
ISAM Toolbox
Programmers’ Manual

ISAM Toolbox is a VisualWorks contribution of Georg Heeg eK

Georg Heeg eK

Baroper Str. 337

44227 Dortmund

Germany

info@heeg.de

Phone +49 231 9 75 99 0

Fax +49 231 9 75 99 20

www.heeg.de

©1987-2008 Georg Heeg eK Dortmund

1.0 Introduction

One basic key towards integration of applications is the issue of data managment.
Applications of different kinds must be able to work with the same data without the
need of knowing the structure of the other applications.

The data management facilities introduced by the Collection classes to Smalltalk80
allow either 'in core' collections of arbitrary complex data or collections of 'simple'
data like characters or bytes on files. However, real life-size applications require data
management facilities that can hold complex data on files.This leads to ad-hoc solu-
tions which are both inefficient and non-portable.

One commonly known solution of this issue is the introduction of data management
through indexed files called the Indexed Sequential Access Method ISAM.These
ISAM files support portability, efficient memory utilization and data security.

2.0 Using ISAM

In this chapter we introduce the programming interface to ISAM. We do not list the
complete implemented protocol but only the part that will be used by an applications
programmer. Other protocol defined in the ISAM classes is likely to change between
versions and should not be used by applications.

2.1 How Works ISAM ?

In general ISAM collections define several orderings (called indices) on the same
data which may be accessed separately. These indices are implemented by sorted
collections that store keys which hold some relevant portion of data from the re-
cords. The records are normally stored in a file. The application may switch between
the defined indices and may use them like ordinary collections.

2.1.1 What means ISAM ?

ISAM is a short hand for Indexed Sequential Access Method which means that it al-
lows both indexed and sequential access of data

Indexed means that one can access the records through some known portion of
data, the key.
Sequential means that it is possible to access the data sequentially, ie. one after the
other.
The ordering of the records may be either physical or logical. A logical ordering is
given by the used key and the physical ordering is given by the sequence of the re-
cords in the records file.

Example: Consider records made up from a name, a serial number and a collection
of comments. Keys which hold the name part of such records order them by this
name part.

2.1.2 Organization of Keys and Records in ISAM

The ISAM data is organized by an instance of IsamCollection. This IsamCollection
implements the interface to applications. It contains a dictionary of indices associated
with their key classes. Each index (which is an instance of IsamIndex) contains one
key instance of it's key class for each of the records in the records file. Thus all indi-
ces contain the same number of keys. The keys point to positions of their records in
the records file.

The keys and records are instances of their key and record classes. These classes
are subclasses of IsamItem.

IsamItems contain the record position and length and named components which are
typed through fields. The fields are installed upon creation of the key or record class
and are responsible for type checking, reading and writing of instance components.

For a more detailed description of these classes see chapters 2.2 for IsamItem and
2.3 for IsamCollection.

2.1.3 Developing an ISAM Application

As pointed out in the introduction to this chapter, IsamCollections work like ordinary
collections. Thus they implement collect, detect, select, reject and so on. All these
accessing methods work for both the currently selected index and for the collection of
records. Furthemore IsamCollections allow indexed access to record data through a
key.

These similiarities to ordinary collections support rapid prototyping. The application
can be developed and tested with ordinary collections and may then adapted to

ISAM. The major difference to ordinary collection is the need for typed keys and re-
cords. Therefor the design of keys and record classes is an important step while de-
veloping an ISAM application.

There are some points of interest in designing the fields and the access to the indi-
ces. As the indices are kept 'in core' while the IsamCollection is in use, one should
carefully select the fields of the records that should be kept in keys. Creating too
large keys result both in inefficent memory utilization and bad performance.
Another constraint on key design is the type of application. For instance an applica-
tion that offers a browser on most of the record fields requires keys for each of the
browser list views.
The developer should find a suiting balance between keeping fields in keys and ac-
cessing the record for fields. The both counterpoints are defining keys for all fields
(thus keeping the all records 'in core') and accessing the records through the record
file only.

2.2 Implementation of Keys and Records

2.2.1 Declaring an IsamItem

All record and keys used in IsamCollections have to be declared as subclasses to
IsamItem. The declaration is simply done like subclass declaration. However, instead
of instance variables the user declares the names and types of the fields. The name
and type must be seperated by a '='.

Example:
IsamItem subclass: #DemoRecord
instanceVariableNames: 'name=String serial=Number com-
ments=CollectionOfString'
classVariableNames: ''
poolDictionaries: ''
category: 'Demo-Isam Demo'

In subclasses of such record or key declarations the types of the fields must be iden-
tical to the types of the fields with the same name in the superclass.

Example:
DemoRecord subclass: #DemoKey
instanceVariableNames: 'name serial '
classVariableNames: ''
poolDictionaries: ''
category: 'Demo-Isam Demo'
This declares a key to DemoRecord that holds the name and serial number only. The
types are String and Number as in DemoRecord.

Once the declaration is accepted the accessing and type check methods are auto-
matically implemented. For maintainance purposes some class variables are de-
clared which are filtered out in the browser (you won't see them but they exist).
Please note that for this special treatment of instance variable declaration no normal
instance variables can be declared in subclasses of IsamItem. This would make no
sense anyway, as only the components are written to a file upon closing the IsamCol-
lection.

It is not enforced that key classes must be subclasses of their record classes and it is
not prohibited to implement additional protocol to the record and key classes. How-
ever, do not change the automatically generated protocol unless you really know
what you do. The least hazard that may happen to you is that this protocol is thrown
away upon recompiling the class.

2.2.1.1 Implemented Types

Each component of a record or a key has an associated subclass instance of Isam-

Field which describes the type of the component. These IsamFields have sub-
classes for each possible field type and have the following generic names:
Isam<Typename>Field, ie. IsamStringField.

The following types are implemented :

Integer any Integer
Text any Text
String any String
CollectionOfString any number of strings
CollectionOfInteger any number of integers
There might be other type fields declared after this manual was created. Check all
subclasses of IsamField for a complete list of component types.

There are no limitations for the size of those fields or the number of elements in the
collection fields except the available memory.

2.2.2 Creating an IsamItem

Once the records and keys are declared one can create empty instances with the
message new. This method does an initialization of the IsamItem, so if you would like
to initialize the record, add your initialization code to the class.

2.2.3 Using IsamItems

Normally records and keys are created from scratch and the application fills in the
values for the components or the application requests an item from the IsamCollec-
tion which returns a fully specified item. The user does not need to hassle with the
items except for accessing the items components.
The following sections describes some usefull messages that each IsamItem under-
stands.

2.2.3.1 Accessing Components

After compiling the declaration of the record or key the following methods for access-
ing the components are implemented:
For each field exists a method named like the field to read the component and a
method named like the field with one argument to write the component. While writing
a value in the component a type check is done to assure database integrity.

Example:
The following access messages are implemented for the DemoKey above:
name
name: aString
serial
serial: aNumber

2.2.3.2 Copying Components

These messages may be used to copy components between items.

copyPositionFrom: anItem
 copies the record position in the record file and the record length to self.

copyFrom: anItem
 copies all those components from anItem to self that are declared in my class.
Provide an error notifier if anItem does not contain all my fields.

copyTo: anItem
 copies all my components to anItem. anItem must contain all my fields.

copyAllFrom: anItem
 copies both the position and the components from anItem

Example:
using the above declaration of DemoRecord and DemoKey the statement aDe-
moKey copyFrom: aDemoRecord copies both the components name and serial
from the demo record to the demo key.

2.2.3.3 Comparing IsamItems

IsamItems are ordered lexically over their components in the order they were de-
clared. If two keys or records share the same components then their record position
(if given) determines their ordering.

IsamItem implements two different kinds of comparison. The first kind fails to com-
pare two items if they are not of the same class. The second kind tries to compare
components common to both items.

The following methods compare items of the same class:

< anItem

> anItem

= anItem

The following methods compare items of different classes. All fields in the receiver
must be shared by the argument.

less: anItem

greater: anItem

equal: anItem

Example: An instance A of DemoKey is less: an instance B of DemoKey if
a. name of A is less than name of B or

b. name of A is equal to name of B and serial of A is less than serial of B.

2.3 Programming

Once the record and key classes are declared, a new instance of IsamCollection may
be created that manages instances of the record class. One can add and delete indi-
ces associated with the new key classes and of course one may add, delete and re-
trieve records.

2.3.1 Maintaining an IsamCollection

The usual tasks are to create a new IsamCollection and to load and save ISAM data
to files.

2.3.1.1 Creating an IsamCollection

To create a new IsamCollection one has to specify the filename of the files, the re-
cord class and a collection of key class symbols. The records file gets the extension
.dat and the index file gets the extension .idx.
The first key class given will be called the primary index. This is the default index and
cannot be erased.

IsamCollection on: filename records: aRecordClass keys: aCollectionOfKey-
ClassSymbols
 creates an instance that stores instances of aRecordClass in a binary file
named filename.dat and has indices for each of the key classes given. The primary
key class given will be selected.

Example:
demoCollection _ IsamCollection on: 'demo' records: DemoRecord keys:
#(DemoKey)
creates an IsamCollection that stores instances of DemoRecord and has one index
over DemoKey instances.

2.3.1.2 Saving and Writing

loadFrom: filename
 reads the index data from a file filename.idx, opens the record file file-
name.dat and selects the primary index. If the index file is invalid then the indices are
rebuild from the records (see chapter Security). This may take some time.

saveTo: filename
 saves the index data to the file filename.idx and and closes the record file
filename.dat. The record data is copied if the old and the new filename differ.

close
 closes the record file.

2.3.1.3 General Accessing

The special handling of the records file leads to an increasing amount of unaccessi-
ble filespace which was occupied by old records.

streamFragmentation
 returns the number of this unused bytes.

fragmentation
 return the unused / used bytes ratio.

compact
 compresses the records file by removing the unaccessible records. This
method should not be interupted! A temporary copy of the compressed records file
might be found in compact.tmp in the current directory.

size
 returns the number of records stored in the records file.

2.3.2 Indices

The indices store keys for each record in the record stream. One may add or remove
such indices and access these defined indices.

addIndex: keyClass
 This method defines a new index over the records with keys of keyClass. For
each currently available record one instance of keyClass is added to this new index.
Thus adding an index to a large IsamCollection may take quite a while.
The new index does not become the current index.

removeIndex: keyClass
 This method removes the index associated with keyClass from the IsamCol-
lection. The current index can be removed but vanishes only after a change of the
current index. The primary index cannot be erased.

These methods can be used to access and select existing indices.

as: keyClass
 Returns a copy of the IsamCollection with a new current index associated with
keyClass.

currentIndex
 Returns the sorted collection of keys for the current index. This should be
used very carefully as changes to just one of the indices will probably crash ISAM.

indexKey
 Returns an empty key instance for the current index.

selectedIndex: keyClass
 Makes the index associated with keyClass the new current index.

2.3.3 Security

The subject of security is very important for database systems. It is even more impor-
tant for ISAM80 as the indices are kept 'in core' while the changing record data is
updated on a file. Therefore the record data written to the record file contains valida-
tion information and records are always appended to the record file. This assures
that the indices can be recovered from the record file.

Furthermore IsamCollection carries an inFlux flag which signals that ISAM is in a
critical operation. If the inFlux flag is detected then some operation was not finished
properly and the index data may be corrupted.

2.3.3.1 Crash Recovery

The indices may be rebuild from the record information with the method rebuildIndi-
ces. This method scans the complete record file and adds keys for each valid record
found in this file.

2.3.3.2 Integrity Checks

There are two increasing possibilities to check the system integrity.

checkIndicesForOverlappings
 This method checks the indices for overlappings. This means test if one of the
keys overlaps with one of the other keys.

checkIntegrity
 This method checks the indices for overlappings and then checks the key
components if they contain the same information as their records. This check takes
some time but if it succeeds you can be sure that all your records are accessible and
no record will be (partially) damaged when changing other records.

2.3.4 Using Keys and Records

In the following chapters item denotes either a full specified record or a matching key,
record denotes a full specified record (instance of the record class declared in the
creation of this IsamCollection) and key denotes an instance of either the record
class or an index key class which is full specified (has all components filled with valid
data) and has a valid record position attached.

2.3.4.1 Adding and Removing

Adding and removing of data is only admissible for records. The indices must not be
changed seperatly as they all must contain the same number of keys with references
to the same collection of records.

add: aRecord
 This method adds the record to the record stream and adds instances of the

key classes to the indices.

rewrite: aRecord
 This method rewrites the record. This means it first removes the old version
and then adds the new one.

rewrite: item with: aRecord
 Rewrites the record specified by item with aRecord.

remove: item ifAbsent: aBlock
 Removes the record specified by item. If no record is found, evaluate aBlock.

2.3.4.2 Accessing

As explained in the introductory chapters, ISAM allows both indexed and sequential
access. The following two chapters describe both access methods implemented in
ISAM80.

2.3.4.2.1 Indexed Accessing

These methods implement indexed access to records and keys in the IsamCollec-
tion.

keyAt: item
 Determines which index corresponds to item and searches the matching key
in this index. Returns nil if no index or no key was found.

keyAtPosition: position
 Searches in the current index for a key with the given record position. Return
nil if no such key was found.

keyOf: index atPosition: position
 Searches the collection of keys index for a key with the given record position.
Return nil if no such key was found.

allKeysAt: item
 Returns all keys that match item and have different record positions.

recordAtKey: key
 Returns the record associated with key.

recordAtPosition: position
 Returns the record at the position in the record stream.

recordAt: item
 This is the most general method to access a record by some portion of data. If
item contains a record position then read the record directly. Otherwise search for a
key matching item. If one was found read it's associated record. If none was found
(item has no matching index or no matching key) then search all records sequentially

for this item. If nothing was found, return nil.

allRecordsAt: item
 Returns all records that match item.

includesItem: item
 True if the IsamCollection contains a record that matches item.

Normally the developer will need only recordAt: . He has either some data for which
he needs a matching record or he has a key (gained from enumerating an index for
instance) and wants to read it's associated record.

2.3.4.2.2 Sequential Accessing

IsamCollections can be enumerated like ordinary collections. However, one may
enumerate over the current index or over the whole collection of records (which is
rather costly).
The following methods are implemented. Please note that some more standard enu-
meration methods work but are implemented in the class Collection.
The species of IsamCollection is OrderedCollection which means that the collect,
select and reject methods return instances of OrderedCollection.

do: aBlock
 Enumerate over the current index. This methods serves as a 'primitive' for all
the standard enumeration methods.

recordsDo: aBlock
 Enumerate over all records. Note! this methods reads all records from the re-
cord stream in the logical order defined by the current index.

collectRecords: aBlock
 Collect over all records.

selectRecords: aBlock
 Select over all records.

rejectRecords: aBlock
 Reject over all records.

3. A Useful Example

This chapter describes a small but usefull example application that is based on
ISAM.
The application is a small bibliography which stores the entries and their keywords in
an ISAM database.

3.1 BibInf Manual

3.1.1 What does BibInf ?

BibInf stores bibliography notes in an ISAM database.
The notes are organized with categories and may be searched by title, author and
year. They are entered in plain text and parsed by the application.

Example:
John Fool
My boring life without ISAM
Junk Press Publishers
Lowdown, 1989
This book is not worth reading

3.1.2 About Entries and Categories

An entry consists of a title, the author's name, the year, the publisher and the place
where the paper/book was published. Furthermore it may contain an arbitrary length
comment and an arbitrary number of categories.
These categories are simple texts that structure the collection of entries (like class
and method categories).

3.1.3 Views and Menus

The BibInf application may be started with
BibInf open: filename.
This opens a small browser with three subviews.

The first subview contains the categories, the second the entries stored under the
selected category and the third is used for entry editing.

3.1.3.1 Category View

The category view is used to view, add and delete categories. Additionally it contains
menu entries for loading and saving the ISAM data.

- add category This adds a new category to the ISAM data..
- remove category This removes the currently selected category.
- load Loads the data from a user specified file.
- save Writes the current data to a user specified file.
- inspect This opens an inspector on the IsamCollection.

Note that ISAM appends the suffix .dat and .idx to the filename given above. If your
filesystem supports only one suffix per filename (eg. MS-DOS or Atari ST) then don't
enter a filename with a suffix.

3.1.3.2 Entry View

The entry view is used to display, delete and search entries.

- show title This shows the title of the selected entries only.
- show authors This shows the authors names of the selected entries.
- show all This shows the authors names, the title and the year.
- remove This removes the selected entry.
- search title This asks the user for a search string (with * and # wildcards) and dis-
plays the found entries with matching titles in the entry view.
- search author This searches for matching author names.
- search year This searches for matching years.
- add to category This adds the selected entry to another category.

3.1.3.3 Input View

The input view is a TextView with the normal text editing features.

The entry format is:
Author
Title
Publisher
Place, Year

The rest of the entry is stored as a comment and is not parsed.

3.2 Objects used in BibInf

The first step in designing an ISAM application is to develop an idea what records
and keys are needed.
The BibInf application certainly needs a record to hold all components of an entry.
Additionally it needs a key which stores the author's name, the title of the entry and
his year as these are the parameters used in queries.
To access the records through their categories one needs a key which holds all cate-
gories of an entry.

Object ()
 IsamItem ('recordPosition' 'recordLength')

 BibEntry ()
 BibCategoryKey ()
 BibKey ()

3.2.1 BibEntry

The records of BibInf are instances of class BibEntry.

IsamItem variableSubclass: #BibEntry
 instanceVariableNames: 'title=String authors=String year=Integer pub-
lisher=String place=String comment=String category=CollectionOfString '
 classVariableNames: ''
 poolDictionaries: ''
 category: 'Bibliography'

- BibEntry knows how to parse an entry. This is done with the methods in category
parsing.

3.2.2 BibKey

The instances of BibKey are used to access the search and display criteria of re-
cords.

BibEntry variableSubclass: #BibKey
 instanceVariableNames: 'title=String authors=String year=Integer '
 classVariableNames: ''
 poolDictionaries: ''
 category: 'Bibliography'

3.2.3 BibCategoryKey

The instances of BibCategoryKey are used to access the category component of re-
cords.

BibEntry variableSubclass: #BibCategoryKey

 instanceVariableNames: 'category=CollectionOfString '
 classVariableNames: ''
 poolDictionaries: ''
 category: 'Bibliography'

4. Adding new Types

An IsamField describes one of the fields (components) in an IsamItem. It is used for
type-checking the component and for reading and writing the component in a binary
format.
To add a new type of IsamItem fields, define a subclass of IsamField. The name
must be of the form Isam<typename>Field (eg. IsamIntegerField) where typename is
the name that is given in a IsamItem component declaration after the '='.
Currently the following subclasses of IsamField exist:

IsamField (abstract)
 IsamIntegerField
 IsamStringField
 IsamTextField
 IsamCollectionField (abstract)
 IsamCollectionOfStringField
 IsamCollectionOfIntegerField.

After it is declared, the new type may be used in any IsamItem declaration.

The following protocol must be implemented by every IsamField.

check: value
 Return true iff value is valid for this type of field.

size: value
 Return the size (in bytes) of the binary representation of this value.

readFrom: byteStream
 Read a value of my type from the stream.

write: value to: byteStream
 Write the value to the byte stream.

The following methods are predefined to support new IsamItem field types.

readIntegerFrom:
readStringFrom:
writeInteger:to:
writeString:to:

IsamFields that describe types for which no simple comparison =, < and > exist
should redefine equal:to:, greater:than and less:than:. This is done in the collection
fields for instance.
For a description of the used binary format see the next chapter.

5. Data-Formats

5.1 Binary Formats

These are the formats of the binary representations of values and items.

5.1.1 Item Format

The IsamItem subclass instances have the following binary representation:
1. a validation-tag
2a. recordfile position
2b. item length
3. the binary representations of the components.

The validation tag is a single byte which indicates if the found record is in use or ob-
solete. See class variables ValidTag and InvalidTag of class IsamItem for the cur-
rent bitmask.
The values 2a and 2b are used in keys in the index file only and are not present in
records. They are written as binary representations of their integer value.

5.1.2 Binary Formats of Fields

View this list of field formats (binary representations of the components) as prelimi-
nary. A full list of formats may be extracted from the subclasses of IsamItem.

5.1.2.1 Integer

Format for an integer:

1. byte : sign and size
2. - n.th byte: the bytes of the integer.

The first byte is positive for a positive integer and negative for a negative integer. The
other 7 bits denote the size of this integer, that is the number of bytes. (eg. a number
less than 2^8n has size n) Thus integers are restricted to 2^ 1016 (127 bytes)

5.1.2.2 String

A string consists of the binary representation for it's size and it's bytes.

5.1.2.3 Text

A Text consists of the binary representations of the sizes of the runs and the values
(should be the same normally) and the binary representations of the bytes of the runs
and the values. Thus a text of n characters has a binary representation with 2n+2
integers.

5.1.2.4 Collections

A collection is simply made up of the binary representation of the size of the collec-
tion and of the binary representations of the elements of the collection.

5.2 Index File

The index file consists of the binary representations of the following components:

1. Name of the record class
2. The name of the primary index class
3. The first free position in the records file
4. The fragmentation in bytes of the records file
5. Every index consisting of
5.1 Name of the key class
5.2 Size of the index
5.3 Each key

5.3 Record File

The records file is a sequence of records (written without record position and length).
These records might be marked as invalid and are skipped when rebuilding the indi-
ces. The number of bytes occupied by invalid records is recorded in the variable
streamFragmentation. These invalid records are not reused and must be reclaimed
with compact occasionaly. ISAM always appends new records to the records file. To
avoid frequent extensions of the records file (which are expensive) ISAM preallocates
some disk space for the records. The variable streamEnd points at the first unused
byte in this free space.
This odd format serves two purposes. First it is much more faster than keeping a
freelist of unused space in the records file and extending the file frequently. Second it
is safer. Common data crashes we experienced while working with former versions of
ISAM were:
- overlapping records. This is now impossible as records always use new space.
- lost records when the machine crashed and the records and directory entries were
not flushed. In the current version we overwrite preallocated records only.
- invalid index structure due to interupted changes. This is checked with the inFlux
flag.
- inaccessible records due to lost index data. Now the indices are obsolete and may
be rebuild from the records when needed.

6. Historical Remarks

ISAM Toolbox has been developed in the late 1980ies on Smalltalk-80 version 2.3. It
first use was on the Atari platform. It has been designed to be fast and stable as Atari
computers were very slow (68000 processor with 8 MHz clock rate) and had no hard
disk buffering, RAID or other modern features.
Used for more then 20 years, no loss of data has been reported.

