
Alter
Programmer’s

Reference Manual

Legal Notices Copyright © 1992 – 1999 by Honeywell Inc.

This is version 5.2.2 of the DOME Alter Programmer’s Reference Manual.

Email: dome-info@htc.honeywell.com
Web: www.htc.honeywell.com/dome

The information contained in this document is subject to change without
notice. Neither Honeywell nor the developers of DOME make any warranty
of any kind with regard to this guide or its associated products, including but
not limited to the implied warranties of merchantability and fitness for a
particular purpose. Neither shall Honeywell nor the developers be liable for
errors contained herein, or direct, indirect, special, incidental, or
consequential damages in connection with the performance or use of this
guide or its associated products.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission notice
identical to this one.

Trademarks Interleaf is a registered trademark of Interleaf, Inc.

Macintosh is a registered trademark of Apple Computer, Inc.

Microsoft Windows 95, and Windows NT are trademarks of Microsoft Corp.
Microsoft and Windows are registered trademarks of Microsoft Corp.

VisualWorks ia a registered trademarks of ObjectShare, Inc.

FrameMaker, PostScript and Adobe are registered trademarks of Adobe
Systems Inc. Adobe also owns copyrights related to the PostScript language
and PostScript interpreter. The trademark PostScript is used herein only to
refer to material supplied by Adobe or to Adobe-defined programs written
in the PostScript language.

Solaris is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X Window System and X11 are trademarks of X Consortium, Inc.

Other products or services mentioned herein are identified by trademarks
designated by the companies that market those products or services. Make
inquiries concerning such trademarks directly to those companies.

Contents

1 Introduction..1

2 Overview of Alter...3
Semantics 3
Alter Concepts 5
Lexical Conventions 9
Expressions 12

3 Notation Conventions ...15

4 Arithmetic...17

5 Collections ...23

6 Colors ...27

7 Control..29

8 Converting ...35

9 Defining ..41

10 Dictionaries ..49

11 Document Generation......................................53

12 Enumerating...59

13 File:Modifying ..61

14 File:Naming..63

15 Font Descriptions ...65

16 Graphics...67

17 I/O...69

18 Lists..75

19 Logic ...79

20 Math Functions ..81

21 Miscellaneous..83

22 Model:Accessing ..85

23 Model:Creation ...95

24 Model:Dependencies97

25 Model:Generating...99
 Alter Reference Manual iii

Contents
26 Model:Testing .. 101

27 Model:User-Interface...................................... 103

28 Modules ... 105

29 OS Interface... 107

30 Packages... 109

31 Points .. 111

32 Printer Driver... 115

33 Rectangles... 117

34 Registry... 119

35 Rpc ... 121

36 Smalltalk .. 123

37 Strings ... 125

38 Testing .. 127

39 Types .. 141

40 User Requests .. 143

41 Vectors ... 145
iv

Introduction 1

Alter is a variant of the Scheme language as defined by the
R4 report1 and this manual is derived from that same
report, although the resemblence is remote. We offer here
our sincere gratitude to the “Scheme team” for designing
and describing a very useful language that is also easy to
implement.

Alter came out of our desire to get out of the business of
writing hard-wired back ends for DOME. We used to write
them in Smalltalk-80, DOME’s host language, and this kept
us busy but not very motivated. Every user wanted to
generate something slightly different from his or her DOME
models, and they soon flooded us with special requests. We
needed to give our user’s a way of doing this sort of thing
themselves without requiring them to purchase a Smalltalk
development environment. Thus, Alter was born.

Our selection of a Scheme variant was influenced by the
CAD Framework Initiative’s (CFI) selection of Scheme as
their offical extension language. At that time, CFI was
specifying interfaces for an object-oriented framework
covering many of the same services we envisioned for
DOME. Naturally, then, many of the selection criteria cited
by CFI were also appropriate for us: simple syntax, well-
defined semantics, extensibility, implementability, and
adaptability to a variety of programming paradigms (e.g.,
functional, object-oriented, declarative). Our familiarity
with the implementation of functional languages, esp.
Common Lisp, also nudged us toward Scheme.

Alter is a nearly complete implementation of Scheme sitting
within DOME. We say “nearly”, because there are a few
things that we have omitted from the R4 definition, most
notably proper tail recursion and continuations. Future
versions of Alter may remove these limitaions

Alter differs from R4 Scheme in a few other ways, too.

• Complex numbers are not yet implemented.

• Several primitives have been added to support the
manipulation of graph structures built with DOME.

• Alter operates in a windowed, graphics-capable
environment, and has some extra primitives to support
this.

1 Clinger, W. and Rees, J. (eds), “Revised4 Report on the
Algorithmic Language Scheme”
 Alter Reference Manual 1

Introduction
• Alter code can be used in several settings within DOME,
including printing, displaying, animation, constraint-
checking, model analysis, and interprocess
communication.

This last point is very important. Alter is much more than a
medium for writing code-generators or document generators.
It is a general-purpose programming language that can be
used within DOME in a variety of ways. One key to making
better use of Alter is understanding DOME’s architecture,
especially the object structures used to represent graphs and
their annotations. This information can be found in the GrapE
Programmer’s Reference Manual.

There are several ways to invoke Alter operations and
procedures. These are all described in detail in the DOME
Extension Manual.

• Directly through an Alter evaluator window

• Each time DOME starts up, by creating a DOME startup
script

• As a user-defined plug-in function

• As a printer driver

• In a ProtoDOME model
2

Overview of Alter 2

Semantics This chapter summarizes the semantics of Alter and

explains the syntactic and lexical conventions of the
language. Subsequent chapters describe special forms,
numerous data abstractions, and facilities for input and
output.

Throughout this manual, we will make frequent references
to standard Scheme, which is the language defined by the
document Revised4 Report on the Algorithmic Language
Scheme, by William Clinger, Jonathan Rees, et al., or by
IEEE Std. 1178-1990, IEEE Standard for the Scheme
Programming Language (in fact, several parts of this
document are copied from the Revised Report). Alter is an
extension of standard Scheme.

These are the significant semantic characteristics of the
Alter language:

Variables are statically scoped

Alter is a statically scoped programming language,
which means that each use of a variable is associated
with a lexically apparent binding of that variable. Algol
is another statically scoped language.

Types are latent

Alter has latent types as opposed to manifest types,
which means that Alter associates types with values (or
objects) rather than with variables. Other languages
with latent types (also referred to as weakly typed or
dynamically typed languages) include APL, Snobol,
and other dialects of Lisp. Languages with manifest
types (sometimes referred to as strongly typed or
statically typed languages) include Algol 60, Pascal, and
C.

Objects have unlimited extent

All objects created during a Alter computation,
including procedures and continuations, have
unlimited extent; no Alter object is ever destroyed. The
system doesn’t run out of memory because the garbage
collector reclaims the storage occupied by an object
when the object cannot possibly be needed by a future
computation. Other languages in which most objects
have unlimited extent include Smalltalk and other Lisp
dialects.
 Alter Reference Manual 3

Overview of Alter
Procedures are objects

Alter procedures are objects, which means that you can
create them dynamically, store them in data structures,
return them as the results of other procedures, and so on.
Other languages with such procedure objects include
Common Lisp and ML.

Continuations are explicit

In most other languages, continuations operate behind the
scenes. In Alter, continuations are objects; you can use
continuations for implementing a variety of advanced
control constructs, including non-local exits, backtracking,
and coroutines.

Arguments are passed by value

Arguments to Alter procedures are passed by value, which
means that Alter evaluates the argument expressions
before the procedure gains control, whether or not the
procedure needs the result of the evaluations. ML, C, and
APL are three other languages that pass arguments by
value. In languages such as SASL and Algol 60, argument
expressions are not evaluated unless the values are needed
by the procedure.

Alter uses a parenthesized-list Polish notation to describe
programs and (other) data. The syntax of Alter, like that of
most Lisp dialects, provides for great expressive power,
largely due to its simplicity. An important consequence of this
simplicity is the susceptibility of Alter programs and data to
uniform treatment by other Alter programs. As with other
Lisp dialects, the read primitive parses its input; that is, it
performs syntactic as well as lexical decomposition of what it
reads.

Notational
Conventions

This section details the notational conventions used
throughout the rest of this document.

Errors When this manual uses the phrase “an error will be signalled,”
it means that Alter will call error, which normally halts
execution of the program and prints an error message.

When this manual uses the phrase “it is an error,” it means
that the specified action is not valid in Alter, but the system
may or may not signal the error. When this manual says that
something “must be,” it means that violating the requirement
is an error.
4

Examples
This manual gives many examples showing the evaluation
of expressions. The examples have a common format that
shows the expression being evaluated on the left hand side,
an "arrow" in the middle, and the value of the expression
written on the right. For example:

(+ 1 2) => 3

Sometimes the arrow and value will be moved under the
expression, due to lack of space. Occasionally we will not
care what the value is, in which case both the arrow and the
value are omitted.

If an example shows an evaluation that results in an error,
an error message is shown, prefaced by ‘error-->’:

(+ 1 ’foo) error--> Illegal datum

An example that shows printed output marks it with `-|':

(begin (write ’foo) ’bar)

 -| foo

 => bar

When this manual indicates that the value returned by
some expression is unspecified, it means that the expression
will evaluate to some object without signalling an error, but
that programs should not depend on the value in any way.

Alter
Concepts

Variable Bindings Any identifier that is not a syntactic keyword may be used
as a variable (see section Identifiers). A variable may name
a location where a value can be stored. A variable that does
so is said to be bound to the location. The value stored in
the location to which a variable is bound is called the
variable's value. (The variable is sometimes said to name
the value or to be bound to the value.)

A variable may be bound but still not have a value; such a
variable is said to be unassigned. Referencing an
unassigned variable is an error. When this error is signalled,
it is a condition of type condition-type:unassigned-variable;
sometimes the compiler does not generate code to signal
the error. Unassigned variables are useful only in
combination with side effects (see section Assignments).
 Alter Reference Manual 5

Overview of Alter
Environment
Concepts

An environment is a set of variable bindings. If an
environment has no binding for a variable, that variable is said
to be unbound in that environment. Referencing an unbound
variable signals a condition of type condition-type:unbound-
variable.

A new environment can be created by extending an existing
environment with a set of new bindings. Note that “extending
an environment” does not modify the environment; rather, it
creates a new environment that contains the new bindings and
the old ones. The new bindings shadow the old ones; that is, if
an environment that contains a binding for x is extended with
a new binding for x, then only the new binding is seen when x
is looked up in the extended environment. Sometimes we say
that the original environment is the parent of the new one, or
that the new environment is a child of the old one, or that the
new environment inherits the bindings in the old one.

Procedure calls extend an environment, as do let, let*, letrec,
and do expressions. Internal definitions (see section Internal
Definitions) also extend an environment. (Actually, all the
constructs that extend environments can be expressed in terms
of procedure calls, so there is really just one fundamental
mechanism for environment extension.) A top-level definition
may add a binding to an existing environment.

Initial and
Current

Environments

Alter provides an initial environment that contains all of the
variable bindings described in this manual. Most
environments are ultimately extensions of this initial
environment. In Alter, the environment in which your
programs execute is actually a child (extension) of the
environment containing the system's bindings. Thus, system
names are visible to your programs, but your names do not
interfere with system programs.

The environment in effect at some point in a program is called
the current environment at that point. In particular, every REP
loop has a current environment. (REP stands for “read-eval-
print”; the REP loop is the Alter program that reads your
input, evaluates it, and prints the result.) When a new REP
loop is created, its environment is determined by the program
that creates it.

Static Scoping Alter is a statically scoped language with block structure. In
this respect, it is like Algol and Pascal, and unlike most other
dialects of Lisp except for Common Lisp.

The fact that Alter is statically scoped (rather than
dynamically bound) means that the environment that is
extended (and becomes current) when a procedure is called is
the environment in which the procedure was created (i.e. in
6

Overview of Alter
which the procedure’s defining lambda expression was
evaluated), not the environment in which the procedure is
called.

Because all the other Alter binding expressions can be
expressed in terms of procedures, this determines how all
bindings behave.

Consider the following definitions, made at the top-level REP
loop (in the initial environment):

(define x 1)

(define (f x) (g 2))

(define (g y) (+ x y))

(f 5) => 3 ; not 7

Here f and g are bound to procedures created in the initial
environment. Because Alter is statically scoped, the call to g
from f extends the initial environment (the one in which g was
created) with a binding of y to 2. In this extended
environment, y is 2 and x is 1. (In a dynamically bound Lisp,
the call to g would extend the environment in effect during the
call to f, in which x is bound to 5 by the call to f, and the
answer would be 7.)

Note that with static scoping, you can tell what binding a
variable reference refers to just from looking at the text of the
program; the referenced binding cannot depend on how the
program is used. That is, the nesting of environments (their
parent-child relationship) corresponds to the nesting of
binding expressions in program text. (Because of this
connection to the text of the program, static scoping is also
called lexical scoping.) For each place where a variable is
bound in a program there is a corresponding region of the
program text within which the binding is effective. For
example, the region of a binding established by a lambda
expression is the entire body of the lambda expression. The
documentation of each binding expression explains what the
region of the bindings it makes is. A use of a variable (that is, a
reference to or assignment of a variable) refers to the
innermost binding of that variable whose region contains the
variable use. If there is no such region, the use refers to the
binding of the variable in the global environment (which is an
ancestor of all other environments, and can be thought of as a
region in which all your programs are contained).

True and False In Alter, the boolean values true and false are denoted by #t
and #f. However, any Alter value can be treated as a boolean
for the purpose of a conditional test. This manual uses the
word true to refer to any Alter value that counts as true, and
 Alter Reference Manual 7

Overview of Alter
the word false to refer to any Alter value that counts as false.
In conditional tests, all values count as true except for #f,
which counts as false (see section Conditionals).

External
Representations

An important concept in Alter is that of the external
representation of an object as a sequence of characters. For
example, an external representation of the integer 28 is the
sequence of characters ‘28’, and an external representation of a
list consisting of the integers 8 and 13 is the sequence of
characters ‘(8 13)’.

The external representation of an object is not necessarily
unique. The integer 28 also has representations ‘#e28.000’ and
‘#x1c’, and the list in the previous paragraph also has the
representations ‘(08 13)’ and ‘(8 . (13 . ()))’.

Many objects have standard external representations, but
some, such as procedures and circular data structures, do not
have standard representations (although particular
implementations may define representations for them). An
external representation may be written in a program to obtain
the corresponding object (see section Quoting).

External representations can also be used for input and
output. The procedure read parses external representations,
and the procedure write generates them. Together, they
provide an elegant and powerful input/output facility.

Note that the sequence of characters ‘(+ 2 6)’ is not an external
representation of the integer 8, even though it is an expression
that evaluates to the integer 8; rather, it is an external
representation of a three-element list, the elements of which
are the symbol + and the integers 2 and 6. Alter’s syntax has
the property that any sequence of characters that is an
expression is also the external representation of some object.
This can lead to confusion, since it may not be obvious out of
context whether a given sequence of characters is intended to
denote data or program, but it is also a source of power, since
it facilitates writing programs such as interpreters and
compilers that treat programs as data or data as programs.

Disjointness of
Types

Every object satisfies at most one of the following predicates
(but see section True and False, for an exception):

bit-string? environment? port? symbol?

boolean? null? procedure? vector?

cell? number? promise? weak-pair?

char? pair? string?

condition?

Storage Model This section describes a model that can be used to understand
Alter’s use of storage.
8

Overview of Alter
Variables and objects such as pairs, vectors, and strings
implicitly denote locations or sequences of locations. A string,
for example, denotes as many locations as there are characters
in the string. (These locations need not correspond to a full
machine word.) A new value may be stored into one of these
locations using the string-set! procedure, but the string
continues to denote the same locations as before. An object
fetched from a location, by a variable reference or by a
procedure such as car, vector-ref, or string-ref, is equivalent in
the sense of eqv? to the object last stored in the location before
the fetch.

Every location is marked to show whether it is in use. No
variable or object ever refers to a location that is not in use.
Whenever this document speaks of storage being allocated for
a variable or object, what is meant is that an appropriate
number of locations are chosen from the set of locations that
are not in use, and the chosen locations are marked to indicate
that they are now in use before the variable or object is made
to denote them.

Lexical
Conventions

This section describes Alter’s lexical conventions.

Whitespace Whitespace characters are spaces, newlines, tabs, and page
breaks. Whitespace is used to improve the readability of your
programs and to separate tokens from each other, when
necessary. (A token is an indivisible lexical unit such as an
identifier or number.) Whitespace is otherwise insignificant.
Whitespace may occur between any two tokens, but not
within a token. Whitespace may also occur inside a string,
where it is significant.

Delimiters All whitespace characters are delimiters. In addition, the
following characters act as delimiters:

() ; " ’ ‘ |

Finally, these next characters act as delimiters, despite the fact
that Alter does not define any special meaning for them:

[] { }

For example, if the value of the variable name is "max":

(list"Hi"name(+ 1 2)) => ("Hi" "max" 3)

Identifiers An identifier is a sequence of one or more non-delimiter
characters. Identifiers are used in several ways in Alter
programs:
 Alter Reference Manual 9

Overview of Alter
Certain identifiers are reserved for use as syntactic
keywords; they should not be used as variables (for a list
of the initial syntactic keywords, see section Special Form
Syntax).

Any identifier that is not a syntactic keyword can be used
as a variable.

When an identifier appears as a literal or within a literal, it
denotes a symbol.

Alter accepts most of the identifiers that other programming
languages allow. Alter allows all of the identifiers that
standard Scheme does, plus many more.

Alter defines a potential identifier to be a sequence of non-
delimiter characters that does not begin with either of the
characters ‘#’ or ‘,’. Any such sequence of characters that is not
a syntactically valid number is considered to be a valid
identifier. Note that, although it is legal for ‘#’ and ‘,’ to appear
in an identifier (other than in the first character position), it is
poor programming practice.

Here are some examples of identifiers:

lambda q

list->vector soup

+ V17a

<=? a34kTMNs

the-word-recursion-has-many-meanings

Uppercase and
Lowercase

Alter doesn’t distinguish uppercase and lowercase forms of a
letter except within character and string constants; in other
words, Alter is case-insensitive. For example, ‘Foo’ is the same
identifier as ‘FOO’, and ‘#x1AB’ is the same number as
‘#X1ab’. But ‘#\a’ and ‘#\A’ are different characters.

Naming
Conventions

A predicate is a procedure that always returns a boolean value
(#t or #f). By convention, predicates usually have names that
end in ‘?’.

A mutation procedure is a procedure that alters a data
structure. By convention, mutation procedures usually have
names that end in ‘!’.

Comments The beginning of a comment is indicated with a semicolon (;).
Alter ignores everything on a line in which a semicolon
appears, from the semicolon until the end of the line. The
entire comment, including the newline character that
terminates it, is treated as whitespace.
10

Overview of Alter
Additional
Notations

The following list describes additional notations used in Alter.
See section Numbers, for a description of the notations used
for numbers.

+ - .

The plus sign, minus sign, and period are used in
numbers, and may also occur in an identifier. A delimited
period (not occurring within a number or identifier) is
used in the notation for pairs and to indicate a "rest"
parameter in a formal parameter list (see section Lambda
Expressions).

() Parentheses are used for grouping and to notate lists
(see section Lists).

" The double quote delimits strings.

\ The backslash is used in the syntax for character
constants and as an escape character within string
constants.

; The semicolon starts a comment.

’ The single quote indicates literal data; it suppresses
evaluation (see section Quoting).

‘ The backquote indicates almost-constant data (see section
Quoting).

, The comma is used in conjunction with the backquote
(see section Quoting).

,@ A comma followed by an at-sign is used in conjunction
with the backquote (see section Quoting).

The sharp (or pound) sign has different uses, depending
on the character that immediately follows it:

#t #f

These character sequences denote the boolean constants
(see section Booleans).

#\ This character sequence introduces a character constant
(see section Characters).

#(This character sequence introduces a vector constant . A
close parenthesis, ‘)’, terminates a vector constant.

#e #i #b #o #d #l #s #x

These character sequences are used in the notation for
numbers (see section Numbers).

< This character sequence is used to denote objects that do
not have a readable external representation . A close angle,
‘>’, terminates the object's notation. This notation is an
Alter extension.
 Alter Reference Manual 11

Overview of Alter
Expressions An Alter expression is a construct that returns a value. An
expression may be a literal, a variable reference, a special
form, or a procedure call.

Literal
Expressions

Literal constants may be written by using an external
representation of the data. In general, the external
representation must be quoted; but some external
representations can be used without quotation.

"abc" => "abc"

145932 => 145932

#t => #t

#\a => #\a

The external representation of numeric constants, string
constants, character constants, and boolean constants evaluate
to the constants themselves. Symbols, pairs, lists, and vectors
require quoting.

Variable
References

An expression consisting of an identifier is a variable
reference; the identifier is the name of the variable being
referenced. The value of the variable reference is the value
stored in the location to which the variable is bound. An error
is signalled if the referenced variable is unbound or
unassigned.

(define x 28)

x => 28

Special Form
Syntax

(keyword component ...)

A parenthesized expression that starts with a syntactic
keyword is a special form. Each special form has its own
syntax, which is described later in the manual. The following
list contains all of the syntactic keywords that are defined
when Alter is initialized:

=>
add-method
and
begin
case
cond
define
delay

do
else
find-operation
if
lambda
let
let*

letrec
or
quasiquote
quote
set!
unquote
unquote-splicing
12

Overview of Alter
Procedure Call
Syntax

(operator operand ...)

A procedure call is written by simply enclosing in parentheses
expressions for the procedure to be called (the operator) and
the arguments to be passed to it (the operands). The operator
and operand expressions are evaluated and the resulting
procedure is passed the resulting arguments. See section
Lambda Expressions, for a more complete description of this.

Another name for the procedure call expression is
combination. This word is more specific in that it always refers
to the expression; "procedure call" sometimes refers to the
process of calling a procedure.

Unlike some other dialects of Lisp, Alter always evaluates the
operator expression and the operand expressions with the
same evaluation rules, and the order of evaluation is
unspecified.

(+ 3 4) => 7

((if #f = *) 3 4) => 12

A number of procedures are available as the values of
variables in the initial environment; for example, the addition
and multiplication procedures in the above examples are the
values of the variables + and *. New procedures are created by
evaluating lambda expressions.

If the operator is a syntactic keyword, then the expression is
not treated as a procedure call: it is a special form. Thus you
should not use syntactic keywords as procedure names. If you
were to bind one of these keywords to a procedure, you would
have to use apply to call the procedure. Alter signals an error
when such a binding is attempted.
 Alter Reference Manual 13

Overview of Alter
14

Notation Conventions 3

(procedure-name argument-specification) ⇒ return-type

(operation-name argument-specification) ⇒ return-type

An argument specification is a series of the following forms:
argtype — type of the argument
[arg1 arg2 . . .] — optional arguments
[n1..n2] — numeric range (return value only)
argtype . . . — zero or more arguments of type argtype
 Alter Reference Manual 15

Notation Conventions
16

Arithmetic
Arithmetic 4
(* numbers...) ⇒ number-or-point

This procedure return the product of its arguments. This
procedure is exactness preserving and accepts either num-
bers or points.

(* 2 17.5) => 35.0

(* 4) => 4

(*) => 1

(* 2 ’(3 . 7)) => ’(6 . 14)

(* ’(2 . 3) ’(4 . 5))=> ’(8 . 15)

(+ numbers...) ⇒ number-or-point
This procedure returns the sum of its arguments and accepts
both numbers and points. This procedure is exactness pre-
serving.

(+ 3 4) => 7

(+ 3 4.0) => 7.0

(+ 3) => 3

(+) => 0

(+ ’(2 . 1) 3) => ’(5 . 4)

(+ ’(1 . 2) ’(3 . 4))=> ’(4 . 6)

(- number -...) ⇒ number
With two or more arguments, this procedure returns the dif-
ference of its arguments, associating to the left. It accepts
both numbers and points. With one argument, however, it
returns the additive inverse of its argument. This procedure
is exactness preserving.

(- 3 4) => -1

(- 3 4 5) => -6

(- 3) => -3

(- ’(2 . 3) 1) => ’(1 . 2)

(- ’(3 . 5) ’(1 . 2))=> ’(2 . 3)

(/ number rest...) ⇒ number
With two or more arguments, this procedure returns the
quotient of its arguments, associating to the left. It accepts
both numbers and points. With one argument, however, it
returns the multiplicative inverse of its argument.

This procedure is exactness preserving, except that division
may coerce its result to inexact in implementations that do
not support ratnums.
 Alter Reference Manual 17

Arithmetic
(/ 3 4 5) => 3/20

(/ 3) => 1/3

(/ 1.5 3) => 0.5

(/ ’(4 . 6) 2) => ’(2 . 3)

(/ ’(4 . 6) ’(2 . 3))=> ’(2 . 2)

(< num1 num2 rest...) ⇒ #t or #f
This procedures returns #t if its arguments are monotoni-
cally increasing. < is transitive.

The traditional implementations of < in Lisp-like languages
are not transitive.

While it is not an error to compare inexact numbers using <,
the results may be unreliable because a small inaccuracy
may affect the result. Both numbers and points may be sup-
plied as arguments.

(<= num1 num2 rest...) ⇒ #t or #f
This procedures returns #t if its arguments are monotoni-
cally nondecreasing. <= is transitive.

The traditional implementations of <= in Lisp-like lan-
guages are not transitive.

While it is not an error to compare inexact numbers using
<=, the results may be unreliable because a small inaccuracy
may affect the result. Both numbers and points may be sup-
plied as arguments.

(> num1 num2 num3...) ⇒ #t or #f
This procedures returns #t if its arguments are monotoni-
cally decreasing. > is transitive.

The traditional implementations of > in Lisp-like languages
are not transitive.

While it is not an error to compare inexact numbers using >,
the results may be unreliable because a small inaccuracy
may affect the result. Both numbers and points may be sup-
plied as arguments.

(>= num1 num2 rest...) ⇒ #t or #f
This procedure returns #t if its arguments are monotonically
nonincreasing. >= is transitive.

The traditional implementations of >= in Lisp-like lan-
guages are not transitive.

While it is not an error to compare inexact numbers using
>=, the results may be unreliable because a small inaccuracy
may affect the result. Both numbers and points may be sup-
plied as arguments.
18

Arithmetic
(abs number) ⇒ number
Abs returns the magnitude of its argument, which may be
either a point or a number. Abs is exactness preserving
when its argument is real.

(abs -7) => 7

(abs ’(-1 . 4)) => ’(1 . 4)

(ceiling number) ⇒ number
Ceiling returns the smallest integer not smaller than number.
The result is always exact. Ceiling also works with points.

(ceiling -4.3) => -4

(ceiling 3.5) => 4

(ceiling ’(2.5 . -3.7))=> ’(3 . -3)

(denominator fraction) ⇒ integer
This procedure returns the denominator of its argument; the
result is computed as if the argument was represented as a
fraction in lowest terms. The denominator is always posi-
tive. The denominator of 0 is defined to be 1.

(denominator (/ 6 4))=> 2

(denominator (exact->inexact (/ 6 4)))=> 2.0

(floor number) ⇒ number
Floor returns the largest integer not larger than number. The
result is always exact. Floor also works with points.

(floor -4.3) => -5

(floor 3.5) => 3

(floor ’(2.5 . -3.7))=> ’(2 . -4)

(gcd number...) ⇒ number
This procedure returns the greatest common divisor of its
arguments. The result is always non-negative. This proce-
dure is exactness preserving.

(gcd 32 -36) => 4

(gcd) => 0

(lcm number...) ⇒ number
This procedure returns the greatest least common multiple
of its arguments. The result is always non-negative. This
procedure is exactness preserving.

(lcm 32 -36) => 288

(lcm 32.0 -36) => 288.0 ; inexact

(lcm) => 1

(max number -...) ⇒ number-or-point
This procedure returns the maximum of its arguments. It
 Alter Reference Manual 19

Arithmetic
accepts both numbers and points.

(max 3 4) => 4 ; exact

(max 3 4.1) => 4.1 ; inexact

(max ’(1 . 2) ’(2 . 1))=> ’(2 . 2)

(max ’(3 . 4) 5) => ’(5 . 5)

(min number -...) ⇒ number-or-point
This procedure returns the minimum of its arguments. It
accepts both numbers and points.

(min 3 4) => 3 ; exact

(min 3.9 4) => 3.9 ; inexact

(min ’(3 . 4) 2) => ’(3 . 4)

(min ’(3 . 5) 4) => ’(3 . 4)

(min 4 ’(3 . 5)) => ’(3 . 5)

(min ’(1 . 4) ’(3 . 2))=> ’(1 . 2)

If any argument is inexact, then the result will also be inex-
act. If min is used to compare numbers of mixed exactness,
and the numerical value of the result cannot be represented
as an inexact number without loss of accuracy, then the pro-
cedure may report a violation of an implementation restric-
tion.

(modulo numerator divisor) ⇒ integer
This exactness-preserving procedure implement number-
theoretic (integer) division: For positive integers n1 and n2,
if n3 and n4 are integers such that n1=n2*n3+n4 and 0 <= n4
< n2, then

(modulo n1 n2)=> n4

provided all numbers involved in that computation are
exact.

Remainder and modulo differ on negative arguments---the
remainder is either zero or has the sign of the dividend,
while the modulo always has the sign of the divisor:

(modulo 13 4) => 1

(remainder 13 4)=> 1

(modulo -13 4)=> 3

(modulo 13 -4)=> -3

(modulo -13 -4)=> -1

(numerator fraction) ⇒ integer
This procedure returns the numerator of its argument; the
result is computed as if the argument was represented as a
fraction in lowest terms. The denominator is always posi-
tive.
20

Arithmetic
(numerator (/ 6 4))=> 3

(quotient numerator divisor) ⇒ integer
This exactness-preserving procedure implements number-
theoretic (integer) division: For positive integers n1 and n2,
if n3 and n4 are integers such that n1=n2*n3+n4 and 0 <= n4
< n2, then

(quotient n1 n2)=> n3

For integers n1 and n2 with n2 not equal to 0,

(= n1 (+ (* n2 (quotient n1 n2))

 (remainder n1 n2)))=> #t

provided all numbers involved in that computation are
exact.

The value returned by quotient always has the sign of the
product of its arguments. Both numbers and points may be
supplied as arguments.

(remainder numerator divisor) ⇒ integer
This exactness-preserving procedure implements number-
theoretic (integer) division: For positive integers n1 and n2,
if n3 and n4 are integers such that n1=n2*n3+n4 and 0 <= n4
< n2, then

(remainder n1 n2)=> n4

For integers n1 and n2 with n2 not equal to 0,

(= n1 (+ (* n2 (quotient n1 n2))

 (remainder n1 n2)))=> #t

provided all numbers involved in that computation are
exact.

Remainder and modulo differ on negative arguments---the
remainder is either zero or has the sign of the dividend,
while the modulo always has the sign of the divisor:

(remainder 13 4)=> 1

(modulo -13 4)=> 3

(remainder -13 4)=> -1

(remainder 13 -4)=> 1

(remainder -13 -4)=> -1

(remainder -13 -4.0)=> -1.0 ; inexact

(round number) ⇒ integer
Round returns the closest integer to number, rounding to
even when number is halfway between two integers. Round
rounds to even for consistency with the default rounding
mode specified by the IEEE floating point standard. The
result is always exact. Round also works with points.

(round -4.3) => -4
 Alter Reference Manual 21

Arithmetic
(round 3.5) => 4

(round 7/2) => 4

(round 7) => 7

(round ’(2.5 . 3.7))=> ’(3 . 4)

(sqrt number) ⇒ number
Returns the principal square root of number. The result will
have either positive real part, or zero real part and non-nega-
tive imaginary part.

(truncate number) ⇒ integer
Truncate returns the integer closest to number whose abso-
lute value is not larger than the absolute value of number.
The result is always exact. Truncate also works with points.

(truncate -4.3) => -4

(truncate 3.5) => 3

(truncate ’(2.5 . 3.7))=> ’(2 . 3)
22

Collections
Collections 5
(append list1 list2...) ⇒ list

(append string1 string2...) ⇒ string
Append is an operation defined on both strings and lists.
(This is an extension to Scheme R4, which defines append as
a procedure defined only on lists.)

Given list arguments, append returns a list consisting of the
elements of the first argument list followed by the elements
of the remaining argument lists.

Given string arguments, append returns a string consisting
of the elements of the first string followed by the elements of
the remaining string arguments.

(append ’(x) ’(y))=> (x y)

(append ’(a) ’(b c d))=> (a b c d)

(append ’(a (b)) ’((c)))=> (a (b) (c))

(append "a" "bcd")=> "abcd"

The resulting list or string is always newly allocated, except
that in the case of lists, the result shares structure with the
last list argument. With lists, the last argument may actually
be any object; an improper list results if the last argument is
not a proper list.

(append ’(a b) ’(c . d))=> (a b c . d)

(append ’() ’a) => a

(copy-without list object) ⇒ newlist
Returns a copy of the list with all top-level references to
object removed (using eq? test).

(copy-without ’(a b c) ’b)=> (a c)

(copy-without ’(a b c b) ’b)=> (a c)

(copy-without ’(b) ’b)=> ()

(copy-without ’(a b . c) ’b)=> (a . c)

(copy-without ’(b . c) ’b)=> (nil . c)

(copy-without ’(nil nil nil . c) ’nil)=> (nil . c)

(copy-without ’("a" "b" "c") "b")=> ("a" "b" "c")

(copy-without ’(a (b c)) ’b)=> (a (b c))

(flatten list) ⇒ list
Returns a list whose members are those elements that are
either atoms or members of the result of applying flatten to
an element that is a list.
 Alter Reference Manual 23

Collections
(length list) ⇒ integer

(length string) ⇒ integer

(length vector) ⇒ integer
Length is an operation in Alter, defined on strings, vectors
and lists. (This is an extension to Scheme R4, which specifies
’length’ as a procedure defined only on lists.) For strings,
length behaves exactly like string-length. For vectors, length
behaves exactly like vector-length.

(length "abcde")=> 5

(length #(1 2 3))=> 3

For lists, length returns the number of topmost cells in the
argument list, as the following examples illustrate.

(length ’(a b c))=> 3

(length ’(a (b) (c d e)))=> 3

(length ’()) => 0

(substitute string substring replacement) ⇒ string
Return a copy of the string such that all occurrences of sub-
string are replaced with the replacement string.

(substitute "abcdefg" "cde" "newsubstring")=>
"abnewsubstringfg"

(trim string) ⇒ string
Returns a copy of the string with all white space removed
from its end. White space characters include space, carriage
return, tab, line feed, null, and form feed.

(trim "abcde ")=> "abcde"

(width string context) ⇒ number
If given a rectangle, returns the width (in the x dimension) of
the supplied rectangle (see "rectangle?"). If given a string
and a graphics context, returns the width of the string in pix-
els based on the font currently installed on the graphics con-
text.

(width ’((3 . 8) . (5 . 12)))=> 2

(width #(#(3 8) #(5 12)))=> 2

(width "A" context)=> depends on current font

(word-wrap string [width [ignorecrs]]) ⇒ list-of-string
Word-wrap converts a string into a list of strings, each being
at most n characters long, where n is the first optional argu-
ment (75 by default). If a second boolean argument is given
and is true, then carriage returns are converted to spaces
before the string is word-wrapped. If the second optional
argument missing or false, a carriage return is represented as
a zero-length string in the result. Regardless of the optional
24

Collections
arguments, the trailing white space is ignored and not repre-
sented in the resulting list.

(word-wrap "Wrap these words to fit 10 colums." 10)

=> ("Wrap these" "words to" "fit 10"
"colums.")
 Alter Reference Manual 25

Collections
26

Colors
Colors 6
(blue color-type) ⇒ number

Returns a number between 0 and 1 representing the blue
component of the given color value (see also red, green,
make-color).

(brightness color-type) ⇒ number
Returns a number between 0 and 1 representing the bright-
ness level of the given color value (see also hue, saturation).
Color values are usually obtained via a GraphicsContext
instance used when printing graphs through user-supplied
print drivers. See make-color.

(cyan color-type) ⇒ number
Returns a number between 0 and 1 representing the cyan
component of the given color value (see also magenta, yel-
low). Color values are usually obtained via a GraphicsCon-
text instance used when printing graphs through user-
supplied print drivers. See make-color

(green color-type) ⇒ number
Returns a number between 0 and 1 representing the green
component of the given color value (see also red, blue).
Color values are usually obtained via a GraphicsContext
instance used when printing graphs through user-supplied
print drivers. See make-color

(hue color-type) ⇒ number
Returns a number between 0 and 1 representing the hue
component of the given color value (see also brightness, sat-
uration). Color values are usually obtained via a Graphics-
Context instance used when printing graphs through user-
supplied print drivers. See make-color.

(magenta color-type) ⇒ number
Returns a number between 0 and 1 representing the magenta
component of the given color value (see also cyan, yellow).
Color values are usually obtained via a GraphicsContext
instance used when printing graphs through user-supplied
print drivers. See make-color.

(make-cmy-color cyan magenta yellow) ⇒ color
Creates a color value object whose cyan value is the first
argument, magenta value is the second argument and yel-
low value is the third argument.

(make-color red green blue) ⇒ color
Creates a color value object whose red value is the first argu-
 Alter Reference Manual 27

Colors
ment, green value is the second argument and blue value is
the third argument.

(make-hsb-color hue saturation brightness) ⇒ color
Creates a color value object whose hue value is the first
argument, saturation value is the second argument and
brightness value is the third argument.

(make-rgb-color red green blue) ⇒ color
Creates a color value object whose red value is the first argu-
ment, green value is the second argument and blue value is
the third argument.

(red color-type) ⇒ number
Returns a number between 0 and 1 representing the red
component of the given color value (see also blue, green).
Color values are usually obtained via a GraphicsContext
instance used when printing graphs through user-supplied
print drivers. See make-color.

(saturation color-type) ⇒ number
Returns a number between 0 and 1 representing the satura-
tion component of the given color value (see also hue,
brightness). Color values are usually obtained via a Graph-
icsContext instance used when printing graphs through
user-supplied print drivers. See make-color.

(yellow color-type) ⇒ number
Returns a number between 0 and 1 representing the yellow
component of the given color value (see also cyan, magenta).
Color values are usually obtained via a GraphicsContext
instance used when printing graphs through user-supplied
print drivers. See make-color.
28

Control
Control 7
(apply proc list) ⇒ object

Calls proc with the elements of list as the actual arguments.

(apply + (list 3 4))=> 7

(define compose

 (lambda (f g)

 (lambda args

 (f (apply g args)))))

((compose sqrt *) 12 75)=> 30

(begin body...) ⇒ object or nil
The expression are evaluated sequentially from left to right,
and the value of the last expression is returned. This expres-
sion type is used to sequence side effects such as input and
output.

(define x 0)

(begin (set! x 5)

 (+ x 1)) => 6

(begin (display "4 plus 1 equals ")

 (display (+ 4 1)))=> unspecified

. . . and prints 4 plus 1 equals 5

(call-with-current-continuation proc) ⇒ value

(call/cc proc) ⇒ value
Proc must be a procedure of one argument. The procedure
call-with-current-continuation packages up the current con-
tinuation (see the rationale below) as an ‘‘escape procedure’’
and passes it as an argument to proc. The escape procedure
is a Scheme procedure of one argument that, if it is later
passed a value, will ignore whatever continuation is in effect
at that later time and will give the value instead to the con-
tinuation that was in effect when the escape procedure was
created.

In standard Scheme, the escape procedure that is passed to
proc has unlimited extent just like any other procedure in
Scheme. But this is not the case in Alter, where the escape
procedure’s extent is limited to the duration of the activation
of the call-with-current-continuation that defined it. The
escape procedure may be stored in variables or data struc-
tures.

The following examples show only the most common uses
of call-with-current-continuation. If all real programs were
 Alter Reference Manual 29

Control
as simple as these examples, there would be no need for a
procedure with the power of call-with-current-continuation.

(call-with-current-continuation

 (lambda (exit)

 (for-each (lambda (x)

 (if (negative? x)

 (exit x)))

 ’(54 0 37 -3 245 19))

 #\t)) => -3

(define list-length

 (lambda (obj)

 (call-with-current-continuation

 (lambda (return)

 (letrec ((r

 (lambda (obj)

 (cond ((null? obj) 0)

 ((pair? obj)

 (+ (r (cdr obj)) 1))

 (else (return #f))))))

 (r obj))))))

(list-length ’(1 2 3 4))=> 4

(list-length ’(a b . c))=> #f

A common use of call-with-current-continuation is for struc-
tured, non-local exits from loops or procedure bodies, but in
fact call-with-current-continuation is extremely useful for
implementing a wide variety of advanced control structures.

Whenever a Scheme expression is evaluated there is a con-
tinuation wanting the result of the expression. The continu-
ation represents an entire (default) future for the
computation. If the expression is evaluated at top level, for
example, then the continuation might take the result, print it
on the screen, prompt for the next input, evaluate it, and so
on forever. Most of the time the continuation includes
actions specified by user code, as in a continuation that will
take the result, multiply it by the value stored in a local vari-
able, add seven, and give the answer to the top level contin-
uation to be printed. Normally these ubiquitous
continuations are hidden behind the scenes and program-
mers don’t think much about them. On rare occasions, how-
ever, a programmer may need to deal with continuations
explicitly. Call-with-current-continuation allows Scheme
30

Control
programmers to do that by creating a procedure that acts
just like the current continuation.

Most programming languages incorporate one or more spe-
cial-purpose escape constructs with names like ’exit’,
’return’, or even ’goto’. In 1965, however, Peter Landin
invented a general purpose escape operator called the J-
operator. John Reynolds described a simpler but equally
powerful construct in 1972. The "catch" special form
described by Sussman and Steele in the 1975 report on
Scheme is exactly the same as Reynolds’s construct, though
its name came from a less general construct in MacLisp.
Several Scheme implementors noticed that the full power of
the "catch" construct could be provided by a procedure
instead of by a special syntactic construct, and the name call-
with-current-continuation was coined in 1982. Call-with-
current-continuation and call/cc refer to the exact same pro-
cedure.

(cond clause...) ⇒ object or nil
Each clause should be of the form

(test expression . . .)

where test is any expression. The last clause may be an ‘‘else
clause,’’ which has the form

(else expression1 expression2 . . .)

A cond expression is evaluated by evaluating the test
expressions of successive clauses in order until one of them
evaluates to a true value. When a test evaluates to a true
value, then the remaining expressions in its clause are evalu-
ated in order, and the result of the last expression in the
clause is returned as the result of the entire cond expression.
If the selected clause contains only the test and no expres-
sions, then the value of the test is returned as the result. If all
tests evaluate to false values, and there is no else clause, then
the result of the conditional expression is unspecified; if
there is an else clause, then its expressions are evaluated,
and the value of the last one is returned.

(cond ((> 3 2) ’greater)

 ((< 3 2) ’less))=> greater

(cond ((> 3 3) ’greater)

 ((< 3 3) ’less)

 (else ’equal))=> equal

(do bindings terminator body...) ⇒ object or nil
Detailed syntax is as follows:

(do ((variable1 init1 step1)

 . . .)
 Alter Reference Manual 31

Control
 (test expression . . .)

 command . . .)

Do is an iteration construct. It specifies a set of variables to
be bound, how they are to be initialized at the start, and how
they are to be updated on each iteration. When a termina-
tion condition is met, the loop exits with a specified result
value.

Do expressions are evaluated as follows:

The init expressions are evaluated (in some unspecified
order), the variables are bound to fresh locations, the results
of the init expressions are stored in the bindings of the vari-
ables, and then the iteration phase begins.

Each iteration begins by evaluating test; if the result is false,
then the command expressions are evaluated in order for
effect, the step expressions are evaluated in some unspeci-
fied order, the variables are bound to fresh locations, the
results of the steps are stored in the bindings of the variables,
and the next iteration begins.

If test evaluates to a true value, then the expressions are
evaluated from left to right and the value of the last expres-
sion is returned as the value of the do expression. If no
expressions are present, then the value of the do expression
is unspecified.

The region of the binding of a variable consists of the entire
do expression except for the inits. It is an error for a variable
to appear more than once in the list of do variables.

A step may be omitted, in which case the effect is the same
as if (variable init variable) had been written instead of (vari-
able init).

(do ((vec (make-vector 5))

 (i 0 (+ i 1)))

 ((= i 5) vec)

 (vector-set! vec i i))=> #(0 1 2 3 4)

(let ((x ’(1 3 5 7 9)))

 (do ((x x (cdr x))

 (sum 0 (+ sum (car x))))

 ((null? x) sum)))=> 25

(eval object) ⇒ object
Evaluates the expression (a second time) and returns the
result of that evaluation.

(eval 5) => 5

(eval ’eq?) => a procedure
32

Control
(eval (list ’+ 2 7))=> 9

(for-each proc list1 list2...) ⇒ nil
The arguments to for-each are like the arguments to map,
but for-each calls proc for its side effects rather than for its
values. Unlike map, for-each is guaranteed to call proc on
the elements of the lists in order from the first element to the
last, and the value returned by for-each is unspecified.

(let ((v (make-vector 5)))

 (for-each (lambda (i)

 (vector-set! v i (* i i)))

 ’(0 1 2 3 4))

 v) => #(0 1 4 9 16)

(for-each-with-separator proc separator-proc list1 list2...) ⇒ nil
This procedure performs in a similar manner to the for-each
procedure and its arguments are similar to the arguments to
for-each with the exception of the new separator-proc argu-
ment. The separator-proc is executed after each element in
the list is processed except is does not get executed after the
last element is processed. The separator-proc takes a single
argument which is the most recently processed element.

(for-each-with-separator

 (lambda (i) (display i))

 (lambda (i) (display ", "))

 ’(1 2 3 4 5))

 => Displays "1, 2, 3, 4, 5" in the transcript window.

(if test consequence [alternate]) ⇒ object or nil
Test, consequent, and alternate may be arbitrary expressions.

An if expression is evaluated as follows: first, test is evalu-
ated. If it yields a true value (any value which is not #f), then
consequent is evaluated and its value is returned. Otherwise
alternate is evaluated and its value is returned. If test yields
a false value and no alternate is specified, then the result of
the expression is unspecified.

(if (> 3 2) ’yes ’no)=> yes

(if (> 2 3) ’yes ’no)=> no

(if (> 3 2)

 (- 3 2)

 (+ 3 2)) => 1

(in-new-environment-do body...) ⇒ nil
Creates a new, parent-less environment in which to evaluate
the supplied body expressions.
 Alter Reference Manual 33

Control
(map proc list1 list2...) ⇒ list
Map applies proc element-wise to the elements of the lists
and returns a list of the results, in order from left to right.
The dynamic order in which proc is applied to the elements
of the lists is unspecified.

(map cadr ’((a b) (d e) (g h)))=> (b e h)

(map (lambda (n) (expt n n))

 ’(1 2 3 4 5)) => (1 4 27 256 3125)

(map + ’(1 2 3) ’(4 5 6))=> (5 7 9)

(let ((count 0))

 (map

 (lambda (ignored)

 (set! count (+ count 1))

 count)

 ’(a b c))) => unspecified

(show-progress-begin label body...) ⇒ object or nil
Show-progress-begin is just like begin, except that a progress
meter is displayed during its execution. The meter displays
the message supplied as a string as the first argument and a
partially-filled circle. The circle shows the percentage of
expressions that have been evaluated. Note that this, at best,
only approximates the actual proportions involved, since
show-progress-begin has no clues about how long it will
take to evaluate each expression..

(show-progress-for-each message proc list1 list2...) ⇒ nil
Show-progress-for-each is just like for-each, except that a
progress meter is displayed during its execution. The meter
displays the message supplied as a string as the first argu-
ment and a partially-filled circle. The circle shows the per-
centage of top-level list elements that have been processed
by the given procedure. Note that this, at best, only approx-
imates the actual proportions involved, since show-
progress-for-each has no clues about how long it will take to
process each set of elements.

(^super type operation object...) ⇒ object
This is just like (operation object . args) except that the
method search begins at type rather than the first argument’s
type. It is required that type be an immediate supertype of
the method’s receiver type, although the current implemen-
tation does not yet enforce this restriction. ^super is analo-
gous to the Smalltalk-80 mechanism of the same name,
except that due to Alter’s multiple inheritance it is necessary
for the programmer to explicitly state which supertype is to
be dispatched to.
34

Converting
Converting 8
(as-backup filename-type) ⇒ string

Returns a string that is derived from the given filename and
can be used as a backup for that filename. The behavior of
this operation is host-specific.

(char->integer char) ⇒ integer
Given a character, char->integer returns an exact integer rep-
resentation of the character. This procedure implements an
injective order isomorphism between the set of characters
under the char<=? ordering and some subset of the integers
under the <= ordering. That is, if

(char<=? a b) => #t, and

(<= x y) => #t

and x and y are in the domain of integer->char, then

(<= (char->integer a)

 (char->integer b))=> #t

(char-downcase char) ⇒ character
This procedure return a character c such that (char-ci=? char
c) is true. In addition, if char is alphabetic, then the result of
char-downcase is lower case. See also char-upcase.

(char-downcase #\A)=> #\a

(char-upcase char) ⇒ character
This procedure returns a character c such that (char-ci=?
char c) is true. In addition, if char is alphabetic, then the
result of char-upcase is upper case. See also char-downcase.

(char-upcase #\a)=> #\A

(exact->inexact number) ⇒ float
Exact->inexact returns an inexact representation of arg. The
value returned is the inexact number that is numerically
closest to the argument.

For exact arguments which have no reasonably close inexact
equivalent, Alter may signal an error.

This procedure implements the natural one-to-one corre-
spondence between exact and inexact integers throughout
an implementation-dependent range.

(filename->string filename-type) ⇒ string
Converts the argument filename into an Alter string. See
also string->filename.
 Alter Reference Manual 35

Converting
(inexact->exact number) ⇒ integer
Inexact->exact returns an exact representation of arg. The
value returned is the exact number that is numerically clos-
est to the argument.

For inexact arguments which have no reasonably close exact
equivalent, Alter may signal an error.

This procedure implements the natural one-to-one corre-
spondence between exact and inexact integers throughout
an implementation-dependent range.

(integer->char int) ⇒ character
Given an exact integer that is the image of a character under
char->integer, integer->char returns that character. This pro-
cedure implements an injective order isomorphism between
the set of characters under the char<=? ordering and some
subset of the integers under the <= ordering. That is, if

(char<=? a b) => #t, and

(<= x y) => #t

and x and y are in the domain of integer->char, then

(char<=? (integer->char x)

 (integer->char y))=> #t

(list->string listofchars) ⇒ string
List->string returns a newly allocated string formed from
the characters in the list of args. String->list and list->string
are inverses so far as equal? is concerned.

(list->string (list #\a #\b #\c))=> "abc"

(list->vector list) ⇒ vector
List->vector returns a newly created vector initialized to the
elements of the list arg. See also vector->list.

(list->vector ’(dididit dah))=> #(dididit dah)

(number->string number [radix]) ⇒ string
Radix must be an exact integer, either 2, 8, 10, or 16. If omit-
ted, radix defaults to 10.

The procedure number->string takes a number and a radix
and returns as a string an external representation of the
given number in the given radix such that

(let ((number n)

 (radix r))

 (eqv? n

 (string->number

 (number->string n r) r)))

is true. It is an error if no possible result makes this expres-
36

Converting
sion true.

If n is inexact, the radix is 10, and the above expression can
be satisfied by a result that contains a decimal point, then the
result contains a decimal point and is expressed using the
minimum number of digits (exclusive of exponent and trail-
ing zeroes) needed to make the above expression true; other-
wise the format of the result is unspecified.

The result returned by number->string never contains an
explicit radix prefix.

The error case can occur only when n is not a complex num-
ber or is a complex number with a non-rational real or imag-
inary part.

(object->string object) ⇒ string
Returns a string representation of sexpr. The resulting string
is the same as what "display" would output.

(object->string 5)=> "5"

(object->string ’(a b c))=> "(a b c)"

(string->filename string [resolve]) ⇒ filename
Converts the argument string into a filename object. This
procedure does not require the corresponding file to exist,
but an error may result if the syntax of the name is not
appropriate for the host operating system. Alternatively,
certain host-specific "adjustments" may be made when con-
verting the string to a filename that make it more palatable
to the host. If the second argument is supplied, it must be
the symbol ’resolve and the first argument should corre-
spond to a relative pathname; Alter will attempt to find the
specified filename along the DOME/Alter search path. If it
is found, an absolute filename will be returned, otherwise it
will return a relative filename. See also construct, filename-
>string.

(string->list string) ⇒ list
String->list returns a newly allocated list of the characters
that make up the String->given string. String->list and list-
>string are inverses so far as String->equal? is concerned.

(string->number string [radix]) ⇒ number
Returns a number of the maximally precise representation
expressed by the given string. Radix must be an exact inte-
ger, either 2, 8, 10, or 16. If supplied, radix is a default radix
that may be overridden by an explicit radix prefix in string
(e.g. "#o177"). If radix is not supplied, then the default radix
is 10. If string is not a syntactically valid notation for a num-
ber, then string->number returns #f.

(string->number "100")=> 100

(string->number "100" 16)=> 256
 Alter Reference Manual 37

Converting
(string->number "1e2")=> 100.0

Although string->number is an essential procedure, an
implementation may restrict its domain in the following
ways. String->number is permitted to return #f whenever
string contains an explicit radix prefix. If all numbers sup-
ported by an implementation are real, then string->number
is permitted to return #f whenever string uses the polar or
rectangular notations for complex numbers. If all numbers
are integers, then string->number may return #f whenever
the fractional notation is used. If all numbers are exact, then
string->number may return #f whenever an exponent
marker or explicit exactness prefix is used, or if a # appears
in place of a digit. If all inexact numbers are integers, then
string->number may return #f whenever a decimal point is
used.

(string->symbol string) ⇒ symbol
Returns the symbol whose name is arg. This procedure can
create symbols with names containing special characters or
letters in the non-standard case, but it is usually a bad idea
to create such symbols because in some implementations of
Scheme they cannot be read as themselves. See symbol-
>string.

The following examples assume that the implementation’s
standard case is lower case:

(eq? ’mISSISSIppi ’mississippi)=> #t

(string->symbol "mISSISSIppi")=> the symbol with
name "mISSISSIppi"

(eq? ’bitBlt (string->symbol "bitBlt"))=> #f

(eq? ’JollyWog

 (string->symbol

 (symbol->string ’JollyWog)))=> #t

(string=? "K. Harper, M.D."

 (symbol->string

 (string->symbol "K. Harper, M.D.")))=> #t

(string-capitalize string) ⇒ string
This procedure returns a string of equal length to the argu-
ment string such that the first character of the string is now
uppercase (char-ci=? is true).

(string-capitalize "abCDe")=> "AbCDe"

(string-downcase string) ⇒ string
This procedure returns a string of equal length to the argu-
ment string such that char-ci=? is true for each correspond-
ing character of the argument and the result. In addition, if a
given character in the argument string is alphabetic, the cor-
38

Converting
responding character in the result string is lower case. See
also string-upcase.

(string-downcase "abCDe")=> "abcde"

(string-upcase string) ⇒ string
This procedure returns a string of equal length to the argu-
ment string such that char-ci=? is true for each correspond-
ing character of the argument and the result. In addition, if a
given character in the argument string is alphabetic, the cor-
responding character in the result string is upper case. See
also string-downcase.

(string-upcase "abCDe")=> "ABCDE"

(symbol->string symbol) ⇒ string
Returns the name of symbol as a string. If the symbol was
part of an object returned as the value of a literal expression
or by a call to the read procedure, and its name contains
alphabetic characters, then the string returned will contain
characters in the implementation’s preferred standard case---
some implementations will prefer upper case, others lower
case. If the symbol was returned by string->symbol, the case
of characters in the string returned will be the same as the
case in the string that was passed to string->symbol. It is an
error to apply mutation procedures like string-set! to strings
returned by this procedure.

The following examples assume that the implementation’s
standard case is lower case:

(symbol->string ’flying-fish)=> "flying-fish"

(symbol->string ’Martin)=> "martin"

(symbol->string

 (string->symbol "Malvina"))=> "Malvina"

(type->symbol type) ⇒ symbol
Converts a type (e.g., grapething, color-type, procedure-
type) into a symbol. This is useful for dealing with DOME
objects.

(vector->list vector) ⇒ list
Vector->list returns a newly allocated list of the objects con-
tained in the elements of arg. See also list->vector.

(vector->list ’#(dah dah didah))=> (dah dah didah)
 Alter Reference Manual 39

Converting
40

Defining
Defining 9
(add-method interface body...) ⇒ procedure

Adds the specified procedure as a handler for the method
named in the interface argument. Alter’s implementation of
classes, operations and methods follows the OakLisp style,
as presented in the OOPSLA ’86 Proceedings.

The detailed form of the arguments to add-method are as
follows:

(add-method (operation (receiver-class) . argument-
list) . body)

Add-method is a special form because the body and argu-
ment-list are not evaluated. However, the operation and
receiver-class ARE evaluated. They are typically symbols
bound to the objects of interest. This means, of course, that
the operation must previously exist before add-method can
be used to add to it (see find-operation, make). A special
case is when "operation" is an unbound symbol, in that case
Alter automatically applies find-operation to that symbol in
the current lexical environment.

The argument-list is used to effectively build a procedure
that also includes the body. This procedure is returned as
the result of add-method.

When the operation is called with an instance of the
receiver-class (or a subclass) as the first argument, Alter will
forward the call to the procedure.

(bindings) ⇒ list
Returns a list of pairs that represent the user-defined bind-
ings within the active lexical environment. Each pair has a
car that is a symbol, and a cdr that is the value bound to that
symbol. Predefined procedures and operations are NOT
included in this list (see ’predefined-bindings’).

(copy object) ⇒ object
Returns a copy of the argument.

Copying strings returns a string of equal length to the argu-
ment string such that char=? is true for each corresponding
character of the argument and the result (equivalent to
string-copy).

Copying lists returns a list of equal length to the argument
list such that eq? returns true for each corresponding ele-
ment of the argument and the result.

Copying vectors returns a vector of equal length to the argu-
ment vector such that eq? returns true for each correspond-
 Alter Reference Manual 41

Defining
ing element of the argument and the result.

Copying dictionaries returns a dictionary of equal size to the
argument dictionary such that eq? returns true for each cor-
responding key of the argument and the result and eq?
returns true for each corresponding value of the argument
and the result.

Copying grapethings is dependent on how the particular
subclass implements copying itself.

Copying instances of user-defined-types returns an object
whose instance variables are set to a copy of the object that
the argument’s instance variable was set to.

Calling copy on booleans, numbers, characters returns the
argument itself.

(define varspec valueorbody body...) ⇒ object or procedure
Definitions are valid in some, but not all, contexts where
expressions are allowed. They are valid only at the top level
of a program and, in some implementations, at the begin-
ning of a body.

A definition should have one of the following forms:

(define variable expression)

(define (variable formals) body)

Formals should be either a sequence of zero or more vari-
ables, or a sequence of one or more variables followed by a
space-delimited period and another variable (as in a lambda
expression). This form is equivalent to

(define variable

 (lambda (formals) body))

(define (variable . formal) body)

Formal should be a single variable. This form is equivalent
to

(define variable

 (lambda formal body))

At the top level of a program, a definition

(define variable expression)

has essentially the same effect as the assignment expression

(set! variable expression)

if variable is bound. If variable is not bound, however, then
the definition will bind variable to a new location before per-
forming the assignment, whereas it would be an error to per-
form a set! on an unbound unbound variable.

(define add3
42

Defining
 (lambda (x) (+ x 3)))

(add3 3) => 6

(define (add2 x) (+ x 2))

(add3 3) => 5

(define (sum . args) (apply + args))

(sum 1 2 3 4 5) => 15

(define first car)

(first ’(1 2)) => 1

(find-operation name) ⇒ operation
Note: add-method has changed so that calling find-opera-
tion is usually no longer necessary.

Find-operation is a special form. The argument is a symbol
that is intended to be bound to an operation. Alter first
checks the current lexical environment for a binding. If one
exists and the value is an operation, Alter returns that value.
If one exists and it is not an operation, an error occurs. If a
user-defined binding does not exist, but a predefined bind-
ing does, Alter binds the symbol in the current lexical envi-
ronment to a surrogate operation that allows the user to add
methods without disrupting the space of predefined sym-
bols; a surrogate handles calls just like a normal operation,
except that it can forward calls to the predefined operation if
it is given an object that falls outside of its interface range.

If neither a user-defined or predefined binding exists, Alter
creates a new operation and binds it to the given symbol.
The return value of find-operation is the new or existing
operation (or surrogate). See also add-method, make.

(find-operation foo)=> a new, normal operation

(find-operation foo)=> the same normal operation

(find-operation length)=> a new, surrogate operation

(find-operation +)=> error; a procedure

(lambda formals body...) ⇒ procedure
Formals should be a formal arguments list as described
below, and body should be a sequence of one or more
expressions.

A lambda expression evaluates to a procedure. The environ-
ment in effect when the lambda expression was evaluated is
remembered as part of the procedure. When the procedure
is later called with some actual arguments, the environment
in which the lambda expression was evaluated will be
extended by binding the variables in the formal argument
list to fresh locations, the corresponding actual argument
values will be stored in those locations, and the expressions
in the body of the lambda expression will be evaluated
 Alter Reference Manual 43

Defining
sequentially in the extended environment. The result of the
last expression in the body will be returned as the result of
the procedure call.

(lambda (x) (+ x x))=> a procedure

((lambda (x) (+ x x)) 4)=> 8

(define reverse-subtract

 (lambda (x y) (- y x)))

(reverse-subtract 7 10)=> 3

(define add4

 (let ((x 4))

 (lambda (y) (+ x y))))

(add4 6) => 10

Formals should have one of the following forms:

(variable . . .)

The procedure takes a fixed number of arguments; when the
procedure is called, the arguments will be stored in the bind-
ings of the corresponding variables.

variable

The procedure takes any number of arguments; when the
procedure is called, the sequence of actual arguments is con-
verted into a newly allocated list, and the list is stored in the
binding of the variable.

variable1 . . . variablen-1 . variablen

If a space-delimited period precedes the last variable, then
the value stored in the binding of the last variable will be a
newly allocated list of the actual arguments left over after all
the other actual arguments have been matched up against
the other formal arguments.

It is an error for a variable to appear more than once in for-
mals.

((lambda x x) 3 4 5 6)=> (3 4 5 6)

((lambda (x y . z) z)

 3 4 5 6) => (5 6)

Each procedure created as the result of evaluating a lambda
expression is tagged with a storage location, in order to
make eqv? and eq? work on procedures.

(let bindings body...) ⇒ object
Bindings should have the form

((variablei initi) . . .)
44

Defining
where each initi is an expression, and body should be a
sequence of one or more expressions. It is an error for a vari-
able to appear more than once in the list of variables being
bound.

The inits are evaluated in the current environment (in some
unspecified order), the variables are bound to fresh locations
holding the results, the body is evaluated in the extended
environment, and the value of the last expression of body is
returned. Each binding of a variable has body as its region.

(let ((x 2) (y 3))

 (* x y)) => 6

(let ((x 2) (y 3))

 (let ((x 7)

 (z (+ x y)))

 (* z x))) => 35

(let* bindings body...) ⇒ object
Bindings should have the form

((variablei initi) . . .)

and body should be a sequence of one or more expressions.

Let* is similar to let, but the bindings are performed sequen-
tially from left to right, and the region of a binding indicated
by (variable init) is that part of the let* expression to the right
of the binding. Thus the second binding is done in an envi-
ronment in which the first binding is visible, and so on.

(let ((x 2) (y 3))

 (let* ((x 7)

 (z (+ x y)))

 (* z x))) => 70

(letrec bindings body...) ⇒ object
Bindings should have the form

((variablei initi) . . .)

and body should be a sequence of one or more expressions.
It is an error for a variable to appear more than once in the
list of variables being bound.

The variables are bound to fresh locations holding unde-
fined values, the inits are evaluated in the resulting environ-
ment (in some unspecified order), each variable is assigned
to the result of the corresponding init, the body is evaluated
in the resulting environment, and the value of the last
expression in body is returned. Each binding of a variable
has the entire letrec expression as its region, making it possi-
ble to define mutually recursive procedures.
 Alter Reference Manual 45

Defining
(letrec ((even?

(lambda (n)

 (if (zero? n)

#t

(odd? (- n 1)))))

 (odd?

(lambda (n)

 (if (zero? n)

 #f

 (even? (- n 1))))))

 (even? 88))

=> #t

One restriction on letrec is very important: it must be possi-
ble to evaluate each init without assigning or referring to the
value of any variable. If this restriction is violated, then it is
an error. The restriction is necessary because Scheme passes
arguments by value rather than by name. In the most com-
mon uses of letrec, all the inits are lambda expressions and
the restriction is satisfied automatically.

(make type) ⇒ object

(make type ivars supertypes) ⇒ type
Creates an instance of the specified type. ’Make’ can be used
to create instances of type Operation, but can also be used to
create instances of GrapEThing and its subclasses (e.g.,
DoMENode, NetArc). See also add-method, find-opera-
tion. Alter’s implementation of classes, operations and
methods follows the OakLisp style, as presented in the OOP-
SLA ’86 Proceedings.

(make domenode)=> #<value: <DoMENode>>

(make operation)=> #<method13369>

(make string-type)=> ""

(methods operation) ⇒ list
Returns an alist (see assoc) containing the types and proce-
dures currently defining the operation. Each alist compo-
nent is of the form (class . procedure).

(predefined-bindings) ⇒ list
Returns a list of pairs that represent the predefined bindings.
Each pair has a car that is a symbol, and a cdr that is the
value bound to that symbol. User-defined procedures and
operations are NOT included in this list (see ’bindings’).

(quasiquote expression) ⇒ object
"Backquote" or "quasiquote" expressions are useful for con-
46

Defining
structing a list or vector structure when most but not all of
the desired structure is known in advance. If no commas
appear within the <template>, the result of evaluating
‘<template> is equivalent to the result of evaluating ’<tem-
plate>. If a comma appears within the <template>, however,
the expression following the comma is evaluated
("unquoted") and its result is inserted into the structure
instead of the comma and the expression. If a comma
appears followed immediately by an at-sign (@), then the
following expression must evaluate to a list; the opening and
closing parentheses of the list are then "stripped away" and
the elements of the elements of the list are inserted in place
of comma at-sign expression sequence.

 ‘(list ,(+ 1 2) 4)=> (list 3 4)

 (let ((name ’a)) ‘(list ,name ’,name))=> (list a (quote a))

 ‘(a ,(+ 1 2) ,@(map abs ’(4 -5 6)) b)=> (a 3 4 5 6 b)

 ‘((foo ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(cons)))=> ((foo 7) . cons)

 ‘#(10 5 ,(sqrt 4) ,@(map sqrt ’(16 9)) 8)=> #(10 5 2 4 3 8)

Quasiquote forms may be nested. Substitutions are made
only for unquoted components appearing at the same nest-
ing level as the outermost backquote. The nesting level
increases by one inside each successive quasiquotation, and
decreases by one inside each unquotation.

 ‘(a ‘(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)

=> (a ‘(b ,(+ 1 2) ,(foo 4 d) e) f)

 (let ((name1 ’x)

 (name2 ’y))

 ‘(a ‘(b ,,name1 ,’,name2 d) e))=> (a ‘(b ,x ,’y d) e)

The notations ‘<template> and (quasiquote <template>) are
identical in all respects. ,<expression> is identical to
(unquote <expression>), and ,@<expression> is identical to
(unquote-splicing <expression>). The external syntax gener-
ated by write for two-element list whose car is one of these
symbols may vary between implementations.

 (quasiquote (list (unquote (+ 1 2)) 4))=> (list 3 4)

 ‘(quasiquote (list (unquote (+ 1 2)) 4))=> ‘(list ,(+ 1 2) 4)

(quote object) ⇒ object
Returns the argument. The argument may be any external
representation of an Alter object. This notation is used to
include literal constants in Alter code.

(quote a) => a

(quote #(a b c))=> #(a b c)

(quote (+ 1 2)) => (+ 1 2)
 Alter Reference Manual 47

Defining
(quote object) may be abbreviated as ’object. The two nota-
tions are equivalent in all respects.

’a => a

’#(a b c) => #(a b c)

’() => ()

’(+ 1 2) => (+ 1 2)

’(quote a) => (quote a)

’’a => (quote a)

Numerical constants, string constants, character constants,
and boolean constants evaluate "to themselves"; they need
not be quoted.

’"abc" => "abc"

"abc" => "abc"

’145932 => 145932

145932 => 145932

’#t => #t

#t => #t

It is an error to alter a constant (i.e the value of a literal
expression) using a mutation procedure like set-car! or
string-set!.

(set! variable expression) ⇒ object
Expression is evaluated, and the resulting value is stored in
the location to which variable is bound. Variable must be
bound either in some region enclosing the set! expression or
at top level. The result of the set! expression is unspecified.

(define x 2)

(+ x 1) => 3

(set! x 4) => unspecified

(+ x 1) => 5

(unquote expression) ⇒ object
See quasiquote.

(unquote-splicing expression) ⇒ object
See quasiquote.
48

Dictionaries
Dictionaries 10
(dictionary->list dictionary) ⇒ list

Creates a list that is a projection of the given dictionary. The
list is of the form ((k1 . v1) (k2 . v2) ...) where each k is a key
from the dictionary and each v is the corresponding value at
that key. Note that the result list is in a convenient form for
using with assoc, assv and assq.

(let ((d (make-dictionary)))

 (dictionary-set! d "A" 1)

 (dictionary-set! d "B" 2)

 (dictionary->list d))=> (("A" . 1) ("B" . 2))

(dictionary-keys dictionary) ⇒ list
Returns a list of the keys defined in the given dictionary.
The keys appear in the list in no particular order, and that
order may change with the addition or removal of a single
key. In fact, there is no guarantee that successive calls to dic-
tionary-keys on the same dictionary will produce the same
ordering. See also make-dictionary, dictionary-ref, dictio-
nary-set!, dictionary-unset!, dictionary-values.

(let ((dict (make-dictionary ’eq?)))

 (dictionary-set! dict ’alpha "one")

 (dictionary-set! dict ’beta "two")

 (dictionary-keys dict))=> ’(alpha beta)

(dictionary-ref dictionary key [default]) ⇒ object
If the given dictionary has a value associated with the given
key, that value is returned. If the key has no associated
value, either the default (if supplied) or nil is returned. See
also make-dictionary, dictionary-set!, dictionary-keys, dic-
tionary-unset!.

(define foo (make-dictionary ’eq?))

(dictionary-set! foo 10 "ten")

(dictionary-ref foo 10)=> "ten"

(dictionary-ref foo ’x)=> nil

(dictionary-ref foo ’x ’nothing)=> ’nothing

(dictionary-set! dictionary key obj) ⇒ #t or #f
Inserts the given object into the dictionary associated with
the given key. If the key previously had an associated value
in the dictionary, that previous association is broken and the
new association is established. Dictionary-set! returns #f if
there was no previous association for that key, and returns #t
 Alter Reference Manual 49

Dictionaries
if there was a previous association for that key. See also
make-dictionary, dictionary-ref, dictionary-keys, dictionary-
unset!.

(define table (make-dictionary ’eq?))

(dictionary-set! table ’small ’(helvetica 9 0))=> #f

(dictionary-set! table ’small ’(times 10 0.5))=> #t

(dictionary-unset! dictionary key) ⇒ #t or #f
Removes any association that may have previously existed
for the given key in the given dictionary. If an association
existed for the key at the time of call to the dictionary-unset!,
the procedure returns #t, otherwise it returns #f. The com-
parison used to match the key is either eq? or equal?,
depending on how the dictionary was created (see make-
dictionary). See also dictionary-ref, dictionary-set!, dictio-
nary-keys.

(define sys-table (make-dictionary ’eq?))

(dictionary-unset! sys-table ’foo)=> #f

(dictionary-set! sys-table ’foo 97)

(dictionary-unset! sys-table ’foo)=> #t

(dictionary-values dictionary) ⇒ list
Returns a list of the values defined in the given dictionary.
The values appear in the list in no particular order, and that
order may change with the addition or removal of a single
key-value pair. In fact, there is no guarantee that successive
calls to dictionary-values on the same dictionary will pro-
duce the same ordering. See also make-dictionary, dictio-
nary-ref, dictionary-set!, dictionary-unset!, dictionary-keys.

(let ((dict (make-dictionary ’eq?)))

 (dictionary-set! dict ’alpha "one")

 (dictionary-set! dict ’beta "two")

 (dictionary-values dict))=> ’("one" "two")

(make-dictionary [comparison [size]]) ⇒ dictionary
Make-dictionary has two optional arguments. The first, cur-
rently required to be either ’eq? or ’equal, specifies the kind
of comparison used on keys to search for and retrieve values
from the dictionary. (’Equal?does not currently work for
keys that are lists.) ’Eq? is the default. If the second argu-
ment is also given, it must be a positive integer and indicates
the allocation size of the dictionary to create. The allocation
size is the number of key->value associations that may be
made before the dictionary must be automatically (and
invisibly) enlarged. Since dictionary enlargement can
involve a lot of copying and may significantly "overshoot" in
size, you may gain some performance for large dictionaries
50

Dictionaries
if you give a reasonably close but conservative estimate in
the second argument to make-dictionary.

(define baz (make-dictionary))=> small dictionary
using ’eq? for key comparison

(dictionary-set! baz "black" ’(0 0 0))

(define nob (make-dictionary ’equal?))=> small dic-
tionary using ’equal? for key comparison

(dictionary-set! nob "black" ’(0 0 0))

(dictionary-ref bar "black")=> nil

(dictionary-ref nob "black")=> ’(0 0 0)
 Alter Reference Manual 51

Dictionaries
52

Document Generation
Document Generation 11
(bottom-margin document-context) ⇒ inches

Returns the size of the bottom margin in inches for a page
generated by the document-context.

(cr document-context [integer]) ⇒ nil
Adds a carriage return (newline) to the document-context’s
stream. If the optional positive integer argument is passed
then a number of carriage returns equal to the value of the
integer are added to the document-context’s stream.

(dec-indent-level! document-context) ⇒ nil
Decrements the document-context’s indent level counter.

(draw-grapething ps-context object [translation]) ⇒ nil

(draw-grapething document-context object [translation]) ⇒ nil
Renders the grapething at the specified position on the
graphics context.

(finalize ps-context) ⇒ nil

(finalize document-context) ⇒ nil
This is the call that is made to the document-context after the
document has been generated. It is used to close files, etc.

(inc-indent-level! document-context) ⇒ nil
Increments the document-context’s indent level counter.

(indent document-context) ⇒ nil
Adds a number of spaces equal to the value of the receiver’s
indent-level multiplied by its indent-size to the receiver’s
stream.

(indent-level document-context) ⇒ nil
Returns the value of the receiver’s indent-level. The indent-
level is multiplied by the receiver’s indent-size to determine
the total number of spaces to use when indenting.

(indent-size document-context) ⇒ nil
Returns the value of the receiver’s indent-size. The indent-
size is multiplied by the receiver’s indent-level to determine
the total number of spaces to use when indenting.

(left-margin document-context) ⇒ inches
Returns the size of the left margin in inches for a page gener-
ated by the receiver.

(next-multilevel-tag document-context level [separator [key]]) ⇒ string
Bumps the multilevel counter at the indicated level and
returns a string consisting of the current state of each level
 Alter Reference Manual 53

Document Generation
separated by the specified separator string. If separator is
not specified, a period "." is used. If the optional key is
present, then the multilevel counter associated with that key
is affected (’para is the default key). See also reset-multi-
level-counter and supports-native-paragraph-numbering?

(next-put document-context string) ⇒ nil
Adds the string argument to the receiver’s output stream.

(open ps-context [output]) ⇒ nil

(open document-context [output]) ⇒ nil
Sets the receiver’s port to an output-port. If the optional out-
put argument is not provided then a window is open and
the port is set to the window. If the optional output argu-
ment is passed it must be a string, filename or output-port.
If it is a string, the string is converted to a filename, the file is
opened and the port is set to the resulting output-port. If it
is a filename, the file is opened and the port is set to the
resulting output-port. If it is an output-port, the port is set to
it. An error results if any other type of argument is passed.

(page-height document-context) ⇒ inches
Returns the size of the height of a page generated by the
receiver in inches.

(page-width document-context) ⇒ inches
Returns the size of the width of a page generated by the
receiver in inches.

(port document-context) ⇒ port
Returns the receiver’s current output port.

(print-size document-context) ⇒ number
Returns the maximum dimension in inches of printed data
when drawing graphics.

(put-string ps-context string [font-description]) ⇒ nil
Add the string to the context’s current paragraph using font
if specified.

(reset-multilevel-counter document-context [key]) ⇒ nil
Resets the multilevel counter. If key is given, the multilevel
counter associated with that key is reset (default key is
’para).

(right-margin document-context) ⇒ inches
Returns the size of the right margin in inches for a page gen-
erated by the receiver.

(scale document-context) ⇒ point
Returns a point representing the scale factor for all points
used when drawing graphics.
54

Document Generation
(scale-to! document-context rectangle) ⇒ nil
Sets the scale and translation using the rectangle argument.
The scale is set to a point whose x and y coordinates are
equal to the larger of the print size divided by the rectangle’s
width or the print size divided by the rectangle’s height. The
translation is set to the rectangle’s upper left corner point
negated.

(set-bottom-margin! document-context inches) ⇒ nil
Sets the size of the bottom margin for a page generated by
the document-context. The size is in inches.

(set-face! document-context string) ⇒ nil
Sets the name of the font family that the reliever should use
when drawing strings with the draw-string operation.

(set-indent-level! document-context indent-level) ⇒ nil
Sets the value of the receiver’s indent-level. The indent-level
is multiplied by the receiver’s indent-size to determine the
total number of spaces to use when indenting.

(set-indent-size! document-context indent-level) ⇒ nil
Sets the value of the receiver’s indent-size. The indent-size is
multiplied by the receiver’s indent-level to determine the
total number of spaces to use when indenting.

(set-left-margin! document-context inches) ⇒ nil
Sets the size of the left margin for a page generated by the
receiver. The size is in inches.

(set-line-style! context symbol) ⇒ nil

(set-line-style! document-context symbol) ⇒ nil
This operation sets the context’s line style to the symbol
argument. The symbol represents the current dash pattern
to be used when drawing lines. The symbol is one of {nor-
mal simpledash longdash dot dashdot dashdotdot phantom
chain shortdash hidden}.

(set-line-width! document-context width) ⇒ nil
Sets the line width of the context to the integer argument.
The value indicates how many pixels wide the pen is for
drawing lines.

(set-page-height! document-context inches) ⇒ nil
Sets the width a page generated by the receiver. The size is
in inches.

(set-page-width! document-context inches) ⇒ nil
Sets the size of the width of a page generated by the receiver.
The size is in inches.
 Alter Reference Manual 55

Document Generation
(set-paint-color! document-context color-value) ⇒ nil
Given a graphics context instance, sets the context’s current
paint color to the color value argument. The argument is a
colorvalue instance representing the current pen color for
drawing objects. See make-rgb-color, make-hsb-color, and
make-cmy-color for making a colorvalue instance.

(set-paint-style! document-context symbol) ⇒ nil
Given a graphicscontext instance, sets the context’s current
paint style to the symbol argument. The argument is a sym-
bol representing the current pen drawing style (’solid or
’gray). See also set-paint-color!.

(set-port! document-context port) ⇒ nil
Sets the receiver’s current output port to the argument.

(set-print-size! document-context inches) ⇒ nil
Sets the maximum dimension in inches of printed data when
drawing graphics.

(set-relative-scale! document-context factor) ⇒ nil
Sets a value like 1.0 or 1.5 (150%), etc that can scale fonts or
other values.

(set-right-margin! document-context inches) ⇒ nil
Sets the size of the right margin for a page generated by the
receiver. The size is in inches.

(set-scale! document-context point) ⇒ nil
Sets the point used by the receiver to scale points when
drawing graphic objects.

(set-top-margin! document-context inches) ⇒ nil
Sets the size of the top margin for a page generated by the
document-context. The size is in inches.

(set-translation! document-context point) ⇒ nil
Sets the point used by the receiver to translate points when
drawing graphic objects.

(start-para ps-context [style]) ⇒ nil

(start-para document-context [style]) ⇒ nil
Starts a new paragraph. If the optional style parameter is
passed, a new paragraph with that style is created, other-
wise the receiver’s current style is used.

(supports-native-paragraph-numbering? document-context) ⇒ boolean
Answers #t if the given document context represents a for-
mat that has native support for multi-level paragraph num-
bering (e.g., Maker Interchange Format). Otherwise returns
#f. See also next-multilevel-tag and reset-multilevel-counter.
56

Document Generation
(top-margin document-context) ⇒ inches
Returns the size of the top margin in inches for a page gener-
ated by the document-context.

(translation document-context) ⇒ point
Returns the point used by the receiver to translate points
when drawing graphic objects.

(write-postamble document-context) ⇒ nil
Writes a postamble on the receiver’s stream.

(write-preamble document-context) ⇒ nil
Writes a preamble on the receiver’s stream.
 Alter Reference Manual 57

Document Generation
58

Enumerating
Enumerating 12
(assoc obj list) ⇒ pair or #f

This procedure finds the first pair in list whose car field is
obj, and returns that pair. If no pair in list has obj as its car,
then #f (not the empty list) is returned. Assoc uses equal? to
compare arg1 with the car fields of the pairs in list.

See also assq, assv.

(assoc (list ’a) ’(((a)) ((b)) ((c))))=> ((a))

(assq obj list) ⇒ pair or #f
This procedure finds the first pair in list whose car field is
obj, and returns that pair. If no pair in list has obj as its car,
then #f (not the empty list) is returned. Assq uses eq? to
compare arg1 with the car fields of the pairs in list.

See also assv, assoc.

(define e ’((a 1) (b 2) (c 3)))

(assq ’a e) => (a 1)

(assq ’b e) => (b 2)

(assq ’d e) => #f

(assq (list ’a) ’(((a)) ((b)) ((c))))=> #f

(assq 5 ’((2 3) (5 7) (11 13)))=> unspecified

(assv obj list) ⇒ pair or #f
This procedure finds the first pair in list whose car field is
obj, and returns that pair. If no pair in list has obj as its car,
then #f (not the empty list) is returned. Assv uses eqv? to
compare arg1 with the car fields of the pairs in list.

See also assq, assoc.

(assv 5 ’((2 3) (5 7) (11 13)))=> (5 7)

(detect list predicate [none]) ⇒ object
Detect is similar to select except that it returns the first object
in the list that satisfies the predicate. If no objects satisfy the
predicate then the optional none argument is returned. If
the none argument is not specified then nil is returned.

(member obj list) ⇒ list or #f
This procedure returns the first sublist of list whose car is
obj, where the sublists of list are the non-empty lists
returned by (list-tail arg2 k) for k less than the length of list.
If obj does not occur in list, then #f (not the empty list) is
returned. Member uses equal? to compare arg with the ele-
ments of list.

See also memq, memv.
 Alter Reference Manual 59

Enumerating
(member (list ’a) ’(b (a) c))=> ((a) c)

(memq obj list) ⇒ list or #f
This procedure returns the first sublist of list whose car is
obj, where the sublists of list are the non-empty lists
returned by (list-tail list k) for k less than the length of list. If
obj does not occur in list, then #f (not the empty list) is
returned. Memq uses eq? to compare obj with the elements
of list.

See also memv, member.

(memq ’a ’(a b c))=> (a b c)

(memq ’b ’(a b c))=> (b c)

(memq ’a ’(b c d))=> #f

(memq (list ’a) ’(b (a) c))=> #f

(memq 101 ’(100 101 102))=> unspecified

(memv obj list) ⇒ list or #f
This procedure returns the first sublist of list whose car is
obj, where the sublists of list are the non-empty lists
returned by (list-tail list k) for k less than the length of list. If
obj does not occur in list, then #f (not the empty list) is
returned. Memv uses eqv? to compare obj with the elements
of list.

See also memq, member.

(memv 101 ’(100 101 102))=> (101 102)

(select list predicate) ⇒ list
Select returns a new list containing references to the top-
level members of the given list that cause the specified one-
argument procedure to answer a true value (a true value in
Alter is any value that is not eq? with #f).

(select ’("alpha" "beta" "gamma")

 (lambda (s) (string<? s "c")))=> ’("alpha" "beta")
60

File:Modifying
File:Modifying 13
(copy-to filename destination) ⇒ nil

Copies filename to destination (another filename). Destina-
tion may be a completely different pathname. It is an error if
destination cannot be opened for writing or filename cannot
be opened for reading.

(delete filename-type) ⇒ filename
Deletes the file represented by the given filename.

(make-directory filename-type) ⇒ filename
Causes the host to create the directory represented by file-
name. The behavior of this function is host-specific. Every-
thing but the last component of filename must already exist
before make-directory is called; it is an error otherwise.

(move-to filename destination) ⇒ nil
Renames filename to destination (another filename). Desti-
nation may be a completely different pathname, but the
behavior of move-to is host-specific if filename and destina-
tion are on different devices. It is an error if destination can-
not be opened for writing or filename cannot be opened for
reading.
 Alter Reference Manual 61

File:Modifying
62

File:Naming
File:Naming 14
(construct filename rest...) ⇒ filename

Returns a new filename instance whose head is the given
filename, and whose tail consists of the given string. The
precise behavior of this operation is host-specific.

(current-directory) ⇒ filename
Returns a filename instance that represents the directory in
which DOME was started. The behavior of this procedure is
host- and installation-specific. For Macintosh installations,
(current-directory) is the same as (dome-home).

(dome-home) ⇒ filename
Returns a filename instance that represents the directory
containing DOME’s library and support files. The behavior
of this procedure is host- and installation-specific. On Unix
and Windows NT systems, the pathname comes from the
environment variable "DOMEHOME"; if it is not set then the
start up directory is used. On DOS machines, the start up
directory is used. On Macintosh systems, Alter uses the
pathname of the directory containing the DOME applica-
tion.

(head filename-type) ⇒ string
Returns a string representing the given filename with the
last component removed. If the filename represents a file,
the directory path is returned. If the filename represents a
directory, the parent directory path is returned.

(load-path) ⇒ filename
Returns the current path used by dome to resolve filenames.
This path is the concatenation of any user specified path (the
value of *dome-load-path*) with the default load path.

(resolve filename) ⇒ filename
Returns the full path of a file if it exists along the dome-load-
path, otherwise returns the filename unaltered.

(tail filename-type) ⇒ string
Returns a string representing the given filename with all but
the last component removed.

(temporary-filename) ⇒ filename
Returns a filename that can be opened for writing to save
temporary data, such as a file to print. The composition of
the filename may be host-specific. The filename is guaran-
teed to not exist.
 Alter Reference Manual 63

File:Naming
(user-home) ⇒ filename
Returns a filename instance that represents the home direc-
tory of the user. The behavior of this procedure is host- and
installation-specific. Note: Macintosh and Windows hosts
do not ordinarily support the concept of user home directo-
ries. For Macintosh installations, (user-home) is the same as
(dome-home). In Windows and Unix installations, if the
HOME environment variable is set, that is used to form the
filename, otherwise "C:\" is used for Windows, and "/" is
used for Unix.
64

Font Descriptions
Font Descriptions 15
(bold font-description) ⇒ boolean

Returns a boolean indicating whether the font is bold or not.

(default-font-description) ⇒ font-description
Returns the system’s default font-description.

(family font-description) ⇒ string
Returns a string or a vector representing the font’s family. If
a vector is returned, it is a vector of strings representing
alternative names for the font family.

(fixed-width font-description) ⇒ boolean
Returns a boolean that indicates whether all characters in the
font can be expected to be the same width.

(italic font-description) ⇒ boolean
Returns a boolean indicating whether the font is italic or not.

(serif font-description) ⇒ boolean
Returns a boolean indicating whether the font is serif or not.

(set-bold! font-description boolean) ⇒ nil
Sets the value of the font’s bold property to the boolean
argument.

(set-family! font-description string) ⇒ nil
Sets the receiver’s family to the string argument.

(set-fixed-width! font-description boolean) ⇒ nil
Sets the value of the font’s fixed-width property to the bool-
ean argument. The font’s set-width property indicates
whether all characters in the font can be expected to be the
same width.

(set-italic! font-description boolean) ⇒ nil
Sets the value of the font’s italic property to the boolean
argument.

(set-serif! font-description boolean) ⇒ nil
Sets the value of the font’s serif property to the boolean argu-
ment.

(set-strikeout! font-description boolean) ⇒ nil
Sets the value of the font’s strikeout property to the boolean
argument.

(set-underline! font-description boolean) ⇒ nil
Sets the value of the font’s underline property to the boolean
argument.
 Alter Reference Manual 65

Font Descriptions
(size font-description) ⇒ points
Returns the size of the font in pixels.

(strikeout font-description) ⇒ boolean
Returns a boolean indicating whether the font is represented
with a strikeout.

(underline font-description) ⇒ boolean
Returns a boolean indicating whether the font is represented
with an underline.
66

Graphics
Graphics 16
(draw-arc context bounding-rectangle start-angle sweep-angle [fill]) ⇒ nil

(draw-arc document-context bounding-rectangle start-angle sweep-angle [fill]) ⇒
nil

Draws an arc on the given graphics context. If the fill-flag is
true, the arc will be filled in a pie-wedge fashion. The arc is
drawn to inscribe the specified rectangle. The start and
sweep angles are in degrees. Zero degrees is rightward
along the x axis, and the sweep angle proceeds clockwise.

(draw-line context from-point to-point) ⇒ nil

(draw-line document-context from-point to-point) ⇒ nil
Draws a line on the given graphics context between the two
supplied points (see "point?"). This primitive is used mainly
in user-defined DOME Tool Specification/ProtoDOME
methods.

(draw-polyline context point-list [fill]) ⇒ nil

(draw-polyline document-context point-list [fill]) ⇒ nil
Draws a polyline on the given graphics context between the
supplied points (see "point?"). This primitive is used mainly
in user-defined DOME Tool Specification/ProtoDOME
methods.

(draw-rectangle context rectangle [fill]) ⇒ nil

(draw-rectangle document-context rectangle [fill]) ⇒ nil
Draws a rectangle on the given graphics context. If the fill-
flag is true, the rectangle will be filled; otherwise only the
border will be drawn.

(draw-string context string point) ⇒ nil

(draw-string document-context string alignment loc extent) ⇒ nil
Renders the string at the specified position on the graphics
context. The position specifies the location of the left side
and baseline of the first character.
 Alter Reference Manual 67

Graphics
68

I/O
I/O 17
(char-ready? [port]) ⇒ #t or #f

Returns #t if a character is ready on the input port and
returns #f otherwise. If char-ready returns #t then the next
read-char operation on the given port is guaranteed not to
hang. If the port is at end of file then char-ready? returns #t.
Port may be omitted, in which case it defaults to the value
returned by current-input-port.

(close port) ⇒ nil
Closes the file associated with port, rendering the port inca-
pable of generating characters. This routine has no effect if
the port has already been closed. The value returned is
unspecified.

(close-input-port port) ⇒ nil
Closes the file associated with port, rendering the port inca-
pable of generating characters. This routine has no effect if
the port has already been closed. The value returned is
unspecified.

(close-output-port port) ⇒ nil
Closes the file associated with port, rendering the port inca-
pable of generating characters. This routine has no effect if
the port has already been closed. The value returned is
unspecified.

(commit port) ⇒ nil
Force all buffered output to be committed so no output is left
buffered.

(contents port) ⇒ string

(contents filename) ⇒ string
Returns the contents of the specified filename. If the file
does not exist, Alter will raise an error.

(current-input-port) ⇒ input-port or nil
Returns the current default input port. Alter does not
always have a default input port, so the return value may be
nil. See with-input-from-file.

(current-output-port) ⇒ output-port
Returns the current default input or output port. See with-
output-to-file.

(display object [port]) ⇒ nil
Writes a representation of sexpr to the given port. Strings
that appear in the written representation are not enclosed in
 Alter Reference Manual 69

I/O
doublequotes, and no characters are escaped within those
strings. Character objects appear in the representation as if
written by write-char instead of by write. Display returns an
unspecified value. The port argument may be omitted, in
which case it defaults to the value returned by current-out-
put-port.

(edit graphmodel) ⇒ unspecified

(edit filenameorstring) ⇒ nil
Given a GraphModel instance, the edit operation forces the
given graphmodel instance to be assigned an editor window
(if it doesn’t already have one), and then forces that window
to be popped to the front. If the graph does not already have
a window, the behavior of the edit operation follows what is
described in the DOME User’s Manual for the preferences
setting ’Use Same Editor’.

Edit will accept either a string or a filename as an argument.
Given a string, the edit operation treats the string as the
name of a file. It attempts to open an editor on the file’s con-
tents. If the file contains a DOME model, the operation is the
same as (edit (load string)). If the file contains Alter text
(and the first character in the file is a semicolon), DOME will
open an Alter evaluator window on the file’s contents. If
neither of the above is true, DOME gives the user the option
of opening the file into a text editing window.

(flush port) ⇒ nil
Flushes any output that may have been buffered for the
specified output port but not yet written to the device (either
a file or window). The port is not closed. It is an error to
apply flush to an output port that has already been closed.

(load filenameorstring [loudly [modified]]) ⇒ object or grapething
The load procedure reads expressions and definitions from
the file and evaluates them sequentially. It is unspecified
whether the results of the expressions are printed. The load
procedure does not affect the values returned by current-
input-port and current-output-port. Load returns an unspec-
ified value. The argument may be either a string or a file-
name instance (see string->filename).

If the file name is a relative pathname, DOME searches a
sequence of directories. The sequence is determined by the
contents of the global symbol *dome-load-path* plus the
default directories obtained through the expression

(construct (construct (construct dome-home "tools")
"*") "lib")

The directories given in *dome-load-path*, if any, are
searched first in order, followed by the default directories.
You can set *dome-load-path* in your DOME initialization
70

I/O
file (see the DOME User’s Manual).

(name namednode) ⇒ string

(name graphmodel) ⇒ string

(name user-defined-type) ⇒ string

(name package) ⇒ string

(name graphobjectattribute) ⇒ string

(name port) ⇒ string

(name nameddirarc) ⇒ string
Returns a string representing the name of the given grapeth-
ing instance. The name operation is defined on classes
NamedNode, GraphObjectAttribute, NamedDirArc, Graph-
Model, and their subclasses. See also set-name!.

When given a package it returns the name of the package.

(newline [port]) ⇒ nil
Writes an end of line to port. Exactly how this is done differs
from one operating system to another. Returns an unspeci-
fied value. The port argument may be omitted, in which case
it defaults to the value returned by current-output-port.

(open-input-file string) ⇒ input-port

(open-input-file filename) ⇒ input-port
Takes a string or filename representing an existing file and
returns an input port capable of delivering characters from
the file. If the file cannot be opened, an error is signalled.

(open-input-string string) ⇒ input-port
Opens an input port on the string argument.

(open-output-file string) ⇒ output-port

(open-output-file filename) ⇒ output-port
Takes a string or filename representing an output file to be
created and returns an output port capable of writing char-
acters to a new file by that name. If the file cannot be
opened, an error is signalled. If a file with the given name
already exists, the effect is unspecified. If the string "" is
passed as the argument then a transcript window is opened
and its port is returned.

(open-output-string) ⇒ output-port
Opens an output port on the string argument.

(peek-char [port]) ⇒ character
Returns the next character available from the input port,
without updating the port to point to the following charac-
ter. If no more characters are available, an end of file object
is returned. Port may be omitted, in which case it defaults to
 Alter Reference Manual 71

I/O
the value returned by current-input-port.

The value returned by a call to peek-char is the same as the
value that would have been returned by a call to read-char
with the same port. The only difference is that the very next
call to read-char or peek-char on that port will return the
value returned by the preceding call to peek-char. In partic-
ular, a call to peek-char on an interactive port will hang wait-
ing for input whenever a call to read-char would have hung.

(read [port]) ⇒ expression
Read converts external representations of Scheme objects
into the objects themselves. That is, it is a parser for the non-
terminal datum. Read returns the next object parsable from
the given input arg, updating arg to point to the first charac-
ter past the end of the external representation of the object.

If an end of file is encountered in the input before any char-
acters are found that can begin an object, then an end of file
object is returned.

The port argument may be omitted, in which case it defaults
to the value returned by current-input-port. It is an error to
read from a closed port.

(read-char [port]) ⇒ character
Returns the next character available from the input port,
updating the port to point to the following character. If no
more characters are available, an end of file object is
returned. Port may be omitted, in which case it defaults to
the value returned by current-input-port.

(read-through-char char [port]) ⇒ string
Return a string from the current position of the port to the
first occurrence of char inclusive. If char is not encountered
then return the entire string from port.

(reset port) ⇒ nil
Reset the position to the beginning.

(with-input-from-file string proc) ⇒ object
The file is opened for input, an input port connected to it is
made the default value returned by current-input-port, and
the thunk (procedure or operation) is called with no argu-
ments. When the thunk returns, the port is closed and the
previous default is restored. With-input-from-file returns the
value yielded by thunk.

If an escape procedure is used to escape from the continua-
tion of this procedure, the port is closed.

(with-output-to-file string proc) ⇒ object
The file is opened for output, an output port connected to it
is made the default value returned by current-output-port,
72

I/O
and the thunk (procedure or operation) is called with no
arguments. When the thunk returns, the port is closed and
the previous default is restored. With-output-to-file returns
the value yielded by thunk.

If an escape procedure is used to escape from the continua-
tion of these procedures, the port is closed.

If the first argument is an empty string, output is directed to
a newly created transcript window.

(with-output-to-selected prompt-string ok-proc [candidate-file [cancel-proc]])
⇒ nil

The user is prompted (with prompt-string) to choose where
output should be directed, whether to a file or a transcript
window. If the user chooses "File", then a host-specific file
dialog prompts for a filename. If the optional candidate-file
argument is supplied, the file dialog is initialized with that
filename and directory location.

An output stream corresponding to the user’s choice is cre-
ated and made the default; the zero-argument ok-proc pro-
cedure is then called. When ok-proc terminates for any
reason, the stream is closed, the environment’s default
stream is returned to its state prior to the call to with-output-
to-selected.

If the user cancels the choice, the optional zero-argument
cancel-proc procedure is called.

The result of with-output-to-selected is either the return
value of ok-proc, the return value of cancel-proc or nil,
depending on which is executed.

(with-output-to-selected "Where should the output
go?"

(lambda () (display "hello, world")
(newline))

"C:\\Temp\\testout.txt"

(lambda () (warn "Never mind.")))

(write object [port]) ⇒ nil
Writes a written representation of sexpr to the given port.
Strings that appear in the written representation are
enclosed in doublequotes, and within those strings back-
slash and doublequote characters are escaped by back-
slashes. Write returns an unspecified value. The port
argument may be omitted, in which case it defaults to the
value returned by current-output-port.

(write-char char [port]) ⇒ nil
Writes the character (not an external representation of the
character) to the given port and returns an unspecified
value. The port argument may be omitted, in which case it
 Alter Reference Manual 73

I/O
defaults to the value returned by current-output-port.
74

Lists
Lists 18
(car list) ⇒ object

Returns the contents of the car field of the pair. Note that it
is an error to take the car of the empty list.

(car ’(a b c)) => a

(car ’((a) b c d))=> (a)

(car ’(1 . 2)) => 1

(car ’()) => error

(cdr list) ⇒ object
Returns the contents of the cdr field of the pair. Note that it
is an error to take the cdr of the empty list.

(cdr ’((a) b c d))=> (b c d)

(cdr ’(1 . 2)) => 2

(cdr ’()) => error

(cons obj1 obj2) ⇒ pair
Returns a newly allocated pair whose car is obj1 and whose
cdr is obj2. The pair is guaranteed to be different (in the
sense of eqv?) from every existing object.

(cons ’a ’()) => (a)

(cons ’(a) ’(b c d))=> ((a) b c d)

(cons "a" ’(b c))=> ("a" b c)

(cons ’a 3) => (a . 3)

(cons ’(a b) ’c) => ((a b) . c)

(list items...) ⇒ list
Returns a newly allocated list of its arguments.

(list ’a (+ 3 4) ’c)=> (a 7 c)

(list) => ()

(list-head list index) ⇒ list
Returns a copy of the list including only the first k elements.
List-tail could be defined by

(define list-head

 (lambda (x k)

 (if (or (zero? k) (null? x))

 (list)

 (set-cdr! (list (car x)) (list-head (cdr x) (- k 1))))))

(list-last list) ⇒ sexpr
Returns the last element of list. (This is the same as (list-ref
 Alter Reference Manual 75

Lists
list (- (length list) 1)).)

(list-ref ’(a b c d)) => d

(list-ref ’()) => nil

(list-ref list index) ⇒ sexpr
Returns the kth element of list. (This is the same as the car of
(list-tail list k).)

(list-ref ’(a b c d) 2)=> c

(list-ref ’(a b c d)

 (inexact->exact (round 1.8)))=> c

(list-tail list index) ⇒ list
Returns the sublist of list obtained by omitting the first k ele-
ments. List-tail could be defined by

(define list-tail

 (lambda (x k)

 (if (zero? k)

 x

 (list-tail (cdr x) (- k 1)))))

(remove-from-list! list object) ⇒ list
Returns the argument list with all top-level references to
object removed (using eq? test). Note that the return value
will not be the same as the list passed in if the first element is
eq? to object. This operation is destructive to the argument
list, so any references to list may also be affected. The struc-
ture and values of the resulting list are the same as defined
for copy-without.

(define foo ’(a b c))

(remove-from-list! foo ’b)=> (a c)

foo => (a c)

(define foo ’(a b a c))

(remove-from-list! foo ’a)=> (b c)

foo => (a b c)

(remove-from-list! ’(a b c b) ’b)=> (a c)

(remove-from-list! ’(b) ’b)=> ()

(remove-from-list! ’(a b . c) ’b)=> (a . c)

(remove-from-list! ’(b . c) ’b)=> (nil . c)

(remove-from-list! ’(nil nil nil . c) ’nil)=> (nil . c)

(remove-from-list! ’("a" "b" "c") "b")=> ("a" "b" "c")

(remove-from-list! ’(a (b c)) ’b)=> (a (b c))
76

Lists
(reverse list) ⇒ list
Returns a newly allocated list consisting of the elements of
list in reverse order.

(reverse ’(a b c))=> (c b a)

(reverse ’(a (b c) d (e (f))))=> ((e (f)) d (b c) a)

(set-car! list obj) ⇒ object
Stores arg in the car field of the pair. The value returned by
set-car! is unspecified.

(define f (list ’not-a-constant-list))

(define g ’(constant-list))

(set-car! f 3) => unspecified

(set-car! g 3) => error

(set-cdr! list obj) ⇒ object
Stores arg in the cdr field of pair. The value returned by set-
cdr! is unspecified.

(sort list proc) ⇒ list
Return a new list that contains the same elements but
ordered by the comparison procedure. The comparison pro-
cedure should accept two parameters and return #t if the
first parameter should be ordered before the second, #f oth-
erwise.

(sort ’(12 56 2 100 8) (lambda (a b) (<= a b)))

=> (2 8 12 56 100)

(sort ’(("foo" . 56) ("bar" . 100) ("zip" . 8))

 (lambda (a b) (<= (cdr a) (cdr b))))

=> (("zip" . 8) ("foo" . 56) ("bar" . 100))

(sort ’(("foo" . 56) ("bar" . 100) ("zip" . 8))

 (lambda (a b) (string<=? (car a) (car b))))

=> (("bar" . 100) ("foo" . 56) ("zip" . 8))

Sort will fail to terminate if it is given a circular list. The sort
procedure uses a quicksort algorithm.
 Alter Reference Manual 77

Lists
78

Logic
Logic 19
(and args...) ⇒ object or #f

The test expressions are evaluated from left to right, and the
value of the first expression that evaluates to a false value is
returned. Any remaining expressions are not evaluated. If
all the expressions evaluate to true values, the value of the
last expression is returned. If there are no expressions then
#t is returned.

(and (= 2 2) (> 2 1))=> #t

(and (= 2 2) (< 2 1))=> #t

(and 1 2 ’c ’(f g))=> #t

(and) => #t

(not object) ⇒ #t or #f
Not returns #t if obj is false, and returns #f otherwise.

(not #t) => #f

(not 3) => #f

(not (list 3)) => #f

(not #f) => #t

(not ’()) => #f

(not (list)) => #f

(not ’nil) => #f

(or expressions...) ⇒ object or #f
The test expressions are evaluated from left to right, and the
value of the first expression that evaluates to a true value is
returned. Any remaining expressions are not evaluated. If
all expressions evaluate to false values, the value of the last
expression is returned. If there are no expressions then #f is
returned.

(or (= 2 2) (> 2 1))=> #t

(or (= 2 2) (< 2 1))=> #t

(or #f #f #f) => #f

(or (memq ’b ’(a b c))

 (/ 3 0)) => (b c)
 Alter Reference Manual 79

Logic
80

Math Functions
Math Functions 20
(acos number) ⇒ number

This procedure computes the usual transcendental function.

(asin number) ⇒ number
This procedure computes the usual transcendental function.

(atan y [x]) ⇒ number
This procedure computes the usual transcendental function.

(cos number) ⇒ number
This procedure computes the usual transcendental function.

(exp number) ⇒ number
Exp computes e^number. The result is a real number.

(expt base exponent) ⇒ number
Returns base raised to the power exponent: number^expo-
nent = e^(exponent log base).

0^0 is defined to be equal to 1.

(log number) ⇒ number
Log computes the natural logarithm of arg (not the base ten
logarithm).

(sin number) ⇒ number
This procedure computes the usual transcendental function.

(tan number) ⇒ number
This procedure computes the usual transcendental function.
 Alter Reference Manual 81

Math Functions
82

Miscellaneous
Miscellaneous 21
(category thunk [category]) ⇒ string

Given a procedure or operation, returns its category as a
string. This category is where the procedure or operation
can be found in the various browsers that are part of the Pro-
jector/Alter programming environment. If a second
optional argument is given, it must be a string, and it is used
to set the category of the procedure or operation.

(date-today) ⇒ vector
Returns a list containing a representation of the current sys-
tem date. The list is interpreted as follows: (year day-of-
year).

(dates filename) ⇒ dictionary
Returns a dictionary with the file’s access dates.

(dome-version) ⇒ string
Returns a string that represents the version of DOME being
used.

(error error-message) ⇒ string
This procedure stops execution and displays the Alter Envi-
ronment Browser (Activation Stack) with the argument as
the text in the message box.

(interface proc) ⇒ list
Given a procedure, interface returns a string representing its
interface. Given an operation, interface returns a list of the
classes that the operation is defined on.

(message-to-user message) ⇒ string
Writes the specified string to the DOME message pane in the
DOME Launcher window, followed by a newline.

(platform) ⇒ association
Return an association where the association is made up of a
symbol representing the kind of operating system of the
platform (’win32, ’unix, ’mac) and a string that provides
more detail about the platform such as version or detailed
operating system name.

(random [low high]) ⇒ number
Returns a random number. With no arguments, the returned
value is a floating point number evenly distributed between
0.0 and 1.0. With two integer arguments, the returned value
is an integer evenly distributed between the two given val-
ues (inclusive). The first argument must be less than the sec-
ond argument.
 Alter Reference Manual 83

Miscellaneous
(reset-environment) ⇒
Resets the registry, default input port, default output port
and execution stack of the current environment to their
default values.

(return-spec proc) ⇒ string
Returns a string representing the type of object typically
returned by the given procedure.

(sleep milliseconds) ⇒ nil
Causes the DOME process to go inactive for the specified
number of milliseconds. This is useful for animation and
other related purposes.

(time-now) ⇒ vector
Returns a time object containing a representation of the cur-
rent system time. See time->list and time.
84

Model:Accessing
Model:Accessing 22
(accessories graphobject) ⇒ list

Answer a list of nodes that are accessories of the node.
Accessories are nodes that are usually attached to the
boundary of the node.

(add-binding-named graphmodel configuration graphobject) ⇒ modelbinding

(add-binding-named graphobject configuration graphmodel) ⇒ modelbinding
For a graphobject add a binding with the given name from
the graphobject to the specified graphmodel.

For a graphmodel add a binding with the given name from
the specified graphobject to the graphmodel.

(add-child graphobject graphmodel) ⇒ graphmodel
Checks to see if aGraphModel is a subdiagram of aGraph-
Object. If it is NOT a subdiagram it adds aGraphModel to
aGraphObject’s subdiagrams and returns aGraphModel.
Otherwise returns nil.

(archetype domenode) ⇒ node

(archetype graphobject) ⇒ graphobject
Given an instance of a node, the archetype operation returns
either nil (if the node has no archetype), or the node instance
that serves as the argument’s archetype. An archetype is a
node that resides on the shelf (see the DOME User’s Man-
ual). By definition, the archetype of an archetype is itself.

(archetype-shelf graphmodel) ⇒ graphmodel
Answer the archetype page associated with the graphmodel.

(archetype? graphmodel) ⇒ #t or #f

(archetype? remotegraphobject) ⇒ #t or #f

(archetype? graphobject) ⇒ #t or #f
Is the object an archetype?

(archetypifiable? graphobject) ⇒ #t or #f
Answer #t if instances of the grapething’s class can be arche-
types.

(arcs graphmodel) ⇒ list
Given a GraphModel instance, the arcs operation returns a
list of the arcs present in the graph. The list includes only
the arcs at the top level within the given graph; it does NOT
contain any arcs from subdiagrams. See also nodes.
 Alter Reference Manual 85

Model:Accessing
(baseline graphmodel) ⇒ integer

(baseline graphobject) ⇒ integer
Answer the distance from the top of the line to the bottom of
most of the characters (by convention, bottom of A) in the
current style used by the model to render text.

(binding-named grapething string) ⇒ modelbinding
Answer the binding whose configuration is as specified.

(border-bounds domenode) ⇒ rectangle
Returns a rectangle (list of the form ((x1 . y1) . (x2 . y2)) that
is used as a starting point for drawing the object’s outline.
Units are pixels.

(bounds grapething) ⇒ rectangle
Returns a rectangle (see "rectangle?") that represents the
node’s outer dimensions, including the name, if any. Units
are pixels.

(color font-description) ⇒ color-value

(color graphobject) ⇒ color-value
Returns a color-value representing the color of the font or
graph object.

(components grapething) ⇒ list
Given a GrapeThing instance, the components operation
returns a list of the components contained within the
instance. For GraphModels, the list will contain nodes and
arcs. For nodes, the list will contain nodes. For arcs, the list
may contain nodes and a GrapEArcName.

(configurations graphmodel) ⇒ list

(configurations grapething) ⇒ list
Answer the configurations that are available to be used
throughout the model.

(container graphobject) ⇒ visualgrapething
The container operation is an inverse to the components
method. Given a GrapEThing instance, it returns the object
that contains it. The returned object may be a DoMENode,
NetArc or GraphModel instance. See components.

(current-binding graphmodel) ⇒ modelbinding
Answer the modelbinding that matches the graphmodel’s
current state.

(current-configuration graphmodel) ⇒ string
Answer the configuration string that the graphmodel has
active.
86

Model:Accessing
(default-child-type graphobject) ⇒ graphmodel-class
Returns the default type of graphmodel created when a new
subdiagram is added.

(description grapething) ⇒ string

(description proc [string]) ⇒ string
If the first argument is an instance of GrapEThing, descrip-
tion returns the value (a string) of the description property
of the object. If the first argument is a procedure or opera-
tion, and the optional second argument is missing, descrip-
tion returns a string describing it. Normally the description
text is retrieved from the file (construct (construct (dome-
home) ’lib’) ’alterdsc.txt’), but if the optional argument is
supplied, it becomes the description for the procedure or
operation.

(destination netarc) ⇒ node

(destination graphobjectreference) ⇒ node
Given an arc, the destination operation returns the node
object that is at the destination end of the arc. See also ori-
gin.

Given a GraphObjectReference, destination returns the node
for which the argument is a surrogate.

(direction graphboundary) ⇒ symbol
Returns a symbol representing the semantic direction of the
given boundary node in a graph. The possible values are ’in,
’out and ’inout.

(do-over-model grapething thunk) ⇒ nil
Traverse the grapething’s model and apply the thunk to each
object contained in the model.

(elements graphobject) ⇒ list
Answer a list of nodes that are elements of the node. Ele-
ments are nodes that are contained within the node.

(filename graphmodel) ⇒ filename-type
Given a graph model instance, the filename operation
returns an instance of filename-type that represents the file
the model was last saved in.

(find-vacant-position graphmodel width height) ⇒ point
Answer a position (point) in the graph that can contain an
object with the given width and width.

(frozen-color graphobject) ⇒ #t or #f
Answer #t if the color of the graphobject should not change
through indirect means.
 Alter Reference Manual 87

Model:Accessing
(get-property object propname) ⇒ object

(get-property propname object) ⇒ object
Gets the value of the named property from the given object.
The object is usually an instance of grapething or one of its
subclasses, but get-property will also work on instances of
other GrapE classes. It is an error if the property name is not
valid for the given class of object. The DOME Tool Specifica-
tions define the properties on the various DOME objects.
The property name which IS case sensitive can either by a
string or a symbol.

(get-property-definition grapething-class propertyname) ⇒ propertydefintion or
nil

(get-property-definition grapething propertyname) ⇒ propertydefinition or nil
Return the property definition for the named property.

(get-property-definitions grapething-class) ⇒ dictionary

(get-property-definitions grapething [categoryname]) ⇒ dictionary
Return all (or those that have a category of categoryname) of
the property definitions for the specified object.

(graph grapething) ⇒ graphmodel
Returns the graphmodel containing the object, if any.
Returns nil if the object cannot be traced back to any graph.
The graph of a graphmodel is itself.

(graph-label graphmodel) ⇒ node
Answer the graphlabel of the graphmodel.

(has-archetype? graphobject) ⇒ #t or #f
Answer #t if the graphobject has an archetype.

(has-binding-named? grapething string) ⇒ #t or #f
Answer #t if the grapething has a modelbinding with a con-
figuration as specified.

(has-binding? grapething) ⇒ #t or #f
Answer #t if the grapething has at least one modelbinding.

(has-child? graphobject) ⇒ #t or #f
Answer #t if the graphobject has subdiagrams.

(has-parent-connection? grapething) ⇒ #t or #f
Answer #t if the grapething has a parent connection.

(has-parent? grapething) ⇒ #t or #f
Answer #t if the grapething has a parent

(has-property-set? grapething propname) ⇒ boolean

(has-property-set? propname grapething) ⇒ boolean
Returns #t if the given grapething object has a value set for
88

Model:Accessing
the named property. It is an error if the property name is not
valid for the given class of object. The DOME Tool Specifica-
tions define the properties on the various DOME objects.
The property name which IS case sensitive can either by a
string or a symbol.

(identifier grapething) ⇒ number
Answer a number that uniquely identifies the grapething in
the model.

(implementations graphobject) ⇒ list
If aGraphObject has an archetype then this returns the arche-
types’s implementations. Otherwise it returns aGraphOb-
ject’s subdiagrams.

(incoming-arcs domenode) ⇒ list
Given a node instance, the incoming-arcs operation returns a
list of the arcs entering the node. See also outgoing-arcs.

(instances domenode) ⇒ list
The argument to the instances operation must be an arche-
type, that is, a node that resides on the shelf (see the DOME
User’s Manual). The instances operation will return a list of
all of the archetype’s instances. See also archetype.

(logical-top-graph graphmodel) ⇒ graphmodel
Answer the logical top graphmodel. The logical top graph-
model corresponds to the topmost graphmodel in a hierar-
chy whose subtree of graphmodels forms one ’model’, that
is, a cohesive set of (interrelated) graphmodels that are all
from the same notation family.

(master grapething) ⇒ grapething
Returns the instance that serves as the master for the given
object. The following expression will always be true:

(memq self (views (master self)))

where self is a graphobject instance and (not (nil? (master
self))).

(name-emphasis graphobject) ⇒ symbol
Returns a symbol describing the current style of the object’s
title (’normal, ’italic, ’bold, ’underline or ’strikeout). See also
set-name-emphasis!

(name-set! user-defined-type string) ⇒ string

(name-set! graphmodel string) ⇒ string

(name-set! namednode string) ⇒ string

(name-set! graphobjectattribute string) ⇒ string

(name-set! nameddirarc string) ⇒ string
Obsolete. Use set-name! instead.
 Alter Reference Manual 89

Model:Accessing
(name-source grapething) ⇒ grapething
Answer the grapething from which the name is really com-
ing from.

(nodes graphmodel) ⇒ list
The nodes operation retrieves the list of nodes contained in
the given graphmodel instance. Only the nodes at the top
level within the given graphmodel are returned; the list does
NOT contain any nodes from subdiagrams. See also arcs.

(open-models) ⇒ list
This procedure returns a list of graphmodel instances that
are currently open (but not necessarily displayed) within
DOME.

(origin netarc) ⇒ node
Given an arc, the origin operation returns the node object
that is at the origin end of the arc. See also destination.

(outgoing-arcs domenode) ⇒ list
Given a node instance, the outgoing-arcs operation returns a
list of the arcs emanating from the node. See also incoming-
arcs.

(parent graphmodel) ⇒ graphobject
Returns the parent of the given graph, if any. If the argu-
ment has no parent, nil is returned.

(parent-connection graphobject) ⇒ graphobject
Parent-connection is an operation defined on nodes and arcs
that returns the corresponding object in the parent diagram
(if any). For example, the parent-connection of a boundary
point on a DFD graph is an arc whose destination is the pro-
cess node being refined. In some cases, the parent-connec-
tion may be part of an archetype.

(position graphobject) ⇒ point
Returns the absolute position (in pixels) of the given object
as a point (x . y).

(property-schema-files grapething) ⇒ list
Answer the property schema files property which is a list of
filenames that represent UDP models.

(rationale grapething) ⇒ string
Returns the value of the rationale property of the given gra-
pething instance. The returned value is a string (possibly
empty).

(relative-position domenode) ⇒ point
Returns the relative position (in pixels) of the given node as
a point (x . y). The returned value is relative to the object’s
90

Model:Accessing
container’s position. If the container is a GraphModel
instance, the container’s position is taken to be (0 . 0).

(remove grapething) ⇒ nil
Deletes the specified grapething from its container and
removes all other references to it.

(remove-child graphobject graphmodel) ⇒ graphmodel
Checks to see if aGraphModel is a subdiagram of aGraph-
Object. If it is a subdiagram it removes aGraphModel from
aGraphObject’s subdiagrams and returns aGraphModel.
Otherwise returns nil.

(resolve-identity remotegraphobject) ⇒ grapething
Attempts to resolve the reference to the remote DOME
object. If successful, the operation answers the remote
object. If unsuccessful, DOME raises an error dialog and the
operation returns nil. During the attempt to resolve the
identity, DOME may cause the file containing the object to
be loaded into memory.

(route netarc) ⇒ list
Returns a list of points of the form (x . y) that represent
where the given arc bends. The endpoints (where the arc
attaches to the origin and destination nodes) are not
included in the list, therefore it may be the case that route
returns an empty list. Units are pixels.

(selected-components grapething) ⇒ list
Answer a list of graphobjects that are currently selected in
the graphmodel.

(set-border-bounds! domenode rectangle) ⇒ rectangle
Sets the rectangular border bounds of the given node to be
the specified rectangle. See "rectangle?" for a specification of
the representation of a rectangle.

(set-color! font-description color-value) ⇒ nil

(set-color! graphobject color) ⇒ unspecified
Sets the color of the receiver to the color-value argument.

(set-configurations! graphmodel list) ⇒ unspecified
Set the configurations that are available to be used through-
out the model.

(set-container! grapething new-container) ⇒ #t or #f
Make grapething a component of new-container. See compo-
nents.

(set-current-binding! graphmodel modelbinding) ⇒ unspecified
Set the graphmodel’s current modelbinding to the specified
modelbinding.
 Alter Reference Manual 91

Model:Accessing
(set-current-configuration! graphmodel string) ⇒ unspecified
Set the configuration string that the graphmodel has active.

(set-description! grapething string) ⇒ unspecified
Set the description of the object.

(set-destination! netarc node) ⇒ unspecified
Set the destination of the netarc.

(set-direction! graphboundary symbol) ⇒ unspecified
Set the direction of the graphboundary.

(set-frozen-color! graphobject boolean) ⇒ unspecified
Set the frozen color property of the graphobject. The frozen
color property prevents the color of the graphobject from
changing through indirect means.

(set-master! grapething grapething) ⇒ unspecified
The specified grapething should serve as the master of the
grapething.

(set-name! graphmodel string) ⇒ unspecified

(set-name! namednode string) ⇒ unspecified

(set-name! graphobjectattribute string) ⇒ unspecified

(set-name! nameddirarc string) ⇒ unspecified
Set the name of the object.

(set-name-emphasis! graphobject symbol) ⇒ unspecified
Set the textual emphasis of the object’s title string (which
may actually be more than the name). The detailed appear-
ance depends on the fonts available from the platform.
Valid symbols are ’normal, ’italic, ’bold, ’underline and
’strikeout. If given an invalid symbol, the text will be dis-
played as with ’normal. See also name-emphasis.

(set-origin! netarc node) ⇒ unspecified
Set the origin of the netarc.

(set-parent-connection! graphobject parent) ⇒ child-object
Set the parent connection of the node or arc to the corre-
sponding object in the parent diagram.

(set-position! domenode point) ⇒ point
Sets the absolution position of the node to be the point, if
possible. Units are in pixels, and the point is a pair of the
form (x . y). This operation can also be applied to arc name
tags and other accessories. It is an error to apply this opera-
tion to instances of GraphObjectAttribute, since their posi-
tions are determined completely automatically, and are
strictly relative to their containers. See also relative-posi-
tion-set! and synchronize-display.
92

Model:Accessing
(set-property! object propname value) ⇒ nil

(set-property! propname object value) ⇒ nil
Sets the value of the propnamestring property on the gra-
pething object to the specified value. Set-property may
work on non-GrapEThing objects, but its behavior is unspec-
ified in those cases. It is an error if the property name is not
valid for the given class of object. The DOME Tool Specifica-
tions define the properties on the various DOME objects.
The property name which IS case sensitive can either by a
string or a symbol.

(set-property-schema-files! grapething list) ⇒ unspecified
Set the property schema files property to the specified list of
filenames.

(set-rationale! grapething string) ⇒ unspecified
Set the rationale of the object.

(set-relative-position! domenode point) ⇒ point
Sets the relative position of the node to be the point, if possi-
ble. Units are in pixels and the point is a pair of the form (x .
y). The position given is relative to the node’s container
(possibly the graph, whose position is considered to be (0 .
0). Some subclasses of DoMENode may generate an error if
set-relative-position! is applied to them. In particular, sub-
classes of GraphObjectAttribute typically resist attempts to
manually adjust their relative positions. See also set-posi-
tion! and synchronize-display.

(set-route! netarc list) ⇒ unspecified
Set the route of the netarc. The route is a list of points.

(set-size! font-description number) ⇒ nil

(set-size! domenode point) ⇒ point
Given a font-description and an integer, sets the size of the
font in pixels.

Given a node and a point, sets the width and height of the
node using the x and y coordinates of the point. The bounds
of the node are recomputed to be centered around its current
position.

(subdiagrams graphobject) ⇒ list
Returns a list of graphmodel instances that are children of
the given graphobject instance. The returned list may be
empty. See also parent-connection.

(text-line-height graphobject) ⇒ integer
Return the space between lines.
 Alter Reference Manual 93

Model:Accessing
(top-model grapething) ⇒ grapething
Answer the graphmodel that is the root of all other graph-
models in the model.

(unset-property! grapething propname [value]) ⇒ nil

(unset-property! propname grapething [value]) ⇒ nil
Removes any value bound to the specified property for the
given object. If the optional third argument is supplied, the
value is unbound only if the current binding is eq? to the
third argument. It is an error if the property name is not
valid for the given class of object. The DOME Tool Specifica-
tions define the properties on the various DOME objects.
The property name which IS case sensitive can either by a
string or a symbol.

(views grapething) ⇒ list
Returns a list of views (at the next level only) of the given
grapething instance. The elements of the returned list will
be of the same type as the argument supplied to the views
operation. If there are no views, an empty list will be
returned. See also master. The following express will
always be true:

(memq self (views (master self)))

where self is some graphobject instance and (not (nil? (mas-
ter self)))

(what-are-you grapething) ⇒ string
Given a grapething instance, the what-are-you operation
returns a string describing the instance (e.g., a user-sensible
rendering of its class name). This is mainly useful for inter-
acting with the user.
94

Model:Creation
Model:Creation 23
(merge-file graphmodel file) ⇒ nil

Merge the model contained in the file (String or Filename)
into the graphmodel.

(new-child-model graphmodel-class graph-object) ⇒ graphmodel

(new-child-model metadomegraph graphobject) ⇒ graphmodel

(new-child-model protodomespecwrapper graph-object) ⇒ graphmodel
Creates a new instance of the given graphmodel class as a
child of the specified graphobject (node or arc). New-child-
model does NOT open an editor window on the resulting
instance. The ’edit’ operation will do this. See also new-top-
model, new-in, nodes and arcs.

(new-in metadomenodespec graph [position]) ⇒ node

(new-in domenode-class graph [position]) ⇒ node

(new-in metadomearcspec graph originnode destinationnode [route]) ⇒ arc

(new-in netarc-class graph originnode destinationnode [route]) ⇒ arc
New-in is an operation defined on node classes and arc
classes, and is used for creating new instances of nodes and
arcs. Both methods require the second argument to be a
graphmodel instance that is to contain the new object.

The node class method accepts a third (optional) argument
that specifies the pixel coordinates for the new node; if it is
omitted, GrapE will use a default position that depends on
the type of node. The position coordinate must be supplied
as a pair whose car is the x coordinate and whose cdr is the y
coordinate (y=0 is the top of the window). Units are pixels.

The third and fourth arguments to the arc class method must
be node instances. The third argument specifies the node
that will serve as the new arc’s origin; the fourth argument
specifies the node that will serve as the new arc’s destina-
tion. It is legal for the origin and destination to be the same
object. The fifth (optional) argument must be a list of points
(pairs) that serve as the intermediate route (bend) points for
the arc, proceeding from the origin side to the destination
side. If no route it supplied, the arc will be a straight line
automatically clipped to the boundaries of the origin and
destination node. The form of each point is a pair whose car
is the x coordinate and whose cdr is the y coordinate. Units
are pixels, and y=0 is the top of the editing area.

(define g (new-top-model DFDGraph))

(define n1 (new-in DFDProcess g ’(100 . 100)))=> a
process node
 Alter Reference Manual 95

Model:Creation
(define n2 (new-in DFDProcess g ’(300 . 100)))=> a
process node

(new-in DFDDataflow g n1 n2 ’((200 . 50)))=> a data-
flow arc with one bend point

(edit g)

(new-top-model graphmodel-class) ⇒ graphmodel
Creates a new instance of the given graphmodel class and
initializes it as a new top-level model (i.e., it has no parent).
New-top-model does NOT open an editor window on the
resulting instance. The edit operation will do this. See also
new-child-model, nodes, arcs, new-in.

(write-bitmap graphmodel filename format) ⇒ nil
Writes a bitmap of the graph into the specified filename
using the indicated format. Supported formats are currently
’gif, ’mif (Maker Interchange Format; ’frame and ’frame-
maker are aliases), ’xwd and ’eps (Encapsulated PostScript;
’epsf is an alias).
96

Model:Dependencies
Model:Dependencies 24
(add-interest grapething aspect lambda interestedobject [role]) ⇒ nil

Create a dependency on the first argument so that an action
is triggered when it changes. Specifically, the given lambda
expression is executed every time the specified "aspect" of
the object changes. The lambda expression is passed the
changed object, the aspect that changed (e.g., name) and the
previous value (e.g., "foo") as parameters.

Two additional parameters are given to add-interest to make
it easier to remove the dependencies. The first of these, the
fourth argument to add-interest, is the dependent. In typical
usage, the lambda expression will execute some behavior on
the dependent, such as updating a property or re-propagat-
ing the change in another direction. If the dependent goes
away for some reason, DOME will automatically remove the
dependencies registered against it.

If a dependent needs to be able to selectively remove depen-
dencies, the optional sixth argument may be used to create
such dependencies. This same symbol can be given to
remove-interest.

The second (aspect) and optional fifth (role) arguments may
be either strings or symbols.

Example: Display a message to the user when the descrip-
tion changes:

(add-interest self ’description

(lambda (changed-object changed-
aspect old-value)

(message-to-user

(append old-value " -> "

(description changed-object))))

self)

See also remove-interest.

(remove-interest grapething aspect interestedobject [role]) ⇒ nil
Remove a previously created dependency on the first argu-
 Alter Reference Manual 97

Model:Dependencies
ment. The second argument indicates the aspect or property
of interest; all dependencies observing that aspect and
whose dependent matches the third argument are removed.
If the optional fourth argument is supplied, the dependen-
cies must also have been created with that role.

If none of the dependencies match the pattern derived from
the arguments, no

dependencies are removed.

Example: Remove the interest expressed earlier (see add-
interest)

(remove-interest self ’description self)

See also add-interest.
98

Model:Generating
Model:Generating 25
(document-generator-named grapething string) ⇒ generator

Return the first document generators applicable to the
receiver object whose name matches the string argument.

See also document-generators

(document-generators grapething) ⇒ list
Return the document generators applicable to the receiver
object (GrapEThing).

See also document-generator-named

(generate domegeneratorspec subject settings) ⇒ unspecified
Run the named document generator on the subject object
passed and given settings contained in the settings object.

Below is an simple example which outlines how this might
be used:

 (define test-generate

 (lambda (obj)

 (let ((generator nil) (settings nil))

 (set! generator (car (document-generators obj)))

 (set! settings (new-settings generator))

 (set-property! "outputType" settings ’window)

 (set-property! "outputFormat" settings "Text")

 (generate generator obj settings)

)

)

)

See also document-generators and new-settings.

(new-settings domegeneratorspec) ⇒ settings-object
Create and return a new settings object, the properties of
which determine how and where a generator will operate.
Common properties of the settings object include:

’filename

’outputFormat (’Text ’MIF)

’outputType (’window ’file ’directory)

See also generate
 Alter Reference Manual 99

Model:Generating
100

Model:Testing
Model:Testing 26
(any-changes? graphmodel) ⇒ #t or #f

Answer #t if the graphmodel or any graphmodel in the
model has any changes.

(has-name? grapething) ⇒ #t or #f
Answer #t if the grapething has a name.

(input-and-output? graphboundary) ⇒ #t or #f
Answer #t if the graphboundary can be used as both an
input and an output.

(input-only? graphboundary) ⇒ #t or #f
Answer #t if the graphboundary can be used only as an
input.

(input? graphboundary) ⇒ #t or #f
Answer #t if the graphboundary can be used as an input.

(is-kind-of? grapething class) ⇒ #t or #f
Given an object and a class, is-kind-of? returns #t if the object
is an instance of the class, and returns #f if it is not. Both the
object must be an instance of some non-basic class (a basic
class is one of the Scheme predefined types, e.g., integer,
symbol, string). Is-kind-of? is not defined on instances of
basic classes.

(logical-top-graph? graphmodel) ⇒ #t or #f
Answer #t if the graphmodel is the logical top graph. See
logical-top-graph.

(moveable? graphobject) ⇒ #t or #f
Answer #t if the user may interactive move the graphobject.

(output-only? graphboundary) ⇒ #t or #f
Answer #t if the graphboundary can be used only as an out-
put.

(output? graphboundary) ⇒ #t or #f
Answer #t if the graphboundary can be used as an output.

(resizable? graphobject) ⇒ #t or #f
Answer #t if the node may be resized by the user.

(selected? graphobject) ⇒ #t or #f
Answer #t if the graphobject is selected.

(top-model? graphmodel) ⇒ #t or #f
Answer #t if the graphmodel is the top model.
 Alter Reference Manual 101

Model:Testing
(visible? graphobject) ⇒ #t or #f
Answer #t if the graphobject is visible.
102

Model:User-Interface
Model:User-Interface 27
(bring-to-focus grapevisualthing) ⇒ unspecified

Raise/open the graphmodel that has the grapething and
then select the grapething.

(clear-selection graphobject) ⇒ unspecified
De-select the graphobject.

(close-model graphmodel) ⇒ unspecified
Confirm any potential loss of data with the user and then
close all editor windows open on any portion of the model.

(data-dictionary-edit grapething) ⇒ unspecified
Edit the grapething using the data dictionary editor.

(deletion-request? grapething) ⇒ #t or #f
Answer #t if the user should be allowed to delete this gra-
pething.

(deselect-all graphmodel) ⇒ unspecified
De-select all graphobjects in the graphmodel.

(display-errors list) ⇒ nil
The display-errors procedure displays the given list of errors
in a scrollable window so that the object with a problem can
be directly inspected or focussed on. The list is an associa-
tion list where the car of each association is a GrapEVisu-
alThing or a list of GrapEVisualThings, and the cdr is an
error message (a string).

(define g (new-top-model DFDGraph))

(display-errors (list (list g "Name Required")))

(edit-name grapevisualthing) ⇒ unspecified
Open a dialog to allow the user to rename the object.

(inspector-edit grapevisualthing) ⇒ unspecified
Edit the grapething using the inspector editor.

(move-to-back graphobject) ⇒ unspecified
Move the graphobject behind all other graphobjects.

(move-to-front graphobject) ⇒ unspecified
Move the graphobject in front of all other graphobjects.

(print graphmodel) ⇒ unspecified
Open a dialog to allow the user to print the graphmodel.

(refresh-display grapevisualthing) ⇒ unspecified
Redraw the given object.
 Alter Reference Manual 103

Model:User-Interface
(save graphmodel) ⇒ unspecified
Save the graphmodel. If the graphmodel has never been
saved then open a dialog to allow the user to save the graph-
model.

(save-as graphmodel) ⇒ unspecified
Open a dialog to allow the user to save the graphmodel.

(set-selection graphobject) ⇒ unspecified
Select the graphobject.

(square-route netarc) ⇒ unspecified
Square the route of the netarc.

(synchronize-display graphmodel) ⇒ nil
If the given graphmodel has an editor window open, syn-
chronize-display brings it up to date by forcing all pending
graphic operations to complete. The precise behavior of this
operation is host-specific.
104

Modules
Modules 28
(loaded-modules) ⇒ list

Returns a list of the modules currently loaded in the system.

(provide module) ⇒ boolean
Each module has a unique name (a string). The provide and
require functions accept either a string or a symbol as the
module-name argument. If a symbol is provided, its print-
name is used as the module name.

The provide procedure adds a new module name to the list
of modules, thereby indicating that the module in question
has been loaded.

(require module) ⇒ boolean
Each module has a unique name (a string). The provide and
require functions accept either a string or a symbol as the
module-name argument. If a symbol is provided, its print-
name is used as the module name.

The require function tests whether a module is already
present; if the module is not present, require proceeds to
load the appropriate file or set of files. The pathname argu-
ment, if present, is a single filename that is to be loaded. If
the pathname argument is not provided, the system will
attempt to determine which files to load by searching along
the DOME load-path as follows:

 - first, it will look for a file named module-name,

 - next, it will look for a file named module-name.alt,

 - last, it will look for a file named module-name.lib.

Alter also records the modified timestamp of a module’s file
when it loads it. If the module has already been loaded,
Alter will check the current timestamp of the file. If it is later
than the stored timestamp then Alter will re-load the mod-
ule.
 Alter Reference Manual 105

Modules
106

OS Interface
OS Interface 29
(shell command args...) ⇒ integer

Synchronously executes the command with the string args
and returns its exit status as an integer. Zero usually means
success; non-zero means failure.
 Alter Reference Manual 107

OS Interface
108

Packages
Packages 30
(all-packages) ⇒ list

Returns a list of all packages currently defined in the system.

(current-package) ⇒ package
Answer the package that symbols are searched for and cre-
ated in by default.

(delete-package package-name) ⇒ package
The package argument may be either a package or the name
of a package. If the package specified for deletion is cur-
rently used by other packages, unuse-package is performed
on all such packages so as to remove their dependency on
the specified package.

(export symbol [package]) ⇒ package
The symbols argument should be a list of symbols, or possi-
bly a single symbol. These symbols become accessible as
external symbols in package.

(exported-symbols package-name) ⇒ list
Returns a list of all symbols exported by package.

(find-package package-name) ⇒ package
The package argument should be a string or symbol. The
package with argument as a name is returned; if no such
package exists an error is signaled. If the argument is a pack-
age object then the argument is returned.

(import symbols exporting-package [importing-package]) ⇒ package
The symbols argument should be a list of symbols, or possi-
bly a single symbol. The exporting-package argument is the
package that the symbols are being imported from. These
symbols become internal symbols in importing-package and
can therefore be referred to without having to use qualified-
name (colon) syntax.

(in-package package-name) ⇒ package
This procedure currently does nothing except yield a nil
return value. It is included for compatibility with emacs lisp
modes.

(make-package package-name) ⇒ package
This creates and returns a new package with the specified
package name. The argument may be either a string or a
symbol.

(package-name package) ⇒ string
Answer the name of the package.
 Alter Reference Manual 109

Packages
(package-use-list package) ⇒ package
Returns a list of packages used by package.

(package-used-by-list package) ⇒ package
Returns a list of packages the use package.

(rename-package package new-package-name) ⇒ package
The new argument should be a string or symbol. The pack-
age argument is a string, symbol or package object. The old
name is eliminated and replaced by new.

(unexport symbol-or-list [package]) ⇒ package
The argument should be a list of symbols, or possibly a sin-
gle symbol. These symbols become internal symbols in pack-
age.

(unuse-package package-to-unuse [unusing-package]) ⇒ package
The packages-to-unuse argument should be a list of pack-
ages or packages names, or possibly a single package or
package name. These packages are removed from the use-
list of package.

(use-package package-to-use [using-package]) ⇒ used-package
The packages-to-use argument should be a list of packages
or package names, or possibly a single package or package
name. These packages are added to the use-list of package if
they are not there already. All external symbols in the pack-
ages to use become accessible in package as internal sym-
bols.
110

Points
Points 31
(point* point1 point2...) ⇒ point

This procedure returns the product of its argument points.
See "point?" for an explanation of how points are repre-
sented in Alter. This procedure is obsolete; use * which now
accepts both numbers and points.

(point* ’(5 . 2) ’(3 . 4))=> ’(15 . 8)

(point* #(5 2) #(3 4))=> #(15 8)

(point* ’(5 . 2) 3)=> ’(15 . 6)

(point* #(5 2) 4 ’(1 . 2))=> #(20 16)

(point+ point1 point2...) ⇒ point
This procedure returns the sum of its arguments, where the
first argument is a point and the rest of the arguments are
points or numbers. See "point?" for an explanation of how
points are represented in Alter. This procedure is obsolete;
use + which now accepts both numbers and points.

(point+ ’(1 . 2) ’(3 . 4))=> ’(4 . 6)

(point+ #(1 2) #(3 4))=> #(4 6)

(point+ ’(1 . 2) 3 4)=> ’(8 . 9)

(point+ #(1 2) 3 4)=> #(8 9)

(point- point1 point2...) ⇒ point
This procedure returns the difference of its arguments,
where the first argument is a point and the rest of the argu-
ments are points or numbers. See "point?" for an explana-
tion of how points are represented in Alter. This procedure
is obsolete; use - which now accepts both numbers and
points.

(point+ ’(5 . 2) ’(3 . 4))=> ’(2 . -2)

(point- #(5 2) #(3 4))=> #(2 -2)

(point- ’(5 . 2) 3 4)=> ’(-2 . -5)

(point- #(5 2) 3 4)=> #(-2 -5)

(point-max point rest...) ⇒ point
Returns the lower right corner of the rectangle that contains
all of the points passed as arguments. This function is obso-
lete; use max which now accepts both numbers and points.

(point-min ’(2 . 2) ’(1 . 3))=> ’(2 . 3)

(point-min #(3 2) #(3 1) #(2 4))=> ’(3 . 4)

(point-min point rest...) ⇒ point
Returns the upper left corner of the rectangle that contains
 Alter Reference Manual 111

Points
all of the points passed as arguments. This procedure is
obsolete; use min which now accepts both numbers and
points.

(point-min ’(2 . 2) ’(1 . 3))=> ’(1 . 2)

(point-min #(3 2) #(3 1) #(2 4))=> ’(2 . 1)

(point/ point1 point2...) ⇒ point
This procedure returns the quotient of its argument points.
See "point?" for an explanation of how points are repre-
sented in Alter. This procedure is obsolete; use / which now
accepts both numbers and points.

(point/ ’(6 . 2) ’(3 . 2))=> ’(2 . 1)

(point/ #(6 2) #(3 2))=> #(2 1)

(point/ ’(16 . 32) 4)=> ’(4 . 8)

(point/ #(40 40) 4 ’(1 . 2))=> #(10 5)

(point< pt1 pt2 pt3...) ⇒ #t or #f
Returns #t if both the x and y coordinates of the first point
are less than the x and y coordinates of the second point (see
"point?"). Otherwise returns #f. This procedure is obsolete;
use < which now accepts both numbers and points.

(point< ’(3 . 2) ’(4 . 5))=> #t

(point< ’(3 . 2) ’(2 . 2))=> #f

(point<= pt1 pt2 pt3...) ⇒ #t or #f
Returns #t if both the x and y coordinates of the first point
are less than or equal to the x and y coordinates of the sec-
ond point (see "point?"). Otherwise returns #f. This proce-
dure is obsolete; use <= which now accepts both numbers
and points.

(point<= ’(3 . 2) ’(4 . 2))=> #t

(point<= ’(3 . 2) ’(3 . 1))=> #f

(point> pt1 pt2 pt3...) ⇒ #t or #f
Returns #t if both the x and y coordinates of the first point
are greater than the x and y coordinates of the second point
(see "point?"). Otherwise returns #f. This procedure is obso-
lete; use > which now accepts both numbers and points.

(point> ’(3 . 2) ’(2 . 2))=> #f

(point> ’(3 . 2) ’(2 . 1))=> #t

(point>= pt1 pt2 pt3...) ⇒ #t or #f
Returns #t if both the x and y coordinates of the first point
are greater than or equal to the x and y coordinates of the
second point (see "point?"). Otherwise returns #f. This pro-
cedure is obsolete; use >= which now accepts both numbers
and points.
112

Points
(point>= ’(3 . 2) ’(2 . 2))=> #t

(point>= ’(3 . 2) ’(2 . 3))=> #f

(radius point) ⇒ number
Answer the polar coordinate system radius of the given
point.

(theta point) ⇒ number
Returns the angular component (in radians) of the ray repre-
sented by the given point (see "point?").

(theta ’(2 . 0)) => 0.0

(theta ’(5 . 5)) => 0.785398

(theta ’(-1 . 3)) => 1.89255

(theta ’(2 . -2)) => 5.49779

(x point) ⇒ number
Returns the x-coordinate of a point (see "point?").

(x ’(3 . 9)) => 3

(x #(2.5 7)) => 2.5

(y point) ⇒ number
Returns the y-coordinate of a point (see "point?").

(y ’(3 . 9)) => 9

(y #(2.5 7)) => 7
 Alter Reference Manual 113

Points
114

Printer Driver
Printer Driver 32
(background-color alter-graphics-context) ⇒ colorvalue

Given a graphics context instance, the background-color
operation returns a color value object that represent the cur-
rent background color used by the context.

(face alter-graphics-context) ⇒ string

(face grapething) ⇒ string

(face document-context) ⇒ string
Given a graphics context instance, the face operation returns
a string representing the current typeface for displaying text
objects. This operation is useful primarily in user-defined
DOME printer drivers. (See appendix.) The possible return
values are: "Helvetica", "Times", "Courier" and "Palatino".

(landscape alter-graphics-context) ⇒ #t or #f
Given a graphics context instance, the landscape operation
returns a boolean value indicating whether or not the user
selected landscape orientation in the print dialog. This oper-
ation is useful primarily in user-defined DOME printer driv-
ers. (See appendix.)

(line-style alter-graphics-context) ⇒ symbol

(line-style context) ⇒ symbol
This operation returns a symbol representing the current
dash pattern to be used when drawing lines. The symbol
returned is one of {normal simpledash longdash dot dashdot
dashdotdot phantom chain shortdash hidden}.

(line-width alter-graphics-context) ⇒ integer
Given a graphics context instance, the line-width operation
returns an integer value indicating how many pixels wide
the pen is for drawing lines. This operation is useful prima-
rily in user-defined DOME printer drivers. (See appendix.)

(paint alter-graphics-context) ⇒ array
Given a graphics context instance, the paint operation
returns a two-element vector; the first value is a colorvalue
instance representing the current pen color for drawing
objects and the second value is a symbol representing the
pen stroke style (’solid or ’gray). This operation is useful pri-
marily in user-defined DOME printer drivers. (See appen-
dix.) See also paintcolor, paintstyle. The result of the paint
operation is the same as the following (where gc is the
graphicscontext instance):

(let ((p (make-vector 2)))
 Alter Reference Manual 115

Printer Driver
 (vector-set! p 1 (paintcolor gc))

 (vector-set! p 2 (paintstyle gc))

 p)

(paint-color alter-graphics-context) ⇒ colorvalue
Given a graphics context instance, the paint-color operation
returns a colorvalue instance representing the current pen
color for drawing objects. This operation is useful primarily
in user-defined DOME printer drivers. (See appendix.) See
red, green, blue, hue, saturation, brightness, cyan, magenta
and yellow operations for extracting color components from
a colorvalue instance.

(paint-style alter-graphics-context) ⇒ symbol
Given a graphicscontext instance, returns a symbol repre-
senting the current pen drawing style (’solid or ’gray). This
operation is useful primarily for writing user-defined
DOME printer drivers (see appendix). See also paintcolor,
paint.

(relative-scale graphmodel) ⇒ number

(relative-scale alter-graphics-context) ⇒ number
Returns a value like 1.0 or 1.5 (150%), etc that can scale fonts
or other values.
116

Rectangles
Rectangles 33
(center rectangle) ⇒ point

Returns the point that lines at the center of the supplied rect-
angle. See "rectangle?" for a specification of how rectangles
are represented.

(center ’((3 . 8) . (5 . 12)))=> ’(4 . 10)

(center #(#(3 8) #(5 12)))=> ’(4 . 10)

(expand-rectangle rectangle expansion) ⇒ rectangle
Returns a new rectangle which represents the given rectan-
gle expanded by the specified expansion. The expansion
may be specified as a number, a point or a rectangle. If it is a
number, all sides of the rectangle are moved outward by the
specified amount. If it is a point, then the left and right sides
are expanded outward by the amount specified in the x com-
ponent of the point, and the top and bottom sides are
expanded outward by the amount specified in the y compo-
nent of the point. If the expansion is a rectangle, then the
left, top, right and bottom sides of the first argument are
expanded by the amounts specified for the left, top, right
and bottom of the expansion.

(expand-rectangle ’((3 . 8) . (5 . 12)) 1)=> ’((2 . 7) . (6 .
13))

(expand-rectangle ’((3 . 8) . (5 . 12)) ’(1 . 2))=> ’((2 . 6)
. (6 . 14))

(expand-rectangle ’((3 . 8) . (5 . 12)) ’((1 . 2) . (3 . 4))=>
’((2 . 6) . (8 . 16))

(extent rectangle) ⇒ number
Returns the extent (a point whose x represents the width and
whose y represents the height) of the supplied rectangle (see
"rectangle?").

(extent ’((3 . 8) . (5 . 12)))=> ’(2 . 4)

(height rectangle) ⇒ number
Returns the extent of the image in the y (vertical) direction.

(lower-left rectangle) ⇒ number
Returns the lower left corner of the rectangle (see "rectan-
gle?").

(lower-left ’((3 . 8) . (5 . 12)))=> ’(3 . 12)

(lower-left #(#(3 8) #(5 12)))=> ’(3 . 12)

(lower-right rectangle) ⇒ number
Returns the lower right corner of the rectangle (see "rectan-
 Alter Reference Manual 117

Rectangles
gle?").

(lower-right ’((3 . 8) . (5 . 12)))=> ’(5 . 12)

(lower-right #(#(3 8) #(5 12)))=> #(5 12)

(scale-rectangle rectangle scale) ⇒ rectangle
Returns a new rectangle which represents the given rectan-
gle scaled by the specified amount. The scale is specified as
a point or number. (See "rectangle?").

(scale-rectangle ’((3 . 8) . (5 . 12)) ’(1 . 2))=> ’((3 . 16) .
(5 . 24))

(scale-rectangle ’((3 . 8) . (5 . 12)) 5)=> ’((15 . 40) . (25 .
60))

(translate-rectangle rectangle translation) ⇒ rectangle
Returns a new rectangle which represents the given rectan-
gle translated by the specified amount. The translation is
specified as a point. (See "rectangle?"). The height and
width of the new rectangle are the same as the argument.

(translate-rectangle ’((3 . 8) . (5 . 12)) ’(1 . 2))=> ’((4 .
10) . (6 . 14))

(upper-left rectangle) ⇒ number
Returns the upper left corner of the rectangle (see "rectan-
gle?").

(upper-left ’((3 . 8) . (5 . 12)))=> ’(3 . 8)

(upper-left #(#(3 8) #(5 12)))=> #(3 8)

(upper-right rectangle) ⇒ number
Returns the upper right corner of the rectangle (see "rectan-
gle?").

(upper-right ’((3 . 8) . (5 . 12)))=> ’(5 . 8)

(upper-right #(#(3 8) #(5 12)))=> ’(5 . 8)

(width rectangle) ⇒ number
If given a rectangle, returns the width (in the x dimension) of
the supplied rectangle (see "rectangle?"). If given a string
and a graphics context, returns the width of the string in pix-
els based on the font currently installed on the graphics con-
text.

(width ’((3 . 8) . (5 . 12)))=> 2

(width #(#(3 8) #(5 12)))=> 2

(width “A” context)=> depends on current font
118

Registry
Registry 34
(identity identifier) ⇒ object

Return the object from the registry that has the given identi-
fier.

(register object) ⇒ identifier
Add the object to the registry and return an identifier that
may be used later for lookup.

(unregister identifier) ⇒ nil
Remove the identifier and its associated object from the reg-
istry.
 Alter Reference Manual 119

Registry
120

Rpc
Rpc 35
(open-client-socket hostname port) ⇒ input-output-port

Open a connection to the given host on the given port.
 Alter Reference Manual 121

Rpc
122

Smalltalk
Smalltalk 36
(smalltalk method object arguments...) ⇒ list

Provides a means of invoking an arbitrary Smalltalk
method. This is mainly used when prototyping DOME tools
using a VisualWorks/Smalltalk environment. It can also
serve as a means of accessing some DOME infrastructure
features that are not yet revealed via Alter, though this is not
recommended. The first argument to the method is the
receiver object. The second argument is a string encoding
the method handle, e.g., "name:". The remaining arguments
are supplied as arguments to the Smalltalk method. The
result of the Smalltalk method is returned as the result of
this Alter primitive.

Alter checks the method handle to make sure there are the
correct number of supplemental arguments. For example,
"name:" requires a single argument, whereas "in:at:" requires
two, and "class" requires none.
 Alter Reference Manual 123

Smalltalk
124

Strings
Strings 37
(make-string length [char]) ⇒ string

Make-string returns a newly allocated string of the specified
length. If char is given, then all elements of the string are
initialized to char, otherwise the contents of the string are
unspecified.

(string char rest...) ⇒ string
Returns a newly allocated string composed of the argu-
ments.

(string-append string1 string2...) ⇒ string
Returns a newly allocated string whose characters form the
concatenation of the given strings.

(string-append "a" "bc" "de")=> "abcde"

(string-copy string) ⇒ string
Returns a newly allocated copy of the given string.

(string-fill! string char) ⇒ string
Stores arg2 in every element of the given arg1 and returns an
unspecified value. See also make-string.

(string-length string) ⇒ integer
Returns the number of characters in the given string. See
also length.

(string-ref string index) ⇒ character
String-ref returns the indexth character of string using zero-
origin indexing.

(string-set! string index char) ⇒ string
String-set! stores char in the indexth position of string and
returns an unspecified value. String-set! uses zero-origin
indexing.

(define (f) (make-string 3 \#*))

(define (g) "***")

(string-set! (f) 0 #\?)=> unspecified

(string-set! (g) 0 #\?)=> error

(string-set! (symbol->string ’immutable) 0 #\?)=>
error

(substring string start end) ⇒ string
Substring returns a newly allocated string formed from the
characters of string beginning with index start (inclusive)
and ending with index end (exclusive).

(substring "abcdefg" 2 4)=> "cd"
 Alter Reference Manual 125

Strings
(substring "abc" 2 4)=> error

(substring "abc" 0 3)=> "abc"

(substring-index string substring [start]) ⇒ number-or-nil
Returns the zero-based index of the first occurrence of the
specified substring in the argument string. If start is speci-
fied, the search begins at that index rather than at the begin-
ning. Nil is returned if the substring does not occur in the
searched range, or if the specified start index is past the end
of the string.

(substring-index "abcdefg" "cd")=> 2

(substring-index "abcdabcd" "cd" 4)=> 6

(substring-index "qrs" "cd")=> nil
126

Testing
Testing 38
(= num1 num2 num3...) ⇒ #t or #f

This procedures returns #t if its arguments are equal. = is
transitive.

The traditional implementations of = in Lisp-like languages
are not transitive.

While it is not an error to compare inexact numbers using =,
the results may be unreliable because a small inaccuracy
may affect the result; this is especially true of =.

(boolean? object) ⇒ #t or #f
Boolean? returns #t if sexpr is either #t or #f and returns #f
otherwise.

(boolean? #f) => #t

(boolean? 0) => #f

(boolean? ’()) => #f

(bound? symbol) ⇒ #t or #f
Returns #t if the symbol is bound to a value in the current
lexical environment, otherwise returns #f.

(char-alphabetic? char) ⇒ #t or #f
This procedure returns #t if its argument is alphabetic, other-
wise it returns #f. The alphabetic characters are the 52 upper
and lower case letters. See also char-numeric?, char-
whitespace?, char-upper-case? and char-lower-case?.

(char-ci<=? arg1 arg2) ⇒ #t or #f
This procedure is similar to char<=?, but treats upper case
and lower case letters as the same. For example, (char-ci<=?
#\a #\B) returns #t, whereas (char<=? #\a #\B) returns #f.

(char-ci<? arg1 arg2) ⇒ #t or #f
This procedure is similar to char<?, but treats upper case and
lower case letters as the same. For example, (char-ci<? #\a
#\B) returns #t, whereas (char<? #\a #\B) returns #f.

(char-ci=? arg1 arg2) ⇒ #t or #f
This procedure is similar to char=?, but treats upper case and
lower case letters as the same. For example, (char-ci=? #\A
#\a) returns #t.

(char-ci>=? arg1 arg2) ⇒ #t or #f
This procedure is similar to char>=?, but treats upper case
and lower case letters as the same. For example, (char-ci>=?
#\a #\B) returns #t, whereas (char>=? #\a #\B) returns #f.
 Alter Reference Manual 127

Testing
(char-ci>? arg1 arg2) ⇒ #t or #f
This procedure is similar to char>?, but treats upper case and
lower case letters as the same. For example, (char-ci>? #\A
#\b) returns #t, whereas (char>? #\A #\b) returns #f.

(char-lower-case? char) ⇒ #t or #f
The procedures return #t if its argument is a lower case char-
acter, otherwise it returns #f. The alphabetic characters are
the 52 upper and lower case letters. See also char-
whitespace?, char-numeric?, char-whitespace? and char-
upper-case?.

(char-numeric? char) ⇒ #t or #f
This procedure returns #t if its argument is numeric, other-
wise it returns #f. The numeric characters are the ten deci-
mal digits. See also char-alphabetic?, char-whitespace?,
char-upper-case? and char-lower-case?.

(char-upper-case? char) ⇒ #t or #f
This procedure returns #t if its argument is upper case, oth-
erwise it returns #f. The alphabetic characters are the 52
upper and lower case letters. See also char-whitespace?,
char-numeric?, char-whitespace? and char-lower-case?

(char-whitespace? char) ⇒ #t or #f
This procedure returns #t if its argument is whitespace, oth-
erwise it returns #f. The whitespace characters are space,
tab, line feed, form feed and carriage return. See also char-
alphabetic?, char-numeric?, char-upper-case? and char-
lower-case?

(char<=? arg1 arg2) ⇒ #t or #f
Returns #t if the character represented by the first argument
is the same as or precedes the character represented by the
second argument, assuming a total ordering on the set of
characters.

(char<? arg1 arg2) ⇒ #t or #f
Returns #t if the character represented by the first argument
precedes the character represented by the second argument,
assuming a total ordering on the set of characters.

(char=? arg1 arg2) ⇒ #t or #f
Returns #t if the two arguments represent the same charac-
ter.

(char>=? arg1 arg2) ⇒ #t or #f
Returns #t if the character represented by the first argument
is the same as or follows the character represented by the
second argument, assuming a total ordering on the set of
characters.
128

Testing
(char>? arg1 arg2) ⇒ #t or #f
Returns #t if the character represented by the first argument
follows the character represented by the second argument,
assuming a total ordering on the set of characters.

(char? object) ⇒ #t or #f
Returns #t if sexpr is a character, otherwise returns #f.

(class? object) ⇒ #t or #f
Returns true if the given object represents a grapething-class
or one of

its subclasses; returns false otherwise.

(class? 5) => #f

(class? integer-type)=> #t

(class? grapething)=> #t

(class? ’node) => #f

(class? (make type ’() ’()))=> #f

(color? object) ⇒ #t or #f
Returns true if the given object is an instance of color-type;
returns false otherwise. See palette, colors.

(dictionary? object) ⇒ #t or #f
Returns true if the given object is a dictionary instance (see
make-dictionary); returns false otherwise.

(directory? filename-type) ⇒ #t or #f
Returns #t if the filename represents a directory on the host
system. Returns #f otherwise.

(eof-object? object) ⇒ #t or #f
Returns #t if arg is an end of file object, otherwise returns #f.
The precise set of end of file objects will vary among imple-
mentations, but in any case no end of file object will ever be
an object that can be read in using read.

(eq? arg1 arg2) ⇒ #t or #f
Eq? is similar to eqv? except that in some cases it is capable
of discerning distinctions finer than those detectable by
eqv?.

Eq? and eqv? are guaranteed to have the same behavior on
symbols, booleans, the empty list, pairs, and non-empty
strings and vectors. Eq?’s behavior on numbers and charac-
ters is implementation-dependent, but it will always return
either true or false, and will return true only when eqv?
would also return true. Eq? may also behave differently
from eqv? on empty vectors and empty strings.

(eq? ’a ’a) => #t

(eq? ’(a) ’(a)) => unspecified
 Alter Reference Manual 129

Testing
(eq? (list ’a)

 (list ’a)) => #f

(eq? "a" "a") => unspecified

(eq? "" "") => unspecified

(eq? ’() ’()) => #t

(eq? 2 2) => unspecified

(eq? #\A #\A) => unspecified

(eq? car car) => #t

(let ((n (+ 2 3)))

 (eq? n n)) => unspecified

(let ((x ’(a)))

 (eq? x x)) => #t

(let ((x ’#()))

 (eq? x x)) => #t

(let ((p (lambda (x) x)))

 (eq? p p)) => #t

(equal? arg1 arg2) ⇒ #t or #f
Equal? recursively compares the contents of pairs, vectors,
and strings, applying eqv? on other objects such as numbers
and symbols. A rule of thumb is that objects are generally
equal? if they print the same. Equal? may fail to terminate if
its arguments are circular data structures.

(equal? ’a ’a) => #t

(equal? ’(a) ’(a))=> #t

(equal? ’(a (b) c)

 ’(a (b) c)) => #t

(equal? "abc" "abc")=> #t

(equal? 2 2) => #t

(equal? (make-vector 5 ’a)

 (make-vector 5 ’a))=> #t

(equal? (lambda (x) x)

 (lambda (y) y))=> unspecified

(eqv? arg1 arg2) ⇒ #t or #f
The eqv? procedure defines a useful equivalence relation on
objects. Briefly, it returns #t if arg1 and arg2 should normally
be regarded as the same object. This relation is left slightly
open to interpretation, but the following partial specification
of eqv? holds for all implementations of Scheme.

The eqv? procedure returns #t if:

 arg1 and arg2 are both #t or both #f.
130

Testing
 arg1 and arg2 are both symbols and

 (string=?

 (symbol->string arg1)

 (symbol->string arg2))

=> #t

 Note: This assumes that neither arg1 nor arg2 is an ‘‘unin-
terned symbol’’.

 arg1 and arg2 are both numbers, are numerically equal (see
=), and are either both exact or both inexact.

 arg1 and arg2 are both characters and are the same charac-
ter according to the char=? procedure both arg1 and arg2 are
the empty list.

 arg1 and arg2 are pairs, vectors, or strings that denote the
same locations in the store.

 arg1 and arg2 are procedures whose location tags are equal

The eqv? procedure returns #f if:

 arg1 and arg2 are of different types

 one of arg1 and arg2 is #t but the other is #f

 arg1 and arg2 are symbols but

 (string=?

 (symbol->string arg1)

 (symbol->string arg2))

=> #f

 one of arg1 and arg2 is an exact number but the other is an
inexact number.

 arg1 and arg2 are numbers for which the = procedure
returns #f.

 arg1 and arg2 are characters for which the char=? proce-
dure returns #f.

 one of arg1 and arg2 is the empty list but the other is not.

 arg1 and arg2 are pairs, vectors, or strings that denote dis-
tinct locations.

 arg1 and arg2 are procedures that would behave differently
(return a different value or have different side effects) for
some arguments.

(eqv? ’a ’a) => #t

(eqv? ’a ’b) => #f

(eqv? 2 2) => #t

(eqv? ’() ’()) => #t

(eqv? 100000000 100000000)=> #t

(eqv? (cons 1 2) (cons 1 2))=> #f
 Alter Reference Manual 131

Testing
(eqv? (lambda () 1)

 (lambda () 2))=> #f

(eqv? #f ’nil) => #f

(let ((p (lambda (x) x)))

 (eqv? p p)) => #t

The following examples illustrate cases in which the above
rules do not fully specify the behavior of eqv?. All that can
be said about such cases is that the value returned by eqv?
must be a boolean.

(eqv? "" "") => unspecified

(eqv? ’#() ’#()) => unspecified

(eqv? (lambda (x) x)

 (lambda (x) x))=> unspecified

(eqv? (lambda (x) x)

 (lambda (y) y))=> unspecified

The next set of examples shows the use of eqv? with proce-
dures that have local state. Gen-counter must return a dis-
tinct procedure every time, since each procedure has its own
internal counter. Gen-loser, however, returns equivalent pro-
cedures each time, since the local state does not affect the
value or side effects of the procedures.

 (define gen-counter

 (lambda ()

 (let ((n 0))

 (lambda () (set! n (+ n 1)) n))))

 (let ((g (gen-counter)))

 (eqv? g g))=> #t

 (eqv? (gen-counter) (gen-counter))=> #f

 (define gen-loser

 (lambda ()

 (let ((n 0))

 (lambda () (set! n (+ n 1)) 27))))

 (let ((g (gen-loser))) (eqv? g g))=> #t

 (eqv? (gen-loser) (gen-loser))=> unspecified

 (letrec

 ((f (lambda () (if (eqv? f g) ’both ’f)))

 (g (lambda () (if (eqv? f g) ’both ’g))))

 (eqv? f g))=> unspecified
132

Testing
 (letrec

 ((f (lambda () (if (eqv? f g) ’f ’both)))

 (g (lambda () (if (eqv? f g) ’g ’both))))

 (eqv? f g))=> #f

Since it is an error to modify constant objects (those returned
by literal expressions), implementations are permitted,
though not required, to share structure between constants
where appropriate. Thus the value of eqv? on constants is
sometimes implementation-dependent.

(eqv? ’(a) ’(a)) => unspecified

(eqv? "a" "a") => unspecified

(eqv? ’(b) (cdr ’(a b)))=> unspecified

(let ((x ’(a))) (eqv? x x))=> #t

The above definition of eqv? allows implementations lati-
tude in their treatment of procedures and literals: implemen-
tations are free either to detect or to fail to detect that two
procedures or two literals are equivalent to each other, and
can decide whether or not to merge representations of equiv-
alent objects by using the same pointer or bit pattern to rep-
resent both.

(even? object) ⇒ #t or #f
This procedure returns #t if its argument is even (a multiple
of 2). The result for inexact numbers may be unreliable
because of small inaccuracies.

(exact? object) ⇒ #t or #f
Exact? provides a test for the exactness of a quantity. For
any Alter number, either exact? or inexact? is true, but not
both.

(exists filename-type) ⇒ #t or #f
Returns #t if the specified file exists, otherwise returns #f.

(exists? filename-type) ⇒ #t or #f
Returns #t if the specified file exists, otherwise returns #f.

(grape? object) ⇒ #t or #f
Returns true if the given object is an instance of grapething
or one of its many subclasses. Returns false otherwise.

(inexact? object) ⇒ #t or #f
Exact? provides a test for the exactness of a quantity. For
any Alter number, either exact? or inexact? is true, but not
both.

(input-port? object) ⇒ #t or #f
Returns #t if the given port is an input port, otherwise
returns #f. See open-input-file.
 Alter Reference Manual 133

Testing
(integer? object) ⇒ #t or #f
Integer? can be applied to any kind of argument, including
non-numbers. It returns #t if the object is an integer, and
otherwise it returns #f.

If integer? is true of a number then all higher type predicates
are also true of that number. Consequently, if integer? is
false of a number, then all lower type predicates are also
false of that number.

If x is an inexact real number, then (integer? x) is true if and
only if (= x (round x)).

(integer? 3.0) => #t

(integer? 8/4) => #t

The behavior of integer? on inexact numbers is unreliable,
since any inaccuracy may affect the result.

See also number?, complex?, real?, and rational?

(is-a? object type) ⇒ #t or #f
Returns #t if object is an instance of type or one of its sub-
types. (is-a? object object-type) is always true.

(is-a? object-type type)=> #t

(is-a? type object-type)=> #t

(is-a? operation type)=> #t

(is-a? is-a? procedure-type)=> #t

(is-a? is-a? type)=> #f

(is-a? (make object-type) type)=> #f

(list? object) ⇒ #t or #f
Returns #t if sexpr is a list, otherwise returns #f. By defini-
tion, all lists have finite length and are terminated by the
empty list. For this reason, it may take list? a fair amount of
time to determine its answer if given a very long list.

(list? ’(a b c)) => #t

(list? ’()) => #t

(list? ’(a . b)) => #f

(let ((x (list ’a)))

 (set-cdr! x x)

 (list? x)) => #f

(negative? object) ⇒ #t or #f
This procedure returns #t if its argument is less than zero.
The result for inexact numbers may be unreliable because of
small inaccuracies.

(nil? object) ⇒ #t or #f
Returns true if the given object is eq? to the nil object (there
134

Testing
is only one in Alter). Returns false otherwise.

(null? object) ⇒ #t or #f
Returns #t if sexpr is the empty list, otherwise returns #f.

(number? object) ⇒ #t or #f
Number? can be applied to any kind of argument, including
non-numbers. It returns #t if the object is a number, and oth-
erwise it returns #f.

(number? ’a) => #f

(number? 3) => #t

(number? 3.1415)=> #t

(object? object) ⇒ #t or #f
Returns true for any Alter object.

(odd? object) ⇒ #t or #f
This procedure returns #t if its argument is odd (exactly half-
way between two adjacent multiples of 2). The result for
inexact numbers may be unreliable because of small inaccu-
racies.

(operation? object) ⇒ #t or #f
Returns true if the given object represents an operation, as
defined by make or find-operation; returns false otherwise.

(operation? new-in)=> #t

(operation? car)=> #f

(output-port? object) ⇒ #t or #f
Returns #t if the given port is an output port, otherwise
returns #f. See open-output-file and terminal.

(pair? object) ⇒ #t or #f
Pair? returns #t if sexpr is a pair, and otherwise returns #f. If
(list? foo) is true, then (pair? foo) will be true.

(pair? ’(a . b)) => #t

(pair? ’(a b c)) => #t

(pair? ’()) => #f

(pair? ’#(a b)) => #f

(point? object) ⇒ boolean
Answers #t if the argument is a point, #f otherwise. A point
is either a two-element vector of the form #(x y), or a pair of
the form (x . y), where x and y are both numbers.

(port? object) ⇒ #t or #f
Returns #t if the given object is either an input port or an
output port. Otherwise returns #f. See open-input-file,
open-output-file and terminal.
 Alter Reference Manual 135

Testing
(positive? object) ⇒ #t or #f
This procedure returns #t if its argument is greater than zero.
The result for inexact numbers may be unreliable because of
small inaccuracies.

(procedure? object) ⇒ #t or #f
Returns #t if sexpr is a procedure, otherwise returns #f.

(procedure? car)=> #t

(procedure? ’car)=> #f

(procedure? (lambda (x) (* x x)))=> #t

(procedure? ’(lambda (x) (* x x)))=> #f

(call-with-current-continuation procedure?)=> #t

(rational? object) ⇒ #t or #f
Rational? can be applied to any kind of argument, including
non-numbers. It returns #t if the object is a rational, and oth-
erwise it returns #f.

If rational? is true of a number then all higher type predi-
cates are also true of that number. Consequently, if rational?
is false of a number, then all lower type predicates are also
false of that number.

(rational? (/ 6 10))=> #t

(rational? (/ 6 3))=> #t

The behavior of rational? on inexact numbers is unreliable,
since any inaccuracy may affect the result.

See also number?, complex?, real? and integer?.

(real? object) ⇒ #t or #f
Real? can be applied to any kind of argument, including
non-numbers. It returns #t if the object is a real number,
and otherwise it returns #f.

If real? is true of a number then all higher type predicates are
also true of that number. Consequently, if real? is false of a
number, then all lower type predicates are also false of that
number.

If z is an inexact complex number, then (real? z) is true if and
only if (zero? (imag-part z)) is true. If x is an inexact real
number, then (integer? x) is true if and only if (= x (round x)).

(real? 3) => #t

(real? -2.5+0.0i)=> #t

(real? #e1e10) => #t

See also number?, complex?, rational? and integer?.

(rectangle? object) ⇒ boolean
Answers #t if the argument is a rectangle, #f otherwise. A
136

Testing
rectangle is either a two-element vector whose first element
is the upper-left point and second element is the lower-right
point (i.e., #(#(<upper-left-x> <upper-left-y>) #(<lower-
right-x> <lower-right-y>))), or a pair whose car is the upper
left point and whose cdr is the lower right point (i.e.,
((<upper-left-x> . <upper-left-y>) . (<lower-right-x> <lower-
right-y>))). Alter uses the convention that the x coordinates
increase rightward, whereas y coordinates increase down-
ward (as do screen coordinates).

(string-ci<=? string1 string2) ⇒ #t or #f
This procedure is a lexicographic extension to strings of the
corresponding ordering on characters. String-ci<=? is the
lexicographic ordering on strings induced by the ordering
char-ci<=? on characters. If two strings differ in length but
are the same up to the length of the shorter string, the
shorter string is considered to be lexicographically less than
the longer string.

(string-ci<? string1 string2) ⇒ #t or #f
This procedure is a lexicographic extension to strings of the
corresponding ordering on characters. String-ci<? is the lex-
icographic ordering on strings induced by the ordering char-
ci<? on characters. If two strings differ in length but are the
same up to the length of the shorter string, the shorter string
is considered to be lexicographically less than the longer
string.

(string-ci=? string1 string2) ⇒ #t or #f
Returns #t if the two strings are the same length and contain
the same characters in the same positions, otherwise returns
#f. String-ci=? treats upper and lower case letters as though
they were the same character. See string=?.

(string-ci=? "abc" (string #\a #\b #\c))=> #t

(string-ci=? "ABC" "abc")=> #t

(string-ci=? "ab" "AbC")=> #f

(string-ci>=? string1 string2) ⇒ #t or #f
This procedure is a lexicographic extension to strings of the
corresponding ordering on characters. String-ci>=? is the
lexicographic ordering on strings induced by the ordering
char-ci>=? on characters. If two strings differ in length but
are the same up to the length of the shorter string, the longer
string is considered to be lexicographically greater than the
longer string.

(string-ci>? string1 string2) ⇒ #t or #f
This procedure is a lexicographic extension to strings of the
corresponding ordering on characters. String-ci>? is the lex-
icographic ordering on strings induced by the ordering char-
 Alter Reference Manual 137

Testing
ci>? on characters. If two strings differ in length but are the
same up to the length of the shorter string, the longer string
is considered to be lexicographically greater than the longer
string.

(string-empty? string1) ⇒ #t or #f
Returns #t if the string is the empty string.

(string-empty? "abc")=> #f

(string-empty? "")=> #t

(string<=? string1 string2) ⇒ #t or #f
This procedure is a lexicographic extension to strings of the
corresponding ordering on characters. String<=? is the lexi-
cographic ordering on strings induced by the ordering
char<=? on characters. If two strings differ in length but are
the same up to the length of the shorter string, the shorter
string is considered to be lexicographically less than the
longer string.

(string<? string1 string2) ⇒ #t or #f
This procedure is a lexicographic extension to strings of the
corresponding ordering on characters. String<? is the lexico-
graphic ordering on strings induced by the ordering char<?
on characters. If two strings differ in length but are the same
up to the length of the shorter string, the shorter string is
considered to be lexicographically less than the longer
string.

(string=? string1 string2) ⇒ #t or #f
Returns #t if the two strings are the same length and contain
the same characters in the same positions, otherwise returns
#f. String=? treats upper and lower case as distinct charac-
ters. See also string-ci=?.

(string=? "abc" (string #\a #\b #\c))=> #t

(string=? "ABC" "abc")=> #f

(string>=? string1 string2) ⇒ #t or #f
This procedure is a lexicographic extension to strings of the
corresponding ordering on characters. String>=? is the lexi-
cographic ordering on strings induced by the ordering
char>=? on characters. If two strings differ in length but are
the same up to the length of the shorter string, the longer
string is considered to be lexicographically greater than the
longer string.

(string>? string1 string2) ⇒ #t or #f
This procedure is a lexicographic extension to strings of the
corresponding ordering on characters. String>? is the lexico-
graphic ordering on strings induced by the ordering char>?
on characters. If two strings differ in length but are the same
138

Testing
up to the length of the shorter string, the longer string is con-
sidered to be lexicographically greater than the longer
string.

(string? object) ⇒ #t or #f
Returns #t if sexpr is a string, otherwise returns #f.

(subtype? object type) ⇒ #t or #f
Returns #t if object is type or a subtype of type. In Alter
types are subtypes of themselves.

(subtype? type type)=> #t

(subtype? object-type type)=> #f

(subtype? type object-type)=> #t

(subtype operation object-type)=> #t

(symbol? object) ⇒ #t or #f
Returns #t if sexpr is a symbol, otherwise returns #f.

(symbol? ’foo) => #t

(symbol? (car ’(a b)))=> #t

(symbol? "bar")=> #f

(symbol? ’nil) => #t

(symbol? ’()) => #f

(symbol? #f) => #f

(thunk? object) ⇒ #t or #f
Returns #t if the object is a procedure or operation, otherwise
it returns #f.

(thunk? car) => #t

(thunk? length)=> #t

(procedure? length)=> #f

(operation? length)=> #t

(type? object) ⇒ #t or #f
Returns true if the argument is a type.

(type? type) => #t

(type? object-type)=> #t

(type? (make object-type))=> #f

(type? type?) => #f

(type? operation)=> #t

(type? (make type ’() ’(object-type)))=> #t

(vector? object) ⇒ #t or #f
Returns #t if sexpr is a vector, otherwise returns #f.

(writable? filename-type) ⇒ #t or #f
Returns #t if the filename represents a file than can be
 Alter Reference Manual 139

Testing
opened for writing. Otherwise returns #f. The file must
exist, or Alter will raise an error.

(zero? object) ⇒ #t or #f
This procedure returns #t if its argument is exactly equal to
zero. The result for inexact numbers may be unreliable
because of small inaccuracies.
140

Types
Types 39
(all-ivars type) ⇒ list

Returns a list of symbols that represent the instance vari-
ables for the argument and all of its supertypes. Equivalent
to appending the results of calling ivars on the result of (cons
type (all-supertypes type)).

(all-subtypes type) ⇒ list
Returns a list containing the argument, each of the argu-
ment’s immediate subtypes and the elements contained in
the result of applying all-subtypes to each of the argument’s
immediate subtypes with duplicates removed.

(all-supertypes type) ⇒ list
Returns a list containing each of the argument’s immediate
supertypes and the elements contained in the result of
applying all-supertypes to each of the argument’s immediate
supertypes with duplicates removed.

(get-type object) ⇒ type
Returns the type of the argument.

(get-type object-type)=> type

(get-type (make object-type))=> object-type

(get-type (make type ’() ’(object-type)))=> type

(initialize type) ⇒ type

(initialize object) ⇒ object
Performs any necessary initialization on the object and
returns the initialized object. Initialize is called automati-
cally by the operation make.

(ivars type) ⇒ list
Returns a list of symbols that represent the instance vari-
ables for the argument.

(subtypes type) ⇒ list
Returns a list containing the argument and each of its imme-
diate subtypes.

(supertypes type) ⇒ list
Returns a list containing the argument’s immediate super-
types.
 Alter Reference Manual 141

Types
142

User Requests
User Requests 40
(confirm message [initialanswer [yesstring [nostring]]]) ⇒ #t or #f

Pops up a dialog window with two buttons. The window is
labeled with the given string. The second and remaining
arguments are optional. If the second argument is given, it
must be a boolean indicating which button is to be the
default (the one considered "pressed" if the user hits the
Return key on the keyboard). The third argument, if
present, is a string that is used as the label for the true-val-
ued button. The fourth argument, if present, is a string that
is used as the label for the false-valued button. Confirm
returns a boolean value corresponding to the button that
was chosen by the user.

(request-directory-name [filename]) ⇒ filename
Pops up a dialog window prompting the user to designate
an existing directory to use in a subsequent activity. Returns
a filename, unless the user cancels the operation, in which
case it returns nil.

(request-file-name [filename]) ⇒ filename
Pops up a dialog window prompting the user to designate
an existing file to use in a subsequent activity. Returns a file-
name, unless the user cancels the operation, in which case it
returns nil.

(request-new-file-name [filename]) ⇒ filename
Pops up a dialog window prompting the user to designate a
new file to use in a subsequent activity. Returns a filename,
unless the user cancels the operation, in which case it returns
nil.

(user-choose message labels values default [equalize]) ⇒ symbol
Pops up a dialog window prompting the user to choose one
element from a list, or to cancel the decision. The first argu-
ment is the string to serve as the message to prompt the user.
The second argument is a list of strings used to label the var-
ious buttons that will be created. The third argument is a list
of symbols, one for each button. One of these symbols will
be returned, indicating which button was pressed. The
fourth argument is a symbol that must match one of the
symbols in the list given in the third argument, and specifies
which button will be the default (the one considered
"pressed" if the user hits the Return key). The fifth (optional)
argument is a boolean value specifying whether or not to
make the buttons all the same width, or to vary their widths
depending on the string labels (default is to equalize the
 Alter Reference Manual 143

User Requests
widths).

(user-choose-from-list message labels values default [cancel [max-lines [buttons
button-values]]]) ⇒ object

Pops up a dialog window prompting the user to choose one
element from a list, or to cancel the decision. The first argu-
ment is the string to serve as the message to prompt the user.
The second argument is a list of strings used to label the
items in the list. The third argument is a list of objects, one
for each list item. One of these objects will be returned, indi-
cating which item was selected. The fourth argument is an
object that must match one of the objects in the list given in
the third argument, and specifies which list item will be the
default (the one initially selected when the dialog opens).
The fifth argument is an object that is returned if the cancel
button is pressed. The sixth (optional) argument is an inte-
ger value specifying the number of lines in the list to show at
once. The seventh (optional) argument is another list of
strings which serves as the labels for a set of additional but-
tons. The eighth (optional) argument must be included if
the seventh argument is included. This argument is a list
objects, one for each string in the seventh argument, that are
returned when one of the additional buttons are pressed.

(warn message [text]) ⇒ nil
Pops up a modal (dialog) window with the given message
and a single button (labeled "OK") that the user must press
(or, equivalently, hit the Return key) in order to continue
with further DOME activity.
144

Vectors
Vectors 41
(make-vector size [fillval]) ⇒ vector

Returns a newly allocated vector of size elements. If a sec-
ond argument is given, then each element is initialized to
fillval. Otherwise the initial contents of each element is
unspecified.

(vector items...) ⇒ vector
Returns a newly allocated vector whose elements contain
the given arguments. Analogous to list.

(vector ’a ’b ’c) => #(a b c)

(vector-fill! vector obj) ⇒ vector
Stores arg2 in every element of arg1. The value returned by
vector-fill! is unspecified.

(vector-length vector) ⇒ integer
Returns the number of elements in vector.

(vector-length #(1 2 3))=> 3

(vector-ref vector k) ⇒ object
Vector-ref returns the kth element of vector.

(vector-ref ’#(1 1 2 3 5 8 13 21) 5)=> 8

(vector-ref ’#(1 1 2 3 5 8 13 21)

 (inexact->exact (round (* 2 (acos -1)))))

=> 13

(vector-set! vector k obj) ⇒ object
Vector-set! stores obj in element k of vector. The value
returned by vector-set! is unspecified.

(let ((vec (vector 0 ’(2 2 2 2) "Anna")))

 (vector-set! vec 1 ’("Sue" "Sue"))

 vec) => #(0 ("Sue" "Sue") "Anna")

(vector-set! ’#(0 1 2) 1 "doe")=> error ; constant vec-
tor
 Alter Reference Manual 145

Vectors
146

Index

Symbols
 18
- 17
* 17
+ 17
/ 17
= 127
> 18
>= 18
^super 34

A
abs 19
accessories 85
acos 81
add-binding-named 85
add-child 85
add-interest 97
add-method 41
all-ivars 141
all-packages 109
all-subtypes 141
all-supertypes 141
and 79
any-changes? 101
append 23
apply 29
archetype 85
archetype? 85
archetype-shelf 85
archetypifiable? 85
arcs 85
as-backup 35
asin 81
assoc 59
assq 59
assv 59
atan 81

B
background-color 115
baseline 86
begin 29

binding-named 86
bindings 41
blue 27
bold 65
boolean? 127
border-bounds 86
bottom-margin 53
bound? 127
bounds 86
brightness 27
bring-to-focus 103

C
call/cc 29
call-with-current-continuation 29
car 75
category 83
cdr 75
ceiling 19
center 117
char 128, 128
char=? 128
char>=? 128
char>? 129
char->integer 35
char? 129
char-alphabetic? 127
char-ci 127, 127
char-ci=? 127
char-ci>=? 127
char-ci>? 128
char-downcase 35
char-lower-case? 128
char-numeric? 128
char-ready? 69
char-upcase 35
char-upper-case? 128
char-whitespace? 128
class? 129
clear-selection 103
close 69
close-input-port 69
close-model 103
close-output-port 69
color 86
 Alter Reference Manual Index-147

Index
color? 129
commit 69
components 86
cond 31
configurations 86
confirm 143
cons 75
construct 63
container 86
contents 69
copy 41
copy-to 61
copy-without 23
cos 81
cr 53
current-binding 86
current-configuration 86
current-directory 63
current-input-port 69
current-output-port 69
current-package 109
cyan 27

D
data-dictionary-edit 103
dates 83
date-today 83
dec-indent-level! 53
default-child-type 87
default-font-description 65
define 42
delete 61
delete-package 109
deletion-request? 103
denominator 19
description 87
deselect-all 103
destination 87
detect 59
dictionary->list 49
dictionary? 129
dictionary-keys 49
dictionary-ref 49
dictionary-set! 49
dictionary-unset! 50
dictionary-values 50
direction 87
directory? 129
display 69

display-errors 103
do 31
document-generator-named 99
document-generators 99
dome-home 63
dome-version 83
do-over-model 87
draw-arc 67
draw-grapething 53
draw-line 67
draw-polyline 67
draw-rectangle 67
draw-string 67

E
edit 70
edit-name 103
elements 87
eof-object? 129
eq? 129
equal? 130
eqv? 130
error 83
eval 32
even? 133
exact->inexact 35
exact? 133
exists 133
exists? 133
exp 81
expand-rectangle 117
export 109
exported-symbols 109
expt 81
extent 117

F
face 115
family 65
filename 87
filename->string 35
finalize 53
find-operation 43
find-package 109
find-vacant-position 87
fixed-width 65
flatten 23
floor 19
Index-148

Index
flush 70
for-each 33
for-each-with-separator 33
frozen-color 87

G
gcd 19
generate 99
get-property 88
get-property-definition 88
get-property-definitions 88
get-type 141
grape? 133
graph 88
graph-label 88
green 27

H
has-archetype? 88
has-binding? 88
has-binding-named? 88
has-child? 88
has-name? 101
has-parent? 88
has-parent-connection? 88
has-property-set? 88
head 63
height 117
hue 27

I
identifier 89
identity 119
if 33
implementations 89
import 109
inc-indent-level! 53
incoming-arcs 89
indent 53
indent-level 53
indent-size 53
inexact->exact 36
inexact? 133
initialize 141
in-new-environment-do 33
in-package 109
input? 101

input-and-output? 101
input-only? 101
input-port? 133
inspector-edit 103
instances 89
integer->char 36
integer? 134
interface 83
is-a? 134
is-kind-of? 101
italic 65
ivars 141

L
lambda 43
landscape 115
lcm 19
left-margin 53
length 24
let 44
let* 45
letrec 45
line-style 115
line-width 115
list 75
list->string 36
list->vector 36
list? 134
list-head 75
list-last 75
list-ref 76
list-tail 76
load 70
loaded-modules 105
load-path 63
log 81
logical-top-graph 89
logical-top-graph? 101
lower-left 117
lower-right 117

M
magenta 27
make 46
make-cmy-color 27
make-color 27
make-dictionary 50
make-directory 61
 Alter Reference Manual Index-149

Index
make-hsb-color 28
make-package 109
make-rgb-color 28
make-string 125
make-vector 145
map 34
master 89
max 19
member 59
memq 60
memv 60
merge-file 95
message-to-user 83
methods 46
min 20
modulo 20
moveable? 101
move-to 61
move-to-back 103
move-to-front 103

N
name 71
name-emphasis 89
name-set! 89
name-source 90
negative? 134
new-child-model 95
new-in 95
newline 71
new-settings 99
new-top-model 96
next-multilevel-tag 53
next-put 54
nil? 134
nodes 90
not 79
null? 135
number->string 36
number? 135
numerator 20

O
object->string 37
object? 135
odd? 135
open 54
open-client-socket 121

open-input-file 71
open-input-string 71
open-models 90
open-output-file 71
open-output-string 71
operation? 135
or 79
origin 90
outgoing-arcs 90
output? 101
output-only? 101
output-port? 135

P
package-name 109
package-used-by-list 110
package-use-list 110
page-height 54
page-width 54
paint 115
paint-color 116
paint-style 116
pair? 135
parent 90
parent-connection 90
peek-char 71
platform 83
point 112, 112
point- 111
point* 111
point+ 111
point/ 112
point> 112
point>= 112
point? 135
point-max 111
point-min 111
port 54
port? 135
position 90
positive? 136
predefined-bindings 46
print 103
print-size 54
procedure? 136
property-schema-files 90
provide 105
put-string 54
Index-150

Index
Q
quasiquote 46
quote 47
quotient 21

R
radius 113
random 83
rational? 136
rationale 90
read 72
read-char 72
read-through-char 72
real? 136
rectangle? 136
red 28
refresh-display 103
register 119
relative-position 90
relative-scale 116
remainder 21
remove 91
remove-child 91
remove-from-list! 76
remove-interest 97
rename-package 110
request-directory-name 143
request-file-name 143
request-new-file-name 143
require 105
reset 72
reset-environment 84
reset-multilevel-counter 54
resizable? 101
resolve 63
resolve-identity 91
return-spec 84
reverse 77
right-margin 54
round 21
route 91

S
saturation 28
save 104
save-as 104
scale 54

scale-rectangle 118
scale-to! 55
select 60
selected? 101
selected-components 91
serif 65
set! 48
set-bold! 65
set-border-bounds! 91
set-bottom-margin! 55
set-car! 77
set-cdr! 77
set-color! 91
set-configurations! 91
set-container! 91
set-current-binding! 91
set-current-configuration! 92
set-description! 92
set-destination! 92
set-direction! 92
set-face! 55
set-family! 65
set-fixed-width! 65
set-frozen-color! 92
set-indent-level! 55
set-indent-size! 55
set-italic! 65
set-left-margin! 55
set-line-style! 55
set-line-width! 55
set-master! 92
set-name! 92
set-name-emphasis! 92
set-origin! 92
set-page-height! 55
set-page-width! 55
set-paint-color! 56
set-paint-style! 56
set-parent-connection! 92
set-port! 56
set-position! 92
set-print-size! 56
set-property! 93
set-property-schema-files! 93
set-rationale! 93
set-relative-position! 93
set-relative-scale! 56
set-right-margin! 56
set-route! 93
set-scale! 56
 Alter Reference Manual Index-151

Index
set-selection 104
set-serif! 65
set-size! 93
set-strikeout! 65
set-top-margin! 56
set-translation! 56
set-underline! 65
shell 107
show-progress-begin 34
show-progress-for-each 34
sin 81
size 66
sleep 84
smalltalk 123
sort 77
sqrt 22
square-route 104
start-para 56
strikeout 66
string 125, 138, 138
string=? 138
string>=? 138
string>? 138
string->filename 37
string->list 37
string->number 37
string->symbol 38
string? 139
string-append 125
string-capitalize 38
string-ci 137, 137
string-ci=? 137
string-ci>=? 137
string-ci>? 137
string-copy 125
string-downcase 38
string-empty? 138
string-fill! 125
string-length 125
string-ref 125
string-set! 125
string-upcase 39
subdiagrams 93
substitute 24
substring 125
substring-index 126
subtype? 139
subtypes 141
supertypes 141
supports-native-paragraph-numbering?

56
symbol->string 39
symbol? 139
synchronize-display 104

T
tail 63
tan 81
temporary-filename 63
text-line-height 93
theta 113
thunk? 139
time-now 84
top-margin 57
top-model 94
top-model? 101
translate-rectangle 118
translation 57
trim 24
truncate 22
type->symbol 39
type? 139

U
underline 66
unexport 110
unquote 48
unquote-splicing 48
unregister 119
unset-property! 94
unuse-package 110
upper-left 118
upper-right 118
use-package 110
user-choose 143
user-choose-from-list 144
user-home 64

V
vector 145
vector->list 39
vector? 139
vector-fill! 145
vector-length 145
vector-ref 145
vector-set! 145
views 94
Index-152

Index
visible? 102

W
warn 144
what-are-you 94
width 24, 118
with-input-from-file 72
with-output-to-file 72
with-output-to-selected 73
word-wrap 24
writable? 139
write 73
write-bitmap 96
write-char 73

write-postamble 57
write-preamble 57

X
x 113

Y
y 113
yellow 28

Z
zero? 140
 Alter Reference Manual Index-153

	Contents
	Introduction 1
	Overview of Alter 2
	Semantics
	Notational Conventions

	Alter Concepts
	Variable Bindings
	Environment Concepts
	Initial and Current Environments
	Static Scoping
	True and False
	External Representations
	Disjointness of Types
	Storage Model

	Lexical Conventions
	Whitespace
	Delimiters
	Identifiers
	Uppercase and Lowercase
	Naming Conventions
	Comments
	Additional Notations

	Expressions
	Literal Expressions
	Variable References
	Special Form Syntax
	Procedure Call Syntax

	Notation Conventions 3
	Arithmetic 4
	Collections 5
	Colors 6
	Control 7
	Converting 8
	Defining 9
	Dictionaries 10
	Document Generation 11
	Enumerating 12
	File:Modifying 13
	File:Naming 14
	Font Descriptions 15
	Graphics 16
	I/O 17
	Lists 18
	Logic 19
	Math Functions 20
	Miscellaneous 21
	Model:Accessing 22
	Model:Creation 23
	Model:Dependencies 24
	Model:Generating 25
	Model:Testing 26
	Model:User-Interface 27
	Modules 28
	OS Interface 29
	Packages 30
	Points 31
	Printer Driver 32
	Rectangles 33
	Registry 34
	Rpc 35
	Smalltalk 36
	Strings 37
	Testing 38
	Types 39
	User Requests 40
	Vectors 41
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

