
Extending SilverMark’s Test Mentor for VisualWorks Smalltalk to
Record and Play Back User Interactions, and Validate State in

Custom Widgets

Contents:

INTRODUCTION .. 2

WIDGET EXTENSION PROCESS OVERVIEW .. 2
ESTIMATING TIME TO EXTEND WIDGETS .. 3

ADDING USER INTERFACE PLAYBACK EXTENSIONS .. 3
EXAMPLE PLAYBACK EXTENSION .. 3

Playback Methods added HierarchicalSequenceView.. 4
Supporting methods added to IndentedTreeSelectionInList.. 4

SPECIFYING PLAYBACK STEP GENERATION ... 4
MECHANICS OF PLAYBACK STEP GENERATION... 5
EXAMPLE PLAYBACK STEP GENERATION ... 6

ADDING USER INTERFACE INTERACTION RECORDING EXTENSIONS 7
ADDING YOUR OWN “RECORDING HOOKS” .. 7
METHOD REPLACEMENT MECHANICS ... 7
EXAMPLE METHOD REPLACEMENT .. 8

ADDING WIDGET STATE VERIFICATION EXTENSIONS ... 10
MECHANICS OF ENABLING WIDGETS FOR VERIFICATION.. 11

State validation ‘getter’ methods .. 11
Overriding the ‘red button pressed’ event .. 11

CONCLUSION ... 13

Introduction

There are four facets to automating user interface-based testing that SilverMark’s Test Mentor provides:
� Recording user interface interactions
� Playing back user interface interactions
� Capturing widget state
� Verifying widget state

The processes of recording user interface interactions and capturing widget state both result in
automatically adding test steps to a scenario within the Test Mentor Test Editor.

SilverMark’s Test Mentor performs this with a minimum of intrusiveness to your code. In fact, Test
Mentor makes no permanent changes to any methods, whatsoever.

Test Mentor is designed to be able to perform the above with all standard VisualWorks widgets as they are
delivered by Cincom. SilverMark realizes that many people make modifications to the base widgets and
often create their own widgets, or use 3rd party widgets. To accommodate this, Test Mentor was designed to
be able to be extended to support changes to base widgets, as well as custom widgets.

This document describes how to extend Test Mentor to support custom widgets. As an example, we will
show how to record a VisualWorks tree widget (HierarchicalSequenceView) expand and collapse node
interactions. This widget is used in the VisualWorks 5i.4 System browser:

Figure 1 - View that uses example widget

Widget Extension Process overview

The process to extend a widget so that Test Mentor can record and play back interactions with it, as
well as extract and verify state are fairly straight-forward. Most of the work is clerical in nature.

HierarchicalSequenceView

Goal: Record and play back
interactions with + and – icon
to expand and collapse node.

1. Identify or create a playback method. This method will programmatically cause the recorded

interaction to occur during text execution. For example, if we want to record a user interaction that
expands a node in a tree list, a playback method for this interaction will programmatically expand
that same node within the tree list.

2. Register the playback method as one to be used to when generating a playback step for the
recorded interaction.

3. Find the best place to add a recording hook. This is usually a method in a Controller class that has
all the information required for recording an interaction, such as the index within a list.

4. Add the recording hook. Create a version of the Controller method identified above that calls one
of Test Mentor’s playback step generation methods.

5. Add widget verification

You will be creating methods in existing widget and Test Mentor classes, that will be saved and loaded by
way of your own widget extensions parcel. That way the widget extensions code is kept separate from both
the VisualWorks system and Test Mentor.

Estimating time to extend widgets
A developer who has experience with the implementation of a widget to be recorded, and has a reasonable
familiarity with this process should expect to spend approximately 30 minutes setting up for recording and
playback each interaction.

A widget that does not already have methods that can be used to programmatically play back the interaction
may take s little longer. Likewise, if the developer is not at all familiar with the implementation of the
widget, it will take a little longer for them to find the best place in the Controller to add a recording hook.

Adding User Interface Playback Extensions
Each recorded widget interaction must have a corresponding method that will recreate that interaction
programmatically. So rather than creating playback statements that move the mouse pointer to a coordinate
and then click or type a character, you will create playback statements that are semantically meaningful.
For example, it makes much more sense to send #expandAtNode: to a hierarchy list widget rather than
#clickAtPoint:

For many interactions the widgets already have these methods built in. In some cases you may need to
create your own.

Example playback extension
As you may recall from above, we will be adding expand and contract interaction recording to
HierarchicalSequenceView. After hunting around HierarchicalSequenceView we could not find APIs to
programmatically perform explicit expand and contract operations on a tree node, however there is an API
for toggling the state of a node.

We could use the toggle operation because that is what is actually called during recording. The toggle
operation expands if a node is contracted and contracts if the node is expanded. This seems reasonable
enough on the surface and saves us some work. Unfortunately the disadvantage to using toggle is that tests
would be sensitive to the state of the nodes at the time of playback. That is, if we recorded an expand and
played back using a toggle when the node was already expanded, it would contract, which would have an
effect opposite to our intention.

This is the kind of thing that happens if you are debugging a test and run it several times on the same
widget without ensuring a consistent initial state. It is best to make your playback APIs insensitive when
possible. So in this case it is better to record an expand as an expand and play back it that way as well. That
way you are guaranteed the outcome will be an expand and not a contract.

After some experimentation putting in halts and walking through the widget code with a debugger we
determined that the following methods will enable us to programmatically expand an contract given nodes.

Playback Methods added HierarchicalSequenceView

stmContractNodeAtIndex: index
 "Contract the tree node at the given index. Do nothing if already closed"

 self indentedSelectionInList stmContractNodeAtIndex: index.

stmExpandNodeAtIndex: index
 "Expand the tree node at the given index. Do nothing if already open"

 self indentedSelectionInList stmExpandNodeAtIndex: index.

stmIsExpandedNodeAtIndex: aNumber
 "Return whether the node at the given index is opened or closed"

 ^self indentedSelectionInList stmIsExpandedNodeAtIndex: aNumber

Supporting methods added to IndentedTreeSelectionInList

stmExpandNodeAtIndex: aNumber
 "Expand the tree node at the given index. Do nothing if already open"

 self selectionIndexHolder value = nil ifTrue: [^self].
 self selectionIndexHolder setValue: aNumber.
 aNumber = 0 ifFalse: [| tmp |
 tmp := self
 findChildForIndex: self selectionIndexHolder value
 currentIndex: 0
 child: self root.
 (self isOpen: tmp) ifFalse:[self open: tmp]].

stmContractNodeAtIndex: aNumber
 "Contract the tree node at the given index. Do nothing if already closed"

 self selectionIndexHolder value = nil ifTrue: [^self].
 self selectionIndexHolder setValue: aNumber.
 aNumber = 0 ifFalse: [| tmp |
 tmp := self
 findChildForIndex: self selectionIndexHolder value
 currentIndex: 0
 child: self root.
 (self isOpen: tmp) ifTrue:[self close: tmp]].

stmIsExpandedNodeAtIndex: aNumber
 "Return whether the node at the given index is opened or closed"

 | element |
 aNumber = 0 ifTrue: [^self].
 element := self
 findChildForIndex: aNumber
 currentIndex: 0
 child: self root.
 ^(self isOpen: element)

Specifying playback step generation
At this point we’ve created playback API methods. The next step is to create an internal API that will
generate a Test Mentor step that is configured with a Smalltalk statement that calls the playback method.

The most common case of a user interface interaction playback step is one that contains the following code:

(ActiveWindow widgetNamed: <widgetID>) <playbackMethod> <optional arguments>

For example:
(ActiveWindow widgetNamed: #launchCustomerQuery) stmClick
or
(ActiveWindow widgetNamed: #customerList) stmSelectString: 'Wilkins McCawber'

We would like to generate steps configured with something like the following:

(ActiveWindow widgetNamed: #hierarchyList) stmExpandNodeAtIndex: 5

Mechanics of playback step generation

When Test Mentor begins recording user interface interactions it replaces the active instance of InputState
with its own, called StmRecordInputState. This class defines methods in the events protocol for recording
when specific events have occurred. Here’s a few, for example:

Interaction StmRecordInputState method Generated playback method
a button has been pressed #stmPressEventFrom: #stmClick
An accept interaction has
occurred

#stmAcceptEventFrom:value: #stmEnterText:

A window close
interaction has occurred

#stmCloseEventFrom #close

A double-click interaction
has occurred in a list at the
given index

#stmDoubleClickEventFrom #stmDoubleClick

An extended selection
interaction has occurred in
a given list

#stmExtendSelectEventFrom: #stmExtendSelectItem:

A window has focus set to
it

#stmFocusEventFrom: #setFocusToWindowNamed:id:

record a keyboard event #stmKeyboardHookFrom:key: #stmKeyboardHookWith:
A specific menu item has
been selected

#stmMenuItemSelectedEventFrom:value: #stmPerformMenuAction:

Etc. … …

These methods account for 99% of the events resulting from user interface interactions that you might want
to record. In general, it is best to simply implement a common playback API in your own widget and then
reuse the standard playback step generation, rather than invent your own.

For example, if you were to invent an entirely new type of push button, it would be wise to simply
implement #stmClick as a playback API. Then you could reuse #stmPressEventFrom: in
StmRecordInputState to generate a playback step, rather than inventing your own method.

Some times widgets present novel ways to interact. If you have modified or created new widgets that define
new types of interactions, you may need to add methods to StmRecordInputState to represent them and
generate the right playback code. If this is the case, just do the following:

1. Implement a method in StmRecordInputState on the instance side that takes as arguments any
information that needs to be passed to the playback method, and the controller for the widget.

2. Add code to the method that generates a step configured for the correct playback statement.

This is a lot easier than it sounds ☺

To illustrate the concept, consider the built-in method used to record accept events in text widgets in
StmRecordInputState:

StmRecordInputState>>#stmAcceptEventFrom: aTextEditorController value: aString
 "Indicate an 'accept' event in a text widget as an interaction to be recorded"

 | view |
 view := aTextEditorController view.
 self recordEvent: (StmGuiRecording80SetUpHelper acceptIdentifierFor: aString) in: view.

This method is the starting point for generating a step that plays back entering a String into a text field.
Most of this is ‘boiler plate’ code except for the call to #acceptIdentifierFor:, which calls the following
method:

StmGuiEventsRecording80SetUpHelper>>#acceptIdentifierFor: aString
 "Return an action identifier configured for text entry"

 ^StmGuiActionIdentifier forSelector: self enterTextSelector value: aString

Most of this method is ‘boiler plate’ code as well. It returns an instance of StmGuiActionIdentifier
configured for a particular playback selector, which is retrieved from #enterTextSelector, which contains
the following:

StmGuiEventsRecording80SetUpHelper>>#enterTextSelector
 ^#stmEnterText:

These are all the pieces you need to specify playback code to be generated for a widget. If you implement
methods like these, the rest of the recording framework will take care of creating a step and setting up the
code for it with the proper widget identifier.

Example playback step generation

Let’s try the above with our hierarchy list expand and contract interactions:

StmRecordInputState>>#stmExpandHierarchyNodeFrom: aController index: aNumber
 "Record 'expand hierarchy node' in hierarchy list, for a given node index"
 | view |
 view := aController view.
 self recordEvent: (StmGuiRecording80SetUpHelper expandNodeAtIndexIdentifierForIndex: aNumber) in: view.

StmGuiEventsRecording80SetUpHelper>>#expandNodeAtIndexIdentifierForIndex: anInteger
 "Return an action identifier configured for playing back an expand interaction"
 ^StmGuiActionIdentifier forSelector: self expandNodeAtIndexSelector value: anInteger

StmGuiEventsRecording80SetUpHelper>>expandNodeAtIndexSelector
 ^#stmExpandNodeAtIndex:

StmRecordInputState>>#stmContractHierarchyNodeFrom: aController index: aNumber
 "Record 'contract hierarchy node' in hierarchy list, for a given node index"
 | view |
 view := aController view.
 self recordEvent: (StmGuiRecording80SetUpHelper contractNodeAtIndexIdentifierForIndex: aNumber) in: view.

StmGuiRecording80SetUpHelper>>#contractNodeAtIndexIdentifierForIndex: anInteger
 "Return an action identifier configured for playing back a contract interaction"
 ^StmGuiActionIdentifier forSelector: self contractNodeAtIndexSelector value: anInteger

StmGuiRecording80SetUpHelper>>#contractNodeAtIndexSelector
 ^#stmContractNodeAtIndex:

Notice that #expandNodeAtIndexSelector and #expandNodeAtIndexSelector return the names of the
expand API methods we added to the widget earlier.

Note: Don’t forget that you would add these methods to your own widget extensions parcel.

Adding User Interface Interaction Recording Extensions
The last piece to the puzzle is finding the right place to call one of the internal playback step generation
APIs in StmRecordInputState discussed above. The way to do this is to insert calls to those step generation
methods within various widget or controller classes.

Code inserted into a widget or controller method that calls a playback step generation method is called a
recording hook. Typically methods such as controlActivity and redButtonActivity are likely candidates
for containing recording hooks.

Test Mentor, however, does not actually modify system methods, nor does it affect the way in which the
system works while it is not recording. The way it modifies methods is through temporary bytecode
replacement. This sounds scary but its not. When Test Mentor begins recording interactions from the user
interface, it swaps the bytecodes of the required controller methods with altered versions that contain
recording hooks. When recording ends, Test Mentor swaps them back.

Adding Your Own “Recording Hooks”
Test Mentor uses a simple mechanism for recording interactions.

The key to adding a recording hook is to find a point in some method, usually in a widget’s controller, in
which all the information pertinent to the user interaction event is available. Then insert code in the
identified method to send one of the above messages (or a new one of your own creation) to the current
active input state (StmRecordInputState). The preceding statement is almost true. In reality, you will not
alter existing methods. You will create a copy of an existing method under a different name, that contains
your addition of a recording hook in it, and do so in such a way that Test Mentor automatically uses the
copy of the method during recording.

The technique of creating a copy of a method to contain changes to the method in such a way as to enable
Test Mentor to replace it during recording is called Method Replacement.

Method Replacement Mechanics

This section describes how to easily set up your replacement methods that contain recording hooks.

Step 1: Create a subclass of SilverMark.StmSetUpHelper to as a place to put your method registration
methods.

Make sure you add this, as well as any subsequently created methods to a separate parcel for extensions to
your widgets.

Step 2: Pick a prefix for the methods you modify in order to identify them to Test Mentor. We recommend
that you use a three-letter abbreviation for the name of your company, product or project and add the word
“mod” to it. The prefix “stmmod” for SilverMark’s Test Mentor is the default. In this case, when you write
replacement methods, they should all be prefixed such as in #stmmodredButtonActivity to replace
#redButtonActivity.

If you don’t like the default prefix, simply override SilverMark.StmSetUpHelper
class>>#replacementMethodPrefix to return your own prefix String. You can return anything you like as
long as it satisfies the rules for being part of a valid method selector.

Step 3: Register methods to be replaced during recording in a class method called
#replacementSpecCollection.

This method returns an array of specifications for method replacements. Each element in the array is a
three-element array that defines a specific method replacement.

Element Description
1 The name of the class that contains the method
2 A Boolean indicating whether the method is a class method (true) or an instance method

(false)
3 The method selector

To get an idea of what we’re talking about, look in SilverMark. StmGuiEventsRecording80SetUpHelper
class>>#replacementSpecCollection. You will see some of the methods that are replaced at the beginning
of recording for standard VisualWorks widgets:

replacementSpecCollection

 ^#(#(#RedButtonReleasedEvent false #dispatchTo:)
 #(#ComboBoxButtonController false #openDropDownListWithEvent:)
 #(#SequenceController false #doubleClickEvent:)
 #(#RedButtonPressedEvent false #dispatchTo:)
 #(#EmulatedSequenceController false #toggleAt:withEvent:)
 #(#SequenceSelectionTracker false #exitDueToDragDrop))

Now implement a class method called #initialize that has the following in it:

initialize

 StmReplacementRegistry recordInstance
 registerReplacementSpecs: self replacementSpecs
 for: self name
 priority: StmReplacementRegistry baseMethodPriority.

This will register your replacement methods to Test Mentor as needing to be replaced during recording.

Step 4: Add code to the post-load actions of your widget extensions parcel to call this method. For test and
debugging purposes you can execute this method from a workspace.

Note: When recording ends, the original methods are restored automatically.

Example method replacement
As you may recall, we’ve chosen to illustrate the process by extending the VisualWorks tree widget
(HierarchicalSequenceView) expand and collapse node interactions.

Step 1: Not being familiar with this widget ourselves, we spent a few minutes exploring the code until we
discovered that this widget uses HierarchicalSequenceController. After a few minutes exploring that class
and we discovered that HierarchicalSequenceController>>#selectionNeedsToggle: is the best place to hook
in to expanding and collapsing nodes because the method embodies both the information that the + or –
button was pressed, as well as the item index location:

selectionNeedsToggle: event

 | mousePoint elem |
 mousePoint := self sensor mousePointFor: event.
 elem := self findElementFor: mousePoint.

 ^(view isMouseOverToggleButton: elem point: mousePoint)
 ifTrue: [self view toggleListAt: elem. true] ifFalse:[false].

Step 2: Next we insert a call to the internal playback step generation API described above in
StmRecordInputState, to record this interaction, like this:

stmmodselectionNeedsToggle: event

 | mousePoint elem |
 mousePoint := self sensor mousePointFor: event.
 elem := self findElementFor: mousePoint.

 ^(view isMouseOverToggleButton: elem point: mousePoint)
 ifTrue: [
 "Test Mentor recording hook"
 self stmToggleListAt: elem.
 self view toggleListAt: elem. true] ifFalse:[false].

Notice that we prefixed the replacement method with a “stmmod”. Now let’s implement the code that
records the interaction:

stmToggleListAt: aNumber
 "Request to record toggling state of node (by clicking on '+' or '-' in hierarchical sequence.
 Record it as expand or contract request, depending on current state"

 (view stmIsExpandedNodeAtIndex: aNumber)
 ifTrue: [InputState default stmContractHierarchyNodeFrom: self index: aNumber]
 ifFalse: [InputState default stmExpandHierarchyNodeFrom: self index: aNumber].

Notice that it first checks to see if the node is already expanded. If it is, then it records a contract
interaction. Otherwise it records an expand interaction.

We chose to put this code in a separate #stmToggleListAt: method instead of directly in
#stmmodselectionNeedsToggle in order to make the code more resilient to future changes in the widget.
This way, if #selectionNeedsTarget: ever changes and we need to move the recording hook, we only need
to move one line of code.

Step 3: Create MyWidgetExtensions.SetUpHelper as a subclass of SilverMark.StmSetUpHelper. This class
will house methods used to register the replacement methods.

Return a list of replacement methods in #replacementSpecCollection:

replacementSpecCollection

 ^#(#(#HierarchicalSequenceController false #selectionNeedsToggle:))

Add initialization:

We know that a + or – was pressed here and
the index of the list item. Looks like a good
place to add a recording hook

Call a method that will
record this interaction

Method to
determine
current state of
the node
(implemented

initialize

 StmReplacementRegistry recordInstance
 registerReplacementSpecs: self replacementSpecs
 for: self name
 priority: StmReplacementRegistry baseMethodPriority.

For testing and debugging you can execute this method manually from a workspace. Ultimately you should
add a call to it to the post-load actions for the parcel that loads it.

That’s it! If you run the #initialize method above your replacement methods will be added to those that are
replaced during recording. You can test it by recording expanding and collapsing nodes in the system
browser described above, or any other view that uses the HierarchicalSequenceView widget. After
recording you should UI recording steps containing code that calls the playback API methods you added.

Adding Widget State Verification Extensions
Test Mentor provides an automated mechanism for capturing and later comparing widget state. The idea is
to capture the value of an attribute of a widget, and generate a Test Mentor verification step that when
executed, extracts the same attribute and compares it to the captured value.

Specifically, during test execution when the step is eventually executed, the widget attribute value is
extracted and compared against the captured reference value. This section describes how to extend Test
Mentor to provide widget state verifications for custom widgets.

Test Mentor provides a mechanism for displaying the state of a widget and selecting attributes to capture

for later verification. When you press the verify button in the Test Editor the system enters a mode
where it waits for you to click on a widget. When you do, the following window opens, displaying a list of
attributes for the widget and their respective states (values) that you can capture for later verification:

Figure 2 - Verification wizard

When the user selects an attribute from the list above, The Test Editor adds a test step to the currently
selected scenario that contains a selector to be used to extract the value of the widget’s respective attribute,
as well as the current attribute’s value as reference.

If you have modified existing widgets or created your own widgets, you can easily enable them for widget
verification.

Mechanics of enabling widgets for verification
A widget that is enabled for verification has the following properties:

• It has a state validation ‘getter’ method for each state verification attribute of interest
• It will display the verification wizard when clicked on during verification mode
• It displays verification attributes in the verification wizard

State validation ‘getter’ methods
State validation Getter methods are simply public methods that return some state value. If a widget does
not provide a getter method for the attribute you want to verify, simply add one.

Example getter method

Step 1: For our example HierarchicalSequenceView we need a method that returns whether the currently
selected not is expanded or contracted. To do this we implemented the following:

HierarchicalSequenceView>>#stmIsExpandedNodeAtSelection
 "Return whether the currently selected node is expanded"

 ^self indentedSelectionInList stmIsExpandedNodeAtSelection

IndentedTreeSelectionInList>>#stmIsExpandedNodeAtSelection
 "Return whether the currently selected node is expanded"

 | index |

 index := self selectionIndexHolder value.
 index = nil ifTrue: [^nil].
 ^self stmIsExpandedNodeAtIndex: index.

Step 2: We need to ensure that the state extraction ‘getter’ method
HierarchicalSequenceView>>#stmIsExpandedNodeAtSelection is added to the list of attributes of the
widget to appear in the verification wizard’s list. To do that, simply implement #stmWidgetAttributesInto:
in your widget class that adds an instance of StmVisualAttribute configured for the verification ‘getter’
method, to the passed collection:

HierarchicalSequenceView >>#stmWidgetAttributesInto: aCollection

 super stmWidgetAttributesInto: aCollection.

 aCollection add: (self stmNewAttributeName: 'Is Selection expanded'
 valueSelector: #stmIsExpandedNodeAtSelection)

This method adds an instance of StmVisualAttribute configured to use the method
#stmIsExpandedfNodeAtSelection with description, ‘Is selection expanded’, to a collection of attributes to
be displayed.

Overriding the ‘red button pressed’ event

The last piece to the verification puzzle is overriding the red button press event processing to cause the
verification wizard to open when a widget is clicked on instead of doing what it normally does. To do this
we need to return to our technique of method replacement.

To override red button press event processing, simply create a copy of #redButtonPressedEvent: that calls
#verifyWidget: in StmVerifyInputState, instead of the usual event processing.

Note: Test Mentor temporarily replaces the instance of InputState with an instance of StmVerifyInputState

during verification (after pressing):

stmvfyredButtonPressedEvent: event
 InputState default verifyWidget: self view.

To register this method use the technique you used earlier to register replacement methods. The only
difference is that you will be registering this method as a verification replacement method rather than a
recording replacement method.

Example registering overridden ‘red button pressed’ event method

In our example you would create a #verificationSpecCollection method in
MyWidgetExtensions.SetUpHelper that looks like this:

verificationSpecCollection

 ^#(#HierarchicalSequenceController false #redButtonPressedEvent:))

You would then add code to #initialize to MyWidgetExtensions.SetUpHelper in order to add the
verification specs:

initialize

 StmReplacementRegistry recordInstance
 registerReplacementSpecs: self replacementSpecs
 for: self name
 priority: StmReplacementRegistry baseMethodPriority.

 StmReplacementRegistry verificationInstance
 registerReplacementSpecs: self verificationSpecs
 for: self name
 priority: StmReplacementRegistry baseMethodPriority.

Again, you should make sure a call to #initialize is added to the parcel as a post-load action. For debugging
and testing you can just execute #initialize from a workspace.

One you have these pieces in place, you can test it out by selecting any scenario and pressing the

verification button. If you pop up on a HierarchicalSequenceView widget you should see something
like the following:

Figure 3 - Verification wizard for HierarchicalSequenceView in 5i.4 System browser

Notice that the attribute named ‘Is Selection expanded’ is shown.

Conclusion
Test Mentor provides an easily extendable framework for recording and playing back interactions with and
verifying the state of any VisualWorks widget, whether it is a standard VisualWorks widget, modified
VisualWorks widget or a completely new or 3rd party widget.

Extending widgets to make them work with Test Mentor requires neither imagination, nor a lot of skill.
Once you do it a few times it becomes mostly a matter of book keeping.

For more information and advise about recording and playing back interactions with VisualWorks widgets,
please contact support@silvermark.com

	Introduction
	Widget Extension Process overview
	Estimating time to extend widgets

	Adding User Interface Playback Extensions
	Example playback extension
	Playback Methods added HierarchicalSequenceView
	Supporting methods added to IndentedTreeSelectionInList

	Specifying playback step generation
	Mechanics of playback step generation
	
	StmRecordInputState method

	Example playback step generation

	Adding User Interface Interaction Recording Extensions
	Adding Your Own “Recording Hooks”
	Method Replacement Mechanics
	Example method replacement

	Adding Widget State Verification Extensions
	Mechanics of enabling widgets for verification
	State validation ‘getter’ methods
	Example getter method

	Overriding the ‘red button pressed’ event
	Example registering overridden ‘red button pressed’ event method

	Conclusion

