBlock
detectNode: aBlock ifNone: anotherBlock
detectNode: aBlock startWith: aNode
detectNode: aBlock startWith: aNode ifNone: anotherBlock

Evaluate aBlock with each of the receiver's nodes as the argument.
Answer the first node for which aBlock evaluates to true. The block
may optionally expect two arguments, in which case each node’s indent
level within the hierarchy is passed as the second block parameter.

The variants allow to specify a block to evaluate when no matching
entry is found and/or the node to start searching at. If a start node is
given only the subtree beyond this node is searched. Only expanded
branches are visited.
! notFoundError when no entry was found (only in variant 1 and 3).
^ <TreeNode>

do: aBlock
do: aBlock startWith: aNode
do: aBlock startWith: aNode indent: anotherBlock

nodesDo: aBlock
nodesDo: aBlock startWith: aNode
nodesDo: aBlock startWith: aNode indent: anotherBlock

Evaluate aBlock with each of the receiver's elements (node sub-
jects for variants 1 to 3 and nodes for variants 4 to 6) as the argument.
The block of variants 1,3,4 and 6 may optionally expect two arguments,
in which case each elements indent level within the hierarchy is passed
as the second block parameter.

Object Reference

Page 40

The variants allow to specify a node to start evaluation at and ad-
ditionally an initial indent value. If a start node is given only the subtree
beyond this node is visited. Only expanded branches are visited.

Expand – Collapse

The messages in this protocol allow to expand or collapse entries in a
hierarchy. Notifications are send to the TreeView(s) displaying the re-
ceiver’s hierarchy to automatically update the tree view’s display.

expand: aNodeOrAnObject
collapse: aNodeOrAnObject
expandAt: anIndex
collapseAt: anIndex

Expand or collapse a specified entry. Variants 1 and 2 expect an in-
stance of TreeNode or an element (a node’s subject) as parameter. Vari-
ants 3 and 4 use nodeAt: to search for the element to expand or col-
lapse. Note: Only entries in expanded branches are indexed.

expandSubtree: aNodeOrAnObject
collapseSubtree: aNodeOrAnObject
expandSubtreeAt: anIndex
collapseSubtreeAt: anIndex

Expand or collapse all the entries in the subtree starting at the
specified entry. Variants 1 and 2 expect an instance of TreeNode or an
element (a node’s subject) as parameter. Variants 3 and 4 use nodeAt: to
search for the element to expand or collapse. Note: Only entries in ex-
panded branches are indexed.

expandAll
collapseAll

Expand or collapse all the entries in the whole hierarchy.

toggleExpand: aNodeOrAnObject
toggleExpandAt: anIndex
toggleExpandSubtree: aNodeOrAnObject
toggleExpandSubtreeAt: anIndex

Toggles the expand status of a single hierarchy entry or all the en-
tries in a subtree. See expand/collapse messages for further explana-
tions.

Class TreeAdaptor

Page 41

expandPath: aCollectionOfNodesOrElements

Expand the entries along a path. The path is specified by the entries
or nodes in the parameters. The first element/node in this collection is
expected to be already fetched, so that there is already a node for it
contained in the receiver’s hierarchy. In case of variant 2 however, all
nodes in this collection are expected to be already fetched and present.
Expanding will happen from the first to the last collection element.

expandedEntries
expandedNodes
expandedEntriesStartingAt: aNode
expandedNodesStartingAt: aNode

Return a collection of all the expanded entries (Variants 1 and 3) or
nodes (Variants 2 and 4) in the hierarchies. Variants 3 and 4 allow to
specify a starting node. These methods are most commonly used for in-
validation tasks after which the formerly expanded entries would have
to be expanded again.

Invalidating

invalidate
invalidate: aNodeOrAnObject
invalidateAll: aCollectionOfNodesOrObjects
invalidateAt: anIndex

Invalidate certain entries. This means that the children cache is re-
leased and a re-evaluation of the children block for the nodes is forced
to happen the next time these nodes are expanded. Variant 1 invalidates
all root nodes. Variants 2 and 4 invalidate a certain node. Variant 3 in-
validates all the nodes in a collection.
! notFoundError when no entry was found (only in variant 1 and 3).

invalidateAndReExpand
invalidateAndReExpand: aNodeOrAnObject
invalidateAndReExpandAll: aCollectionOfNodesOrObjects
invalidateAndReExpandAt: anIndex

Provides a convenient way to update a tree view’s contents while
keeping the currently expanded entries expanded after the invalidation,
provided the expanded entries are still present in the hierarchy visual-
ised by that tree view. Variant 2, 3 and 4 invalidate only part of an hier-
archy starting at the denoted entry/entries (an index or a TreeNode or a
subject), whereas Variant 1 invalidates the whole hierarchy.

Object Reference

Page 42

Modifying

The messages in this protocol allow to add and remove entries to a hier-
archy. Notifications are send to the TreeView(s) displaying the receiver’s hi-
erarchy to automatically update the tree view’s display.

add: aNodeOrAnObject asChildOf: aParentNodeOrObject
add: aNodeOrAnObject asChildAt: anIndex

Adds a new entry to the hierarchy to the children of a certain entry.
The new entry may be an instance of TreeNode or a plain entry, in
which case the new entry will be wrapped by an automatically created
TreeNode. Variant 1 allows to specify the parent element or node. Vari-
ant 2 specifies the parent node by index (See message at: for descrip-
tions how indexes are interpreted). If the children of the parent node
have not yet been fetched, this is done before the new entry is added.
! notFoundError when the parent entry was not found (only in variant
1 when the first parameter is not a tree node).

remove: aNodeOrAnObject
remove: aNodeOrAnObject ifAbsent: notFoundBlock
removeAtIndex: anIndex

Remove an entry from the hierarchy. The new entry may be re-
ferred to either by an instance of TreeNode, by an element or by index
(See message at: for descriptions how indexes are interpreted). Variant
2 allows you to specify a block to evaluate, when the entry to delete can
not be found.
! notFoundError when the parent entry was not found (only in variant
1 when the first parameter is not a tree node).

Class TreeNode

Inherits from: Object

Each domain model object to be shown in a TreeView is finally
wrapped in an instance of class TreeNode. The object wrapped by a Tree-
Node is called a tree node’s subject. A TreeNode keeps track of an entry’s
expand/collapse status and caches the children once fetched by a children
block. It also provides various options to additionally describe an entry.
These options allow to specify:

• The type of node (is used to determine the icon to display).
• A specific icon for this node (overrides default icon detec-

tion via type).
• A specific display string to use as the entry’s label.

Class TreeNode

Page 43

• Information about whether children can be fetched or not.

When a TreeAdaptor automatically wraps entries fetched through a
children block with instances of TreeNode, these tree nodes are initialized
with default values, which are:

• type of node: #folder
• display string: the entry’s displayString
• icon: determined according to the node’s type
• has children: true

Variables

subject <Object>

The real hierarchy entry wrapped by the TreeNode. Can be ac-
cessed via subject but not changed. A TreeNode is initialized with a
certain subject on instance creation using the instance creation methods
for: aSubject or for: aSubject label: aString.

type <Symbol | Object>

The type of node. Can be accessed via type and type:. A node’s
type is used to determine the icon to display for that node in a tree view.
The type value is used as a key in the TreeView’s image list dictionary.

There are two pre-defined types #folder and #leaf. Type #folder is
the default type of each TreeNode as being initialized by TreeNode’s
instance creation methods (for:label). It is also assigned to variable type
if you send an instance the message isParent: true. Type #leaf will be
used if you send the message isLeaf: true (or isParent: false, resp.).

An application can initialize TreeNodes with user defined types. A
type can generally be any kind of Object, however, most often it is a
Symbol.

displayString <String>

The string to display as the node’s textual label in a tree view. Can
be accessed via displayString and displayString:. There’s also a special
instance creation method for:label: provided, that allows you to specify
the label string to use.

If you don’t set an instance’s display string explicitly the variable
is initialized from the subject’s displayString.

Object Reference

Page 44

icons <nil or Association<Image -> Image>>

The icons to display to the left of the node’s textual label in a tree
view in collapsed and expanded state. Can be accessed via icons and
icon: or icons:.

Initially this variable is nil for a newly created instance. In this case
the TreeView takes the icons to display from its image list using the
node’s type to select the corresponding icon. If you assign the icons to
use explicitly, this overrides the image list entry for this node.

parent <TreeNode or nil>

The node’s parent node. This variable is automatically assigned
when children are fetched. You may not change it manually. Can be ac-
cessed via parent. (You can access an entries parent entry using some-
thing like (aTreeAdaptor nodeFor: anEntry) parent subject).

children <#none or nil or Collection<TreeNode>>

The node’s children. Can be accessed with children and children:.
Depending on the value of this variable the instance is in one of these
states:

#none the node definitely has no children; it is a leaf

nil the node might have children; but children have
not yet been fetched for this node

empty collection children have been fetched but no children have
been found

collection children have been fetched and found

Normally a node’s children are fetched by evaluation of a
TreeAdaptor’s children block. However, you can as well assign a
node’s children statically.

Initially this variable is nil for a newly created instance. This
means that the node might have children but this is not sure, since there
hasn’t yet occurred a fetch for children for this node. When children
have been fetched for a node, this variable holds a collection of the
children found. However, this collection can be empty.

You can explicitly specify that an instance definitely has no chil-
dren by sending it hasChildren: false. This sets children to #none.

You can check if an instance has children with hasChildren or de-
finitelyHasChildren. Only if the latter returns true should you access
the contents of children.

Class TreeNode

Page 45

status <#collapsed or #expanded>

The node’s current status in the tree view. Can be accessed via
status but not changed explicitly. This is done internally. Initially, the
status of a newly created instance is #collapsed.

Instance Creation (class)

for: anObject
for: anObject label: aString

Create a new instance with subject assigned to anObject. Variant 2
additionally sets the new instance's display string to aString. Further in-
stance variables are initialised with default values.
^ <TreeNode>

anObject asTreeNode

This is a convenient method added to class Object that is imple-
mented as ^TreeNode for: self. This method is overridden in TreeNode
as ^self.
^ <TreeNode>

Initialisation

hasChildren: aBoolean

Specify in advance whether the receiver has children or not. If
aBoolean is false, instance variable children will be set to #none and no
children block will ever be evaluated for this node.

isParent: aBoolean

The same as hasChildren: except that the node’s type is set to
#folder if the parameter is true and to #leaf if it is false.

isLeaf: aBoolean

Convenience for as isParent: aBoolean not.

Accessing

children

Get the collection of children to the receiver’s subject.
^ children <#none or nil or Collection<TreeNodes>>

Object Reference

Page 46

children: aCollectionOrNil

Set the collection of children explicitly. The parameter must be ei-
ther nil or a collection. If a collection is given, this will ensure, that
now children will be fetched for this node using a children block. If the
parameter is nil, this will lead to the children block being evaluated for
this node the next time it is expanded.

The elements in the collection may either be instances of TreeNode
or any other kind of objects. If the elements are no TreeNodes, they are
supposed to be plain entries of a hierarchy and are wrapped by auto-
matically created instances of TreeNode.

displayString

Get the string to display as the node’s textual label in a tree view. If
the display string has not been initialized explicitly on node creation,
this method returns subject displayString as a default.
^ displayString | subject displayString <String>

displayString: aString

Set the string to display as the node’s textual label in a tree view.

icons

Get the association of icons to display to the left of the node’s tex-
tual label in a tree view.
^ icons <nil or Association>

icons: anAssociation

Set the icons to display to the left of the node’s textual label in a
tree view. The parameter is an association with the key specifying the
icon to display in collapsed state, the valie specifying the icon to dis-
play in expanded state.

icon: anImage

Convenience for: aTreeNode icons: anImage -> anImage, where
the same image shall be used in both, collapsed and expanded state.

type

Get the node’s type.
^ type <Object>

type: anObject

Set the node’s type.

Class TreeNode

Page 47

parent

Get the receiver’s parent node.
^ parent <TreeNode>

path

Answer a collection with all the subjects of the receiver and all its
parent nodes.
^ <Collection<Object>>

nodesPath

Answer a collection with the receiver and all its parent nodes.
^ <Collection<TreeNodes>>

nodesPathString
nodesPathStringWith: aDelimiterCharacter

Returns a string representation of the nodesPath with each path
component being resolved from the respective node’s displayString,
seperated by a delimiter character. The default delimiter character as
being used in variant 1 is $..
^ <String>

status

Get the node’s current status.
^ status <#collapsed or #expanded>

subject

Get the node’s subject.
^ subject <Object>

Testing

= aNodeOrAnObject

Compares the receiver to the parameter based on equality com-
parison. Returns true if either aNodeOrAnObject is a domain model
object and is equal to the receiver’s subject, or if it is the receiver it-
self.
^ <Boolean>

Object Reference

Page 48

<= anotherNode

Compares the display string of two nodes with <=. Allows in-
stances to be inserted in SortedCollections with default sortBlocks. It is
implemented as: displayString <= another displayString <Boolean>

hasChildren

Check whether the receiver has children. This returns true either
when the instance variable children holds a non-empty collection of
children, or when it is nil. The latter means that the node might possibly
have children but no children have been fetched for this node yet.
^ <Boolean>

definitelyHasChildren

Check whether the receiver has children. This returns true only
when the instance variable children holds a non-empty collection of
children. On contrary to hasChildren, this method also returns false if
children is nil, that is when no children have been fetched yet.
^ <Boolean>

isCollapsed

Convenience for:
^ status == #collapsed <Boolean>

isExpanded

Convenience for:
^ status == #expanded <Boolean>

isTreeNode

This method overrides the corresponding method in class Object to
always return true. (The implementation in Object always returns false)
^ true

Class IdentityTreeNode

Inherits from: TreeNode

This is a subclass of TreeNode that allows to adapt to hierarchies based
on object identity comparisons rather than object equality.

Class MultipleParentTreeAdaptor

Page 49

Testing

= aNodeOrAnObject

Compares the receiver to the parameter based on object identity.
Returns true if either aNodeOrAnObject is a domain model object and
is identical to the receiver’s subject, or if it is the receiver itself.
^ <Boolean>

Class MultipleParentTreeAdaptor

Inherits from: TreeAdaptor

This class provides some basic-level support for adapting to multiple-
parent hierarchies. It basically cares for correct detection and manipulation
of each instance of TreeNode for a given domain model object in the com-
mon operations, such as on adding or removing nodes.

The basic difficulty when dealing with multiple-parent hierarchies in a
TreeView is, that a certain entry may be displayed several times in the
TreeView. This is because if a node has more than one parent, it would have
to be displayed in each of these parents’ children branches. In result, there
may be more than one instances of TreeNode for a certain domain model
hierarchy entry.

Accessing

allIndexesOf: aNodeOrAnObject

Looks up all the nodes for aNodeOrAnObject and returns a collec-
tion of according indexes.
^ <Collection of Integers>

allNodesFor: aNodeOrAnObject
allNodesFor: aNodeOrAnObject ifNone: aBlock

Looks up all the nodes for aNodeOrAnObject and returns a collec-
tion of the matching nodes.
^ <Collection of TreeNodes>
! notFoundError when no entry was found (only in variant 1).

Object Reference

Page 50

Modifying

add: aNodeOrAnObject asChildOf: aParentNodeOrObject

Adds new TreeNodes to all the TreeNodes corresponding to the
specified parent. If the parent parameter is a TreeNode, a new node will
be added to this very TreeNode only. Otherwise, a new node will be
added to all the TreeNodes having parent as the subject.

This means, in order to add a new node to all existing TreeNodes
for a parent entity in your domain model, you should provide the parent
entity as the parent parameter and not a parent TreeNode.

E.g.:

aTreeAdaptor add: 'New Entry' asChildOf: aSelectionInTree selectedNode.

will add a new TreeNode for: 'New Entry' to only the very Tree-
Node returned by selectedNode.

aTreeAdaptor add: 'New Entry' asChildOf: aSelectionInTree selection.

will add a new TreeNode for: 'New Entry' to any TreeNode, that
has the object returned by selection as its subject.

remove: aNodeOrAnObject fromParent: aParent
remove: aNodeOrAnObject fromParent: aParent ifAbsent: aBlock

Removes the denoted object from all the TreeNodes corresponding
to the specified parent. If the object parameter is a TreeNode, only this
very TreeNode will be removed. Otherwise, all the TreeNodes whose
subject equals the object in question will be removed.

If the parent parameter is a TreeNode, children will be removed
from this very TreeNode only. Otherwise, children will be removed
from all the TreeNodes having parent as the subject.

E.g.:
aTreeAdaptor remove: aSelectionInTree selectedNode

fromParent: aParent.

will remove the very TreeNode returned by selectedNode only.
aTreeAdaptor remove: aSelectionInTree selection

fromParent: aParent.

will remove any TreeNode, that has the object returned by selec-
tion as its subject.

aTreeAdaptor remove: something
fromParent: aSelectionInTree selectedNode.

will remove something from the very TreeNode returned by select-
edNode only.

Class TreeView

Page 51

aTreeAdaptor remove: something
fromParent: aSelectionInTree selection.

will remove something from any TreeNode, that has the object re-
turned by selection as its subject.

! notFoundError when no entry was found for aParent
(only in variant 1).

removeFromParent: aParent

This is a convenient method for:
aTreeAdaptor remove: aTreeNode subject

fromParent: aTreeNode parent

I.e. it expects a TreeNode as its parameter and will remove any
TreeNode referring to the same subject from all TreeNodes referring to
the same parent.

Class TreeView

Inherits from: SequenceView

Class TreeView basically provides the functionality for displaying hier-
archical structures. It inherits from its superclass the basic behavior of list
views. As its model’s value however, it expects an instance of class
TreeAdaptor. This tree adaptor is stored in instance variable sequence.

Each entry in a tree view can be displayed with an associated icon.
Moreover, a different icon can be displayed when an entry is expanded.
Generally, which icon will be displayed is determined by the nodes type.
Each TreeView can therefore be equipped with an image list, a dictionary of
icons with the types of nodes as the dictionary keys. If no image list is speci-
fied explicitly, TreeView uses a default image list. This default image list
has entries for the pre-defined types #folder and #leaf.

Variables

imageList <nil or Dictionary>

A dictionary with entries specifying the icons to display for differ-
ent types of entries. The dictionary keys are type of nodes which will be
added to the hierarchy (see TreeNode type). The entries’ values are ei-
ther a single image or an Association of two images. If there is only one
image specified for a type, this image will be used in both collapsed

Object Reference

Page 52

and expanded state of an entry. If there is an association of two images
given for a type, the first one (key) will be used for entries in collapsed
state and the second one (value) for entries in expanded state.

If imageList is nil, no images will be displayed in front of the en-
tries’ labels.

displayLines <Boolean>

Denotes whether the view displays the thin lines connecting the
entries in the hierarchy. Can be accessed via displayLines and display-
Lines:.

displayButtons <Boolean>

Denotes whether the view displays the expand/collapse buttons
([+], [–]) in front of each entry. Can be accessed via displayButtons and
displayButtons:.

leftOffset <Integer>

Private

Accessing

imageList

Get the dictionary of images to be used for different types of en-
tries / nodes.
^ imageList <nil or Dictionary>

imageList: aDictionary

Set the dictionary of images to be used for different types of entries
/ nodes.

displayImages

Test whether the view is configured to display images in front of
the entries’ labels. The implementation is:
^ imageList notNil

displayImages: aBoolean

Set whether the view should display images in front of the entries’
labels. The implementation impacts instance variable imageList. If
aBoolean is true and no image list has been provided yet, the imageList
is set to the class’s default image list (TreeView
class>>defaultImageList). If aBoolean is false, imageList is set to nil.

Class TreeView

Page 53

displayButtons

Test whether the view is configured to display expand/collapse
buttons in front of the entries’ labels.
^ displayButtons

displayButtons: aBoolean

Set whether the view should display expand/collapse buttons in
front of the entries’ labels.

displayLines

Test whether the view is configured to display thin lines in front of
the entries’ labels.
^ displayLines

displayLines: aBoolean

Set whether the view should display thin lines in front of the en-
tries’ labels.

Class Initialisation (class)

displayOpenFolderWhenSelectedOnly

Answers the value of a corresponding class variable that tells
whether the open icon (e.g. an open folder) is displayed for expanded
nodes or for the selected/opened entry only. The pre-configuration has
this variable set to true. However, you can still restore the old behav-
iour by evaluating: TreeView displayOpenFolderWhenSelectedOnly:
false.
^ <Boolean>

displayOpenFolderWhenSelectedOnly: aBoolean

Change the value of the corresponding class variable (see above).

Constants (class)

defaultImageList

Get the class’s default image list dictionary
^ DefaultImageList <Dictionary>

Object Reference

Page 54

defaultIcons

Get the Association of icons (key = collapsed icon, value = ex-
panded icon) which are used, when no entry can be found in a Tree-
View’s current image list for a node. This is when there’s no entry in
the image list corresponding to the node’s type.
^ DefaultImageList at: #folder <Association>

folderIcon

Get the default icon which is used for nodes with the pre-defined
type #folder in collapsed state.
^ <Image>

openFolderIcon

Get the default icon which is used for nodes with the pre-defined
type #folder in expanded state.
^ <Image>

leafIcon

Get the default icon which is used for nodes with the pre-defined
type #leaf in collapsed and expanded state.
^ <Image>

Class TreeView

Page 55

Index

<
<= 46

=
= 47

A
add: asChildOf: 48
add:asChildAt: 41
add:asChildOf: 16, 17, 41
allIndexesOf: 48
allNodesFor: 48
asIdentityTreeNode 22
asTreeNode 20
at: 36

C
CategoriesBrowser 27
children 43, 44
children: 18, 44
childrenBlock 35, 36
childrenBlock: 9, 35
collapse 2
collapse: 39
collapseAll 39
collapseAt: 13, 39
collapseSelectedNode 14, 33
collapseSubtree: 39
collapseSubtreeAt: 39
countChildrenAt: 37
countChildrenOf: 37

D
defaultIcons 52
defaultImageList 52
deselectOnReselection: 30
detect: 38
detectNode: 38
displayButtons 51
displayButtons: 51
displayImages 51
displayImages: 51
displayLines 50, 52
displayLines: 52

displayOpenFolderWhenSelectedOnly 52
displayOpenFolderWhenSelectedOnly: 30
displayString 8, 19, 21, 42, 45
displayString: 45
do: 38

E
EnhancedSequenceView 29
Equality Comparison 5
expand 2
expand: 9, 39
expandAll 13, 39
expandAt: 10, 13, 39
expandPath: 14, 39
expandSelectedNode 14, 33
expandSubtree: 39
expandSubtreeAt: 39

F
fetchChildrenFor: 18
folder 19, 21, 25
folderIcon 26, 52
for:label: 20

H
hasChildren 46, 47
hasChildren: 17, 21, 43, 44

I
icon: 45
icons 42, 45
icons: 45
Identity Comparison 5
IdentityTreeNode 5
imageList 50, 51
imageList: 25, 51
indexOf: 32, 36
invalidate 28, 40
invalidate: 12, 40
invalidateAndReExpand 28, 40
invalidateAndReExpand: 40
invalidateAndReExpandAt: 40
invalidateAt: 28, 40
isCollapsed 47
isExpanded 47
isLeaf 26
isLeaf: 44

Index

Page 2

isParent 26
isParent: 20, 21, 44

K
keyboard shortcuts 2

L
leaf 25
leafIcon 26, 53

M
MultipleParentTreeAdaptor 5, 22

N
node subject 4
nodeAt: 36
nodeFor: 10, 37
nodesDo: 38
nodesPath 46
nodesPathString 46

O
openFolderIcon 26, 53

P
parent 27, 43, 45
path 45

R
remove: 41
remove:fromParent: 49
removeAt: 41

removeAtIndex: 16
removeFromParent: 49
root 37
root: 4, 9, 36
rootNode 10, 22, 37
roots 35, 37
roots: 11, 35

S
selectedNode 27, 33
SelectionInList 3, 7, 8
SelectionInTree 13, 27, 33
selectParent 34
SequencableCollection 4
SequenceView 3
SimpleClassBrowser 8
status 43, 46
subject 42, 46

T
toggleExpand: 39
toggleExpandSelectedNode 34
toggleExpandSubtreeAt: 13
tree node 4
TreeAdaptor 3, 9, 11, 31, 32, 34
TreeAdaptors 8
TreeController 31
TreeNode 4, 8, 11, 20, 32, 41
TreeView 31, 50
TreeViewSpec 31
type 42, 45
type: 45

U
useStandardHiliting: 29

