
Cincom Smalltalk™

Application Developer's Guide

P46-0101-14

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

Copyright © 1993–2009 by Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0101-14

Software Release 7.7

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, and COM Connect are trademarks of Cincom Systems, Inc., its subsidiaries, or
successors. ENVY is a registered trademark of Object Technology International, Inc. All
other products or services mentioned herein are trademarks of their respective
companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation copyright © 1993–2009 by Cincom
Systems, Inc. All rights reserved. No part of it may be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without prior
written consent from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents
About This Book xxi

Overview ...xxi
Audience ...xxii

Conventions ...xxii
Typographic Conventions ..xxii
Special Symbols ... xxiii
Mouse Buttons and Menus ..xxiv

Getting Help ..xxiv
Commercial Licensees ..xxv

Before Contacting Technical Support ...xxv
Contacting Technical Support ..xxv

Non-Commercial Licensees ...xxvi
Additional Sources of Information ...xxvi

Smalltalk Tutorial ..xxvi
Online Help ... xxvii
News Groups .. xxvii
Commercial Publications ... xxvii
Examples .. xxvii

Chapter 1 The VisualWorks Environment 1-1

Running VisualWorks ...1-1
VisualWorks Command Line Options ..1-3

Image Level Switches ..1-3
Running Multiple Versions Under Windows ..1-4

Saving Your Work ...1-5
Saving the Image ...1-5
Restoring the Original Image ..1-6
Sources and Changes ...1-6

Exiting VisualWorks ...1-7
Closing on Windows Shutdown ...1-7
Emergency Exit ...1-8
Application Developer’s Guide iii

Contents
Chapter 2 Programming in VisualWorks 2-1

VisualWorks Launcher ... 2-1
Mouse (Pointer) Operations ... 2-2
Text Entry and Formatting .. 2-3

Character Formatting .. 2-3
Short-cut Controls ... 2-4
Enclosing an Expression .. 2-4

Evaluating Smalltalk Code in a Workspace ... 2-5
Evaluating Commands .. 2-7
Workspace Variables .. 2-7
Name Spaces in Workspaces ... 2-8
Saving Workspace Contents .. 2-8

Loading Code Libraries ... 2-9
Using the Parcel Manager .. 2-9
Loading Parcels Programmatically ... 2-11
Setting the Parcel Path ... 2-11

Browsing and Editing Smalltalk Code .. 2-12
Browsing the System .. 2-14
Browser Navigator .. 2-15

Package View .. 2-15
Hierarchy View ... 2-16
Class / Name Space View ... 2-16
Instance, Class, and Variable Views .. 2-16

Working with the Browser ... 2-16
Editing Source Code .. 2-17
Missing Source Code ... 2-17
Searching .. 2-17
Drag and Drop ... 2-18
Controlling Visibility of Methods ... 2-18
Using Multiple Views .. 2-18
Source Code Formatting .. 2-19

Browsing Files ... 2-19
Exploring Objects .. 2-20

Inspecting an Object ... 2-21
Modifying Objects ... 2-22
Evaluating Expressions .. 2-23
Browsing and Editing Behavior ... 2-23

Painting a GUI ... 2-24
System Settings ... 2-25

VisualWorks Home ... 2-25
Settings ... 2-25
Saving and Loading System Settings ... 2-26
iv VisualWorks

Contents
Chapter 3 Object Orientation 3-1

Procedures vs. Objects ..3-1
Objects and Methods ...3-2
Composite Objects ...3-3
Variables and Methods ...3-5

Method Names ..3-6
Method Categories ..3-6

Classes and Instances ...3-7
Class Variables ...3-7
Class Methods vs. Instance Methods ..3-7

Class Inheritance ...3-9
Looking up a Method ...3-9
Overriding an Inherited Method ...3-10
Abstract Classes ...3-11
Choosing a Superclass ...3-12

Chapter 4 Syntax 4-1

Literals ..4-1
Numbers ..4-1

Integers ..4-1
Floating Point Numbers ..4-2
Fixed-Point Numbers ..4-2
Nondecimal Numbers ...4-2
Numbers in Scientific Notation ...4-2

Characters ...4-3
Strings ...4-3
Symbols ..4-3
Byte Arrays ..4-3
Arrays ..4-4
Booleans ...4-4
nil ...4-4

Variables ..4-5
Variable Names and Conventions ...4-5
Private Variables ...4-6

Temporary Variables ..4-6
Argument Variables ..4-7
Instance Variables ..4-8
Class Instance Variables ..4-10

Shared Variables ...4-10
Class Variables ...4-11
Pool Variables ..4-12
Class and Name Space Names ...4-15
Application Developer’s Guide v

Contents
Constant and Variable Bindings ... 4-15
Public and Private Shared Variables .. 4-16
Initializing Shared Variables ... 4-17

Assigning a Value to a Variable .. 4-17
Special Variables .. 4-18
Undeclared Variables .. 4-19

Message Expressions ... 4-19
Unary Messages ... 4-20
Binary Messages .. 4-20
Keyword Messages ... 4-22
Messages in Sequence .. 4-22
Cascading Messages ... 4-22
Parsing Order for Messages ... 4-23

Block Expressions ... 4-24
Pragmas .. 4-25

Declaring Pragmas ... 4-26
Including a Pragma in a Method ... 4-26
Processing Pragmas ... 4-27

Collecting Pragmas .. 4-27
Performing Operations with Pragmas .. 4-28
Accessing Pragma Components ... 4-29

Formatting Conventions ... 4-29

Chapter 5 Classes and Instances 5-1

Defining a Class .. 5-1
Creating a Class using the New Class Dialog .. 5-2
Editing a Class Definition .. 5-4
Class Types .. 5-5

Locating a Class by Name ... 5-6
Working with Instances .. 5-7

Creating an Instance .. 5-7
Destroying an Instance ... 5-8

Finalization ... 5-8
Lingering Instances ... 5-8

Immutable objects ... 5-8
Object Comparison ... 5-10

Methods ... 5-11
Creating a Method .. 5-12
Fixing Common Errors at Compile Time ... 5-12

Undeclared temporary variables .. 5-12
Undeclared class and instance variables 5-13
vi VisualWorks

Contents
Missing period ..5-13
Missing delimiters ...5-13

Returning from a Method ..5-13
Returning From an Enclosed Block ..5-13
Returning the Result of a Message ..5-13
Returning a Conditional Value ..5-14

Chapter 6 Name Spaces 6-1

Getting Started ...6-2
Name Spaces and Their Contents ...6-2

Name Space Contents ..6-3
The Name Space Hierarchy ..6-4

Smalltalk.Root.Smalltalk ...6-5
Working with Name Spaces ...6-6

Browsing Name Spaces ..6-6
Creating Name Spaces ...6-7
Naming a Name Space ...6-8
When to Create a New Name Space ..6-9
Rearranging Name Spaces ...6-9
Classes as Name Spaces ...6-9

Referencing Objects in Name Spaces ...6-10
Dotted Names and Name Space Paths ..6-10
Binding References ...6-12

Binding Reference Resolution ..6-14
When to Use BindingReference or LiteralBindingReference6-14

Importing Bindings ..6-15
Importing Classes and Name Spaces ..6-16
Importing Class Variables ..6-17
Importing Pool Variables ..6-17
Circular System Imports ...6-17

Binding Rules and Errors ..6-18

Chapter 7 Control Structures 7-1

Branching ...7-1
Conditional Tests ...7-2
Compound Conditions ...7-3

Looping ..7-4
Simple Repetition ..7-4
Conditional Looping ..7-5
Number Iteration ...7-6
Collection Iteration ..7-7
Application Developer’s Guide vii

Contents
Chapter 8 Managing Smalltalk Source Code 8-1

Organizing Smalltalk Code .. 8-2
Package and Bundle Contents ... 8-2
Browsing Packages and Bundles ... 8-3
Loading Code into Packages and Bundles ... 8-4

Loading from Parcels ... 8-4
Loading from File-in Files .. 8-5
Loading from a Store Repository ... 8-5

Controlling Load and Unload Behavior ... 8-5
Saving .. 8-5
Loading .. 8-6
Unloading .. 8-7

Managing Packages ... 8-7
Creating a Package ... 8-7
Adding Definitions to a Package .. 8-7
Removing a Package ... 8-8

Managing Bundles .. 8-8
Creating and Arranging Bundles .. 8-8
Editing a Bundle Specification ... 8-9
Removing a Bundle ... 8-10

Designing a Package Structure .. 8-10
Package and Bundle Properties ... 8-11

Prerequisites .. 8-11
Warning Suppression Action ... 8-11
Prerequisite Version Selection Action .. 8-12
Load and Unload Actions ... 8-12
Other Properties .. 8-12

Specifying Prerequisites ... 8-12
Specifying a Prerequisite Version .. 8-14
Marking a Component as Functional ... 8-15

References Between Packages .. 8-15
Code Overrides ... 8-16

Creating an Override ... 8-17
Reviewing Overrides .. 8-18
Resolving Overrides ... 8-20
Publishing Parcels and Packages with Overrides 8-20

Publishing Packages ... 8-21
Publishing as Parcels ... 8-21

Source Code Files ... 8-23
Managing Changes ... 8-24

Recovering Changes .. 8-25
Compressing Changes ... 8-25
viii VisualWorks

Contents
Using Change Sets ...8-25
Change Set Manager ...8-26
Selecting a Current Change Set ...8-26
Creating a New Change Set ...8-27
Saving Changes ...8-27

File-Out Files ..8-27
Filing Out Code ...8-28
Filing In Code ..8-28

Parcels ...8-29
Parcel Files ..8-29
Loading and Unloading Parcels ..8-30

Loading Parcels Programmatically ...8-30
Loading Parcels with Command Line Options8-31
Parcel Search Path ...8-32

Managing Parcels ..8-33
Guidelines for Clean Loading and Unloading ..8-33
Limitations and Restrictions ...8-35

Restrictions on Parcel Contents ...8-35
Partial Loading ...8-35
Shape Change Tolerance ...8-36

Chapter 9 Application Framework 9-1

Separating the Domain and the User Interface ..9-1
Application Model Acts as Mediator ..9-2
Value Model Links Widget to Attribute ...9-3
Builder Assembles User Interface ...9-4

Dependencies Between Objects ..9-5
The Update/Change System ...9-5
Notifications From Value Model to Application Model9-6
Notifications From Any Object to Any Object ..9-7

DependencyTransformer ..9-8
Direct Dependency ...9-8
Removing Dependents ...9-9
Circular Dependencies ...9-9

Application Startup and Shutdown ...9-10
Selecting an Interface ..9-10
Prebuild Intervention ...9-11
Postbuild Intervention ..9-11
Postopen Intervention ...9-11
Application Cleanup ..9-11

User Settings Framework ...9-12
Settings ...9-13
Application Developer’s Guide ix

Contents
Browsing the Definition for a Setting ... 9-14
Defining a Setting ... 9-14
Additional Setting Parameters .. 9-15
Controlling the Vertical Position of a Setting ... 9-15
Settings Pages .. 9-16
Defining a Page of Settings .. 9-17
Setting Types .. 9-18
Creating a Setting Model .. 9-20
Backward Compatibility with VisualWorks UISettings 9-20
Using Drop-Down List and Radio Button Settings 9-21
Defining a Settings Domain .. 9-22
Saving and Loading Settings .. 9-23

Responding to System Events ... 9-24
Defining System Event Actions ... 9-24
Command Line Processing in a Subsystem ... 9-27
Activating a Subsystem .. 9-28
Dependency Ordering of Subsystems .. 9-29

Chapter 10 Trigger-Event System 10-1

Triggering Events ... 10-2
Event Triggering Messages .. 10-2

Registering an Event Handler .. 10-3
Handling an Event with Arguments ... 10-4
Handler Registration Messages .. 10-4

Removing Event Handlers ... 10-6
RemoveAction messages ... 10-7

Defining Event Sets ... 10-7
Specifying event strictness ... 10-8
Specifying events to trigger .. 10-8
Event classes .. 10-9

How Handlers are Registered .. 10-9
Trigger Event System Support Methods .. 10-10

Trigger Event Support Methods Available to All Objects 10-10
Trigger Event Support Methods In ApplicationModel 10-11

Chapter 11 Announcements 11-1

Subscribing to Announcements ... 11-1
Unsubscribing ... 11-4
How Subscriptions are Managed .. 11-6
Selecting Subscriptions .. 11-7
Suspending a Subscription ... 11-10
Batching Missed Announcements .. 11-12
x VisualWorks

Contents
Substituting a Handler ...11-13
Making Subscriptions Weak ..11-15

Accepting Subscriptions ...11-16
Announcing an Event ...11-17
Handling an Announcement ...11-18

Processing an Announcement ..11-18
Vetoing an Event ...11-19

Chapter 12 Working With Graphics and Colors 12-1

A Note about the Examples ..12-2
The VisualWorks Graphics Environment ..12-2

Pixels ...12-3
Coordinate System ..12-3
Points ...12-4
Rectangles ..12-5
Graphical Objects ..12-5

Text Objects ..12-6
Geometric Objects ...12-6
Bitmap Image Objects ..12-7
VisualPart ...12-7

Colors and Patterns ..12-8
Graphics Media and Display Surfaces ..12-8

Windows ...12-8
Pixmaps ...12-9
Masks ...12-9

Graphics Context ...12-9
Graphics Device ..12-10

Displaying a Graphic ..12-10
Getting a GraphicsContext ..12-11
Displaying a Graphical Object on a GraphicsContext12-11
Drawing a Transient Shape ...12-12
Displaying a Bitmap Image ..12-12
Shifting (Translating) the Display Position ...12-13
Displaying a Restricted Area ...12-14
Copying from a Display ...12-15

Working with Pixmaps and Masks ...12-16
Creating a Display Surface from an Image ..12-17
Creating a New Display Surface ..12-17
Composing on a Pixmap ...12-18
Displaying a Display Surface ...12-18
Copying from a Display Surface ..12-19
Application Developer’s Guide xi

Contents
GraphicsContext Attributes .. 12-20
Line Properties ... 12-20

Line Width .. 12-20
Line Cap Style .. 12-21
Line Join Style ... 12-22

Font Properties ... 12-23
Paint Properties .. 12-23
Clipping Properties ... 12-24
X and Y Offsets ... 12-24
Scaling .. 12-25

Animating Graphics ... 12-25
Moving a Static Object .. 12-26
Animating a Changing Object ... 12-27

Using Graphics in an Application ... 12-29
Cursors ... 12-29
Icons ... 12-31
As a Component in an Application Window .. 12-32

Graphics as Labels and Decoration ... 12-32
As a Custom View ... 12-33

Chapter 13 Files 13-1

File Names .. 13-1
Creating a Filename ... 13-2
Constructing a Portable Filename .. 13-2

Creating a File or Directory .. 13-3
Creating an Empty File ... 13-3
Creating a New Disk Directory .. 13-4

Getting File Information ... 13-4
Testing for Existence ... 13-4
Getting the Size of a File .. 13-4
Getting and Setting the Working Directory ... 13-5
Getting the Parent Directory ... 13-5
Getting the Parts of a Pathname ... 13-6
Distinguishing a File from a Directory ... 13-6
Getting the Access and Modification Times .. 13-6

Getting File or Directory Contents ... 13-7
Getting the Contents of a File ... 13-7
Getting the Contents of a Directory .. 13-8

System Variables ... 13-8
Storing Text in a File .. 13-8

Writing a Stream to a File ... 13-9
Appending Text to a File ... 13-9
xii VisualWorks

Contents
File System Maintenance Operations ..13-10
Deleting a File or Directory ..13-10
Copying a File ...13-10
Moving a File ...13-11
Renaming a File ..13-11

Comparing Two Files or Directories ...13-11
Compare Filenames ..13-11
Compare File Contents ...13-12
Compare Two Directories ..13-12

Printing a File ...13-13
Print a Text File ..13-13
Printing a File Directly ...13-13

Writing and Reading Data Fields ...13-14
Setting File Permissions ...13-15
Unix Volume List ..13-16

Chapter 14 Binary Object Files (BOSS) 14-1

Storing Objects in a BOSS File ..14-1
Storing a Collection of Objects ..14-2
Appending an Object to a File ...14-2

Getting Objects from a BOSS File ...14-3
Retrieving All Objects ..14-3
Searching Sequentially for an Object ..14-4
Getting an Object at a Specific Position ..14-5

Storing and Getting a Class ...14-6
Storing a Collection of Classes ...14-7
Loading a Collection of Classes ..14-7
Converting Data After Changing a Class ..14-7

Customizing the Storage Representation ..14-8
Performance considerations ...14-9

Chapter 15 Exception and Error Handling 15-1

ANSI Exception Handling ...15-1
Adapting Signal-based Code ..15-2

Reinitializing Signal Creators and Initializers15-2
Name Signals ...15-2
Do Not Depend on Signal noHandlerSignal15-2

Exception Classes ..15-3
Handling Exceptions ..15-4

Exception Sets ..15-6
Exiting Handlers Explicitly ...15-6
Resumable and Nonresumable Exceptions ..15-9
Application Developer’s Guide xiii

Contents
Translating Exceptions .. 15-10
Unwind Protection .. 15-11

Signaling Exceptions ... 15-12
Exception Environment .. 15-12
Using a Signal to Handle an Error ... 15-14

Choosing or Creating a Signal .. 15-15
Proceedability ... 15-15
Creating an Exception .. 15-15
Setting Parameters ... 15-16
Passing Control From the Handler Block .. 15-17
Using Nested Signals ... 15-18

Chapter 16 Debugging Techniques 16-1

Software Probes .. 16-1
Breakpoint .. 16-2
Watchpoint .. 16-3
Setting Probes .. 16-4

Setting a breakpoint ... 16-4
Setting a variable watchpoint .. 16-4
Setting an expression watchpoint .. 16-5
Removing probes ... 16-7
Making a probe conditional .. 16-7
Select a watch window .. 16-9
Modifying a probe .. 16-10
Probe location .. 16-11
Recompiling a Probed Method .. 16-11
Limitations .. 16-12

Class Probes ... 16-13
Adding class probes ... 16-13

On Instance Variable Access... .. 16-13
On Message Receipt... .. 16-16

Remove class probes ... 16-17
Browse probed methods ... 16-17

Debugger .. 16-18
Walkback Notifier .. 16-18
Debugger Window .. 16-18
Reading the Execution Stack .. 16-20
Editing a Method Definition ... 16-22
Inspecting and Changing Variables .. 16-22
Inspecting the Stack .. 16-23
Tracing the Flow of Messages .. 16-24

Stack menu .. 16-24
xiv VisualWorks

Contents
Method menu ...16-25
Execute menu ..16-25
Correct menu ...16-27

Inserting Probes in the Debugger ...16-27
Temporary Probes ..16-27
Probe context management ...16-28

Debugging Tips ..16-29
Inserting probes into blocks ..16-29
Iteration debugging ..16-29
Interrupting a Program ...16-30

Global Probe Management ..16-31
Probe library ..16-32
Expression libraries ...16-32
Storing CompiledMethods Externally ..16-33

Debugging Within the Virtual Machine ...16-34

Chapter 17 Process Control 17-1

Creating a Process ...17-1
Scheduling a Process ..17-2
Setting the Priority Level ..17-3
Semaphore ...17-4

Mutual Exclusion ...17-5
Delay ..17-5

Delay and Time Change Interaction ..17-6
Promise ..17-6
Sharing Data Between Processes ...17-7

Chapter 18 Refactoring 18-1

Refactoring Browser Support ...18-2
Class-oriented refactorings ...18-2
Method-oriented refactorings ..18-2
Statement-oriented refactorings ..18-3

Refactoring for Abstraction ...18-3
Creating an Abstract Class ...18-4

Moving Instance Variables to a Superclass18-5
Consolidating Common Code ..18-5

Inlining Methods ..18-7
Refactoring Classes ...18-8

Creating a Subclass ..18-8
Renaming a Class and Its References ..18-8
Safely Removing a Class ..18-8
Changing a Class to a Sibling ...18-9
Application Developer’s Guide xv

Contents
Adding a Variable .. 18-9
Renaming a Variable and its References .. 18-9
Removing a Variable ... 18-9
Moving a Variable from or to a Subclass .. 18-10
Creating Variable Accessors ... 18-10
Abstracting a Variable ... 18-10
Making a Variable Concrete .. 18-11

Refactoring Methods ... 18-11
Moving a Definition to Another Component .. 18-11
Renaming a Method and its References .. 18-11
Safely Removing a Method ... 18-11
Adding a Parameter to a Method .. 18-11
Inlining all Sends to Self ... 18-11
Moving a Method to or from a Superclass .. 18-12

Refactoring Portions of a Method .. 18-12
Extracting a Method .. 18-12
Inlining a Temporary Variable ... 18-12
Converting a Temporary into an Instance Variable 18-12
Removing a Parameter ... 18-13
Inlining a Parameter .. 18-13
Renaming a Temporary .. 18-13
Moving a Temporary to an Inner Scope .. 18-13
Extracting to a Temporary ... 18-13
Inlining a Message .. 18-14

Chapter 19 Weak Reference and Finalization 19-1

Ephemerons .. 19-2
Finalization ... 19-3
EphemeronDictionary ... 19-4

Weak Collections ... 19-4
WeakArray .. 19-5

Finalization ... 19-5
Finalization Example .. 19-7

WeakDictionary .. 19-8
Finalization ... 19-8
HandleRegistry .. 19-8

Chapter 20 Creating an Application without a GUI 20-1

Setting Up a Headless Image .. 20-2
Running an Application in Headless Mode .. 20-3

Starting on Unix/Linux .. 20-3
Starting on Windows ... 20-3
xvi VisualWorks

Contents
When an Image Starts ..20-4
If an Application Attempts to Access a Display ...20-4

Debugging a Suspended Process ..20-5
Creating a Headful Copy of a Headless Image ..20-5
Tips for Programming a Headless Application ...20-6

Techniques for Starting a Headless Application ..20-6
Techniques for Communicating with a Headless Application20-6
Terminating a Headless Application ..20-6
Sending Output to the System Console ..20-7
Preventing Access to the Display ..20-7

Delivering a Headless Application ..20-8

Chapter 21 Application Delivery 21-1

Choosing a Delivery Strategy ...21-2
Single Image File ..21-2
Parcels ..21-2
Combined Deployment ..21-2

Packaging for Distribution ...21-3
Deploying as a Single File ...21-3
VisualWorks Installer ...21-3

Running a Deployed Image ..21-4
Loading Parcels At Start Up ..21-4
Opening a Runtime Application ...21-4
Exiting a Deployed Image ...21-5
Installing as a Service on Windows ...21-5

Preparing an Image for Deployment ..21-6
Loading Application Code ...21-6

Code Developed in the Image ..21-7
Code Saved in File-outs ...21-7
Code Saved in Parcels ...21-7
Code in a Store Database ..21-8

Removing Source Files ...21-8
The Transcript ...21-8
Handling Errors ...21-8
Registering an Interest in System Events ...21-9

Pragma-based Event Dependency ..21-9
Message-based Event Dependency ..21-10

Shutdown When the Last Window Closes ..21-10
Handling Command Line Options ...21-11

Pragma-based Option Processing ...21-13
Message-based Option Processing ...21-13

Unload Tools Parcels ...21-14
Application Developer’s Guide xvii

Contents
Removing Undeclared Variables .. 21-15
Garbage Collecting Lingering Instances ... 21-15
Splashscreen and Sound ... 21-15

Replacing the Splashscreen and Sound 21-15
Suppressing the Splashscreen and Sound 21-16
Controlling Splashscreen Duration .. 21-16

Creating the Deployment Image .. 21-17
Running Runtime Packager .. 21-17
A Short-cut Procedure .. 21-18
Examples .. 21-19

Building a Stand-alone Image .. 21-19
Building an Image Using Parcels ... 21-20

Runtime Packager Process Details ... 21-21
Saving Runtime Packager Parameters ... 21-21
Clean Up Image ... 21-22
Set Common Options ... 21-23

Basics Page .. 21-23
Details Page .. 21-23
Platforms Page .. 21-25
Exceptions Page .. 21-25
Parcels Page .. 21-26
Parcel operations ... 21-27
Stripping Page ... 21-27

Specify Items to Keep and Delete ... 21-29
Pop-up Menus .. 21-30

Scan for Unreferenced Items .. 21-32
Review Kept Items .. 21-34
Save Loadable Parcels ... 21-35
Test the Application ... 21-35
Set Runtime Memory Parameters .. 21-38
Strip and Save Image ... 21-39

Debugging a Deployed Image ... 21-41
Customizing the Emergency Notifier .. 21-42

Customizing Detected References .. 21-43
Customizing Image Stripping ... 21-44
Trouble Shooting .. 21-45

Workspace or Browser is Opened with the Application 21-45
Parcel File not Readable ... 21-45
Application Cannot Find a Parcel Source File .. 21-45
Application Exits Immediately ... 21-45
An Identifier has no Binding .. 21-45
xviii VisualWorks

Contents
Appendix A Abstract Smalltalk Syntax A-1
Overview ... A-1
Lexical Primitives ... A-2

Character Classes .. A-2
Numbers ... A-2
Other Lexical Constructs .. A-3

Atomic Terms .. A-3
Expressions and Statements .. A-4
Methods .. A-5

Appendix B Special Characters B-1
Overview ... B-1
Composed Characters .. B-2
Diacritical Marks .. B-5

Chapter C Virtual Machines C-1

VisualWorks Virtual Machines ... C-1
Production Engines .. C-1
Debug Engines ... C-2
Assert Engines ... C-2
Headless and Headful Engines .. C-2
Linkable Object Engines .. C-3
Console Object Engines ... C-3

Virtual Machine Command Line Options .. C-3
All platforms ... C-3
Windows platforms ... C-5
Unix/Linux platforms ... C-5

Index Index-1
Application Developer’s Guide xix

Contents
xx VisualWorks

About This Book

Overview
VisualWorks documentation is designed to help both new and
experienced developers create application programs effectively using the
VisualWorks® application frameworks, tools, and libraries.

This document, the Application Developer’s Guide, focuses on the basics,
such as:

• Smalltalk syntax

• VisualWorks development tools

• Data structures (classes, methods, namespaces, etc.)

• Program control structures

• Application and graphics frameworks

• Error handling and debugging

Other documents in the VisualWorks documentation set present

• using basic and add-in libraries that provide features useful for
specific application tasks,

• detailed information about VisualWorks tools, and

• tutorial introductions.

The documentation typically does not say everything there is to say about
a particular feature, nor does it cover the features in complete detail.
VisualWorks, like Smalltalk systems in general, is designed for
exploration and experimentation. In this sense, the documentation is
more like a map, identifying major features and how to get there, but the
level of detail is often variable and leaves lots of room for discovery. Read
the documentation as pointing out what is available in VisualWorks, and
then explore beyond what is described, becoming increasingly “at home”
with your environment.
Application Developer’s Guide xxi

About This Book
One strength of Smalltalk that makes this exploration and discovery
approach possible is that all of the source code available for browsing. Of
course, that also means there is more code there than you need to
understand, so you will need to figure out what to focus on and what to
ignore. Class and method comments, and special documentation
methods, can help here, and often provide details missing from the formal
documentation.

Read the documentation to orient yourself to the language, tools, and
libraries and their general use. It will help you to become successful
quickly, and providing a foundation for your further exploration and
mastery of the system.

Audience

The Application Developer’s Guide makes very few assumptions about
your level of knowledge about object-oriented programming, but does
assume you have a basic knowledge of computer programming in some
environment. The description of VisualWorks begins at an elementary
level, with an overview of the system tools and facilities, and a description
of Smalltalk syntax, but does not attempt to be a tutorial. For readers with
a good understanding of object-oriented programming principles and
practice, the document serves as an orientation to specific terminology
used in Smalltalk and the specific environment provided by VisualWorks.

For additional help, a large number of books and tutorials are available
from commercial book sellers and on the world-wide web. In addition,
Cincom and some of its partners provide VisualWorks training classes.
See Additional Sources of Information below for a listing of some of these
resources.

Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.
xxii VisualWorks

Conventions
Special Symbols
This book uses the following symbols to designate certain items or
relationships:

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File New Indicates the name of an item (New) on a menu
(File).

<Return> key

<Select> button

<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

Example Description
Application Developer’s Guide xxiii

About This Book
Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or
combinations:

Note: This is a different arrangement from how VisualWorks used
the middle and right buttons prior to 5i.2.
If you want the old arrangement, toggle the Swap Middle and Right Button
checkbox on the UI Feel page of the Settings Tool.

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>
xxiv VisualWorks

Getting Help
Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

• The version id, which indicates the version of the product you are
using. Choose Help About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to
supportweb@cincom.com.

Web
In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com
Telephone

Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.
Application Developer’s Guide xxv

mailto:supportweb@cincom.com
mailto:supportweb@cincom.com
http://supportweb.cincom.com

About This Book
Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:

• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu

with the SUBJECT of "subscribe" or "unsubscribe". You can then
address emails to vwnc@cs.uiuc.edu.

• A Wiki (a user-editable web site) for discussing any and all things
VisualWorks related at:

http://www.cincomsmalltalk.com/CincomSmalltalkWiki

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincomsmalltalk.com/documentation/

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.

Smalltalk Tutorial
A new VisualWorks Smalltalk tutorial is available online at:

http://smalltalk.cincom.com/tutorial/index.ssp?content=tutorials

The tutorial information is growing, so revisit this site.
xxvi VisualWorks

mailto:vwnc-request@cs.uiuc.edu
mailto:vwnc@cs.uiuc.edu
http://www.cincomsmalltalk.com/CincomSmalltalkWiki
news:comp.lang.smalltalk
http://www.cincomsmalltalk.com/documentation/
http://smalltalk.cincom.com/tutorial/index.ssp?content=tutorials

Additional Sources of Information
Online Help
VisualWorks includes an online help system. To display the online
documentation browser, open the Help pull-down menu from the
VisualWorks main menu bar and select one of the help options.

News Groups
The Smalltalk community is actively present on the internet, and willing to
offer helpful advice. A common meeting place is the comp.lang.smalltalk
news group. Discussion of VisualWorks and solutions to programming
issues are common.

Commercial Publications
Smalltalk in general, and VisualWorks in particular, is supported by a
large library of documents published by major publishing houses. Check
your favorite technical bookstore or online book seller.

Examples
There are a number of examples in file-in format in the examples
subdirectory, under the VisualWorks install directory. In addition, several
example listings in the document, especially those in Working With
Graphics and Colors invoke an Examples Browser. This browser is
provided in a parcel, also in the examples directory.
Application Developer’s Guide xxvii

About This Book
xxviii VisualWorks

1

The VisualWorks Environment

VisualWorks is a complete Smalltalk development environment,
including

• an implementation of the Smalltalk language,

• a virtual machine (also called the object engine) for executing
Smalltalk code,

• an extensive class library, and

• a wide assortment of development tools.

This document, the Application Developer’s Guide, provides an
introduction to the primary features of the VisualWorks environment
with a focus on developing and deploying VisualWorks applications.

In this chapter, we describe how to start up VisualWorks, including
several startup options, how to save your work as you develop in
VisualWorks, and how to exit VisualWorks.

Running VisualWorks
The VisualWorks executable runs the virtual machine, which
processes the data in a Smalltalk image file. The virtual machine
interprets and executes the Smalltalk byte-codes stored in the image.
Because it is an executable file, there is a separate virtual machine
for each operating system platform supported by VisualWorks. The
image file, however, is portable across all supported platforms.

As you work in VisualWorks, the usual way of saving your work is by
saving the image, either periodically while working or when exiting
VisualWorks. In normal practice, Smalltalkers accumulate several
Application Developer’s Guide 1-1

The VisualWorks Environment
images, at least one for each project. To start a specific image, simply
specify that image in the startup command, as described in the next
section.

When starting a development image, the VisualWorks Launcher
window opens, serving as the command center for development
operations. For a description of the Launcher and other tools, refer to
Programming in VisualWorks.

To start VisualWorks, you run the virtual machine with the image file
passed as the argument:

virtual_machine image_file options
There are several engines provided for each platform.

• For development work, we recommend using the engines named
vw<plat>, for example, vwnt.exe for Microsoft Windows systems or
vwlinux86 for Linux systems. These engines include debug
symbols which can be helpful in diagnosing engine crashes.

• For application deployment, the preferred virtual machines are
visual.exe on Windows systems and visual on Unix and Mac OS X
systems. These are stripped versions of the object engines, and
so are smaller.

There are additional virtual machines for special purposes,
particularly for debugging. See Virtual Machines for more information
about all of the engines.

By default, the virtual machine is installed in the bin/<platform>/
subdirectory of the root VisualWorks installation directory.

If no image file is specified, the virtual machine looks for an image
with the same name as the engine. For example, if you execute visual
(or visual.exe) without an image name, it will look for visual.im.

Typically, you will start by changing to the image subdirectory, and
execute the object engine with the image as argument. For example:

> cd c:\visual\image > ..\bin\win\visual.exe
visual.im

If you use a file manager to start VisualWorks, you may need to
specify full paths for both the object engine and the image.

If both the virtual machine and the image file are in the same
directory, no path information is required at all.
1-2 VisualWorks

Running VisualWorks
VisualWorks Command Line Options
There are three types of command line options that you can use
when starting VisualWorks: object engine switches, image level
switches, and user-defined switches.

The generic command line syntax is:

<oe name> [oe switches] <image-name>
[image switches] [user-switches]

For object engine switches, see Virtual Machine Command Line
Options. For defining use-defined switches, see Command Line
Processing in a Subsystem. For processing options in an application,
see Handling Command Line Options.

Image Level Switches
The following image level switches are available to specify actions to
perform when the image starts up.

-pcl parcelFile

Load the parcelFile into the image on startup, checking both as a
filename and as a name to be searched in the parcel path.
Parcels are external file representations of packages (refer to
Managing Smalltalk Source Code).

-cnf configurationFiles

Load all of the parcel files named in configurationFiles (one or
more) on image startup.

-psp dir1 dir2 ...

Sets the parcel search path to include the specified directories.

-err errorFile

Set the path and file name for the error log file.

-notifier notifierClass

Set class for unhandled exceptions to notifierClass.

-filein fileNames

Treat the argument(s) as Smalltalk files to be filed in

-settings fileNames

Treat the argument(s) as XML files containing Smalltalk settings,
and load them.
Application Developer’s Guide 1-3

The VisualWorks Environment
-doit stringArguments

Treat the argument(s) as strings to be evaluated

-evaluate stringArgument

Treat the argument (only one) as a string to be evaluated. After
evaluation, put the displayString of the result onto the standard
output and exit the image.

Application-specific switches may be defined in the image. For a
description of the mechanisms used to define command line options,
refer to Responding to System Events.

Running Multiple Versions Under Windows
On Microsoft Windows systems, you can launch VisualWorks by
double-clicking on an image file, as long as the .im extension is
associated with the virtual machine. However, if you have multiple
versions of VisualWorks installed, Windows only associates one
engine with the extension. In this case, associate the small
executable, VisualWorks.exe with the .im extension, and edit
VisualWorks.ini to identify the location of the engine for each
applicable version.

Both VisualWorks.exe and VisualWorks.ini are installed, by default, in the
bin\win\ directory. Copy these to a different directory that you will
maintain independently of any specific installation of VisualWorks,
such as c:\visualworks.

Associate the .im extension in Windows with this executable by
creating an “open” action for the extension, and specify in the
“Application used to perform action” field:

C:\visualworks\VisualWorks.exe "%1"

When you double-click on an image file, VisualWorks.exe is launched
with the image clicked as argument.

Each release of VisualWorks includes a new VisualWorks.ini that
contains a line with a default listing for the current release. Copy the
line from this file into your own copy of the file, and edit the vm path
name for your installation. After accumulating for several releases,
you may have a file that looks like:

72 00 c:\vw7.2\bin\win\vwnt.exe
71 00 c:\vw7.1\bin\win\vwnt.exe
70 00 c:\vw7\bin\win\vwnt.exe
54 00 c:\vw5i.4\bin\win\visual.exe
1-4 VisualWorks

Saving Your Work
The first two digits indicate the VisualWorks release number, and the
second two are either 00 or 78, indicating commercial and
noncommercial releases, respectively. VisualWorks.exe matches these
numbers with a version identifier in the image file to invoke the
appropriate virtual machine. These numbers are the fifth and sixth
bytes of the array returned by:

ObjectMemory versionId
which is also shown by selecting Help > About VisualWorks... in the
Launcher.

Saving Your Work
In most programming environments you write code by editing a
source code file, and your work is saved in that editable file. This is
the file that you then compile to create the executable version of your
program.

In VisualWorks, the primary location of your work is in the virtual
image, or simply image. The image is a “snap-shot” of the
VisualWorks environment, including all the code that makes up the
development environment, class libraries, tools, and your application.
Tools and other windows that are open when the image is saved are
opened again when you launch the image again. Saving the image is
the traditional Smalltalk way of saving changes to the system as you
develop an application.

When you save an image, all this information is written to a binary
image file. The original image file distributed with VisualWorks is
called visual.im (visualnc.im in non-commercial distributions).

For more about source code files, including additional source code
archiving mechanisms, see below and Managing Smalltalk Source
Code.

Saving the Image
To save the current state of the image, select File > Save Image in the
VisualWorks Launcher. The current image file is then overwritten with
the current image.

To save the image to a new name, select File > Save Image As... A
dialog prompts you for the name of the image, with the current image
name as the default. To save the image to a different file, keeping the
previously saved image safe, enter a new name, without the .im
extension.
Application Developer’s Guide 1-5

The VisualWorks Environment
Restoring the Original Image
It is recommended that you keep a known good backup image, either
a copy of the image as originally supplied with VisualWorks, or a
copy of the basic image with optional tools and add-ins installed.

A clean copy of the original visual.im (or visualnc.im) image file is
included in the image/ directory, in the file visual.zip (or visualnc.zip). If
you accidentally overwrite the original image file or otherwise need to
restore it, unzip this file into the image/ directory.Be aware that
unzipping this file will overwrite the visual.im in that directory,
destroying any changes it might contain.

Sources and Changes
When you save the VisualWorks image, three files are updated: the
image file, the sources file, and the changes file. These three files are
synchronized, and so must be backed up together in order to have a
complete record of the system.

The image file has already been described at the beginning of this
chapter.

The sources file holds source code for the original VisualWorks
system image before you made changes. By default it is named
visual.sou which is the original image name with a .sou extension.

The changes file, which typically has the same name as the image
file but with .cha as its extension, contains source code for changes
you have made to the system, specifically for any application code
you have created. Changes are recorded to this file every time you
accept an edit, whether or not you save the image, so you always
have a history of work. The changes file can become very large, and
so should occasionally be condensed using Changes > Condense
Changes from the Launcher’s System menu. This removes all but the
latest version of each system change.

You can change the name of the sources file and of the changes file
on the Source Files page of the Settings Tool (to open this tool, select
System > Settings in the Launcher window).
1-6 VisualWorks

Exiting VisualWorks
Exiting VisualWorks
To end a VisualWorks development session, select File >
Exit VisualWorks in the Launcher. A dialog prompts you to save the
image before exiting. If you choose to save the image, you may
provide a new filename.

Selecting Cancel continues your session in the VisualWorks
development environment.

Note that closing the Launcher window, for example by clicking the
window’s close icon, allows you to either exit VisualWorks, or simply
close the Launcher window itself.

Closing on Windows Shutdown
When you shut down a Microsoft Windows system with VisualWorks
running, the image closes ending the VisualWorks session. The exit
may ungracefully close resources, possibly resulting in data loss.
This is important, for example, in database applications that might
have an open session.

Windows shutdown events are delivered to the VisualWorks image as
a QuitSystem event. There are a couple of ways to handle this.

• You can put a dependent on ObjectMemory and have an update
method that watches for #aboutToQuit (which would also be
triggered every time the image is quit).

• You can modify InputState>>#send:eventQuitSystem: to provide
some special hook only invoked on an exit event.

• Instead of modifying #send:eventQuitSystem:, you can add your
own quit method to InputState, such as #send:myEventQuitSystem:,
and then at system startup, you can go to
InputState.EventDispatchTable and put your own message at
position 19.

Alternatively, you can block VisualWorks from exiting, though this is
not the best solution. By default, the InputState class method
setDispatchTableForPlatform registers true with the acceptQuitEvents
object. To prevent VisualWorks from being prematurely shut down,
set this to false instead.
Application Developer’s Guide 1-7

The VisualWorks Environment
Emergency Exit
If VisualWorks stops responding to inputs such as mouse
movements, there are a few options.

You can press <Control>-\ to open the Process Monitor, which lists all
running VisualWorks processes. All UI processes are paused, as can
be seen by examining the listings. You can select a process and
debug it to find the problem. (<Control>-\ invokes control code 16r001C
on US keyboards. Other keyboards may use another sequence.)

Pressing <Control>-Y opens a debugger directly on the current
process, by-passing the Process Monitor.

If that doesn’t work, you can use the Emergency Evaluator. To open
an Emergency Evaluator, type <Shift>-<Control>-Y. An Emergency
Evaluator window will appear, with instructions to type a Smalltalk
expression terminated by <Escape>. Enter:

ObjectMemory quit
in the window, then press <Escape>. The system will shut down, after
which you can restart it.

To save the image before quitting, send:

ObjectMemory saveAs: 'filename' thenQuit: true
Then press <Escape>.
1-8 VisualWorks

2

Programming in VisualWorks

One of the major differences between Smalltalk environments and
most other development environments is the dynamic way the system
is modified. Rather than writing code to a source file, compiling the
code, then running the executable, in Smalltalk you program by
directly modifying a running system. The environment incrementally
becomes your application.

The VisualWorks tools, accordingly, are far more than text editors and
compilers. Instead, they provide a variety of views into the system as
well as mechanisms for interacting with it and changing its state.

This section introduces several of the tools in the context of doing
development in VisualWorks. For detailed information about
individual tools, refer to the VisualWorks Tools Guide.

VisualWorks Launcher
When you start a VisualWorks development image, the Visual
Launcher (or “Launcher”) is the first, and possibly only, window
displayed. This is the VisualWorks “command center,” from which you
perform system-wide operations and open other tools.
Application Developer’s Guide 2-1

ToolGuide.pdf

Programming in VisualWorks
The Launcher primarily provides a way to launch the main
VisualWorks tools, either by selecting menu items or by clicking one
of the buttons on the button bar. Individual items are described
throughout the VisualWorks documentation. Menus, menu options,
and toolbar buttons are often added to the Laucher when their
supporting components are installed.

Attached to the Launcher is the system Transcript. This is a text pane
that shows a running list of informational messages generated by
VisualWorks or your code. You can evaluate code in the transcript,
but it does not have the features of a workspace, and so is not as
convenient. More often you will use it as a place to write system
messages. The Transcript is an instance of class TextCollector, and so
displays string data. This will be illustrated several times in this
document, for example in Evaluating Smalltalk Code in a Workspace.

For descriptions of individual menu items, press F1 to open the
VisualWorks Help browser and display the Launcher help.

Mouse (Pointer) Operations
While working in VisualWorks, you will need to perform a variety of
operations, such as opening tools and evaluating (executing)
Smalltalk expressions. The menus and buttons in the Launcher and
other tools provide some number of these operations. Others are
available in pop-up menus throughout the system.

VisualWorks, like all Smalltalk systems, requires a mouse as a
pointing device. There are 1-, 2-, and 3-button mouses in common
use now, and VisualWorks supports each of these. The method for
invoking common operations varies, however.

There are three primary operations performed using the mouse:

• <Select> selects objects and text.

• <Operate> opens the <Operate> menu, which contains
commands appropriate to the current view. This context-sensitive
menu changes based on the current window and selection.

• <Window> opens the <Window> menu, which contains
commands that operate on the current window.

To invoke each of these operations, there are different methods for
invoking operations on the different systems and mouse
configurations.
2-2 VisualWorks

Text Entry and Formatting
The <Operate> menu is the most important in VisualWorks. Many of
the operations and procedures described throughout this document
involve picking a command from the <Operate> menu. Commands on
the <Operate> menu are explained as needed throughout this
manual. As usual, the most effective way of learning about the many
options is to experiment with them.

Text Entry and Formatting
For writing code and test expressions, you type into various text
panes. While this is obvious, there are some non-obvious options
available within VisualWorks.

Character Formatting
The basic text used for text entered in VisualWorks is specified in the
settings tool (System > Settings in the Launcher) on the Tools page.
The options are minimal, allowing you to select a small, medium or
large sans serif character typeface, or a fixed spacing (fixed-width,
serif typeface). There are other possibilities but these are the usual
options for text editing in the VisualWorks tools.

Occasionally there is reason to give text a little different formatting, as
we do in the introductory workspace pages in the noncommercial
version. Several such formatting changes are supported:

Operation 3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>

Format Effect Add (Esc + char) Remove (Esc + char)

Bold b B

Serif s S

Underline u U

Italic i I

Increase size + -

Remove all formatting x
Application Developer’s Guide 2-3

Programming in VisualWorks
For example, to apply a bolding to some text in a workspace or code
editor, select the text in the editor. Then press <ESC> followed by the
 key. To remove the bolding, select the text and then press
<ESC> followed by (<shift>+).

Similarly, to set the formatting for text you will be typing, place the
cursor at the text entry point, careful not to select any text. Press the
ESC sequence, then type. The text you type will take on the specified
format. To turn off the formatting, press the remove sequence.

A text editor that provides various text formatting commands as menu
selections is available, in the ComposedTextEditor parcel. Use the
Parcel Manager and browse the directory contributed/Heeg.

Short-cut Controls
Short-cut key sequences are provided for several common operations
in text and/or code editing pains. For a listing, view the online Help.

Enclosing an Expression
When writing code or comments, is it common to need to enclose a
section of text in parentheses, brackets, or quotation marks. You can
enter the left and write enclosure individually, of course, but
VisualWorks provides a shortcut for enclosing an expression in pairs
of any of these enclosure characters: (), [], < >, { }, " ", and ' '.

To enclose an expression, select the text in the text editor (generally
a code editor or workspace). Then press <ESC> followed by the left
enclosure character.

For example, when entering code it is common to realize that
parentheses are required around part of an expression you have
already typed, such as:

Rectangle origin: 10@20 extent: 50@50 translatedBy: 4
Parentheses are required because there is no such message as
origin:extent:translatedBy: for class Rectangle. What is intended is to
send the translatedBy: message to the result of the rectangle created
by the origin:extent: message. To fix this, we can select that part of the
expression, press <ESC> followed by <(>, and the parentheses are
added to enclose the selection.
2-4 VisualWorks

Evaluating Smalltalk Code in a Workspace
The same technique can be used to enclose an expression in the
other characters shown above.

To select just the expression within such enclosures, double-click just
to the inside of one of the enclosing characters. The enclosed
expression is selected, even if it is separated on several lines.

To remove the enclosures, select the enclosed expression, then use
the ESC sequence again. Since the expression is already enclosed,
the enclosing characters are removed.

Evaluating Smalltalk Code in a Workspace
A Workspace is a window in which you can evaluate Smalltalk code.
This is useful for launching applications and for testing code samples.

A workspace is open when you open a new VisualWorks image. Most
developers keep a workspace open while they work. Open
workspaces, like the rest of the tools, are saved with the image, and
so are opened when you launch any image that was saved while
opened.

To open a new workspa-ce, choose Tools > Workspace or click on the
Workspace icon in the VisualWorks Launcher.
Application Developer’s Guide 2-5

Programming in VisualWorks
While developing in VisualWorks, there several ways to use a
workspace. Often it is useful to see the return value of an expression.
For example, type a simple arithmetic expression on an empty line of
the workspace. Then place the cursor somewhere on the line, or
select the expression, and either press <Ctrl>-<P>, click on the Print it
toolbar button, or select Smalltalk > Print it. The result is printed
following the expression. Unsurprisingly, it is the number 7.

Similarly, type the String expression:

'Hello World'
and invoke Print it. Slightly more interesting, though, is to see the
result of sending a conversion message to the String, such as:

'Hello World' asArray
and again invoke Print it. The results this time a less obvious, and can
be instructive if you are interested in the kind of object is returned by
an expression.

You can evaluate expressions for to perform other operations as well,
such as launching the application you are developing within the
system. For example, type the following expression in the workspace:

Transcript cr; show: 'Hello World'
but this time invoke Do it. Either press <Ctrl>-<D>, click on the Do it
toolbar button, or select Smalltalk > Do it. This time nothing shows in
the workspace, but look in the Transcript attached to the Visual
Launcher.

When you develop an application with a GUI, one way will open it is
by evaluating (usually with Do it) a message like:

ParcelManager open
The Inspect it and Debug it evaluation messages can also be invoked.
These are described later.

The workspace is a multi-page tool, each page containing
independent contents. One page, labeled Variables, displays the
current workspace variables and their values. Each workspace page
can be saved into its own file. The multipage structure allows you to
have several workspaces open at a time, sharing workspace
variables. You can also “tear off” a workspace page to have it in its
own single-page workspace.

The following sections summarize additional features of the
workspace.
2-6 VisualWorks

Evaluating Smalltalk Code in a Workspace
Evaluating Commands
The workspace is a test bed for Smalltalk code. When you enter a
Smalltalk expression into a workspace, or any other code pane for
that matter, there are four evaluation methods to use. To invoke any
of these, either select the expression to evaluate or, to evaluate a
whole line simply position the cursor somewhere on the line. Then,
using either the <Operate> menu, the Smalltalk menu, or the button,
select the operation:

Do it

Silently evaluates the selected expression. Any output is the
responsibility of the expression being evaluated.

Print it

Evaluates the selected expression and prints the return value in
the workspace.

Inspect it

Evaluates the selected expression and opens an inspector on the
return value.

Debug it

Evaluates the expression and opens a debugger on the first
message-send. This is similar to placing a self halt in the code
and evaluating. You can then use Step into and Step commands to
explore the code’s operation. See Debugging Techniques for
suggestions.

Workspace Variables
Temporary variables used in a workspace have the workspace as
their scope, and exist as long as the workspace does, or until they
are explicitly cleared. These variables, called workspace variables,
are created when first assigned a value. That assignment then
persists and can be referenced by subsequently evaluated
expressions in that workspace. The variable and its assignment are
saved with the image, and so are available when reloading the saved
image.

For example, you can define a variable to hold an array simply by
evaluating an assignment operation:

fred := Array with: 5
Application Developer’s Guide 2-7

Programming in VisualWorks
The variable fred persists now, and so is available for further
operations, such as:

fred at: 1 put: ‘this is a test’
To inspect, remove, or otherwise edit workspace variables, click on
the the Variables tab. This toggles the display of an inspector on the
current variables for this workspace. Select a variable and use the
commands on its <Operate> menu to perform operations on the
variable.

Name Spaces in Workspaces
Workspaces can import name spaces, enabling them to better
simulate the name scopes of running code. Without imports, the
default name space is Smalltalk, so you would have to reference
shared variables, such as your application class names, using a long
dotted name.

By default, and for convenience, a workspace imports all name
spaces in the system. This allows you to refer to all shared variables
by their unqualified names. For better simulations of naming scopes,
you can specify just which name spaces to import.

To set the name space selection, select the Smalltalk > Namespaces...
menu. In the selection dialog, select either All or Some. If you select
Some, also select which name spaces to import. Imported name
spaces are then indicated by a check mark.

Saving Workspace Contents
You can save the contents of your workspace as a text file for later
opening. This is useful, for example, for saving collections of test
expressions. Note that workspace variables are not saved with the
file, and so must be recreated when the file is opened back into a
workspace.

To save the contents as a file, select Page > Save or Page > Save As... in
the workspace menu. If the workspace has not already been saved,
you are prompted for a name, with the .ws extension supplied.

To load a saved workspace, open a new workspace, then select Page
> Open, and enter the workspace name.
2-8 VisualWorks

Loading Code Libraries
Loading Code Libraries
The initial visual.im image contains fairly minimal development
facilities, including basic class libraries and tools. VisualWorks
includes additional tools and libraries that you will also want to use
while developing. Most of these are provided, either with VisualWorks
or by third-party vendors, as parcel files. There are other options as
well, but in this section we only deal with parcels. See Managing
Smalltalk Source Code for descriptions of these options.

For most non-Smalltalk development environments, code libraries are
imported during a compile operation, as specified by an “include”
command. For Smalltalk systems, these libraries need to be loaded
into the running system, and become part of the environment. This
provides a uniform approach for loading additional support code,
such as internet support services, and tools that enhance the
development environment.

For example, the UI Painter is a standard tool for developing the GUI
in a VisualWorks application. It is provided as a standard tool with
VisualWorks, but is optionally loadable. By loading the tool’s parcel, it
becomes immediately available for use.

When a parcel is loaded into the system it is organized as a package
or as a bundle of packages. When browsing the code that is loaded
from a parcel, locate the bundle or package with the same name, and
explore that. Browsing code is explained in Browsing and Editing
Smalltalk Code.

Using the Parcel Manager
The Parcel Manager provides an easy-to-use way to manage the
parcels that are loaded in the system. The Parcel Manager provides
a variety views listing the available parcels and their descriptions, and
support to load and unload a selected parcel.
Application Developer’s Guide 2-9

Programming in VisualWorks
To open a Parcel Manager, choose System > Parcel Manager or click on
the Open a Parcel Manager icon in the Launcher.

The Parcel Manager displays all parcels that are on the parcel path
associated with the image, which is a list of directories in which
VisualWorks will look for parcels. Three organizational views are
provided by the tab control over the left list pane: Suggestions,
Directories, and Loaded.

Select the Suggestions tab to see a pre-defined set of recommended
parcels. Each category under Suggestions contains parcels that have
been identified as key add-in features for VisualWorks. By selecting a
particular category, you may view a list of recommended parcels
(shown in the upper-right view). For example, the UI Painter, located
under Essentials, is the main VisualWorks tool for GUI development.

The Directories tab gives a directory-tree view of the parcel path. Use
this view to find parcels that are not included in one of the
Suggestions categories, or to find a parcel by its component, which is
often installed in a separate directory.

The Loaded tab lists all parcels that are currently loaded into the
image.
2-10 VisualWorks

Loading Code Libraries
To load a parcel, select it from the parcel list (upper-right corner of
the tool), and choose Load from the <Operate> menu. You may also
use the toolbar button, or simply double-click on the name of the
parcel.

To browse those parcels that have already been loaded in the image,
select Browse from the <Operate> menu.

The Parcel Manager uses several special icons to distinguish product
parcels from others (the “shopping sack” icon):

Use the tab controls on the parcel list view to view parcels sorted in
alphabetical order, or a hierarchical presentation ordered by parcel
prerequisites. The parcel details view (lower-right corner) shows
comments and properties associated with the selected parcel.

Loading Parcels Programmatically
In addition to using the Parcel Manager to load parcels, you can load
parcels programmatically. This allows you to include the ability to load
and unload parcels as an operation performed by your application.

Refer to Loading and Unloading Parcels for details about this
process.

Setting the Parcel Path
By choosing the Directories tab, you may view the parcel paths as a
directory tree. Selecting a particular directory displays all the parcels
contained within it.

To change, add or remove items from the parcel path, use the
Parcel Path page in the Settings Tool (select System > Settings in the
Launcher window). For more information about parcels, see Parcels.

Icon Description

Supported VisualWorks product parcels

Goodies or add-in components from other vendors
Application Developer’s Guide 2-11

Programming in VisualWorks
Browsing and Editing Smalltalk Code
In most traditional programming environments, including those for
object-oriented languages, you directly edit a plain text source code
file. That file contains a large number of definitions of functions,
classes, and methods. The typical source editor presents this file as a
single text document, though often with search facilities to assist the
programmer in finding the definition to be viewed and edited.

In VisualWorks the view is considerably different. Source code
definitions are presented as individual classes and their method
definitions. You browse classes either in the overall class hierarchy or
as they are organized into packages. Method definitions are browsed
as they are defined in a given class. (Shared variable and name
space definitions are similar to class definitions, but will be discussed
elsewhere.)

The principal VisualWorks tool for browsing and editing these
definitions is the System Browser. In this section we introduce the
principle features of the System Browser and its use in performing
common programming tasks. For additional information, refer to the
Tools Guide.

To open a browser, choose Browse > System or click on the Browser
icon in the VisualWorks Launcher.
2-12 VisualWorks

./ToolGuide.pdf

Browsing and Editing Smalltalk Code
The System Browser has several list panes and several code views.
The list panes allow you to navigate to the definition you want to view
or edit, as well as to select the location in the class hierarchy of new
class and method definitions. The code view provides several tab-
selectable tools for viewing properties and relations of the definitions,
as well as to edit them.
Application Developer’s Guide 2-13

Programming in VisualWorks
Browsing the System
Browsing the system consists of navigating through the library of
classes that are in the system, observing their relations to other
classes and the methods that are defined in those classes. It will take
some experience to become comfortable with the browser, but the
following comments will guide your learning.

Using the tabs above the top left list pane, select either the Package
(the default) or Hierarchy view of the system.

The Package view organizes classes into related groups, according to
component packages and bundles (collections of packages).
Packages in this way serve as categories did in earlier versions of
VisualWorks.

The Hierarchy view shows all classes in the class hierarchy of the class
that is selected, or the entire Object hierarchy if no class is selected,
when the tab is clicked. This view allows you to browse the
inheritance relations of classes.
2-14 VisualWorks

Browsing and Editing Smalltalk Code
The VisualWorks system is organized as a class library. Classes are
defined in an inheritance hierarchy, which you can browse by
selecting the navigator’s Hierarchy tab.

For organizational purposes, classes are grouped into packages, and
packages can be grouped into bundles. Packages and bundles can
be saved, or “published,” as parcels, which are the external, file-
based representation of packages and bundle. This organization is
described more fully in Managing Smalltalk Source Code.

You use the navigator to traverse the VisualWorks class library,
viewing definitions for classes, namespaces, methods, and variables.

The Package and Hierarchy views each has its own <Operate> menu,
offering commands that are appropriate to its contents. Many of the
commands are obvious. Specific commands are explained
throughout this document as the operation is discussed. For details
on individual menu functions, view the online help available from the
browser’s Help menu.

Browser Navigator
The different parts of the browser’s navigator provide different views
of the system. This section provides a brief summary of their function
and use:

The browser’s navigator panes use a number of special icons to
distinguish code components and special system classes of various
sorts. Observe these to recognize items of related functionality.

Package View
The VisualWorks library is organized into packages and bundles.
Packages and bundles provide an organizational view on the class
library, allowing you to categorize code according to related
functionality. In this respect, packages and bundles serve as did class
categories in earlier versions of VisualWorks and other Smalltalk
systems.

Each code definition is contained in a package, and can be viewed by
selecting the package. Packages can also be grouped into bundles
and the contained definitions browsed. The browser displays
packages and bundles when Package tab is selected in the Browser.
Application Developer’s Guide 2-15

Programming in VisualWorks
When Store support is loaded, packages and bundles are extended
to support code revisioning features and repository publishing to
assist in source code management. For information about working
with packages and bundles in a Store environment, refer to the
VisualWorks Source Code Management Guide.

Hierarchy View
Occasionally it is useful to explore a class in terms of the other
classes from which it inherits behavior, or that inherit behavior from it.
The navigator allows you to do this by displaying the hierarchy of the
selected class.

To view the entire class hierarchy, start by selecting class Object. You
can then find and browse a class by navigating through the hierarchy
to it. Although this is seldom very useful, it can be instructive.

Class / Name Space View
Classes and name spaces are defined in packages, so the contents
of the Class / Name space view depend upon the selected Package.

In addition to having a superclass, each class is defined in a name
space, which identifies the s. A name space is a name resolution
scope for name space, class, and shared variable names. Typically,
you create your own name space and then create your applications
within that name space. (Refer to Working with Name Spaces for
more information.)

When the class hierarchy view is selected, this view shows the
containing package for the selected item.

Instance, Class, and Variable Views
The Instance, Class, Shared Variable and Instance Variable tabs toggle the
contents of the method category and method/variable views,
selecting whether the categories and definitions of instance methods,
class methods, shared or instance variables are shown. In some
situations, such as when a namespace is selected that has only
shared variables defined in it, only one of the buttons, in this case
Shared Variables, is shown. Usually, any of the buttons can be selected,
even though there may be no entries for that view.

Working with the Browser
The System Browser separates code tools from the navigator so that
a variety of code tools may be used with each navigator. Generally,
you use the Source tool to examine class, namespace and variable
definitions, and to browse and edit source code.
2-16 VisualWorks

SourceCodeMgmtGuide.pdf

Browsing and Editing Smalltalk Code
The browser includes a feature-set for automated code refactoring
(refer to Refactoring for details). For advanced development, the
browser also provides special tools for code checking, rewriting, and
unit testing (refer to the VisualWorks Tool Guide).

To encourage learning and experimentation, each operation in the
browser can be reversed with the Undo function (on the Browser menu).

Editing Source Code
The Source code tool in a System Browser is where you do most
writing and editing of your application’s class and method definitions.
Common editing operations, such as cut, paste, find and replace, are
available on the <Operate> menu for this pane.

When you select a package but no class, a package description
(comment) is displayed. Similarly, when you select a class or name
space, a comment is displayed. If you select a class or name space
and a protocol, but no method, a method definition template is
displayed. To create a new package, class, or name space, use the
menu options, or edit an existing definition. To create a new method,
edit the template, or an existing method, with the appropriate
definition. When you have edited a definition, you need to save, or
accept, your changes. Select Accept from the code pane <Operate>
menu.

Missing Source Code
Your Smalltalk image is associated with a sources file, as described
in Sources and Changes. If the sources file is not correctly identified
in the Settings Tool, or your VisualWorks home directory is not
correctly set, or if the sources simply are not available, you may see
code in the browser with a comment explaining that it is decompiled
code. If you see this comment, set the home directory and/or edit the
Source Files page of the Settings Tool, making sure the .sou file name
agrees with the image name. (To open the Settings Tool, choose
System > Settings in the Launcher window.)

Searching
The navigator tool bar includes an entry field to do a quick search by
name for classes, variables, or methods:
Application Developer’s Guide 2-17

./ToolGuide.pdf

Programming in VisualWorks
To find a class, simply enter its name and select Accept from the
<Operate> menu, or press the <Return> key. To find a method, enter
its name, preceded by the # (pound) character. Wildcard searches
are possible using the * (asterisk) character.

Drag and Drop
To reorganize code, you can drag and drop methods on classes or
protocols; protocols on other classes or on protocols; classes on
other categories; and categories on other categories.

Controlling Visibility of Methods
By default, the browser’s method list only displays those methods
belonging to the currently selected class and protocol. Several
options are provided for controlling and expanding the visibility of
methods.

When a class is selected, the browser may optionally be set to show
all methods in the class when no protocol is selected. To enable this
option, select Show all Methods when No Protocols Selected on the Browser
page of the Settings Tool.

Just as it is often useful to see class inheritance using the Hierarchy
view, so too it is often useful to see inherited methods. To expand the
visibility of the Method List to include inherited methods located in a
superclass, select the name of the superclass from the Method >
Visibility menu. This setting remains active until you navigate to
another class.

To fix the initial visibility setting so that it remains active while viewing
different classes, select Show All Inherited or
Show All Inherited Except for Object. To disable the expanded visibility,
choose Show No Inherited.

Using Multiple Views
The System Browser can have with multiple active “views” on a
method. For example, while editing one method, you can switch to a
new view to look up some value in another method, and then return
back to your edited method without opening a new browser.

To create a new view, use View > New View or corresponding icon in
the browser’s tool bar. Select the entries on the View menu to toggle
rapidly between the different views you’ve created. Use View >
Remove Current View to delete a view.
2-18 VisualWorks

Browsing Files
Source Code Formatting
To format a method using the browser’s integrated code formatter,
select Format from the source code tool’s <Operate> menu or in the
Edit menu.

Many of the browser’s refactoring commands also invoke the code
formatter, so you should expect a formatting change any time you
refactor a method.

The formatting rules are user-accessible and may be changed. The
rules are located in class RBConfigurableFormatter, and they may be
changed using a special tool. To set the browser to use the
configurable formatter by default, evaluate:

RBProgramNode formatterClass: RBConfigurableFormatter
To open configuration the tool, evaluate:

FormatterConfigurationTool open
The Configuration Tool presents about 20 separate rules. When
changing a rule, you must Accept the changed value using the
<Operate> menu in the value’s input field. To examine the effects of
the rules on a test method, click on the tool’s embedded Format
button. To save any changes you make to the rules, click on the OK
button.

Method source in the browsers may also be color coded. To enable
color coding, load the ColorEditing parcel (it can be found in the
Parcel Manager’s Environment Enhancements category).

Browsing Files
The File Browser allows you to navigate the local file system, listing
and selecting directories and files. It is commonly used to find
Smalltalk source files to file-in (.st files), and for editing simple text
files.
Application Developer’s Guide 2-19

Programming in VisualWorks
To open a File Browser, choose File > File Browser or click on the
corresponding icon in the Launcher window.

Volumes and directories are shown on the right, files and their
contents on the left. When a file is selected in the upper-right view, its
contents are displayed in the lower-right view.

Special structured viewers are included for displaying VisualWorks
source files (.st), parcels, parcel source files, and XML source files.
Use the tab controls on lower-right view to select the desired view.

See the VisualWorks Tools topic in the online Help for more
information about the File Browser (select Help > Topics).

Exploring Objects
An inspector allows you to examine objects by exploring their
constituent objects, the values of the object’s instance variables. The
VisualWorks inspector incorporates a number of additional editing
tools that greatly enhance the control you have over live objects.

The inspector has a variety of options, and you can use it to perform
a number of operations that otherwise might require several tools. We
describe a few features here, but you should explore and experiment
further.
2-20 VisualWorks

Exploring Objects
Inspecting an Object
At the core of the inspector are two views, with the object’s variables
listed in the left-hand view. When you select a variable, its value
appears in the right-hand view.

For example, to inspect a point, enter this expression in a Workspace,
select it, and then select Inspect it from the <Operate> or Smalltalk
menu:

50@30
Alternatively, evaluate this expression using Do it:

(50@30) inspect
The resulting Point has two variables, x and y.

To view the value of a variable, select it. The value is shown in the
right-hand view. You can also do a multi-select of values, to see the
values of the selected variables all at the same time.

You can inspect the component objects also, by selecting the object
in the left view and selecting dive in the inspector’s <Operate> menu,
which then shows the selected object in the current inspector. To
back out of a diving inspector, select Back in its <Operate> menu. To
open a new inspector on the object, select Inspect from the Object
menu.

For some objects, the Basic view may include extra parts which are
not its instance variables. -self, for example, is a part that is always
there even though it is not an instance variable (these aspects of the
object are distinguished with a leading hyphen “-” character). For a
further example, have a look at a compiled method. Evaluate:

(Object compiledMethodAt: #printString) inspect
Application Developer’s Guide 2-21

Programming in VisualWorks
The basic view includes -bytecode and -source. These are not really
parts of the receiver, as instance variables are, but they are included
in the basic view as “virtual” attributes, just like -self, the object itself.
For more examples, inspect an Integer or a Character.

Drag-and-drop operations can be performed on the elements. If you
select a variable and drag it on top of another, its value will be
assigned to the target variable.

Specialized inspectors for dictionaries and other collections provide
extended inspecting capabilities. For example, evaluate:

(OrderedCollection with: 1 with: 2 with: 3 with: 4) inspect
The resulting special inspector opens on the elements of the
collection.

Notice that there is an additional tab, labeled Elements. This gives a
higher-level view of the object, showing only the elements of the
collection. The Basic tab, which is in all of the inspectors, is the
general inspector, equivalent to evaluating with basicInspect.

In addition to using drag-and-drop for value assignment, you can use
it to reorder the elements of a collection. Select an element, drag it
between two other elements, and drop it.

Modifying Objects
The right-hand view is a code view, in which you can type and
execute Smalltalk expressions. In this respect, it is like a workspace.
Variables are resolved within the scope of the code view.

Occasionally it is useful to set the value of a variable. You can do this
by entering an expression in the code view, and then selecting Accept
in the view’s <Operate> menu. This evaluates the expression and
assigns the return value to the variable under inspection.
2-22 VisualWorks

Exploring Objects
For example, in the OrderedCollection inspector shown above, select
the first element. It’s current value is 1. In the code view, enter:

1 + 1
Select it and pick Accept in the view’s <Operate> menu. The
expression is evaluated to 2, which is then assigned to the variable.

Evaluating Expressions
While you can evaluate an expression in a code view, you lose that
expression as soon as you select another variable. A convenience
feature is a code evaluator view that can preserve expressions
entered in it.

To open the evaluator, select Tools > Evaluation Pane. The pane is
opened at the bottom of the inspector.

The pane works much like the workspace. However, the evaluation
context is the object under inspection. Accordingly, you can use self to
refer to the object itself, and can perform operations on the object.

You can also “save” the contents of the evaluation pane, making the
same contents available to all inspectors. The contents are stored in
the inspector’s class variable, and so is shared by all instances. To
write the contents to the variable, select Accept on the pane’s
<Operate> menu.

Browsing and Editing Behavior
The Methods tab displays a class browser on the object’s class. This
makes it convenient to modify the object’s behavior without opening a
separate browser.

The features are the usual ones, with one notable addition. The
Inheritance menu lists the class and its superclasses, and allows you to
select the depth of the inheritance for the methods is displays. This
makes is easy to browse and edit the object’s methods no matter
where they are defined.
Application Developer’s Guide 2-23

Programming in VisualWorks
Painting a GUI
The “Visual” in VisualWorks emphasizes the graphical approach to
Graphical User Interface (GUI) design and development. This is
provided by the UI Painter.

The UIPainter is initially unloaded from the commercial base image (it
is loaded in the non-commercial version). To load it, open the Parcel
Manager, locate the UI Painter in the Essentials category, and select
the Load command.

The Painter tool is in three parts:

• Canvas (lower right) - represents a single window, on which you
place widgets, the graphical components of the GUI.

• Palette (top right) - presents a collection of widgets that are
commonly used in a GUI, and some widget arrangement buttons.

• GUI Painter Tool (left) - provides a collection of menu commands
and buttons for performing formatting and other operations on the
canvas, a hierarchical view of the widgets on the current canvas,
and the properties of the selected widget.

The Palette has one button for each type of widget. To add a
component, for example an input field, to your canvas, you simply
click on the Input Field icon in the Palette to select it, and then click in
the canvas to place the widget.

For a fuller description of this and related GUI building tools, as well
as a detailed description of GUI building in VisualWorks, refer to the
GUI Developer’s Guide.
2-24 VisualWorks

./GIUDevGuide.pdf

System Settings
System Settings
System Settings provide a central tool for customizing the
VisualWorks environment. To open the System Settings tool, select
System > Settings in the Launcher. A few settings are described here;
others are covered elsewhere with the relevant documentation.

VisualWorks Home
A number of system resources and directories are selected relative to
the VisualWorks home directory. This directory is set by the installer,
so normally you do not need to set it yourself. Occasionally, however,
it is necessary to reset the variable, if, for example, you move the
VisualWorks environment to another directory location.

To set the home directory, select File > Set VisualWorks Home... in the
Launcher window, which opens the Settings manager to the System
page. Specify the root VisualWorks installation directory, typically the
parent directory for bin and image, by either typing its pathname or
clicking the Browse button and selecting it in the directory tree. Then
click OK to save the change and close the Settings manager, or Apply
to save the change without closing the manager window.

On Windows systems, the home directory is recorded in the system
registry. On Unix and Linux systems, you can set the variable in a
startup script or in your user profile.

Settings
VisualWorks includes a Settings tool that allows you to control a
variety of global parameters, such as the appearance of windows
(Look and Feel), source file name (Source), default font for text (Text), and
so on. Groups of customizable features are organized as a tree on
the left hand side of the Settings manager. Select a group in the tree
to see and change its settings in the right hand side of the window

To open the Settings Manager, choose System > Settings in the
VisualWorks Launcher window, or click the corresponding button.

The Settings tool consists of three parts: a tree of settings pages on
the left, the currently selected page on the right, and a row of buttons
at the bottom:
Application Developer’s Guide 2-25

Programming in VisualWorks
Settings are organized into pages. Settings on the same page are
usually related and affect the same area of application functionality.
Each page has a context-sensitive Help button that displays additional
information to guide you in the proper setting of each parameter.

Press the OK button to apply all unapplied changes on all pages and
close the window. It is not necessary to apply changes made to a
page before switching to another page. Use the Apply button to apply
all changes, leaving the window open.

Saving and Loading System Settings
The <Operate> menu of the settings tree includes allows you to
manipulate and modify settings. To save all settings on all pages in a
file, select Save... and specify the name of the file. Use Load... to read
all settings from a previously saved settings file. The values are
accepted immediately. To immediately restore the values of all
settings to default, select Reset to Default.

To load, save, or restore the settings of the current page, select Load
Page..., Save Page..., or Restore Page to Default. The values that are
loaded or restored are displayed, but not applied until either the OK or
Apply button is pressed.

You can also load settings files using the -settings command line
option when launching VisualWorks.
2-26 VisualWorks

3

Object Orientation

Much of the literature on object-oriented programming (OOP) tends
to emphasize how it differs from procedural programming. And it is
different, in many important respects. Working with objects involves
ways of thinking very different from that required for procedural
programming.

Unfortunately, too often the strangeness of it all is overemphasized.
Also, as object-oriented programming has become increasingly
common, most frequently in the guise of C++ and Java, considerably
less defense and explanation is required now than when Smalltalk
was first introduced.

This chapter presents an overview of object-oriented terms and
concepts, reflecting a definite Smalltalk terminological bias, using
your programming expertise as a bridge to the world of object-
oriented programming.

Procedures vs. Objects
In a conventional programming language, a procedure typically
performs multiple operations and handles several items of data. For
example, when a user inputs a customer record in an accounts
receivable system and then executes a “save” command, a
procedure might be invoked to validate the dozen or more fields of
information in the customer record.

What happens when the five-digit field for a postal code in an
application has to be changed to accommodate the six-character
Canadian format? Three sources of inefficiency become apparent
immediately.
Application Developer’s Guide 3-1

Object Orientation
First, what amounts to a single conceptual change (modify postal
code) has to be programmed in two locations (database structure
and procedure code, as shown in part A of the illustration). Wouldn’t it
be nice if the data were somehow bound more tightly to the code, so
that only one system element had to be changed?

Second, there are likely to be multiple procedures that handle postal
codes—besides customer data maintenance, there may be supplier
maintenance, distributor maintenance, and so on (part B). In each
such procedure, the postal code validation routine has to be modified.
In an ideal s-ystem, such a change would affect all pertinent
procedures simultaneously.

Third, although only the portion of a procedure’s code pertaining to
postal codes is affected by the change, the entire procedure has to
be scanned by the programmer and recompiled (part C).

Modifying zip code in procedural programs

Objects and Methods
There has to be a way to isolate the changes more intelligently. In an
ideal programming language, each field in the database would be a
separate entity for the purpose of changing its attributes. Each atomic
routine in a program would be a separate entity for the purpose of
maintaining the code. So we would have a set of atomic data
elements and a set of atomic procedures.
3-2 VisualWorks

Composite Objects
It turns out that the procedures cluster very naturally around the data.
The procedure for validating a postal code is something that only the
postal code object needs to know. Likewise, only the address object
needs to know what its valid inputs are. So if we can make each data
object smart enough to perform the useful operations on itself, we no
longer need separate procedures at all.

Modifying postal code in Smalltalk

This simple strategy of making data smart is at the core of Smalltalk.
An application is no longer a collection of procedures that act on a
database, but a collection of data objects that interact with one
another via built-in routines called methods. The language is object-
oriented rather than procedure-oriented.

In fact, because Smalltalk variables are not statically bound to
specific data types, no change is required for client programs to be
able to store a string rather than an integer in a postal code.

To expand the definition of a postal code in Smalltalk, all you need to
do is broaden the postal code object’s validation routine. When
another object, such as the customer or supplier object, needs to
know whether a postal code is valid, it passes the proposed value to
a postal code object, which uses its built-in mechanisms to do the
testing.

Composite Objects
Most objects are composite objects, being composed of several other
objects. For example, a customer object would contain identifying
objects such as customer number, name, address, city, state, postal
Application Developer’s Guide 3-3

Object Orientation
code, and telephone number. Why have a customer object at all?
Because some procedures have to be performed for a customer
rather than a postal code or a telephone number.

Hierarchy of Objects

The create command, for example, is best centralized up at the
customer level of abstraction, because it is an operation that affects
all of the data objects that make up a customer. What does that
create operation consist of? In our example, the customer object
simply fires off the same message to each member of its collection:
“Here’s your input— validate it and store it. Let me know if there’s a
problem.”

Theoretically, the customer object would provide the customer-
identification part of an “account” object that handles requests related
to a customer’s account status. A collection of account objects would
make up the accounts-receivable system, itself an object that knows
how to answer questions about its collection of accounts. And the
accounts-receivable object joins an accounts-payable application and
a general-ledger application as parts of a financial-management
package. Hence, programming an application in Smalltalk consists of
building a hierarchy of objects. Another way of looking at it is that
you’re creating a single object (the application) that contains
component objects, each of which may contain smaller components,
and so on. The figure above illustrates a portion of such a hierarchy.
3-4 VisualWorks

Variables and Methods
Variables and Methods
An object typically is made up of one or more private variables (the
data) combined with a set of methods for manipulating that data.
Each method is a specialized subroutine.

Variables and methods of an object

The two parts of an object are also known as state and behavior. The
values held by an object’s variables define its state. Its methods—
what it knows how to do—define behavior.

For example, a postal code object might have a variable called zip to
hold the postal code string. It needs at least two methods to be a
civilized object, as listed in the following table.

As you can see, each variable typically generates two accessing
methods, one for inquiry and one for update. Even a simple postal
code object will often have other methods. For example, it might have
a method called isValid, which checks to make sure the string
conforms to a recognized postal code format.

Method name Description

getZip Return a string containing the postal code

setZipTo: Replace the contents of the zip code variable with the
string that follows the colon
Application Developer’s Guide 3-5

Object Orientation
Method Names
The method name is used by other objects to select the operation
defined in a method. The method name is used when sending a
message to specify the requested operation. Accordingly, it is also
called method selector, a message selector, or simply a selector.

A message is sent by specifying a selector plus any argument values.
We frequently refer to, for example, “a getZip message,” meaning a
message selector plus arguments, if any.

The fundamental unit of any Smalltalk expression is an object
reference followed by a message, as in postalCode getZip. This
expression asks the postalCode object to return the value stored in its
zip code variable.

Method names may contain letters, numbers, and underscores, but
may not begin with a number. When two or more words are combined
to form a name, as in this case, second and later initials are
capitalized to improve readability. This convention applies to all
names in the system: objects, variables and methods. All method
names begin with a lower-case letter.

Method Categories
It is not uncommon for an object to have dozens of methods. From
class to class, methods tend to cluster in recurring groups—for
example, objects that have data also have a set of methods for
accessing the data. Collectively, such methods are known as
accessing methods. You may encounter the phrase “accessing
protocol,” which refers to the set of methods for accessing data within
an object.

A method category is a convenient grouping of related methods,
much as a file folder holds related documents. The method editing
tools, such as the Package Browser and Class Hierarchy Browser,
use categories to help you search the code library.
3-6 VisualWorks

Classes and Instances
Classes and Instances
The question arises: How can there possibly be only one postal code
object that serves both a customer and a supplier when the real-
world customer and supplier might reside in different zip zones? For
that matter, each new customer might have a different postal code.

Obviously, there is a separate postal code object in each instance
because the values stored in the variables are different. On the other
hand, it would be silly to duplicate the postal code object’s methods
for each instance, so there must be one postal code object that is
unique in that it knows how a postal code ought to behave. The data-
only object is known as an instance; the method-holding object is
called a class.

Class names may contain letters, numbers, and underscores, but
may not begin with a number. The first letter of a class name is
capitalized, as are all global variable names.

A class can be thought of as the object behavior affixed to a data
template. An instance is created by cloning the template so a new set
of variables can be stored. The ZipCode class has a template
specifying that each instance of ZipCode will have one variable named
zip. Any given instance of that class consists of a value for that
variable.

Class Variables
A class can also have its own state values, which serve as system
constants. These states are stored in shared variables. For example,
the class Date has a shared variable called MonthNames, which stores
an Array containing names for the 12 months. Our ZipCode class might
have a shared variable called Formats, to store a collection of known
formats. In either of these examples, it would be wasteful to store a
new copy of the variable in every instance that is cloned from it
because the value is constant for all instances.

Like class names, shared variable names begin with a capital letter.

Class Methods vs. Instance Methods
If an instance doesn’t have its own copy of the methods on board,
how can it respond to messages? In a manner that is transparent to
the programmer, the system looks for the appropriate method in the
class from which the instance was spawned.
Application Developer’s Guide 3-7

Object Orientation
The expression zipCode getZip is equivalent to “ask the ZipCode class to
execute its instance method called getZip using the variables in the
instance called zipCode.” Thus, though each instance does not use up
unnecessary memory space by creating a copy of the instance
methods, the effect is the same.

A message can also be sent to a class, which is also an object. Each
class has two different sets of methods, one for itself and one for its
instances. When a class receives a message directly, it looks for the
corresponding method among its class methods.

Thus, the expression zipCode getZip executes an instance method that
returns the value of the instance variable. On the other hand, the
expression ZipCode formats causes a class method to be performed
and the value of a class variable (i.e., a constant) to be returned.

The parts of a class and an instance, and their interconnections

To summarize, the Smalltalk language consists of thousands of
subroutines called methods that are organized as a library of class
objects. The typical class object consists of class variables, class
methods, instance methods, and a template for instance variables.
3-8 VisualWorks

Class Inheritance
Class Inheritance
The class library is organized in a hierarchy of specialization, very
much like the taxonomy applied to the animal kingdom. At the root of
the tree is class Object. One kind of Object is a class called Magnitude.
If you dig down through a few more levels of specialization within the
Magnitude subhierarchy, you come to a class called SmallInteger. An
instance of class SmallInteger is an integer such as 3.

If you execute the expression 3 raisedTo: 4, the correct result (81) will
be returned. A raisedTo: message with an argument of 4 is being sent
to 3, which is an instance of SmallInteger. From the prior discussion
about instance methods, one would assume that the class
SmallInteger has an instance method called raisedTo:, but that is not
the case.

Object
Magnitude

ArithmeticValue
Number

Integer
SmallInteger

Looking up a Method
Smalltalk provides a method-lookup mechanism that starts its search
for a given method in the obvious place—the class of the object to
which the message was sent. If no such method exists there, the
method finder climbs up through the hierarchy, stopping at each level
to look for the method. In our example, the method finder has to go
up two levels, past the Integer class to its parent, Number. There it
finds the raisedTo: method.

SmallInteger is a subclass of Number, because it provides specialized
variables and/or methods. Number is a superclass of SmallInteger, as
is the class that sits between them in the hierarchy, Integer. Class
Object is the top-level superclass of all other objects.

The method finder has two ladders at its disposal, one for finding
class methods and the other for locating instance methods. As it
climbs upward through the superclasses, it uses only one ladder or
the other, but not both. Its choice of ladder is determined by the
message recipient. If the message is sent to an instance (3, in our
example), only instance methods are searched. A message sent to a
Application Developer’s Guide 3-9

Object Orientation
class such as SmallInteger would push the method finder onto the
class-method ladder. The expression SmallInteger raisedTo: 4 would
cause a fruitless search resulting in an error.

The upward search path of the object hierarchy

Overriding an Inherited Method
An instance of any subclass of Number can respond to a raisedTo:
message, but that doesn’t mean they all use Number’s version of it.
The subclass Float, for floating point numbers such as 3847.029, has
its own instance method called raisedTo: because floating-point
numbers require a specialized algorithm for exponentiation. When the
method finder goes to work on the expression 3847.029 raisedTo: 4, it
stops at class Float and never gets as high as Number.

Inheritance also applies to variables. Thus, each class inherits all of
the methods and variables of its superclasses.

For example, the ApplicationModel class provides variables and
methods that support a mechanism for notifying dependent objects of
a change in state. This mechanism is inherited by all subclasses of
ApplicationModel. The Customer class that we mentioned earlier might
well be created as a subclass of ApplicationModel. Then, if we create a
3-10 VisualWorks

Class Inheritance
View that displays the values in the Customer object, the Customer
inherits methods for keeping that View in sync with the data changes.
We don’t have to write any code for such dependency coordination.

Abstract Classes
Some classes are designed only to provide inheritable features, and
are never meant to be instantiated. For example, the class Object, the
ultimate superclass of all other classes, has an empty template for
instance variables. This may seem odd considering that instance
variables hold the actual data. What would an instance of class Object
hold as its nugget of data? The answer is that Object is not intended to
have instances. Its behavior is inherited and used by its subclasses
and their instances.

When a class is not intended to be used to create concrete instances,
it is called an abstract class. An abstract class is frequently useful as
a repository for variables and methods that are useful to two or more
classes, none of which is a logical subclass of the other. Another way
of looking at it is that the similarities shared by a group of objects are
squeezed up from their separate locations into a common
superclass.

The postal code can serve as an example once again. Until now, we
have been trying to make a single ZipCode class handle two very
different postal code formats. Presumably, as the customer base
expands, more methods would have to be added to handle other
postal systems. Eventually, a plain old United States numeric zip
code would have to be stored in a class that had more irrelevant
methods than relevant ones—and that’s the sort of awkwardness this
object-oriented technology is supposed to avoid.

Let’s make ZipCode an abstract superclass, with two new subclasses:
USZip and CanadianZip. They can both inherit the zip variable and the
accessing methods (getZip and setZipTo:) as well as any class
variables and class methods. The isValid method must be re-
implemented in each of the subclasses, to handle their specific
formats. The ZipCode class’s version of isValid can then hand off the
validation request to the appropriate subclass. To Customer, Supplier
and any other objects that interact with ZipCode, the mechanism for
finding out whether a zip code is valid has not changed.

A subclass of an abstract class can be abstract itself. One might
make USZip abstract, for example, and create one subclass
representing the five-digit format (OldUSZip) and another for the
hyphenated-nine-digit format (SlowToBeAdoptedUSZip).
Application Developer’s Guide 3-11

Object Orientation
Choosing a Superclass
When you create a new class, choosing its superclass is an
important design decision. The choice is made easier when you
employ an architecture that has been proven in many diverse
applications.

The containment hierarchy of the class library

The key to this architecture is to divide your application into two parts.
First develop the data structure and the attendant processing, then
invent the user interface. The user interface is further subdivided into
input and output modules. The data-and-processing module is
referred to as the model. The output module usually consists of the
screen displaying mechanisms—it’s called the view. The input
module is called the controller because it enables the user to control
the sequence of events by entering data and commands.

Not surprisingly, Smalltalk provides an abstract class as the intended
starting point for each of these three modules: Model, View and
Controller. Thus, the architecture is known as model-view-controller,
or MVC, programming. For detailed information about MVC design,
see Application Framework.

We use the term “application” broadly here—an object as lowly as a
postal code can be regarded as a self-contained model that can have
an associated view (a box on the screen in which the postal code is
3-12 VisualWorks

Class Inheritance
displayed) and controller (for accepting keyboard input to the model
in the form of data entry). This implies that an MVC application can
be a component of a larger MVC application, and so on. That is
indeed the case, furthering the cause of reusability by segmenting
any given program into easily separated components. In this sense, a
model-view-controller triad is the fundamental unit of design just as
an object is the fundamental unit of implementation.

When you choose a superclass for a new class, you are selecting an
inheritance hierarchy—positioning the method finder’s ladder in the
class library, so to speak. Model, View, and Controller head three major
subhierarchies within the library. Your choice of superclass typically
resolves to a class within one of those subhierarchies, and often to
the head classes themselves.

Many of the user-interface components that have been layered on top
of Smalltalk to form VisualWorks are subclassed from Model, View or
Controller. The remaining classes are typically subclassed from Object,
because as linguistic elements they stand apart from the MVC
machinery.
Application Developer’s Guide 3-13

Object Orientation
3-14 VisualWorks

4

Syntax

Smalltalk has a very simple syntax, consisting of literals, variables,
messages, and block expressions. This simplicity makes Smalltalk
syntax easy to learn.

VisualWorks Smalltalk complies with ANSI standards for Smalltalk
syntax, but employs some extensions.

For an abstract description of the VisualWorks Smalltalk syntax in
BNF, refer to Abstract Smalltalk Syntax

Literals
A literal is a Smalltalk expression that always refers to the same
object. This reference cannot change.

There are several kinds of literals in VisualWorks, including numbers,
characters, strings, symbols, arrays, byte array literals, and three
special literals: nil, true and false.

Note that literals are strongly typed, meaning that each is a full-
blooded object, an instance of a class, and so respond to the full
protocol of their class.

Numbers
Numbers are represented in the usual way, using a preceding minus
sign and embedded decimal point as required.

Integers
Integers are expressed as numeric literals such as 101, or as the
result of arithmetic operations involving one or more integers such as
55 + 46.
Application Developer’s Guide 4-1

Syntax
Floating Point Numbers
Floating point numbers must have at least one digit to the left of the
decimal point, so the compiler can distinguish a decimal point from a
period used as an expression delimiter. Thus, 0.005 is legal, but .005
is not. In scientific notation, the e is replaced by a d in a Double and a
q for quad-precision.

Fixed-Point Numbers
A fixed-point number is useful for business applications in which a
fixed number of decimal places is required. Fixed-point numbers are
expressed by placing the letter s after a literal integer or a floating-
point number. The number of decimal places preceding the s
implicitly specifies scale of the number (the number of decimal places
to be preserved). Note that an explicit scale takes precedence over
an implicit one, so that 99.95s4 is the same as 99.9500s, while
99.9500s2 is an error.

Nondecimal Numbers
Number literals can also be expressed in a nondecimal base by
prefixing the number with the base and the letter r (for radix). For
example:

When the base is greater than ten, the capital letters starting with “A”
are used for digits greater than nine. For example, the hexadecimal
equivalent of the decimal number 255 is 16rFF.

Numbers in Scientific Notation
Numbers can also be expressed in scientific notation by including a
suffix composed of e (for exponent) or d (for double-precision) plus
the exponent in decimal. Note that you can also use the letter q
instead of d. The q (quad-precision) is available for portability to other
Smalltalk systems, but in VisualWorks, q has the same effect as d.

The base is raised to the power specified by the exponent and then
multiplied by the number. For example:

Octal Decimal

8r377 255

8r34.1 28.125

8r-37 -31
4-2 VisualWorks

Literals
Characters
A character literal is always prefixed by a dollar sign. For example:

$a
$M
$-
$$
$1

Strings
A string literal is enclosed in single quotes (double quotes are used to
delimit a comment). Any character can be included in a literal string.
If a single quote is to be included, it must be preceded by a single
quote, as in:

'I won''t fail'

Symbols
A symbol is a label that conveys the name of a unique object such as
a class name. There is only one instance of each symbol in the
system. A symbol literal is preceded by a number sign, and optionally
enclosed in single quotes. For example, #Float and #'5%' are legal
symbols. If a symbol is enclosed in an array, it must still be preceded
by a number sign.

Byte Arrays
A literal byte array is enclosed in square brackets and preceded by a
number sign. Elements of the array must be integers between 0 and
255. They are separated by one or more spaces. The result, as in the
following example, is an instance of class ByteArray:

#[255 0 0 7]

Scientific Notation Decimal

1.586d5 158600.0

1586e-3 0.001586

8r3e2 192

2r11e6 192
Application Developer’s Guide 4-3

Syntax
Arrays
An array literal is enclosed in parentheses and preceded by a number
sign. Elements of the array are separated by one or more spaces
(extra spaces are ignored). An array literal embedded in another
array must still be preceded by a number sign. The following example
contains a number, a character, a string, a symbol and another array
(of three characters):

#(1586.01 $a 'sales tax' #January #($x $y $z))

Note: When you change an element in a nonatomic literal
constant (a String, an Array, or a ByteArray), the change is
reflected globally. For that reason, experienced Smalltalk
programmers rarely pass a mutable literal constant from one
method to another, but pass a copy instead.

Booleans
The boolean constant true is the sole instance of class True, and the
constant false is the sole instance of class False, both of which are
subclasses of Boolean. Unlike most instances, the values of true and
false are hard-wired in the compiler, which qualifies them as
constants.

Even though they are constants, their behavior is defined in the
instance methods of the classes True and False, which implement
boolean tests and operations, such as ifTrue:, ifFales:, and:, or:, and
not.

A Boolean value is seldom used directly, but is the return value of
comparison operations, and then used in branching control
structures. Refer to Branching for more information.

nil
The nil object is the sole instance of class UndefinedObject. As the
class name implies, nil is the null value given to variable slots that
have not yet been assigned a more interesting value. Like the
booleans, nil is hard-wired in the compiler. Its behavior is defined in
UndefinedObject—for example, it overrides the isNil method
implemented by Object (answering true instead of false).

It is expected that there is only one instance of nil in the system. Do
not create additional instances, even though this is possible using
basicNew, because this will cause VisualWorks to crash.
4-4 VisualWorks

Variables
Variables
Objects are referred to by their names. Except in the case of literals,
objects are named by being assigned to a variable.

Variables are of two types, depending on their reference scope.
Private variables can be referenced only by a single object; they are
private to that object. Shared variables are accessible by multiple
objects.

Unlike some other object-oriented environments, Smalltalk variables
are untyped, meaning that any variable can hold an object of any
type.

Another way to say this, and perhaps better, is that Smalltalk
variables are dynamically typed. What makes this a better way to
think of it is that Smalltalk itself is strongly typed; everything in
Smalltalk is a full-blooded object, an instance of a class. There are no
“primitive” types

Variable Names and Conventions
Variable names are made up of letters and digits, and may include
the underscore (_) character. A name must begin with either a letter
or the underscore.

Object names tend to be lengthy in Smalltalk, in comparison with
most other languages, to make the code more readable. For
descriptive purposes, a name is frequently made up of two or more
words. Convention dictates that the first letter of each embedded
word is capitalized. This convention is not enforced by the language
or by any of the development tools, but it does improve readability.

The following table provides conventions that apply to the first letter
of a variable names. In general, the initial capitalization indicates the
variable’s scope: upper-case for shared variables, and lower-case for
private variables.

Capitalization Conventions

Type of variable Initial capital Example

Argument variable No aString

Class instance variable No wordCollection

Class name Yes Date
Application Developer’s Guide 4-5

Syntax
In conformance with the ANSI standard, VisualWorks does not allow
the use of periods in identifiers. VisualWorks does, however, employ
a notational extension for referencing bindings (the primary referents
of shared variable, class, and name space names) that does use
periods. This notation provides a way for referencing a binding in
terms of the name space and/or class and/or shared variable in
which it is defined. Refer to Binding References for more information.

Private Variables
A variables is an association between a name and a changeable
value. The variable’s name is used to reference its value within the
variable’s name resolution scope. VisualWorks Smalltalk has several
kinds of variables for various naming scopes. The following variables
are “private,” in the sense that they are accessible only to specific
objects. Shared variables are discussed later (see Shared Variables).

Temporary Variables
A temporary variable is most often encountered in a method, where it
provides temporary storage for an argument or a calculated value. Its
lifetime begins when it is declaration is evaluated, within the method
or a block expression within the method, and ends when the block or
method finishes processing and returns control to the calling object.
The naming scope of the variable is the method or block in which it is
declared, and is inaccessible outside of that scope.

A temporary variable is declared by enclosing its name between
vertical bars. The declaration must follow the message definition, and
usually follows a comment explaining the method, but is otherwise
the first part of the method definition.

For example, the occurrencesOf: method for Dictionary is:

Class variable Yes Location

Instance variable No year

Name space Yes Smalltalk

Shared variable Yes MaximumUsers

Temporary variable No aDate

Type of variable Initial capital Example
4-6 VisualWorks

Variables
occurrencesOf: anObject
"Answer how many of the receiver's elements are equal to anObject."
| count |
count := 0.
self do: [:each | anObject = each ifTrue: [count := count + 1]].
^count

The third line declares the variable count, which is used as a counter.
The third line assigns its initial value, using the := assignment
operator. Temporary variables are free to change their values through
the life of the method, as is shown in the fourth line, which increments
count.

Multiple temporary variables can be declared in the same declaration
expression, by including them between the vertical bars, with one or
more white-space characters (space, tab, etc.) separating each
variable name. For example:

| var1 var2 var3 |
would declare three temporary variables.

Argument Variables
An argument variable is a special kind of temporary variable,
declared in the signature of a binary or key-word method definition.
The variables take their values from the arguments passed with the
message send.

For example, the class Time provides an instance method called
hours:minutes:seconds:, defined as:

hours: hourInteger minutes: minInteger seconds: secInteger
"Initialize all the instance variables."
hours := hourInteger.
minutes := minInteger.
seconds := secInteger

This method declares three temporary variables in its method
signature, italicized in the first line above, and names them
hourInteger, minInteger and secInteger.

When a client object sends this message to an instance of Time,
which it might refer to as aTime, appropriate integers are provided.
For example:

aTime hours: 11 minutes: 42 seconds: 15
Application Developer’s Guide 4-7

Syntax
When the method is invoked, the supplied values are assigned to
their respective variables, so hourInteger is set to 11, minInteger to 42,
and secInteger to 15. Argument variables, unlike other temporaries, do
not accept new values by assignment, so these assignments do not
change during the life of the variables.

As a convention, an argument temporary is named to indicate the
object type it is intended to hold (e.g., aSet, aString, anInteger).
However, no typing is enforced, and any object can be stored in any
variable. Errors might occur at runtime, if the method can’t handle the
object provided.

Instance Variables
Instance variables hold data that is specific to an individual instance
of a class. The variable’s value describes a state or attribute of the
instance. An instance variable is created when the instance is
generated, and exists as long as the instance does. The name scope
is the instance itself, which is the only object that can reference the
variable itself.

There are two kinds of instance variables, named and indexed. The
type of instance variable is specified for the class in the class
definition (refer to Classes and Instances for more information).

Named instance variables are the most commonly used. The
variables are declared by naming them in the class definition, in a
String argument to the instanceVariableNames: keyword. Accordingly,
every instance of the class will have an instance variable with that
name. For example, a Customer class may define an instance variable
firstName as follows:

ABCorp.Billing defineClass: #Customer
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: ' firstName '
classInstanceVariableNames: ''
imports: ''
category: 'Customer-Records'

Named instance variables are accessed by name in instance
methods, which either assign or retrieve a value from the variable.
For example, in Customer, an instance method would assign it a value
using the usual assignment syntax:

firstName := ‘Bruce’
4-8 VisualWorks

Variables
and another method would retrieve its value simply by referencing its
name:

^firstName
Indexed instance variables are not named, but are accessed by an
integer index. All indexed instance variables for an object hold the
same kind of value, which are either arbitrary objects or byte values.
The type of value is specified in the class definition, as described in
Class Types.

If the class does not use indexed instance variables, the index type is
specified as #none.

Individual instances of a class may have different numbers of indexed
instance variables. Collections, for example, vary in size, and so use
one indexed instance variable for each member.

Indexed instance variables set up an association between an index
location and a value, and so are accessed using at: and at:put:
messages. For example, if names is an instance of Array, the first
element in the array is retrieved by sending the message:

names at: 1
To add a name at the fourth position, send the message:

names at: 4 put: ‘Bruce’
which stores the string ‘Bruce’ as the value of the fourth indexed
instance variable.

A class can define its instances as having both named and indexed
instance variables. For example, the class Set defines its instances as
having both indexed instance variables, which hold object values, and
a single named instance variable, as show in the class definition:

Smalltalk.Core defineClass: #Set
superclass: #{Core.Collection}
indexedType: #objects
private: false
instanceVariableNames: 'tally '
classInstanceVariableNames: ''
imports: ''
category: 'Collections-Unordered'

The tally variable is used to record the number of elements in the set,
and the indexed variables hold the individual elements.
Application Developer’s Guide 4-9

Syntax
Instance variables are inherited, so an instance has its own copy of
the instance variables declared by all of its superclasses. For
example, the class Dictionary is a subclass of Set, so it does not need
to declare its own tally variable because it inherits the tally variable
that is declared in its superclass.

Class Instance Variables
A class instance variable stores data that varies with each subclass
in a hierarchy. It is declared as part of the class definition, and can
only be accessed by a class method.

For example, suppose you have an abstract LanguageDictionary class
that has methods for looking up words to verify spelling, etc. You give
LanguageDictionary a class instance variable named wordCollection.
Now you create a series of subclasses corresponding to the English
language, the Polish language, and so on. The EnglishLanguage class
can initialize wordCollection to hold English words. The other
subclasses can initialize it differently. Then when an instance of any
subclass asks for wordCollection, it gets the appropriate language-
specific version.

The advantages of this approach are that you still only have to
initialize the wordCollection once for each subclass (unlike instance
variables) and all subclasses can reuse methods that employ a
common variable name (unlike class variables).

Shared Variables
A shared variable is a variable that can be shared, or referenced, by
multiple objects. In previous releases of VisualWorks, shared
variables included class variables, pool variables, and global
variables. These various variable types are unified as a single type,
called simply a “shared variable.”

A shared variable’s value is logically independent of any single
instance of an object. Unlike instance variables, in which each object
holds its individual state, and class instance variables, in which each
class holds its state, shared variables can be shared among multiple
objects.

Shared variables are implemented as bindings, which are instances
of either class VariableBinding or its subclass InitializedVariableBinding.
Accordingly, we sometimes refer to “a binding,” and mean specifically
an instance of one of these classes, rather than in the more general
sense of a value assignment.
4-10 VisualWorks

Variables
The value of a shared variable, or of the binding it refers to, is either a
name space, a class, or an arbitrary object. In the third case, they
serve the roles formerly served by globals, pools, and class variables.

When defining a shared variable, give careful consideration to where
you create it, based on the referential scope expected for the
variable. For example, if only a single class needs to reference the
variable, define it in a class, as a class variable. But if it is to be
referenced by all objects in a name space it is probably more
appropriate to define it in the name space itself, as a pool or “global”
variable.

To define a shared variable, create a new category (protocol), and
use either the definition template, as described in the following
sections, or the New Shared Variable dialog, Class > New > Shared
Variable....

Class Variables
A shared variable, when defined relative to a class, implements a
class variable.

Class variables are inherited by, and accessible to, the class itself, its
instances, its subclasses, and their instances. This is true even if the
classes are in different name spaces; explicit importing is not
necessary.

For example, the class Date has a shared variable called MonthNames,
which stores an array containing names for the 12 months. It would
be wasteful to store the array in every instance that is cloned from it
because the names are the same for all instances. Instead, the array
is defined once in the shared variable. It is then accessible by
instances of the class Date and its subclasses, and by instances of
any other class that imports it.

To define a class variable:

1 In any system browser, select the class that will serve as the
name space for the variable, and select the Shared Variables tab.

2 Select, or add and select, a category for the new shared variable,
in the methods/shared variables list pane. The shared variable
definition template is displayed in the code pane:

Smalltalk.MyNameSpace.MyClass defineShared: #NameOfBinding
private: false
constant: false
category: 'category description'
initializer: 'Array new: 5'
Application Developer’s Guide 4-11

Syntax
3 In the template:

• Replace #NameOfBinding with a symbol specifying the shared
variable name, such as #MySharedObject.

• Set the private: field to true to make the variable private; otherwise,
leave it as false. (Refer to Public and Private Shared Variables.)

• Set the constant: field to true if the variable’s value should not be
changed; otherwise, leave it as false. (Refer to Constant and
Variable Bindings.)

• Enter an initialization expression, as a String, in the initializer: field,
or enter nil. (Refer to Initializing Shared Variables.)

4 Select Accept from the browser’s <Operate> menu to save the
definition and create the shared variable.

Your new shared variable is added to the list. It can be viewed in any
class browser by selecting the Shared Variables tab and its category.

Pool Variables
Shared variables can also be defined directly in name spaces (non-
class name spaces). For example, in the Graphics name space are
defined a lot of classes, and two further name spaces:
SymbolicPaintConstants and TextConstants. These name spaces exist
solely as the name scopes for collections of shared variables.

Each shared variable is defined directly in the name space.
Initialization values for the variables are provided either on the
definition’s initializer: line, as is done for most of the TextConstant
variables, or in an appropriate class initialization method, as is done
for the SymbolicPaintConstants variables.

For these variables to be accessed within a name space other than
its defining name space, the variable must be imported, usually by a
general import of its name space. (Refer to Importing Bindings for
more information.)

You can define a pool by creating a name space, which is the pool,
and then adding shared variables to it using a series of at:put:
messages. Browse SymbolicPaint class method initializeConstantPool for
an example.

A better approach is to define the pool name space, and then add
shared variables to it:

1 In the System Browser class/name space list, select the name
space that will contain the pool.
4-12 VisualWorks

Variables
Select the most local name space that makes sense for the
breadth of availability appropriate for this shared variable.

2 Select Add > Name space from the browser’s Class menu. The name
space definition template is displayed in the code pane.

3 Complete the template, specifying the name of your pool as the
name space name. (Refer to Creating Name Spaces for
completing this template.)

4 Select the pool name space, then pick Add > Shared Variable from
the browser’s Class menu. The shared variable definition template
is displayed in the code pane:

Smalltalk defineSharedVariable: #NameOfBinding
private: false
constant: false
category: 'As yet unclassified'
initializer: 'Array new: 5'

5 In the template:

• Replace #NameOfBinding with a symbol specifying the shared
(pool) variable name, such as #MySharedObject.

• Set the private: field to true to make the variable private; otherwise,
leave it as false. (Refer to Public and Private Shared Variables.)

• Set the constant: field to true if the variable’s value should not be
changed; otherwise, leave it as false. (Refer to Constant and
Variable Bindings.)

• Provide an appropriate category: string.

• Enter an initialization expression, as a String, in the initializer:
field, or enter nil. (Refer to Initializing Shared Variables.)

6 Select Edit > Accept in the browser to save the definition and
create the shared variable.

At this point the pool variables are all defined and initialized. You may
which to edit the definitions, however, to make the variables private or
constant, or to change.

To see your new shared variables, open a System Browser, select the
Shared Variables tab, select the pool’s super-name space in the name
space list, select the pool name space in the class/name space list,
and select a category.
Application Developer’s Guide 4-13

Syntax
As Global Variables

Globals are seldom used in VisualWorks, having been largely
replaced by pool variables. Even before VisualWorks 5i, only a few
“system globals” such as Transcript and Processor have remained in
the system. In general, they are a bad practice in object-oriented
programming, because they break encapsulation, and so are to be
avoided.

Instead of globals, these remaining system objects are defined as
shared variables in a name space that is almost certainly accessible
to all name spaces. Transcript, for example, is defined as a shared
variable in the Smalltalk.Core name space.

To browse these definitions, examine the Core name space in the
System Browser (select the Base VisualWorks bundle then find Core
in the class/name space list), and browse the shared variables. You
can do a search for Transcript using the browser’s built-in search
mechanism (upper-right corner of the tool).

The resulting shared variables aren’t truly “global” to the system,
since it is easy to define a name space that doesn’t import Core.

To define a shared variable:

1 In the System Browser, select a name space in the class/name
space list to be the super-name space.

Select the most local name space that makes sense for the
breadth of availability appropriate for this shared variable. For the
widest availability, select the Smalltalk name space.

2 Select Add > Shared Variable from the browser’s Class menu. The
shared variable definition template is displayed in the code pane:

Smalltalk defineSharedVariable: #NameOfBinding
private: false
constant: false
category: 'As yet unclassified'
initializer: 'Array new: 5'

3 In the template:

• Replace #NameOfBinding with a symbol specifying the shared
variable name, such as #MySharedObject.

• Set the private: field to true to make the variable private; otherwise,
leave it as false. (Refer to Public and Private Shared Variables.)
4-14 VisualWorks

Variables
• Set the constant: field to true if the variable’s value should not be
changed; otherwise, leave it as false. (Refer to Constant and
Variable Bindings.)

• Provide an appropriate category: string.

• Enter an initialization expression, as a String, in the initializer:
field, or enter nil. (Refer to Initializing Shared Variables.)

4 Select Edit > Accept in the browser to save the definition and
create the shared variable.

To see your new shared variable, open a System Browser, select the
Shared Variables tab, select the variable’s super-name space in the
name space list, select its name space in the class/name space list,
and select its category.

Class and Name Space Names
In VisualWorks, both class and name space names refer to shared
variables whose values are classes and name spaces, respectively.
Because of their special roles in the system, these are covered
separately in later chapters.

Constant and Variable Bindings
Sometimes it is desirable to set the value of a shared value and have
it be immutable, or constant. The constant: field in the shared variable
definition provides this option.

When set to false, the variable can be set and initialized by the usual
means by any object in the system. (Refer to Initializing Shared
Variables.) When set to true, however, the value cannot be changed
by the usual means.

For constant shared variables (which sounds odd, but they are still
variables), changing the value requires rerunning the initializer, and
so the variable is essentially protected from a runtime value change.
The value is, for all intents and purposes, constant. Even a class
initialization method that sets the variable will fail.

Note that you can change a shared variable’s definition, and so
change it from being variable to being constant. If you do so, be
aware that methods that set the variable will now fail.
Application Developer’s Guide 4-15

Syntax
Public and Private Shared Variables
Most Smalltalk dialects lack an enforceable distinction between public
and private classes and methods. Variables have traditionally been
either private (instance, class, and class instance variables) or public
(global and pool variables), depending on the kind of variable.

VisualWorks uses name spaces and shared variables provide a way
to fill some of this lack, by allowing you to control imports at two
levels: definition and import.

At either its creation or when imported, a shared variable can be
declared to be either public or private.

• If a binding is public, it is available for import by a name space or
class.

• If a binding is private, it is not available for import by a name
space or class.

Refer to Importing Bindings for more information on importing.

Defining a Binding as Private or Public

At one level, in its definition, each individual class, name space, and
shared variable is declared as either public or private by setting the
Boolean argument to the private: field. When set to false the binding is
public, and so can be imported. When set to true the binding is
private, and cannot be imported. At this level, privacy or publicity is
set for the object itself, and so is absolute.

So, for example, a shared variable that is defined in MyNameSpace and
declared as private is accessible only in the scope of MyNameSpace,
and cannot be imported by any name space or class. It is hidden
from anything that imports MyNameSpace.

Name spaces and classes are usually defined as public, since they
should be imported by name spaces that need to access them. Pool
variables also should be defined as public, since they also are meant
to be imported. Class variables, shared variables that are defined
within the scope of a class, are also usually defined as public, so they
can be accessed by the class’s subclasses, and their instances.

Defining a name space, class, or general shared variable as private is
the exception, but an option if appropriate.
4-16 VisualWorks

Variables
Initializing Shared Variables
There are a variety of ways to initialize a shared variable.

If you specify an initialization string in the shared variable’s definition,
to initialize the variable either:

• select the variable in a browser, and then select Shared Variable >
Initialize in the <Operate> menu (or in the Method browser menu),
or

• send the initialize method to a binding reference of the variable,
for example:

#{Smalltalk.MyNameSpace.MyBinding} initialize

These initialization methods work whether the variable is declared
constant or not (whether the constant: field is true or false).

In the case of class variables and pool variables, initializing shared
variables is frequently done as part of class initialization. In this case,
the value is set in the class initialize method, or in a method called by
initialize.

For example, the Dummy class initialize method may simply set a value
to a shared variable (DummyShared) defined in the class, like this:

initialize
"Dummy initialize"
DummyShared := String fromString: ' a b c d e'.

Note that to initialize a shared variable in a method, the variable must
not be set as constant; the constant: field must be set to false.

Assigning a Value to a Variable
The default value for any variable is the nil object. To assign a new
value to a variable, use the assignment operator := (a colon followed
by an equal sign), as in the expression:

prompt := 'Enter your name'
The expression on the right-hand side of the assignment can be any
legal Smalltalk expression. The following examples are all valid
assignment expressions. They have the effect of creating an array of
ice cream flavors and selecting one of those flavors at random:

flavors := #('chocolate' 'vanilla' 'mint chip').
index := (Random new next)* 3.
flavorChoice := flavors at: index truncated + 1
Application Developer’s Guide 4-17

Syntax
Assignments can be chained when two or more variables are to store
the same value, as in:

majorLoopCounter := minorLoopCounter := 1
Chained assignments should only be used with literal or read-only
values—otherwise, updating one variable has the side effect of
changing the value of the other variable similarly.

Special Variables
For three special variables, the value changes according to the
execution context but cannot be changed by assignment: self, super,
and thisContext.

The most prevalent of these special variables is self, which holds a
reference to the object that is executing the current message.

In the simplest case, self merely allows the programmer to direct a
new message to the specific instance that is executing the current
method. In effect, an object can execute another of its own methods.
A hypothetical doSomething method could use a computeX method to
calculate a number, for example, with the expression self computeX.

A more complicated case arises when inheritance is involved.
Suppose the doSomething method is located in the superclass of the
object that received the doSomething message. But computeX is
implemented by the subclass. How do we send the method finder
back to the bottom of the ladder to search for computeX, rather than
just starting from its superclass location?

The special variable self is a pointer to the object (in this case,
anObject) that received the message being executed (doSomething)

The surprising but pleasing answer is that the expression self
computeX still works. The new message (computeX) is directed at self,
which refers to the object that received the previous message
(doSomething).

It’s important to remember that self does not necessarily point to an
instance of the class whose method is being executed. In our
example, self is used in the parent’s method but it refers to the child.
Thus, using self in a method automatically provides for downward
growth in the hierarchy.

The super variable is very similar to self, except super tells the method
finder to begin its search one level above the executing method in the
class hierarchy. The receiver is the same as for self, namely the
sending object. This is useful when a subclass wants to add
4-18 VisualWorks

Message Expressions
operations to its parent’s method without having to duplicate the
parent’s code. Note that super is in the nature of a qualifier applied to
the method finder, so it cannot be assigned to a variable (as self can).

The third special variable, thisContext, is a reference to the stack
context of the current process. While self and super are commonly
used by Smalltalk programmers, thisContext is rarely needed by
application developers. It is used by the system’s exception handler
and debugger.In some of the literature on Smalltalk, self and super are
referred to as pseudovariables. However, other objects have also
been called pseudovariables, so the term is ambiguous—we call
them special variables instead.

Undeclared Variables
When a variable is deleted while references to it still exist, or a
reference to a variable is loaded (by a parcel or package) but never
declared, its name is entered in the Undeclared name space. This
name space is maintained by the system and need not concern you
under normal circumstances— but it can provide useful clues to
certain kinds of program errors.

To inspect the contents of Undeclared, select in the Launcher Browse >
Global, and enter undeclared in the prompter. This opens a
Namespace Inspector on the name space.

Message Expressions
A message expression is the fundamental unit of programming in
Smalltalk. It has three kinds of components: a receiver, a method
name, and zero or more arguments. In 9 raisedTo: 2, the receiver is 9,
the method name is raisedTo:, and the argument is 2. The term
message technically refers to the method selector and arguments,
while a message expression includes the receiver.

Every message returns an object to the message sender. In the
example just given, the raisedTo: method returns an instance of
SmallInteger—specifically, 81. There are three ways to denote the
object to be returned from a method:

• By default, the message receiver (self) is returned to the sender.

• A return operator (^, entered as <Shift-6> on most keyboards)
preceding a variable name causes that object to be returned. For
example, the expression ^anObject causes anObject to be
returned.
Application Developer’s Guide 4-19

Syntax
• A return operator preceding a message expression returns the
value of that expression. For example, the expression ^3 + 4
causes the object 7 to be returned.

A period is used to separate message expressions. No period is
necessary after the final expression in a series.

There are three types of message: unary, binary, and keyword
expressions. In addition, two or more messages can be joined in
sequence. Each of these constructs is described below.

Unary Messages
A unary expression has a receiver and a method name but no
argument. The following are all unary expressions:

1.0 sin. "Returns the sine of 1.0."
Random new."Returns a random number generator."
Date today."Returns today's date."

Binary Messages
A binary expression uses a special character, such as a plus sign
($+), as its method name and takes one argument. Some binary
selectors are combinations of two special characters, such as the
comparison selector >= (greater than or equal to). The characters that
allowed in a binary selector and the construction rules for a binary
selector are specified precisely in Abstract Smalltalk Syntax

The most common binary messages have to do with arithmetic
operations, comparisons, and string concatenation. The table below
describes many of the commonly used binary selectors. One or more
white-space characters before and after the selector are optional.

Common Binary Method Selectors

Selector Example Description

+ counter + 1 Add

- 100 - 50 Subtract

* index * 3 Multiply

/ 1 / 4 Divide

** 4 ** 3 Raised to
4-20 VisualWorks

Message Expressions
The second character of a two-character selector cannot be a minus
sign ($-). The other permitted characters are: $+, $/, $\, $*, $~, $<, $>,
$=, $@, $%, $|, $&, $?, $!, and $,.

// 13 // -2 Integer divide (round the quotient to the
next lower integer; in the example, -7).
An instance of Point can also be rounded
via this operator.

\\ 13 \\ -2 Modulo (return the remainder after
division; in the example, -1).

< counter < 10 Less than

<= index <= 10 Less than or equal

> clients > 5000 Greater than

>= files >= 2000 Greater than or equal

= counter = 5 Values are equal

~= length ~= 5 Values are not equal

== x == y Same object (identity; receiver and
argument are the same object or point to
the same object)

~~ x ~~ y Not the same object

& (x>0) & (y>1) Logical AND (return true if both receiver
and argument are true, otherwise false).

| (x>0) | (y<0) Logical OR (return true if either receiver
or argument is false).

, 'abc','def' Concatenate two collections.

@ 200 @ 300 Return an instance of Point whose x
coordinate is the receiver and whose y
coordinate is the argument.

-> #Three -> 3 Return an instance of Association whose
key is the receiver and whose value is
the argument.

<< #All << #labels Create a UserMessage

>> #All << #labels >>
'All'

Assign a catalog ID to a UserMessage

Selector Example Description
Application Developer’s Guide 4-21

Syntax
Note that the assignment expression (:=) is not a method selector.
Also, the linking symbol (>>), as used in the debugger and browsers
to refer to a method and its implementing class (for example,
Set>>size to refer to the Set instance method size), is not a binary
selector.

Keyword Messages
A keyword expression has a receiver, one or more argument
descriptors (keywords), and one argument for each keyword. Each
keyword ends in a colon. The following are valid keyword
expressions:

aDate addDays: 5 "Add five days to aDate."
anArray copyFrom: startIndex to: stopIndex

"Return a copy of that portion of anArray
that begins at startIndex and ends at stopIndex."

When there is more than one keyword, the method name is formed
by concatenating the keywords. In the second example above, the
method name is copyFrom:to: (formally pronounced “copyFrom colon
to colon”). There is no limit on the number of keywords in a method
name.

Messages in Sequence
Frequently, the receiver of a message is the object returned by the
previous message expression. To avoid creating a temporary variable
to store the returned object, you can create a sequence of messages.
For example, the first and second expressions below can be
compressed into the form of the third expression:

interest := principal * interestRate.
principal := principal + interest.
principal := principal + (principal * interestRate).

This technique reduces the wordiness of the code, though sometimes
at the expense of readability. Parentheses can be inserted, as shown
in the example, to improve the readability and to assure that the
intended parsing order is followed.

Cascading Messages
When two or more messages are to be sent to the same object, a
semicolon can be used to cascade the messages. This avoids having
to repeat the name of the receiver, though frequently at the expense
4-22 VisualWorks

Message Expressions
of readability. For example, the first set of expressions below has the
same effect as the final expression, in which the messages are
cascaded:

Transcript show: 'This is line one.'.
Transcript cr. "Carriage return."
Transcript show: 'This is line two.'.
Transcript cr.
Transcript show: 'This is line one.'; cr;

show: 'This is line two.'; cr

Parsing Order for Messages
When two messages have the same parsing precedence,
parentheses are sometimes required. For example, 3 + 4 * 5 is very
different from 3 + (4 * 5) because binary selectors are all evaluated
from left to right.

Parentheses are also necessary when a keyword expression is in the
argument expression for another keyword expression. For example,
the first expression below is valid but in the second version the
method selector is interpreted by the compiler as readFrom:on:, which
does not exist.

Time readFrom: (ReadStream on: '10:00:00 pm').
Time readFrom: ReadStream on: '10:00:00 pm'. "WRONG"

The following rules summarize the parsing order:

1 Parse parenthesized expressions before nonparenthesized
expressions.

2 Parse multiple unary expressions left to right.

3 Parse multiple binary expressions left to right.

4 Parse unary expressions before binary expressions.

5 Parse binary expressions before keyword expressions.

The result of the following code fragment is that a number is printed
in the System Transcript—can you trace the logic using the rules
above?

| aSet nbr |
nbr := 207.
Transcript show: (aSet := Set new add: nbr + 3 * 5 sin) printString

In the first line, two temporary variables are declared. In the second
line, one of the variables is assigned the number 207. In the third line,
the following sequence of events takes place:
Application Developer’s Guide 4-23

Syntax
Block Expressions
A block expression represents a deferred sequence of operations.
Blocks are used in several contexts, including control structures,
exception handling, and finalization. The syntactic characteristics of
block expressions are described here.

A block expression is enclosed in square brackets, as in:

[index := index + 1.
anArray at: index put: 0]

The messages inside the block are not sent until the block object
receives the unary message value. The following expressions have
the same effect:

index := index + 1.
[index := index + 1] value.

Up to 255 separate arguments can be passed to a block. Argument
names must be listed just inside the opening bracket. Each argument
name must be preceded by a colon. The final argument name must
be followed by a vertical bar. For example:

[:counter | counter := counter + 1]
The argument variables are private to the block. The values of the
arguments are passed by using variants of the value message. There
are four variants, to be used depending on the number of arguments:

value: anObject
value: anObject value: anObject
value: anObject value: anObject value: anObject
valueWithArguments: anArray

1. Set new Create an instance of Set.

2. 5 sin Calculate the sine of 5 (-0.958924).

3. nbr + 3 Add 3 to nbr (210).

4. ... * Multiply 210 by -0.958924 (-201.374).

5. .. add: ... Add -210.374 as an element in the Set created in
Step 1.

6. aSet := Assign the Set to the variable aSet.

7. ... printString Convert the Set to a printable string.

8. Transcript show: Output the printable string to the Transcript.
4-24 VisualWorks

Pragmas
Passing an argument to the example above would be arranged thus:

[:counter | counter := counter + 1] value: 3
Temporary variables can also be declared within a block. They must
be enclosed in vertical bars and placed after the vertical bar that
separates argument variables. They are local to the block.

The full syntax for a block is as follows:

[:arg1 :arg2 |
| temp1 temp2 |
statement1.
statement2.

...]

Pragmas
Pragmas are a special method expression used to annotate a
method. By themselves, pragmas do nothing. During compilation,
methods with pragmas are rendered as instances of AnnotatedMethod
rather than CompiledMethod. The class Pragma provides methods for
finding and processing methods that contain pragmas.

Pragmas are specified with a syntax that resembles either a keyword
or unary message expression enclosed in angles. So,

< keyword1: arg1 ... keywordN: argN>
for keyword pragmas or

< unaryword >
for unary pragmas. The method also includes standard Smalltalk
code that returns a value.

Pragmas are used in various parts of the system. For example,
windowSpec methods created by the UIPainter include the pragma:

<resource: #canvas>
a keyword pragma identifying the method as a resource method
defining a canvas. Other resource pragmas identify methods as
defining menus or graphic images.

While the form of a pragma resembles a message, and in some
cases a class might define a message with the same selector, there
is no direct relation between those; the form of the pragma is simply
used to locating the method that includes it. It is up to the application
to determine whether and how to use the pragmas.
Application Developer’s Guide 4-25

Syntax
Declaring Pragmas
Before using a pragma to annotate a method, it must be declared in a
class method. The method must be defined in the class of the
method that uses it, or some superclass of the class.

The method name is not important, but by convention includes
“Pragmas” in its name, such as resourceMethodPragmas defined in
Object. The method itself contains one or two pragmas, with keyword
pragmas: and argument either #instance or #class, or both, determining
whether the pragmas can used in class methods, instance methods,
or both. The return value is a collection of pragma selector symbols.
For example, again, resourceMethodPragmas declares the resource
pragma:

resourceMethodPragmas
<pragmas: #instance>
<pragmas: #class>
^#(#resource:)

This method declares a single keyword pragma selector that can be
invoked in either instance or class methods. This Subsystem method
declares a few pragmas, but only for use in instance methods:

dependencyPragmas
<pragmas: #instance>
^#(#prerequisites #option:sequence: #option:)

This declaration declares both a unary pragma, a pragma with two
keywords, and a pragma with one keyword.

Including a Pragma in a Method
You can include one or more pragmas in any method. If included,
pragmas must be the first expressions in the method following the
selector, except for a comment. Keyword pragmas must have a literal
value argument for each keyword.

Following the pragmas is any normal Smalltalk code. This expression
is evaluated whenever the method is invoked, as usual, but can
additionally be invoked when the pragma is processed.

Suppose we have declared three pragma selectors: #doStuff,
#doStuffWith: and #doStuffWith:and:. A method might include only one
of them, for example:

doSomething
<doStuff>
Transcript cr; show: 'Stuff done'
4-26 VisualWorks

Pragmas
In this case, only a single pragma is used. It is a unary selector
pragma, so no arguments are supplied. Similarly, a method might use
multiple pragmas.

methodWithPragmas
<doStuff>
<doStuffWith: #this>
<doStuffWith: #this and: #that>
Transcript cr; show: 'I''m here'

The arguments are literals and will be passed to the pragma
processor.

Processing Pragmas
Pragmas can be used for wide variety of actions. In the case of
resource methods, they are used to select the editor when “Edit” is
selected in the Resource Finder. Some tools, such as the Visual
Launcher, use the set of menuItem:... pragmas to dynamically modify
menus when the containing method is edited or loaded. Pragmas can
be similarly used to run tests automatically upon updating a method.
The options are unlimited.

The Pragma class provides facilities to assist in locating and
processing pragmas. Pragma instances hold information about the
method containing the pragma, its class, the pragma’s name and its
arguments.

Collecting Pragmas
To create a collection of Pragma instances, send one of the
allNamed:... location messages to Pragma. There are several forms,
the simplest being allNamed:in: which takes a pragma name and a
class as arguments. For example, suppose the above doSomething
and methodWithPragmas methods are defined in a class,
MyPragmaExample. To collect all doStuff pragmas, send:

Pragmas allNamed: #doStuff in: MyPragmaExample
which will return a collection with two pragma instances, one for the
doStuff pragma in each of the messages. Similarly,

Pragmas allNamed: #doStuffWith:and: in: MyPragmaExample
returns a collection with only a single Pragma instance. In this case,
the pragmas are in instance methods. If they were in class methods,
the class argument would be: MyPragmaExample class.
Application Developer’s Guide 4-27

Syntax
This method searches for pragmas in only one class. Several of the
other location methods search a branch of the class hierarchy, taking
a start and end class for the search. For example, by sending an
allNamed:from:to: message, you can collect all resource: pragmas in
class methods between ApplicationModel and UIPainterTool (or
whatever hierarchical sequence of classes you need to search):

Pragma allNamed: #resource:
from: UIPainterTool class
to: ApplicationModel class

Browse the Pragma class methods for the full set of locating methods
(“finding” category). Additional methods provide various sorting
options on the collection of Pragma instances.

Performing Operations with Pragmas
There are two ways to use pragmas methods. One is to evaluate the
Smalltalk code in the message; the other is to evaluate some other
expression based on the arguments provided in the pragma. Both of
these can be used together.

Unary pragmas have no arguments, so their only use is as a means
to locate and evaluate the message containing them. For example,
the doStuff pragma is only useful for sending the message containing
it, as in:

(Pragma allNamed: #doStuff in: PragmaExampleClass) do:
[:pragma | PragmaExampleClass new perform: pragma selector]

Rather than naming the method class explicitly, we can get it from the
pragma itself by sending it a methodClass message.

Most pragmas are keyword pragmas, and are useful because of the
arguments they carry. For example, in resource: pragmas the
argument indicates what editor to open: a UI Painter for a #canvas
argument; a Menu Editor for a #menu argument; a Bitmap Editor for
an #image argument.

To use the arguments, send a withArgumentsDo: message to the
pragma. The argument is a block with the same number of block
arguments as keywords. For example:

(Pragma allNamed: #doStuffWith:and: in: PragmaExampleClass) do:
[:pragma |

pragma withArgumentsDo:
[:first :second |

Transcript cr; tab; show: first printString;
cr; tab; show: second printString]]
4-28 VisualWorks

Formatting Conventions
Accessing Pragma Components
A few accessors for parts of a Pragma instance have already been
mentioned and illustrated. There are accessors both for the pragma
itself and its containing method.

Messages for accessing the method containing a pragma are:

method

Returns the compiled method containing the pragma.

methodClass

Returns the class of the method.

selector

Returns the selector of the method containing the pragma.

Messages for accessing the parts of the pragma itself are:

argumentAt: anInteger

Returns the argument at anInteger from the collection of
arguments to the pragma keywords.

arguments

Returns the collection of arguments to the pragma.

keyword

Returns the keyword (selector) for the pragma.

message

Returns a Message formed from the pragma keyword and
arguments.

numArgs

Returns the number of arguments.

Formatting Conventions
The compiler ignores tabs, carriage returns, and extra spaces.
Formatting conventions vary but readability favors the following
guidelines:

1 Start the message definition at the left margin and indent all other
contents of the method by one level.
Application Developer’s Guide 4-29

Syntax
2 Leave a blank line beneath the method comment and as a
separator between sections of a long method.

3 Follow each period that ends an expression by a carriage return.

4 Indent as needed to visually identify each subordinate section of
code.

The code browser provided with VisualWorks Smalltalk provides a
format command for automatically applying these rules.
4-30 VisualWorks

5

Classes and Instances

Every object in VisualWorks is an instance of some class (including
classes themselves). Instances have a message interface, which
describes the messages, or operations, that an object will perform.
The class defines the behavior for that message, or how the
operation is performed. The set of messages understood by an
object is referred to as the object’s protocol or message category.

In this chapter we describe how to define a class and its methods,
including how to generate an instance of a class.

Defining a Class
A class is defined in a name space, as the value of a shared variable
in that name space. The variable is defined as “constant,” so the
name of the class cannot easily be changed.
Application Developer’s Guide 5-1

Classes and Instances
Creating a Class using the New Class Dialog
The New Class dialog provides an easy to understand interface for
creating a class. Select New > Class in a system browser’s Class menu,
to open the New Class dialog:

The class definition properties are on two pages: Basic and Advanced.
A “Caution” icon (yellow triangle with an exclamation point) is
displayed next to any required field that lacks legal value.

The Basic properties are:

Package

The name of the package in which to create the class. The
package must already exist in the system. To define the class
unpackaged, select (none).

Name Space

The name space in which to create the class. The name space
determines the referential scope of the class name.

Name

The name for the class being created. There is no default. The
name must be new and unique in the specified name space, and
must begin with an uppercase letter.
5-2 VisualWorks

Defining a Class
Superclass

The name of the superclass, in literal binding reference (dotted
name) notation, as shown (see Binding References).

Instance Variables

A space separated list of instance variable names.

Create Methods

Three check boxes specify which, if any, stub methods are
created in the class automatically when the class is created. The
methods generally need to be edited to provide the desired
behavior.

Accessors, if checked, creates get and set accessor methods for
each instance variable specified.

Initializer, if checked, creates an initializer method with lines
setting the initial values of each instance variable specified.

Subclass responsibilities, if checked and if any of the superclasses
define methods marked as #subclassResponsibility, creates stub
methods in the new class for all of those methods. Initially, the
stubs will signal an error when evaluated, so you need to replace
their bodies with appropriate implementations.

The Advanced properties are:

Private

If checked, makes the class unavailable for import by another
class or namespace (see Shared Variables).

Indexed Type

This field specifies the class type, and particularly the type of
value that can be held by its indexed variables. See Class Types
for descriptions of the types.

Class Instance Variables

A space separated list of instance variable names (see Class
Instance Variables).

Imports

A list bindings to import (see Binding References).
Application Developer’s Guide 5-3

Classes and Instances
When the dialog values are set, click OK to define the class and any
specified methods.

Note that class variables are not declared in the class definition, but
are created as shared variables in the class name space. Refer to
Class Variables for more information.

Editing a Class Definition
When a class is created, its definition is represented as a message
send to a name space. The definition is displayed in the source code
view of the system browser when the class is selected, but no
method categories or methods are selected. The definition looks like
this:

Smalltalk defineClass: #MyClass
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: 'oneVar twoVar threeVar more '
classInstanceVariableNames: ''
imports: ''
package: 'MyStuff'

To modify a class definition, you can edit the values in the code view
and save the definition. Typically, you would only change the
definition by adding or removing variable names or imports, but any
of the lines can be changed. The keyword arguments are as follows:

• The message receiver is the name space in which the class will
be created. Changing the name space name and saving the
definition will create a new class in the specified name space. To
move a class, use the appropriate Class > Move menu command.

• The name of the class is a symbol literal (see Symbols) following
defineClass:. The name must begin with an upper-case letter.
Changing the name will create a new class.

• The superclass is specified in the superclass: field using the literal
binding reference notation shown (see Binding References).

• The indexedType: field is filled based on the class type you
selected (see Class Types).

• Set private: to true to make the class unavailable for import by
another class or namespace (see Public and Private Shared
Variables).
5-4 VisualWorks

Defining a Class
• Instance variable names are listed in a space-delimited String
following the instanceVariableNames: keyword (see Instance
Variables).

• Class instance variable names are listed in a space-delimited
String following the classInstanceVariableNames: keyword (see Class
Instance Variables).

• Following imports: list, in a white-space delimited String, any
bindings you want to import, or make freely available to this class
(see Importing Bindings).

• The containing package is shown in the category: fields.

If you make changes and save the defintion, the class is recompiled.
This is common, for example, to add and remove instance variables
during development.

Do not attempt to rename a class or move it to another name space
or package by editing the class definition. Instead, use the
appropriate menu command; either Class > Rename or Class > Move.

Class Types
Classes are of different types, determined by the value of the Indexed
Type in the definition. The permissible types are as follow:

#none

A class with zero or more named instance variables (possibly
inherited) and no indexed variables (e.g., True, Point). Can have
any kind of subclass.

#objects

A class of indexable object with zero or more named instance
variables and whose indexed variables hold arbitrary objects
(e.g., Array, OrderedCollection). Subclasses can be either #objects
or #weak), since subclasses must also be object-indexable.

#bytes

A class of byte indexable object with no named instance
variables and whose indexed variables hold only byte objects
(e.g., ByteString). Indexed variable contents are defined by the at:
and at:put: primitive methods defined in the class defines,
providing one and two-byte character strings, byte and word
arrays, etc. A #bytes class cannot inherit named or indexed
instance variables, because the instances contain only raw
Application Developer’s Guide 5-5

Classes and Instances
binary data. Consequently a #bytes class can only inherit from a
chain of #none classes with no named instance variables.
Subclasses must also be #bytes classes, because they must also
be byte-indexable.

#immediate

A class of immediate object, an object whose class and value are
encoded directly in the pointer to that object, (e.g., SmallInteger,
Character). An immediate class cannot inherit named or indexed
instance variables, because the instances do not have room for
instance variables. Consequently, immediate classes can only
inherit from a chain of #none classes with no named instance
variables. Also, immediate classes cannot have subclasses,
because there is no way to differentiate instances of the subclass
in the immediate representation.

#ephemeron

A class with one or more named instance variables (possibly
inherited) and no indexed variables (e.g., Ephemeron). The first
instance variable is treated specially by the garbage collector.
Consequently, an #ephemeron class must inherit from a chain of
#none classes. Subclasses can only be type #ephemeron.

#weak

A class of object-indexable objects with zero or more named
instance variables and weak indexed variables containing objects
(e.g., WeakArray). The indexed variables are weak, so do not
prevent their referents from being garbage collected.
Consequently, a #weak class must inherit only from a chain of
#none or #objects classes. Subclasses can only be weak-object
indexable (#weak), because subclasses must also be weak-object
indexable.

Locating a Class by Name
Because name spaces allow for multiple classes with the same
name, it is rarely appropriate to ask for a class’s name using the name
message, particularly if that name is being used as a unique
identifier. It is also not appropriate to ask for a class using Smalltalk at:
aSymbol, as had been common in earlier releases.

Instead, use one of the following:
5-6 VisualWorks

Working with Instances
fullName

Returns a fully qualified name.

printString

Returns a String representing the class name.

fullyQualifiedReference

When sent to a class or name space, returns a fully qualified
name computed compute from a binding reference (see Binding
References).

asQualifiedReference

When sent to a String or Symbol, returns a binding reference.

For example:

| bindingReference |
bindingReference := stringOrSymbol asQualifiedReference.
bindingReference

ifDefinedDo: [:theClass| theClass ...statements...]
elseDo: [self error: 'no class named ' , stringOrSymbol].

And, instead of:

Smalltalk at: stringOrSymbol
use:

stringOrSymbol asQualifiedReference value

Working with Instances
While a class defines the behavior of the members of that class, its
instances are the objects that actually have the behavior. Instances
are the objects that actually interact in a running application.

Creating an Instance
Smalltalk objects, or instances, are typically generated by sending
the message new to the class, possibly in conjunction with other
messages:

MyClass new
Application Developer’s Guide 5-7

Classes and Instances
If the class has indexed instance variables, the number of variables is
set by sending the new: message with an integer argument for the
number of indexed variables:

MyClass new: 5
These messages, new and new:, are defined in Behavior, and are
inherited by all classes.

Destroying an Instance
In general, there is no reason to explicitly destroy an instance,
because Smalltalk employs garbage collection. When an object no
longer has any other object pointing to it (e.g., holding it in a variable),
the system detects that it is no longer needed, and automatically
destroys the instance, reclaiming the memory and resources.

Finalization
In some cases, such as if an object uses external resources, garbage
collection is not sufficient. In these cases, use the VisualWorks
finalization features (refer to Weak Reference and Finalization).

Lingering Instances
It is also possible to have “memory leaks,” caused by an instance that
is not fully released, and so cannot be garbage collected. To find
these, look for unusual memory usage on a per-class basis. Load the
AT System Analysis Parcel, and open the Class Reporter by
selecting Tools > Advanced > Class reports in the Launcher. On the Space
page, select the suspect class, click the Instance size radio button, and
click Run. Run this both against your image and a clean image to
identify classes with possible garbage. Then, send allInstances to the
class and inspect them. Use the Inspector's Object > Inspect Reference
Paths command to trace back to a root holding onto the object.
Potential roots are:

• Object classPool at: #DependentsFields

• Object classPool at: #EventHandlers

• ObjectMemory dependents

• sysOopRegistry

Immutable objects
Several objects are “immutable,” meaning that their internal state
cannot be changed. Instances of SmallInteger, Character, and Symbol
have always been immutable in Smalltalk.
5-8 VisualWorks

Working with Instances
VisualWorks, beginning with version 7, extends the notion of
immutability. In addition to the objects listed above, all literals and
general instances of Number are now immutable. Also, facilities have
been added to make individual objects immutable. Except for
instances of SmallInteger, Character, and Symbol, objects which are
immutable may be made mutable.

This change provides several advantages:

• additional language safety by making literals immutable

• debugging aid, by catching where an object is assigned-to

• for persistence, where attempts to modify are caught, retried and
the updated objects written to persistent storage

Attempts to modify an immutable object, such as by sending become:,
changing a character in a Symbol or String literal, or changing the
class of immutable objects will raise a NoModificationError exception.

The repercussions of this change can be quite extensive. However,
updating old code to deal with the new restrictions is straight-forward.
In many cases, such as String or Array literals, copy returns a mutable
copy of the object. For example,

Failure:

'' writeStream nextPutAll: 'abc'
Success:

'' copy writeStream nextPutAll: 'abc'
Success:

String new writeStream nextPutAll: ‘abc’
This does not work for Booleans, general instances of Number, or
immediate objects.

You can test for and control the mutability of objects using the
following protocol:

asImmutableLiteral

Returns the receiver as an immutable literal if it can be
represented as a literal.

beImmutable

Makes the receiver immutable.
Application Developer’s Guide 5-9

Classes and Instances
beMutable

Makes the receiver mutable, except in the case of immediate
objects such as Character, SmallInteger, and Symbol.

isImmutable

Answers true if the receiver is immutable; false otherwise.

isImmutable: aBoolean

Makes the receiver immutable if aBoolean is true, or mutable if
aBoolean is false. Does not apply to immediate objects.

isImmutableLiteral

Answers true if the receiver is an immutable literal; false
otherwise.

Object Comparison
It is common to test objects, to see if they are the same object or an
equivalent object, or not. The most common comparisons are
equality (=) and identity (==). Identity tests whether two expressions
represent or return the very same object. Equality tests whether two
expressions represent or return equivalent objects, where the
equivalence of objects is determined by the receiver’s implementation
of =.

By default, as defined in class Object, objects are equal (=) if they are
identical (==). Frequently, a class that introduces instance variables
also redefines = to specify which instance variables enter into
determining equality of instances of that class. For example,
ColorValue defines = in terms of the red, green and blue values. There
are other reasons to redefine = as well, as does String which defines =
in terms of equal string length and equality of each character in the
strings.

The message hash plays a special role in comparing objects. Any two
objects that are equal must have the same hash, which is an integer
value. Unequal objects may have the same or different hash values.
This integer is used by several classes, such as Set and Dictionary
objects, as a lookup into an indexed collection. Because these
collections may include any object, it is important that this property of
equal objects having equal hash value be maintained. Accordingly,
whenever a class reimplements =, it may also need to reimplement
hash to maintain this property.
5-10 VisualWorks

Methods
Instance comparison protocol includes these binary messages:

= anObject

Answers true if anObject is equal to the receiver, as defined in the
receiver’s class, and false otherwise.

== anObject

Answers true if anObject is identical to the receiver, and false
otherwise.

~= anObject

Answers true if anObject is not equal to the receiver, and false
otherwise.

~~ anObject

Answers true if anObject is not identical to the receiver, and false
otherwise.

Other useful comparison messages are the following. Similar
comparison messages are defined throughout the libraries.

isNil

Answer whether the receiver is nil.

notNil

Answer whether the receiver is not nil.

isInteger

Answer whether the receiver is an integer.

Methods
Methods define the behavior of classes and their instances. This is
where the real “programming” takes place in Smalltalk. Methods are
the same as what are often called “functions” in other environments,
such as Java and C++.

You create methods using the System Browser, and completing the
method definition template. You can also use an existing method as
your template.
Application Developer’s Guide 5-11

Classes and Instances
There are two kinds of methods: instance methods and class
methods. Instance methods specify behavior for messages sent to
instances, and class methods specify behavior for messages sent to
the class itself. Class methods are most often used for creating an
instance of the class and for initializing and accessing class
variables.

To promote reusability, keep Smalltalk methods short. For example,
you can usually break a long method into smaller methods to isolate
individual services that other clients may want to use. Similarly, when
a subset of the code is repeated in a large method with only minor
variations, you can usually make that subset into a separate method.

Method names may contain letters, numbers, and underscores, but
may not begin with a number. The first letter should be lowercase.

Creating a Method
To define a method:

1 In a System Browser, select either the instance or class tab.

2 Select the class for this method.

3 (Optional) Select the message category or add a new one.

If you do not specify a category, one will be created and/or
selected for you based on the category of similar methods.

4 Fill in the method template.

You must provide a method name, which is the message selector
and argument names, in the first line of the definition. Next, you
should include a comment briefly describing what the method
returns. Then, enter a sequence of Smalltalk expressions (see
Message Expressions) specifying the processing behavior of the
method.

5 Select Accept command in the code view <Operate> menu to save
the method. The method is then compiled.

Fixing Common Errors at Compile Time
A few simple errors can occur when you save a method definition:

Undeclared temporary variables
This is an “error” that you can commit on purpose, because the
system will prompt you with a menu of variable types with which you
can quickly and easily declare each of the temporary variables.
5-12 VisualWorks

Methods
Undeclared class and instance variables
When you are prompted to declare an instance or class variable, it’s
best to select Abort in the menu and declare the variables before
continuing. To save your uncompiled method while you use the
System Browser to redefine the class, select Spawn in the code view.
This opens a new browser on the uncompiled code.

Missing period
When you have omitted a period, the system treats what should be
two statements as though they were a single message expression.
As a result, the error description is usually “Nothing more expected.”

Missing delimiters
When you have omitted a parenthesis or bracket, the error
description is “Right parenthesis expected” or “Period or right bracket
expected.”

Returning from a Method
Every method returns a single object, which can be a collection of
other objects. By default, a method returns self, the object that
received the message. This returned object may be ignored by clients
that are interested only in the effect of the method, or stored in a
variable it the object needs to be referred to again.

To return an object other than the receiver, you can specify that
object by using a caret symbol (^) preceding an expression that
returns the object. For example, in an accessor method, place the
name of the return object after a caret.

accountID
^accountID

This returns the current value of the variable accountID.

Returning From an Enclosed Block
When a return character is enclosed within a block (see Block
Expressions), it forces a return from the entire method. It does not act
only as a return from the block back to the containing method.

Returning the Result of a Message
A return character that is followed by a message causes the result of
that message to be returned. This approach often circumvents the
need to create a temporary variable for the message result.
Application Developer’s Guide 5-13

Classes and Instances
Place a caret in front of the message receiver.

displayString
^accountID printString, '--', name

Returning a Conditional Value
Frequently, a method performs a test and returns one value if the test
result is true and a second value if the test result is false. Relying on
the fact that a return character that is followed by a message returns
the result of the message, you can use a single return caret to serve
both forks of the branch, rather than placing a caret inside each
block.

This approach has the advantage of combining two exit points into a
single exit point, which is better programming style. It also makes the
ifTrue: and ifFalse: blocks clean blocks—that is, blocks that do not
contain a hard return character.

Place a caret in front of the conditional expression.

accountPrefix
"Answer the first four characters of the accountID,
or an empty string if the accountID is empty."
| id |
id := self accountID.
^id isEmpty

ifTrue: [String new]
ifFalse: [id

copyFrom: 1
to: 4].
5-14 VisualWorks

6

Name Spaces

VisualWorks implements name spaces as a language feature. Name
spaces allow VisualWorks to be very flexible in how it handles add-in
components from a multiplicity of vendors.

Initially, Smalltalk had a single name space, the monolithic Smalltalk
pool. All globals (class names, global variable names, pool names)
were resolved (their referents were determined) within that single
context, the Smalltalk environment. Accordingly, each global name
had to be unique to be identified from all others.

This worked fine as long as Smalltalk remained an environment of
small, individual developers creating applications for their own use or
in isolation from other applications. As Smalltalk went to the
“enterprise,” and as component development and deployment
became increasingly common, the luxury of isolation and control was
lost.

For example, a system integrator might want to assemble a supply
management system out of modules from multiple vendors. Each
component may need to access records storing customer data, which
each would quite reasonably represent as instances of a Customer
class. In a single-vendor environment that class definition can be
controlled and made consistent. In a multiple-vendor environment,
however, that is much more difficult or impossible. The vendor,
attempting to integrate the components from these vendors has a
major problem with name conflicts.

As long as all global names were resolved within the single Smalltalk
name space, such naming collisions were inevitable, and increasingly
frequent. This calls for a systemic solution rather than ad hoc work-
arounds.
Application Developer’s Guide 6-1

Name Spaces
The general solution is simply to restrict the global name resolution
space, so that names don’t need to be unique in the whole Smalltalk
environment, but only within a much smaller “name space.” In effect,
a name in one resolution space can be hidden from other resolution
spaces, unless it was explicitly exposed.

By restricting name resolution, references to vendor 1’s Customer
class can cohabit the Smalltalk system with vendor 2’s Customer
class, as long as they are in different name spaces. Each Customer
class can be referred to unambiguously by identifying the containing
name space.

There is a little more work in some cases, when both classes need to
be referenced by the same application, or when an object in one
name space needs to reference an object in another name space.
References still need to be unambiguous. But, disambiguation is a
relatively simple matter of specifying a name space, rather than
changing all references to comply with a name change.

To accomplish this, VisualWorks was extended to support additional
name spaces, providing for contexts more specific than just Smalltalk
within which names are resolved. The universal Smalltalk name
space is retained as a “super-name space.” Smalltalk is then divided
into several other name spaces, each providing its own name
resolution context. Additional name spaces can be defined within
Smalltalk or within any of its sub-name spaces, to provide an
appropriate separation of contexts.

Getting Started
You can gain experience with name spaces in stages, increasing the
extent of use as you become more comfortable with them. It is
possible, for instance, to define all of your classes in the Smalltalk
name space, and proceed largely as if multiple name spaces don’t
exist. Then, as complexity increases, you can begin using name
spaces as appropriate.

Name Spaces and Their Contents
In general terms, a name space is a context within which the referent
of a term is determined.
6-2 VisualWorks

Name Spaces and Their Contents
For example, within the context of a gathering of my wife’s family, the
name “Bob,” used without qualification, picks out one unique
individual, while among my own family it picks out a different, though
still unique individual. There is no confusion as long as these
contexts are kept apart; our respective families serve as adequate
name-resolution spaces, or name spaces.

Put our two families together, however, and the name “Bob” becomes
ambiguous, and it’s entirely possible for embarrassing confusions to
occur. However, it is generally quite simple and straight-forward to
avoid such confusions, and the resultant embarrassment, by
explaining the scope more precisely. Including the family name is
generally sufficient and not overly difficult.

In Smalltalk a name space works in the same way. Given a name of a
variable, the object referred to by that name is identified within some
naming scope. Traditionally, the name scope has been the either
whole Smalltalk image in the case of global variables, an individual
instance in the case of instance variables, or a class, its subclasses,
and their instances in the case of class variables. To avoid confusion
over the globals (class names, pools, and general globals), names
were required to be unique within the system; you were only allowed
to have one Bob.

In VisualWorks, you are allowed to have as many Bobs as you want,
as long as each of them can be uniquely identified. Unique
identification is possible by making sure that each Bob is defined and
resolved in a single name space, and avoiding name space collisions.

Name Space Contents
A name space is a named object that represents the name resolution
scope of a collection, or pool, of shared variables. A name space is
itself the value of a shared variable defined in another name space. A
particular name space, called Root, is the parent of all other name
spaces, forming a name space hierarchy.

The Root name space initially contains two shared variables: Root, the
value of which is the name space itself, and Smalltalk, the value of
which is the Smalltalk name space.

To explore the structure of a name space, do an inspect on it. For
example, evaluate this expression with doIt:

Root inspect
Application Developer’s Guide 6-3

Name Spaces
This opens a Namespace Inspector showing the contents of the
name space. Diving down through the Smalltalk entry, you observe
additional shared variables whose values are the “top level” name
spaces defined immediately in Smalltalk. Initially, the values of these
are the name spaces that contain system code. As you create your
own “top level” name spaces, shared variables for them are added to
Smalltalk.

Continue the descent and you find definitions of name spaces,
classes, and general shared variables.

To explore more deeply, seeing the structure of the entries, evaluate:

Root basicInspect
Doing this you see the representation of name spaces as a collection
of bindings.

The Name Space Hierarchy
VisualWorks name spaces are organized in a hierarchy. At the top of
the hierarchy is a single name space, named Root.

Initially, it has a single sub-namespace, Smalltalk. For most practical
purposes, the hierarchy starts with the Smalltalk name space, as the
super-name space of all name spaces containing Smalltalk
definitions. A fragment of the base VisualWorks name space tree,
with a couple extra-base components added, looks like this:

Root
Smalltalk

Core
OS

IOConstants
Graphics

SymbolicPaintConstants
TextConstants

VisualWave
XProgramming

SUnit
In general, new name spaces should be contained within Smalltalk,
either directly or indirectly, rather than directly in Root.

New “top-level” name spaces, those defined directly in Smalltalk, must
be unique within the Smalltalk name space (there can only be one
Smalltalk.Bob). The VisualWorks team and various vendors have
reserved a number of top-level names. We maintain a Wiki site to
allow you and others to reserve top-level name space names, and to
6-4 VisualWorks

Name Spaces and Their Contents
see what names have been reserved, to help avoid name collisions at
this level (for the list, go to Reserved Top-Level name spaces for
VisualWorks).

The exception to keeping name spaces under Smalltalk would be a
product that supports development and execution of another
language, such as Java, within a Smalltalk image. Such a product
might create a name space in Root, perhaps called JavaWorld, as well
as various name spaces nested within it. The resulting name space
hierarchy might look something like this:

Root
Smalltalk
JavaWorld

java
lang
awt

COM
sun
microsoft

If the Frost project were ever to be completed, it would probably take
this approach.

Smalltalk.Root.Smalltalk
In the Root name space there are two shared variables defined: Root
and Smalltalk. (To verify this, evaluate Root inspect.) Root refers to the
name space itself, and Smalltalk refers to the Smalltalk name space.

It is sometimes convenient to be able to refer to the Root name space
from Smalltalk, and so there is a shared variable defined in Smalltalk
that refers to Root. This leads to a circularity that can be confusing,
but need not be.

When working in Smalltalk, references to named objects are
assumed to start with Smalltalk, rather than Root. For most practical
purposes, Root can be ignored.

If for any reason you do need to refer to Root, the circularity allows
you to follow the same convention of starting with Smalltalk. So, to
refer to the Root name space from within Smalltalk, the full path would
be Root.Smalltalk.Root. But, because of the assumption of the
Root.Smalltalk initial segment, you can refer to it simply as Root.
Application Developer’s Guide 6-5

http://www.cincomsmalltalk.com/CincomSmalltalkWiki/VW+NameSpace+Reservations
http://www.cincomsmalltalk.com/CincomSmalltalkWiki/VW+NameSpace+Reservations

Name Spaces
Working with Name Spaces

Browsing Name Spaces
For working with name spaces, open the System Browser (select
Browse > System in the Launcher window).

In the leftmost pane, with the Package tab selected, the navigator
shows the bundles and packages in the system. The second pane
lists classes and name spaces, with the name spaces distinguished
by a special icon.

For example, in the screen above, the Core name space has been
selected in the class/name space view, and its definition appears in
the code tool (below).

When a name space is selected in the class/name space view, the
Shared Variables tab appears, and is the only tab that is selectable.
That’s because name spaces only contain shared variable definitions.
The next pane, the traditional method category, or protocol, view, lists
the categories of any shared variable definitions in the name space.

Selecting a shared variable displays a special code tool for inspecting
an existing variable, or defining a new one.
6-6 VisualWorks

Working with Name Spaces
When a class is selected in the class/name space view, the browser
behaves more like the traditional Smalltalk class browser. You now
can select the Instance or Class tabs, as well as the Shared Variables
button. If any shared variables are defined in the class, selecting the
Shared Variables tab will show any categories, and selecting one of
those shows its shared variables.

Creating Name Spaces
To create, select a package, and optionally the name space in which
to create the new one. Then select Class > New > Name Space... to
open the New Name Space dialog:

The fields are:

Package

The name of the package in which to include this name space
definition.

Name Space

The name of the parent name space for the new name space.

Name

The name for the new name space, such as MyCompany.

Private

Check if this name space is to be private, i.e., not available for
import.
Application Developer’s Guide 6-7

Name Spaces
Imports

A list of imports, either specific or general, separated by
whitespace, and including “private” if appropriate. For example,
enter:

private Smalltalk.*
XML.*

See Importing Bindings for more information.

Then, click OK to define the name space.

Naming a Name Space
There is no particular mystery to naming your name space(s). Most
of your code will be application or add-ins, rather than extensions to
the base system. So, your name space:

• needs to see a lot of the standard VisualWorks library

• does not need to be seen by the standard VisualWorks library

• needs to avoid name clashes with the VisualWorks and other 3rd
party products.

The first of these is handled by imports, but is good to remember. The
second point means that there is no reason, in general, for your code
to be in an existing VisualWorks name space. The third suggests that
you want a name space that will be clearly your own, separate from
all others.

To deal with these points, we recommend that you create your own
“top level” name space, immediately in the Smalltalk.* name space. To
help keep it clear that this is yours, it is a good idea to use some form
of your company name or similar designation, as suggested by the
example in Creating Name Spaces.

To help ensure that these top-level name space names are unique,
we maintain a Reserved Top-Level Name Spaces Wiki page.
Instructions for reserving your top-level name are provided on that
page. You reserve a name by adding it to the list. Make sure it hasn’t
been taken by someone else, first, of course.

As long as your top-level name is unique, subsequent names you
select for name spaces, classes, and shared variables under that top-
level name are protected from clashes with those outside of that
name space. So, you can name additional name spaces under your
top-level name space in any way that makes sense to you.
6-8 VisualWorks

http://www.cincomsmalltalk.com/CincomSmalltalkWiki/VW+NameSpace+Reservations

Working with Name Spaces
When to Create a New Name Space
You should always have at least one top-level name space for your
own work. Beyond that, whether you need sub-name spaces
depends on the name-access requirements of your products.

You may well have use for separate name spaces for each of your
several products. Or, maybe not, depending on how tightly they
interact.

In deciding, remember that all name spaces and classes created
within a name space have access to all shared values defined in it.
Consider that:

• If all of your classes need to see all of your other classes, then
they all can reasonably be defined in a single name space.

• When you create classes that do not need access to some of
your other classes, then it is time to consider creating further
name spaces.

• If you create classes in one name space that need to access
objects in another, you can import that other name space.

It’s a judgement call that will become clear in practice.

Rearranging Name Spaces
Almost certainly you will need to move classes and name spaces
around to other name spaces in the course of development. This is
quite simple, using the System Browser:

1 In the class/name space list, find the class or name space to
move.

2 Click and hold on the item, drag it to the target name space in the
name space list, and drop it.

The class or name space is then moved, and the lists are updated to
show the change.

To move a name space, you can also select it in the class/name
space list, and select Move > to Name space... from the Class menu.
Select the target name space in the dialog that opens, and click OK.

Classes as Name Spaces
In some situations classes can serve as name spaces. In fact,
classes and name spaces are very similar, the main difference being
that classes are restricted as to the kinds of shared variables they
Application Developer’s Guide 6-9

Name Spaces
can contain; they can contain only general shared variables, which
are its class variables. Classes cannot contain shared variables that
have name spaces or other classes as their primary reference.

What had formerly been a class’s shared pools are now its imports,
with all the same properties as the imports to a name space. An
extension here is that a class can now import a single shared
variable, by using a specific import, as well as being able to import
the whole pool. Refer to Importing Bindings for more information
about general and specific imports.

A class's superclass is implicitly an import of the class that can never
be declared private. This means that if A is a superclass of B, and B
is a superclass of C, anything that A does not declare to be private
will be visible to C, regardless of what B may declare private. This
preserves from previous versions the rule that all class variables
(assuming that they have not been declared private) are visible to all
subclasses.

Referencing Objects in Name Spaces
Within the native naming scope of a binding, whether for a name
space, a class, or a shared variable, the object can be referenced to
by unqualified name. However, most objects will also have to
reference objects that are not native to the same name space.

For example, within the VisualWorks system, virtually any object
needs to reference objects in the Core name space, even though it is
native to another name space. Your application objects, which will be
native to your own name space(s), have to reference a wide range of
objects in VisualWorks name spaces, and possibly objects from other
vendors.

There are a variety of ways to reference these named objects, as
described in the following sections.

Dotted Names and Name Space Paths
Binding names (names of name spaces, classes, and shared
variables) use a dotted notation that describes the path through the
name space hierarchy to the desired binding. While you seldom
reference a binding using its full dotted name (except when
specifying imports), in order to understand the other referencing
methods you need to know about dotted names.
6-10 VisualWorks

Referencing Objects in Name Spaces
The full path a dotted name begins with the Root name space,
continuing through the hierarchy to the target binding. For example,
the full reference to the ButtonHilite constant (in its native name
space) is:

Root.Smalltalk.Graphics.SymbolicPaintConstants.ButtonHilite
However, the VisualWorks system, when parsing a compound dotted-
name, assumes the Root.Smalltalk initial segment. So, in practice, the
above reference is shortened to:

Graphics.SymbolicPaintConstants.ButtonHilite
This is the form of reference used in import statements, providing the
path starting immediately after Smalltalk.

If a binding is imported, the dotted name can specify the importing
name space path, instead of its native name space path. So, for
example, if Smalltalk.MyNameSpace imports ButtonHilite, the dotted
name MyNameSpace.ButtonHilite would also be a legitimate dotted
name, and would reach the variable; it is not necessary to reference
ButtonHilite through its native name space, SymbolicPaintConstants.

Because a dotted name introduces a path starting immediately after
Smalltalk, dotted names do not follow the relative path rules familiar
from file systems. You can, however, reference a binding relative to
the current name space context by beginning the path expression
with “_.” (underscore, dot). Using this notation, if a name space
(MyNamespace1) imports another name space (MyNamespace2), and
MyNamespace2 has a class (Foo) with a class variable (Bar), an
instance of any object defined in MyNamespace1 can reference Bar
with:

_.Foo.Bar
Using dotted names in code to reference variables that are neither
defined in nor imported into the current name space, is permitted but
discouraged, because this use breaks encapsulation. There are,
however, occasions when they are needed. In source code, it is
sometimes necessary to refer to a variable that is not visible from the
current name space. For example, if a developer is adding a method
to a class that he does not own, and he may not have the freedom to
add a new import to the class's environment. In future releases we
intend to provide a better mechanism for extending classes, allowing
extensions to use variables not normally visible to the class, but they
are not currently available.
Application Developer’s Guide 6-11

Name Spaces
They were also needed in a workspaces before 5i.3, to evaluate an
expression that includes a variable from an arbitrary name space. In
5i.3 and later releases, however, workspaces import name spaces,
so this is no longer an issue.

Binding References
In an environment with name spaces, we need a way to reference a
shared variable that makes no assumptions about which name space
contains its definition. A binding reference provides this facility.

A binding reference is a named object that holds a starting point and
a list of names. It can identify an arbitrary shared variable relative to
an arbitrary name space, by identifying a navigation path from the
name space to the shared variable.

Most of the protocol for binding references is defined in the class
GenericBindingReference, with more specific protocol defined in
BindingReference and LiteralBindingReference. The common protocol
includes useful questions such as:

isDefined

Does the variable exist in the system?

binding

Answer the VariableBinding for the shared variable, or raise an
error if it doesn't exist.

bindingOrNil

Answer the VariableBinding for the shared variable, or nil if it
doesn't exist.

value

Answer the value of the shared variable, or raise an error if it
doesn't exist.

valueOrDo: aBlock

Answer the value of the shared variable, or the value of aBlock if it
doesn't exist.

A binding reference, when asked for its binding, iterates through its
list of names. For each name, it asks the current name space for the
variable of that name. If the name is the last in the list, it answers the
6-12 VisualWorks

Referencing Objects in Name Spaces
shared variable. If the name is not last, it uses the value of the
variable as the new current name space, and repeats the process
with the next name in the list.

There are two forms of binding reference, distinguished by how their
environment information is stored, corresponding to classes
BindingReference and LiteralBindingReference. The environment is the
name space scope within which the binding reference is evaluated.

Instances of BindingReference store their environment in their
environment instance variable. Accordingly, each instance knows its
compilation scope. Instances of LiteralBindingReference, on the other
hand, store the method that created them in a method instance
variable, and their environment is then determined from the
compilation scope of the method.

A simple way of creating a BindingReference is by sending
asQualifiedReference to a String, for example:

‘MyBinding’ asQualifiedReference
The syntax #{MyBinding} creates a LiteralBindingReference.

Inspect the results of each expression to compare their object
structure. Be aware that although the printing representation of both
is the same, they are not equal, being different classes of objects.
(This inequality may change at some later time.)

Both of these allow referencing the shared variable without the
programmer having to know or specify the path to the variable. The
name resolution environment determines the object referenced.
Consequently, it is not necessary to know whether the variable’s
environment is an import or native.

Note that the referenced binding does not need to exist when the
binding reference is created. It’s just a reference object, and is
resolved at compile-time.

In both cases, name space path information can be included as well,
using the dotted-name notation. Remember that compound dotted-
names always go back to Smalltalk, so the entire path from that point
must be given. For example:

‘MyNameSpace.MyBinding’ asQualifiedReference
or

#{MyNameSpace.MyBinding}
Application Developer’s Guide 6-13

Name Spaces
Other instance creation methods are available (browse class
BindingReference and GenericBindingReference). For example:

BindingReference path: #(Core Object)
which creates a BindingReference to Core.Object. Providing the path is
often necessary when specifying imports in name space and class
definitions.Class QualifiedName in VisualWorks 3.0 was replaced by
class BindingReference in 5i and later, so be aware of this if you
referenced that class in your code.

Binding Reference Resolution
Binding reference are resolved in this order:

1 If a bindings is defined in the name space, the binding reference
takes it.

2 Next, bindings imported by a specific import are selected.

3 Finally, bindings imported by a general import are used.

See Binding Rules and Errors for restrictions on imports.

When to Use BindingReference or LiteralBindingReference
The differences between BindingReference and LiteralBindingReference
make these objects not fully interchangeable.

The #{...} syntax is appropriate for asking questions of binding
references, such as isDefined, where the reference is short lived.

If a short-lived method (such as a DoIt) is used to create a reference
for long-term storage (such as in a Dictionary), use asQualifiedReference
or fullyQualifiedReference methods to create a BindingReference.
Because a LiteralBindingReference holds a reference to the method that
created it, putting this reference in long-term storage would prevent
the creating method from being garbage collected.

If the reference will be stored in a long-term data structure, but the
method which creates the reference is presumed to be equally long-
lived, the choice is yours, but using asQualifiedReference, may be the
better choice.

If the exact path of the binding reference is not known at compile
time, but is partially or fully computed at runtime, then you will have to
use a BindingReference, since #{...} syntax is not an option.
6-14 VisualWorks

Referencing Objects in Name Spaces
Importing Bindings
While it would be possible to require that you reference each object
by explicitly describing the name space path from Root to the target
object, that would be inconvenient, and would violate the object-
orientation principle of encapsulation. Instead, it is preferred to import
the bindings into the local object’s name space so they can be
referenced by unqualified name.

Name space and class definitions provide for importing bindings, by
including the bindings in the imports list. The binding name is
specified using the dotted-name notation, usually starting with the
first name space in the path under Smalltalk (Smalltalk is assumed,
see Dotted Names and Name Space Paths). For example, the XML
name space imports its sub-name space like this:

Smalltalk defineNameSpace: #XML
private: false
imports: '

private Smalltalk.*
XML.SAX.*'

category: 'XMLParsing'
This is a general import, using the asterisk (*) pattern matcher to
import all bindings defined in the indicated name space. In this
example, all bindings in the Smalltalk and in the Smalltalk.XML.SAX
name spaces are imported. In particular, these lines import all name
spaces defined under Smalltalk (it would import classes, too, if there
were any), and all classes defined in the SAX name space are
imported into the XML name space.

Note also that SAX is imported as public. Doing this has XML also
export those imported bindings, so that they are also imported by any
class or name space that imports XML. In this case this is the right
thing to do since there’s no reason for an application to have to
import SAX separately from XML; if it needs XML, it will need SAX, too.

As explained in Public and Private Shared Variables, including the
private keyword in front of the Smalltalk.* import prevents XML from
exporting those bindings. They can be reasonably expected to be
imported by each name space. For this reason, private Smalltalk.* is
included in the name space definition template.
Application Developer’s Guide 6-15

Name Spaces
On occasion a name space or class may need to import only a single
binding from another name space. This is done using a specific
import. For example, the TextConstants pool only needs access to one
class in the Core name space, so it uses a specific import:

Smalltalk.Graphics defineNameSpace: #TextConstants
private: false
imports: '

private Core.Character'
category: 'Graphics-Constants'

Once properly imported, the imported name can be used directly,
without further path qualification.

Given this general explanation, the following specific cases may be
helpful.

Importing Classes and Name Spaces
When we mention “importing a name space,” we usually really mean
importing the contents of the name space, rather than only the name
space itself. The contents of a name space may include:

• class definitions

• other name space definitions

• general shared variable definitions

When defining a name space, you almost certainly want to import the
VisualWorks system classes. To do this, include:

private Smalltalk.*
in the imports list. Smalltalk itself imports several of its base sub-
name space bindings publicly, so this one line, a general import,
brings in all of the system classes, pools, and system variables (such
as Transcript). Add-in components, such as the Net name space used
by Net Client support, are not imported to Smalltalk, and so must be
imported by your own name spaces and/or classes.

In your name space definitions, you will probably import Smalltalk.* as
shown above. You do not need to import all of the individual base
Smalltalk name spaces, since these are already imported to Smalltalk.
You also should not (in general) add your class to the list of name
spaces imported to Smalltalk; there is rarely a need for an application
class to be that generally available to the entire system.
6-16 VisualWorks

Referencing Objects in Name Spaces
Importing Class Variables
It is seldom necessary to import a class variable explicitly. They are
visible to the class in which they are defined, and inherited by its
subclasses. Since they are used to store class state information, that
is sufficient. If you do need to import a class variable, import it like a
pool variable, with the class as its pool.

Note that importing a class does not import the class variables
defined in it; these variables must either be imported or referenced by
an appropriate path.

Importing Pool Variables
Pool variables are general shared variables defined in a common
name space, which is their pool. Depending on circumstances, you
will either want to import all of the pool variables, or only one or a few.

To import all pool variables in a pool, use a general import. So, for
example, to import all of the TextConstants, use this general import in
your class or name space definition:

imports: '
private Graphics.TextConstants.*
'

(See the definition of class TextAttributes.) This permits you to
reference each text constant by unqualified name.

To import a single pool variable, use a specific import. For example,
to import only the text constant Bold, use:

imports: '
private Graphics.TextConstants.Bold
'

This permits you to reference this one variable by unqualified name.

Circular System Imports
You may have noticed that the Smalltalk name space definition
imports all of the system name spaces:
Application Developer’s Guide 6-17

Name Spaces
Smalltalk.Root defineNameSpace: #Smalltalk
private: false
imports: '

Core.*
Kernel.*
OS.*
External.*
Graphics.*
UI.*
Tools.*
Database.*
Lens.*
'

category: 'System-Name Spaces'
while each of those name spaces’ definitions imports Smalltalk, e.g.:

Smalltalk defineNameSpace: #Kernel
private: false
imports: '

private Smalltalk.*
'

category: 'System-Name Spaces'
What’s happening is that Smalltalk imports each of its sub-name
spaces imports as public (for further export), so all of those bindings
are accessible directly from Smalltalk. Each sub-name space in turn
imports, privately, all of the bindings from Smalltalk, which includes
all the bindings Smalltalk imported from their siblings.

Now, for example, an instance of External.CComposite can reference
Core.Array by its unqualified name, Array. All of the base VisualWorks
classes, pools, and such, are accessible directly from Smalltalk, as
before.

For the most part, this also simplifies migrating from pre-5i releases
to later releases, by making sure all the system classes are available.
When code is imported, it is loaded directly into the Smalltalk name
space, where it has access to the essential system classes, and so
mostly works without modification.

Binding Rules and Errors
Each imported binding name must be unique in the collection of
names defined in and imported into the name space. Accordingly:

• If two specific imports refer to shared variables of the same
name, the name space's definition is in error.
6-18 VisualWorks

Referencing Objects in Name Spaces
• If a specific import refers to a shared variable whose name is the
same as a shared variable defined locally in the name space, this
is an error.

• If two general imports bind the same name to different shared
variables, and a local definition or specific import of that name
does not exist, it is an error for a method to use that variable
name. However, the name space may define a specific import
that clarifies which of the two shared variables is desired.

• Local definitions of a shared variable and specific imports are
searched before general imports when binding a name to a
shared variable.
Application Developer’s Guide 6-19

Name Spaces
6-20 VisualWorks

7

Control Structures

Control structures in Smalltalk are invoked by sending messages to
various objects. The boolean objects true and false provide the if-then-
else machinery, while numbers, collections and blocks provide the
looping methods. These two types of control structure—branching
and looping—are described in this chapter.

The BlockClosure class provides the machinery with which these
control structures are implemented. You can use the same machinery
to create new control structures. Block syntax is described in Block
Expressions.

Branching
The Boolean classes True and False implement methods for performing
conditional selection (if statements).

Many classes implement methods that test an object for a condition
or compare an object with another, and return a Boolean value—either
true or false.

The most basic tests, implemented in Object, are equality (=) and
identity (==), return true if two objects are equal or identical,
respectively, and return false otherwise.

9 = 9 “returns true”
9 == 9 “returns true”
9 = 'nine' “returns false”
9 == (5 + 4) “returns true, the same SmallInteger”
'this is a test' = 'this is a test'“returns true”
‘this is a test’ == ‘this is a test“returns false; equal but different”
Array new = Array new “returns true”
Array new == Array new “returns false”
Application Developer’s Guide 7-1

Control Structures
Similarly, numbers, strings, and a few other objects return a Boolean to
>, <, >=, and <= messages according to how the objects compare in
size or order.

There are also methods defined throughout the system, often named
in the form “isSomething”, where “Something” is the name of a kind
of object or a property, for testing whether an object is that kind, and
returning a Boolean response. For example, isString returns true if the
receiver is a String object, isNil returns true if the receiver has the
value nil, and isReadOnly returns true if the receiver has its “read only”
property set, and otherwise they return false.

anObject isString.
Using testing messages like these are useful in defining specific
handling of objects, based on condition of passing (true) or failing
(false) the test, as described in the next section.

Conditional Tests
Given an expression that evaluates to a Boolean, you can branch the
processing based on that value. The conditional test messages are

ifTrue: aBlock

Evaluates aBlock if the receiver is true.

ifFalse: aBlock

Evaluates aBlock if the receiver is false.

ifTrue: aBlock ifFalse: anotherBlock

Evaluates aBlock if the receiver is true, or anotherBlock if the
receiver is false.

ifFalse: aBlock ifTrue: anotherBlock

Evaluates aBlock if the receiver is false, or anotherBlock if the
receiver is true.

All of these messages must be sent to a Boolean, so of the last two,
one of the blocks in guaranteed to be evaluated.
7-2 VisualWorks

Branching
ifTrue:ifFalse: is the Smalltalk version of common if-then-else
construct. In the following example, a prompt string is selected
depending on whether the application user is a managerial
employee:

(userType == #Manager)
ifTrue: [prompt := 'Enter your password']
ifFalse: [prompt := 'Access denied—sorry']

The blocks can be left empty when no action is required. This is so
often the case that ifTrue: and ifFalse: are provided as separate
methods. In the example above, if no password were required, the
ifTrue: portion of the expression could be dropped entirely.

Unless the block does a return (^), which exits the block and its
containing method, processing continues with the next expression.

Note that Smalltalk has no equivalent of the case statement provided
in many languages, because case statements tend not to be object-
oriented.

Compound Conditions
Compound conditions are formed by “and,” “or,” and “not” operations,
producing a Boolean value from one or more other Boolean values.
The following messages are available for performing these operations

and: aBlock

Returns true if the receiver is true and aBlock evaluates to true;
otherwise returns false. aBlock is evaluated only if the receiver is
true.

& aBoolean

Returns true if the receiver and aBoolean are both true; otherwise
returns false.

or: aBlock

Returns true if either the receiver is true or aBlock evaluates to
true, or both; otherwise returns false. aBlock is evaluated only if
the receiver is false.

| aBoolean

Returns true if either the receiver or aBoolean is true, or both;
otherwise returns false.
Application Developer’s Guide 7-3

Control Structures
not

Returns false if the receiver is true, or true if the receiver is false.

As suggested in the descriptions above, the alternate forms for the
“and” and “or” operations provide for different processing control. The
& and | binary messages always evaluate both the receiver and
aBoolean expressions when evaluating the value of the compound
statement. The and: and or: keyword messages, on the other hand,
only evaluate aBlock if the value of the compound cannot be
determined from the receiver alone. If the receiver of and: is false, then
the value of the compound must be false regardless of the value of
aBlock. Similarly, if the value of the receiver of or: is true, the value of
the compound must be true regardless of the value of aBlock.

For example, in this example using the | binary message, both
conditions are evaluated, and an unhandled exception (subscript out
of range) occurs:

| aCollection |
aCollection := #('one' 'two' 'three').
aCollection notNil | ((aCollection at: 5) = 'five')

ifTrue: [Transcript cr; show: 'true'].
However, since the first condition is true, the complex condition
should evaluate to true. Using the and: keyword message instead
defers evaluating the block until it is needed, which it is not in this
case, and the message goes through as intended.

| aCollection |
aCollection := #('one' 'two' 'three').
(aCollection notNil or: [(aCollection at: 5) = 'five'])

ifTrue: [Transcript cr; show: 'true'].
This difference can be valuable in writing efficient methods.

Looping
Three types of iterative operation are available: conditional, number,
and collection looping. This section discusses the three types of
looping.

Simple Repetition
You can loop on a block by simply sending it a repeat message:

[...] repeat
7-4 VisualWorks

Looping
This message evaluates the block, and then repeats the block,
continuing until the block returns. For example,

[[(Dialog request: ‘secret word’
initialAnswer: ‘’) = ‘secret’] value

ifTrue: [^self]] repeat
repeats the dialog until the password is entered correctly, at which
point the block returns.

The potential for an infinite loop is very strong with this construct.
Accordingly, be very careful to ensure that the block will eventually
exit.

Conditional Looping
Conditinal looping conditionally repeats an action based on the
Boolean value returned from the receiver block. The following
messages evaluate the receiver, a block, and then loop or not
depending on the value.

whileTrue: aBlock

While the receiver block is true, perform aBlock.

whileTrue

While the receiver block is true, repeat it.

whileFalse: aBlock

While the receiver block is false, perform aBlock.

whileFalse

While the receiver block is false, repeat it.

The whileTrue: message, for example, evaluates the receiver block
(functionally sending a value message). If the block returns true, the
argument block is executed. Then receiver block is evaluated again,
repeating the cycle. When the receiver evalutes false, the argument
block is not performed, and the loop is terminated.

The following example might be used in a game that ends when there
is only one player (the winner) left in the game:

[players > 1] whileTrue:
[nextPlayer takeTurn.
(nextPlayer outOfGame) ifTrue: [players := players - 1]]
Application Developer’s Guide 7-5

Control Structures
To reverse the logic of the test, use whileFalse:. For example, to
process a stream of objects until the endpoint is encountered:

[self atEnd] whileFalse: [aBlock value: (self next)]
For situations in which no argument block is needed, the unary
messages whileTrue and whileFalse are available.

Number Iteration
Number looping evaluates a block a specified number of times. The
following messages are sent to numbers (typically integers, but not
necessarily), to execute the block the determined number of times.

timesRepeat: aBlock

Evaluates aBlock the number of times specified by the receiver.
For example, to send the string ‘Testing!’ to the Transcript 5
times:

5 timesRepeat: [Transcript show: 'Testing!']

to: stopValue by: anIncrement do: aBlock

Evaluates aBlock until stopValue is exceeded, starting at the
receiver value and incrementing by anIncrement. Any of the
values can be negative. If, for a positive increment, stopValue is
less than the receiver value, the block is not evaluated. The
current counter value is passed as an argument into aBlock.

For example, to print something like a word processor’s tab-
setting ruler on the Transcript:

10 to: 65 by: 5 do: [:marker |
Transcript show: marker printString.
Transcript show: '---'].

The block must declare an argument variable to catch the passed
value, as shown.

to: stopValue do: aBlock

The same as to:by:do: except that the increment value is 1.

65 to: 122 do: [:asciiNbr |
Transcript show: asciiNbr asCharacter printString]
7-6 VisualWorks

Looping
Collection Iteration
Collection looping scans a collection performing a block operation on
each element of the collection. The following methods are
implemented by the Collection class. The current element is passed to
the block as an argument.

do: aBlock

Evaluates aBlock for each member of the collection. For
example, to capture the contents of an array during program
execution, we might want to convert each member to a printable
string and output it to the Transcript:

anArray do: [:anElement |
Transcript show: (anElement printString); cr]

select: aBlock

Returns a new collection containing only those elements of the
receiver that satisfy (evaluate to true) aBlock. To filter a collection
and wind up with a desired subset, use select:. The new collection
is of the same type as the receiver. For example, this example
counts the number of question marks in a string by gathering the
question marks into a new collection and then finding the size of
that collection:

(aString select: [:eachChar | eachChar == $?]) size

reject: aBlock

Like select:, but collects those elements that fail (evaluate to false)
the test in aBlock. The reject: method is the opposite of select:. It
gathers the members of the original collection that fail the test
rather than those that pass it. Substituted for select: in the
example above, it would create a collection of non-question-
marks.

detect: aBlock

Returns the first such element satisfying the test in aBlock, and
stops testing at that point. The following example locates the first
instance of the integer 8 in anArray:

anArray detect: [:each | each == 8]
Application Developer’s Guide 7-7

Control Structures
collect: aBlock

Returns a new collection of the same type as the receiver, but
containing the transformations of each element, as described by
aBlock. For example, to get an uppercase version of aString:

aString collect: [:each | each asUppercase]

inject: initValue into: 2-argBlock

With initValue as the start value, iterate over the receiver
collection performing the operation described in 2-argBlock, and
returns the result. For example, you might inject a factor and
apply it to the subtotal of values in a collection of numbers:

#(1 3 5) inject: 1 into: [:subtotal :nextNbr | subtotal + nextNbr]
which returns 10.

Perhaps more illustrative of the process is iteratively
contatenating strings from the collection onto the initValue:

#('a' 'b' 'c') inject: 'efg' into: [:init :nextStr | init, nextStr]
which returns ‘efgabc’.
7-8 VisualWorks

8

Managing Smalltalk Source Code

Source code definitions, for methods, classes, shared variables, and
namespaces, are organized into packages, and packages are
collected into bundles. All organization tasks are supported by the
tools, so at this level all code organization is managed within the
environment, and exists within the live image.

To save your work between sessions, you have several options.
Saving your code in the image is the traditional Smalltalk approach.
When you launch the saved image, your work is restored.

However, it is also necessary to save code in external formats as
well. VisualWorks supports the following options:

• “File-out” files are text-based files, similar to the source files of
other languages. Refer to File-Out Files for more information.

• Parcel files are an external representation of the packages and
bundles that organize your code, and provide an efficient code
deployment mechanism. Refer to Parcels for more information.

• For full team development, Store supports a database repository
for packages and bundles, and supports a wide variety of team
development activities (refer to the Source Code Management
Guide for more information on Store).

Parcels are particularly important, because they provide the loadable
component technology for VisualWorks. Packages and bundles, while
providing an organizational structure for code, also model the
contents of parcels, which are created by publishing packages/
bundles as parcels. Because of this close relation, we often refer to
“components,” meaning parcels, packages, and bundles when all
three can be considered together.
Application Developer’s Guide 8-1

SourceCodeMgmtGuide.pdf
SourceCodeMgmtGuide.pdf

Managing Smalltalk Source Code
This chapter describes both how to use packages and bundles to
organize source code organizational, and the external files that store
that code.

Organizing Smalltalk Code
A package is the primary organizational structure for code within the
VisualWorks environment. Minimally, packages allow you to keep
your code organized separately from the code in the VisualWorks
base, add-ins, and third-party components. Within your own code,
you can use packages to separate individual projects, or components
within a project.

Bundles provide for higher level organization of packages. Using
bundles you can organize your code into quite small packages
containing only the code for a specific feature, and then group related
packages into larger bundles representing larger units of functionality
or an entire application.

The default view in a System Browser is the Packages view, which
shows the organization of the system into bundles and packages.
This organization forms a hierarchy of categories that is useful for
locating and browsing functionally related classes and their methods.

For example, in the base system there is a very large bundle called
Base VisualWorks. Bundles are identified by the bundle icon, and are
expandable in this view to show the packages and other bundles they
contain. Expanding the Base VisualWorks bundle shows that it consists
of additional sub-bundles and packages each containing some core
component of the system. For example, the Kernel bundle contains
packages that define core functionality of Smalltalk, such as how
classes are built and behave. The VisualWorks tools are separated
from this core functionality into their own bundle, sub-bundles, and
packages.

Package and Bundle Contents
A package is a collection of code definitions, including class, method,
namespace, and shared variable definitions. Each definition in the
VisualWorks image is associated with a package, or with the special
(none) package.
8-2 VisualWorks

Organizing Smalltalk Code
A bundle is a higher-level organizing unit, representing a collection of
packages and/or other bundles. Bundles provide a way to group
packages into larger units, specifying relationships between
packages.

Together, packages and bundles provide a powerful and flexible
mechanism for decomposing bodies of code into small, easily
understood units, and for assembling those small units into larger
components.

A package may contain as much as an entire application or as little
as a single definition. Usually, however, neither of these extremes is
optimal. Instead, it is often preferable to decompose an application
into modules that support more specific features. At a large-grained
level, most application code bases can be decomposed into at least
GUI and model components. Complex GUIs can be further
decomposed, possibly into loadable modules. Complex models can
similarly be decomposed, separating, for example, client and server
functions. Once these various decompositions are achieved, which
will often itself be an iterative process, the overall application can be
represented as a bundle, or hierarchy of bundles, or smaller package
modules.

For additional guidelines, refer to Designing a Package Structure.

Browsing Packages and Bundles
When the Package tab is selected in a System Browser, the top left list
pane shows a tree view of the packages and bundles that are
currently loaded into the image. Bundles can be expanded to show
the packages and bundles they contain.

Select a package and the classes, name spaces, and shared
variables that are defined in it are listed in the class/name space
pane. Note that a class might not be itself defined in a package, but
have a method defined in the selected package while the class itself
is defined in another. Definitions of name spaces, shared variables
and classes that are themselves defined in the package are listed in
bold type. Classes that only have one or more methods defined in
the package are listed in regular font (unbolded).

When you select a bundle, the class/name space pane lists all of the
objects defined in any of the packages contained in the bundle. As
you expand the bundle tree and select a contained (smaller) bundle
or package, only the definitions in it are listed.
Application Developer’s Guide 8-3

Managing Smalltalk Source Code
Next to a package or bundle name may be one of these condition
indicators:

See Code Overrides for information on code overrides.

When Store is loaded, the icons also change to indicate the package/
bundle condition, as described in the Source Code Management
Guide.

Loading Code into Packages and Bundles
You load code into VisualWorks from external files, either parcels or
file-out files, or from a Store database. In either case, the code is
loaded into packages, and so is entered into the VisualWorks
organizational structure. Depending on the source of the code, it
might be further organized into bundles.

Details of loading code from each type of source is covered in
appropriate sections of the documentation. Here we will summarize
the options and how the code is organized.

Loading from Parcels
Parcels are the standard external file representation of packaged
code, and are typically written by using the Publish as Parcel command
for a package or bundle. How the parcel code is organized when it is
loaded is determined by how it was created.

• If the parcel was written by publishing a package, it is loaded into
the same package.

• If the parcel was written by publishing a bundle with the Include
bundle structure option, then the bundle structure is reproduced
when it is loaded.

• If the parcel was written by publishing a bundle without the Include
bundle structure option, then the code is loaded into a single
package, and the former bundle structure is lost.

For specific instructions for loading parcels, refer to Loading and
Unloading Parcels.

* The package has been modified (only with Store loaded).

+ The package extends classes in other packages, possibly
overriding some definitions.

- The package has definitions that are overridden by another
package.
8-4 VisualWorks

SourceCodeMgmtGuide.pdf
SourceCodeMgmtGuide.pdf

Organizing Smalltalk Code
Loading from File-in Files
When loading code from a file-in, the packaging behavior varies
depending on the origination of the file.

• If filed out from either a pre-7.3 version of VisualWorks or a non-
VisualWorks Smalltalk environment, the code defaults to filing in
to the (none) package, and must be explicitly moved to an
appropriate package. This is because there is no package
information in the file.

• If filed out from a 7.3 or later version of VisualWorks, the code
defaults to filing in to a package with the name of the original
package, typically the same as the file name.

To file in the code to a specific package, select the package (typically
a newly created package) in a System Browser, and select Package >
File into For additional information about file-in files, refer to File-
Out Files.

Loading from a Store Repository
When packages and bundles are loaded from a Store repository, the
code is loaded with the same bundle structure as that with which it
was published. Refer to the Source Code Management Guide for
details about working with a Store repository.

Controlling Load and Unload Behavior
Packages can define actions to provide special processing during
several system actions, such as pre-load, post-load, pre-save, and
pre-unload.

Saving
Two mechanisms are provided for performing pre-save actions.
These actions are performed before actually publishing either as a
parcel or to a Store repository.

• Before saving, all classes defined in the package are sent a
preSave: message, with the package as argument. To specify a
save action for a single class, reimplement this class method in
the class.

• You can define a pre-save block for the entire package, which can
perform any action. By default there is no pre-save block for a
package.

To create a package pre-save block:
Application Developer’s Guide 8-5

SourceCodeMgmtGuide.pdf

Managing Smalltalk Source Code
1 Choose the package and click the Properties tab.

2 Select Pre-save Action, and edit the pre-save block definition.

3 Select Accept to save the new block definition.

Loading
The load sequence for a package is as follows:

1 Any prerequisite components are loaded.

2 The package’s pre-load action is performed, if defined.

3 The objects in the package are installed into the system.

4 Every class defined in the parcel is sent the postLoad: message
with the package as an argument.

5 The package’s post-load action, if defined, is executed.

A pre-load action is typically used to initialize any undeclared
variables used by the code prior to its initialization. Class variables
are handled as shared variables, so can be added to a package
normally, and do not need to be defined in the post-load action.

To create a pre-load action, select the package in a System Browser,
click the Properties tab, then select the Pre-load Action property. Then
edit the pre-load block definition. Select Accept to save the new block
definition.

The default behavior of postLoad: is to run the class’s initialize
method, if it has one, but subclasses can override postLoad: to
perform any action. A typical override is to retrieve objects saved in
the parcel’s named objects set by the class’s corresponding preSave:
method.

Once all code has been installed and initialized, the package’s post-
load action, if defined, is run taking the package as an argument.
This method can be on an arbitrary class and have an arbitrary
selector. We strongly recommend that it be on a class defined by the
parcel.

To define a post-load action, select the package in a system Browser,
click the Properties tab, then select the Post-load Action property. The edit
the post-load block definition. Select Accept to save the new block
definition.

The post-load block can perform any action, but is typically used to
open initial applications, display installation banners, declare class
variables, and import objects saved by the parcel’s presave block.
8-6 VisualWorks

Organizing Smalltalk Code
Unloading
Before a package is unloaded, its pre-unload action, if defined, is run.
This action can be in an arbitrary class and have an arbitrary
selector. We strongly recommend that it be in a class defined by the
parcel. This method can take whatever action is required, but is
typically used to remove any class variables added by the package’s
post-load action and to close any applications defined by the parcel.

Removing a package that defined an open application is likely to
break the system, because the open application is obsolete, is
unlikely to function correctly, and may be impossible to close.
ApplicationModel will ask the user if it is OK to close any open
applications defined by the parcel. Most of the VisualWorks parcels
provide examples.

To define a pre-unload action, select the package in a System
browser, click the Properties tab, and select the Pre-unload Action
property. Edit the pre-unload block definition. Select Accept to save the
new block definition.

Managing Packages
Managing your parcels involves several simple procedures.

Creating a Package
To create a new package choose Package > New... in a System
Browser, and specify a name for the new package.

The new package is added to the Packages list in the browser. The
new package is represented in the image, and so is saved with the
image. It is also recorded in the Change List.

Adding Definitions to a Package
In general, all new definitions should be assigned to a package. You
can, however, for temporary code, assign it to (none) rather than to a
named package.

When you create a new class, name space, or shared variable, either
by selecting the package in the creation dialog, or by selecting the
package when you accept an edited creation template.

If you have unpackaged code, such as code that you initially
assigned to (none), you can assign it to a package at a later time.
Select the item and then choose Move in the <Operate> menu.
Depending on the item selected, you have several submenu
selection. For classes and name spaces, you can move:
Application Developer’s Guide 8-7

Managing Smalltalk Source Code
Definition to Package...

Prompt for a target package, and move the currently selected
class into it.

Selection to Package...

Prompt for a target package, and move the currently selected
class into it. Only the parts of the class that are within the current
package are moved. If multiple packages are selected, all parts
of the class within all selected packages are moved to the
package. If the navigator is set to view categories, the complete
class (methods and shared variables) are moved.

All to Package...

Prompt for a target package, and move the currently selected
class into it. The complete definition, including shared variables,
is moved.

For protocols, methods, and shared variables, select Move > to
Package..., and select the package. All definitions in the selection are
moved to the target package.

You can reassign items to a different package using the same menu
commands.

Removing a Package
To remove a package, you unload it from the system. Simply select
the package in a System Browser and pick Package > Remove (Unload).

Managing Bundles
Bundles are used to collect and organize packages and other
bundles. Bundles are used to make loading packages more
convenient, allowing for flexible configurations, and also for
assembling the contents of deployment parcels out of smaller
packages.

Creating and Arranging Bundles
A bundle provides a convenient way for you and your team to publish,
load, and merge the project packages as a set.

To create a bundle:

1 In the System Browser package list, select Local Image for a top-
level bundle. For a new sub-bundle, select the parent bundle.
8-8 VisualWorks

Organizing Smalltalk Code
2 Select Package > New > Bundle... to open the Bundle Specification
Editor.

3 In the editor, enter the name for the new bundle.

4 Select packages and/or bundles to include in the new bundle,
and click the Add to bundle contents button.

5 Arrange the load order of packages.

Load order only applies when Store is loaded and packages are
published to a repository. Refer to the Source Code Management
Guide for more information.

The Specification Editor lists bundles and packages in their load
order. If any definition in one package refers to a definition in
another package, then the referring package should be listed
first.

To change the load order for an item, select it and move it using
the up and down buttons.

6 Click the Validate button to verify that the specified order will load.

Validating creates a list of packages that the bundle will load, and
verifies that, in the resulting load order, that each namespace
and class required by each package is either:

• loaded by the package or a package earlier in the ordering,
or

• not loaded by any package later in the ordering.

If so, then the package is valid. It makes no attempt to validate
definitions that are not loaded by any of the packages, since they
are outside of the bundle’s control.

Make further adjustments as necessary.

7 When the bundle is complete, click Accept.

This creates the bundle in your image. It will be created in the
database when you publish it.

Editing a Bundle Specification
To modify the contents of a bundle, use the Bundle Specification
Editor, just as you did for creating the bundle. To open the editor:

1 Select the bundle in the System Browser package list

2 Select Package > Edit Bundle Specifications...
Application Developer’s Guide 8-9

./SourceCodeMgmtGuide.pdf
./SourceCodeMgmtGuide.pdf

Managing Smalltalk Source Code
3 Move packages and bundles into or out of the Bundle contents list.

4 Arrange the load order of by selecting a package or bundle and
clicking the up or down button.

5 Click the Validate button to verify that the specified order will load,
to check for conflicts.

6 When the bundle is complete, click Accept.

Removing a Bundle
To remove a bundle from the image, you unload it from the system.
Simply select the bundle in a System Browser and pick Package >
Remove (Unload).

Designing a Package Structure
When organizing an application into packages and bundles, think
about how you want to load the application into your deployment
image or running application. Because an application is frequently
deployed as a set of parcels (rather than simply loaded into an image,
see Publishing Packages), preparing ahead for what will be deployed
in individual parcels can save effort at the end of development. Ask
questions such as:

• Are there parts that must always be present?

• Are there parts that should start up together?

• Are there some features that might be used infrequently and
could be loaded only when needed?

Keep in mind dependencies between parts of your code. Be
conscious of:

• Subcanvases

• Embedded and linked data forms

• Inherited behavior

• Resources such as bitmaps that are used from a central location

• Class variables that are used by other classes. For example, if
one of your classes keeps the name of the application’s working
directory in a class variable, it should be loaded first.

Because both packages and bundles can be published as parcels, it
is reasonable to partition code into more packages, and then group
those into larger bundles, which can then be published as parcels.
8-10 VisualWorks

Organizing Smalltalk Code
Moving packages between bundles, by editing the bundle
specifications, is easier than moving code between packages, and so
reorganization is simplified by using small packages.

When Store is loaded, and packages and bundles are published to a
repository for revisioning during development, this organization has
other benefits as well. Refer to the Source Code Management Guide
for more suggestions.

Package and Bundle Properties
Packages and bundles have several properties that provide either
information about them or control various behaviors related to loading
and unloading them. When published as a parcel, these features
become the parcel’s properties as well, with certain limitations.

Prerequisites
Prerequisites for a package, bundle, or parcel are other components
that must be loaded into the system before loading the component.

For more information on specifying prerequisites, see Specifying
Prerequisites.

Warning Suppression Action
A package’s or bundle’s warning suppression action is a one-
argument block, where the argument is the name of a prerequisite.
The block suppresses the absent class warnings, that is, warnings
about an attempt to add code to a non-existent class. It does so on a
per prerequisite basis, so you can suppress warnings for selected
prerequisites.

The block must return true for any prerequisite for which warnings
should be suppressed. For example, to suppress only warnings for
MyPrereq, you could enter:

[:prerequisiteName |
prerequisiteName = ‘MyPrereq’ ifTrue: [true]]

To suppress warnings for additional prerequisites, simply add them to
the test.

The warning suppression block is run before any of the package code
is loaded. Consequently it should not mention any code in the
package.

The mechanism is limited. For example, if a prerequisite loads
another prerequisite that raises warnings, the block will not suppress
those.
Application Developer’s Guide 8-11

SourceCodeMgmtGuide.pdf

Managing Smalltalk Source Code
Prerequisite Version Selection Action
A prerequisite version string can be specified in the prerequisite
property, and is adequate if a specific version number is required. For
more general version control, such as to allow a range of versions,
specify a Prerequisite Version Selection Action.

Load and Unload Actions
Action blocks can be set to be evaluated at several stages of loading
and unloading parcels or packages by the bundle: preread, preload,
postload, preunload, postload, and presave. These are all listed as
properties of the bundle. View the help for each action for more
information, and browse the Store bundles for examples.

Other Properties
The Other Properties page allows you to add additional properties to
packages and bundles. You can add whatever properties, with String
values, that you have use for. Browse various packages to see
examples.

A few additional properties are used in the system, however.

• A comment property provides the text displayed in the Parcel
Manager as a description of a parcel published from this package
or bundle. It is also displayed as the comment in the Store
Published Items browser if published to a Store repository.

• A version property provides a version string displayed for a parcel
published from this package or bundle.

• A parcelName property provides a name for a parcel other than the
default, which is the package name.

• A packageName property provides a name for the package into
which to load code from a parcel published from this package or
bundle, instead of the default which is the original package name.

Specifying Prerequisites
Packages and bundles, and the parcels published from them,
frequently have prerequisites — other components that must be
loaded first. You select prerequisites because they contain code that
is needed by the specifying component.

The prerequisite usually exists because the prerequisite component
defines a name space or class that is extended or referenced by the
component being loaded. Before loading, a package or bundle
verifies that its prerequisites are loaded and, if not, loads them.
8-12 VisualWorks

Organizing Smalltalk Code
In some cases, the prerequisites differ depending on whether the
component is being loaded from a Store repository or a parcel. In
such cases, the difference roughly corresponds to whether the
dependency only exists in a development enviroment (loaded from
Store) or a deployment environment (loaded from parcel).
Accordingly, the distinction is relevant only if Store is loaded and you
are working with a Store repository. Prerequisites for development
are usually a superset of general prerequisites.

To specify the prerequisite components:

1 Load any components that will be required as prerequisites.

2 Select the package or bundle in a System Browser and click the
Prerequisites tab.

Prerequisites are listed in three groups:

• Current lists components that have already been specified as
prerequisites.

• Missing lists components that the prerequisite engine
recognizes as defining required functionality, but are not
listed under Current.

• Disregard lists components which, though they provide
required functionality, can be assumed to be present, and so
disregarded by the prerequisite engine. For example, Base
VisualWorks is a prerequisite of everythng, but can be
disregarded.

3 Add or move any components that should be listed as
prerequisites to the Current list. Remove any that are listed as
Current, but are not prerequisites, to the Disregard or Missing list.

4 In the Current list, you can change the load order using drag-and-
drop. For the other lists, order is not important.

5 To specify that a prerequisite applies only when loading from
Store or from a parcel, right-click and select either Store or Parcel.
(This corresponds to the former deployment and development
prerequisite distinction).

Edits are saved when you leave the Prerequisites page.

There are several options for moving components between lists:

• Drag-and-drop between lists.
Application Developer’s Guide 8-13

Managing Smalltalk Source Code
• Click the + icon to add an item to the list (Current or Disregard). A list
of components is displayed to choose from.

• Click the + icon on an item in the Missing list to add the component
to Current.

• Click the x icon to move a component in the Current or Disregard
lists to Missing.

• Right-click and select Add to Current, Remove, or Disregard.

As you mouse over an item, a brief listing of definitions is shown.
These are definitions that the prerequisites engine believes are
required by the component whose prerequisites you are specifying.
For a longer listing, click the expansion icon.

Other indicators, such as a red circle indicating a cyclical reference,
also help you properly organize prerequisites or trace potential
problems.

After you’ve made changes, click the Recompute Relationships button to
make sure changes have not added further prerequisites.

Specifying a Prerequisite Version
You can specify simple or complex version requirements for a
prerequisite using the Prerequisite Version Selection Action property on the
Properties page. The value of the property is a three-argument block in
the form:

[:parcelName :versionString :requiredVersionString |
booleanExpression]

The block arguments are the name of a prerequisite parcel being
loaded, its version string, and the version string specified in the
prerequisite property.

The block should answer true if the version is acceptable, and loading
continues. Otherwise the loader will continue to search for another
parcel of the same name with a different version. For example, this
will load versions greater than the required version:

[:parcelName :versionString :requiredVersionString |
versionString >= requiredVersionString]
8-14 VisualWorks

Organizing Smalltalk Code
Marking a Component as Functional
Some components are not intended by the developer to express
complete units of functionality, but might serve only to conceptually
categorize parts of the body of code. Such components are meant
only to be loaded as part of some larger component which does
provide complete functionality.

This distinction is supported by a property, ifFunctional, and a set of
buttons to set the property on the Prerequisites page.

To browse the property, go to the Properties page, select Inpect All, and
select isFuntional. A value of true indicates that the component is a
complete unit of functionality, and so is individually loadable. If the
value is false, then the component is only an incomplete part of a
larger unity, and should not be individually loaded. If the property has
not been defined, there is no restriction. You can add the property
here, or on the Prerequisites page.

The buttons available on the Prerequisite page change according to
context, but provide options to mark the component as indiivdually
functional (isFunctional = true), not individually functional (isFunctional =
false), as well as options to set all contained components as either
individually functional or not. Mouse-over a button for a description of
its effect.

References Between Packages
While developing an application, it is not unusual to define classes
and methods in one package that either refer to or are referred to by
objects that are defined in a different package. For instance, a
package might define a method for a class that is defined in another
package; these are referred to as “extension methods.” Similarly, a
package might define a subclass of a class that is defined in another
package. The definitions refer to definitions that may be unpackaged,
or defined in other packages that may be either load or unloaded in
the system.

Finding such references can be important for maintaining the
coherence of packages, and the parcels generated from them. A few
commands are provided to help you locate such definitions. Then you
can decide whether the organization is acceptable, or whether some
definitions should be moved to more appropriate packages.

Currently, these commands are available only in the Parcel view of the
System Browser, on the Parcel menu.
Application Developer’s Guide 8-15

Managing Smalltalk Source Code
To browse such references, select the parcel corresponding to the
package (they are usually named similarly) and pick one of the
following menu commands from the Parcel > Browse menu:

Extension Methods

Opens a method browser on methods defined in the current
parcel that extend class definitions in other parcels.

Extensions of Defined Classes

Opens a method browser on methods defined in other parcels
that extend class definitions in the current parcel.

References to Defined Classes

Opens a browser on definitions in other parcels that refer to
classes defined in the current parcel.

Subclasses of Defined Classes

Opens a class browser on class definitions in other parcels that
subclass definitions in the current parcel.

Using the browser, you can view the definitions and, if desired, use
menu commands to move them to more appropriate packages.

Code Overrides
A code override occurs when code in one package defines an item,
usually a method, that is already in the image but defined in another
package. Overrides provide a powerful and important capability for
component technology, but add complexity to managing the source
code.

For example, your application might need to enhance the behavior
provided by a method in the base (enhancing printOn: is fairly
common). Or, your application may be layered in such a way that
some standard behavior needs to be modified when a special module
is handled (maybe the billing routines).

Only one definition of, for example, a method in a given class can be
active in the system at one time. When multiple components define
the same item, a decision must be made as to which is the active
definition. The rule is that the last loaded definition takes precedence,
or overrides, the former.
8-16 VisualWorks

Organizing Smalltalk Code
Additional consideration must be given to the consequences of
unloading components with overriding or overridden code. It is
generally recommended that last loaded be the first unloaded. In this
case, the system can restore the prior definition, and the system
remains stable. If the first loaded component is unloaded first, results
are sometimes unexpected. If the second is then unloaded, the
system might even become unstable because there is no obvious
way to restore a prior definition, if needed.

Most frequently, overrides happen accidentally, for example if two
parcels (or packages in a Store database) both define a method with
the same name, such as a Customer class and related methods. In
most such cases, the override can be eliminated by refactoring the
application, using name spaces, or being careful not to load
conflicting applications. When that is not practical, overrides are
useful, but you need to be careful of their interaction.

The main management issues for overrides pertain to loading and
unloading a module, usually from a parcel, when it defines something
already resident in the system in another module. If you are
designing such a dynamic environment, you must pay attention to
how the modules interact. Currently, the behavior is different between
how packages are loaded from parcels and how they are loaded from
a Store database.

Creating an Override
As noted above, overrides are often created accidentally when
loading parcels, or packages from a Store database, that each have a
definition for an item. These often can be eliminated by refactoring
the code.

When an override is intended, it should be explicitly created. The
System Browser includes menu commands for creating overrides of
classes, name spaces, methods, and shared variables.

To create an override, select the definition to be overridden in the
System Browser. Then in the item’s <Operate> menu (or the
appropriate menubar menu), select Override > in Package... . Then
select the package to contain the override from the selection dialog,
and click OK. The new definition is added to the target package with
the same definition as the original. Edit the definition and Accept. (The
option to add the override to a parcel is available as well, but is
mostly redundant and subject to removal in the future.)
Application Developer’s Guide 8-17

Managing Smalltalk Source Code
Reviewing Overrides
The System Browser indicates overriding and overridden definitions
by highlighting the name in red. For example, select the Base
VisualWorks bundle, browse the Object class and find its inspect method.
The method name is highlighted in red. In another System Browser,
select the Tools-IDE bundle, and again browse the Object class and find
its inspect method. It also is highlighted in red.

Notice that both definitions in the code pane are the same; there’s no
indication what the difference might be, or which definition overrides
the other. So, while the System Browser indicates when and where
there are overrides in the system, it is not very helpful otherwise.

The Override List tool provides a better view for identifying overrides
and command options for managing them. To compare the
overridden and overriding definitions, select the package to check in
a browser and select:

• Package > Browse > Overrides of others, to browse method
definitions that have been overridden, or

• Package > Browse > Overridden by others, to browse any methods
defined in the parcel/package that have been overridden by
another parcel or package.
8-18 VisualWorks

Organizing Smalltalk Code
Initially a list of overriding or overridden definitions is shown. Select
an item to view the definition.

To compare the overriding and overridden version, select Show > Show
Conflicts. The Show > Conflicts menu command provides options for
how the conflicts are displayed. The pane on the left shows the
overridden definition, and the pane on the right, labeled System version,
is the overriding, the overriding definition.

To open the an Override List showing all of the overridden definitions
in the image, System > Changes > Browse System Overrides in the
Launcher. Browse System Overrides opens a list of all overrides currently
in the system. You can also select System > Changes > Open Override List
to open an empty list to which you can selectively add parcels and/or
packages containing overridden definitions.

In the following sections, we will describe how to perform the main
operations on overrides. For a full description of the Override Tool,
refer to the Tool Guide.
Application Developer’s Guide 8-19

ToolGuide.pdf

Managing Smalltalk Source Code
Resolving Overrides
Once you have identified an override, you can either retain it, if it is
intended and needed for your application structure, or you can
resolve the conflicting definitions. To resolve a conflict, you either
remove an overridden definition or make it prevail.

To make an overridden definition prevail, select that definition in the
list and select Replay > Selection. Once replayed, the (formerly)
overridden “owns” the current definition, and competing definitions
are removed from all (formerly) overriding components. The parcels
can now be saved without conflicts blocking the operation.

To remove an overridden definition, first select it and select Remove >
Selection to mark the definition for removal. You can mark several
definitions this way. Then select Forget > Purge Marked. The overriding
definition now owns the definition, and the components can be saved.
Note that if the overriding parcel/package is unloaded, the overridden
definition will not be restored.

Publishing Parcels and Packages with Overrides
Parcels and Store databases differ in how they publish code with
overrides.

• If a package contains an overridden definition, an attempt to
publish it as a parcel will fail, and a notifier is displayed. When
publishing a parcel, only the code currently active in the system
can be published. You must resolve an override before
publishing.

• If a package contains an overridden definition, publishing to a
Store repository will succeed, unless you are publishing binary;
publishing binary has the same restriction as publishing to a
parcel.

• If a bundle contains a package with an overridden definition, an
attempt to publish it, either as a parcel or to a Store repository,
will fail; bundles do not support overrides at this time.

When publishing as a parcel or as binary in a repository, the result
would be to publish the overriding code, and the overridden code
would be lost. Rather than publish under these conditions, the
operation is cancelled. To publish, you must remove the override
condition.
8-20 VisualWorks

Organizing Smalltalk Code
When publishing to a repository, the change list mechanism allows
keeping the overridden and the overriding code separate, so the
package can be published while retaining its overridden code.

Publishing Packages
For deployment purposes, either packages or bundles can be
“published” as parcels, which are the file-based, deployed version of
those components. To describe the dependencies between parcels,
packages and bundles specify a variety of dependencies, or
prerequisites, between themselves, other components, and the
VisualWorks environment. When published as parcels, these
dependencies are represented in the parcels, ensuring a properly
functioning application.

For more on parcels, see Parcels.

When Store is loaded into the image, package and bundle
functionality is extended with source-code revision management and
database repository features. During development, a bundle can be
used to load a set of packages, as a convenience mechanism. Refer
to the Source Code Management Guide for information about these
features.

Publishing as Parcels
Packages and bundles are the structures used for organizing code
within VisualWorks. For deployment purposes, however, you typically
want to save your code to deployable files. In VisualWorks, parcels
provide this functionality. To create parcels from the code in your
image, you publish packages and/or bundles as parcels.
Application Developer’s Guide 8-21

SourceCodeMgmtGuide.pdf

Managing Smalltalk Source Code
To publish a package or bundle, select it in a System Browser, then
select Package > Publish as Parcel. The publishing dialog opens.

Some of the options provided in the dialog only apply when Store is
loaded into the system. These are greyed out if Store is not loaded.

When publishing a bundle, you have the option of saving the bundle
structure in the parcel. Check the Include bundle structure checkbox in
the publishing dialog. This option is greyed out if you selected a
package rather than a bundle.

Also note that, when publishing a bundle, properties attached to the
contained packages and sub-bundles, such as load and unload
options, are not included in the published parcel; only the properties
belonging to the selected bundle are preserved and written as parcel
properties. You will need to consider this when preparing your
bundles and packages for publishing.

In the Source options section, you have these options:

• Save source file to write the source code into the parcel source file
(.pst)

• Hide source on load hides the source code in the code browsers.
8-22 VisualWorks

Source Code Files
• Pad source is needed only for huge parcel files, for efficiency of the
storage mechanism.

In the Miscellaneous options section, you have these options:

• Republish effectively reloads the parcel after publishing, to ensure
that the image and source files are kept synchronized.

• Backup makes a backup copy of an existing parcel, if it is going to
be overwritten

• Overwrite existing files if the parcel files already exist and are being
updated.

When the options are all set, click Publish. The parcel will be created
and saved in the current working directory.If more than one image is
saved with a parcel loaded, saving the parcel will make sources out
of sync with the other image(s). In this situation, do not save the
images with the parcel loaded.

Source Code Files
An image file contains a snapshot of the current state of the
VisualWorks system, consisting of the objects in the system and their
state. The initial visual.im is such a snapshot of a basic development
environment. As you develop your application, you add objects
(mostly classes and methods) to the image, which you occasionally
save as a new image file. The image is the result of successive
changes made to the system: defining classes, methods, name
spaces, and shared variables, creating class instances, and
modifying any of these. The image file is a binary file, containing the
byte codes for the objects is holds.

The originally shipped image file, visual.im, is accompanied by a
source code file, visual.sou, which contains the definitions for the
objects in the system, prior to any changes to it. When you browse
any unchanged item in the base image, the source for that item is
found in this file and displayed. The visual.sou file remains unchanged
through subsequent changes to the system. The sources file is an
XML file-out format file, as described below (see File-Out Files).

Note that the name of the original sources file does not change if you
save the image file to a new name (as you should), but remains
visual.sou. You can change the sources file name in the Settings Tool,
Application Developer’s Guide 8-23

Managing Smalltalk Source Code
on the Source Files page, but this is seldom necessary or advisable. In
general, the same sources file represents the source code for all
images based on the initial image file.

As you make changes to the system state, whether by creating or
modifying class and method definitions, or just the state of objects in
the system by evaluating an expression with Do It, those changes are
recorded in the “changes file.” The changes file records a history of
all changes made to the initial image. You can browse the history of
changes using the Change List tool, as described in the Tool Guide.

As initially distributed, there is no changes file, because all of the
source code for visual.im is already in the sources file. As soon as you
make a change to the system, however, a visual.cha file is created
containing that change, and continues to grow as you work with the
system. The changes file has the same name as the image file.
When you save the image to a new name, such as “myApp,” both the
image and the changes are copied to the files myApp.im and
myApp.cha, respectively.

These three files, the image, sources, and changes files, are all
synchronized, and operate together for the development tools to give
a reliable representation of the source code for an image. If the
sources or changes file is missing or not in the correct directory, the
tools attempt to represent the source code by decompiling the byte
codes in the image. In particular, the image and change files must be
in the same directory. (Refer to the Cincom Smalltalk Installation
Guide for network setup instructions.)

Consequently, if you copy an image from one location to another,
make sure you also copy both its associated changes file and the
original sources file.

Managing Changes
As described in the previous section, a the state of a Smalltalk
environment is determined by the collection of changes (additions,
deletions, edits, and evaluations) performed on the original image.
The changes file tracks these changes. There are several ways in
which you can use this change history to maintain the system, as
described in the following sections.
8-24 VisualWorks

ToolGuide.pdf
../Install.pdf
../Install.pdf

Managing Changes
Recovering Changes
Because all changes are recorded in the sources files, it is possible
to recover or replay changes you have made to the system. This
ability is helpful in the case of a system crash or simply for recovering
changes that you made but might not have saved in the image or an
external code file.

To work with the changes, use the Change List Tool. This tool is fully
described in the Tool Guide.

Compressing Changes
The changes file gets very large over time, because it records each
change you make. It also accumulates out-of-date code, for example
when you define a class or method and then modify or delete it. Only
the latest definition is relevant to the system for browsing purposes,
unless you want to revert to an earlier version of a definition.

When the changes file gets too large, make sure the current
definitions are those you want to keep, and compress the changes
file, using the System > Changes > Compress Changes menu command in
the Visual Launcher. This cleans out old definitions and actions from
the changes file, leaving only those representing the current state.

Using Change Sets
Developers frequently have several projects going at one time. To
ensure independence between these projects, avoiding undesired
interactions between code changes, it is common to maintain several
images, one for each project. However, when independence is not
critical, projects can also be maintained in the same image by
keeping them in separate package/bundle sets.

Another mechanism for collecting changes on a per-project basis, is
to use, named change sets (also simply called change sets). By
using multiple change sets, you can keep the changes made for
different applications or subsystems separate, while maintaining a
single development environment. This is particularly useful if you
work on multiple small projects as the same time, and do not want to
maintain separate images for each.

Change set entries represent either new or changed class definitions
and their methods, or individual methods that you create or change
without modifying the class itself. These define a set of definitions
that you can then file out as a group.
Application Developer’s Guide 8-25

ToolGuide.pdf

Managing Smalltalk Source Code
Change Set Manager
You manage change sets by using the Change Sets Manager. In this
tool, you set the current change set and access operations on
change sets, using the menu options. This section briefly introduces
the manager. For complete information, refer to the Tool Guide.

To open the Manager, select System > Changes > Change Sets in the
VisualWorks Launcher.

The tool lists:

• The names of currently available change sets. There is always a
Default change set, which is selected until you create your own
and make it current.

• The Classes column lists the number of classes in each change
set that have changes to the class definition itself; filing out will
include all methods.

• The Methods column indicates the number of loose methods that
will be included when filing out (methods changed without
changes to their classes).

Selecting a Current Change Set
The Change Set Manager always has the Default change set, plus any
change sets that are defined in the image. If no change set is
selected, or if Default is selected, all changes go to the default change
set. Otherwise, they go to the selected change set.

To make a change set active or current, double-click on the name in
the change set list, or select it and pick Set > Make Current. All changes
you make to the system will then be saved in that change set.

You can also change the current change set by clicking on the
change set icon on the status bar of the Launcher.
8-26 VisualWorks

ToolGuide.pdf

File-Out Files
Creating a New Change Set
To add a new change set, select Set > New, or select New in the
change set list <Operate> menu. Enter a name for the change set in
the prompter, and click OK.

To make this the current change set, double-click on its name.

Alternatively, click on the change set icon on the status bar of the
Laucher, and select New Change Set.

Saving Changes
Change sets are typically used to identify sets of changes that can
then be distributed as file-out format files. Change sets are saved in
source code format, and so can be browsed in the Changes List.

To write out all the changes in a change set, select the change set
and select File > File Out... . You will be prompted for a file name.

As a shortcut, to file out all save sets, select File > File out All... . You
will be prompted for a directory name. The directory will be created, if
necessary, and a separate file-out file for each change set is written
to it.

You can file out a single method by selecting it in the Change Set
Editor (ChangeSet > Edit), then selecting File out as... in the <Operate>
menu.

Note that, when filing out a change set that includes defining a class,
all subsequent changes made to methods in that class are also
(implicitly) assigned to the change set. This is true even if a different
change set is “current” when those method changes are made. A file-
out the first change set will include the method definitions.

File-Out Files
VisualWorks supports filing-out source code in two formats: the
traditional “chunk” format, and an XML format.

The traditional source code format for Smalltalk code is chunk format.
The format is also called file-out format, because it is also used for
writing, or “filing out,” Smalltalk source code for arbitrary individual or
sets of definitions. These file-out files can then be read into, or filed-in
to, any compatible Smalltalk image (usually a compatible version of
the same Smalltalk dialect).
Application Developer’s Guide 8-27

Managing Smalltalk Source Code
With the development of XML and its promise for data interchange,
VisualWorks also can save source code into an XML format. This
provides various internal system advantages as well, allowing the
system to take advantage of XML structuring.

XML format is the default file-out format in VisualWorks, and is used
to write out changes and file-out files. To change to traditional chunk
format, use the VisualWorks Settings Tool (System > Settings in the
Launcher window), and change the default on the Source page.

Chunk format is only needed if you are porting your code to another
dialect or to a version of VisualWorks prior to 5i. For file-outs to be
ported to a pre-name space version of VisualWorks or another
Smalltalk dialect, load the FileOut30 parcel (FileOut30.pcl) goodie,
which adds this additional format option to the Source page in the
Settings tool.

Filing Out Code
File-out commands are available in many menus throughout the
VisualWorks system. Depending on the menu, the command will file
out different collections of definitions. You are prompted for a file
name, to which is appended a .st filename extension. There is no
indication in the file name whether the file is in XML or chunk format.

For example, in the System Browser, the File Out As... menu selection
will file out either all definitions in a name space, in a class, in a
protocol (method category), or a single method, depending on what
is selected and which menu is invoked. The Category, Class, Protocol,
and Method menus, and the <Operate> menus for each pane, each
have a file out command, and do the appropriate action.

Additional file out commands are available in special browsers,
debuggers, the change list and change set tools, and so on, allowing
you to file out exactly the definitions you want to save. For example,
to collect specific changes for transporting to another image, create a
change set so your changes are recorded in it. When you are ready
to save all of the changes in the change set, use the Change Set
tool’s File out as command.

Filing In Code
Filing in source code from a file-out file is most commonly done using
the File Browser tool (File > File Browser, or the corresponding icon in
the Launcher window). Enter the name of the file, or select it in the
list pane after displaying its directory. With the file selected, select
File In... from the <Operate> menu.
8-28 VisualWorks

Parcels
Note that if you file in a file from a pre-5i version of VisualWorks, the
code is loaded into the Smalltalk.* name space.

Parcels
Parcels are the component deployment technology for VisualWorks,
providing a fast object loading mechanism especially suited to
deploying Smalltalk code. All standard VisualWorks add-in
components are provided as parcels.

Parcels provide the following features:

Partial loading

Some definitions in a parcel might not be loadable, such as a
method if its class hasn’t been loaded. Partial loading allows the
parcel to load without such definitions, and then loads them later
if the required definitions are loaded.

Override unload support

Parcels remember any methods and classes they replace on
load, and restore these methods on unload. See Code Overrides
for more information about overrides.

Save, load, and unload actions

Parcels can have pre-load, post-load, pre-save and pre-unload
actions. These are initially defined for packages and bundles and
are then assigned to the parcel when it is published. See
Package and Bundle Properties.

Prerequisites and autoloading

Parcels can include the names of prerequisite parcels, which are
automatically loaded when the requiring parcel is loaded. See
Specifying Prerequisites.

Shape-change tolerance

Parcels containing both code and objects whose class definitions
differ from the current system versions.

Parcel Files
Parcels are saved in two files. Parcel files containing compiled code
in a binary format have a .pcl extension, and files containing the
corresponding source code have a .pst extension.
Application Developer’s Guide 8-29

Managing Smalltalk Source Code
Despite the superficial resemblance between .pst source files and .st
file-out format files, .pst files do not file-in properly. They are strictly
source files for their corresponding.pcl binaries. They can, however,
be browsed in the Change List for comparison with a loaded parcel
by viewing differences between the system and an opened file.

Loading and Unloading Parcels
Typically, you load parcels into your development environment using
the Parcel Manager, as described in Loading Code Libraries. The
manager also has an unload option.

For deployed applications that need to load parcels, you can either
load the parcels programmatically or load at startup using command
line options.

Note that loading a class definition from a parcel does not overwrite a
class definition already in the image. To change a class definition,
use a pre-load action.

Loading Parcels Programmatically
An application may load parcels dynamically as needed. For
example, when a user starts a new tool or opens a new window
within the application, the application may load the parcel containing
that tool or window.

The following line of code loads a parcel from the file UIPainter.pcl:

Parcel loadParcelFrom: '..\parcels\UIPainter.pcl'
Similarly, when the parcel is no longer needed you may unload it:

Parcel unloadParcelNamed: 'UIPainter'
Note, however, the difference between these two messages. To load
the parcel you specify its filename; to unload the parcel you specify
its parcel name. The two may be very different.

When deciding whether to use these and similar messages (browse
Parcel for the full API), consider the following:

• how to handle a load request if the parcel is already loaded;
whether to use the already-loaded parcel or reload the parcel
from the file.

• how easily and regularly you need to replace your application’s
parcels with new, up-to-date parcels. Frequent updates may
argue in favor of dynamic loading.
8-30 VisualWorks

Parcels
• how quickly your application should respond. There is time
overhead incurred by dynamic loading and unloading.

Loading Parcels with Command Line Options
The following command line options work with either a development
or a deployment image (see class ImageConfigurationSystem).

-pcl parcelFile1 parcelFile2 ...

Load the files into the image on startup. The parcel file name
may be either an explicit file name or a parcel name on the parcel
path.

-cnf configFile1 configFile2 ...

Load all of the parcel files named in configuration files (one or
more) on image startup.

-psp dir1 dir2 ...

Sets the parcel search path to include the specified directories.

For example, to load a single parcel, say the UI Painter parcel, on
startup, execute the command (MS Windows form, from the image\
directory):

..\bin\win\vwnt.exe visual.im -pcl UIPainter

If you have several parcels to load, use an image configuration file
listing the files. The file is a plain text file listing the filenames,
separated by any whitespace character (typically a space or carriage
return). If the file names include whitespace characters, enclose them
in quotation marks. For example, to load the HotDraw goodie parcels,
you can create a HotDraw.txt file containing:

"..\goodies\other\HotDraw\HotDraw Framework.pcl"
"..\goodies\other\HotDraw\HotDraw Animation Framework.pcl"
"..\goodies\other\HotDraw\HotDraw Drawing Inspector.pcl"
"..\goodies\other\HotDraw\HotDraw HotPaint.pcl"
"..\goodies\other\HotDraw\HotDraw Animated Examples.pcl"

Then, to invoke the file, assuming it is in the image\ directory, you
would execute:

..\bin\win\vwnt.exe visual.im -cnf HotDraw.txt
Application Developer’s Guide 8-31

Managing Smalltalk Source Code
Setting the parcel search path with the -psp option would allow you to
simplify the configuration file to list only the file names, without the
path information:

..\bin\win\vwnt.exe viauls.im -psp

..\goodies\other\HotDraw -cnf HotDraw.txt

Parcel Search Path
The parcel loader searches for parcel names (not explicit file names)
on the parcel search path. You can view and change this path using
the Settings Tool (System > Settings on the Launcher menu), on the
Parcel path page.

To add a path to the list, enter it in the space provided and click Add.
The $(VISUALWORKS) prefix matches the VisualWorks home
directory. You can also specify a full directory path.

To change the search order, select an entry and drag it up or down in
the list. Directories are searched from top to bottom.

To delete a directory from the search path, select it and click Delete.
To edit an entry, select it, edit it in the entry field, and click Change.

When you are finished making changes to the parcel path list, click
Accept.
8-32 VisualWorks

Parcels
The parcel path is saved with the image. You can also export the path
setting to a file, either with the entire collection of VisualWorks
settings or separately saving only the path settings. In the Settings
Tool, open the <Operate> menu on Parcel Path. Then select:

• Save to save all settings

• Save Page to save only the parcel path

In either case, specify a name and directory for the settings file and
click Save. You can then load the settings into another image using the
Load or Load Page commands.

Managing Parcels
Parcels are an external file representation of the package/bundle
structure and do not require any other management. Instead, you
define their content by organizing your code into packages and
bundles. Then, to create a parcel, you publish a package or bundle
as a parcel (see Publishing Packages). Loading and unloading
parcels is done using the Parcel Manager, programmatically, or on
the command line, as described under Loading and Unloading
Parcels.

Guidelines for Clean Loading and Unloading
For parcels to load and unload cleanly, observe the following
guidelines.

Organize parcels in a tree and do not cross-reference

Unloading parcels with cross-references will create undeclared
references, and cause problems for clean unloading. To avoid
cross-references, arrange the core parcel of your package so that
it refers only to classes in the base or other standard parcels, and
to the classes it defines. Within the core parcel, do not refer to
classes defined in parcels that require the core parcel as a
prerequisite.

Cleanly loading parcels with cross-references is not a problem.

Parcels support extension methods, so you don’t have to put an
entire class in a single parcel but can decompose it across a
number of parcels. The UIPainter is an example; all the painter-
related functionality for Specs is separated out from the builder
related functionality, allowing the painter to unload cleanly.
Application Developer’s Guide 8-33

Managing Smalltalk Source Code
Order prerequisites carefully

Classes must be ordered correctly if they are to initialize without
error. When a class is initialized, all of the classes that it depends
on for its initialization must be themselves initialized. VisualWorks
orders classes automatically given information defined in the
class’s prerequisitesForLoading method. See ClassDescription>>
#prerequisitesForLoading and Class>>#prerequisitesForLoading for the
defaults. These include a class’s superclasses and the defining
classes of any objects used by a class. But this may not be
sufficient.

For example, in the Lens there are a number of classes that
require other unrelated classes to be initialized before they can
be. LensGraphView requires both LDMRelationship and
LDMPerspective to be initialized first. Hence LensGraphView class’s
prerequisitesForLoading includes these classes in its default set of
prerequisites.

If a class is not properly loaded, you will get a walkback when you try
to load the parcel. If this happens, use the debugger to trace back the
chain to CodeReader>>installInSystem, where it is sending postLoad: to
the classes in the parcel in the order defined by their prerequisites.
Run the required class initializers by hand until you can proceed
successfully, noting which class caused the error and the class it was
trying to use in its initialize. Once the parcel has loaded, you can add
or extend the offending class’s prerequisitesForLoading method and try
again. Soon you’ll get your parcel to load smoothly.

Unfortunately, due to the way the system sorts classes, a parcel that
loaded cleanly once may fail to load in a different configuration. Again
the solution is to augment relevant prerequisitesForLoading methods.

Order classes carefully

To unload, classes must be ordered and have no references to
themselves or their instances. Unload order is the reverse of the
load order, as defined by prerequisitesForLoading.

When classes are removed from the system, they are sent the
obsolete message. The default behavior is to remove the class
from its superclass and nil all its instances fields. This may be
insufficient to cause the classes to be garbage collected. For
example, the class may be referred to in some collection or have
been added as a dependent of some class (usually ObjectMemory,
8-34 VisualWorks

Parcels
which is used to get notification of image load/save/exit). The
obsolete method should remove references such as these made
during initialization.

You can use SystemAnalyzer>>#obsoleteClasses in the Advanced Tools
System Analysis parcel to track down problems. The parcel also
contains ReferencePathCollector, which can be used to find the path of
references from global variables to any object and to obsolete
classes and their instances.

Check Undeclared

Take care to check Undeclared when you define, load, or unload a
parcel you’re developing. Eliminate references to declared
variables by restructuring your program.

Limitations and Restrictions

Restrictions on Parcel Contents
Several restrictions apply to a parcel’s contents:

• A class’s instance and class side definitions must be contained in
the same parcel; they cannot be broken apart.

• Named objects cannot be instances of the following classes:

• Named objects cannot be block closures that have associated
stack contexts.

Partial Loading
Parcels support partially installing definitions from a parcel. If a parcel
contains a class that requires a superclass which is not present in the
system, or a method that requires a class which is not present in the

CDatum Context Controller

Exception ExternalInterface GraphicsContext

GraphicsDevice GraphicsHandle GraphicsMedium

LensContainer LensGlobalDescriptor LensSession

OSHandle Process Semaphore

Signal VisualPart WeakArray
Application Developer’s Guide 8-35

Managing Smalltalk Source Code
system, the class or method is not installed. Instead, these classes
and methods are added to either the uninstalledClasses or
uninstallededMethods set for the parcel.

Whenever a parcel is loaded, parcels with uninstalled code check
whether the required absent classes have now been loaded. If so, the
parcel installs the class and method definitions.

Classes that are installed in this way are sent postLoad: to initialize
them when they are installed. They can distinguish being installed
after partial loading because the parcel argument to postLoad: will
answer true to isLoaded.

You can browse a parcel’s unloaded code by opening the Change
List and selecting File > Display Parcel... . The names of unloaded
classes and methods are also listed in a Parcel’s summary.

Currently the uninstalled code mechanism works only for loading, not
unloading. If parcel A is extended by parcel B, then unloading A does
not cause B’s extensions to A to revert to unloaded code. Hence a
subsequent reload of A will not see B’s extensions.

Saving a parcel with uninstalled code would lose the uninstalled
code. A dialog notifies you of the condition, and the save is canceled,
so you do not lose code silently.

To correct the condition, you should load any prerequisite parcels
until all uninstalled code has been installed. Typically, loading a
parcel's development prerequisites will load the necessary code. See
Specifying Prerequisites for more information.

Shape Change Tolerance
Shape change refers to the redefinition of classes that add or remove
instance variables, or make the class indexable on bytes or objects.
This causes the objects defined by the class to acquire or lose fields,
or “change shape.”

Parcels have a shape-change facility for instances and methods that
tries to adjust objects so they can still be loaded. If a parcel loads an
object whose number of instance variables has changed, it assigns
the values of variables with the same name, discards the values of
missing variable names, and leaves new variables nil. If a parcel
loads a class that has changed shape, for example, because its
superclass has changed since the parcel was defined, then the
class’s methods will have their instance variable offsets adjusted to
reflect their correct positions.
8-36 VisualWorks

Parcels
A parcel can include a class definition alone, for purposes of
changing class shape. To do this, create the definition and simply add
it to the parcel. The Parcel Browser adds all method definitions, too,
so you need to remove these from the parcel, if there were any.

There is currently no mechanism for the user to provide arbitrary
shape-changing code for loaded instances, as is the case for BOSS.
This limitation will be lifted in subsequent releases.

The system cannot cope with shape changes other than the addition
or removal of named instance variables. Changing a byte object into
a pointer object or vice versa will always break the system. This
restriction will not be lifted.

If two class definitions both change a class’s shape, the last definition
loaded will win. Definitions are overwritten, not merged, so, for
example, instance variables from two definitions are not both added.
Application Developer’s Guide 8-37

Managing Smalltalk Source Code
8-38 VisualWorks

9

Application Framework

The VisualWorks application framework greatly simplifies the task of
building an application. The basic framework separates UI objects,
such as windows and the widgets and menus they contain, from the
domain objects, which represent the elements and processes that the
application is modeling. The UI and domain are connected by an
application model which creates the UI from specifications, connects
the UI to the domain, and manages communication between the UI
and domain during the application run.

As with any object-oriented construct, the application framework
consists of objects that provide services to collaborating objects. This
chapter gives an overview of the main mechanisms in the application
framework. While this is useful information and will help make sense
of how the VisualWorks tools operate within the framework, you can
skip this discussion. The following chapters address building an
application using the framework.

Separating the Domain and the User Interface
The first and most fundamental aim of the application framework is
this: Keep the domain model separate from the user interface.

An application has one or more domain models, which define the
structure and processing of data in the domain of the application. For
example, in a sketching application, the domain model is responsible
for storing the lines that make up the sketch, and for adding and
removing lines upon request.

The user interface (UI) is the part of the application that presents
data and application status to the user, and accepts input from the
user by mouse and keyboard actions. The UI display is generally
Application Developer’s Guide 9-1

Application Framework
graphical (so called a GUI), consisting of one or more window
containing widgets, graphical controls such as buttons, input fields
and lists.

Separating the domain model from the UI makes the application
easier to maintain, and also promotes reusability of the application
components. If the domain model provides generic services rather
than services that rely on special knowledge about a particular UI, it
is easier to substitute a different interface later as UI technology and
user needs evolve.

Separation also makes it easier to provide multiple UIs for a single
domain model, perhaps one for a novice user and another for an
expert user.

Application Model Acts as Mediator
Obviously, the user interface and the domain model need to work
together. To avoid either the model or the UI having to support a lot of
code that really has nothing to do with its proper function, the
VisualWorks framework employs a mediating object, the application
model.

The application model handles the logic of how a window and its
widgets, which know nothing of a particular domain model,
collaborates with a domain model, which knows nothing of the UI, to
form a unified application. The application model is the glue that
holds the application together.

A VisualWorks application is defined as a subclass of ApplicationModel
to act as mediator. This subclass can be created manually, or
automatically generated from the canvas when the user-interface is
“installed.” Windows, menus, some graphics, and other “resources”
are defined within the application model.
9-2 VisualWorks

Separating the Domain and the User Interface
Value Model Links Widget to Attribute
An application model coordinates communication between domain
objects and UI objects by defining a relationship between them. Each
UI widget is related to an attribute or operation of domain objects.

A user action on a widget, such as clicking a button or entering data
in an entry field, either modifies an attribute of a domain object or
starts an operation defined in the domain model. For example, for an
attribute-setting widget, such as an entry field, the application model
translates the value received by the widget and sends the appropriate
value-setting message to the domain model. Similarly, if a value
changes in the domain model that affects the UI, the application
model picks up that change and sends it to the UI.

The mechanism that the application model uses is called an adaptor.
An adaptor stands between the specific interfaces of the UI and
domain objects, adapting messages and values so they “fit.” The
adaptor is also referred to as a value model, because it defines the
relation between an attribute’s value and widgets that depend on that
value.

There are different kinds of value models for different kinds of
attribute values. For example, a ValueHolder is used when the attribute
value is a simple data value such as a string of characters. An
AspectAdaptor is used when the data value is embedded in a
composite attribute or in a domain model separate from the
application model.

Value models are created from the UI by the Define operation in the UI
Painter. The result is generally a “stub” method that requires
additional coding to complete the adaptor operation.
Application Developer’s Guide 9-3

Application Framework
Builder Assembles User Interface
When a VisualWorks application is started, the application model
delegates the process of building the actual interface to an instance
of UIBuilder. The builder uses the specifications for the user interface,
including the widgets and properties for each widget, defined in the
UI Painter. This builder object is an important part of the application
framework. For example, you can programmatically access a specific
widget by asking for it by name from the builder.
9-4 VisualWorks

Dependencies Between Objects
Dependencies Between Objects
When Object B is affected by a change in Object A, Object B is said
to be a dependent of Object A. Dependencies of this nature occur
commonly in applications, and the application model collaborates
with value models to notify dependents of relevant changes.

VisualWorks uses three dependency mechanisms: the original
change/update mechanism, the trigger-event mechanism, and a new
Announcement system. The change/update mechanism is described
in this chapter. The trigger-event system is described in Trigger-Event
System. The Announcement system is described in Announcements

The Update/Change System
The update/change system is the original dependency mechanism in
VisualWorks. This mechanism is at the core of the GUI system, but is
also generally useful in application development. When an object
using this system changes in some way it sends a “changed”
message to itself. That message then results in sending an “updated”
message to all of the object’s dependents.

For example, in the sketching application, selecting a sketch in the list
widget causes the set of lines for that sketch to be displayed in a
sketching widget. The sketching widget is a dependent because it
needs to know when the selection is changed in the list of sketches.
Application Developer’s Guide 9-5

Application Framework
Note that the sketching widget is not a dependent of the list widget.
Rather, it is a dependent of the value model that holds the list of
sketches. The list widget is the primary dependent of the value
model, and receives notifications much as its sibling widget does.

VisualWorks provides three layers of support for dependent
notification:

• Notifications from a value model to an application model. Many
applications rely on this partially automated layer exclusively
because it is the easiest to implement and handles the common
cases.

• Notifications from any object to any object. This is the foundation
layer upon which the first layer is built, and which provides
broader functionality for situations involving arbitrary types of
objects.

• Event-based notifications for objects of any type. This is actually
an alternative to the second-layer architecture, provided for
compatibility with VisualWorks Smalltalk.

Notifications From Value Model to Application Model
An application model provides a value model to keep a widget in sync
with its data value in the domain model. When a secondary widget
also needs to be kept in sync with that data value, the application
model employs a DependencyTransformer.

A DependencyTransformer is like a single-minded robot that is told, in
effect: “Keep your eye on this value model—whenever its value is
changed, notify me.”

This robot is told what message to send to the application model. By
convention, the message begins or ends with the word “changed,” as
in valueChanged or changedSelection.

The Notification page of the Property Tool enables you to specify this
message, in effect setting up a DependencyTransformer to monitor the
primary widget’s value model.

The application model is expected to implement the corresponding
instance method, in a change messages protocol. That method updates
the value model for the secondary widget, which in turn causes the
secondary widget to update its display, completing the cycle of
dependency.
9-6 VisualWorks

Dependencies Between Objects
Using the sketching application as an example, here is how the
sequence of events occurs:

1 The user clicks on the name of a sketch in the list widget, causing
the selectionIndexHolder value model to change its value.

2 A DependencyTransformer notices the change and notifies the
application model by sending a changedSketch message to it.

3 The application model, in its changedSketch method, gets the
newly selected sketch and installs it in the sketch widget’s value
model.

4 The sketch widget displays the sketch.

Notifications From Any Object to Any Object
While the Notification page of a widget’s property sheet enables you to
arrange for a notification to an application model, you can use a
DependencyTransformer to arrange for a notification from any object to
any object. Going even further into the dependency mechanism, you
can arrange for a direct notification without the use of a robotic third
party.
Application Developer’s Guide 9-7

Application Framework
DependencyTransformer
When a value model changes its value, it sends a changed: #value
message to itself. The changed: method is inherited from Object, and
sends an update: #value message to all dependents of the value
model.

A DependencyTransformer, when it receives an update: #value message,
sends a specified message to a specified receiver. In the usual
situation, as discussed above, it sends a specified message to an
application model. But as a general technique, it can be used to send
any message to any receiver.

In addition, when the robot is monitoring an object other than a value
model, it can be made to react to a changed: #selection message, for
example, or any other aspect symbol indicating the nature of the
change. The aspect symbol is used by contract between the object
being monitored and the transformer.

For example, a BankAccount might send changed: #balance to itself, and
the DependencyTransformer might be configured to pay attention to the
corresponding update: #balance message, while ignoring other update:
messages.

Setting up a notification in this way involves creating a
DependencyTransformer with the appropriate aspect symbol, message
selector, and message receiver, and then adding that transformer as
a dependent of the target object (using addDependent:). If the target
object is not a subclass of ValueModel, you must also arrange for it to
send changed: #aspectSymbol to itself in the method that effects that
change. Subclasses of ValueModel take care of that detail, because
they are the most common targets.

Subclasses of ValueModel are capable of setting up a transformer for
you. Just send onChangeSend: #selector to: receiver to the value model.

Any object can set up a transformer in response to expressInterestIn:
#aspectSymbol for: receiver sendBack: selector.

Direct Dependency
You can dispense with the transformer by implementing an update:
method for the dependent object. Then add that object as a
dependent of the target object (using addDependent:). As a result,
when the target object sends changed: #aspectSymbol to itself, the
dependent object will receive update: #aspectSymbol.

Again, the aspect symbol must be agreed upon.
9-8 VisualWorks

Dependencies Between Objects
Variants of the changed/update: messages are available for situations
requiring a parameter in addition to the aspect symbol (update:with:)
and the target object (update:with:from:).

Removing Dependents
The Object class provides a central dictionary for keeping track of any
object’s dependents. An application that adds a dependent is also
responsible for removing it (using removeDependent:), to avoid having
the dictionary hold onto obsolete dependents and waste increasing
amounts of memory.

The Model class provides an instance variable for storing dependents
locally, avoiding the use of the central dictionary. Thus, instances of
subclasses of Model (including the value model hierarchy)
automatically release their dependents when they expire. Because
value models are the targets of the vast majority of dependencies,
this takes care of most situations.

Circular Dependencies
Because dependencies involve indirect communications, the hazard
of circular message-passing becomes more likely. The most common
situation in which circularity arises involves two mutually dependent
widgets.

For example, in a document display window, the “page number”
display field and “table of contents” treeview widget may be mutually
dependent. That is, changing the page number updates the selection
in the treeview, and changing the selection in the treeview updates
the page number.
Application Developer’s Guide 9-9

Application Framework
You can temporarily remove a transformer in such a situation, by
sending retractInterestIn: aspect for: dependent to the target object just
before you change its value. After changing the value, you must
reestablish the transformer (using onChangeSend:to:).

You can temporarily remove a direct dependent by sending
removeDependent: dependent to the target object, and then adding it
(using addDependent:) after changing the value.

Application Startup and Shutdown
The first step in starting an application involves deciding which
interface to open. The process of assembling and opening the
chosen interface proceeds by stages. After each stage, your
application model can intervene in the process to configure the raw
interface as needed. The stages are:

• Create an instance of UIBuilder

• Pass the UI specs to the builder and ask it to construct the UI
objects

• Open the fully assembled interface window

By default, when an application model class is sent an open or
openInterface: message, all three stages are performed. You can send
allButOpenInterface: to an instance to perform stages one and two, then
separately send finallyOpen to perform stage three.

Selecting an Interface
An application is typically started by sending an open message to the
appropriate subclass of ApplicationModel. This assumes that the
primary canvas was saved with the default name, windowSpec.

If the primary canvas has a different name, or if you want to open a
different canvas, you can send openWithSpec: to the class, with the
spec name as the argument.

The application model class creates a new instance of itself to run
the interface. If you want to use an existing application model
instance, you can send open or openInterface: to that instance. This is
useful when you want to reuse an instance rather than create a new
one, or when you want to initialize the application specially.
9-10 VisualWorks

Application Startup and Shutdown
Prebuild Intervention
After an instance of UIBuilder has been created, but before it has been
given a set of specs with which to construct a UI, the application
model is sent a preBuildWith: message. The argument is the newly
created UIBuilder.

Most applications do not need to intervene at this stage. Those that
do, typically take the opportunity to load the builder with custom
bindings that can only be derived at runtime.

Postbuild Intervention
The application model creates a hierarchy of spec objects from the
spec method, and hands the root spec to the builder. The builder then
creates a window and populates it with the appropriate widgets. The
builder does not yet open the window, however.

At this stage, the application model receives a postBuildWith:
message, with the builder as argument. The application model can
use the builder to access the window and any named widgets within
the window—that is, widgets that were given an ID property.

Applications commonly use postBuildWith: to hide or disable widgets
as needed by the runtime conditions.

Postopen Intervention
The builder opens the fully-assembled interface. At this stage, the
application model is sent a postOpenWith: message, again with the
builder as argument. As with postBuildWith:, the application can use
the builder to access the window and its widgets. This time, however,
those objects have been mapped to the screen, which makes a
difference for some kinds of configuration.

For example, the FileBrowser model that drives the File List interface
uses postOpenWith: to insert the default path in the window’s title
bar—something it could not do until after the window had been
opened.

Application Cleanup
An application model often needs to take certain actions when the
application is closed. For example, a word-processing application
might need to ask the user whether edits that have been made to the
currently displayed text should be saved or discarded.
Application Developer’s Guide 9-11

Application Framework
Another common cleanup action is to break circular dependencies
that would otherwise prevent the application from being garbage
collected. For example, if application A holds application B, and vice
versa, for the purpose of interapplication communications, neither
would be removed from memory even after both of their windows
were closed.

If the application user exits from the application by using a menu or
other widget in the interface, the application model performs the exit
procedure and can insert any required safeguards. But if the user
exits by closing the main window, a special mechanism is needed to
notify the application model.

The application model is held by the application window. When the
window is about to be closed, its controller asks for permission from
the application model, by sending a requestForWindowClose. The
application model can redefine this method to perform any cleanup
actions and then return true to grant permission or false to prevent the
window from closing.

Additional cleanup can be performed using the finalization
mechanism described in Weak Reference and Finalization

User Settings Framework
VisualWorks provides a settings framework to simplify the creation
and management of application settings (often referred to as
“preferences” or “options”). The framework includes an interactive
tool — the Settings Manager — that enables users to view and
change pages of individual settings defined by the application
developer. Settings can be saved to a file, and later restored, possibly
in a different VisualWorks image.

For a general description of using the Settings Manager, see System
Settings. This describes how to add settings to existing pages in the
Settings Manager and how to define new pages.

The settings framework consists of two parts: the settings themselves
and the user interface. The UI presents settings grouped into pages,
with each individual setting element identified by a setting model and
a setting type. The setting value itself is not stored in the settings
framework, but by the application’s domain model.
9-12 VisualWorks

User Settings Framework
Settings
Each individual setting on a page that appears in the Settings
Manager is defined as a method belonging to the class side of
VisualWorksSettings. The Settings Manager dynamically generates the
user interface and the page layout, so there are no window
specifications or subcanvases for the developer to worry about.

The settings framework requires only a method for each setting that
appears on a page, plus one method defining the page itself (for
details on the latter, see below).

Each method used to define an individual setting has two parts: a
pragma expression, which marks it as a setting definition, and the
method body that answers a setting model. For example:

toolsTranscriptLimit
<setting: #(tools transcriptLimit)>
^(IntegerSetting on: Transcript aspect: #characterLimit)

label: 'Transcript limit'
The pragma expression indicates both that the method is a setting,
and defines its ID. The ID is an array of symbols — in the example
above, #(tools transcriptLimit) — which must be unique to each
particular setting.

The ID declares that a particular setting belongs to a specific page.
For example, all settings on the Tools page have IDs of the form
#(tools <aSymbol>) — in other words, their IDs all begin with the same
subsequence of symbols and only differ in the last symbol. Think of a
prefix as a “directory name”, identifying the group a setting belongs
to, while the last element of an ID is a “file name” within the group.

The body of the method should return a setting model: an object that
knows how to get and set the value of the setting. In the example
above, an IntegerSetting on the characterLimit aspect of Transcript, i.e.,
that the value of the setting will be obtained by sending characterLimit
to the Transcript, and set by sending the message characterLimit:.

Declaring the setting an IntegerSetting affects how it’s presented in the
settings tool: e.g., the setting is shown as an input field into which the
user can type an integer value. Typing anything else is not allowed,
and the settings framework performs simple input validation.

Finally, the label: message sent to the setting model defines its label.
This is a short string used to label the widget displaying this setting.
The user interface for the setting is dynamically generated using the
information provided in this method.
Application Developer’s Guide 9-13

Application Framework
Browsing the Definition for a Setting
The <Operate> menu for the Settings Manager page tree (left-hand
view) includes two menu items: Browse Page and Browse. Select
Browse Page to examine the methods that define the settings for the
current page, and Browse for definitions of all the pages in the tree.
Note: these two menu items — Browse Page and Browse — do not
appear in deployment images.

By browsing the methods that define a setting, you can see selectors
that define each setting on the page, as well as the method that
defines the page itself.

Defining a Setting
During application development, new settings and settings pages
may be defined simply by adding methods to class
VisualWorksSettings.

As an example, we might want to add a setting to specify the number
of characters that can be written to the System Transcript before it
starts discarding the old output.

The following steps illustrate how to define a setting that manipulates
the Transcript object:

1 Open a browser on VisualWorksSettings, and examine its class-
side protocol.

For this example, we add a method in the protocol settings-tools.

2 Add a new method with the following body to the class side of
VisualWorksSettings:

toolsTranscriptLimit
<setting: #(tools transcriptLimit)>
^(IntegerSetting on: Transcript aspect: #characterLimit)

label: 'Transcript limit'
To see the new setting, open the Settings Manager and select
the Tools page.

The Transcript is an instance of class TextCollector, which includes two
methods — characterLimit and characterLimit: (in the private protocol)
— for controlling how many characters can be written to the
Transcript. These are used by the setting model (an instance of
IntegerSetting) to manipulate the Transcript object.
9-14 VisualWorks

User Settings Framework
Note that the setting model also performs some minimal input
validation. In this case, the IntegerSetting only allows integers, as we
would expect.

Additional Setting Parameters
The setting model can also perform simple input validation. For
instance, an IntegerSetting only accepts integer values, as we would
expect. Often, though, the full range of integers would not be
appropriate. In the example of the Transcript limit setting, shown
above, it would not make sense to specify a negative number.

For an IntegerSetting, the values considered valid by the setting model
may be restricted using the messages min:, max: and min:max:.

Using these messages, we can modify the example shown above to
restrict the length of the Transcript. The following code creates a
setting model that only accepts values between 1000 and 50000:

((IntegerSetting min: 1000 max: 50000)
on: Transcript aspect: #characterLimit)

label: 'Transcript limit'
Another setting parameter may be used to provide on-line help.
Clicking on the Help button in the Settings Manager opens a page of
help for all settings on the current page.

To specify help text for a particular setting, send the message
helpText: to the setting model. E.g.:

((IntegerSetting min: 1000 max: 50000)
on: Transcript aspect: #characterLimit)

label: 'Transcript limit';
helpText:

'The maximum number of characters allowable in the Transcript.'

Controlling the Vertical Position of a Setting
The settings framework dynamically generates the user interface
shown on each page, arranging all settings that belong to the page in
a single column. The ordering of the settings on the page may be
changed via one of two strategies.

The first method involves the selectors for the defining methods. By
default, the settings on one page are sorted using the selectors of the
corresponding definition methods. Thus, the order in which the
defining methods appear in the browser is the order in which they
appear in the Settings Manager.
Application Developer’s Guide 9-15

Application Framework
For example, the protocol settings-tools of class VisualWorksSettings
contains the following definition methods:

tools10iconLabelLength
tools20textSize
tools30showUIForGlobalization
tools40DebugSettingsErrors

By convention, the selector begins with the name of the page (‘tools’),
and is followed by two digits used to indicate the vertical position of
the widget. This scheme has proven very convenient for organizing
the layout of the Settings UI.

As an alternative, the pragma in the setting definition method may
include an additional parameter, position:. For example:

<setting: #(tools transcriptLimit) position: 2>
Setting definitions that do not include the position: parameter are
assigned the default position value of 0. As a rule, when settings are
collected as a settings page, they are first sorted by position. Then,
settings with the same position values are sorted by selector as
described above.

You may use either approach to organize groups of settings. It is also
possible to mix the two approaches.

When adding a setting to a group of already existing settings, it is
strongly recommended that you follow the ordering approach used by
that group.

Settings Pages
Each page of settings in the Settings Manager is defined in a manner
analogous to the individual settings on that page: using a single
method belonging to the class side of VisualWorksSettings.

Just as in the setting definition methods described previously, the
method that defines a settings page has a pragma expression and a
method body that answers a model for the settings page. For
example:

transcriptPage
<settingsPage: #(tools transcript)>
^ModularSettingsPage new

label: 'Transcript';
icon: (ListIconLibrary visualFor: #tools);
settings: (self settingsWithPrefix: #(tools transcript))
9-16 VisualWorks

User Settings Framework
The pragma is marked with the selector settingsPage:, which takes an
array argument to specify the page ID. This ID is used to define the
hierarchical relation between the various pages.

This may be illustrated with an example. Assuming that an
application defines four different methods with the following IDs:

toolsPage #(tools)
browserPage #(tools browser)
workspacePage#(tools workspace)
transcriptPage #(tools foo transcript)

The settings manager would arrange the pages like this:

toolsPage
browserPage
workspacePage
transcriptPage

In other words, if an ID of one page is the prefix of an ID of another
page, the page with the shorter ID is made the parent of the other
one. Thus, toolsPage is made the parent of the other three pages.

The body of the settings page definition method should create and
return the settings page model; in this case, an instance of
ModularSettingsPage.

Use the label: and icon: messages to specify the label and icon
displayed in the page tree.

Use the settings: message to specify the collection of settings
displayed on the page. In the example shown above, all settings
whose ID is #(tools transcript) are included, i.e., any setting with an ID
that has the form #(tools transcript <anySymbol>) is included in the
page.

Defining a Page of Settings
During application development, settings pages may be defined
simply by adding methods to class VisualWorksSettings.

For example, we might want to place the Transcript limit setting on its
own page. The following steps illustrate how to define a new settings
page and add a setting to it:

1 Open a browser on VisualWorksSettings, and examine its class-
side protocol.

2 Create a new method protocol named settings-transcript.
Application Developer’s Guide 9-17

Application Framework
3 Select the new protocol, and add a new method with the following
body to VisualWorksSettings:

transcriptPage
<settingsPage: #(tools transcript)>

^ModularSettingsPage new
label: 'Transcript';
icon: (ListIconLibrary visualFor: #tools);
settings: (self settingsWithPrefix: #(tools transcript))

4 Add the following method to the settings-transcript protocol:

toolsTranscriptLimit
<setting: #(tools transcript characterLimit)>
^((IntegerSetting min: 1000 max: 50000)

on: Transcript aspect: #characterLimit)
label: 'Transcript limit'

To see the new setting page, open the Settings Manager and
select the Transcript page.

Setting Types
As noted above, a setting model does not actually contain the value
of the setting. The actual value is stored in the domain model, which
the setting model knows how to access.

Since the setting model is only a passive, transitive object, it is
created by using a setting type. For example, the following code:

IntegerSetting on: Transcript aspect: #characterLimit
returns a setting model that knows how to access the Transcript.
Here, class IntegerSetting specifies the type of setting that is instantiated.

In addition to class IntegerSetting, the settings framework supports a
number of different setting types.

The currently supported types are:

BooleanSetting

The setting value should be a true or false object. In the Settings
Manager, this type of setting is displayed as a checkbox.

ColorValueSetting

The value is an instance of ColorValue. In the Settings Manager, it
is displayed as a color swatch with a button that opens a color
picker dialog to pick a different color.
9-18 VisualWorks

User Settings Framework
EnumerationSetting

The value is one of a list of arbitrary objects. In the most general
case, the setting is initialized with three “parallel” sequences: a
list of objects that can be the value of the setting, a list of keys
(Symbols) that are used to represent the objects when the setting
is saved in a file, and a list of labels used to identify the choices in
the Settings Manager. This setting is displayed by default as a
drop-down list of choices, but can also be displayed as a group of
radio buttons.

FilenameSetting

The value is a Filename identifying a file. The setting is
represented as an input field with the name of the file. The name
can be changed using the field, or (on Windows) by using the
Browse button to pick a file using the standard file selection dialog.

DirectorySetting

The value is a Filename identifying a directory. Unlike the
FilenameSetting, the Browse button is available on all platforms and
opens a directory selection dialog.

NumberSetting

The value is a Number. An upper and lower bound can be
provided. The setting is represented as an input field displaying
the number.

IntegerSetting

Similar to the NumberSetting, but the value is required to be an
Integer.

StringSetting

The value is a String. It is represented as an input field.
Additionally, an instance can be created as StringSetting
forNameOfFile or StringSetting forNameOfDirectory. Such
StringSettings are represented just as FilenameSetting and
DirectorySetting, but the value of such a setting is still a String
rather than a Filename.

SequenceSetting

Its value is a sequenceable collection of values. The type of the
values is defined when the SequenceSetting type is created (it is
created using the of: message, with the type of the element
passed as the argument). The element type can be any of the
Application Developer’s Guide 9-19

Application Framework
types listed above. These settings cannot be displayed by
ModularSettingsPages, each requiring a page of their own (a
SequenceSettingPage).

It should be noted that a setting type and a setting model are not the
same. The setting model is responsible for data access: it knows how
to get and set the value of the setting, and also things like the label
and the help text. The setting type knows what values a setting can
take.

Creating a Setting Model
A setting model is created by first sending a message to the class of
the appropriate setting type, generally using the on:aspect: method.

For example:

StringSetting on: userProfile aspect: userName
This setting model gets and sets a value held by userProfile, sending it
the messages userName and userName:.

Several other creation messages are available. For example, to
create a setting on a ValueHolder, use the on: method:

aSettingType on: aValueModel
The setting’s value is obtained by sending value and value: to
aValueModel. In fact, the argument can be any object understanding
value and value: (for example, a LiteralBindingReference may be used to
access the value stored in a shared variable).

It is also possible to use dictionaries, sets, or arrays as domain
models, via the following creation message:

aSettingType on: anObject key: keyObject
A setting created using this expression gets its value by sending the
message at: to anObject with keyObject as the argument, and sets it by
sending the message at:put: with keyObject as the first argument and
the new value as the second one.

Backward Compatibility with VisualWorks UISettings
Prior to VisualWorks 7.1, user settings were stored as elements in a
dictionary called UserPreferences (a shared variable belonging to class
UISettings). Application developers could install and remove
preferences using the methods UISettings class>>addPreterenceSection:
and removePreterenceSection:.
9-20 VisualWorks

User Settings Framework
For VisualWorks 7.1 and later, application developers are
encouraged to re-write their settings code using the new framework.
However, to simplify porting applications to the latest versions of
VisualWorks, backward compatibility with the older UISettings facility
is also available. Applications can preserve the existing user
preference models, and display them as-is using the new settings
framework.

For example, to create a setting on an existing preference model, use
the onUISetting: creation message. E.g.:

BooleanSetting onUISetting: #showWorkspaceToolbar
This example returns a setting model for the old preference model
named #showWorkspaceToolbar that is stored in the dictionary of
preference models in class UI.UISettings.

Using Drop-Down List and Radio Button Settings
Settings that appear as drop-down lists or as groups of radio buttons
are both defined using class EnumerationSetting. When building a
settings page using these types of settings, a slightly different
approach is required.

In the setting definition method, an EnumerationSetting is used to
create a setting model. For example:

EnumerationSetting
keys: #(small default large fixed)
choices: #(small default large fixed)
labels: #('Small' 'Medium' 'Large' 'Fixed')

The argument keys specifies the name of each key (used when
saving the setting in a file); the argument choices specifies the actual
values used, while labels takes the strings (or UserMessage instances)
that are shown in the UI of the Settings Manager. This is all as we
would expect.

In fact, the code for specifying whether the setting is displayed as a
drop-down list or as a set of radio buttons is located in the method
that defines the settings page. The page definition method is
essentially the same, with the exception of the code for adding the
settings to page.

Recall that the page definition returns an instance of
ModularSettingsPage that has its settings initialized using the settings:
method. To use drop-down lists or radio-buttons, you must send
addAllSettings:except: instead.
Application Developer’s Guide 9-21

Application Framework
For example:

lookAndFeelPage
<settingsPage: #(lookAndFeel) position: -30>
^ModularSettingsPage new

label: #LookAndFeel << #labels >> 'Look and Feel';
icon: (ListIconLibrary visualFor: #window);
addAllSettings:

(self settingsWithPrefix: #(lookAndFeel)
except: #(windowPlacement mouseButtonOrder));

useRadioButtonsForEnumerations;
addSetting:

(self settingWithId: #(lookAndFeel windowPlacement));
addSetting:

(self settingWithId: #(lookAndFeel mouseButtonOrder))
In this method, we use addAllSettings:except: to indicate that the
setting definition methods for window placement and mouse button
order are given different treatment. Note that these two settings are
identified by the last symbol in their respective IDs (each being an
array of symbols).

By default, an EnumerationSetting is displayed as a drop-down list. In
the example code shown above, the message
useRadioButtonsForEnumerations is sent to indicate that these two
settings should be shown as radio buttons. Subsequently, any
settings added to the page are displayed using radio buttons. The
remainder of the method adds the two settings that were previous
excluded from the page.

Defining a Settings Domain
So far we have been adding pages and settings to the standard
VisualWorks Settings Manager. These pages are all defined in
methods in the class VisualWorksSettings, which is a subclass of
SettingsDomain. Adding pages and settings in this class has the effect
of extending the Settings Manager. This is appropriate for adding
settings to the development environment.

To implement a settings manager for your application, however, it is
more appropriate to create a separate settings domain. This creates
a new group of settings and setting pages which are shown together
in the same tree in a separate settings manager. Settings grouped in
this way can also be saved into a file and loaded together.
9-22 VisualWorks

User Settings Framework
For an application whose settings are to be managed separately from
those of other applications and the development system, we
recommend defining its own settings domain (a subclass of
SettingsDomain) to manage its settings. For example, create
MyAppSettings as a subclass of SettingsDomain.

Add pages to the new settings domain class as described above, to
provide the settings options required by your application.

To open the settings manager, send an openManager message to the
settings domain class. For example:

MyAppSettings openManager
There must be at least one page defined for the domain in order for
the manager to open. You can create a menu item in your application
to open the settings manager, which is typically named “Options,”
“Preferences,” or “Settings.”

Saving and Loading Settings
Setting pages, items and their values can be written out to a text file
on a domain-by-domain basis. This allows you to write the settings for
your application out to a “configuration” file, and then reload them at
another time, such as at application startup.

To write the settings file, send a writeToFile: message to the settings
domain, with a Filename as argument:

MyAppSettings writeToFile: 'settings.ini' asFilename.
To read the settings back in, send a readFromFile: message to the
settings domain:

MyAppSettings writeToFile: 'settings.ini' asFilename.
Note that this does not define the settings domain class or pages,
which must be defined by your application.

You can specify a settings file to load at startup on the command line
when launching VisualWorks from a console. The -settings (among
others) image level option is defined in ImageConfigurationSystem for
loading settings files. To load settings this way, include the option
followed by the settings file name, following the image name on the
command line. For example:

> visual ../image/MyApp.im -settings 'settings.ini’
The option reads the domain from the file and installs the settings
accordingly.
Application Developer’s Guide 9-23

Application Framework
Responding to System Events
It is frequently necessary to take special actions when certain system
events occur, notably when the system starts up, shuts down, and
immediately before and after an image save. The order in which such
actions occur, relative to other parts of the system, can be critical. For
example, a GUI application probably needs to perform and window
startup routines only after the windowing system itself has been
initialized.

Traditionally, startup events have been handled by registering
dependencies on ObjectMemory. More recently, SystemEventInterest
instances have been supported by the system. Both of these
mechanisms left it difficult to manage the order in which actions were
taken.

Class Subsystem provides VisualWorks a simple way to specify
dependencies on system events as well as a modular approach to
controlling their order of execution. Several subsystems are defined
for handling VisualWorks startup procedures.

Two subclasses in particular are of interest to the application
developer: UserApplication and ImageConfigurationSystem. If an
application has actions to perform upon one of the four system
events, a subclass of UserApplication is a convenient place to specify
those actions. ImageConfigurationSystem is useful for applications that
process command line options.

Defining System Event Actions
Subsystem defines four system event messages to which subsystems
can respond: activate, deactivate, pause, and resume. By default, these
general events are invoked as follows:

• activate is invoked by #returnFromSnapshot, which occurs when an
image is launched.

• deactivate is invoked by #aboutToQuit, which occurs just before the
image exits

• pause is invoked by #aboutToSnapshot, which occurs just prior to
writing an image file

• resume is invoked by #finishedSnapshot, which occurs just after the
image file has been written
9-24 VisualWorks

Responding to System Events
Some subsystems activate upon #earlySystemInstallation, but these are
usually system level subsystems. For applications,
#returnFromSnapshot is the appropriate system event.

A subsystem does not respond to these system event messages
directly. Instead, these messages invoke further messages in which a
subsystem configures its response to the system events. The
corresponding messages that a subsystem will implement as needed
are:

setUp

Defines actions to perform upon the activate event message, and
activates the subsystem.

tearDown

Defines actions to perform upon the deactivate event message,
and deactivates the subsystem.

pauseAction

Defines actions to perform upon the pause event message.

resumeAction

Defines actions to perform upon the resume event message.

An application seldom needs to perform actions before or after a
snapshot, which is generally a development time activity, so do not
generally have to provide implementations for pauseAction or
resumeAction. An action does, however, frequently have actions to
perform upon launching the image, such as setting up its runtime
environment, and these are specified by an implementation of setUp.
Less frequently, but not uncommonly, an application will also need to
perform actions prior to shutdown, which can be implemented in the
tearDown method.

The UserApplication subsystem, which is intended to be the superclass
for application subsystems, implements one additional stub method:

main

This method can be implemented by a subsystem to launch the
application, as well as to perform other application set up tasks.
Application Developer’s Guide 9-25

Application Framework
This method simplifies starting an application upon image launch,
eliminating the need to either save the image with the application
open, or of using Runtime Packager to specify the application to run,
or any of the other methods that have been used.

As an example of using setUp and tearDown methods, consider the
task of saving a random number seed upon shutdown and then
reading that seed to restart a random number generator upon
startup. DSSRandom, in the Security component, maintains a default
generator, but it is most useful if it is well seeded, and the seed is
updated between image startups. To manage this we can define a
UserApplication subclass, DefaultRandomSystem, and implement two
methods.

setUp
DSSRandom resetDefaultFrom: 'seed' asFilename readStream binary

tearDown 'seed' asFilename writeStream binary;
nextPutAll: (DSSRandom default next changeClassTo: ByteArray);
close

The tearDown method records a seed value by writing it to a file just
before the system shuts down. The setUp method then reads that
value upon system start up, and reseeds the default generator with it.
In this case there is no application to launch.

As another example, we can implement main to launch an
application, such as RandomNumberPicker from the VisualWorks
Walkthrough. To do this, we define a subclass of UserApplication, such
as RandomPickerSystem, and implement a main method. Minimally, it
might be:

main
WalkThru.RandomNumberPicker open

(By importing the WalkThru namespace into RandomPickerSystem, the
expression above can be simplified, and is the preferred practice.)

This example also indicates the reason for the main method, which is
not really needed (everything could be done in setUp). Programmers
coming from other development environments often look for the
method that starts an application, and particularly for a method
named “main.” This provides that method.
9-26 VisualWorks

WalkThrough.pdf
WalkThrough.pdf

Responding to System Events
Command Line Processing in a Subsystem
ImageConfigurationSystem defines several standard image level
command line options and their handling (see VisualWorks
Command Line Options). You can extend this system’s options, or
define additional command line options.

Command line processing options can be set using System > Loading
in the Settings Tool, or on the class side of ImageConfigurationSystem.

To define a new command line option, implement a subsystem
instance method defining the handling of the option. The method
consists of two parts: an “option” pragma and the option handling
code. For example, consider the method in ImageConfigurationSystem
for handling the -settings option:

loadSettings: fileNameStream
"This handles loading settings from the command line."
<option: '-settings'>
| settingNames |
self class allowSettings ifFalse: [^self].
settingNames := CommandLineInterest argumentsFrom:

 fileNameStream.
settingNames do: [:each |

self loadSettingsFrom: each asFilename].
The option: pragma keyword identifies this as defining a command
line option, and the String argument identifies the particular option
being defined. The method selector takes an argument,
fileNameStream, which causes the next item on the command line to
be handed to the method as that argument. If the option does not
require an argument value, the method selector would be unary.

The rest of the method defines the processing of the argument. The
whole command line stream is handed into the method in the
argument, fileNameStream. The interesting expression is:

CommandLineInterest argumentsFrom: fileNameStream
which extracts just the argument relevant to the setting being defined;
in this case, the argument following “-setting” on the command line.

To define a new command line option relevant only to your
application, you can define it in your application’s subsystem class.
For example, we have already shown how to launch an application
using its subsystem. Perhaps you want to include an option to
prevent launching the application. Here is one way to do that,
modifying the RandomPickerSystem defined earlier.
Application Developer’s Guide 9-27

Application Framework
First, in the class definition for RandomPickerSystem add an instance
variable, such as launchApp, which will hold a flag:

Smalltalk.Core defineClass: #RandomPickerSystem
superclass: #{Core.UserApplication}
indexedType: #none
private: false
instanceVariableNames: 'launchApp '
classInstanceVariableNames: ''
imports: ''
category: 'System-Subsystems'

Then, implement a method to define the option and its handling:

noLaunchOption
<option: '-nolaunch'>
launchApp := 'nolaunch'.

The handling here is simple, simply setting the flag in the variable,
which we then use to decide whether or not to launch the application.
Modifying the main method to use the value, we might have:

main
launchApp = 'nolaunch' ifFalse:

[WalkThru.RandomNumberPicker open]
Now we can launch the image but suppress opening the application:

> visual ../image/MyApp.im -nolaunch
This option is specific to this application, so has no effect on any
other, unless configured to be processed.

Activating a Subsystem
Once a subsystem has been defined, as described in the preceding
section, it needs to be activated.

Normally a subsystem is activated upon system startup, by
successfully executing its setUp method. So, to activate a new
subsystem you can save the image, then shut down and relaunch the
image. This is also a good test of the set up operation.

To activate a new system without shutting down and relaunching, set
an activate message to the subsystem. For example:

RandomPickerSystem activate
As long as the setUp method completes successfully, the subsystem
is activated. In this example, the application will also launch.
9-28 VisualWorks

Responding to System Events
Dependency Ordering of Subsystems
The Subsystem framework provides a way to control the activation
order of various subsystems. For many of the system level
subsystems, activation order is important. For example, the
WindowingSystem is dependent upon both BasicGraphicsSystem and
InputProcessingSystem, which must be activated before
WindowingSystem.

For application purposes, you do not generally need to be concerned
with this, because UserApplication and its subclasses are the last of
the systems to be activated and the first to be deactivated, ensuring
that all system level subsystems upon which the application depends
are already activated. It is possible, however, that in a complex
application consisting of several subsystems, it will be necessary to
control their activation order.

Subsystem activation order is determined by the subsystem
prerequisites specified for each subsystem. These are specified in a
prerequisiteSystems instance method defined in the subsystem class.
For example, the WindowingSystem defines its prerequisites as:

prerequisiteSystems
^Array with: BasicGraphicsSystem with: InputProcessingSystem.

The method is expected to return a collection, typically an Array, of
subsystems. The subsystem implementing the method will then not
be activated until its prerequisite systems have been activated.
Application Developer’s Guide 9-29

Application Framework
9-30 VisualWorks

10

Trigger-Event System

The trigger-event system is an event-based mechanism for indirect
communication with dependent objects, allowing for a loose coupling
of objects. While the trigger-event system is used primarily in the GUI
environment and some tools, it is a general mechanism that can be
used to communicate between any objects.

Using the trigger-event mechanism, an object can trigger any event.
The object can also define certain events that it promises to trigger
under appropriate conditions. A dependent object can register a
handler for an event in which it is interested. This chapter describes
how to define, trigger, and handle these events.

In the traditional dependency system, an object that was interested in
changes in another object was registered in that object’s dependency
list, and thus added to that object’s state (tightly coupled). In the
trigger-event system, an interest is added instead as a request to
send a message to the interested object when an interesting event
occurs. So, the interested object is not itself held in the target object’s
state, and so is “loosely coupled.” The dependency is only a
functional dependency.

Note that the trigger-event system described in this chapter is
separate from the event system used to capture input (mouse and
keyboard) events. While the input-event system responds to events
coming in to VisualWorks from the operating system, the trigger-
event system is completely defined by classes and methods in
Smalltalk. There is no dependency on underlying operating system
events, so the mechanism is completely portable.
Application Developer’s Guide 10-1

Trigger-Event System
Triggering Events
Any object can trigger any event. Accordingly, there is generally no
need to specify the events an object will trigger, though for some
purposes this can be defined in a constructEventsTriggered message
(refer to Defining Event Sets).

To trigger an event, an object simply sends a variant of triggerEvent: to
itself, with the event name as the argument:

self triggerEvent: #foo
Variants are described below.

Event Triggering Messages
The following are the variants of the triggerEvent: message:

triggerEvent: anEventNameSymbol

Trigger the event named anEventNameSymbol. Answer the value
returned by the most recently defined event handler action.

triggerEvent: anEventNameSymbol ifNotHandled: exceptionBlock

Trigger the event named anEventNameSymbol. If the event is not
handled, answer the value of exceptionBlock (a zero-argument
block); otherwise answer the value returned by the most recently
defined event handler action.

triggerEvent: anEventNameSymbol with: anArgumentObject

Trigger the event anEventNameSymbol using the given
anArgumentObject as the argument. Answers the value returned
by the most recently defined event handler action.

triggerEvent: anEventNameSymbol with: firstArgumentObject
with: secondArgument

Trigger the event anEventNameSymbol using the
firstArgumentObject and secondArgumentObject as the
arguments. Answers the value returned by the most recently
defined event handler action.

triggerEvent: anEventNameSymbol
withArguments: anArgumentCollection

Trigger the event anEventNameSymbol using the elements of the
anArgumentCollection as the arguments. Answers the value
returned by the most recently defined event handler action.
10-2 VisualWorks

Registering an Event Handler
triggerEvent: anEventNameSymbol
withArguments: anArgumentCollection ifNotHandled: exceptionBlock

Trigger the event anEventNameSymbol using the elements of the
anArgumentCollection as the arguments. If the event is not
handled, answers the value of exceptionBlock (a zero-argument
block); otherwise answers the value returned by the most
recently defined event handler action.

Registering an Event Handler
A dependent object can arrange for an action to occur each time the
triggering object triggers a specific event. This is known as
registering an event handler, or registering an interest in the event.

The dependent sends a variant of when:send:to: to the (potentially)
triggering object. The first argument is the event name as a Symbol,
the second argument is a message name as a Symbol, and the third
argument is the handler message receiver, which is frequently self.

Suppose we have two objects, eventTripper and eventResponder, and
the responder wants to register a handler for any time eventTripper
triggers event #foo. eventResponder would register that interest by
sending:

eventTripper when: #foo send: #bar to: self
Now, whenever eventTripper triggers #foo, a bar message will be sent
to eventResponder.

The dependent object might not do the registering itself. For example,
an ApplicationModel might use when:send:to: to arrange for a domain
model to send a message to a dependent object, so that dependent
object is notified of the event.

Note that if the triggering object is “strict,” an object that specifies the
events it might trigger in its constructEventsTriggered method, you can
only register handlers with that object for the events it declares. Refer
to Defining Event Sets for more information.

A registering object can verify that a particular event can be triggered
by an object, by sending canTriggerEvent:, either to the triggering
object or to its class. A non-strict class will always answer true, while
a strict class will answer true only if the event is included in its
eventsTriggered set.
Application Developer’s Guide 10-3

Trigger-Event System
Handling an Event with Arguments
When an event is triggered with arguments, as by triggerEvent:with:,
triggerEvent:with:with:, or triggerEvent:withArguments:, it sends the event
notification along with an Array containing the arguments. To make
use of the arguments, handle them using a block that takes the
appropriate number of arguments, by registering using a when:do:
message.

For example, suppose a class EventTripper triggers an event with two
arguments:

tripEvent
self triggerEvent: #foo with: #bar1 with: #bar2

A class, EventConsumer, might register a handler to use the arguments
as follows:

initialize
tripper := EventTripper new.
tripper when: #foo do: [:arg1 :arg2 | arg1 inspect. arg2 inspect.]

Ensure that the block handles the correct number of arguments.

Handler Registration Messages
Below are descriptions of all event configuring methods:

when: anEventNameSymbol do: aBlock

Append aBlock to the list of actions to evaluate when the receiver
triggers the event named anEventNameSymbol.

when: anEventNameSymbol evaluate: anAction

Append anAction to the list of actions to evaluate when the
receiver triggers the event named anEventNameSymbol.
anAction is either a block or a message.

when: anEventNameSymbol send: aSelectorSymbol to: anObject

Form an action with anObject as the receiver and a
aSelectorSymbol as the message selector and append it to the
actions list for the event named anEventNameSymbol.
10-4 VisualWorks

Registering an Event Handler
when: anEventNameSymbol send: aSelectorSymbol to: anObject
with: anArgumentObject

Form an action with anObject as the receiver, a aSelectorSymbol
as the message selector, and anArgumentObject as the
argument and append it to the actions list for the event named
anEventNameSymbol.

when: anEventNameSymbol send: aSelectorSymbol to: anObject
with: firstArgumentObject with: secondArgumentObject

Form an action with anObject as the receiver, a aSelectorSymbol
as the message selector, and the firstArgumentObject and
secondArgumentObject as the arguments and append it to the
actions list for the event named anEventNameSymbol.

when: anEventNameSymbol send: aSelectorSymbol to: anObject
withArguments: anArgumentCollection

Form an action with anObject as the receiver, a aSelectorSymbol
as the message selector, and the elements of the
anArgumentCollection as the arguments and append it to the
actions list for the event named anEventNameSymbol.

whenAny: aCollectionOfEventNames do: aBlock

Append aBlock to the list of actions to evaluate when the receiver
triggers any of the events named in aCollectionOfEventNames.

whenAny: aCollectionOfEventNames evaluate: anAction

Append anAction to the list of actions to evaluate when the
receiver triggers any of the events the event named in
aCollectionOfEventNames.

whenAny: aCollectionOfEventNames send: aSelectorSymbol
to: anObject

Form an action with anObject as the receiver and a
aSelectorSymbol as the message selector and append it to the
actions list for all the event named in aCollectionOfEventNames.

whenAny: aCollectionOfEventNames send: aSelectorSymbol
to: anObject with: anArgument

Form an action with anObject as the receiver and a
aSelectorSymbol as the message selector and append it to the
actions list for the all the event names in
aCollectionOfEventNames.
Application Developer’s Guide 10-5

Trigger-Event System
whenAny: aCollectionOfEventNames send: aSelectorSymbol
to: anObject with: firstArgumentObject with: secondArgumentObject

Form an action with anObject as the receiver, a aSelectorSymbol
as the message selector, and the firstArgumentObject and
secondArgumentObject as the arguments and append it to the
actions list for all the event names in aCollectionOfEventNames.

whenAny: aCollectionOfEventNames send: aSelectorSymbol
to: anObject withArguments: anArgumentCollection

Form an action with anObject as the receiver, a aSelectorSymbol
as the message selector, and the elements of the
anArgumentCollection as the arguments and append it to the
actions list for all the event names in aCollectionOfEventNames.

Removing Event Handlers
When an event handler is registered, it is either stored in a class
variable named EventHandlers, which is defined in Object, or in its
private event handler instance variable. When an object does not
have it’s own event handler instance variable, the application is
responsible for removing each handler from the EventHandlers event
table when the handler is no longer needed.

To remove an event handler from EventHandlers, send a removeAction
message to the triggering object. For example, if eventResponder had
registered an interest in event #foo triggered by eventTripper, it would
unregister that interest by sending:

eventTripper removeActionsWithReceiver: self forEvent: #foo
This will remove all action registered by eventResponder for #foo with
eventTripper.

You can remove a single action, but you need to have the action. To
get an action from the triggering object, send an actionForEvent:
message, with the event name as argument:

anAction := eventTripper actionForEvent: #foo.
If only one action is registered for this receiver and event, a
MessageSend is returned. If multiple actions are registered, then an
ActionSequence is returned, and you need to select the action you
want to remove. Given the action, you can remove it by sending:

eventTripper removeAction: anAction forEvent: #foo
10-6 VisualWorks

Defining Event Sets
This removes the first instance of anAction registered for the receiver
for event #foo. For uniform processing, you can use

(eventTripper actionForEvent: #foo) asActionSequence
so the result is always an ActionSequence.

The triggering object can remove all handlers that have been
registered with it by sending a release message to itself. The more
specific message, releaseEventTable, can be sent to any event-
triggering object to remove all of its registered events without regard
to the life cycle stage of the object.

You can remove event handlers from the instance variable using the
same methods, but it is not as important since the registration expires
with the instance.

RemoveAction messages

removeAction: anAction forEvent: anEventNameSymbol

Remove the first occurrence of anAction from the list of actions
for the event named anEventNameSymbol.

removeActionsForEvent: anEventNameSymbol

Remove all actions for the event named anEventNameSymbol.

removeActionsSatisfying: aBlock forEvent: anEventNameSymbol

Remove all actions for the event anEventNameSymbol that
satisfy aBlock.

removeActionsWithReceiver: anObject forEvent: anEventNameSymbol

Remove all actions for the event named anEventNameSymbol in
the receiver's event table which have anObject as their receiver.

removeAllActionsWithReceiver: anObject

Remove all actions for all events in the receiver's event table that
have anObject as their receiver.

Defining Event Sets
Because an object can trigger any event and, in most cases, an
object can register an interest in any event with any object, there is, in
general, no reason to define or declare events. The only exception is
in the case of “strict” objects, which accept registering an interest for
specifically identified events only.
Application Developer’s Guide 10-7

Trigger-Event System
Specifying event strictness
A class can either be strict about which events it allows a dependent
to register an interest, or it can be ambivalent. A class that is strict
does not allow a dependent to register an interest in any event that it
does not know that it triggers. A class that is ambivalent allows a
dependent to register any event at any time, without regard to
whether the class ever triggers it. In the latter case, it is possible to
register an interest in an event that is never triggered.

By default all subclasses of Object are ambivalent. In the GUI system,
only subclasses of DisplaySurface and VisualComponent are strict.

To make a class and its subclasses strict, implement the class
method ambivalentEventChecking to return false. This overrides the
definition in Object, where it is defined to answer true.

ambivalentEventChecking
^false.

Specifying events to trigger
A class that is strict is responsible for declaring which events it will
trigger, and so in which it will accept a registered interest. To declare
events, implement the inherited class method constructEventsTriggered
in each class that needs to define a set of valid events. The method
creates a Set of event names, specified as Symbols, and returns the
set. It can, of course, invoke super constructEventsTriggered to fetch the
parent class’s events, and then add to that set before returning it. For
example, VisualPart implements constructEventsTriggered as:

constructEventsTriggered
^super constructEventsTriggered

add: #changing ;
add: #changed ;
yourself

Event names, like message selectors, can be unary or keyword
names. A unary event has no parameter, while a keyword event has
as many parameters as it has colons. For example, the code above
defines a #changing event, because the dependent object needs no
further information. MenuBar, on the other hand, defines a
#menuItemSelected: event, because the dependent needs to know
which menu item was selected, and takes the ID of the menu item as
the message argument.
10-8 VisualWorks

How Handlers are Registered
Event classes
Several special event classes are defined, as subclasses of Event. In
general, there is no need create such classes, as explained above.
These classes exist as interfaces for operating system events coming
in through the virtual machine.

How Handlers are Registered
By default, all subclasses of Object share a common event handler
holder in the class variable (a shared variable) EventHanders, which is
defined in Object. EventHandlers holds an EphemeronDictionary that is
populated when an object sends a variant of the when:send:to:
message to configure an event handler. The receiver of the message
is the key in EventHandlers, and the value is another IdentityDictionary of
all events registered to that object, where each item is the name of
the triggered event, and the value is the action to perform on
receiving the event.

Subclasses of ApplicationModel, VisualPart, EventManager and Window
override this default, and do not use the default EventHandlers.
Instead, the classes each have an instance variable that holds any
events registered to their instances. In the case of ApplicationModel,
VisualPart and Window, that instance variable is named eventHandlers,
and in the case of EventManager it is named events. Classes that have
their event handlers defined in an instance variable have an
advantage in that these objects do not need special code for
removing their trigger event dependencies when the object is no
longer in use; the handlers are removed with the object during
garbage collection.

You can create your own classes to use the instance variable
approach, in which case you have two options. The first, and
simplest, is simply to make your classes subclasses of EventManger.
Then your object’s event handlers are simply held in the events
instance variable, as mentioned above.

The second option is a little more complicated. First, you must add an
instance variable to the class you wish to hold the local event
handlers. We suggest that this be named eventHandlers, but that is not
Application Developer’s Guide 10-9

Trigger-Event System
required. Then you need to add two accessor methods to your class:
myEventTable and myEventTable:. These simply need the following
form:

myEventTable: anEventTable
eventHandlers := anEventTable

and

myEventTable
^eventHandlers

With these two methods, the trigger-event system will automatically
put any events registered to your class into this instance variable
instead of into the EventHandlers class variable.

Trigger Event System Support Methods
In addition to the methods already described for triggering events,
registering event handlers, and removing event handlers, the
following event support methods are useful.

Trigger Event Support Methods Available to All Objects

actionForEvent: anEventNameSymbol

Answers the action or action sequence to evaluate when the
event named anEventNameSymbol is triggered by the receiver.
The action may be a block or a message.

actionListForEvent: anEventNameSymbol

Answers an editable list of actions that are evaluated when the
event named anEventNameSymbol is triggered. The actions may
be blocks or messages.

canTriggerEvent: anEventNameSymbol

Answer a Boolean indicating whether the receiver can trigger an
event named anEventNameSymbol.

eventsHandled

Answers a collection of the events name symbols for which there
are actions registered in the receiver's event table.

hasActionForEvent: anEventNameSymbol

Answer a Boolean with regard to if the receiver has an action
registered for the event named anEventNameSymbol.
10-10 VisualWorks

Trigger Event System Support Methods
Trigger Event Support Methods In ApplicationModel
The following methods have been added to ApplicationModel to more
easily support configuring of triggered events for widgets. These
methods are the suggested way of configuring a widget’s triggered
events. These methods require that the widgets being configured
have their ID assigned when they were created with the UIPainter
tool. The UIPainter has a special Name All Unnamed Widgets menu
option with which older window specifications can be upgraded.

The following are shortcut methods that find the widget named
aWidgetIDSymbol, and then apply the appropriate when:send:to:
message to the widget.

widget: aWidgetIDSymbol when: anEventSymbol do: aBlock

Perform aBlock on receiving anEventSymbol.

widget: aWidgetIDSymbol when: anEventSymbol evaluate: anAction

Evaluate anAction on receiving anEventSymbol.

widget: aWidgetIDSymbol when: anEventSymbol send: anAction
to: anObject

Send anAction to anObject on receiving anEventSymbol.

widget: aWidgetIDSymbol when: anEventSymbol send: anAction
to: anObject with: anArgument

Send anAction to anObject with anArgument on receiving
anEventSymbol.

widget: aWidgetIDSymbol when: anEventSymbol send: anAction
to: anObject with: firstArgument with: secondArgument

Send anAction to anObject with arguments on receiving
anEventSymbol.

widget: aWidgetIDSymbol when: anEventSymbol send: anAction
to: anObject withArguments: aCollection

Send anAction to anObject with aCollection of arguments on
receiving anEventSymbol.

The following methods allow easy lookup of widgets and widget
components without having to go through the application’s builder
object. We suggest using these message instead of the self builder
messages commonly used in VisualWorks applications.
Application Developer’s Guide 10-11

Trigger-Event System
wrapperAt: aSymbol

Answer the value of the named component at aSymbol. Typically
gets a SpecWrapper or nil. In the case of a toolbar, it gets the
actual ToolBar instance.

controllerAt: aSymbol

Answers the controller for the component associated with
aSymbol. The answer may be nil or a Controller. In the case of a
toolbar, it will be nil.

widgetAt: aSymbol

Answer the widget associated with aSymbol. Typically answers a
kind of VisualPart, which may be nil.

mainWindow

Answer the main window associated with this ApplicationModel
instances. Typically answers a ApplicationWindow. May be nil if the
window is not created yet.

windowMenuBar

Answers the instance of MenuBar associated with the main
window. May be nil if the window is not mapped and opened, or if
there is no menu bar associated with the main window.
10-12 VisualWorks

11

Announcements

The Announcement system is a truly object-oriented event
notification system. Each announcement type is implemented as a
class, with Announcement class as the abstract superclass. When an
object wants to announce an event, such as a button click or an
attribute change, the announcement is defined as a subclass of
Announcement. The subclass can have instance variables for
additional information to pass along, such as a timestamp, mouse
coordinates at the time of the event, or the old value of the parameter
that has changed.

To signal the actual occurrence of an event, the “announcer” creates
and configures an instance of an appropriate announcement, then
broadcasts that instance. Objects that are subscribed to receive such
broadcasts from the announcer receive a broadcast notification
together with the instance. They can talk to the instance to get
additional information about the event that has occurred.

Subscribing to Announcements
A few objects in VisualWorks make announcements. You can create
additional objects that do so as well.

Because of the simplicity of announcements, there are only three
subscription methods:

when: anAnnouncement send: aSelector to: anObject

Subscribes to receive anAnnouncement (or any subclass) from
the receiver, and sends aSelector to anObject when the
announcement is received. aSelector can be a 0, 1, or 2
argument selector.
Application Developer’s Guide 11-1

Announcements
when: anAnnouncement do: aBlock

Subscribes to receive anAnnouncement (or any subclass) from
the receiver, and performs aBlock when the announcement is
received. aBlock can be a 0, 1, or 2 argument block.

when: anAnnouncement do: aBlock for: anObject

Subscribes to receive anAnnouncement (or any subclass) from
the receiver, and performs aBlock when the announcement is
received.

When an object broadcasts announcements in which your object is
interested, sending one of these messages to that object subscribes
to its broadcasts. The when:do:for: method is mostly of interest only if
you need to selectively unsubscribe a block subscription (see
Unsubscribing):

In all three of these, the first argument, anAnnouncement, is the
announcement class that is being listened for. Class hierarchy is
honored, so if you subscribe to a superclass the subscription includes
all of its subclasses. For example, if you were to implement an
announcements hierarchy:

Announcement
ValueChangeAnnouncement

ValueAboutToChange
ValueChanged
ValueChanging

the method:

aValue
when: ValueChangeAnnouncement
do: [...]

traces all three value change announcements (the subclasses)
broadcast by aValue.

As with Exception classes, you can subscribe to multiple
announcements simply by listing them all in the when: argument. For
example, to receive AboutToChangeValue and ChangingValue but not
ChangedValue:

aValue
when: ValueAboutToChange, ChangingValue
do: [...]

The handler method (aSelector) or block can have either 0, 1, or 2
arguments, with the following interpretation:
11-2 VisualWorks

Subscribing to Announcements
• If the handler has no arguments, it is simply invoked. For
example:

aValue
when: ChangedValue
do: [Transcript cr; show: 'changed']

Obviously, you would use this in cases when you either know in
advance what announcement you receive and from what object,
or don't care.

• If the handler has one argument, the Announcement instance is
passed as the argument:

aValue when: ChangedValue do:
[:change |
Transcript

cr; show: 'changed to ';
print: change newValue]

• If the handler has two arguments, the Announcement instance is
passed as the first one and the announcing object (the one with
which you subscribed) as the second:

aValue when: ChangedValue do:
[:change :announcer |
Transcript

cr; print: announcer;
show: ' changed to ';
print: change newValue]

Message-based versions of those subscriptions would be:

aValue when: ChangedValue send: #changed to: self
aValue when: ChangedValue send: #changed: to: self
aValue when: ChangedValue send: #changed:from: to: self

In the message-based subscription examples, the “owner” of the
subscription, the object to which the message is sent, has been self,
the subscribing object. This is not necessarily the case, though it
commonly is. One object can submit a subscription for another simply
by referencing that object as the to: argument. Similarly, to submit a
block-based subscription on behalf of another object, use the
when:do:for: form.
Application Developer’s Guide 11-3

Announcements
Unsubscribing
Unsubscribing from an announcement terminates receipt of the
subscribed event by the subscriber. Accordingly, the registered
message is no longer sent or the registered block is not longer
processed. This is a permanent change; to reactivate the
subscription, the object must resubscribe.

For a temporary suspension of a subscription, refer to Suspending a
Subscription.

To unsubscribe from an announcement, send one of these two
messages:

unsubscribe: anObject

Unsubscribe anObject from all announcements from the receiver.

unsubscribe: anObject from: announcementClassOrClasses

Unsubscribe anObject from the announcement(s) in
announcementClassOrClasses.

For example, if we have these subscriptions:

nameHolder when: ChangingValue send: #changingName: to: self.
nameHolder when: ChangedValue send: #changedName: to: self.

we can stop receiving changingName: when ChangingValue is
announced by executing

nameHolder unsubscribe: self from: ChangingValue
To unsubscribe from more than one announcement class at a time,
we can use a list of announcement classes, just like when
subscribing:

nameHolder unsubscribe: self from: ChangingValue, ChangedValue
We can also request nameHolder to unsubscribe us from everything
we are currently subscribed to with a single

nameHolder unsubscribe: self
This covers most cases. There are, however, two points worth
clarifying.

The first is, precisely what is the subscriber (what should we pass as
the unsubscribe: argument). With message-based subscriptions it is
clear—it is the receiver of the notification message (self in our
examples).
11-4 VisualWorks

Subscribing to Announcements
Things get more interesting with block-based subscriptions
(subscribed by when:do:). The only thing we can consider a
subscriber in this case is the block itself, because nothing else is
known to the announcer when we establish a block-based
subscription in this way. So, in order to unsubscribe a block, we would
need to hold onto the block and pass it to the unsubscribe: request:

spy := [:announcement | Transcript cr; print: announcement].
nameHolder when: Announcement do: spy.
...
nameHolder unsubscribe: spy

This is reasonable in this particular case. However, it does not work
well with one very common pattern of block-based subscriptions.
Blocks are often used as simple intermediaries to invoke a method
with some additional information. For example, in an initialization
method of our application we could have something like:

authorization := self getAuthorization.
nameHolder when: ChangingValue do:

[self prepareNameChangeWith: authorization].
nameHolder when: ChangedValue do:

[self processNameChangeWith: authorization].
To unsubscribe these blocks we would need to break this clean and
tight code to store the two blocks in instance variables set up just for
that purpose, and then unsubscribe the blocks individually when we
want to break the dependency on nameHolder.

Instead, we can use the when:do:for: subscription message, which
accepts a third argument specifying the object on whose behalf the
block is subscribed. For such subscriptions, that object rather than
the block is considered to be the subscriber. So if we rewrite our
example as:

authorization := self getAuthorization.
nameHolder

when: ChangingValue
do: [self prepareNameChangeWith: authorization]
for: self.

nameHolder
when: ChangedValue
do: [self processNameChangeWith: authorization]
for: self.

We can later remove those two subscriptions with a single

nameHolder unsubscribe: self
Application Developer’s Guide 11-5

Announcements
To sum up, the framework considers the following to be the
subscriber:

• For subscriptions established using when:send:to: it is the to:
argument.

• For subscriptions established using when:do: it's the do: argument.

• For subscriptions established using when:do:for: it is the for:
argument.

The second point is the exact interpretation of the announcement
class passed as the second argument of unsubscribe:from:. Suppose
we have a subscription (two, in fact) established as

aValue when: ChangingValue, ChangedValue send: #foo to: self
If later we send

aValue unsubscribe: self from: Announcement
what should happen? While there are design options, the framework
requires that an unsubscribe request exactly match the subscription
request. The first statement in the above example is treated as if it
establishes two subscriptions, one for ChangingValue, the other for
ChangedValue. In order to remove them, we need to unsubscribe from
those two exact classes. We can do that either as two separate
requests:

aValue
unsubscribe: self from: ChangingValue;
unsubscribe: self from: ChangedValue;

or as a single request, but still explicitly listing both classes:

aValue unsubscribe: self from: ChangingValue, ChangedValue
Note that if we send only

aValue unsubscribe: self from: ChangingValue
this will remove a subscription for that class, but subscription for
ChangedValue will remain, even though both were established with one
when:send:to: message.

How Subscriptions are Managed
Subscriptions to announcements are managed by instances of two
classes, SubscriptionRegistry and AnnouncementSubscription. A
SubscriptionRegistry is associated with an announcer object, one
11-6 VisualWorks

Subscribing to Announcements
registry per announcer. A registry uses instances of
AnnouncementSubscription to record individual subscriptions for the
announcements of that object.

A registry for an object is accessible by sending the
subscriptionRegistry message to the object. This always answers a
SubscriptionRegistry, creating and associating one with the object if it
does not exist yet. A variant of that message, subscriptionRegistryOrNil,
answers a registry only if one is already set up, or nil if it is not.

The primary reason SubscriptionRegistry is publicly accessible like this,
even though it works entirely behind the scenes in basic
announcements-related tasks, is that it provides second-tier
subscription management protocol. The following sections describe
such management techniques.

Any object can be an announcer, but must be configured to accept
subscriptions. Refer to Accepting Subscriptions for instructions.

Selecting Subscriptions
The registry is the gateway to the full announcement API.

The registry for an object is accessible by sending the
subscriptionRegistry message to the object. This always answers a
SubscriptionRegistry, creating and associating one with the object if it
does not exist yet. A variant of that message, subscriptionRegistryOrNil,
answers a registry only if one is already set up, or nil if it is not.

Suppose we want to do some advanced management of a registry.
For example, to start with the simplest thing, you can send messages
isEmpty and notEmpty to it to find out if it has any subscriptions—in
case you want to do something differently based on whether it is or is
not empty.

Most important in the grand scheme of things are the four selection
messages that select the currently existing subscriptions:

allSubscriptions

Answer all the subscriptions currently in the registry.

subscriptionsFor: announcementClassOrSet

Answer the subscriptions for the exact class or classes. Exact
means that a subscription for Announcement will not be selected if
the argument is a subclass, even though that subscription would
receive an announcement of that class.
Application Developer’s Guide 11-7

Announcements
subscriptionsOf: anObject

Answer the subscriptions with anObject as the subscriber.

subscriptionsOf: anObject for: announcementClassOrSet

Answer the subscriptions with anObject as the subscriber and
the announcement class either the same as the second
argument if it's an individual class, or listed in the second
argument if it is an announcement set.

Once we have the subscriptions we are interested in, we can do a
number of things with them. For example, we can unsubscribe from
them with:

anObject unsubscribe: self
or

anObject unsubscribe: self from: Foo
The implementations actually do

registry removeSubscriptions:
(registry subscriptionsOf: self)

and

registry removeSubscriptions:
(registry subscriptionsOf: self for: Foo)

The registry API provides unsubscribing options that affect multiple
subscribers at once. For example:

registry removeSubscriptions: registry allSubscriptions
removes all subscriptions from the registry, no matter who subscribed
and for what announcements.

To remove all subscriptions for the announcement class Foo, no
matter the subscriber, use:

registry removeSubscriptions:
(registry subscriptionsFor: Foo)

Elevating subscription selection to the level of public API (and making
subscriptions real objects in the first place) gives us tremendous
flexibility, without having to provide special API.

For example, in the trigger event system we had to provide a
hasActionForEvent method in Object to test for event registrations. In
Announcement system, we can find this out as simple as

(registry subscriptionsFor: Foo) isEmpty
11-8 VisualWorks

Subscribing to Announcements
Or just as easily we can do

(registry subscriptionsOf: anObject) isEmpty
to check whether a particular object is a subscriber—something
trigger event does not do.

To find out what announcement classes are in demand at the
moment:

(registry allSubscriptions
collect: [:each | each announcementClass]) asSet

Similarly, to get a collection of all the current subscribers:

(registry allSubscriptions
collect: [:each | each subscriber]) asSet

We can also remove all subscriptions whose subscribers we do not
want for whatever reason (criteria provided by implementing a dislikes:
message):

registry removeSubscriptions:
(registry allSubscriptions select:

[:each | self dislikes: each subscriber])
or like this:

registry allSubscriptions do:
[:each |
(self dislikes: each subscriber) ifTrue:

[registry removeSubscription: each]]
The andSubclasses message sent to an announcement class creates
an announcement set with that class and all its subclasses, avoiding
both the tedium and the need to keep the code synchronized with the
class structure.

andSubclasses

Answer an AnnouncementSet with this class and all its
subclasses.

andSubclasses can be used in any context where announcement sets
are allowed. For example, you can unsubscribe an object from all
ValueChangeAnnouncement subclasses it previously subscribed to at
once by saying:

announcer unsubscribe: self from:
ValueChangeAnnouncement andSubclasses
Application Developer’s Guide 11-9

Announcements
All subscription selection messages of SubscriptionRegistry answer
instances of AnnouncementSubscriptionCollection, a subclass of
OrderedCollection. In this way, the framework elevates the concept of a
group of subscriptions to first-class status. Some of the operations
we want to do—suspending subscriptions is one of those—are the
easiest to think of as operations on groups of subscriptions, and we
do just that. We represent groups of subscriptions as collections with
extra behavior appropriate for subscription collections.

Suspending a Subscription
Sometimes it is useful to be able to turn off a subscription temporarily,
to let a piece of code run without triggering its announcements.
Which subscriptions should be turned off depends on the
circumstances. You might want to turn off all subscriptions for
announcements of an object, or only for a particular kind of
announcements. Or a subscriber might want to stop receiving
announcements from a particular announcer, or only a subset of
those announcements.

The Announcement framework provides all of these options with a
single method, suspendWhile:. This is sent to an instance of
AnnouncementSubscriptionCollection, which is a collection of
announcements that are selected as described in Selecting
Subscriptions.

To temporarily disable all the current subscriptions to an object’s
announcements, send:

self subscriptionRegistry allSubscriptions
suspendWhile: [...]

To suspend only particular kinds of announcement, send:

(self subscriptionRegistry subscriptionsFor: Foo, Bar)
suspendWhile: [...]

To temporarily stop an object from receiving particular
announcements from a particular announcer:

(anObject subscriptionRegistry subscriptionsOf: self for: Foo, Bar)
suspendWhile: [...]

There is always the general option to get allSubscriptions, filter the
collection with select: or reject: using an arbitrary condition based on
the subscriber and announcementClass, and then send suspendWhile: to
the filtered result.
11-10 VisualWorks

Subscribing to Announcements
The following points are worth noting about suspending
subscriptions.

• What you disable is always a collection of specific subscriptions,
rather than the general ability of an object to broadcast
announcements. For example,

• Because only subscription specified in the collection are
disabled, any new subscriptions that are added while the block is
running will become active and will even deliver announcements
broadcast inside the block.

These points fit the overall subscription-centric spirit of the
framework. As described, subclass relationship is considered only
when delivering announcements—a subscription for Foo will also
deliver any subclass of Foo—but to remove a subscription for Foo you
need to specify Foo exactly.

The same principle applies to subscription selection.

subscriptionsFor: Foo
will not select subscriptions for superclasses of Foo, even though
those subscriptions would deliver instances of Foo when asked. This
means that if you have this arrangement of announcement classes

ValueChangeAnnouncement (abstract)
ValueAboutToChange
ValueChanging
ValueChanged

and you want to suspend all three concrete classes, simply saying

(self subscriptionRegistry subscriptionsFor:
ValueChangeAnnouncement)

supendWhile: [...]
will not work, because this will not match any of the concrete
subclasses. In the context of suspending, even considering that we
can list classes using an announcement set as

"subscriptionsFor: ValueAboutToChange, ValueChanging,
ValueChanged"

this code is fragile and would break if we added a new
ValueChangeAnnouncement subclass.
Application Developer’s Guide 11-11

Announcements
This is a good use case for another way of creating announcement
sets. The right solution is this:

(self subscriptionRegistry subscriptionsFor:
ValueChangeAnnouncement andSubclasses)

suspendWhile: [...]
The andSubclasses message sent to an announcement class creates
an announcement set with that class and all its subclasses, avoiding
both the tedium and the need to keep the code synchronized with the
class structure.

Suspend requests can be nested, and sets of suspended
subscriptions of nested requests overlap. When a subscription is
suspended for the duration of a block, and then inside that block
suspend the same subscription again for the duration of an inner
block, the subscription will not be reactivated after the inner block
ends and will stay suspended until the end of the outer block.

Batching Missed Announcements
Another suspension option is suspendWhile:ifAnyMissed:. It takes a
second argument which should always be a zero-argument block. It
works just like suspendWith: in that the subscriptions you send this to
are suspended and do not deliver anything to their recipients while
the block runs. In addition, this message keeps track of whether there
have been any “missed calls.” After the While: block finishes, the
second block is evaluated once, if there have been any undelivered
announcements while the first block ran.

This provides a way to batch potentially multiple updates. For
example, the following code suppresses Foo announcements, but
then ensures one of those gets announced as a summary if needed:

(anObject subscriptionRegistry subscriptionsFor: Foo)
suspendWhle: [...do stuff...]
ifAnyMissed: [anObject announce: Foo]

On the recipient side, to suspend response to updates from a certain
object but then catch up with a single update, you can also do
something like:

(anObject subscriptionRegistry subscriptionsOf: self)
suspendWhile: [...]
ifAnyMissed: [self update]

Again, overlap between subscriptions suspended by nested blocks is
handled correctly, in the sense that nested suspend requests don't
affect the outer ones and vice versa.
11-12 VisualWorks

Subscribing to Announcements
Substituting a Handler
Another suspension option allows for a block of code to run in lieu of
each delivery that would have happened. For example, the following
code will count how many actual announcement deliveries would
have occurred:

count := 0.
(anObject subscriptionRegistry subscriptionsFor: Foo)

interceptWith: [count := count + 1]
while: [anObject announce: Foo].

^count
Interceptor block can take arguments, with the same interpretation as
in handler blocks established by when:do:. These open up quite a lot
of options of what can be done by the interceptor.

For example, the above code counts deliveries. If there are five
subscribers for Foo, and Foo has been announced twice, the count will
be 10 for the ten deliveries that would have occurred. If we want to
count how many actual announcements were broadcast, regardless
of how many objects would have received them, we can do this:

announcements := IdentitySet new.
(anObject subscriptionRegistry subscriptionsFor: Foo)

interceptWith: [:ann | announcements add: ann]
while: [anObject announce: Foo].

^announcements size
If the interceptor block has two arguments, it receives the
announcement and the announcer, again just like in a regular
handler. In the context of an interceptor block this probably isn't as
useful. Since in order to get the subscriptions to intercept we start
with the announcer and its registry, we typically know who the
announcer is anyway.

The interceptor block can also take three arguments. In that case, the
third argument is the subscription that has just been intercepted.
Given that, the interceptor can find out the subscriber of the
intercepted delivery. Coming back to our example, to count how many
subscribers would have received the announcements we intercepted,
we would do this:

subscribers := IdentitySet new.
(anObject subscriptionRegistry subscriptionsFor: Foo)

interceptWith: [:a :o :s | subscribers add: s subscriber]
while: [anObject announce: Foo].

^subscribers size
Application Developer’s Guide 11-13

Announcements
Another important option the access to subscription gives us is
writing transparent interceptors, those that do not prevent
announcements from reaching their subscribers. The following code
will silently count how many announcements have been announced,
but other than that it will be business as usual and all announcements
will safely make it to all of their subscribers:

announcements := IdentitySet new.
(anObject subscriptionRegistry subscriptionsFor: Foo)

interceptWith:
[:announcement :announcer :subscription |
announcements add: announcement.
subscription deliver: announcement from: announcer]

while: [anObject announce: Foo].
^announcements size

The final

subscription deliver: announcement from: announcer
is what you can use in interceptors to pass the announcement on to
the intended recipient, conditionally or unconditionally at the end of
the interceptor block.

It was mentioned that an interceptor block can take the same
arguments a handler block or a handler method can. Indeed, ordinary
handler blocks and methods can also take the subscription as their
third argument. However, in a regular handler, knowing the
subscription that delivers the announcement is not quite as useful.
Asking it about its subscriber is pointless when you are the
subscriber, just as telling it to deliver the announcement when it is
already in the process of being delivered.

One final note about interceptors is their behavior in case of nesting.
Interceptors are additive. If you set up an interceptor on a
subscription and then set one up in a nested block, both will run when
the subscription attempts to deliver an announcement. This is in line
with the overall philosophy that nested suspend and intercept
requests are independent and do not affect each other's behavior.
One notable consequence of this is if both interceptor blocks do

subscription deliver: announcement from: announcer
the subscriber will get the same announcement twice, once from
each of the interceptors.
11-14 VisualWorks

Subscribing to Announcements
Making Subscriptions Weak
By default, subscriptions create a strong reference between the
announcer and subscriber. Even if all other references to the
subscriber are gone, the subscriber will stay alive as long as the
announcer it is subscribed to is alive. This is actually what allows the
following to work:

anObject when: Announcement do: [Transcript cr; show: 'gotcha']
despite the fact that no references to the block closure are saved
anywhere.

There are two points of view on this subject as to whether this is the
right behavior. One is that the right thing is to require subscribers to
unsubscribe themselves explicitly, as their duty in maintaining the
overall solid object structure. The other is that it is good when things
just work, without explicit responsibilities. The first view is
represented by the default behavior.

The Announcement framework also support the second view, providing
weak references as an option.

To weaken some subscriptions we do something like

(anObject subscriptionRegistry subscriptionsOf: self) makeWeak
From now on, when there are no strong references to self, the object
will get garbage collected and its subscriptions with anObject will
disappear on their own.

It is possible to weaken subscriptions right when you create them,
using a feature of subscription messages we have not yet mentioned.
The feature is that all subscription messages (when:send:to:, when:do:,
when:do:for:) answer the subscriptions they have just set up. So
instead of a separate protocol for setting up weak subscriptions, all
we need is send makeWeak to the result:

(anObject when: Foo send: #fooHappened: to: self) makeWeak.
This covers one side of announcer-subscriber relationship, where the
subscriber wants to create subscriptions that will not keep it alive. On
the other side of the relationship, it is possible to configure the
announcer so that all subscriptions created to it are weak by default.
The announcer's subscription registry is the factory that actually
creates subscriptions, and the class it instantiates to do that is a
parameter. The default strong subscriptions are instances of
AnnouncementSubscription. Weak subscriptions are instances of its
Application Developer’s Guide 11-15

Announcements
ephemeral subclass WeakAnnouncementSubscription. So, in order to
configure an object to always use weak subscriptions for its
announcements, all we need to do is this:

anObject subscriptionRegistry subscriptionClass:
WeakAnnouncementSubscription

All new subscriptions set up with that object are then created as
weak. This does not affect already existing subscriptions.

This preference for weak subscriptions can be turned into the default
for a particular announcer class, by hooking into the framework in a
different place. A subscription registry for an object is originally
created by the method createSubscriptionRegistry. Instances of a class
reimplementing that method as

createSubscriptionRegistry
^SubscriptionRegistry new subscriptionClass:

WeakAnnouncementSubscription
will always default to weak subscriptions, without the need to
explicitly reset the subscription class in each.

Just like you can individually weaken some subscriptions created by
classes that default to strong, a subscriber can individually
strengthen its subscriptions with classes that default to weak, by
sending:

(anObject subscriptionRegistry subscriptionsOf: self) makeStrong
or

 (anObject when: Foo send: #fooHappened: to: self) makeStrong

Accepting Subscriptions
Any class can make announcements, but doing so is pointless unless
objects can subscribe to them. (Unlike trigger-events, there is no
default ability for an arbitrary object to remember subscriptions.)

In order to be able to accept subscriptions, an object should either
inherit from Announcer or implement the protocol locally. The
implementation is simple, so the cost of local implementation is low.
Required are:
11-16 VisualWorks

Announcing an Event
• A subscriptionRegistry: method to store the argument, a
SubscriptionRegistry, in its instance variable (typically named
subscriptionRegistry).

• A subscriptionRegistryOrNil method to return the registry, or nil if it
does not exist.

Optional, but typical, is:

• A postCopy method to nil out the registry in a copy.

The implementations are straight-forward. In Announcer they are
implemented as follows:

subscriptionRegistry: aSubscriptionRegistry
subscriptionRegistry := aSubscriptionRegistry

subscriptionRegistryOrNil
^subscriptionRegistry

postCopy

subscriptionRegistry := nil

Announcing an Event
Any object can announce any event. Announcements, however, are
no-ops unless some other object has subscribed to receive them. To
be able to accept subscriptions, refer to Accepting Subscriptions.

To broadcast an announcement, there is a single message,
announce:. The argument can be either an Announcement subclass, or
an instance of an Announcement subclass. If a class, a new instance
of the class is created.

self announce: SomethingHappened
To provide more information in the announcement than simply the
class and announcer, create an instance and configure it. Details are
determined by the announcement class.

self announce: (SomethingHappened new explanation: 'foo')
The Announcement instance can have as much structure as you need.
Application Developer’s Guide 11-17

Announcements
Handling an Announcement

Processing an Announcement
How an Announcement is handled is determined when it is
registered, either by a block or by a message-send, as described in
Subscribing to Announcements.

The handler method or block can have either 0, 1, or 2 arguments,
with the following interpretation:

• If the handler has no arguments, it is simply invoked. For
example:

aValue
when: ChangedValue
do: [Transcript cr; show: 'changed']

Obviously, you would use this in cases when you either know in
advance what announcement you receive and from what object,
or don't care.

• If the handler has one argument, the Announcement instance is
passed as the argument:

aValue when: ChangedValue do:
[:change |
Transcript

cr; show: 'changed to ';
print: change newValue]

• If the handler has two arguments, the Announcement instance is
passed as the first one and the announcing object (the one with
which you subscribed) as the second:

aValue when: ChangedValue do:
[:change :announcer |
Transcript

cr; print: announcer;
show: ' changed to ';
print: change newValue]

Message-based versions of those subscriptions would be:

aValue when: ChangedValue send: #changed to: self
aValue when: ChangedValue send: #changed: to: self
aValue when: ChangedValue send: #changed:from: to: self
11-18 VisualWorks

Handling an Announcement
Vetoing an Event
Vetoing an event is supported as a usage pattern, rather with specific
methods and mechanisms. When using some announcing pattern
like the 3-phase change pattern, announcing AboutToChange,
Changing, and Changed, it is easy to implement. Most announcements
are in fact not veto-able, so relying on a usage pattern is appropriate.

All an Announcement class needs in order to support vetoing are three
simple things:

1 An instance variable for the veto flag (e.g., vetoed).

2 A method (e.g., veto) that sets the variable to a non-nil value,
used by subscribers to veto.

3 A method (e.g., isVetoed) that does ^vetoed notNil.

The announcer would do this to announce and respond to a veto
request:

| announcement |
announcement := AboutToChange new.
self announce: announcement.
announcement isVetoed ifTrue: [^self]
...

Even simpler, using the fact that the announce: message answers the
announcement instance that has just been announced:

(self announce: AboutToChange) isVetoed ifTrue: [^self]
...

Implementing this mechanism only in announcements that are
vetoable, rather any in Announcement, keeps the implementation
simple and clear.
Application Developer’s Guide 11-19

Announcements
11-20 VisualWorks

12

Working With Graphics and Colors

Graphics are used in an application for a variety of purposes. They
are the foundation of the Graphical User Interface (GUI), by which the
user directs the application, providing necessary input and initiating
operations, and receives feedback from the application. Graphics
also make the user interface visually appealing. Both static images
and animations can be incorporated into your VisualWorks
application.

VisualWorks GUI development is supported by an extensive
framework, including tools and widgets, as described in the GUI
Developer’s Guide. Refer also to the Basic Libraries Guide for
extended discussion of the usage of graphics classes. In this chapter
we address the more fundamental aspects of graphical support,
including the basic graphics classes, and how to create and display
graphical objects in VisualWorks.

Following an overview of the major components of the graphics
framework, we will describe various techniques for presenting
graphics. In this chapter, the emphasis is on displaying graphics on a
screen, in a window, though much of what is discussed is applicable
to printing as well.

Also, graphical objects such as Geometrics and Image, and Colors
and Patterns are described in more detail in subsequent chapters.
This chapter focus on the environment and techniques for using them
in a display.
Application Developer’s Guide 12-1

./GUIDevGuide.pdf
./GUIDevGuide.pdf
./BasicLibs.pdf

Working With Graphics and Colors
A Note about the Examples
Many examples in this chapter use the Examples Browser, which
provides a scratch window in which to display graphics. This
simplifies the examples, removing the redundant code for creating
the window.

The Examples Browser is loaded with the help system. It can also be
loaded separately by loading the ExamplesBrowser parcel in the
examples/ directory.

Once loaded, open the window by evaluating:

Examples.ExamplesBrowser prepareScratchWindow
Generally, as explained later in this chapter, graphics are displayed to
a graphics context. Accordingly, the window is opened and its
graphics context held in a variable:

gc := (Examples.ExamplesBrowser prepareScratchWindow)
graphicsContext

This is all explained further in the following sections.

The VisualWorks Graphics Environment
The VisualWorks graphics environment consists of several objects
representing

• graphical objects themselves (geometric shapes and images),

• physical graphics device (screens and printers),

• logical graphics medium (windows, pixmaps and masks), and

• graphics context, which knows how to render the graphical
objects on the devices and surfaces.

Graphics are typically composite objects consisting of geometric
shapes, images, and colors that interact with a display object. Control
over the appearance of a graphic is often shared by the graphic itself
and its display surface.

The following paragraphs provide an overview of the elements of the
graphics environment. The remainder of the chapter gives
explanations and examples of how to perform useful graphical
operations.
12-2 VisualWorks

The VisualWorks Graphics Environment
Pixels
Much like a printed photograph, a computer image is made up of tiny
dots of color. Each dot makes one element of the picture, so it is
known as a picture element—or pixel, for short.

On a black on white (monochrome) screen, each pixel is either on
(black) or off (white). Its current state is represented in memory as
either one (on) or zero (off). Thus, each bit in memory controls a
single pixel, and the entire screen is represented as a two-
dimensional array of bits. The array provides a map of the screen, so
it’s called a bitmap.

When the screen is capable of displaying more than two colors, a
single bit is not sufficient to embody the range of choices. It takes two
bits to represent three to four colors, three bits for five to eight colors,
and so on. Though the “bitmap” is no longer a one-to-one mapping
from bits in memory to pixels on the screen, it is still referred to as a
bitmap.

Coordinate System
Each pixel represents one unit of width on the x-axis and one unit of
height on the y-axis.

Graphics in VisualWorks are represented in terms of points in a two-
dimensional rectangular coordinate system, with x coordinates
increasing from left to right on the graphic plane and y coordinates
increasing from top to bottom. Numbering starts from zero, so that
0@0 is the top left point.

All graphic operations accept nonintegral coordinates, but such
coordinates are rounded to the nearest integer.
Application Developer’s Guide 12-3

Working With Graphics and Colors
The origin is relative to graphics medium, such as a window, rather
than the origin of the screen. If the window has subviews, each
subview maintains its own origin, and graphic operations use that
origin. As a result, you rarely need to be concerned with translating
coordinates when a window is moved or resized.

Some windowing systems (such as the Macintosh’s) place pixels
between grid points, as shown in the above figure, while other
window systems (X and MS-Windows) place pixels on grid points.
VisualWorks conforms to the host platform. This difference rarely
matters, but it can cause a one-pixel misalignment in some
circumstances, and a “difference of opinion” about whether the
border of an object such as a polygon is to be repainted when that
object is filled.

Coordinate values must be in the range from -32768 through 32767.
Violation of this restriction may result in a primitive failure. For some
operations, such as displayRectangle:, no primitive failure occurs, but
the operation may fail silently, or succeed, depending on the platform.
These limits apply after translation, if any, has been applied to the
graphics context (see Shifting (Translating) the Display Position).

Points
An x-y coordinate pair is represented as an instance of Point. The
@ message creates a Point, as in this example which creates a point
with an x-value of 100 and a y-value of 250. The spaces before and
after the binary selector (@) are optional:

100 @ 250
You can also create a point by specifying polar coordinates. The
following example creates a Point whose coordinates lie on a circle of
radius 100 at 45 degrees:

Point r: 100 theta: 45 degreesToRadians
Two constants are available: Point zero returns 0@0, and Point unity
returns 1@1.

A Point can perform comparison and arithmetic functions. So, you can
test for equality, and for less than and greater than relations. You can
add two points, and add or subtract a scalar value to a Point, to
increase or decrease both x and y by scalar amount. For other
operations, browse the Point class.
12-4 VisualWorks

The VisualWorks Graphics Environment
Rectangles
Rectangles are used in a variety of graphic operations, from setting
the size of a window to specifying the bounding box of a graphical
object, as well as simply to create a rectangular graphic object.

There are several ways to create a rectangle, accommodating a
variety of contexts. The most common methods are to send an extent:
or corner: message to an origin (top left) point. Both of the following
expressions create a rectangle 100 pixels wide, 250 pixels high, with
its origin at 50@50:

50@50 extent: 100@250
50@50 corner: 150@300

The extent: message specifies the rectangle by its size, setting the x
and y distance from the starting point. The corner: message, on the
other hand, specifies the absolute corner position.

When it is inconvenient to assemble the coordinates into Points, you
can also create a Rectangle from the component x- and y-values:

Rectangle left: 50 right: 300 top: 50 bottom: 150
Rectangles will be used frequently in examples in this chapter.

Graphical Objects
Graphical objects are drawn and positioned by specifying points in
the coordinate system. VisualWorks provides support for displaying
several types of geometric shape, bitmap images, and text.
Application Developer’s Guide 12-5

Working With Graphics and Colors
Text Objects
Texts, which are represented as instances of Text and ComposedText,
are treated as graphical objects in many contexts. Text processing,
including displaying and setting text properties, are described in
detail in the “Working with Text” chapter in the Basic Libraries Guide.

Geometric Objects
VisualWorks implements several types of geometric objects, in
subclasses of Geometric.

• A LineSegment connects two points, named start and end.

• A Polyline connects three or more points (its collection of vertices)
as a series of line segments, and is closed between the start and
end points. A polygon is a Polyline that is filled rather than
stroked.

• A Rectangle represents a rectangular region whose axes are
aligned with the x and y axes. Rectangles are frequently used to
describe areas of a screen, but can also be used as a geometric
shape.

• An ElipticalArc is a curved line defined by three parameters:

• The smallest rectangle that can contain the ellipse of which
the arc is a segment (adjusted for line width).

• The angle at which the arc begins, measured in degrees
clockwise from the 3 o’clock position (or counterclockwise for
negative values).

• The angle traversed by the arc, known as the sweep angle.
The sweep angle is measured from the starting angle and
proceeds clockwise for positive values and counterclockwise
for negative values.

• A Bezier is a curve between two endpoints, with a control point for
each endpoint determining the angle of the curve at that
endpoint.

• A Circle is a circle, specified by a center and radius.

• A Spline is a curve interpolated through a series of points

See “Geometrical Objects” in the Basic Libraries Guide for more
information.
12-6 VisualWorks

./BasicLibs.pdf
BasicLibraries.pdf

The VisualWorks Graphics Environment
Bitmap Image Objects
An Image is a graphic object composed of a rectangular array of
pixels. Image employs a bitmap to represent its pixel colors or
coverages. An Image can be either color-based or coverage-based,
depending on its palette.

A very simple Image can be constructed by manipulating the bits in
the map directly, but this is unwieldy for complicated pictures. More
typically, a scanner or a drawing tool is used to create the desired
arrangement of pixels. An Image is then captured from the on-screen
representation or read from a file.

An Image is stored in Smalltalk memory, so it is saved with the
Smalltalk image.

Images have a variety of uses in applications, from cursors and icons,
to backgrounds, decorations, and animations.

See the “Graphical Images” in the Basic Libraries Guide for additional
information. We will make extensive use of graphical images in this
chapter.

VisualPart
VisualPart is an abstract class that provides its subclasses with the
fundamental ability to communicate with their containing object. This
provides the foundations for the GUI framework’s widget, menu, and
toolbar display capabilities, but can be useful in other applications as
well.

Most of VisualPart's methods are background machinery that is never
used directly by an application, though some methods may need to
be redefined when you create a new subclass. The displaying
protocol is the main exception, since it enables an application to
influence the timing of a redisplay of a visual part. In addition, the
displaying protocol enables a visual part to be flashed, as a trouble
indicator.

The direct subclasses of VisualPart include four important abstract
classes, each of which has several subclasses:

• SimpleComponent represents labels and other passive widgets.

• DependentPart represents the wide variety of views, including
widget views.

• Wrapper represents a visual part that holds a component whose
environment it influences, for example as a BorderedWrapper adds
a border to its component.
Application Developer’s Guide 12-7

BasicLibraries.pdf

Working With Graphics and Colors
• CompositePart represents a hierarchical collection of visual parts.

Colors and Patterns
Graphical objects are presented in color. VisualWorks implements a
rich color model, providing a variety of ways of specifying colors and
color effects. In addition to smooth, solid colors, you can specify
gradations along several scales. Further, you can use a pattern as a
color in many contexts.

We will make use of colors and patterns in this chapter, but not
discuss them in detail. For additional information, refer to the “Colors
and Patterns” chapter in the Basic Libraries Guide.

Graphics Media and Display Surfaces
Graphic operations in Smalltalk are performed on two-dimensional
graphics media, which are implemented as subclasses of
GraphicsMedium. Subclasses provide a logical representation of the
media for video display and for printing.

All current video display media are subclasses of the abstract class
DisplaySurface. There are three types of display surface: Window,
Pixmap, and Mask. While a Window is used to display graphic objects
on-screen, Pixmaps and Masks are used for manipulating graphics.
These represent host graphic media related to video display screens,
and so rely on operating system resources and cannot be saved with
the Smalltalk image.

All graphics media employ a GraphicsContext as an intermediary
between the surface and the objects to be displayed, as described
below.

Windows
A VisualWorks Window corresponds to the window supplied by the
host platform’s window manager. It is a Macintosh window on the
Macintosh, an X window on machines running X, and so on. For that
reason, a Window’s border decorations and label bar take on the host
window manager’s look and feel.

ScheduledWindow, a subclass of Window, has a controller that permits
the user to move, resize and close the window. ScheduledWindow and
its subclass, ApplicationWindow, are the usual classes instantiated to
create a window. To create and open a ScheduledWindow on the
screen, evaluate:

ScheduledWindow new open.
12-8 VisualWorks

BasicLibraries.pdf

The VisualWorks Graphics Environment
A ScheduledWindow handles the details of window resizing, raising
and lowering, etc. By itself, however, a ScheduledWindow is not very
useful. Try opening one and typing characters into it—as you will see,
it does not provide application capabilities such as text editing. (To
close the window, select close in its <Window> menu.) To provide
such capabilities, it holds onto a VisualComponent, which is frequently
a View. The view itself may contain subviews, and so on. Thus,
ScheduledWindow is commonly described as being at the top of the
view hierarchy. For more about building windows, refer to the GUI
Developer’s Guide.

Pixmaps
A Pixmap is the off-screen equivalent of a window. It is a rectangular
surface, capable of storing an encoded color at each pixel location
just as a window does. Unlike a window, a Pixmap retains its contents
until they are explicitly overwritten. For this reason, a Pixmap is said to
be a retained medium.

Masks
A Mask is used to trim unwanted parts of a picture. The mask can
take any shape, such as a circle, a rectangle, or an irregular polygon.
Advanced graphic effects can be created by merging images using
masks.

For example, Cursor employs a mask to trim away “white” portions of
the rectangular image, leaving only the desired shape (such as an
arrow, or cross-hairs). Without a mask, the cursor would obscure a
rectangular region of the display no matter what shape the cursor
image was.

Graphics Context
Every graphics medium and visual part uses an instance of
GraphicsContext to manage graphic parameters such as line width,
tiling phase, and default font. Displaying operations are performed not
by the display surface directly, but by its GraphicsContext.

Similarly, messages for modifying graphic parameters such as line
width must be addressed to the appropriate GraphicsContext. That
object applies the relevant parameters and then displays the object
on the surface.
Application Developer’s Guide 12-9

./GUIDevGuide.pdf
./GUIDevGuide.pdf

Working With Graphics and Colors
A graphics medium does not store a graphics context, so it cannot be
accessed by an accessor. Instead, you need to get a graphics
medium’s graphic context any time a change is made. To get the
graphics context, send the message graphics-Context to the graphics
medium. This is done repeatedly in the examples.

Since many unrelated graphic operations can modify a graphics
medium’s graphic context, each graphic operation is responsible for
setting up its own graphic context. For this reason, you should never
store a GraphicsContext in an instance variable or a class variable, or if
you must assign it to a variable, use a temporary variable so the
changes remain local within a method.

Graphics Device
Subclasses of GraphicsDevice represent physical graphics rendering
devices, such as the display screen and printers. GraphicsMedium
subclasses represent the object that is rendered on a graphics
device. GraphicsDevice classes provide color and font defaults
rendering on those devices.

Applications typically interact with a graphics medium and its
graphics context rather than with the underlying device. However, the
Screen graphics device provides a few useful utilities, such as ringing
the bell and returning the window at a screen coordinate point.

Displaying a Graphic
Graphics display operations are performed on a graphics context.
Graphics media, including printers and the various display surfaces,
and visual parts all have a graphics context, and so are recipients of
display operations.

The graphics context holds many parameters that condition how a
display surface renders a graphical object. Refer to GraphicsContext
Attributes for specific attributes.
12-10 VisualWorks

Displaying a Graphic
Getting a GraphicsContext
The usual way of getting a graphics context is to send the message
graphicsContext to the object on which a graphical object is to be
rendered. For example, to get the graphics context of an
ExamplesBrowser, create the instance and request its graphics context:

| gc |
gc := (Examples.ExamplesBrowser

 prepareScratchWindow) graphicsContext.
We will reuse this code fragment repeatedly in this chapter. This
creates and opens an ExamplesBrowser, which is a window
(specifically, an ApplicationWindow instance) and gets its
GraphicsContext.

The graphicsContext message retrieves the graphics context of other
rendering objects as well, such as Pixmaps and VisualParts, as will be
illustrated throughout this chapter.

Displaying a Graphical Object on a GraphicsContext
The usual method for displaying a graphical object on a graphics
context is displayOn:. For example,

| gc |
gc := (Examples.ExamplesBrowser

 prepareScratchWindow) graphicsContext.
'This is a test' displayOn: gc.

This creates and opens an ExamplesBrowser and gets its
GraphicsContext. Then, the String of characters is displayed on the
graphics context.

Several displayable objects also implement a displayOn:at: message,
allowing you to position the object in the graphics context. For
example,

| gc |
gc := (Examples.ExamplesBrowser

 prepareScratchWindow) graphicsContext.
'This is a test'

displayOn: gc
at: 50@50.

Other mechanisms for positioning the display are discussed later in
this chapter.
Application Developer’s Guide 12-11

Working With Graphics and Colors
Geometric objects can be displayed either “stroked” (as a line
drawing) or filled, and so implement the more specific display
messages displayStrokedOn: and displayFilledOn: instead. For example,

| gc |
gc := (Examples.ExamplesBrowser

 prepareScratchWindow) graphicsContext.
(Circle center: 125@125 radius: 100) displayStrokedOn: gc.
(Circle center: 275@275 radius: 100) displayFilledOn: gc.

For that reason, a variant of the displaying messages allows you to
specify the point at which the object’s origin is to be positioned.

Drawing a Transient Shape
The displayOn: message is used to display graphical objects, but
requires that the object be created first, even if only as temporarily as
shown in the previous section.

To draw a shape only once, without the overhead of creating a real
object, GraphicsContext supports a variety of messages that draw the
shape only. For instance, to draw a line, you can send the
displayLineFrom:to: message to a graphics context.

| gc |
gc := (Examples.ExamplesBrowser

 prepareScratchWindow) graphicsContext.
5 to: 400 by: 5 do: [:i |

gc displayLineFrom: 0@i to: i@400].
Similar messages are available for other shapes, such as arcs,
polygons, and rectangles. Browse the GraphicsContext class displaying
protocol instance methods to see the complete set.

No geometric object is actually created by these messages, so no
transformations or other operations can be performed.

There are also version of these messages that allow you to specify
the point at which the geometric is displayed. The position is
determined relative to any translation.

Displaying a Bitmap Image
As with other visual objects, an image can display itself on a graphics
context. The image’s palette must match that of the graphics context:
coverage-based to display a Mask, and color-based to display on a
Window or Pixmap.
12-12 VisualWorks

Displaying a Graphic
To display an image positioned at the origin (0@0), send a displayOn:
message to the image with the graphics context as argument. To
specify a display position other than the default 0@0, send a
displayOn:at: message to the image with a Point as the second
argument:

| gc logo |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
logo := LogoExample logo.
logo convertForGraphicsDevice: Screen default.
logo displayOn: gc.
logo displayOn: gc at: 50@50.

Send a convertForGraphicsDevice: message to the image to ensure that
the color depth and bits per pixel are correct, which is necessary for
the image to display correctly. While it is not always required, it is
strongly recommended, especially for images that are read from files.

Shifting (Translating) the Display Position
Instead of positioning each object individually, it can be convenient to
shift, or translate, the top left corner of the graphics context.
Translation sets the X and Y coordinate offsets for the graphics
context.

To set the translation, use the most appropriate of these messages:

translateBy: aPoint

Shifts the offset coordinates of the graphics context by aPoint,
relative to its current translation.

translation: aPoint

Shifts the offset coordinates of the graphics context to aPoint.

The default translation is 0@0, that is, no translation.

To get the current translation, send a translation message to the
graphics context.

For example, this code displays a balloon at the 0@0 point of the
graphics context six times, once with the default translation, then five
times shifting the translation each time relative to the prior translation,
then sets the translation once as an absolute translation relative to
the default and displays another balloon:
Application Developer’s Guide 12-13

Working With Graphics and Colors
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
balloon := FloatingBalloon new.
balloon displayOn: gc.
1 to: 5 do: [:x |

gc translateBy: 20@20.
balloon displayOn: gc].

gc translation: 50@10.
balloon displayOn: gc.

To reset the translation to the default, simply send:

gc translation: 0@0.

Displaying a Restricted Area
It is not always necessary to display the entire contents of a window,
and may be inefficient to do so, if only a portion of the display has
changed. A graphics context maintains a clipping region that causes
only that area to be updated; any graphic outside that area is not
drawn. This is more efficient, and can be a great advantage in certain
contexts, such as animations.

By default, the clipping region is the entire graphics contents bounds,
so the whole context is updated, as in the previous examples. The
clipping area of the graphics context is specified as a rectangle, by
sending a clippingRectangle: message to the graphics context with a
Rectangle as argument.

In this example, an Image (captured from user selection of a portion
of the screen) is displayed on the ExampleBrowser graphics context,
but only the clipping region of the graphics context is updated.

| image gc |
image := Image fromUser.
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
gc clippingRectangle: (Rectangle origin: 20@20 extent: 100@100).
image displayOn: gc.

To remove the restrictions on the clipping region, set the rectangle to
nil.

gc clippingRectangle: nil.
To get the current clipping rectangle, send either a clippingBounds or a
clippingRectangleOrNill message to the graphics context.
12-14 VisualWorks

Displaying a Graphic
Copying from a Display
Occasionally it is useful to be able to copy an area of a display. The
area might be used to restore the display area or to be used as the
background for another display.

To do this, you copy from the graphics context of the display. There
are several copy messages provided by GraphicsContext. The following
is a sampling; browse the GraphicsContext class, displaying message
category, for related forms of these messages.

copyArea: aShape from: aGraphicsContext sourceOffset: srcOffsetPoint
destinationOffset: destOffsetPoint

Copy an area of aGraphicsContext's display medium to the
receiver’s display medium. The source area is described by
aShape translated by srcOffsetPoint in aGraphicsContext's
coordinate system. The destination area is described by aShape
translated by destOffsetPoint in the receiver’s coordinate system.

Returns an array (possibly empty) of rectangles that are
damaged because they correspond to portions of the source
medium that could not be copied.

copyArea: aShape fromImage: anImage sourceOffset: srcOffsetPoint
destinationOffset: destOffsetPoint

Copy an area of anImage to the receiver’s display medium. The
source area is described by aShape translated by srcOffsetPoint;
the destination area is described by aShape translated by
destOffsetPoint in my coordinate system.

copyCompleteArea: aShape from: aGraphicsContext
sourceOffset: srcOffsetPoint destinationOffset: destOffsetPoint

Same as copyArea:from:sourceOffset:destinationOffset: except that it
raises an exception if some part of the source could not be
copied.

copyImage: anImage to: aPoint

Copy the contents of anImage to the receiver’s display medium at
aPoint.
Application Developer’s Guide 12-15

Working With Graphics and Colors
copyMaskedArea: aMaskOrImage fromPixelArray: anImageOrPixmap
sourceOffset: srcOffsetPoint destinationOffset: destOffsetPoint

Copy an area of anImageOrPixmap to the receiver’s display
medium. The source area is described by aMaskOrImage
translated by srcOffsetPoint; the destination area is described by
aMaskOrImage translated by destOffsetPoint in the receiver’s
coordinate system.

In these messages, when a source graphics context (

aGraphicsContext

) is used, it only specifies the medium and coordinate system
(translation); no other parameters of the source graphics context
affect the copy operation.

The message you select will be determined on that graphical
information is most easily available.

For an example, first set up a target graphics context (load the
Graphics-Example parcel for the referenced class):

window := (ApplicationWindow
openNewIn: (Rectangle origin: 0@0 extent: 200@219))
background: (Graphics.Pattern from: FloatingBalloon sky).

gc := window graphicsContext.
Then, a graphic can be copied onto it:

sourceGC := FloatingBalloon basicBalloon asRetainedMedium
graphicsContext.

mask := FloatingBalloon basicBalloonMask.
gc copyArea: mask

from: sourceGC
sourceOffset: 0@0
destinationOffset: 50@50

Working with Pixmaps and Masks
DisplaySurface is a subclass of GraphicsMedium that specifically
supports displaying graphics on the screen. Window and its
subclasses are display surfaces that actually map, or display,
graphics. Displaying graphics to this surface has been illustrated
repeatedly.
12-16 VisualWorks

Working with Pixmaps and Masks
Two other important display surfaces, Mask and Pixmap, are not
mappable, and so do not actually display a graphic, but are used for
preparing graphics off screen for later display. This section describes
the basic use of these surfaces.

Pixmaps and masks are held in operating system resources rather
than in object memory, and so are sometimes referred to as a
retained medium. This makes them very fast to display. However,
they are not saved with the image, and are lost when the image exits.
Since they do not persist, you cannot rely on holding a pixmap in this
situation. Instead, store a CachedImage, which holds both an image
and a pixmap (or mask).

Since a Mask is used specifically to mask an image, the rest of this
section will given only in terms of Pixmap, but applies to Mask as well.

Creating a Display Surface from an Image
Frequently you already have an image from which to create a Pixmap
(or Mask). In this case, send an asRetainedMedium message to the
image, which returns a Pixmap if the image has a color based palette,
and a Mask if the image has a coverage based palette (load the
Graphics-Example parcel for the example class):

| image pixmap |
image := FloatingBalloon basicBalloon.
pixmap := image asRetainedMedium.
^pixmap

Creating a New Display Surface
For building a display off screen, you typically create a Pixmap at a
given size, such as the size of the target window. To do this, send an
extent: message to the Pixmap class with the size as a point,
specifying the extent of the lower-right corner from its top-left corner.
The extent is often taken from the window on which the Pixmap will be
displayed, as in this example.

| win pixmap |
win := Examples.ExamplesBrowser prepareScratchWindow.
^pixmap := Pixmap extent: win extent.

By default the pixmap is created for a screen graphics context, and
initializes it to the default background color. The forms extent:on: and
extent:on:initialize: give more control, as described in their method
comments.
Application Developer’s Guide 12-17

Working With Graphics and Colors
You can also send retainedMediumWithExtent: to either the ColorValue or
CoverageValue class, to create a Pixmap or Mask, respectively. This
message is typically used when the type of display surface is
determined by some other display surface, to be determined by
context. For example, given a graphics context, you can get its paint
basis, either a ColorValue or CoverageValue, by sending it a paintBasis
message, and then create a display surface from that:

gc paintBasis retainedMediumWithExtent: 20@20
The resulting display surface will be of the proper type for, for
example, copy operations between the two display surfaces.

Composing on a Pixmap
Given a Pixmap, you can compose a display on it by displaying on its
graphics context as if it were a window. The difference, of course, is
that it is not displayed until you display the Pixmap.

This example composes a field of balloons, all the same, on a Pixmap
in preparation for displaying it quickly (load the Graphics-Example
parcel for the example class).

| win pixmap gc balloon |
win := Examples.ExamplesBrowser prepareScratchWindow.
pixmap := Pixmap extent: win extent on: Screen default initialize: false.
gc := pixmap graphicsContext.
balloon := FloatingBalloon new.
balloon displayOn: gc;

displayOn: gc at: 200@120;
displayOn: gc at: 40@320;
displayOn: gc at: 350@300;
displayOn: gc at: 90@190;
displayOn: gc at: 175@370.

Note that this does not actually display the balloons, which you do by
copying from the pixmap to the window.

Displaying a Display Surface
You display a Pixmap (or a Mask, though that is unusual) just like any
other graphical object, by sending displayOn: or displayOn:at: message
to the Pixmap. The argument is, as usual, a graphics context, plus a
point location in the second form.

To display the pixmap created in the preceding section, include at the
end:

pixmap displayOn: win graphicsContext.
12-18 VisualWorks

Working with Pixmaps and Masks
Copying from a Display Surface
Occasionally it is useful to be able to copy an area of a display
surface. The area might be used to restore the display area or to be
used as the background for another display. Or you might copy an
area from a Pixmap to the current window. To do this, you copy from
one graphics context to another.

There are several copy messages provided by GraphicsContext that
provide for copying from a source graphics context to the receiver,
also a graphics context. For example,
copyArea:from:sourceOffset:destinationOffset: copies the contents of
graphics context to the window, masking the image with a shape. In
this example, the source graphics context is the graphics context of a
Pixmap, and the shape is a Mask.

| gc imagegc mask |
gc := (ExamplesBrowser prepareScratchWindow)
graphicsContext.imagegc := FloatingBalloon basicBalloon
asRetainedMedium graphicsContext.
mask := FloatingBalloon basicBalloonMask gc copyArea: mask

from: imagegc
sourceOffset: 0@0
destinationOffset: 50@50

In this case, the same effect can be achieved by sending a
displayOn:at: message to an OpaqueImage built from the image and
mask.

A more complicated, and realistic, example might consist of capturing
the contents of a window in a graphics context, adding content, and
then redisplaying the area, as follows:

| gc scratchgc balloon |
balloon := FloatingBalloon new.
gc := Window currentWindow graphicsContext.
scratchgc := (gc paintBasis retainedMediumWithExtent: 100@100)

graphicsContext.
scratchgc copyArea: (Rectangle origin: 0@0 extent: 100@100)

from: gc
sourceOffset: 20@0
destinationOffset: 0@0.balloon displayOn: scratchgc;
displayOn: scratchgc at: 50@65.

gc copyArea: (Rectangle origin: 0@0 extent: 100@100)
from: scratchgc
sourceOffset: 0@0
destinationOffset: 20@0.
Application Developer’s Guide 12-19

Working With Graphics and Colors
Browse the displaying method category of GraphicsContext for the copy
messages; the method comments describe their individual behavior.

GraphicsContext Attributes
As mentioned earlier, the GraphicsContext holds a variety of graphical
attributes controlling how graphical objects are displayed. This
section describes the attributes.

Specifying these properties in the graphics context sets the default
properties for the context.

There are also ways of associating some of these properties with
geometric objects themselves, using wrapper objects as described in
“Geometrical Objects” in the Basic Libraries Guide.

Line Properties
Line properties include the line thickness, endcaps, and join type.

Line Width

By default, lines, arcs, and polygons are drawn with a one-pixel line
width. You can increase the thickness of a line by setting the
thickness in pixels. Extra thickness is spread evenly on both sides of
the actual line, so a horizontal line that is 20 pixels thick has 10 pixels
above the line and 10 pixels below.

To set the line width, send a lineWidth: message to the graphics
context of the display surface. The argument is an integer indicating
the number of pixels of thickness.

| gc rect |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
rect := 10@10 extent: 30@30.
12-20 VisualWorks

BasicLibraries.pdf

GraphicsContext Attributes
2 to: 20 by: 2 do: [:width |
gc lineWidth: width.
rect moveBy: 30@30.
rect asStroker displayOn: gc].

As illustrated by this example, when you change the line width
property, it affects only lines drawn up to the next width change, and
not all currently displayed lines.

Line Cap Style

By default, lines and arcs are drawn with butt ends, which means
each end stops abruptly at the specified endpoint. When two thick
lines share an endpoint, butt ends produce a notched joint. Changing
the cap style to projecting fixes this by extending each end of the line
by half of its thickness. Another solution is to use round ends, which
extend the ends in a semicircle.

To change the endcap, send a capStyle: message to the graphics
context. The argument is derived by sending a capButt, capProjecting,
or capRound message to the GraphicsContext class.

| gc |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
gc lineWidth: 20.

"Butt line caps -- the default"
gc capStyle: GraphicsContext capButt.
gc displayLineFrom: 100@100 to: 300@100.
gc displayLineFrom: 300@100 to: 300@300.

"Projecting line caps"
gc capStyle: GraphicsContext capProjecting.
gc displayLineFrom: 100@150 to: 250@150.
gc displayLineFrom: 250@150 to: 250@300.
Application Developer’s Guide 12-21

Working With Graphics and Colors

"Round line caps"
gc capStyle: GraphicsContext capRound.
gc displayLineFrom: 100@200 to: 200@200.
gc displayLineFrom: 200@200 to: 200@300.

Line Join Style

By default, a polyline or polygon is drawn with mitered joints. In some
situations, a beveled or rounded joint is preferable. To change the line
join style, send a joinStyle: message to the graphics context of the
display surface. The argument is derived by sending a joinMiter,
joinBevel, or joinRound message to the GraphicsContext class.

| gc |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
gc lineWidth: 30.

"Miter joins -- the default"
gc joinStyle: GraphicsContext joinMiter.
gc displayPolyline: (Array with: 100@200 with: 200@50 with: 300@200).

"Bevel joins"
gc joinStyle: GraphicsContext joinBevel.
gc displayPolyline: (Array with: 100@300 with: 200@150

with: 300@300).

"Round joins"
gc joinStyle: GraphicsContext joinRound.
gc displayPolyline: (Array with: 100@400 with: 200@250
 with: 300@400).
12-22 VisualWorks

GraphicsContext Attributes
Font Properties
The graphics context holds the font, for rendering text strings, and the
font policy for selecting matching fonts. For more information on fonts
and font policies, refer to “Working with Text” in the Basic Libraries
Guide.

To change the current font, send a font: message to the graphics
context with a font specified. In this example, the font is picked out
using a FontDescription sent to the graphic context’s FontPolicy. The
text is displayed using the default font and three alternate fonts.

gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
'This is a test' displayOn: gc at: 10@20.
gc font: (gc fontPolicy findFont: (FontDescription new family: 'helvetica';

pixelSize: 14;yourself)).'This is a test' displayOn: gc at: 10@40.
gc font: (gc fontPolicy findFont: (FontDescription new family: 'times';

pixelSize: 14;yourself)).'This is a test' displayOn: gc at: 10@60.
gc font: (gc fontPolicy findFont: (FontDescription new family: 'courier';

pixelSize: 14;yourself)).'This is a test' displayOn: gc at: 10@80.
You can also install an alternate FontPolicy by sending a fontPolicy:
message to the graphics context, with the new FontPolicy as
argument. Refer to “Working with Text” in the Basic Libraries Guide
for information on defining a FontPolicy.

Paint Properties
The graphics context holds:

• the paint that is used for uncolored objects;

• the paint policy, which determines how to render paints that don’t
exactly match the host paints;

• the paint preferences, which determines items such as the border
color, foreground and background colors, and selection colors.

The default paint color is black. To change the paint, send a paint:
message to the graphics context with a Paint or Pattern as argument.
For example:

| gc |
gc := (Examples.ExamplesBrowser

 prepareScratchWindow) graphicsContext.
gc paint: ColorValue red.
(Circle center: 125@125 radius: 100) displayStrokedOn: gc.
gc paint: (Graphics.Pattern from: FloatingBalloon sky).
(Circle center: 275@275 radius: 100) displayFilledOn: gc.
Application Developer’s Guide 12-23

BasicLibraries.pdf
BasicLibraries.pdf
BasicLibraries.pdf

Working With Graphics and Colors
For more information on paints and paint policies, see the “Colors
and Patterns” chapter in the Basic Libraries Guide. Paint preferences
typically follow the look policies for the different platforms. To set
these, send a paintPolicy: or paintPreferences:, respectively, message to
the graphics context.

When the paint is a pattern, you may need to set the repetition
phase, or tile phase. To set the phase, send a tilePhase: message to
the graphics context:

tilePhase: aPoint

Set the phase for tiling, in GC coordinates. The phase is a point
aligned with the origin of a tile defining the tiling pattern.

Clipping Properties
When updating a display, it is not always necessary to update the
entire display area, because only a relatively small area has
changed. A graphics context maintains a clipping region that causes
only that area to be updated; any graphic outside that area is not
drawn.

How to draw a display restricted to the clipping area is described in
Displaying a Restricted Area. Here we simply summarize the clipping
protocol.

clippingRectangle: aRectangleOrNil

Set the clipping region to aRectangleOrNil. If aRectangleOrNil is
nil, no clipping occurs other than clipping to the bounds of the
display medium.

clippingBounds

Create and answer the clipping rectangle, or the bounds of the
display medium if not clipping.

clippingRectangleOrNil

Create and answer the clipping rectangle, or nil if not clipping.

X and Y Offsets
The offset properties are managed by the translation of the graphics
context, as described under Shifting (Translating) the Display
Position.
12-24 VisualWorks

BasicLibraries.pdf

Animating Graphics
Scaling
Scaling is not supported for display surface graphics contexts, but is
supported for printing graphics contexts. The scale is specified by
sending a scale: message to the graphics context, a point value giving
the scaling for the x and y dimensions. For example, this example
prints the text string to a postscript file twice, with the dimensions and
font size doubled for the second:

| ps gc |
ps := PostScriptFile named: 'c:\temp\testPS.ps'.
gc := ps graphicsContext.
gc paint: ColorValue red.

'This is a test' displayOn: gc at: 20@20.
gc scale: 2@2.

'This is a test' displayOn: psgc at: 20@50.
ps close.

Animating Graphics
Animation is an illusion created by drawing a graphic object in
successive locations and erasing it in the abandoned locations,
perhaps modifying it slightly at the same time.

A direct approach to animating a graphic would be to:

1 Store the background to be obscured.

2 Draw the object.

3 Restore the background.

4 Repeat.

This approach works in some limited circumstances but generally
results in a side effect known as flashing. Flashing is caused by the
fact that the object is not visible during the time between its erasure
at the old location and its display at the new location. It looks like a
light flashing on and off.

Eliminating flashing requires a more sophisticated technique for
erasing, one that erases only the pixels that are not needed to depict
the object in its new location. VisualWorks provides a few
mechanisms for eliminating flashing.
Application Developer’s Guide 12-25

Working With Graphics and Colors
Moving a Static Object
A common animation technique involves moving a single image
around on the screen. This kind of animation is supported by two
methods in VisualWorks, both defined in VisualComponent for all of its
subclasses— Image, ComposedText, etc.

follow: locationBlock while: durationBlock on: aGraphicsContext

This method moves an image around on display surface. It
restores the background continuously without causing flashing.
LocationBlock supplies each new location, and durationBlock
supplies true to continue, and then false to stop.

moveTo: newLoc on: aGraphicsContext restoring: backGC

This method moves an image to a new location on a display
surface, restoring the background without causing flashing.
backGC must be a GraphicsContext on the retained display
medium containing the bits to be restored at the previous
location. The contents of backGC is updated after the move with
the new background.

To illustrate these two methods, we’ll use a more attractive
ExamplesBrowser, which we set up with:

ExamplesBrowser initialize.
gc := (ExamplesBrowser prepareScratchWindowOfSize: 298@219)
graphicsContext.gc medium background: (FloatingBalloon sky
asPattern).
gc medium display.

Also, the image to animate is provided by:

image := FloatingBalloon new image.
The image message returns an OpaqueImage, which is a masked
image.

The follow:while:on: message takes care of saving and restoring the
window background. What it requires is two blocks, one describing
the motion, and the other determining whether to continue or end the
animation.

i := j := 0.
[image follow: [i := j := i + 1.

(Delay forMilliseconds: 30) wait. i@j .]
while: [i+32<298 and: [j+32<219]]
on: gc.] fork
12-26 VisualWorks

Animating Graphics
We forked this process to allow other processing to continue, as
would normally be necessary in an animation application.

The moveTo:on:restoring: message requires more set up. While the
method updates the background to restore after each move, it needs
an initial background graphics context, and updates that. One
approach is to define a graphics context the same size as the image
to be displayed, and copy the background to it. For example:

backGC := (gc paintBasis
retainedMediumWithExtent: balloon image bounds extent)
graphicsContext.

backGC copyArea:
(Rectangle origin: 0@0 extent: balloon image bounds extent)

from: gc
sourceOffset: 0@0
destinationOffset: 0@0.

The messages used in this have all been described previously in this
chapter. With the initial background defined, the animation is simply:

[1 to: 150 do:
[:i | image moveTo: (i@i) on: gc restoring: backGC.
(Delay forMilliseconds: 30) wait]

] fork.
Here we used a simple iteration. In most cases, a more interesting
control structure will be needed.

Animating a Changing Object
More complicated effects involving changes in the graphic object,
such as a walking robot, or multiple objects all moving at the same
time, require a technique beyond those of the previous section. For
these situations, it is generally better to employ a technique known as
double buffering.

Double buffering involves drawing the next scene, typically on a
Pixmap, while the current scene is in the window. The Pixmap is then
displayed on the window, an operation that is instantaneous in
comparison with separately displaying the objects required to
assemble a scene. The Pixmap acts as a graphics buffer that stands
in for the window’s frame buffer—hence the term “double buffering.”
Application Developer’s Guide 12-27

Working With Graphics and Colors
For example, the Walker example class (load the Animation-Example
parcel) provides four images of a simple, four-legged creature,
depicting four stages of a walking sequence. Class methods return
OpaqueImages for each stage:

first := Walker first.
second := Walker second.
third := Walker third.
fourth := Walker fourth.

As usual, we use an ExamplesBrowser for the window:

ExamplesBrowser initialize.
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

Next, we set up a scratch Pixmap and its graphics context for
operating on the off screen buffer:

scratch := (Pixmap extent: gc medium extent) .
scratchGC := scratch graphicsContext .
scratchGC medium background: (gc medium background).

The last line is to ensure that the background color is correct,
matching the window. If the window has a pattern, as it did for
FloatingBalloon, that would be the background.

The frequency of refresh affects the animation; you don’t want it to be
either too fast or too slow. For this animation, delaying by 100
milliseconds is about right:

delay := Delay forMilliseconds: 100.
Finally, the animation itself is performed by creating one frame,
displaying it, creating the next frame, displaying it, and so on. A loop
on this sequence walks the creature across the window.

[0 to: 30 do: [:x |
scratchGC clear.

first displayOn: scratchGC at: x*12 @ 20.
delay wait.
scratch displayOn: gc.
scratchGC clear.

second displayOn: scratchGC at: x*12+2 @ 20.
delay wait.
scratch displayOn: gc.
scratchGC clear.

third displayOn: scratchGC at: x*12+4 @ 20 .
delay wait.
12-28 VisualWorks

Using Graphics in an Application
scratch displayOn: gc.
scratchGC clear.

fourth displayOn: scratchGC at: x*12+6 @ 20.
delay wait.
scratch displayOn: gc.
scratchGC clear.

third displayOn: scratchGC at: x*12+8 @ 20.
delay wait.
scratch displayOn: gc.
scratchGC clear.

second displayOn: scratchGC at: x*12+10 @ 20.
delay wait.
scratch displayOn: gc]
] fork.

In this example, we are preparing and displaying a Pixmap the size of
the entire window, and updating the whole window at each pass. This
can involve a lot more scene creation than is necessary. As an
alternative, you can specify a clipping rectangle for the window
graphics context, prepare only the relevant part of the off screen
Pixmap, then display the resulting image. Only the area in the clipping
rectangle will be updated, leaving the rest of the scene unchanged.

Using Graphics in an Application
Displaying graphic objects directly onto a window, as is done in most
of the examples in this chapter, allows the image to be damaged if
you move another window over the graphic window. In a live
application you need the window to redraw itself when this kind of
damage occurs.

The VisualWorks graphics framework includes a damage repair
mechanism that sends a displayOn: message to a view whenever its
containing window perceives that the view’s display has been
damaged. Using this mechanism in an application is quite simple.

Cursors
An image and a mask are used to define a cursor, as an instance of
Cursor. Several cursors are provided by VisualWorks, but you can
also create your own as well. For standard cursors, browse Cursor
class constants method category.
Application Developer’s Guide 12-29

Working With Graphics and Colors
Cursors can be bitmaps up to 32x32 bits. The usual size is 16x16
bits. The image must be a depth 1 bitmap (two colors) with a
monochrome palette. The colors only determine the foreground and
background; colored cursors are not supported at this time. The
mask must be a depth 1 bitmap with a coverage palette.

For example, the example class CursorExample defines images to
create a town crier cursor. To create the cursor, evaluate:

townCrier := Cursor image: CursorExample townCrierForCursor
mask: CursorExample townCrierMask
hotSpot: 1@1
name: 'myCursor'.

The image: and mask: arguments are as described above. The
hotSpot: argument is a point indicating the point in the cursor that
counts as the cursor’s location, or where it is pointing. The name: is
typically a String, and is only used to print the cursor’s name; it can be
assigned nil.

To display the cursor, the most usual method is to send a showWhile:
message to the cursor within a method. The argument is a block. The
cursor is displayed while the block is being processed, and then the
original cursor is restored. In CursorExample, this is demonstrated by
the showCursor method:

showCursor
| townCrier |
townCrier := Cursor image: CursorExample townCrierForCursor

mask: CursorExample townCrierMask
hotSpot: 1@1
name: 'myCursor'.

townCrier showWhile: [(Delay forSeconds: 5) wait]
An alternative is to use the show message. In a method, this causes
the cursor to be displayed until the method concludes, and then
restores the original cursor. This form look like:

showCursor
| townCrier |
townCrier := Cursor image: CursorExample townCrierForCursor

mask: CursorExample townCrierMask
hotSpot: 1@1
name: 'myCursor'.

townCrier show.
(Delay forSeconds: 5) wait
12-30 VisualWorks

Using Graphics in an Application
To exercise more control, you might need to store the current cursor,
then display your cursor, and restore the original cursor at the
appropriate time. To get the current cursor and store it for later, send
a currentCursor message to Cursor. To set the cursor, send
currentCursor: with the new cursor as argument. Then restore the
original cursor when the process is finished. For example:

original := Cursor currentCursor.
Cursor currentCursor: townCrier.

(Delay forSeconds: 5) wait.
Cursor currentCursor: original

On Windows platforms, the VM substitutes platform cursors for the
origin, top left, bottom right, corner, execute, and wait cursors if not
others, even if your application cursors are more appropriate. You can
turn off this substitution by evaluating:

Cursor useHostCursors: false.
To restore substitution of host cursors, set this to true.

Icons
Graphics are also used for window icons, the image displayed in the
top corner of a window, and on the minimized (collapsed) window.
The icon is created as an instance of Icon and assigned to the
window in its icon property.

An Icon can be defined either with a figure (image) and a shape
(mask) as has been shown before, or as a figure and a specified
transparent color. For example, the figure:transparentAtPoint: message
allows specifying the transparent color as the color at a point.

| gc |
ExamplesBrowser initialize.
gc := (ExamplesBrowser prepareScratchWindowOfSize: 300@150)

graphicsContext.
gc medium icon:

(Icon figure: FloatingBalloon balloon24Icon
transparentAtPoint: 1@1)
Application Developer’s Guide 12-31

Working With Graphics and Colors
Icons are typically 24x24 bits. In this example, the top left corner is an
appropriate reference color for transparency. The resulting window
shows the icon as expected.

For other creation methods, browse the Icon class methods. For
more about using icons in applications, refer to the GUI Developer’s
Guide.

As a Component in an Application Window

Graphics as Labels and Decoration
The GUI Painter allows you to use graphics as labels in the canvas
you design. For example, a graphic can be used as the label of a
button or other widget that takes a label. It can also be displayed in a
Label widget as a stand-alone decoration.

Add the widget to the canvas as usual. In the GUI Painter Tool for the
widget, check the Label is Image checkbox. In the message field, enter
the selector for the class message that returns the image.
12-32 VisualWorks

GUIDevGuide.pdf
GUIDevGuide.pdf

Using Graphics in an Application
As a Custom View
For dynamic graphics that change when the model changes, you
represent the graphic is a custom view, which is included in the
application GUI in a ViewHolder widget.

The application model triggers the displaying method whenever
necessary. A view gets display requests from two sources: the
window-repair mechanism and the application. Requests of the first
kind happen automatically. You arrange for the second in your
application.

Constructing an application model, view, and possibly a controller, for
presentation in a ViewHolder is beyond the scope of this section.
Refer to the GUI Developer’s Guide, for instructions.
Application Developer’s Guide 12-33

./GUIDevGuide.pdf

Working With Graphics and Colors
12-34 VisualWorks

13

Files

This chapter describes how VisualWorks operates on files and
directories (also referred to as “folders”).

Most VisualWorks file and directory operations are unified in the
abstract class Filename, with platform specific operations handed
down to its subclasses. By programming to the Filename protocol for
these operations, VisualWorks can support these operations and
remain a platform-portable environment.

As an environment for creating cross-platform portable applications,
VisualWorks provides mechanisms for constructing file names and
performing file operations in a platform-neutral manner. The actual
file name and operation is determined by the platform the
VisualWorks application is running on.

File input and output operations are performed by reading from and
writing to streams (subclasses of Stream) that are opened on a file.

File Names
The Filename class supports operations involving disk files and
directories. Filename is an abstract class, and directs the creation
message to the appropriate subclass. This keeps your file-creating
code general enough to run on any of the supported platforms.

Filenames themselves are a platform problem, due largely to platform
specific separator characters in path names and disk volume
specifiers. LogicalFilename and its subclass PortableFilename provide
mechanisms for storing absolute and relative pathnames in a
platform neutral form.
Application Developer’s Guide 13-1

Files
Creating a Filename
To create a simple file or directory name object, send asFilename to a
string identifying the desired file or directory:

| name filename |
name := 'test.tmp'.
filename := name asFilename.
^filename

In this case the filename includes no directory information, and so the
named file is relative to whatever the current directory is. You can
specify path information in the string as well, for example:

'mydirectory\test.tmp' asFilename
'c:\mydirectory\test.tmp' asFilename
'/usr/tmp/test.tmp' asFilename

The disk file or directory is not affected by the mere creation of a
Filename object. No link exists to the disk file or directory, so you do
not need to release an external resource at this point.

Constructing a Portable Filename
While the different operating systems supported by VisualWorks all
use directory paths for file names, they differ in significant ways. Unix/
Linux systems use the forward slash (/), Windows systems use a
backward slash (\), and Macintosh systems use a colon (:). Further,
Unix/Linux systems unify all directory structures under a single
hierarchy, while Windows systems use drive letters and machine
names, and Macintosh systems allow naming each disk drive. A
portable application must be able to use work with file names
independently of these differences. The method described in the
previous section, if applied to a full path name, is not portable.

To create a portable file name from a Filename, send the
asLogicalFileSpecification message to it, for example:

| name filename |
name := 'mydirectory\test.tmp'.
filename := name asFilename asLogicalFileSpecification.
^filename

The path name can be absolute or relative, and may include path,
disk, and machine names, and may begin with a system variable
specifying a path.

System variables are specified with the syntax:

$(variablename)
13-2 VisualWorks

Creating a File or Directory
For example, VisualWorks assumes that its home directory is set in
the VISUALWORKS system variable. In the Settings Tool there are
several references to directories using this variable, for example in
specifying parcel paths, such as $(VISUALWORKS)/parcels. Depending
on the path, the result is either an instance of LogicalFilename or
PortableFilename:

• If the path is absolute, starting with root, or with a machine or
disk specification, the system renders it as a LogicalFilename. The
result is not generally portable.

• If the path is relative, or begins with a system variable, the
system renders it as a PortableFilename. The result is generally
portable.

To maximize portability, use only constructs that produce a
PortableFilename. Use system variables to ensure a portable root path
segment.

Creating a File or Directory
When the disk file does not already exist, it is created when a write
stream is opened on it, or when the first character is written to it. A
directory must be explicitly created.

The technique shown in the basic step works well for creating a file in
the working directory. You can also use that approach with a full
pathname that includes directory separators, but the separator
character differs across platforms, so you would be compromising the
portability of your application.

Creating an Empty File
VisualWorks creates an empty file as soon as a write stream
(WriteStream) is opened on the file name. A simple way to create an
empty file is to open the write stream, and then close it again:

| newFile stream |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream close.
^stream

Normally, you would write to the stream before closing, writing data to
the file.
Application Developer’s Guide 13-3

Files
Creating a New Disk Directory
To create a directory, send a makeDirectory message to the Filename
representing the desired directory. The last path component is
created as a subdirectory of the directory specified by the prefixed
path.

| directory |
directory := 'test' asFilename. "Directory relative to current directory"
directory makeDirectory.
directory := 'c:\temp\test' asFilename. "Absolute directory path"
dirctory makeDirectory.
^directory exists

If the disk directory already exists, or if the parent directory does not
exist, an error results.

Getting File Information
Often you need to collect information about a file; whether it exists, its
size, directory, and so on. VisualWorks provides messages for
retrieving this kind of information.

Testing for Existence
The exists message checks for the existence of a Filename on disk. If
the disk file or directory exists, true is returned.

| unlikelyFile |
unlikelyFile := 'qqqqzzzz' asFilename.
^unlikelyFile exists

Getting the Size of a File
Send a fileSize message to the Filename. If the file exists, the number
of characters it contains is returned. If the file does not exist, an error
results. If the Filename represents a disk directory rather than a disk
file, zero is returned.

| newFile stream |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.
^newFile fileSize.
13-4 VisualWorks

Getting File Information
Getting and Setting the Working Directory
The default directory for file operations is held in the shared variable
DefaultDirectoryString, which is initially set to the OS current directory
upon starting VisualWorks. To get this directory, send a
defaultDirectory message to the Filename class. A Filename representing
the working directory is returned.

| workingDir |
workingDir := Filename defaultDirectory.
^workingDir

To change the current directory, send beCurrentDirectory to a Filename
specifying a directory. For example:

(Filename named: '\vw7.2\bin') beCurrentDirectory.
This both changes the OS current directory for the VisualWorks
session and updates DefaultDirectoryString.

Note, however, especially for multi-threaded operations (multi-
process UI), that the OS current directory can change underneath the
current process without DefaultDirectoryString being updated. If this
occurs, a file access operation running in one process and relying on
a relative file name might produce incorrect results (attempt to
access a file in the wrong location) if another process changes only
the underlying OS current directory.

This happens in Windows environments, for example, if the native file
dialog is used to navigate the file system, because the dialog
changes the OS current directory during navigation without updating
DefaultDirectoryString. The correct directory is restored, however, once
the dialog is closed.

Accordingly, it is risky to rely on relative path names for file operations
in a multi-process application, and file access should be protected by
constructing an absolute path from a relative path, and using that for
file access.

To get the OS current directory, send:

Filename findDefaultDirectory.

Getting the Parent Directory
Send a directory message to the Filename. A Filename representing the
parent directory is returned.
Application Developer’s Guide 13-5

Files
| dir parentDir |
dir := Filename defaultDirectory.
parentDir := dir directory.
^parentDir

Getting the Parts of a Pathname
A Filename has a head and a tail. The head is the directory part of
the pathname, and the tail is the final file or directory name. The head
and tail messages return their respective parts as strings:

| filename pathString dirString fileString |
filename := Filename defaultDirectory.
pathString := filename asString.
dirString := filename head.
fileString := filename tail.
^'
PATH: ', pathString, '
DIRECTORY: ', dirString, '
FILE: ', fileString

Distinguishing a File from a Directory
You can test whether a Filename is a file or a directory by sending the
isDirectory message to it. The message returns true if the filename is
a directory, and false otherwise. If neither a file nor a directory exists
with the matching name, an error results.

| dir |
dir := Filename defaultDirectory.
^dir isDirectory

Getting the Access and Modification Times
Depending on the operating system, you can retrieve specific access
information for a file.

To get the access information, send a dates message to the Filename.
This returns a dictionary. Send an at: message to the dictionary with
one of these arguments:

#accessed

The time the file’s contents were last accessed.

#modified

The time the file was last modified.
13-6 VisualWorks

Getting File or Directory Contents
#statusChanged

The time of the most recent change in external attributes of the
file, such as ownership and permissions.

If the operating system does not support the requested type of
information, nil is returned; otherwise, an array containing a date and
a time is returned.

| newFile stream datesDict modifyDates modifyDate modifyTime |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.
datesDict := newFile dates.
modifyDates := datesDict at: #modified.
modifyDates isNil

ifFalse: [
modifyDate := modifyDates first.
modifyTime := modifyDates last].

^'
MODIFIED: ', modifyDate printString, ' at ', modifyTime printString

Getting File or Directory Contents
The contents of a disk file can be accessed in the form of a string.
The contents of a directory can be accessed in the form of an array of
strings naming files and subdirectories.

Getting the Contents of a File
Send a contentsOfEntireFile message to a Filename representing a disk
file. A string is returned.

| newFile stream contents |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.
contents := newFile contentsOfEntireFile.
^contents
Application Developer’s Guide 13-7

Files
Getting the Contents of a Directory
Send a directoryContents message to a Filename representing a disk
directory. An array of file and subdirectory names is returned.

| workingDir contents |
workingDir := Filename defaultDirectory.
contents := workingDir directoryContents.
^contents

System Variables
Operating systems use system variables for a variety of purposes,
typically related to the directory path locations of required resources.
VisualWorks relies on one system variable, $(VISUALWORKS), as
the directory whose subdirectories contain its resources. A common
system variable is PATH, which holds a list of directory paths to
executable programs.

Within VisualWorks, system variables are written as above, with the
variable name enclosed in parentheses, and preceded by $.

System variables are generally used to specify a directory path
relative to the value held in the variable. To create a Filename instance
from a String containing a system variable, send an
expandEnvrionmentIn: message to Filename:

Filename expandEnvironmentIn: '$(VISUALWORKS)\bin'
This returns a ByteString. To get a Filename instance, send asFilename
to the ByteString:

(Filename expandEnvironmentIn: '$(VISUALWORKS)\bin') asFilename

Storing Text in a File
Putting data into a disk file involves using a stream to funnel the
characters to the file. A stream holds onto an external resource,
which must be released by closing the stream.

When your intention is to create a new disk file, it’s a good idea to test
the Filename to make sure a file with the same name does not already
exist. When your application will be deployed on a UNIX system, it’s
also advisable to make sure the user has the appropriate file
permissions.
13-8 VisualWorks

Storing Text in a File
Writing a Stream to a File
The basic way of writing a stream to a file overwrites any existing
contents in the file. In many cases, this is acceptable, but it is the
responsibility of your application to do the right thing.

To write to a file, create a write stream on the file by sending a
writeStream message to the Filename. Then write to the stream by
sending a nextPutAll: message to the stream, with a string as
argument. The write operation can be repeated for a series of strings,
and each successive string is appended to the file until the file is
closed.

Close the stream by sending a close message to it. This closes the
file and releases the resource.

| newFile stream |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.
^newFile contentsOfEntireFile

Appending Text to a File
Often you want to append data to a file rather than write the whole file
over again. To open a file for appending data, send an appendStream
message to the Filename:

| filename stream |
filename := 'testFile' asFilename.

"Creating the file."
stream := filename writeStream.
stream nextPutAll: 'FIRST STRING'.
stream close.

"Appending"
stream := filename appendStream.
stream nextPutAll: ' -- SECOND STRING'.
stream close.
Application Developer’s Guide 13-9

Files
File System Maintenance Operations

Deleting a File or Directory
For file maintenance operations, your application may need to delete
directories or files.

To delete either a file or a directory, send a delete message to the
Filename. If necessary, confirm that the disk file or directory to be
deleted exists by sending an exists message to the Filename.

| newFile stream pretest posttest |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.
pretest := newFile exists.
newFile delete.
posttest := newFile exists.
^'
EXISTS BEFORE DELETION: ', pretest printString, '
EXISTS AFTER DELETION: ', posttest printString.

On operating systems such as UNIX that support multiple pathnames
for the same physical disk file or directory, deleting as shown here
removes the reference that is identified by the pathname, but it does
not delete the physical file or directory if another reference exists.

Copying a File
To make a copy of a file, send a copyTo: message to the Filename. The
argument is a string containing the pathname of the copy. If the
Filename represents a directory or a nonexistent disk file, an error
results.

| newFile stream |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.
newFile copyTo: 'testFile.tmp'.
^'testFile.tmp' asFilename exists.
13-10 VisualWorks

Comparing Two Files or Directories
Moving a File
To move a file to another directory, send a moveTo: message to the
Filename. The argument is a string containing the new pathname,
which can include a different directory. If the Filename represents a
directory or a nonexistent disk file, an error results.

| newFile stream |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.
newFile moveTo: 'testFile.tmp'.
^'testFile.tmp' asFilename exists.

Renaming a File
To rename a file send a renameTo: message to the Filename. The
argument is a string containing the new pathname, which can include
a different directory. If the Filename represents a directory or a
nonexistent disk file, an error results.

Renaming a file is more efficient than moving the file.

| newFile stream |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.
newFile renameTo: 'testFile2.tmp'.
^'testFile2.tmp' asFilename exists.

Comparing Two Files or Directories
It is often necessary to compare the contents of files or directories.
You do this essentially by string comparisons on the contents of the
files or directories, as shown in the following sections.

Compare Filenames
Two Filenames are equal when they have the same pathname. To
compare two filenames, send an = message to one Filename. The
argument is the second Filename. If they have the same pathname
(that is, they point to the same physical disk file), true is returned.

| file1 file2 |
file1 := 'fileOne' asFilename.
file2 := 'fileTwo' asFilename.
Application Developer’s Guide 13-11

Files
pathsAreEqual := (
file1 = file2).

^'
PATHS ARE EQUAL: ', pathsAreEqual printString '

Compare File Contents
To compare the contents of two disk files, get the contents of each file
by sending contentsOfEntireFile messages to the Filenames. Then send
an = message to one of the resulting strings, with the other string as
the argument.

| file1 file2 stream pathsAreEqual contentsAreEqual |
file1 := 'fileOne' asFilename.
file2 := 'fileTwo' asFilename.
stream := file1 writeStream.
stream nextPutAll: Object comment.
stream close.
file1 copyTo: file2 asString.
pathsAreEqual := (

file1 = file2).
contentsAreEqual := (

file1 contentsOfEntireFile = file2 contentsOfEntireFile).
^'
PATHS ARE EQUAL: ', pathsAreEqual printString, '
CONTENTS ARE EQUAL: ', contentsAreEqual printString.

Compare Two Directories
To compare the contents of two disk directories, get the contents of
each directory by sending directoryContents messages to the
Filenames. Then send an = message to one of the resulting arrays,
with the other array as the argument.

| dir1 dir2 pathsAreEqual contentsAreEqual |
dir1 := Filename defaultDirectory.
dir2 := dir1 directory.
pathsAreEqual := (

dir1 = dir2).
contentsAreEqual := (

dir1 directoryContents = dir2 directoryContents).
^'
PATHS ARE EQUAL: ', pathsAreEqual printString, '
CONTENTS ARE EQUAL: ', contentsAreEqual printString.
13-12 VisualWorks

Printing a File
Printing a File
Some operating systems support printing a text file directly, and
others require that it first be converted to PostScript or another
printer-specific format. VisualWorks supports several approaches for
printing files. Only basic text printing is covered here.

Print a Text File
The hardcopy message provides a basic print command for text files
that works regardless of the operating system.

Get the contents of the text file by sending a contentsOfEntireFile
message to the Filename. Convert the resulting string to a
ComposedText by sending an asComposedText message to it. Then,
print the composed text by sending a hardcopy message to it.

| newFile stream contents composedText |
newFile := 'testFile' asFilename printTextFile.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.
contents := newFile contentsOfEntireFile.
composedText := contents asComposedText.
composedText hardcopy.

Printing a File Directly
Some operating system environments support printing a text file
directly. This avoids the overhead of converting the text to a
ComposedText.

Send a printTextFile message to the Filename. If text file printing is not
supported by the operating system, an error results.

| newFile stream |
newFile := 'testFile' asFilename printTextFile.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.
newFile printTextFile
Application Developer’s Guide 13-13

Files
Writing and Reading Data Fields
By using a designated character, such as a comma or a colon, to
separate fields of textual data, you can use a text file as a basic form
of database.

To build the records and fields, create a block in which, for each field
of data, a nextPutAll: message is sent to the stream with the data
string as argument, followed by a nextPut: message with the separator
character as argument.

Send a valueNowOrOnUnwindDo: message to the data-writing block.
The argument is another block that closes the stream by sending a
close message to it.

| dataFile stream separator writingBlock |
dataFile := 'dataFile' asFilename.
separator := $,."comma"
stream := dataFile writeStream.
writingBlock := [

ColorValue constantNames do: [:color |
stream nextPutAll: color.
stream nextPut: separator]].

writingBlock valueNowOrOnUnwindDo: [stream close].
Files created as above can also be read back. Often, database
programs also have an export capability for writing comma delimited
files, or files using some other character delimiter. You can use a
stream to read these files as well.

Create a block in which the next field of data is fetched by sending an
upTo: message to the stream, with the separator character as the
argument. This is repeated by placing it within an inner block that is
repeated until the end of the stream is encountered.

Send a valueNowOrOnUnwindDo: message to the data-reading block.
The argument is another block that closes the stream by sending a
close message to it.

| dataFile stream separator writingBlock colorNames readingBlock |
dataFile := 'dataFile' asFilename.
separator := $,."comma"
"Write data"
stream := dataFile writeStream.
writingBlock := [

ColorValue constantNames do: [:color |
stream nextPutAll: color.
stream nextPut: separator]].
13-14 VisualWorks

Setting File Permissions
writingBlock valueNowOrOnUnwindDo: [stream close].
"Read data"
stream := dataFile readStream.
colorNames := OrderedCollection new.
readingBlock := [

[stream atEnd] whileFalse: [
colorNames add: (stream upTo: separator)]].

readingBlock valueNowOrOnUnwindDo: [stream close].
^colorNames

Setting File Permissions
On operating systems such as UNIX that support file and directory
permissions, the permission to change a file can be added or
removed. The most general permission is affected—when possible,
the permission change applies to everyone else in addition to the
current user.

You can also ask a Filename whether the associated disk file or
directory can be written to, which is a portable operation that can be
used on any operating system.

• To remove the permission to change the contents of a file or
directory, send a makeUnwritable message to the Filename.

• To restore the writing permission, send a makeWritable message.

• To find out whether the writing permission is enabled, send a
canBeWritten message. If the file or directory does not exist, a
response of true indicates that the parent directory is writable.
The canBeWritten test works on all operating systems.

"Print it"
| newFile stream removed restored |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.
newFile makeUnwritable.
removed := newFile canBeWritten.
newFile makeWritable.
restored := newFile canBeWritten.
^'
PERMISSION REMOVED: ', removed printString, '
PERMISSION RESTORED: ', restored printString.
Application Developer’s Guide 13-15

Files
Unix Volume List
On UNIX and Linux systems, you can create a customized set of
volumes to search for filenames. This can reduce the time spent
searching for files in a large filesystem.

To specify volumes, create a text file named .stvolumes in your
$HOME directory (~/.stvolumes). Each line is a pattern of a volume to
include in a search. For example:

/bigfs/vw/distr
/src
/bigfs/myWork
13-16 VisualWorks

14

Binary Object Files (BOSS)

The VisualWorks Binary Object Streaming Service (BOSS) allows
you to store objects in a compact, binary format in an external file.
Typically, BOSS is used to store object instances, rather than classes,
but there are cases for storing classes as well.

For many of the uses to which BOSS has been employed in the past,
parcels provide a more efficient mechanism. However, parcels do not
yet support an object streaming interface, and so BOSS remains the
only supported method for this.

BOSS is intended for storing data objects, not interface objects.
Accordingly, avoid using BOSS for storing objects that are tied to the
windowing system or the execution machinery, such as Window,
Context, and BlockClosure. Also, avoid circular references involving
interface objects, such as an application model that holds onto a
window that holds onto the application model, and so on.

To begin using BOSS, you must first load the BOSS support parcel.

Using the Parcel Manager (select Tools > Parcel Manager... in the
Launcher window), open the “Suggestions” category for Application
Development, and click on BOSS; then select Load... from the <Operate>
menu.

Storing Objects in a BOSS File
You store objects to a BOSS file by creating a write stream, and then
writing binary data onto the stream, as follows:

1 Create a data stream, typically a writeStream on a Filename.
Application Developer’s Guide 14-1

Binary Object Files (BOSS)
2 Create a BinaryObjectStorage by sending an onNew: message to
that class, with the data stream as argument.

3 Store each data object by sending a nextPut: message to the
BinaryObjectStorage, with the data object as argument.

This operation should be enclosed in a block, and with a ensure:
message sent to that block. The argument is another block in
which the stream is closed. This guards against leaving the file
open when an error or interrupt occurs.

| dataObject dataStream bos |
dataObject := PointExample x: 3 y: 4 z: 5.
dataStream := 'points.b' asFilename writeStream.
bos := BinaryObjectStorage onNew: dataStream.
[bos nextPut: dataObject]

ensure: [bos close].

Storing a Collection of Objects
Send a nextPutAll: message to the BinaryObjectStorage, instead of
nextPut:, with a collection of objects as argument. Each element in the
collection is stored separately, enabling you to access them
separately later.

| dataCollection bos |
dataCollection := ColorValue constantNames.
bos := BinaryObjectStorage

onNew: 'colors.b' asFilename writeStream.
[bos nextPutAll: dataCollection]

ensure: [bos close].

Appending an Object to a File
1 Create a read-append data stream, by sending a

readAppendStream message to the Filename.

2 Create a BinaryObjectStorage by sending an onOld: message to that
class, with the data stream as the argument.

3 Set the writing position to the end of the file by sending a
setToEnd message to the BinaryObjectStorage.

4 For each object to be appended, send a nextPut: message to the
BinaryObjectStorage, the data object as argument.

| colorNames newColor bos |
"First create a file containing color names."
colorNames := ColorValue constantNames.
bos := BinaryObjectStorage
14-2 VisualWorks

Getting Objects from a BOSS File
onNew: 'colors.b' asFilename writeStream.
[bos nextPutAll: colorNames]

ensure: [bos close].
"Then append a new color name."
newColor := #mudBrown.
bos := BinaryObjectStorage

onOld: 'colors.b' asFilename readAppendStream.
bos setToEnd.
[bos nextPut: newColor]

ensure: [bos close].

Getting Objects from a BOSS File
You can retrieve either the entire contents of a BOSS file, or
selectively retrieve individual objects stored in it.

Retrieving All Objects
To retrieve the entire contents of a BOSS file:

1 Create a data stream, typically by sending a readStream message
to a Filename that represents the data file.

2 Create a BinaryObjectStorage by sending an onOld: message to that
class, with the data stream as argument. (When you do not
intend to write new objects onto the file, send an onOldNoScan:
message instead; this is faster because it does not scan the data
file as it must before writing more data.)

3 Get the objects in the file by sending a contents message to the
BinaryObjectStorage. An array containing the stored objects will be
returned.

4 Close the BinaryObjectStorage (which also closes the data stream).

| colorNames bos array |
"First create a file containing color names."
colorNames := ColorValue constantNames.
bos := BinaryObjectStorage

onNew: 'colors.b' asFilename writeStream.
[bos nextPutAll: colorNames]

ensure: [bos close].
Application Developer’s Guide 14-3

Binary Object Files (BOSS)
"Read the file contents"
bos := BinaryObjectStorage

onOldNoScan: 'colors.b' asFilename readStream.
[array := bos contents]
ensure: [bos close].

^array

Searching Sequentially for an Object
For selective access to the objects in the data stream, you can read
them sequentially until you find the desired object.

1 Create a block in which you test whether the end of the data
stream has been reached by sending an atEnd message to the
BinaryObjectStorage.

2 Send a whileFalse: message to the block. The argument is another
block, in which you get the next object in the data stream by
sending a next message to the BinaryObjectStorage. Test the object
to find out whether it is the desired object; if so, send a setToEnd
message to the BinaryObjectStorage to break out of the loop.

3 Close the BinaryObjectStorage.

| points bos foundObject nextObject |
"First create a file containing points."
points := OrderedCollection new.
1 to: 100 do: [:coord |

points add: (PointExample x: coord y: coord z: coord)].
bos := BinaryObjectStorage

onNew: 'points.b' asFilename writeStream.
[bos nextPutAll: points]

ensure: [bos close].

"Search sequentially."
foundObject := nil.
bos := BinaryObjectStorage

onOldNoScan: 'points.b' asFilename readStream.
[[bos atEnd]

whileFalse: [
nextObject := bos next.
(nextObject z > 45)

ifTrue: [
foundObject := nextObject.

bos setToEnd]]]
ensure: [bos close].

^foundObject
14-4 VisualWorks

Getting Objects from a BOSS File
Getting an Object at a Specific Position
Another selective approach is to position the stream at the beginning
of the desired object. This technique, although swifter than reading
each object sequentially, assumes that your application keeps a
position index for each object in the file when the objects are stored.

1 Create a dictionary to be used as a lookup table. Each entry in
the dictionary will associate an object’s identifier with that object’s
position in the BOSS file.

2 Before each object-writing operation, record the binary stream’s
position in the lookup table.

3 After each object-writing operation, send a forgetInterval: message
to the binary stream. The argument is an Interval beginning with
the binary stream’s index before the write operation and ending
with the next index. This assures that the BinaryObjectStorage will
not make use of back-references to the object just stored when
storing future objects; such back-references thwart random
access to stored objects.

4 When reading the desired object, first send a position: message
to the binary stream. The argument is the object’s position, as
recorded in the lookup table.

5 To get the object at that position, send a next message to the
binary stream.

| bos foundObject positions prevIndex |
positions := Dictionary new.
bos := BinaryObjectStorage onNew: 'colors.b' asFilename
writeStream.
prevIndex := bos nextIndex.

"First create a file containing colors."
[ColorValue constantNames do: [:name |

positions at: name put: bos position.
bos nextPut: (ColorValue perform: name).
bos forgetInterval: (prevIndex to: bos nextIndex).
prevIndex := bos nextIndex]]
ensure: [bos close].

"Get the object at a certain location."
bos := BinaryObjectStorage onOld: 'colors.b' asFilename
readStream.
[bos position: (positions at: #chartreuse).

Application Developer’s Guide 14-5

Binary Object Files (BOSS)
foundObject := bos next]
ensure: [bos close].

^foundObject

Storing and Getting a Class
A BinaryObjectStorage is most often used to store instances rather than
classes, relying on the virtual image to contain the class definitions.
When the virtual image that is to read a BOSS file does not contain
the necessary classes, you can use BOSS, parcels, or file-ins to add
the necessary class definitions.

Unlike the file-in procedure, the BOSS technique does not normally
require the presence of any compilers in the receiving image. Thus,
you can use BOSS to introduce a new or redefined class into a
deployment image, perhaps as a means of delivering a patch that
fixes a bug.

Note, however, that BOSSing in a class does require the Smalltalk
compiler to be present when any superclass of that class varies in
structure between the receiving image and the original image. In
particular, if any superclass varies between these two images with
respect to the number or order of its instance variables, BOSS will
attempt to invoke the Smalltalk compiler to recompile the class’s
methods.

When a collection of classes is stored using BOSS, they are
automatically sorted into superclass order. BOSS writes the same
information that fileOut does: the class definition, method definitions,
and an expression that initializes the class if a class initialize method
is present.

By default, BOSS stores the source code for methods, the class
comment, and the protocols. To control whether source code is
stored with a class, send a sourceMode: message to the binary stream
before storing the classes. The argument is either #discard, to omit
source code, or #keep, to include source code.

Note that BOSS handles SourceFileManagerWarning exceptions coming
from SourceFileManager when the source file or parcel cannot be
accessed. Therefore, if the source code for compiled methods being
written to the BOSS stream cannot be found, the usual warnings
regarding the parcel and/or source file will not be displayed.
14-6 VisualWorks

Storing and Getting a Class
Storing a Collection of Classes
To store a collection of classes in a BOSS file, send a nextPutClasses:
message to a binary stream. The argument is a collection containing
the desired classes.

Loading a Collection of Classes
To load a collection of classes from a BOSS file, send a nextClasses
message to a binary stream on the file. (In the example, loading the
Date class has no effect because the image already contains the
same definition of that class.)

| file bos |
file := 'date.b' asFilename.
bos := BinaryObjectStorage onNew: file writeStream.

"Write the Date class to a file."
[bos nextPutClasses: (Array with: Date)]

ensure: [bos close].

"Read the file contents"
bos := BinaryObjectStorage onOldNoScan: file readStream.
[bos nextClasses]

ensure: [bos close].
^file fileSize

Converting Data After Changing a Class
When you store instances of an object in a BOSS file and then add
an instance variable or otherwise change the definition of that
object’s class, BOSS detects the incompatibility when it tries to read
the old data file.

For example, suppose the PointExample class began its life
representing a two-dimensional point, and later you extend it to
represent three-dimensional points by adding a z instance variable.
The following procedure shows how to arrange for old files containing
two-dimensional instances of PointExample to be read without error.

1 In the class whose definition has been changed, create a class
method named binaryRepresentationVersion. This method is
responsible for returning a version identifier, commonly a
sequential number or a descriptive string. (The method must be
rewritten each time the class definition is changed, assuming
BOSS files relying on the prior version of the class definition will
need to be read.)
Application Developer’s Guide 14-7

Binary Object Files (BOSS)
2 Create a class method named binaryReaderBlockForVersion:format:.
This method must return a block that converts the old object to a
new instance. The block takes one argument, an array of the
instance variables (for pointer-type objects) or a ByteString (for
byte-type objects). The block typically assigns the data values
from the old instance variables and then sends a become:
message to the old object; the argument is the new instance. The
first method argument (oldVersion) identifies the version (nil, by
default, and later defined by the method you created in the
preceding step) and enables you to distinguish between old data
and current data. The second method argument (oldFormat) is
typically ignored except for internal system purposes.

binaryRepresentationVersion
"First version (nil) had x and y coordinates.
Second version (2) added a z coordinate."
^2

binaryReaderBlockForVersion: oldVersion format: oldFormat

| newPoint |
oldVersion isNil ifTrue: [

^[:oldPoint |
newPoint := PointExample new.

"Each oldPoint obtained from the BOSS file is an Array
that contains the state of an old instance of PointExample.
The array elements are the values of the old instance’s
variables, in the order in which the old version of
PointExample defined them."

newPoint x: (oldPoint at: 1).
newPoint y: (oldPoint at: 2).
newPoint z: 0.
oldPoint become: newPoint]].

Customizing the Storage Representation
By default, BOSS stores the entire contents of an object, including its
dependents and the dependents of its variables. Although this default
is appropriate for most data objects, it results in a BOSS error when
an interface object is a dependent of a data object that is being
BOSSed out.
14-8 VisualWorks

Performance considerations
This kind of dependency is often encountered in the case of an
instance variable that holds onto a collection when the collection is
displayed in a list widget. BOSSing a copy of the collection is one way
to remove the dependency.

The example shows a technique for controlling which parts of an
object are BOSSed out. This technique is also useful when an
instance variable holds an object that points back to the original
object.

The basic approach is to create an instance method named
representBinaryOn: in the class whose BOSS representation you want
to customize. The method typically returns a instance of MessageSend,
which is created by the following expression:

MessageSend receiver: aReceiver
selector: aSelector
arguments: aCollection

The argument aReceiver identifies the class that is to create an
instance upon reading an object. This is typically the object's class,
but it could also be a factory of instances.

The argument aSelector is the name of the instance-creation method
that is to be sent to aReceiver when the data is read by BOSS.

The argument aCollection is a collection of data values, typically the
values of the object's instance variables that are to be used by the
creation message to instantiate the object being read from BOSS.

representBinaryOn: bos
"Represent a PointExample by its x, y and z coordinates
plus the message and receiver for creating an instance from
those coordinates."
^MessageSend

receiver: self class
selector: #x:y:z:
arguments: (Array with: x with: y with: z).

Performance considerations
If you have a BOSS stream to which objects are being written on a
one-by-one basis, such as when repeatedly sending the next:
message or when sending the nextPutAll: message, processing each
object will incur some overhead, due to the creation of a writer object
which represents the object.
Application Developer’s Guide 14-9

Binary Object Files (BOSS)
There are two ways to avoid this performance penalty. The first one is
to enclose all objects inside a collection, such as OrderedCollection,
and then send the message nextPut: with the ordered collection as an
argument. Since there is only one object from which all the data to be
written can be reached, only one writer object is created and the
overhead is avoided.

The second way is to configure BOSS to use a faster way to create
writer objects. This behavior is controlled by the messages
shouldUpdateRegistryObjects and shouldUpdateRegistryObjects:,
understood by the class BinaryObjectStorage. By default, BOSS will
always update registry objects when creating a new writer object
instance. This ensures that the shared variables Smalltalk and
Processor have their expected values, and that any change to these
classes is reflected by the operation of BOSS. Nevertheless, since
these hardly ever change, you may want to configure BOSS to cache
the values of these globals by evaluating

BinaryObjectStorage shouldUpdateRegistryObjects: false
This will result in much faster operation of BOSS when writing
objects. Resetting the configuration by evaluating

BinaryObjectStorage shouldUpdateRegistryObjects: true
also clears the internal registry object cache used by BOSS.
14-10 VisualWorks

15

Exception and Error Handling

Exceptions are unusual or undesired events that can occur during the
execution of a VisualWorks application. While not all exceptions are
errors, errors are among the most important exceptions that your
application needs to handle.

When an exception occurs, an application might need to take some
special action. For example, if an application is reading data from a
file and unexpectedly encounters an end-of-file, it might stop
processing and display an error message. Using the exception
handling features in VisualWorks, the application can trap the
exception and invoke the special processing.

ANSI Exception Handling
VisualWorks implements an ANSI compliant, class-based exception
handling mechanism. All new applications should use the mechanism
described in this section. For most purposes, and in most parts of the
system, this class-based mechanism has replaced the earlier Signal
based mechanism.

The most conspicuous difference from earlier exception handling
mechanisms is that ANSI style exceptions and errors are represented
as classes in the Exception hierarchy, rather than as instances of
Signal. Support for the Signal mechanism is retained in the system,
and is still used by parts of the system. There may be cases that the
Signal mechanism is preferred. In general, however, we recommend
that you use the class-based system, because it is ANSI Smalltalk
compliant.
Application Developer’s Guide 15-1

Exception and Error Handling
Adapting Signal-based Code
There are a few things you must do to old code to continue using the
Signal mechanism.

One change you do not need to make is the use of the signal
message. Rather than change the meaning of signal so that it raises
an exception, as we would in order to be in accord with the X3J20
specification, we have left signal unchanged and introduced the
message raiseSignal. This eliminates the need to change your code.

Reinitializing Signal Creators and Initializers
The Signal creation code has changed, so you need to reinitialize all
of your signals to register them with the new Exception hierarchy.

Name Signals
Because of the possibility of duplicate instances, signal identity
cannot be used. Each signal creation message invokes
nameClass:message:.

The standard signal creation looks something like:

Object errorSignal newSignal
notifierString: 'problem';
nameClass: self message: #problem.

Do Not Depend on Signal noHandlerSignal
Exceptions are not guaranteed to signal an UnhandledException as the
old system did. For example, Notifications do not because they are
considered ignorable.

However, you can handle noHandlerSignal to ensure that there are no
walkbacks, or to give all other handlers the priority. To use Signal
noHandlerSignal, for example to capture notifications, you should
change the method. For example, if you have a method such as:

^Signal noHandlerSignal
handle: [:ex |

ex parameter getSignal = self class someSignal
ifFalse: [ex reject].
^true]

do: [self class someSignal raiseRequest]
"ask outerscope caller"

replace it with the equivalent:

^[self class someSignal raiseRequest]
on: self class someSignal
do: [:exp | exp isNested ifTrue: [exp pass] ifFalse: [true]] .
15-2 VisualWorks

Exception Classes
If someSignal #defaultAction is to answer true, then this is equivalent to:

^self class someSignal raiseRequest.

Exception Classes
Exceptions are represented as instances of classes, with Exception at
the top of the class hierarchy. It has several direct subclasses, two of
the most important being Error and Notification. Subclasses of all
these define more specific kinds of exceptions which can be trapped
by your application. Your application can define its own Exception
subclasses for special exceptions and errors.

Each exception class either defines or inherits a defaultAction
message, which is invoked when that exception occurs unless a
handler is defined for it. The table below lists some common
exception classes with the exceptional event represented by the class
and the default action it performs.

Exception Classes and Their Default Actions

All instances of Exception and its subclasses respond to the message
description by returning a string that describes the actual exception.

Exception Class Exceptional Event Default Action

ArithmeticError Any error evaluating an
arithmetic operator

Inherited from Error

Error Any program error Open a notifier

MessageNotUnderstood A message was sent to an
object that did not define a
corresponding method

Inherited from Error

Notification Any unusual event that
does not impair continued
execution of the program

Do nothing, continuing
executing

Warning An unusual event that the
user should be informed
about

Display a Yes/No
question dialog and
return a Boolean
value to the signaler

ZeroDivide An attempt to divide by
zero

Inherited from
ArithmeticError
Application Developer’s Guide 15-3

Exception and Error Handling
Your application can have its own exception conditions, which are
distinct from those provided with VisualWorks. To identify the
exception, create a subclass of Exception or Error, as appropriate. If
special handling is required for the exception, you must define a
handler for it, as explained in the following sections.

The occurrence of an exception normally causes VisualWorks to
discard the work in progress. Sometimes a method does something
that requires a subsequent action, regardless of whether or not an
exception occurs. In that case, use the unwind mechanism described
at the end of this chapter.

Handling Exceptions
The default action for most exceptions is to display a notifier. For
development this is useful, allowing the developer to seek out the
cause and repair it. However, for an application, a notifier is not
appropriate, and the exception needs to be handled by the
application itself. To handle exceptions in an application you define
an exception handler.

An exception handler has two parts: the class of exception for which
it watches, and the block of code (the handler block) to be executed
when such an exception occurs. The handler block must be a one-
argument block.

Exception handlers are defined using the on:do: message. For
example, the following expression defines an exception handler for an
attempt to divide by zero, and specifies that a message be printed in
the Transcript:

| x y |
x := 7.
y := 0.
[x / y]

on: ZeroDivide
do: [:ex | Transcript show: 'zero divide detected'; cr.]

If a zero divide error occurs while evaluating [x / y], the handler block
(the argument to do:) is evaluated, causing the message to be written
to the transcript.
15-4 VisualWorks

Handling Exceptions
When creating exception handlers for your application, be as specific
as makes sense in naming the exception to which the handler
responds. For example, it might be reasonable in some contexts to
trap any error, without being any more specific than calling it an Error.
In this case, an expression like the following makes sense:

[... some work ...]
on: Error
do: [:ex | Transcript show: 'An error occurred'; cr.]

The information returned is minimal, but might be enough. However,
you probably do not want to handle every exception that occurs, so
do not use an expression like this:

[... some work ...]
on: Exception
do: [:ex | Transcript show: 'An exception occurred'; cr.]

Exception is too general a category, and so your application would
respond to anything, including signals to Notification that have no
effect on your application.

An exception handler normally completes by returning the value of
the handler block in place of the value of the receiver block. The
above example, therefore, would return the Transcript, which might
not be terribly useful.

Suppose you want to return the value 0 when a division by zero
occurred. You could then rewrite the expression as:

[x / y] on: ZeroDivide do: [0]
This could be used in some such code as the following:

fudgeFactor := [x / y] on: ZeroDivide do: [0].
If, instead of returning a value, you want to exit the current method,
you can place an explicit return within the handler block:

fudgeFactor := [x / y]
on: Error
do: [:ex | ^'uncomputable'].

This example specifies Error as the exception to be handled instead
of ZeroDivide. When you specify an exception class, the exception
handler handles exceptions of the specified class as well as
exceptions that are instances of subclasses of the specified class.
ZeroDivide is a subclass of DomainError, a subclass of ArithmeticError, a
subclass of Error. Therefore, an attempt to divide by zero or any other
error that occurs while evaluating x / y causes the enclosing method
to return the string 'uncomputable'.
Application Developer’s Guide 15-5

Exception and Error Handling
Sometimes an exception handler needs to obtain information about
the specific exception that it is dealing with. This can be
accomplished by using a single argument block as the exception
handler:

[x / y]
on: Exception
do: [:theException |

Transcript show: theException description.
^'uncomputable'].

The instance of the class of exception that occurred is passed as the
argument to the handler block. In the above example, the exception
object could be an instance of ZeroDivide, ArithmeticError, or Exception.

Exception Sets
Occasionally it is necessary to establish an exception handler to
handle several exceptions that are not necessarily related in a
hierarchy. This can be accomplished by using an ExceptionSet. If any
exception in the set occurs, or any subclass of a listed exception, the
handler block is activated.

You can implicitly create an exception set by specifying a list of
exceptions in a handler. For example:

[do some work]
on: ZeroDivide, Warning
do: [:theException | whatever]

Sending the , (comma) message to an exception class with another
exception creates an instance of ExceptionSet.

If you need to reuse the same set of exceptions, you can also create
an exception set explicitly and assign it to a variable:

specialExceptions := ExceptionSet with: ZeroDivide with: Warning
The exception set can then be used as the argument to on: in an
exception handler.

Exiting Handlers Explicitly
Occasionally you may need to manage the flow of control among
multiple exception handlers. The following messages can be sent to
the argument of a handler block to conclude processing of the
handler block before it reaches its final statement, or to interrupt its
processing and return to it later:
15-6 VisualWorks

Handling Exceptions
The messages exit:, resume:, and return: return their argument as the
return value, instead of the value of the final statement of the handler
block.

The message exit is provided by VisualWorks for conditionally exiting
a complex handler block. For resumable exceptions, it sends a resume
message, which restores the environment in which the exception
occurred and continues processing. For nonresumable exceptions, it
sends a return message, which trims the exception environment to
the active handler’s exception environment.

For example:

[Error raiseSignal]
on: Error
do: [:exception |

exception isResumable
ifTrue: [exception exit: 5].

Dialog warn: 'Nonresumable exception']
Because Error is a nonresumable exception, the warning dialog is
displayed. Replacing the protected block with [Notification raiseSignal]
and testing for Notification instead will exit (resume) with a return
value of 5.

exit or exit: Resumes on resumable exceptions; returns on
nonresumable exceptions. (Note that this is a
VisualWorks extension to the ANSI specification.)

resume or resume: Attempts to continue processing the protected block,
immediately following the message that triggered the
exception.

return or return: Ends processing of the protected block that triggered
the exception.

retry Re-evaluates the protected block.

retryUsing: Evaluates a new block in place of the protected block.

resignalAs: (See Translating Exceptions.)

pass Exits the current handler and passes to the next outer
handler; control does not return to the passer.

outer Similar to pass, except it regains control if the outer
handler resumes.
Application Developer’s Guide 15-7

Exception and Error Handling
If the argument of a handler block is a resumable exception, the
message resume can be used instead of exit, which behaves in
exactly the same manner as exit for resumable exceptions.
Attempting to resume a non-resumable exception causes an “attempt
to proceed” error.

To terminate and return from the block that triggered the exception,
send a return message. When sent to a resumable exception, return
forces control to return from the protected block instead of returning
to the message that triggered the exception. Thus, return can
simulate the effect of a nonresumable exception when an exception is
in fact resumable. The message return trims the exception
environment to the active handler’s exception environment.

Another way to exit a handler block is with the retry message. This
message terminates the handler block and tries again to evaluate the
receiver of the on:do: block. Any cleanup blocks created using the
unwind mechanism are executed before retrying, whether they were
created by the original evaluation of the receiver block or by the
handler block.

For example, the following method tries again after a division-by-zero
error:

[^ x / y]
on: ZeroDivide
do:

[:exception|
"make the divisor very small but > 0"
y := 0.00000001.
exception retry]

The message retry therefore trims the exception environment to the
active handler’s exception environment when it retries execution.

The message retryUsing: does a retry, but evaluating the block passed
as argument instead. For example:

[self doTaskQuickly]
on: LowMemory
do: [:exception|

exception retryUsing: [self doTaskEfficiently]]
The message retryUsing: also trims the exception environment to the
active handler’s exception environment when it retries execution.
15-8 VisualWorks

Handling Exceptions
The message pass can be used inside a handler block to terminate
the handler block and execute any enclosing handler blocks for the
current exception. For example:

[n / m]
on: ZeroDivide
do:

[:exception|
"0/0 = 1; otherwise raiseSignal a ZeroDivide exception"

exception dividend ~= 0
ifTrue: [exception pass]
ifFalse: [exception return: 1]

The message pass sets the exception environment to the
environment of the handler to which it passes control.

In this example, the programmer decided to handle the case of 0 / 0
specially. If the dividend is anything other than zero, however, control
passes to the ZeroDivide exception. Control never returns to the
sender of a pass message.

Resumable and Nonresumable Exceptions
A handler block normally completes by executing the final statement
of the block. The value of the final statement is then used as the
value returned by the exception handler. Exactly where control
should be returned with that value, however, depends upon whether
an exception is resumable or not. A nonresumable exception must
return from the on:do: expression that created the handler block.
However, a resumable exception usually returns from the message
that signaled the exception. It is so called because it resumes
execution rather than returning from the exception.

Resumability is an attribute of an exception, not of an exception
handler. Most subclasses of Error are nonresumable and therefore do
not return to the method that signaled the exception, but return
directly from the handler block. On the other hand, exceptions such
as Notification and Warning are not errors, and are generally
resumable. Resumable exceptions typically return the value of the
active handler for the exception from the signaling message:

Warning raiseSignal: 'Low memory, save files!'
Application Developer’s Guide 15-9

Exception and Error Handling
The return/resume behavior must be made explicit by sending a
return: or resume: message in the handler block. For example, the
following expression returns 'Value from handler' as the value of the
on:do: message because the signaled exception is an instance of
Error, which is nonresumable:

([Error raiseSignal. 'Value from protected block']
on: Error
do: [:ex | ex return: 'Value from handler'])

The next expression, however, returns 'Value from protected block' as
the value of the string, the last expression in the protected block,
because the signaled exception is an instance of Notification, which is
resumable:

([Notification raiseSignal. 'Value from protected block']
on: Notification
do: [:ex | ex resume: 'Value from handler']).

Exception handling can be generalized by explicitly testing whether
the exception is resumable, using the message isResumable. In the
following example, the exception handler returns either 5 to the
signaler or 10 from the on:do: message, depending upon whether the
exception class is defined to be resumable or nonresumable:

[someExceptionClass raiseSignal]
on: Error
do:

[:exception|
exception isResumable

ifTrue: [5]
ifFalse: [10]]

Most exception classes inherit whether they are resumable or
nonresumable from their superclasses. To specify the resumability of
a new exception class, initialize its isResumable instance variable to
true.Signaling a resumable exception while evaluating the protected
block of an unwind message does not cause the cleanup block to be
executed, because execution of the protected block resumes instead
of terminating.

Translating Exceptions
Occasionally, an exception handler might need to translate one
exception into another exception. This is usually done to provide
more information, or to consolidate low level exceptions to a higher
level one. For example, a low-level operating system error exception
might need to be translated into a higher level user exception.
15-10 VisualWorks

Handling Exceptions
Care is required to avoid executing the wrong handler. The reason is
that the exception environment within the handler signalling the low-
level exception is not necessarily the same as the exception
environment signalling the high-level exception. This problem is
solved by using the message resignalAs: instead of raiseSignal within
the handler block. For example:

[low-level I/O]
on: OperatingSystemException
do: [ex|

ex errorCode = -213
ifTrue: [ex resignalAs: EndOfFile new]
ifFalse: [ex resignalAs:

(Error new messageText: 'OS Error']]
The message resignalAs: aborts the current exception handler,
restoring the exception and execution environments to the states they
were in when the exception that is the receiver of resignalAs: was
originally signaled. (Note that this can cause the execution of unwind
blocks). After the environments are restored, the exception that is the
argument to resignalAs: is signaled. This causes the argument
exception to function as if it had been originally signaled in place of
the receiver.

Unwind Protection
When a block of expressions contains opportunities for a premature
return, a means of cleaning up the mess may be required.

Providing such a mechanism is a kind of exception handling, though
it is accomplished with a variant of the value message that initiates a
block. Use ifCurtailed:, with the cleanup expressions as the argument
block. The cleanup block is used if the execution stack is cut back
because of a signal, if a return is used to exit from the block, or if the
process is terminated.

To execute the cleanup block after either a normal or an abnormal
exit, use ensure:. Remember that these messages are addressed to a
block, not to a signal.
Application Developer’s Guide 15-11

Exception and Error Handling
Signaling Exceptions
Most of the exceptions that your application needs to handle are
detected by code within the standard VisualWorks class library.
Occasionally, however, you may need to write a new method to signal
the occurrence of an exception, particularly if you have also created a
new class of exceptions.

An exception is signaled by sending the message raiseSignal or
raiseSignal: to the class that defines the exception. For example:

Error raiseSignal
creates an error exception. If a specific handler has been defined to
deal with the Error exception, it is executed. Otherwise, the default
handler is executed.

It is often useful to provide a textual description of the problem when
signaling an exception. You can do this using the message
raiseSignal:.

Warning raiseSignal: 'the disk is almost full'
The argument string to raiseSignal: is incorporated into the value
returned when the message description is sent to the resulting
exception object.

It is also useful to raise an exception with a specific parameter, rather
than the default, which is the error itself. In this case you can send
signalWith:, with the object to be returned as the argument. For
example, it is occasionally more useful to raise the exception passing
the object itself as the parameter, rather than the exception:

Exception signalWith: self
If you define new Exception classes, it is most reasonable to create
them as subclasses of either Error, for non-resumable conditions, or
Notifier, for resumable conditions.

Exception Environment
Each VisualWorks process has a distinct exception environment,
which is an ordered list of active handlers. When a new process
begins, the list is empty. When the receiver block of an on:do:
statement is executed, its exception handler is added to the
15-12 VisualWorks

Exception Environment
beginning of the list, and its entry is the on:do: statement. If another
exception handler is defined within the receiver block, it is added to
the beginning of the exception environment list for the process.

[block 1 stuff
[block 2 stuff

[block 3 stuff
[block 4 stuff]

on: ColorError
do: [handler code for 4]]

on: Warning
do: [handler code for 3]]

on: Error
do: [handler code for 2]]

on: ZeroDivide
do: [handler code for 1]

The following figure illustrates a hypothetical exception environment.

If an exception is signaled within an exception environment, the
exception handling system sends a message to the first entry in the
list, the most recently added, to determine if it handles the specific
exception generated. The first exception handler encountered that
can handle the signaled exception does so.

Suppose the code in this exception environment is executing, and a
ZeroDivide error is signaled. The first active exception handler handles
a ColorError, so it is not executed. The next handles a Warning, so it is
not executed either. The third handles an Error, which is a superclass
of ZeroDivide. It therefore can handle the ZeroDivide exception, and
does so.
Application Developer’s Guide 15-13

Exception and Error Handling
The Error exception handler executes its do: block, thereby creating a
new exception environment of its own. In this case, the new exception
environment has only a ZeroDivide handler in it, because that was the
only handler created before the Error handler.

When a handler block is executed, the exception environment is
“trimmed” to include only those active handlers created before the
handler that is executing. These older handlers constitute the active
handler’s exception environment. The active handler’s exception
environment is the exception environment as it was at the time that
the on:do: message was sent.

If the exception handler resumes, the original exception environment
is restored; otherwise, it is discarded.

If no handler is found for an exception by searching the exception
environment, the defaultAction method for the exception is executed.
When a default action method is executed, the exception
environment is the same as it existed when the exception was
signaled.

Using a Signal to Handle an Error
The Signal class provides an instance-based mechanism for signaling
and catching an error. This is the original exception handling
mechanism implemented in VisualWorks, and is largely, but not
entirely, superseded by the class-based system described previously.

Catching an error using this mechanism involves creating an instance
of Signal and telling it what you plan to do and how to handle an error.
This is accomplished with a handle:do: control structure. In
pseudocode form, the resulting expression for our calculator’s
division method is:

aSignal
handle: [error handling code]
do: [the division operation].

The error that triggers the handle: block is an instance of Exception.
Hence, dynamic error trapping in Smalltalk is usually called exception
handling. An Exception is created by a raise message sent to a Signal.
In our example, the method that performs the actual division would
send a message such as:

aSignal raise
15-14 VisualWorks

Using a Signal to Handle an Error
Thus, exception handling involves two steps: Placing a Signal handler
to watch over a block of expressions, and raising an Exception when
an error occurs.

Choosing or Creating a Signal
To create a new instance of Signal, use Signal new. The resulting
instance has a parent of Object errorSignal—the significance of this
ancestry is discussed below. To create a signal with a different
parent, use newSignal and address it to the desired parent, as in the
expression

divSignal := (Number errorSignal) newSignal.
Most classes in the system have been updated to use the class-
based exception mechanism. Some still contain instances of Signal as
class variables. For cases that use Signal instances, it may be
appropriate to choose an existing signal instead of creating a new
one. These “global” signals are implemented as class variables, and
accessed via class methods. For example, browse class Palette which
defines two signals, PaintNotFoundSignal and PixelNotFoundSignal, and
provides accessors in two class methods, paintNotFoundSignal and
pixelNotFoundSignal.

Classes for which error handling has been updated to use the class-
based mechanism still provide class-side accessor methods, but
return a class instead of a Signal instance. For example, Object
errorSignal returns the class Error rather than an instance of Signal.

Proceedability
A Signal has a proceedability attribute, which indicates whether the
error is harmless enough to permit the process to proceed from that
point onward. By default, a new signal inherits the proceedability
setting of its parent signal. To establish a specific proceedability in a
new signal, use newSignalMayProceed:, as in the following expression:

divSignal:= (Number errorSignal) newSignalMayProceed: false

Creating an Exception
In the Signal mechanism, an Exception object is created by sending a
raise message to the appropriate signal. This object then travels back
along the message stack looking for its matching signal (or an
ancestor), triggering the intended handle: block.
Application Developer’s Guide 15-15

Exception and Error Handling
For example, a paint program recognizing an error in the paint
selection, would signal that error by sending a raise message to
PaintNotFoundSignal, which raises the exception. This exception then
traverses the chain of calling objects until it finds a handler.

Because such Signal instances are not guaranteed to exist is future
versions, it is safer to use the accessor methods to access a signal.
This accessor method is updated to reference the class instead of the
signal, and using only the accessor method makes this transparent to
the application. So, it would be better to send:

Palette paintNotFoundSignal raise
The raise message effectively transfers control from the method in
which the error was perceived to the handle: block in the calling
method. A variant of raise permits control to proceed from the point of
error (usually after the handle: block warns the user or corrects the
cause, or both). To create a proceedable exception, use raiseRequest
(the exception requests that control be returned to it). A proceedable
exception can only be successfully addressed to a proceedable
signal; a nonproceedable exception can be addressed to either type
of signal. Thus, the exception largely determines its own
proceedability.

Setting Parameters
An exception can carry an argument object back to the handler block,
such as a value that can be used to diagnose the breakdown, an
array of such values, or a block of remedial operations. The default is
nil. To set that value, send a parameter: message to the exception,
with the object as argument.

For situations in which the signal’s notifier string needs to be replaced
or augmented, send errorString: to the exception, with the
replacement string as argument. If the first character of the argument
string is a space, the argument is appended to the signal’s notifier
string. Otherwise, the argument string is used instead of the signal’s
string.

By default, an Exception begins its search for a handler in the context
that sent the raise message. To substitute a different starting place,
send a searchFrom: message to the Exception, with the starting-point
context as argument.

Because more than one instance of the same Signal can exist, as
implemented by different methods (with different handlers, possibly),
an Exception can get fielded by the wrong handler unless it has a way
15-16 VisualWorks

Using a Signal to Handle an Error
to identify its originator. To do so, send originator to the Exception, with
the object that originated the raise message as argument. To equip
the handler with the originator, so it can spot the matching Exception,
send a handle:from:do: message, supplying the originator as the
argument to the from: keyword.

Passing Control From the Handler Block
A handler block can redirect the flow of control in one of four ways,
listed in order of increasing assertiveness:

• Refuse to handle the exception

• Exit from the handler block and from the method in which it is
located (i.e., a conventional return).

• Proceed from the point at which the error occurred.

• Restart the do: block and try it again.

To refuse control, use reject, as in anException reject. The exception will
then continue its search for a receptive signal.

To exit from the handler block, use return. The nil object will be
returned. To pass a value other than nil, use returnWith:.

To return control to the point at which the error occurred, use proceed.
To pass an argument to be used as the value of the signal message,
use proceedWith:. To proceed by raising a new exception—in effect, to
substitute a different signal in place of the original error creator—use
proceedDoing: and raise the new exception in the argument block.

To restart the do: block, use restart. To substitute another block of
expressions for the original block, use restartDo:, as in the expression
th-eException r-estartDo: aBlock.

If a handler does not choose one of the four options described here, it
has the same effect as theException returnWith: the value of the block.

Raising a signal within its own handler does not restart the handler.
However, raising a signal within a proceedDoing: or restartDo: block
does invoke the signal’s handle block again.

Returning to the calculator example, let’s fill in the handler code:

ArithmeticValue divisionByZeroSignal
handle: [:theException |

Transcript cr; show: 'Enter a nonzero divisor'.
theException restart]

do: [the division operation]
Application Developer’s Guide 15-17

Exception and Error Handling
Using Nested Signals
In some situations, it will be necessary to have more than one hawk
watching the same process. For example, you might want to catch
both numeric errors and dictionary errors, without using the full
generality of a mutual parent such as Object errorSignal. To avoid
nesting one handle:do: construct within another, create an instance of
SignalCollection. A SignalCollection is created via new and an element is
appended via add:, as with any OrderedCollection. Use handle:do: just as
you would with an individual signal. When an exception is raised, it
will try each signal in the collection until it comes to one that it
recognizes.

A SignalCollection works fine when the same handler block is to be
used no matter what kind of error crops up. But if each type of signal
is the trigger for a different handler block, use a HandlerList. To create
it, use new.

Each element of a HandlerList consists of a signal and an associated
handler block. To add such an element, use on:handle:, as in
aHandlerList on: aSignal handle: aBlock. To begin execution of the do:
block, use handleDo:, as in anHC handleDo: aBlock.

A HandlerList can be built in advance and reused in various contexts,
which is both more readable than the nesting approach and more
efficient than building even a single handler on the spot. Bear in mind,
however, that handlers in a HandlerList are not peers—they are
effectively nested. A signal that is raised in a nested series will not be
fielded by a handler that is lower in the hierarchy (or later in the
collection). For example, the first set of expressions below is
semantically equivalent to the second.

HandlerList new
on: sg1 handle: [:ex | "response 1"];
on: sg2 handle: [:ex | "response 2"];
on: sg3 handle: [:ex | "response 3"];
 handleDo: ["Any arbitrary action"].

sg1 handle: [:ex | "response 1"]
do: [sg2 handle: [:ex | "response 2"]

do: [sg3 handle: [:ex | "response 3"]
 do: ["Any arbitrary action"]]].
15-18 VisualWorks

16

Debugging Techniques

Debugging is the, often difficult, task of tracking down causes of
program malfunction. Syntax errors are generally caught by the
compiler. More subtle errors, such as the mishandling of unusual
assignments to a variable, can take a lot of exploration to trace and
resolve. To trace these you need a mechanism for tracing the flow of
a program and variable assignments at various points.

VisualWorks provides several facilities to help you debug your
programs. Software probes insert triggers into the compiled byte
code stack, without changing your source code, which either interrupt
processing (breakpoints) or log status information (watch points). A
walkback window is opened when an unhandled exception is
detected, showing the last several message sends. The Debugger
tool allows for extensive exploration of the history of message sends,
for modifying variable values, and modifying code on the fly, and for
controlling program execution. There are also several special-
purpose object engines for debugging problems with calls to external
libraries or virtual machine crashes.

This chapter describes these facilities and techniques for using them
to diagnose problems with your code. For details on using the
debugging engines, see Debugging Within the Virtual Machine.

Software Probes
Software probes provide a mechanism analogous to hardware
probes used in troubleshooting electronic components, providing a
way to check the state of the system at a specific point. An electronic
probe does not change the design of an electronic circuit but, when
used, it may change the circuit's characteristics slightly. Similarly,
Application Developer’s Guide 16-1

Debugging Techniques
using a software probe does not change the source code design, but
will affect the timing of the program execution. In regards to a
Smalltalk program, this means that the source code is unchanged, so
insertion and removal of a probe is not logged, but program timing
will be slightly changed. Usually, this is not a problem.

A probe can be inserted before or after any message send,
assignment operation, or upon referencing a variable reference.
Inserting a probe actually inserts a message send to the probe
object. Because a probe is inserted by modifying the compiled
method instead of source code, it is possible to perform actions that
are cumbersome to do within the Smalltalk syntax.

There are two basic types: breakpoint and watchpoint. Every probe
has a conditional expression and an action. If the conditional
expression returns true, then the action is performed. In the case of
an breakpoint, the expression simply returns true. The action
performed is determined by the probe type.

Breakpoint
A breakpoint, which is the simplest kind of probe, immediately opens
the system debugger, skipping the notifier stage, when it is triggered.
The top method in the stack is the method containing the breakpoint.
The current message send depends on placement of the breakpoint.
A breakpoint is a better alternative to inserting self halt in code to
invoke a debugger, because it does not require a change in the
source code.

A conditional expression may be used with a breakpoint, allowing you
to test for specific conditions and selectively trigger the breakpoint.
The expression can include any arbitrary operation, such as data
collection. However, it must return a Boolean upon completion. The
debugger window opens if the value is true, and does not open if the
value is false.
16-2 VisualWorks

Software Probes
Watchpoint
Watchpoints display a string message in a watchpoint window,
without interrupting program execution.

The string provides information about the state of some part of the
program when the watchpoint is triggered. In general, the string is a
representation of an object.

There are four watchpoint types, which you select when creating the
watchpoint:

Top of Stack

Displays the value of the variable currently at the top of the
argument stack, which may be an argument or the last message
result.

Instance Variable

Displays the value of the specified instance variable.

Temp Variable

Displays the value of the specified temporary variable.

Expression Watch

Displays the result of a Smalltalk expression, which must
evaluate to a String. This probe enables the user to properly
display complex information or to format a string in a more
meaningful manner.
Application Developer’s Guide 16-3

Debugging Techniques
The String representing the object displayed by the Top of Stack,
Instance Variable, and Temp Variable probes is obtained by sending
the object the debugString message. This method is defined in class
Object as ^self printString. It provides flexibility in representing an
object.

Setting Probes
Inserting a probe into source code is done by selecting a menu
command in a browser and, in most cases, providing additional
information in a few probe editors.

Setting a breakpoint
A simple breakpoint is set in a method definition by placing the cursor
at the point at which you want to interrupt processing, and then
selecting Insert Breakpoint from the <Operate> menu. The character at
the cursor location is highlighted, indicating the breakpoint.

A breakpoint can also be made conditional. To do this, select Insert
Probe instead of Insert Breakpoint. Then, in the Select Probe Type dialog,
select the Breakpoint radio button and check the Conditional check box.
Refer to Making a probe conditional for further information.

Setting a variable watchpoint
A watchpoint displays a message in a watch window without
interrupting processing, as does a breakpoint.

To set a variable watchpoint, place the cursor in a method definition,
and select Insert Probe in the <Operate> menu. In the Probe Type editor,
select the Variable Watch radio button.
16-4 VisualWorks

Software Probes
Then click Done. The Select Watch Variable dialog opens.

The three buttons allow you to specify what variable to watch. You
can only specify one. Top of Stack will display in the watch window the
value on the top of the argument stack, which is either a message
argument or response. The Instance Variable and Temp Variable buttons
pop up a list of available variables (Temp Variable is active only if the
method has temporaries).

When you have selected the variable to watch, click Done. The probe
is set, and the watch window opens the first time the probe is
triggered.

Setting an expression watchpoint
A watch expression provides a good deal of control over the display
of information. The expression must evaluate to a String, which you
must ensure in the expression, since the default debugString method
is not applied.

To set a variable watchpoint, place the cursor in a method definition,
and select Insert Probe in the <Operate> menu. In the Probe Type editor,
select the Variable Watch radio button.
Application Developer’s Guide 16-5

Debugging Techniques
Then click Done. The Expression Watch Probe editor opens.

The expression watch provides maximum probe control, so the editor
provides all of the editors. The top text box, the Conditional Test
Expression editor, is described in Making a probe conditional. The
Window ID text field and associated buttons allow you to select the
watch window in which to display the watch expression.

The Watch Expression text box is where you specify what to display in
the watch window. The expression can be any Smalltalk expression
that returns as a String. This allows you to include descriptive text,
values of Smalltalk expressions, and some formatting. For example,
you could use an expression like this to display the value of
currentRandomValue from the Walk Through:

^‘The current value is: ‘, currentRandomValue value printString, ’. ‘
Carriage returns included in the string are displayed as carriage
returns, or you can include a backslash and send withCRs to the
whole string:

^’The current value is:
‘, currentRandValue value printString, ‘.’
16-6 VisualWorks

Software Probes
When you’ve entered an appropriate expression, accept the change
and click Done. The probe is set, and the watch window opens the first
time the probe is triggered.

Removing probes
You can remove probes either selectively or from an entire method.

To remove a single probe, select its highlighted character and select
Remove Selected Probe from the <Operate> menu.

To remove all probes from the method, select Remove All Probes from
the <Operate> menu.

Making a probe conditional
A conditional breakpoint interrupts processing at the set point only if
the specified condition is met. To place a conditional breakpoint,
place the cursor and then select Insert Probe from the <Operate>
menu. The Select Probe Type editor opens:

Leave the Breakpoint radio button selected, and check the Conditional
check box. Click Done. The Conditional Text Expression probe editor
opens.
Application Developer’s Guide 16-7

Debugging Techniques
Initially the expression is simply false, which will prevent the
breakpoint from triggering. You need to replace this with an
expression that will evaluate to true in just those cases where you
want the breakpoint to trigger, allowing you to further investigate the
state.

For example, in RandomNumberPicker from the VisualWorks Walk
Through, you could insert a breakpoint in the nextRandom message,
and set the conditional expression to:

currentRandomValue value < 0.5
to break only when the random value is smaller than 0.5.

When you have entered the expression, accept the change (Accept
on the <Operate> menu), and click Done. The probe highlight is
placed and the probe is set.

A probe expression is a normal Smalltalk expression, except that it
has additional variable scoping. This scoping permits the expression
to reference variables in the probed method context and instance
variables of its receiver. Additionally, each probe may refer to its own
local debug variables and to global debug variables. Menu
commands are available in the condition editor pane to define new
variables.

There are two predefined variables that you can reference to access
information in the context where the probe activation occurs:
DOITCONTEXT and TopOFStack. The variable DOITCONTEXT holds the
context itself, and TopOFStack is the object on the top of the context
stack. An additional predefined variable, ThisProbe, holds probe state
information, such as its characterIndex. This is useful when
constructing an expression watchpoint that reports method selector
or probe character position.

When a probe is created, it is given a default conditional expression.
Initially, this expression is set to ^DebugActive. DebugActive is a global
debug variable, and is used to permit enabling and disabling of
probes using the Probes menu in the Visual Launcher.

The default expression can be changed by editing the class method
newDefaultMethodFrom:inClass: in class CodeProbe.

The conditional expression editor text view has the following
commands to assist in building expressions:
16-8 VisualWorks

Software Probes
Insert var

Opens a series of menus and submenus containing all the valid
local variables, providing a convenient means to locate a variable
name and insert it into the text. The selected variable is inserted
into the text.

Define debug var

Allows the user to define debug variables, both local and global.

Inspect debug vars

Opens a dictionary inspector on either the local or global debug
variable dictionary. The actual dictionary inspected is determined
by the submenu item selected, local or global.

Reset method

Resets the expression to a standard expression and method.
Using a standard method can speed up insertion of multiple
probes, when inserting probes using the Message Received or
Instance Variable Reference panels, and probe expression
recompilation, as a result of a class redefinition. This is because
these standard expression methods are known to the system and
do not require rebinding.

Insert expression

Displays a menu of expressions currently in the expression
library. The selected expression is inserted at the text insertion
point.

Save expression

Prompts the user for a name to identify the expression, and then
saves the expression text in the expression library. There is one
library for the Test expression and another library for the Watch
expression.

Select a watch window
For watch probes, you can specify which window displays the
expression. This allows you to reuse existing watch windows, and to
display multiple watch strings in a single window.
Application Developer’s Guide 16-9

Debugging Techniques
When first specifying the probe, check the Window parameters check
box in the Select Probe Type dialog. For a variable watch probe, the
Window ID dialog opens after you have selected the variable. For an
expression watch, the Window ID selection dialog is included in the
expression editor dialog, as shown above.

Either enter the numeric ID of a watch window in the entry field, or
click Select ID and choose a window from the list.

The Open Window button opens the window immediately, rather than
waiting for the probe to be triggered.

The Change Label button allows you to enter a more descriptive window
label string. You can then use the label later to identify this window for
other watch probes.

When the window parameters have been set, click Done.

Modifying a probe
Watch probes and conditional breakpoint probes can be modified.
The variable of a variable probe cannot be changed, but the
conditional test, watch expression, and window parameters all can be
changed.

To modify a probe, select it by selecting the highlighted character
representing it, and select Modify probe on the <Operate> menu. A
probe editor will be displayed. While the editor varies for different
probes, the editor options are all the same as those described above
for setting the probes.

Make the desired changes and click Done.
16-10 VisualWorks

Software Probes
Probe location
When a probe is present in a method, its position in the source code
is indicated by highlighting the character at that position. Permanent
probes are indicated by underlining the character and coloring it red.
Temporary probes, which are only available in the debugger, are
indicated by underlining the character and coloring it yellow.

Because the highlighting is done with a text emphasis, operations
that change the text may remove the probe highlight without actually
removing the probe.

The meaning of the highlights in various situations are as follows;

Message selector

• First or only character - probe activation occurs before message
send.

• Last character or following space - probe activation occurs after
message send.

• Last character of first component of keyword - probe activation
occurs after message send.

Variable name

• First character - probe activation occurs before variable access
(usually an assignment).

• Last character - probe activation occurs after variable access
(usually a read).

Examples of probe highlighting are shown later in the paragraph
discussing probe insertion within the browser.

Recompiling a Probed Method
Whenever a method is recompiled, either due to a method accept or
class redefinition, the probes are removed from their method.
However, the browser will give the user the option to reinsert, or
discard, the probes. If the user chooses to reinsert the probes, the
probes are checked to determine if they are still consistent with the
recompiled method. If a probe expression is no longer consistent, the
probe is still reinserted, but it is disabled so the user can correct the
problem. If the variable being watched by a variable watch probe is
removed, then the probe will not be reinserted.
Application Developer’s Guide 16-11

Debugging Techniques
Limitations

Probe highlights

Performing a format operation in a browser causes the probe
highlight to be lost. If you then accept the change, probe is lost as
well. Because probes are maintained by their position in the source
code, reformatting and accepting loses that position, so the cannot
be reinserted.

Inserting probes at returns

The VisualWorks compiler compiles the following code:

^condition
ifTrue: [expression1]
ifFalse: [expression2]

as though it were written:

condition
 ifTrue: [^expression1]
 ifFalse: [^expression2]

That is, with two returns, one for each expression, rather than just
one. Because probes are added according to the parse tree, if you
attempt to probe the return value by inserting a probe at the return
caret in the first example, the result is as though one probe were
inserted at the return caret for only one of the expressions. The work-
around is to insert two probes, one at the end of expression1 and
another at the end of expression2.

The same situation occurs for the following code block:

[statements...
condition

ifTrue: [expression1]
ifFalse: [expression2]] value

which is compiled as though it were written:

[statements...
condition

ifTrue: [expression1 blockReturn]
ifFalse: [expression2 blockReturn]] value

If a probe is placed at the condition, expecting to reflect the value
returned by one of the expressions, it would actually only capture one
of the expressions. This only occurs when the conditional statement
is the last statement in the block. Again, the proper work-around is to
insert a probe at the end of both expression1 and expression2.
16-12 VisualWorks

Class Probes
Class Probes
Three commands on the Class menu in browsers provides for
managing probes at a class level: Add Class Probe, Remove Class Probe,
and Browse Probed Methods. These commands are aids to managing
probes in bulk rather than individually.

Adding class probes
The Class > Add Class Probe command allows you to insert probes into
several methods in a single operation. The probes share any
conditional expression and any watch expression, thus allowing a
single watch expression or conditional breakpoint to be used for
several methods. However, once inserted, the expressions become
independent, so if an expression is later modified, the change applies
only to the one probe.

The command has two submenus; On Instance Variable Access... and On
Message Receipt... .

On Instance Variable Access...
The On Instance Variable Access... command inserts a probe at each
point a selected variable is referenced in each method within a group
of methods. If the reference is a read operation, the probe is inserted
just after the byte code operation that places the object on the stack.
If the reference is a write operation, the probe is inserted just before
byte code that stores the object into the variable.
Application Developer’s Guide 16-13

Debugging Techniques
When you select the command, the setup panel opens.

The panel displays a filtered list of methods that reference the
selected instance variable. Select a variable from the Selected Instance
Variable drop-down list. Then, select filtering criteria by the using the
On Read, On Write, and Include Subclasses check boxes. The type of
reference is shown to the immediate left of the method string. In the
list, select the methods into which you want to support the probe.

The probe action to perform on the selected methods can be one of
the following:

Breakpoint

Inserts a breakpoint at the variable reference point in each
selected method.

Smart Watch

Inserts an expression watch probe at the variable reference point
in each method. The expression returns a string containing the
class name, method selector and character position of the probe
in the method. When triggered, this string is recorded in the
watch window. Next the debugString message is sent to the object
16-14 VisualWorks

Class Probes
on top of the stack. The resulting string is then recorded in the
watch window on the line following the method identification
string.

Simple Watch

Inserts an expression watch probe at the variable reference point
in each method. When triggered, the debugString message is sent
to the object on top of the stack and the returned string is
recorded in the watch window.

N Simple Watches

Inserts an expression watch probe at the variable reference point
in each method. When triggered, the debugString message is sent
to the object on top of the stack and the returned string is
recorded in a watch window. This differs from the “simple watch”
in that each probe has its own watch window.

Expression Watch

Inserts an expression watch probe, with a user defined
expression, at the variable reference point in each method. When
triggered, the expression is executed and the returned string is
recorded in a watch window. After the setup panel closes, an
expression editor is opened for you to define the expression
(refer to Setting an expression watchpoint for an explanation of
the editor).

Conditional

After the setup panel closes, a conditional expression editor is
opened for you to define the expression (refer to Making a probe
conditional for an explanation of the editor).

Window parameters

After the setup panel closes, the “Window parameter” panel
opens for you to specify the watch window (refer to Select a
watch window for an explanation of the selector).

Generate report

Cause a report to be generated when the setup panel is closed.
The report lists all of the methods that have been selected to
have a probe inserted.
Application Developer’s Guide 16-15

Debugging Techniques
On Message Receipt...
The On Message Receipt... command allows you to insert a probe at the
beginning of each method in a selected group of methods. When you
select this command, the setup panel opens.

The panel displays a list of methods defined in the class and,
optionally, its subclasses. The type of action performed on the
selected methods can be one of the following:

Breakpoint

Inserts a breakpoint before the first statement in each selected
method.

Simple Msg Trace

Inserts an expression watch probe before the first statement in
each method. When triggered, the probes record the method
receiver's class and method selector in the watch window.
16-16 VisualWorks

Class Probes
Ivar Watch

Inserts an instance variable watch probe into each selected
method. When triggered, the probes record a representation
variable’s value in the watch window. When this button is
selected, the Select Variable menu button is enabled, permitting
you to select an instance variable.

Expression Watch

Inserts an expression watch probe in each method. When
triggered, the probes cause the expression to be evaluated and
the resulting string to be recorded in the watch window. After the
probe selection panel closes, the expression editor opens (see
Setting an expression watchpoint for an explanation of the
editor).

Conditional

After the setup panel closes, a conditional expression editor is
opened for you to define the expression (refer to Making a probe
conditional above for an explanation of the editor).

Window parameters

After the setup panel closes, the “Window parameter” panel
opens for you to specify the watch window (refer to Select a
watch window for an explanation of the selector).

Generate report

Cause a report to be generated when the setup panel is closed.
The report lists all of the methods that have been selected to
have a probe inserted.

Remove class probes
This command remove all the probes from the selected class's
methods. The command has two submenus: From This Class Only,
which removes only probes in the selected class, and From This Class
and Subclasses, which removes all probes from its subclasses as well.

Browse probed methods
This command will open a browser on all the probed methods in the
selected class.
Application Developer’s Guide 16-17

Debugging Techniques
Debugger

Walkback Notifier
When a program error occurs, a notifier window appears. This notifier
displays the last five message-sends in the context stack. The
context stack lists message-sends that were waiting for a return when
the breakdown occurred.

Sometimes that listing of the context stack is sufficient for you to
identify the problem and correct it. If so, click the Terminate button to
close the notifier and abort the program.

When the error is not so serious as to prevent proceeding with the
program (that is, it is a warning), you can click Proceed to close the
notifier and continue executing the program.

Debugger Window
When you need to examine the conditions that led to the failure more
closely, click Debug. The notifier is replaced by a debugger, which
enables you to trace the program flow leading to the error, proceed
with execution step by step, and examine the operative method and
the values of the variables at each stage of execution.

The VisualWorks debugger enables you to look at the methods that
are waiting for a return value when a program interrupt occurs,
examine the values of variables in each context, dynamically change
16-18 VisualWorks

Debugger
a value or a method, insert breakpoints, and restart execution at a
chosen location with the new values and logic experimentally in
place.

At the top are three stack panes. On the left is the stack view, which
lists the message-sends that were waiting for a return at the time of
the error. The right two panes are the stack inspector, which allows
inspection of the selected expression’s intermediate stack values
(see Inspecting the Stack below for more information).

The code view is similar to the System Browser’s code view. When a
message-send is highlighted in the stack view, the corresponding
method is displayed in the code view. Within the method, the current
point of execution is automatically highlighted by the debugger.

At the bottom of the window are the instance-variable inspector, to
the left, and the temporary-variable inspector, to the right, which allow
you to examine the values of the variables. The variables and their
values are updated each time you choose a different position in the
execution stack with the stack view.
Application Developer’s Guide 16-19

Debugging Techniques
The debugger toolbar can be repositioned to below the stack panes
by changing the setting on the Debugger page of the Settings tool.

Reading the Execution Stack
To diagnose a problem, sometimes it is sufficient to see the last few
entries in the context stack. The Debugger’s top view lists as much of
the stack as you want to see, but you may not even have to launch
the Debugger. The error notifier that results from a program interrupt
lists the last five contexts. This error notifier shows the results of a
programmatic error (3 + ‘two’).

The window label tells us that a sumFromInteger: message was sent to
an object that does not implement a method by that name. (This
summary is repeated in the top line of the window, for situations in
which the window label is not wide enough to display all of the
message.) Looking at the top line of the stack, we see that it was an
object of type ByteString. (ByteString didn’t understand the message,
so it invoked the doesNotUnderstand method implemented by its parent
class, Object). This is puzzling because we sent a + message to a
SmallInteger, as recorded in the second line of the stack transcript.
The last three lines of the transcript are not enlightening —they
merely expose some of the execution machinery, which we have no
reason to suspect in this case.

This example illustrates two features of the execution stack worth
emphasizing. The first line of the execution stack is often only of
marginal interest, because it usually represents the method that
handles the error—it doesn’t necessarily help you understand what
caused the error. Also, the execution machinery is a frequent
inhabitant of the execution stack—very quickly you learn to read
around it.
16-20 VisualWorks

Debugger
Back to our example: Something odd happened in the SmallInteger>>+
method. You can either use the System Browser to look at that
method, or you can open a Debugger, as described in the next
section.

The following figure shows a debugger displaying the results of a
programmatic error (3 + 'two').

Continuing our example from the previous section, in which the
expression 3 + 'two' was executed, we can see that the illegal
expression could not be handled by the primitive method that
normally adds two integers together. The alternative Smalltalk code
was then executed.

Here we find the explanation for the mysterious sumFromInteger:
message, which was sent to a ByteString. As you can see, the +
method calls the sumFromInteger: method. But the receiver of the +
message is the argument (self) of the sumFromInteger: message. The
message receiver and argument have traded places. We know that
Application Developer’s Guide 16-21

Debugging Techniques
the argument was the string 'two', so the sumFromInteger: message is
being sent to an object of the wrong class, to a string instead of an
integer. In the next section, we’ll show how to verify this deduction.

Editing a Method Definition
The debugger code pane is a text editor, just like in a browser. You
can modify a method definition in the debugger, then accept the
definition and continue processing using the revised definition.

If you change the method selector of the definition and Accept the
change, the method is accepted and a method browser opens on the
method. After the browser opens, the debugger text pane is reset to
the original method text of the selected context. The effect is to create
a new method definition. The new method will be in the (none)
pseudo-package.

Inspecting and Changing Variables
The bottom of the Debugger is devoted to two inspectors that allow
you to see the values of variables as they exist at the chosen point in
the execution stack. Each inspector consists of a pair of views, with a
list of variables in the left view and the value of a selected variable in
the right view. The inspector on the left is for instance variables, while
the right-hand inspector displays temporary variables.

In the example that was introduced above, the expression 3 + 'two'
has caused the expression 'two' sumFromInteger: 3 to be executed.
Now we know where sumFromInteger: came from. We can also see
why it was “misunderstood” as indicated in the error notifier’s window
label—it was addressed to a string instead of the expected number.
To verify this, select aNumber in the inspector view.
16-22 VisualWorks

Debugger

The Debugger’s inspectors let you change the value of a variable and
then restart the program. Simply edit the value, changing 'two' to a
legal value such as the integer 2. Then select accept in the <Operate>
menu. You can then select Execute > Restart, and then Execute > Run to
resume execution.

In practice, the value 'two' normally would be supplied by another
method rather than a Workspace expression. Having traced the
problem to this value, you can correct its parent method. To do so,
edit and Accept the revised method in any code view such as the one
in the Debugger or the one in the System Browser.

Inspecting the Stack
The stack inspector occupies the upper right corner of the debugger.
It allows inspection of expression intermediate stack values. If the
inspector can determine that a message send will occur next, the
intermediate objects are shown in the field list as "arg1", "arg2", ...,
"rcvr". Otherwise, they are displayed as, "top", "-1", "-2", etc.

When stepping is performed, the inspector will automatically select
the topmost element, if one is present. This will allow immediate
observation of message returns. However, one should be aware that
this element is not always the result of the last message send. If the
user deselects the selected element then the inspector will not
automatically select the top element when a step is performed. Use
this feature when an object does not respond to the printString
message properly.
Application Developer’s Guide 16-23

Debugging Techniques
Tracing the Flow of Messages
As described above, the error notifier displays the last five message-
sends in the execution stack. When you need to look at one or more
of those methods, the Debugger is the most convenient tool to use.

The Debugger’s execution stack view, at the top, contains the most
recent message-sends that occurred before the error. To see the
associated method, select a message-send. In the illustration,
SmallInteger>>+ has been highlighted. The code view, in the center of
the Debugger, displays the method. Within that method, the
message-send that was being processed when the program failed is
highlighted automatically.

Several commands are provided, by menu and by button, to walk
through the flow of messages. Select a message send in the step,
and then use the following commands to trace the message flow.

Stack menu

Copy Stack Report

Copies the context list to the clipboard so it can be pasted into a
document or workspace.

Show More Stack

This command adds more contexts to the context list. Under
normal conditions the debugger opens with the stack size set to
500, so this command is seldom needed.

Filter Stack

Enables stack filtering, as specified in Settings tool, on the
Debugger page. The editor allows one to specify coloring of the
context items according to matching rules. For more information
view the editor help.

Use Short Class Names

When selected, displays only the class names, without the
dotted-name prefix for classes that are not visible outside the
Smalltalk name space.

Select Home Context

Searches the stack and selects the home context of the currently
selected context. If the home context is not on the stack, a dialog
will inform the user of the situation.
16-24 VisualWorks

Debugger
Inspect Context

Opens an inspector on the method context.

Bookmark Context

Highlights the stack item (context) and adds it as an item on the
Stack > Bookmark menu, for easy access to this context.

Clear Bookmark

Clears the bookmark for this context.

Method menu
Most of these menu items are the same as in the System Browser.
The only exception is:

Recompile with Full Blocks

Recompiles the method so that all the blocks are full blocks. This
also has the effect of causing the method to be reentered, i.e.,
the execution state of the method is reset. An Accept command
also causes the method to be reentered. This method is a
temporary method and disappears when a method return is
executed.

Execute menu

Step Into

The most detailed stepping operation. When a message send is
selected, it sends the message and displays the resulting
context. Otherwise, it steps through the method, stepping into
blocks along the way.

Step

Steps through the method, stepping into blocks along the way.

Step Over

Steps through the method, stepping over blocks as they occur.

Restart

Initializes the selected context and restarts execution at
beginning of its method, as if the debugger had just stepped into
it. The method may be either a CompiledMethod or a
CompiledBlock.
Application Developer’s Guide 16-25

Debugging Techniques
Return

Allows the selected method or block to discontinue further
execution and return immediately to its sender.

Run to caret

Advances to the caret, either into or out of a block closure. This is
limited to full block closures. If a return is encountered within the
selected context before the caret is reached, execution will stop
before executing the return. However, if the return is within a
block closure the method may return, at which point execution
will stop.

Jump to caret

Jumps over code to the next caret, without execution. It causes
the execution point to be positioned at the beginning of the
statement containing the caret. A jump to caret into or out of a
block closure cannot be performed. However, it is possible to
jump into and out of conditional blocks, because they have been
optimized by the compiler and are not real block closures. Also, it
is not possible to jump into a loop, even if it has been optimized
by the compiler.

Run

Continues execution from the current location.

Run with Break on Return

This command and the next are useful for debugging loops. This
command is similar to Run, except that an implicit breakpoint is
set to be triggered upon return from the current context. Also, the
debugger remains open. Execution stops either upon return from
the context, or if another breakpoint is encountered before then.
Execution is guaranteed to stop, so runaway loops can be
interrupted.

Run with Break Again

Like Run with Break on Return, except that it does not establish a
breakpoint to be triggered on return. This option becomes
available only after a breakpoint has been set up by Run with Break
on Return. Refer to Debugging Tips for more information
16-26 VisualWorks

Debugger
Terminate

Terminates the process being debugged and closes the
debugger. This is the same action that occurs when the window
is closed using a window close command.

Abort

This command is activated when the code is running, during one
of the Step commands or Run with Break on Return. The step has to
take a significant time to run before you will notice that the
command is available.

Correct menu

Define method

Activated when the top context is a MNU, this command inserts a
new method definition for the not understood selector, which
simply calls halt. The message is defined in UndefinedObject.

Correct selector

Activated when the top context is a MNU, this command presents
a list of suggested correct spellings of the not understood
message selector. If the correct selector is in the list, select it,
and the command corrects the source code, recompiles the
method, then does the send.

Inserting Probes in the Debugger
The debugger code view <Operate> menu has the same probe
commands as the browser code view, and adds support for
temporary probes. Temporary probes persist only as long as the
debugger does, and are then removed. Probes can be added in the
debugger without having to restart the context.

Temporary Probes
Temporary probes are probes that disappear when the method
returns, as they only apply to the method context and its blocks. They
appear in the text view as yellow highlights, instead of red like
permanent probes.
Application Developer’s Guide 16-27

Debugging Techniques
Creating a temporary probe is accomplished by an additional button
on the Probe Selection Panel.

The Default to Temp probes or Default to Perm probes command on the
Visual Launcher Probes menu sets whether the Temporary button is
initially set or cleared. Additionally, the command determines if the
“insert breakpoint” command will insert a temporary breakpoint or a
permanent breakpoint.

Probe context management
You can insert and remove probes without having to restart the
context.

When a probe is inserted into a method in the browser, the method is
changed from a CompiledMethod to a ProbedCompiledMethod, and all of
its blocks are changed from CompiledBlock to ProbedCompiledBlock.
Furthermore, when a second probe is inserted, a copy of the first
probed compiled method is created and the probe is inserted into the
copy. This is done so that an active process will not inadvertently
have its method changed, thereby causing a VM crash.

However, when a probe is inserted into a method in the debugger, it
is important that the change be reflected in the selected context and
any contexts and closures that are descendants of the home context
of the selected context. This is accomplished by performing the
following procedure whenever a probe is inserted or removed within
the debugger.

1 If the home context of the selected context cannot be found, i.e.
one of the block closures between the current context and the
home context is not a full block closure, the operation is
terminated.

2 If one of the block closures, between the block containing the text
insertion point and the home context, is not a full block closure,
16-28 VisualWorks

Debugging Tips
the operation is terminated. Full closures are required because
the home context of a non-full closure cannot be located.

3 Probes inserted into or removed from a method will only affect
the home context, block closures, and block contexts that are
descendants of the home context. Contexts and closures that are
a result of a different message send, but the same method, will
not have the probe operation performed on them.

Refer to the following section on Debugging tips for assistance with
problems with inserting probes into blocks.

Debugging Tips

Inserting probes into blocks
When a probe is inserted into a method, the compiled method is
replaced with a probed compiled method. If the probe was inserted
via the browser all the blocks are recompiled as full blocks. If the
probe was inserted via the debugger then the block structure is not
changed. The importance of this is that in order to insert a probe in a
block via the debugger the block must be a full block. This also affects
the operation of the debugger Skip to caret command, which operates
by inserting a temporary breakpoint in the method, continuing
execution, and then removing the breakpoint when it is encountered.

If you wish to insert a probe into a block that is not a full block you
can use the debugger Make full blocks menu command, or you can
insert a probe into the method using the browser before the method
is executed. If the method of interest is a method that cannot be
halted with a breakpoint, you can disable it by inserting a conditional
breakpoint and have the conditional expression return false. When the
method is subsequently entered, in the debugger, all its blocks will be
full blocks which will permit temporary breakpoints to be inserted in a
block as well as using skip-to-caret into or out of blocks. The
“Implementation Limits” document, in the doc/TechNotes directory, has
a more complete description of blocks.

Iteration debugging
Frequently, one would like to continue execution in the debugger for
the next iteration for some iterator construct. The Execute > Return with
Break on Return and Return with Break Again commands provide this
capability.
Application Developer’s Guide 16-29

./TechNotes/ImplementationLimits7x.xml

Debugging Techniques
These two commands are especially useful for debugging loops. You
can set a breakpoint inside a loop, and then use Run with Break on
Return to start execution. It will stop either on the breakpoint inside the
loop or, if the loop did not iterate, upon return from the method. When
stopped inside the loop, you can use Run with Break Again to do the next
iteration, with a protection against “running away” in case there is no
next iteration.

The following steps illustrate how to do this.

1 Insert a temporary breakpoint in the loop code where you want
control to be returned to the debugger, or in some message that
is sent from the loop.

2 Select either the home method context or a context between the
block context and the home context.

3 Issue the Run with Break on Return command.

4 When the process stops inside the loop, perform successive
iterations by issuing the Run with Break Again command. It does not
matter what context is selected when the command is reissued.

5 If you want to reset the guard context, select the desired context
and issue the Run with Break on Return command.

Interrupting a Program
In addition to inserting breakpoint probes, you can manually stop a
Smalltalk program by typing a user interrupt key sequence or by
inserting a halt message in the program.

<Control>-y invokes the user interrupt function. Enter this key
sequence when you want to freeze a program that is looping
endlessly, or to capture its state at a specific observable stage.

<Control>-\ freezes all user processes and opens a process monitor,
allowing you to explore them individually.

Inserting the expression self halt in a method at the location where
you want execution to be interrupted, used to be normal practice. In
the presence of breakpoints, this is seldom necessary, but is an
option. When a self halt is encountered, the Debugger is opened
immediately, by-passing the initial walkback.
16-30 VisualWorks

Global Probe Management
Global Probe Management
The Visual Launcher has a Debug menu with commands that give
general control over probes and other debugging features.
Commands for the probe and expression libraries are described in
the following subsections.

Enable probes / Disable probes

Sets the global debug variable DebugActive, to true for enable, or
false for disable. Unless changed by the user, all probes use the
expression ^DebugActive as their conditional expression. If Disable
probes is listed, then debugging is active; if Enable probes is listed,
then debugging is inactive.

Remove All Probes...

Clears all probes.

Remove Unused Watch Windows

This command removes unused watch windows from the watch
window dictionary.

Remove Unused Debug Variables

This command removes unused debug variables, those that are
not referred to by any probe expression, from the debug variable
pool dictionary.

Browse Probes

Opens a method list browser on all methods with probes.

Inspect Debug Variables

Opens an inspector on the debug variable pool dictionary.

Probe Library

Provides submenu items to Load a probe library or to Save the
current probes into a library.

Watch Library

Provides submenu items to manage the watch expression library.

Test Library

Provides submenu items to manage the test expression library.
Application Developer’s Guide 16-31

Debugging Techniques
Process Monitor

Opens the Process Monitor.

Probe library
The probe library feature stores collections of probes in external files.
This allows you to use a standard set of probes to employ in
debugging a new image. For information about the file format, read
pdp/LibFrmt.txt.

The following commands, on the Probes menu in the Visual Launcher,
are used to save and load the probe library files.

Probe Library > Load

This command will save all the probes in the image to the
specified file.

Probe Library > Save

This command will read the specified file and load the described
probes into the image.

Expression libraries
Two expression libraries are provided to assist in using common
probe expressions. One library is for test expressions (Testlib.st) and
the other is for watch expressions (Watchlib.st). Both libraries are in
the pdp/ directory.

The following commands for managing the libraries are on the Debug
> Watch Library and Test Library submenus in the Visual Launcher. Each
command has two submenus which select either the test expression
library or the watch expression library.

Load

This command prompts for the name of a file containing an
expression library. The entries contained in the file will be added
to the entries already in the library.

Save

This command prompts for the name of a file into which to save
the expression library.

Inspect

This command opens an inspector on the library.
16-32 VisualWorks

Global Probe Management
Clear

This command clears the expression library of all entries.

Storing CompiledMethods Externally
Occasionally, it becomes necessary to store a CompiledMethod
externally. This can be done in a Store repository, a parcel, or a
BOSS file.

Any method that has a probe inserted in it is represented by an
instance of ProbedCompiledMethod. The probed compiled method
replaces the normal compiled method in the method dictionary.
Therefore, whenever an operation to write the method to an external
file is performed, one must insure that the original compiled method
is used instead of the probed compiled method. This package has
modified the necessary methods to insure that the normal operation
of the base system will not write a ProbedCompiledMethod to a file.

The following methods can be used to assist the user in ensuring that
a ProbedCompiledMethod is not written to a file as a result of additional
system enhancements.

CompiledMethod>>isProbed

Returns false.

ProbedCompiledMethod>>isProbed

Returns true.

CompiledMethod>>originalMethod

Returns self.

ProbedCompiledMethod>>originalMethod

Returns the original compiled method.

CompiledMethod>>revert

Does nothing.

ProbedCompiledMethod>>revert

Puts the original compiled method back in the method dictionary.

Behavior>>revertAllProbedMethods

Insures that all the methods in the method dictionary are the
original compiled methods.
Application Developer’s Guide 16-33

Debugging Techniques
Behavior>>revertAllProbedMethodsInTree

Insures that all the methods in the method dictionary of the
receiver and its subclasses are the original compiled methods.

Debugging Within the Virtual Machine
The standard VisualWorks distribution includes several special-
purpose object engines that may be useful when debugging crashes
during calls to external libraries (C or COM, for example) or within the
object engine itself.

During normal development and debugging, we recommend using
the “unstripped” engines, which include symbols for the platform’s
debugger. These engines are named vwPlatformName (e.g.,
vwlinux86 or vwnt.exe) to distinguish them from the standard engines.

Object engines with additional platform debugging features are also
available. Refer to Virtual Machines for details.
16-34 VisualWorks

17

Process Control

Besides control blocks, VisualWorks provides a mechanism for
controlling the flow of execution by separating control into several
processes. The process control mechanism facilitates controlling
multiple independent processes.

A Smalltalk process is a light-weight process that is non-preemptive
of other processes of the same or lower priority. It represents a
sequence of actions being performed by the computer. Frequently,
two or more such processes need to be running simultaneously. For
example, you might wish to assemble an index in the background at
the same time as your application user is performing an unrelated
activity such as entering data. In that case, the computer’s attention
must be divided between the two activities—in effect, we want to
place a fork in the path so the processor will progress down both
paths at the same time.

Creating a Process
To split a new process to run alongside an existing one, send the
message fork to a block, creating a new instance of Process. If the
indexing operation mentioned above were capable of being launched
from within the data-entry program, the expression for doing so would
look something like indexingBlock fork, where indexingBlock is a block
containing the launching instructions for the index program.

The fork message triggers execution of the block’s contents just as a
value message would. The difference is that the next instruction
following the fork is executed immediately. The instruction that follows
a value has to wait until the block has finished, which is undesirable in
the case of a background process such as an indexing operation.
Application Developer’s Guide 17-1

Process Control
A block’s response to fork is to create a new instance of Process, then
notify the Processor to add the new process to its work load. This
latter step is known as scheduling a process.

To create a new process without scheduling it, use newProcess
instead of fork. In effect, the newly created process is immediately
suspended, presumably so it can be restarted by another part of your
program at the appropriate moment. In that way, the creation of the
process can be separated from the scheduling.

To pass one or more arguments to a processing block, use
newProcessWith:, supplying the argument objects in an Array, as in
aBlock newProcessWith: #(2 #NewHire). The number of elements in the
Array must be equal to the number of block arguments.

Scheduling a Process
Processor is the lone instance of class ProcessorScheduler, and is
defined as a shared variable, so it is accessible by all objects.
Processor is responsible for deciding which instruction to execute next,
choosing among the next actions in all of the current processes. It
has to be made aware of a process first—the process has to be
scheduled.

The fork message, described above, automatically schedules its
newly created process. To schedule a suspended process (including
a process created with a newProcess message), use resume, as in the
expression aProcess resume.

To temporarily prevent execution of a process’s instructions, use
suspend. Thus, resume and suspend are complementary methods. A
resumed process starts up where it left off when it was suspended.

To unschedule a process permanently, whether it is in resume or
suspend mode, send it the message terminate.

Thus, a process can be in any of four different states: suspended,
waiting, runnable, and running. The first two are very similar, with the
distinction that explicit suspend and resume messages push a
suspended process from or into runnability, while primitive
semaphore methods accomplish the same for a waiting process. A
runnable process is ready to go as soon as the ProcessorScheduler
gives it permission. A running process is the one that the processor is
working on.
17-2 VisualWorks

Setting the Priority Level
Setting the Priority Level
The Processor has a great deal in common with a juggler who spins
plates on the tops of those long, wobbly poles and then scurries from
one to another, acutely attentive. Like the juggler, who services
whichever plate is wobbling the most and spinning the least, Processor
lets its processes set their own priority levels. Otherwise, it handles
them in the order in which they were scheduled.

There are 100 possible priority levels. Eight of the levels are
commonly used and can be accessed by name in code references.
The table below describes the purpose of these priority levels.

Priority Levels

Note that if a user process runs at higher priority than lowSpacePriority
(95), and create lots of objects, the image may run out of old space.
Because the low space process will be preempted from running by
the higher priority user process, the old space will not grow even if
permitted by the memory policy. Continuing to allocate objects in this
situation may result in a scavenger failure and a VM crash.

Priority
number

Method Purpose

100 timingPriority Processes that are dependent on
real time

98 highIOPriority Critical I/O processes, such as
network input handling

95 lowSpacePriority Priority at which the low space
action process runs.

90 lowIOPriority Normal input/output activity, such
as keyboard input

70 userInterruptPriority High-priority user interaction;
such a process pre-empts window
management, so it should be of
limited duration

50 userSchedulingPriority Normal user interaction

30 userBackgroundPriority Background user processes

10 systemBackgroundPriority Background system processes

1 systemRockBottomPriority The lowest possible priority
Application Developer’s Guide 17-3

Process Control
A newly created process inherits the priority level of the process that
created it.

To assign a new priority to a process, use an expression of the form
aProcess priority: (Processor userInterruptPriority). Notice that the priority:
method expects an integer argument, but the sender asks the
Processor for the integer by name.

You can also specify the priority level at process creation time, using
forkAt: with the requisite priority level integer.

The Processor gives control to the process having the highest priority.
When the highest priority is held by multiple processes, the active
process can be moved to the back of the line with the expression
Processor yield—otherwise it will run until it is suspended or
terminated before giving up the processor. A process that is yielded
will regain control before a process of lower priority.

Semaphore
A Process performs a sequence of operations asynchronously with
other processes. This is fine as long as the processes do not need to
interact.

When processes, which are substantially independent, do need to
interact, a mechanism is needed to signal between them. The
Semaphore class provides for synchronized communication of a
simple signal between such processes.

A Semaphore instance holds a list of processes that are waiting to be
resumed. To join the wait queue, a process sends a wait message to
the Semaphore. To signal that the next process can be resumed, a
process sends a signal message to the Semaphore. Each signal
resumes one process, the first process of the highest priority added
to the queue (priority-weighted FIFO).

A Semaphore is useful to coordinating actions between otherwise
independent processes. For example, several processes requiring
access to a shared printer could each fork a process to use the
printer. A printer process would create a Semaphore:

printerSemaphore := Semaphore new.
Each print job processes would send a wait message to the
Semaphore, indicating readiness to send their job:

printerSemaphore wait.
17-4 VisualWorks

Delay
Each time a print job completes, so the printer process is ready for
hte next job, it sends a signal message to the Semaphore:

printerSemaphore signal.

Mutual Exclusion
Semaphore can be used to ensure mutually exclusive use of resources
by separate processes. This is necessary, for example, if multiple
processes have read and write access to a data structure, and it is
necessary to ensure that one process completes its operations on
the structure before another begins.

To ensure mutual exclusivity, each process must wait for the same
Semaphore before using a resource and then signal the Semaphore
when it is finished. Because this is a common use for Semaphore, it is
supported with the method:

critical: mutuallyExcludedBlock

Evaluate mutuallyExcludedBlock only if the receiver (a
Semaphore) is not currently in the process of running the critical:
message. If the receiver is already processing a critical: message,
evaluate mutuallyExcludedBlock after the other critical: message is
finished.

For a Semaphore to work for mutual exclusivity, it must start with one
excess signal, so the first Process may enter the critical section. The
forMutualExclusion instance creation method handles this:

forMutualExclusion

Answer a new instance of me that contains a single signal. This
new instance can now be used for mutual exclusion.

When used for resource sharing, mutual exclusion may not be
enough. Processes often must use another Semaphore to signal when
a resource is available.

Delay
The Delay class answers the common need for a means of
postponing a process for a specific amount of time.

To create a Delay, use forSeconds:

Delay forSeconds: 30
Application Developer’s Guide 17-5

Process Control
For finer resolution, use forMilliseconds:

To create a Delay that continues until the system’s millisecond counter
reaches a particular value, use untilMilliseconds:. To find out the
current value of the counter, use the expression Delay
millisecondClockValue.

Merely creating a Delay has no impact on the current process. The
process must send the wait message to the instance of Delay. Thus,
the following expression in a method would suspend the current
process for 30 seconds:

(Delay forSeconds: 30) wait.
As an alternative, you can create a Duration object and send it a wait
message. For example:

30 milliseconds wait.

Delay and Time Change Interaction
It has been noted, particularly on Windows systems, that changing
the time clock adversely affects applications that are in a Delay. The
results vary, but can be as severe as an image hang or crash.

The problem occurs if the system gets out of synchronization with
network time, so that a large correction is necessary. The problem
can be minimized by configuring windows to run a full NTP server,
which changes time gradually, rather than the default SNTP server
that corrects the time all at once.

Arbitrary changes to the clock will continue to cause problems with
running applications in a Delay.

Promise
A Promise represents a value that is being computed by a
concurrently executing process, providing a way to reference that
value before it is available. An attempt to read the value of a Promise
waits until the process has finished computing it.

To create a Promise, send a promise message to the block defining the
process. To request its value, send a value message to the Promise.

| prom |
prom := [3 + 4] promise.
^prom value
17-6 VisualWorks

Sharing Data Between Processes
If the process terminates with an exception, an attempt to read the
value of the Promise will raise the same exception.

| prom |
prom := [1 / 0] promise.
^prom value “Returns 0 divide error.”

Sharing Data Between Processes
When an application needs to match the output of one process with
the input for another process, care must be taken to make sure the
transfer of data goes as planned. The SharedQueue class provides a
means of coordinating this transfer.

To create a SharedQueue, use new or new: with an integer argument
specifying the number of desired slots.

To store an object in the SharedQueue, send it a nextPut: message with
the data structure as argument. If another process has been waiting
for an element to be added to the queue, which is indicated by
sending next to the SharedQueue, that process will be resumed.
Application Developer’s Guide 17-7

Process Control
17-8 VisualWorks

18

Refactoring

Developing reusable software typically involves many design
iterations. Each iteration may introduce new requirements that
change or extend the original design. Simultaneously, the excesses
of the original design may be corrected or improved through deeper
architectural changes.

This iterative process of re-architecting a design may be described as
code refactoring. Refactoring is a common development strategy that
has been formalized into a set of practices for reorganizing code
while preserving its behavior.

Whereas re-working or re-writing code may involve dramatic changes
in functionality, refactoring is an intermediate step that generally
doesn’t disturb the behavior of an application. Refactoring can help
when tackling reusability problems, but its primary goals are to clarify
abstractions, to simplify and thereby improve the code design.

The VisualWorks system browser provides full functionality for code
refactoring.

This chapter provides an overview of the individual refactorings, and
shows you how to perform a few of the more common design
changes using code refactorings.

For a more in-depth discussion of the methodology of refactoring, you
may consult a number of articles on the Web and several books
currently in print. In particular, we recommend:

Refactoring: improving the design of existing code
By Martin Fowler
Reading, MA : Addison-Wesley, 1999
ISBN: 0201485672.
Application Developer’s Guide 18-1

Refactoring
Refactoring Browser Support
The VisualWorks browser provides over two-dozen distinct
refactoring operations for manipulating classes, methods, and
individual statements within a method. Refactoring operations are
thus class-, method-, or statement-oriented.

Class-oriented refactorings
These operate on classes, instance variables, and class variables
and are available on the browser’s Class menu (for details, refer to
Refactoring Classes).

Method-oriented refactorings
These operate on methods, and are available on the Method menu (for
details, refer to Refactoring Methods).

Class-oriented Refactorings

Create a Subclass

Rename a Class and its References

Safely Remove a Class

Change a Class to a Sibling

Add a Variable

Rename a Variable and its References

Remove a Variable

Move a Variable to/from a Subclass

Create Variable Accessors

Make a Variable Abstract/Concrete

Method-oriented Refactorings

Move a Definition to Another Component

Rename a Method and its References

Safely Remove a Method

Add a Parameter to a Method
18-2 VisualWorks

Refactoring for Abstraction
Statement-oriented refactorings
These operate on individual statements in a method and are
available through the context sensitive menus in the code tool (for
details, refer to Refactoring Portions of a Method).

Refactoring for Abstraction
It is often desirable to change the design of an application to use
abstract and concrete classes. This requirement may emerge as the
application evolves, and it is then necessary to create a new, abstract
class.

Making this design change involves inserting a new superclass into
an existing hierarchy, then splitting the functionality of the existing
concrete class and the newly-created superclass.

Several refactorings may be used to simplify this type of design
change.

Conceptually, there are three steps involved:

1 Create an abstract superclass for the existing concrete class(es).

Inline all Sends to Self

Move a Method to/from a Superclass

Method-oriented Refactorings

Statement-oriented Refactorings

Extract a Method

Inline a Temporary Variable

Convert a Temporary to an Instance Variable

Remove a Parameter

Inline a Parameter

Rename a Temporary Variable

Move a Temporary to an Inner Scope

Extract to a Temporary

Inline a Message
Application Developer’s Guide 18-3

Refactoring
2 Find all instance variables common to the concrete subclasses,
and move them into the new abstract superclass.

3 Find all methods or code fragments that are common to the
concrete subclasses, and move them into the new superclass.

Creating an Abstract Class
Let’s consider the following example: a Web application for retailers
might provide a framework for different types of shopping applications
available at a single site.

Suppose that a first retail application is developed to purchase items
from a catalog. The class that represents items in a shopping cart,
might look like this:

WebAppNamespace defineClass: #CatalogPurchase
superclass: #{Core.Object}
...
instanceVariableNames: 'item catalog'
...

The business logic for this class is defined as a method:

CatalogPurchase>>purchaseItemFor: aCustomer
| price |
price := catalog costForItem: item.
item isAvailable

ifTrue: [aCustomer chargeForItem: item cost: price]
....

Let’s further suppose that another application is developed for
purchasing items that have been discounted for clearance. The
business logic for this application is slightly different, so a new class
is defined for purchases:

WebAppNamespace defineClass: #ClearancePurchase
superclass: #{Core.Object}
...
instanceVariableNames: 'item catalog discount'
...

Class ClearancePurchase handles purchases that can be discounted,
so it defines a method that looks like this:

ClearancePurchase>>purchaseItemFor: aCustomer
| price discountedPrice |
price := catalog costForItem: item.
discountedPrice := price - (price * discount).

18-4 VisualWorks

Refactoring for Abstraction
item isAvailable
ifTrue: [aCustomer chargeForItem: item cost: discountedPrice]

....
The design of these two applications can be simplified by using an
abstract class named Purchase that CatalogPurchase and
ClearancePurchase both inherit from.

To simplify the design by refactoring the code:

1 Open the browser on the superclass of CatalogPurchase (in this
case: Core.Object). Select Class > Refactor > Create Subclass.... A
dialog prompts for the name for the new subclass.

2 Enter the name of the new abstract class: Purchase. Click OK.

3 A dialog with a list view prompts for the subclasses of the new
abstract class. Scroll down the list and select both CatalogPurchase
and ClearancePurchase. Click OK.

The new class Purchase is created and inserted in the hierarchy.

Moving Instance Variables to a Superclass
In the example described above, the instance variables item and
catalog are duplicated in two classes. We can eliminate this
duplication by moving these variables into a shared superclass:

1 Open the browser on the class definition for CatalogPurchase.

2 Highlight the instance variable item, and then select
Instance Variables > Push Up... from the Class menu.

3 Repeat step 2 for the variable catalog.

Since the same instance variables are defined by the sibling class
ClearancePurchase, this refactoring operation also removes them from
the sibling class.

Consolidating Common Code
In the example framework, the method purchaseItemFor: is similar in
both classes CatalogPurchase and ClearancePurchase. We can make a
further refactoring to consolidate this code in a single method in the
Purchase superclass.

To separate the common code:

1 Open a browser on the method
CatalogPurchase>>purchaseItemFor:, and highlight the lines of
code that are unique:
Application Developer’s Guide 18-5

Refactoring
| price |
price := catalog costForItem: item.

2 Select Refactor > Extract Method from the <Operate> menu.

A dialog prompts to ask whether you want to extract the
assignment of price. Answer No.

3 A new dialog appears, prompting for the name of a new method
to contain the extracted code. Enter: computePrice.

The refactoring operation creates a new method using the
extracted code:

computePrice
^catalog costForItem: item

4 Select the method ClearancePurchase>>purchaseItemFor: and
highlight the unique code:

| price discountedPrice |
price := catalog costForItem: item.
discountedPrice := price - (price * discount).

5 Select Extract Method from the <Operate> menu.

A dialog prompts to ask whether you want to extract the
assignment of price. Answer No.

6 A new dialog appears, prompting for the name of a new method
to contain the extracted code. Enter: computePrice.

The Extract Method refactoring operation creates a new method:

computePrice
| price |
price := catalog costForItem: item.
^price - (price * discount)

Note that the method ClearancePurchase>>purchaseItemFor: is now
functionally identical to the same method in class CatalogPurchase.
Accordingly, we can consolidate both into a single method in the
common superclass.

To move the method purchaseItemFor: to class Purchase:

1 Examine CatalogPurchase>>purchaseItemFor: in the browser
and select Refactor > Push Up from the Method menu.

2 A dialog prompts to ask whether you want to remove duplicate
subclass methods. Answer Yes.
18-6 VisualWorks

Refactoring for Abstraction
The method purchaseItemFor: is moved to class Purchase, thus
eliminating all duplicate code in its subclasses.

Inlining Methods
It is often desirable or necessary to inline the functionality contained
in a method by moving it to a different, more appropriate, class.

For example, suppose an application class defines the following
method:

copyDictionary: aDictionary
| newDictionary |
newDictionary := Dictionary new: aDictionary size.
aDictionary

keysAndValuesDo: [:key :value | newDictionary at: key put: value].
^newDictionary

Since this method works entirely with its parameter, aDictionary, it
would simplify the overall design of the application if this functionality
were relocated in class Dictionary, i.e.:

Dictionary>>copyWithAssociations
| newDictionary |
newDictionary := Dictionary new: self size.
self keysAndValuesDo:

[:key :value | newDictionary at: key put: value].
^newDictionary

By placing the functionality in class Dictionary, we can replace indirect
sends such as self copyDictionary: someDictionary with direct, inline
sends to the Dictionary object.

To apply this refactoring:

1 Open a browser on the method copyDictionary:, and select Move
> to Component... from the Method menu.

2 A dialog prompts to ask whether you want to move the method
using an argument or instance variables. Select the argument to
the method, aDictionary.

3 A dialog prompts for the class(es) in which you would like to
define the new method. Select Core.Dictionary.

4 A dialog prompts to ask for the name of the new method. Enter:
copyDictionary and click OK.
Application Developer’s Guide 18-7

Refactoring
When the refactoring is applied, the original copyDictionary: method
is changed to use the new method, i.e.:

copyDictionary: aDictionary
^aDictionary copyDictionary

Since the new method essentially works only to forward the send, we
can inline all of its senders, making them bypass the forwarder.

To inline sends to the forwarder and then remove it:

1 Select Refactor > Inline All Self Sends from the Method menu.

2 A dialog prompts to ask whether you want to inline the
parameters. Answer Yes.

3 Select Remove... from the Method menu.

Refactoring Classes

Creating a Subclass
To insert a new class into the middle of an existing hierarchy, use the
browser’s navigator to choose the superclass for the new class and
then select Class > Create Subclass.... A dialog prompts for the name of
the new subclass(es).

This refactoring operation may be used to insert a new class between
an abstract superclass and all of its subclasses.

Renaming a Class and Its References
To rename a class and every reference to it in the image, select Class
> Rename....

This refactoring operation checks for symbols with the same name as
the class, and these, too, are renamed (this catches the use of
expressions like Smalltalk at: ...).

Note that in the case of class names constructed by sending the
asSymbol message, the strings containing the class name will not be
changed.

Safely Removing a Class
To remove a class, first checking for any references to it, select Class
> Safe Remove....
18-8 VisualWorks

Refactoring Classes
Note that if the class is referenced using constructed symbols or
Smalltalk at: ..., this refactoring may remove the class even though
code still uses it.

Changing a Class to a Sibling
To insert a new superclass into an existing hierarchy, use the
browser’s navigator to choose the subclass for the new class and
then select Class > Refactor > Convert to Sibling.

When requested, enter the name of the class to be created. If the
selected class has subclasses, a class selection dialog opens, for
you to select classes to make as siblings of the selected class, under
the new superclass. The new class will be a superclass of the class
selected in the browser’s navigator, and the other selected classes
are moved to be siblings of the selected class under the new class. It
also pushes up

common methods and variables to the new superclass. Finally, for
methods that are not common, it writes a self subclassResponsibility
method.

Adding a Variable
To add an instance or class variable to the currently selected class,
select Instance Variables > Add... or Class Variables > Add... from the Class
menu.

This refactoring operation checks that the new variable’s name
doesn’t already exist in the scope of the definition.

Renaming a Variable and its References
To rename an instance or class variable and all references to it,
select Instance Variables > Rename... or Class Variables > Rename... from
the Class menu.

Any methods using instVarAt: may be broken by this refactoring
operation, since the renamed variable is always added to the end of
the list of variables.

Removing a Variable
To remove an instance or class variable only if it is not referenced by
any code in the image, select Instance Variables > Remove... or
Class Variables > Remove... from the Class menu.
Application Developer’s Guide 18-9

Refactoring
Moving a Variable from or to a Subclass
When a variable definition is defined by a class but only used by one
of its subclasses, you may use Class > Instance Variables > Push Down...
or Class > Class Variables > Push Down... to move the variable to only
those subclasses that use it.

If no subclass has a reference to the variable, it is simply removed.

This refactoring operation is only allowed if the selected class
contains no references to the variable. For class variables, it can only
move the variable down into one subclass; otherwise, it would be
necessary to split the one class variable into two and possibly break
the code.

Note also that if there are any instances or the class or its subclasses
exist, these variables will become nil.

Conversely, to move a variable definition from the currently selected
class into its superclass, you may use Class > Instance Variables >
Push Up... or Class > Class Variables > Push Up....

Any methods using instVarAt: may be broken by this refactoring
operation.

Creating Variable Accessors
To create accessor methods for a variable, select Instance Variables >
Create Accessors... or Class Variables > Create Accessors... from the Class
menu.

The new accessor methods are named with the name of the variable.
If a method with the chosen name already exists, the refactoring
operation adds a number to the message selector until it no longer
conflicts.

Abstracting a Variable
To create accessor methods for a variable and then convert all direct
references to use the new accessor methods, select Instance Variables
> Abstract... or Class Variables > Abstract... from the Class menu.

This operation uses the Create Accessors... refactoring operation.

When detecting accessors, this operation scans for methods that
simply assign a value to the variable in question, regardless of the
method’s name. For this reason, coding techniques such as lazy
initialization are not discovered, and new accessor methods are
created.
18-10 VisualWorks

Refactoring Methods
Making a Variable Concrete
To convert all variable accessor sends to direct variable references,
select Instance Variables > Protect... or Class Variables > Protect... from the
Class menu.

If the accessor method is no longer used then it will be removed.

Refactoring Methods

Moving a Definition to Another Component
To move a method, an argument or an instance variable to another
component, select Move > to Component... from the Method menu.

This operation can be used to move the body of a method to another
component, leaving a forwarder and thereby not changing the
external interface of the class that contains the original method.

Renaming a Method and its References
To rename all implementors of a method, all senders, and all symbols
references, select Rename... from the Method menu.

In addition to strict renaming, this refactoring operation also enables
you to rearrange the method’s parameters. However, when
rearranging the parameters, any symbols that are performed cannot
be permuted.

Safely Removing a Method
To remove a method, checking for senders and symbols that
reference the method’s name, select Safe Remove from the Method
menu.

The method is only removed if there are no unresolved references to
it. This operation also removes the method if it is equivalent to the
superclass' definition.

Adding a Parameter to a Method
To add a default parameter to all implementors of the method, select
Refactor > Add Parameter... from the Method menu.

Inlining all Sends to Self
To inline all senders within the class of the method, Refactor >
Inline All Self Sends... from the Method menu.
Application Developer’s Guide 18-11

Refactoring
If there are no remaining senders after all inlines have been
performed, this operation also removes the method.

Moving a Method to or from a Superclass
Select Refactor > Push Up from the Method menu to move a method up
into the superclass. If the superclass is abstract and already defines
the method, then the superclass' method is copied down into the
other subclasses (assuming they don't already define the method).

To move a method from the currently selected class down into all
subclasses that don't implement it, select Refactor > Push Down from
the Method menu.

This operation is only performed if the class is abstract, and the
browser checks for this by scanning the class for methods which
send subclassResponsibility, or for no references to the class.

Refactoring Portions of a Method

Extracting a Method
To extract a portion of code as a separate method, highlight the code
fragment and select Refactor > Extract Method from the <Operate>
menu.

This refactoring operation determines which temporary variables are
needed in the new method, and prompts for a selector that takes
arguments.

Inlining a Temporary Variable
To remove the assignment of a variable, replacing all references to
the variable with the right hand side of the assignment, highlight the
code fragment that contains the assignment and select Refactor >
Inline Temporary from the <Operate> menu.

Converting a Temporary into an Instance Variable
To convert a temporary into an instance variable, highlight the
temporary variable name and select Refactor > Convert to Instance
Variable from the <Operate> menu.

This operation is useful when eliminating parameters to methods that
are only used internally within a class.
18-12 VisualWorks

Refactoring Portions of a Method
Note: this refactoring should not be used on methods that are
recursive.

Removing a Parameter
To remove an unused parameter from all implementors of the
method, and from all message sends, highlight the parameter and
select Refactor > Remove Parameter from the <Operate> menu.

Inlining a Parameter
To remove a parameter from the method, adding a corresponding
assignment at the beginning of the method, highlight the parameter
and select Refactor > Inline Parameter from the <Operate> menu.

This operation is only performed if all senders of the method have the
same value for the parameter.

Renaming a Temporary
To rename a temporary variable in the body of the method, highlight it
and select Refactor > Rename... from the <Operate> menu.

Moving a Temporary to an Inner Scope
To move a temporary variable definition into the tightest scope that
contains both the variable assignment and references, highlight it and
select Refactor > Move to Inner Scope from the <Operate> menu.

This operation is useful for improving code performance by
converting unoptimized blocks into optimized ones.

Extracting to a Temporary
To extract a message into an assignment statement, highlight the
statement and select Refactor > Extract to Temporary from the <Operate>
menu.

For example, in an expression such as:

self someMessage anotherMessage foo: 1 bar: 2
To code self someMessage may be extracted to a temporary named
temp. The result of the operation looks like:

| temp |
temp := self someMessage.
temp anotherMessage foo: 1 bar: 2
Application Developer’s Guide 18-13

Refactoring
Inlining a Message
To inline a message send, highlight the statement and select Refactor
> Inline Method from the <Operate> menu.

If there are multiple implementors of the message, this operation
prompts for the implementation that should be inlined.
18-14 VisualWorks

19

Weak Reference and Finalization

The Smalltalk virtual machine performs garbage collection to reclaim
memory used to hold objects. Because objects are constantly being
created and destroyed, garbage collection relieves the programmer
from the heavy, and risky, responsibility of explicitly releasing
memory, as is required in lower-level languages and environments.

There are various algorithms that a garbage collector can use to
decide with objects are ready to be reclaimed. The VisualWorks
virtual machine implements three strategies.

Most object references, which are held in instance variables, are
strong references. The garbage collector will not reclaim any object
as long as any other object holds a strong reference to it. When it
determines that there are no more strong references to the object, it
reclaims the memory occupied by it. This is appropriate because
most objects are not prepared to have their referents suddenly
disappear with the rest of the garbage.

In some circumstances, however, strong references cause objects to
live longer than their designers intended. Suppose, for example, you
want to profile the performance characteristics of an application. You
might place some of the objects created by that application into an
array so you can tabulate statistics on them. Unfortunately, merely
referencing these objects from such an array guarantees that they
are not reclaimed, even if the application itself ceases to reference
them.

To allow garbage collection of objects that still have references, the
VisualWorks virtual machine also recognizes weak references to
objects. Ephemerons (e.g., Ephemeron) and weak collections (e.g.,
WeakArray and WeakDictionary) referencing objects support weak
references. An object making a weak reference to an object will not
Application Developer’s Guide 19-1

Weak Reference and Finalization
prevent the referenced object from being garbage collected. Once the
garbage collector determines that the only references to an object
are weak, it notifies the object that it is about to be reclaimed.

While object finalization is logically a separate issue, garbage
collection of weak references provides the mechanism for finalization.
When the garbage collector discovers an object that is referenced
weakly and that it is a candidate for garbage collection, it notifies the
referencing object so that finalization actions can be performed.
Normally there is nothing to do, and the default finalization action is to
do nothing. However, in a few cases an object may be responsible for
performing some cleanup before being collected, such as releasing
file handles or other external resources.

Ephemerons are the preferred mechanism for weak reference and
finalization, and allow finalizing an object before the object is
reclaimed. Weak collections, such as WeakArray and WeakDictionary,
finalize after the object has been reclaimed, requiring that finalization
actions are actually performed on proxy objects.

Examples are provided in the parcels, Finalization-Ephemeron and
Finalization-WeakArray.

Ephemerons
Ephemerons, of which class Ephemeron is a special case, provide a
weak reference mechanism and sophisticated finalization support.

An ephemeron has at least one named instance variable and no
indexed instance variables. The first variable is treated specially by
the garbage collector. If its value is either not referenced, or only
referenced by its other variables, or by other ephemerons, it is
reclaimed.

New ephemeron classes are defined by specifying the index type as
#ephemeron (see Class Types). These classes may be subclasses
only of classes of type #none or #ephemeron.

Ephemeron, which is the most commonly used ephemeron class, is a
kind of Association whose key is weak. References back to the key
from the transitive closure of an ephemeron's other fields do not
prevent it from being reclaimed. In a common usage, instances are
used to attach properties to objects without preventing those objects
from being garbage collected.
19-2 VisualWorks

Ephemerons
An Ephemeron instance is created by assigning a key and value:

Ephemeron key: anObject value: (Array with: anObject with: 2)

Finalization
Ephemerons support instance-based finalization. Unlike WeakArray,
which implements a postmortem finalization scheme, ephemerons do
their finalization before the object is reclaimed.

When there exist no references to the special variable’s value (the
first instance variable, or the key of an Ephemeron) other than from
ephemerons, the garbage collector marks it for reclamation and
notifies the ephemeron by sending it a mourn message. The default,
defined in Object is to do nothing. Override mourn in your ephemeron
class if finalization is required.

Class Ephemeron forwards the notification by sending mournKeyOf: to
the specified manager, with the Ephemeron as argument. To do
finalization for an object using an Ephemeron instance,

1 Create an Ephemeron with the object as key. The value can be any
object, depending on other uses for the Ephemeron.

2 Define a class (for example, MyEphemeronManager) which
understands the message mournKeyOf:, and implement the
message to perform the finalization actions.

3 Associate an instance of the manager with the Ephemeron by
sending a manager: message.

Note that, unlike WeakKeyAssociation, of which Ephemeron is a
subclass, mourn does not set either the key or value to nil. Your class
might need to do this as part of finalization in some circumstances.

For purely demonstrative purposes, consider a MyEphemeronManager
with the single method:

mournKeyOf: anEphemeron
Transcript cr; show: 'Farewell, world!'

The Ephemeron can then be configured by:

eph := Ephemeron
key: anObject value: (Array with: anObject with: aValue).

eph manager: MyEphemeronManager new
To test this work in a workspace, evaluate:
Application Developer’s Guide 19-3

Weak Reference and Finalization
anObject := Object new.
eph := Ephemeron

key: anObject value: (Array with: anObject with: aValue).
eph manager: MyEphemeronManager new.
anObject := nil.

EphemeronDictionary
EphemeronDictionary provides the natural collection for holding and
managing multiple Ephemerons.

EphemeronDictionary is specifically designed to support property
lookup. Accordingly, instance creation methods are
newPropertyDictionary (sets up for 2 entries) and newPropertyDictionary:
(sets up for a specified number of entries). To add a property
association, send add: to the dictionary with an Ephemeron argument,
which is a specialized Association. For example:

EphemeronDictionary newPropertyDictionary
add: (Ephemeron key: anObject value: aProperty);
add: (Ephemeron key: anotherObject value: anotherProperty).

Ephemerons are reclaimed within the dictionary as usual.

For finalization, specify the manager for the dictionary, rather than for
the individual ephemerons.

The manager might need to hold a reference to the
EphemeronDictionary it is managing, so that it can remove the
Ephemeron's key from the dictionary.

Weak Collections
Weak collections are classes whose indexed variables reference their
values weakly, and so do not prevent garbage collection of their
referents. Any named instance variables reference their values
strongly.

In general terms, any class defined with index type #weak is a weak
collection (see Class Types). These classes can also have named
instance variables, which reference their values strongly. Only the
indexed variables are weak. For example, WeakArray has a named
instance variable, dependents, which holds its values strongly.

Typically, the weak collections that are used are WeakArray and
WeakDictionary, but you can define your own weak collection classes
as well.
19-4 VisualWorks

Weak Collections
WeakArray
A WeakArray is similar to an ordinary Array, the prime difference being
that a WeakArray references its elements weakly.

When an element of a WeakArray is no longer referenced by any
object other than another weak reference, then that element is
eligible for reclamation by the garbage collector. During reclamation,
the reference to that element is removed from the WeakArray and
replaced by zero, the designated Tombstone object.

Only the indexed variables of a WeakArray are weak references. The
named instance variable, dependents, is strong. Subclasses can
define additional named instance variables, which also are strong
references.

Finalization
WeakArray provides a way of performing finalization actions when an
object is reclaimed. For example, an application might need to
release some external resource when the objects using that resource
have all been garbage collected. The system notifies the application
when a weakly referenced object has expired, thus giving the
application opportunity to perform cleanup.

The mechanism involves sending a changed: message, with aspect
symbol #ElementExpired, to any WeakArray that has had one or more of
its elements zeroed out. The WeakArray propagates this notification by
sending an update:with:from: message to each of the dependents,
allowing them to take the actions necessitated by the death of the
WeakArray’s element.

To be more exact, the dependents of a given WeakArray are notified
that one or more of its elements have expired as follows:

1 When an element of a WeakArray expires, the VM zeros out the
slot in the WeakArray that was previously occupied by the now
dead object.

2 In addition, the VM places this WeakArray on a finalization queue
that is managed by the VM, and then signals the
FinalizationSemaphore.

3 Signalling the FinalizationSemaphore causes the FinalizationProcess
(which is generally waiting on the FinalizationSemaphore) to
resume, and the FinalizationProcess then sends a changed
message to every WeakArray on the finalization queue.
Application Developer’s Guide 19-5

Weak Reference and Finalization
4 Eventually, every dependent of each WeakArray that had an
element reclaimed will receive an update message.

The dependent actually performs any finalization actions. Note that
the object to be reclaimed cannot itself be the dependent, because it
would then have a strong reference to it, preventing its reclamation.

Because the object that was an element of the WeakArray will already
have been destroyed, the dependent needs to store whatever
information it needs prior to being notified. The dependent must also
ensure that it can subsequently locate that information based solely
on the dead element’s index in the WeakArray. The dependent can find
the indexes of a WeakArray’s tombstoned elements by sending
indexOf:replaceWith:startingAt:stoppingAt:.

For example, consider an application that has a set of objects that act
as proxies for external resources. The application wishes to free
these external resources when the proxies are no longer in use.
Further, assume that the proxies know which external resource they
are associated with by virtue of a proxy instance variable that
contains an external handle.

The application could arrange for the external resources to be freed
automatically by simply placing the proxy objects in a WeakArray and
copying their associated external handles into the corresponding
locations of a strong Array. Then, when one or more of the proxy
objects was no longer in use, the memory manager would reclaim the
proxy object, zero out its location in the WeakArray, place the
WeakArray on the finalization queue, and signal the
FinalizationSemaphore, eventually resulting in an update message
being sent to the application, assuming that the application had
registered one of its objects as a dependent of the WeakArray. The
application could then identify which proxy objects actually expired
and free their associated external resources as follows:

weakArrayOfProxies
forAllDeadIndicesDo:

[:deadIndex | externalConnection
freeResource: (externalHandleArray at: deadIndex)]

There is alternative protocol to make nil the value at each dead index
of the WeakArray as it is uncovered (nilAllCorpsesAndDo:) as well as for
replacing the value with an arbitrary object
(forAllDeadIndicesDo:replacingCorpsesWith:). Because these methods
use the indexOf:replaceWith:startingAt:stoppingAt: primitive, which finds a
given element and replaces it atomically, they can be used to prevent
another process from mistakenly duplicating the finalization actions.
19-6 VisualWorks

Weak Collections
This scheme requires some extra work on the part of the application,
because it forces the application to save a copy of the external
handles in a parallel array. However, it completely avoids the
problems that can occur if the proxy object that we are finalizing is
resurrected, either by the code performing the finalization or by some
other code that happens to get a handle on the proxy object before it
is actually destroyed by the VM and after the finalization action has
been completed.

Finalization Example
To illustrate the finalization mechanism using WeakArray, consider the
Executor class in the Finalization-WeakArray example parcel. An
Executor is an object that executes the last will and testament of a
familyMember. To try it, enter the code into the system, then evaluate
the expression in the example method.

The familyMembers variable holds a WeakArray containing the name
string of each family member, and the familyWills variable holds an
Array of blocks to perform, one for each corresponding person in the
familyMembers array.

The instance method for finalization is the crucial one:

readLastWillAndTestamentOfTheDeparted
"Read the will of each family member who has died."
familyMembers nilAllCorpsesAndDo:

[:deadIndex | (familyWills at: deadIndex) value]
The example class method sets up the arrays. Because there are no
strong references to the elements of the WeakArray, the finalization
mechanism is invoked, ultimately performing the blocks for each
family member.

example
"Executor example inspect"
| family wills familyLawyer |
family := WeakArray

with: 'cain' copy
with: 'abel' copy
with: 'eve' copy
with: 'adam' copy.

wills := Array
with: [Transcript show:

'Cain has died. Bequeaths his assets to the church.'; cr]
with: [Transcript show:

'Abel has died. Killed by Cain for his assets.'; cr]
with: [Transcript show:

'Eve has died. Bequeaths her assets to Abel.'; cr]
Application Developer’s Guide 19-7

Weak Reference and Finalization
with: [Transcript show:
'Adam has died. Bequeaths his assets to Eve.'; cr].

familyLawyer := Executor new.
familyLawyer familyWills: wills.
familyLawyer familyMembers: family.
^familyLawyer

WeakDictionary
A WeakDictionary is a dictionary whose valueArray is a WeakArray. Such
a dictionary is fully protocol-compatible with IdentityDictionary. The
lookup is done using == (identity) rather than = (equality).

WeakDictionary holds its values weakly. When a value no longer has a
strong reference to it, it is a candidate for garbage collection. Upon
reclamation, both the key and the value for the entry are replaced by
nil.

Finalization
WeakDictionary also stores an array of executors for its entries. An
entry’s executor is responsible to perform any finalization actions
after the element has been reclaimed. Once an element has been
reclaimed, the dictionary sends a finalize message to the element.
Accordingly, the object itself is responsible for defining any finalization
action, rather than the application as is the case for WeakArray
finalization.

The default executor for each element is a shallow copy of the
element value (see executor in Object). The default finalization action is
to do nothing (see finalize in Object). To provide finalization actions, the
object needs to implement a finalize method, to override the default.

An object can also delegate finalization to another executor object. To
do so, the object needs to implement an executor method, specifying
the object that will perform finalization. The WeakDictionary will assign
the designated executor and send it the finalize message.

HandleRegistry
A HandleRegistry is a WeakDictionary whose values all respond to a key
message. The elements of a HandleRegistry are registered using their
response to the key message as the dictionary key and using the
element as the value. Access functions are all implemented as critical
regions so that multiple processes can operate on an instance at the
same time.

Note that HandleRegistry compares objects with equality (=) instead of
identity (==).
19-8 VisualWorks

20

Creating an Application without a GUI

Applications that rely on direct user interaction typically provide
graphical user interfaces for collecting input and displaying output.
You can also write batch or server applications that, by their nature,
do not rely on direct user interaction, and may run on computers that
have no console or windowing system. Such applications execute in
headless VisualWorks images—that is, images that run with the
display system deactivated (in headless mode).

The headlessness of an image is controlled by the sole instance of
the class HeadlessImage. This instance (HeadlessImage default) enables
you to create new images by saving them either in headless mode
(with the display system deactivated) or in “headful” mode (with an
activated display system). You typically develop your application in a
headful image, test it in a headless image, and then debug it in a
headful image that is created from the headless image. The
HeadlessImage instance records the image’s mode and can be queried
for it.

The basic way to provide input to a headless image is through a
startup file. A startup file is a file that contains Smalltalk expressions
in file-in format. When a headless image is started, it reads the file
and evaluates the expressions. You typically use a startup file to start
your application in the headless image. Applications can also accept
input through sockets, file I/O, TTY interaction, and so on.

By default, output that would normally be displayed in the System
Transcript is saved to disk in a transcript file.
Application Developer’s Guide 20-1

Creating an Application without a GUI
Setting Up a Headless Image
To prepare to execute an application in headless mode, you start with
a standard VisualWorks image, configure it, and then create a
headless image from it, as described in the following steps:

1 In a standard VisualWorks image, load headless.pcl. This
introduces the HeadlessImage class plus several other classes in
the category Headless-Support.

2 Write your application so that it can run in headless mode (see
Tips for Programming a Headless Application). Note that the
application can send messages to the HeadlessImage instance (for
example, to test whether it is running in a headless or headful
image).

3 Decide how you will want to start your application and prepare
accordingly (see Techniques for Starting a Headless Application).
You may want to file out your application into a startup file, or
make certain modifications to the system. A basic technique is to
leave the application in the image and create a startup file that
contains a line such as MyApplication open!.

4 Decide whether you want the headless image to file in a startup
file, and if so, whether to use the default startup filename
(headless-startup.st).

HeadlessImage default startupFilename: nil
If you do not want to use a startup file, evaluate the following
expression:

If you want to use a startup file with a nondefault name (for
example, myStartUp.st), evaluate an expression such as the
following:

HeadlessImage default startupFilename: 'myStartUp.st'
The default name is returned by the defaultStartupFilename class
method.

5 Decide whether you want the headless image to append
transcript messages to the file headless-transcript.log:

• If you do not want to use any transcript file, evaluate the following
expression:

HeadlessImage default transcriptFilename: nil
20-2 VisualWorks

Running an Application in Headless Mode
• If you want to use a transcript file with a nondefault name (for
example, myTranscript.tr), evaluate an expression such as the
following:

HeadlessImage default transcriptFilename: 'myTranscript.tr'
The default name is returned by the defaultTranscriptFilename class
method.

6 Create a headless image by selecting File > Save Headless As... or
by evaluating an expression such as the following:

HeadlessImage default saveHeadless: 'headlessImageName'

This creates a new image named headlessImageName.im in which
HeadlessImage’s state is set to headless. Creating a headless image
has no effect on the current image.

Running an Application in Headless Mode
To run an application in headless mode, start the headless image as
you would normally start a standard VisualWorks image. The
difference is in the virtual machine executable you run, or the
command line options you use.

Starting on Unix/Linux
Most of the Unix platforms have a headless engine. These engines
exclude the GUI and window management primitives, dynamically
loading them as required from a shared library. (The all-in-one,
“headful” engines are still provided.)

The headless engines are named in the vw<platform> format, as
usual. The GUI inclusive engines are named vw<platform>gui. To start
a headless image using a headless vm, simply invoke the virtual
machine with the image as usual, for example:

vwlinux86 myHeadless.im
plus any necessary options.

Starting on Windows
On Windows platforms, you will want to suppress the splash screen
and sound, however, so use the -noherald command line option:

visual -noherald myImage.im
Application Developer’s Guide 20-3

Creating an Application without a GUI
On Windows systems, there are two console engines available:
vwconsole.exe and vwntconsole.exe. Use the appropriate engine to
launch the headless image instead of visual.exe.

When an Image Starts
When a standard VisualWorks image starts, ObjectMemory installs
objects that are fundamental to the display, thereby hooking the
image up to the host windowing system. ObjectMemory also
broadcasts #returnFromSnapshot to its various dependents, which
respond with their own startup actions.

When a headless image starts, the ObjectMemory refrains from
hooking it up to the underlying windowing system and does not install
the objects that are associated with the display. Consequently, those
objects are not available for referencing later.

The HeadlessImage is registered as a dependent of ObjectMemory.
Upon receiving #returnFromSnapshot, the HeadlessImage instance
checks its state to verify that the image is headless and replaces the
normal Transcript (a display-oriented object of class TextCollector) with
a file-based surrogate of class FileTextCollector or NullTextCollector if a
nil transcript filename is provided. The normal Transcript is retained
(so it can be reinstalled in the image if it is saved as headful), but is
not accessible while headless.

Finally, the HeadlessImage instance checks whether a startup file has
been specified; if so, the start-up file is filed in and the Smalltalk
expressions in it are evaluated. Typically, these expressions start up
the headless application.

If an Application Attempts to Access a Display
If an application that is running in a headless image attempts to
access the non-existent display, the attempt is trapped, and a
HeadlessImage headlessErrorSignal exception is raised. If the exception
is not caught, the offending process is suspended and saved by the
HeadlessImage instance for debugging.

More specifically, the message #checkHeadless is sent to the
HeadlessImage instance by methods that attempt to create instances
of DisplaySurface or its subclasses (for example, ScheduledWindow or
ApplicationWindow). In a standard, headful image, #checkHeadless
returns without any side effect. In a headless image, the
HeadlessImage instance responds to #checkHeadless by sending itself
#cannotSend. This, in turn, causes the HeadlessImage instance to raise
20-4 VisualWorks

Debugging a Suspended Process
the exception, suspend and save the process, write a context trace to
the transcript file, save the image as a headful image, and then
terminate the image.

Debugging a Suspended Process
When a process has been suspended as the result of an attempt to
display something, you can use the saved, headful image to debug a
suspended process:

1 Start the headful image that was saved by the headless image
before it terminated. By default, the image is called headless-
debug, which is returned by the defaultDebugImageName class
method.

2 Inspect the suspended processes by evaluating the following
expression:

HeadlessImage default suspendedProcesses inspect
3 In the Inspector, select a process and then invoke debug from the

<Operate> menu. VisualWorks brings up a debugger on the
selected process.

Creating a Headful Copy of a Headless Image
In general, you can create a headful copy of a headless image by
including an expression such as the following in your application code
or by providing the expression in file-in format in a startup file:

HeadlessImage default saveHeadfull: 'name'
In the resulting image, the HeadlessImage instance’s state is set to
headful, which enables the display at startup. Saving a headful image
from a headless image is useful if you need to debug a failure (see
Debugging a Suspended Process).

When a headful image is created from a headless one, the normal
Transcript is restored.
Application Developer’s Guide 20-5

Creating an Application without a GUI
Tips for Programming a Headless Application
Your headless application may do whatever you wish, as long as it
does not access the display. When programming your application,
you need to consider how to start it, how users can communicate with
it, how to terminate it, and how to prevent it from accessing the
display.

Techniques for Starting a Headless Application
A simple technique for starting an application is to write it in a start-
up file (in file-in format). The start-up file is read and evaluated (filed
in) when the image starts. By writing your application in the start-up
file, you have the flexibility to make changes and re-execute relatively
quickly. That is, you can change your application without having to
start up and save a headful image; you can simply change the
startup file and restart the headless image.

Alternatively, you can write your application in the headful image from
which you will create the headless image. When your application
resides in the headless image, you have three options for starting it:

• Use the start-up file—for example, MyApplication open!.

• Modify HeadlessImage>returnFromSnapshot to fork off a process
with your application—for example, (MyApplication open) fork.

• Register your application as a dependent of ObjectMemory and
wait for #returnFromSnapshot to be broadcast. Look at
HeadlessImage for an example, particularly #initialize and #update: If
you do this, make sure that HeadlessImage appears before your
application in the dependents collection.

Techniques for Communicating with a Headless Application
Your application must provide some means other than a window
system for users to interact with a headless image. This can be
addressed with sockets, file I/O, or some other manner.

Terminating a Headless Application
Your application should make provisions for shutting down gracefully,
under both normal and exceptional circumstances. The last message
send should be ObjectMemory quit, which causes the image to
terminate. Failure to do so will leave the image running, but with
nothing to do. Your only recourse then is to terminate the image from
the operating system (for example, by using kill in UNIX).
20-6 VisualWorks

Tips for Programming a Headless Application
Sending Output to the System Console
When running in headless mode, it is frequently necessary to send
output to the console.

In the image, write an external interface to either use write(0,...) to
write to stdout, or load the C runtime library and use printf. For
example, here are two methods:

printf: aString
<C: int printf(void _oopref *aString)>
^self externalAccessFailedWith: _errorCode
"self new printf: 'Hello World!',

(String with: Character cr with: Character lf
with: (Character value: 0))"

"self new printf: ('Hello World!',
(String with: Character cr with: Character lf)) asFixedArgument"

printfArgs: argArray

<C: int printf(...)>
^self externalAccessFailedWith: _errorCode
"self new printfArgs: (Array

with: 'Hello %d %s!', (String with: Character cr with: Character lf)
asFixedArgument

with: 1
with: 'World')"

Explore the ThapiExample parcel, in the dllcc/ directory, as a guide for
more examples.

Preventing Access to the Display
If a headless application attempts to access the non-existent display,
the attempt is trapped, and a HeadlessImage headlessErrorSignal
exception is raised.

Your application can ignore this exception and rely on default
behavior. Alternatively your application can handle the exception as
appropriate. Note that you can still execute the default behavior if you
#proceed rather than #return in the exception handler. For example:

[...whatever your application does normally...]
on: HeadlessImage headlessErrorSignal
do: [:exception |

 ... special handling for the headless error...
exception resume]
Application Developer’s Guide 20-7

Creating an Application without a GUI
If your application is to have different behavior depending on the kind
of image it is running in, you can use the following expression to
determine whether it is currently running in a headless image:

HeadlessImage default isHeadless
Similarly, you may send #checkHeadless from your application code
when you have code that should be executed only in a headful image:

HeadlessImage default checkHeadless
Note that you may modify the HeadlessImage>>cannotSend method to
tailor it for your specific needs.

Delivering a Headless Application
You deliver a headless application much the same way that you
delivery any other application:

• organize your application into an image and a (possibly empty)
set of parcels, then

• run Runtime Packager to create a “stripped” deployment image
as described in Application Delivery

When the Build headless image option (Set common options, Details page) is
selected in the Runtime Packager, the final runtime image is created
for headless operation. All functions of the application which might
have interacted with the GUI are suppressed when operating in a
headless mode. Limited functions are permitted for cursor operations,
but most other functions which explicitly or implicitly reference the
user interface or its components will create an error.

The class HeadlessImage, supplied in the Headless parcel, must be
present when the option is selected and must not be deleted by the
stripping process.

The Action on last window close option (Set common options, Details page)
takes on a special meaning in a headless image. When a runtime
image starts, the startup method is invoked. This provides convenient
way to initiate processing even in a headless image. After the startup
method completes its processing and answers back to Runtime
Packager, the Action on last window close is examined. Headless images
do not differ from other images in this regard. If no windows are open
at this point, which will certainly be true for a headless image, then
the image is shutdown. In some cases, including those in which there
is no startup method to be invoked, this may not be the desired
20-8 VisualWorks

Delivering a Headless Application
function. If the image is to continue operation after the startup
method, if any, completes its processing, then either Continue processing
or Standard behavior should be selected as the action.

The class RuntimeHeadlessExample provides a simple test case for
creating headless images. This class writes a line to file so that its
execution can be ascertained.
Application Developer’s Guide 20-9

Creating an Application without a GUI
20-10 VisualWorks

21

Application Delivery

When you have finished developing your application, you need to
extract it from the VisualWorks development environment and
prepare it to run as a stand-alone application. This process is called
deploying an application.

The basic activities in deploying an application are:

• Preparing the application to run stand-alone, by removing
dependencies on development environment

• Organizing code into deployment parcels

• Building the deployment image

To simplify the process of preparing an image and installing it on a
customer’s system, VisualWorks includes:

• Runtime Packager, a utility for creating a deployment image from
a development image.

• An application installation framework is provided. This framework
was used in the VisualWorks installation program. To examine
the framework, load the VisualWorks Installer parcel.
Application Developer’s Guide 21-1

Application Delivery
Choosing a Delivery Strategy
There are three ways to organize your application for deployment:

• As a single deployment image containing all application code

• As one or more separately-loadable parcels containing
application code, delivered with a minimal deployment image

• As a combination of an image containing part of the application
code, and parcels containing the rest

Each approach has its advantages.

Single Image File
Single image files work well for small applications. They are simple to
deploy, requiring only the object engine and image file.

However, a single image file is often too large for easy distribution
and too large-grained to provide adequately for the individual support
of subsystems or sub-applications.

Parcels
Parcels, files that contain application objects, can be rapidly loaded
into an image without the use of a compiler. This makes parcels
advantageous in large, complex applications. Parcels allow you to:

• Deliver a very small base image

• Incrementally update your application without supplying a new
image

• Customize your application at run time

• Tailor the memory footprint of your running application

Combined Deployment
Even though loading parcels is fast, loading the image is faster.
Loading your entire application from parcels into a minimal image
might not be optimal for a variety of reasons.

A combined use of the image and parcels might have the core
application code saved in the image, at least up to the first window.
From that window, additional code can be loaded from parcels as
needed. Seldom used code might never be loaded by some users.
21-2 VisualWorks

Packaging for Distribution
Packaging for Distribution
The files you need to distribute for your application are:

• The VisualWorks virtual machine executable and any required
support files.

For deployed applications, the visual or visual.exe executable is
preferred. The executable may be renamed for your application.

• Your deployment image.

• Any VisualWorks product parcels (e.g., database support
parcels) that you set to load during runtime.

• Any application parcels that you set to load during runtime.

You are responsible to set up necessary directory structures and
configure your image and Runtime Packager to use them.

Deploying as a Single File
On Windows and Mac OS X platforms you have the option of
combining an image and the virtual machine in a stand-alone
executable.

For Mac OS X platforms there is no additional software required;
packaging uses standard facilities. Instructions for packaging are
provided in packaging/macx/DeliverApps.rtf

For Windows platforms some third-party software is required to add
files to the executable vm as resources. We recommend ResHacker,
and provide this along with instructions in
packaging\win\WindowsPackaging.txt.

VisualWorks Installer
The VisualWorks installation program is built on the Installer
Framework. This framework, which is provided in packaging/installer, is
available for use in building an installer for your application.

Load the VWInstallerFramework parcel to use the framework.
Application Developer’s Guide 21-3

Application Delivery
Running a Deployed Image
You start a deployment image the same way you start a development
image, by specifying the object engine and name of the deployment
image. For the full command line syntax and options see Running
VisualWorks.

On Windows systems, the engine default is to read an image file with
the same name in the same directory. So, if you rename the
executable to or myApp.exe and the image file to myApp.im, you can
simply execute:

> myApp
with any required options.

Loading Parcels At Start Up
Deployment images, images created using Runtime Packager, can
load parcels during startup. Parcels to load at startup are identified by
command-line options, listed either individually or in a configuration
file.

When a deployed image starts up, it looks in the startup directory for
a parcel configuration file with the filename imagename.cnf, where
imagename is the same as the image file’s name. If such a file exists,
the image loads the parcel files named in the file. Parcel file names
should be listed one per line, and are resolved with respect to the
working directory, or the parcel path if one is specified in the
deployed image.

You can use command-line arguments to specify additional parcels
and parcel configuration files to load:

-pcl filename

Loads the specified parcel file

-cnf filename

Loads all of the parcels listed in the specified configuration file

Opening a Runtime Application
There are several options available for opening an application upon
startup.
21-4 VisualWorks

Running a Deployed Image
• Create a subclass of UserApplication (a subclass of Subsystem),
and define its main method to open the application. (Refer to
Responding to System Events for more information.)

• If you use Runtime Packager to create a runtime application, you
have two mechanisms for opening a runtime application:

• In the Runtime Packager, on the Basics page of the Set common
options step, you can specify a Startup Class and Startup Method.
The method is sent to the class upon image startup, after
parcels specified to load at runtime are loaded.

• If your application loads one or more parcels at launch, the
application can be opened by a parcel’s Post-load Action. For
example, to open the WalkThru example RandomNumberPicker
application, edit the parcel’s Post-load Action property to:

[:package | WalkThru.RandomNumberPicker open]
• Then republish the parcel.

• You can save the deployment image with an open application
window. This is not the preferred method, so avoid it if possible. If
you use Runtime Packager to create the deployment image,
make sure that your application code is selected as “kept,”
because Runtime Packager does not automatically keep code for
open windows (see Specify Items to Keep and Delete).

Exiting a Deployed Image
An application may provide an explicit shutdown command, allowing
it to exist gracefully. For example, a graceful exit frequently involves
closing external connections to files or databases.

Applications also frequently exit when its last window is closed by the
user. This facility provided by many window managers can shortcut
the procedures invoked by an explicit shutdown command. To
accommodate this situation, Runtime Packager can invoke a
shutdown block. See Shutdown When the Last Window Closes for
more information.

Installing as a Service on Windows
Especially in the case of server applications being deployed on
Windows NT or 2000/XP, it is occasionally desirable to install the
application as a service. There are no specific requirements for a
VisualWorks application to be installed as a service. The procedure
for installing it is entirely a Windows procedure.
Application Developer’s Guide 21-5

Application Delivery
For general information on installing and running an application as a
user-defined service, refer to the Microsoft Knowledge Base article
137890, “HOWTO: Create a User-Defined Service.” You will also
need to obtain and install the appropriate Resource Kit for your
operating system.

To run a VisualWorks application as a service, you need to set the
following :

1 Using the Services applet in the Windows Control Panel, edit the
properties of your service and select "Allow service to interact
with desktop."

2 Using the Registry Editor, create and set the Application and
AppDirectory values in the Parameter key for your service as
follows:

Value Name: Application Data Type : REG_SZ String : <vw-
path>\vwnt.exe -noherald <my-image>

Value Name: AppDirectory Data Type : REG_SZ String : <vw-
path>

where <vw-path> is the full drive and directory location of your
VisualWorks application files (for example, C:\VisualWorksServer),
and <my-image> is the name of your image file (for example,
MyImage.im). If your application requires other command line
parameters, include them in the Application string, in the same
way you would when you create a Windows shortcut to start the
application.

3 It is also a good idea to make sure your PATH= environment
variable includes the location of your VisualWorks application
files.

Preparing an Image for Deployment
Before creating a deployment image for your application, there are a
few aspects of the resulting image that you may need to deal with.
The following topics can be used as a check list for preparing an
image for deployment.

Loading Application Code
Application code can be either held in the image or in parcels that are
loaded at runtime.
21-6 VisualWorks

Preparing an Image for Deployment
Code Developed in the Image
If you develop your code directly in your image and save it by saving
the image, then your application code is ready for processing by
Runtime Packager for deployment as a single image.

If you want to load some of your code as parcels, you need to create
the parcels and then proceed as for parcelled code.

Code Saved in File-outs
If you store your application code is file-out format files, simply file-in
the code to your image. Then proceed as for code developed directly
in the image.

Code Saved in Parcels
In general, you should load all parcelled code into the image before
running Runtime Packager. This allows Runtime Packager to include
it in its scan for dependencies while determining which code to keep
or delete from the image. It also provides the option of having
Runtime Packager save your parcels as runtime parcels that are
optimized and saved without source code.

For each parcel that is loaded into the image, you need to specify
whether its code is saved with the image (and so does not need the
accompanying parcel file), or will be loaded during runtime. For
parcels that are loaded at runtime, there are other options as well.
These decisions are made as part of the Set common options step, on
the Parcels page (see Set Common Options for more information).

You also need to plan the location of parcels. The development
environment has a complex parcel path. Your application will
probably have a simpler path, or not path at all and hold all parcels in
the same directory as the image. By default, Runtime Packager
clears the parcel path (Set common options, Details page). When you
decide on a parcel location strategy, you need to make sure you
specify the necessary information in Runtime Packager (Set common
options, Parcels page).

Also, if you specify parcel paths relative to the VisualWorks home
directory, $VISUALWORKS, you need a strategy for setting that
directory.
Application Developer’s Guide 21-7

Application Delivery
Code in a Store Database
If you develop using Store, you can either load your packages and
bundles into the image, or publish some or all of your packages and
bundles as parcels. You can, of course, combine of these options,
loading some code into the image and publishing some as loadable
parcels.

Unparcelled code that is loaded into the image is included in the
deployment image. You are responsible to make sure that required
code is marked to be “kept” by the Runtime Packager.

Code that you publish as parcels should be processed just as any
other parcelled code.

Removing Source Files
By default, source files are included with a deployed image. This is
not always desirable, both for disk space and for security reasons. To
detach source files, send:

SourceFileManager default removeAllSources.
Alternatively, to selectively remove source files, send removeFileAt:.
You will need to know the index for the file to remove. Inspect:

files := OrderedCollection new.
SourceFileManager default fileIndicesDo:

[:index| files add: (SourceFileManager default fileAt: index)].
^files

Then remove a file by its index, for example:

SourceFileManager removeFileAt: 2

The Transcript
The Transcript object is preserved in a deployment image, but is not
displayed as in the development image. Messages sent to Transcript
continue to process without errors but do not display themselves
unless you define a window to show the state of the Transcript.

Handling Errors
Your application is expected to catch all anticipated errors and to
handle them. Refer to Exception and Error Handling for information
about error handling in VisualWorks.

For unhandled errors, Runtime Packager replaces calls to open a
NotifierView with calls to a RuntimeEmergencyNotifier. This simplified
notifier excludes tool support, such as the debugger, and simply
21-8 VisualWorks

Preparing an Image for Deployment
notifies the user that an unhandled exception has occurred, with a
brief description of the error. It also writes a summary of the error and
its stack to an error log file (by default called error.log).

Both the error handling class and the error log name are specified on
the Exceptions page of the Options step. You can create your own
handling procedures for unhandled exceptions and specify it on this
page.

Registering an Interest in System Events
It is often appropriate to invoke particular behavior at system startup
or exit. Two mechanisms, one pragma based and the other message
based, are provided to register messages as dependents of system
events, which can be used for this purpose. The pragma-based
mechanism is generally preferred because it automatically registers
the dependency on parcel load, and deregisters it on unload. The
message-based mechanism is useful for exceptional cases, such as
when the dependent is an instance rather than a class.

For both mechanisms, the system event is an event sent from
ObjectMemory, and is one of the following symbols: #aboutToQuit,
#aboutToSnapshot, #earlySystemInstallation, #finishedSnapshot,
#returnFromSnapshot, or #scavengeOccurred. Both mechanisms support
registering only unary selectors.

The two events most commonly of interest are #returnFromSnapshot
and #aboutToQuit. #returnFromSnapshot is sent on system startup, after
all VisualWorks subsystems have been initialized. Use it to perform
actions such as starting your own application. #aboutToQuit is sent
before shutting down the system. Use it to do things like closing
network connections open by your application.

Pragma-based Event Dependency
The pragma-based mechanism is used by adding an annotated
method to class SystemEventInterest. The class side dependencies-
pragma method category is provided as a convenient placeholder for
these methods. An example of a pragma-based dependency is:

startMyApplication
<triggerAtSystemEvent: #returnFromSnapshot>
MyApplication open

When the system event #returnFromSnapshot is received,
SystemEventInterest sends #startMyApplication to itself, which then
sends #open to MyApplication. See the SystemEventInterest class
method example for additional examples.
Application Developer’s Guide 21-9

Application Delivery
This type of dependency is registered whenever a method with this
pragma is compiled or loaded into SystemEventInterest class, and
unregistered when the method is either recompiled without the
pragma, or removed or unloaded from the system.

Message-based Event Dependency
In addition to specifying the event to trigger the notification, clients
using the message-based mechanism also specify the receiver of the
notification and the selector that will be sent. The following messages
register and deregister command line processing actions when sent
to class SystemEventInterest. The first one arranges to send the
message #start to anObject when ObjectMemory triggers the event
#returnFromSnapshot.

SystemEventInterest
atSystemEvent: #returnFromSnapshot
send: #start
to: anObject

To deregister the dependency that will send #start to anObject upon
event #returnFromSnapshot, use this one:

SystemEventInterest
removeDependencyOnSystemEvent: #returnFromSnapshot
selector: #start
receiver: anObject

To deregister all message-based system event dependencies for
anObject, for any selector or event, send:

SystemEventInterest removeAllDependenciesFor: anObject

Shutdown When the Last Window Closes
In a development image, you must explicitly choose to exit
VisualWorks to shut down the system. In a deployed application,
however, it is expected that the application will shut down when its
last window is closed. This can be configured using the Runtime
Packager (see Set Common Options). For more control, consider
using the following procedure.

There are frequently special functions that must be performed before
the image is shutdown. When the shutdown is initiated because there
are no more open windows, the application has no direct way of
learning that the shutdown is about to occur. To allow for special
application processing at this stage, for example, to close open
21-10 VisualWorks

Preparing an Image for Deployment
database connections, the application can register a block to be
evaluated. The block is registered by sending a message to class
RuntimeManager as in:

RuntimeManager quitBlock: applicationShutdownBlock
where applicationShutdownBlock should be a block accepting zero or
one argument. If one argument is accepted, the block will be provided
with one of the following depending on the reason the image is being
shutdown:

normal

Shutdown is caused by the last window being closed or no
application windows being open after startup processing was
completed.

exception

Shutdown is caused by an unhandled exception or some other
error.

Handling Command Line Options
The Smalltalk expression:

CEnvironment commandLine
returns an Array of Strings which are the command line tokens, or
switches and switch arguments, in the order they were specified.
Note that a token may include white space characters by enclosing
the token in either single or double quotation marks on the command
line.

Usually, retrieving the command line is of interest only as a result of
some ObjectMemory event, such as #returnFromSnapshot. Instead of
sending commandLine directly, or as a command registered as
described in Registering an Interest in System Events, forms of the
event registration mechanisms specific to command line interests are
provided. (For standard options, see Image Level Switches and
Virtual Machine Command Line Options.)

Both pragma-based and message-based versions are provided. The
pragma-based mechanism is preferred because it automatically
registers a dependency on parcel load, and deregisters it on unload.
The message-based mechanism is provided for exceptional cases,
such as when the dependent is an instance rather than a class.
Application Developer’s Guide 21-11

Application Delivery
For both mechanisms, the command line switch is a string, such as '-
foo'. The ObjectMemory event can be any of the system events, but the
event typically of interest for command line dependents is
#returnFromSnapshot, which is sent on system startup after all
VisualWorks subsystems have been initialized, and is the usual time
to perform actions such as starting your own application.

All command line switches for a registered event are processed from
left to right through the command line. For example, consider the
following command line:

visual visual.im -pcl ../parcels/Foo.pcl -hookup -port 4736
Suppose that -hookup is registered for #earlySystemInstallation, and -pcl
and -port are registered for #returnFromSnapshot. At system startup,
the -hookup action would be triggered first, because the
#earlySystemInstallation event precedes #returnFromSnapshot. Then the
-pcl action will be triggered, because it proceeds (is to the left of) -port
on the command line. Finally, the -port action will be triggered.

The exception to this rule occurs when new command line interests
are registered during command-line processing for a particular event.
For example, say the option -port proceeded -pcl in our example
command line, but the dependency on -port isn't registered until
Foo.pcl is loaded. In such cases, another pass of the command line is
made to accommodate the newly registered interest.

In the above example, the option -hookup takes no arguments, the
option -port takes one argument, and -pcl takes one or more
arguments. For zero-argument options, clients may register a unary
selector for either the message-based or pragma-based mechanism.
An example of a client method to process the -hookup option might
be:

hookup
^self installInSystem

For one- or many-argument options, clients may register a single-
argument selector. When a single-argument selector is registered for
either mechanism, the argument passed will be a ReadStream on the
collection of command line tokens, positioned at the registered
switch. That is, the argument is the value of the expression:

CEnvironment commandLine readStream through: optionString; yourself
An example of a client method to process the -port option might be:

port: tokenReadStream
port := Number readFrom: tokenReadStream.
21-12 VisualWorks

Preparing an Image for Deployment
Processing an arbitrary number of arguments, such as for the -pcl
option, would be done in a loop, such as:

loadParcelsFromCommandLine: tokenReadStream
[tokenReadStream atEnd not

and: [(token := tokenReadStream next) first ~~ $-]] whileTrue:
[self loadParcelFrom: token].

Registering multiple-argument selectors is not allowed by either
mechanism. The registered selector must expect either no arguments
or a single argument, as described above.

Pragma-based Option Processing
The pragma-based mechanism is used by adding a class method to
CommandLineInterest, in the dependencies-pragma method category. An
example of a pragma-based dependency is:

loadParcelsFromCommandLine: tokenReadStream
<triggerAtSystemEvent: #returnFromSnapshot option: '-pcl'>
Parcel loadParcelsFromCommandLine: tokenReadStream

When both conditions in the pragma are true, CommandLineInterest
sends loadParcelsFromCommandLine: to itself, which then forwards the
message to class Parcel. See the example class method in
CommandLineInterest for additional examples.

This type of dependency is registered whenever a method with this
pragma is compiled or loaded into CommandLineInterest class, and
unregistered when the method is either recompiled without the
pragma, or removed or unloaded from the system.

Message-based Option Processing
In addition to specifying the switch and the event, the message-
based mechanism also specifies a message and a receiver. The
following class methods in CommandLineInterest, register and
deregister command line processing actions:

atSystemEvent: aSymbol send: aSelector to: anObject
commandLineOption: aString

When ObjectMemory triggers event aSymbol and command line
switch aString occurred in the command line, then send message
aSelector to anObject.

removeDependencyOnSystemEvent: aSymbol selector: aSelector
receiver: anObject commandLineOption: aString

Deregister the action to send aSelector to anObject upon event
aSymbol in the presence of command line switch aString.
Application Developer’s Guide 21-13

Application Delivery
removeAllDependenciesFor: anObject

Deregister all actions to send any message to anObject, in
response to any event or command line switch.

An example of registering interest in -hookup using the message-
based mechanism would be:

CommandLineInterest
atSystemEvent: #earlySystemInstallation
send: #hookup
to: self
commandLineOption: '-hookup'

An example of registering interest in -port using the message-based
mechanism would be:

CommandLineInterest
atSystemEvent: #returnFromSnapshot
send: #port:
to: anHTTPServer
commandLineOption: '-port'

To deregister interest in -hookup, send this message:

CommandLineInterest
removeDependencyOnSystemEvent: #earlySystemInstallation
selector: #hookup
receiver: self
commandLineOption: '-hookup'

To deregister interest in -port, send this message:

CommandLineInterest
removeDependencyOnSystemEvent: #returnFromSnapshot
selector: #port:
receiver: anHTTPServer
commandLineOption: '-port'

To clear all message-based dependencies for anObject, send:

CommandLineInterest removeAllDependenciesFor: anObject

Unload Tools Parcels
Even though Runtime Packager will remove development tools
classes during its processing, it is advisable to remove development
tools that are loaded from parcels, such as the UI Painter, before
starting Runtime Packager. Unloading these parcels allows the
system to clean up the image, simplifying Runtime Packager’s
procedure.
21-14 VisualWorks

Preparing an Image for Deployment
Removing Undeclared Variables
The system maintains a name space for undeclared variables, which
you can access by the name Undeclared. Runtime Packager performs
operations to clear and to browse such references as part of its
procedure, but you may also wish to deal with these before starting
Runtime Packager.

An entry is appended to Undeclared when:

• A reference to a nonexistent variable is compiled during file-in (or
interactively, if you override the compiler’s warning).

• A variable is removed while references still exist.

• A class is removed (regardless of whether outside references to it
exist). This assures that any outside references that may exist will
be properly reconnected if the class is recreated.

The Undeclared name space should be empty in a deployed image.

To inspect Undeclared, enter “Undeclared” in a workspace and choose
Inspect from the <Operate> menu.

The inspector provides commands for examining variables and
finding methods that refer to a selected variable. When you are
satisfied that no references to a variable exist, use the Remove
command to delete the entry. Note that hidden references are not
reported, and will have to be found using other means.

Garbage Collecting Lingering Instances
It is possible, after a lot of experimenting and development work, to
have instances retained in the image that should have been garbage
collected. These should be released and garbage collected before
deploying, to keep the image size down. For a method for finding and
releasing these instances, see Destroying an Instance.

Splashscreen and Sound

Replacing the Splashscreen and Sound
You can change the splash screen displayed and the sound played at
startup. We ask that you not replace the splash screen for your
development image.

On Microsoft Windows platforms, simply replace either or both of the
files herald.bmp and herald.wav in the \bin\win subdirectory.
Application Developer’s Guide 21-15

Application Delivery
On other systems, you need create a bitmap image in VisualWorks,
and recompile the virtual machine. The necessary C files and scripts
are provided in the release (starting in 5i.2). For instructions, see the
comment at the beginning of bin/<platform>/userprim/splash-bits-4.h.

Suppressing the Splashscreen and Sound
Rather than replace the splash screen and sound, it is sometimes
desirable to repress them entirely.

The simplest way is to use the RuntimePackager option. In the Set
common options step, on the Details page, make sure the Suppress splash
screen and herald sound option is selected, which is the default.

Another option, when appropriate, is to start VisualWorks using the
-noherald engine command line switch. For example:

..\bin\win\visual.exe -noherald visual.im
This is frequently not the appropriate approach to take for a deployed
application.

To get the same effect as the RuntimePackager option, set
ObjectMemory to not show the splashscreen at all. To set this, evaluate
the following expression and save the image:

ObjectMemory registerObject: false withEngineFor: 'showHerald'
This image will now start without the splashscreen and sound.

Controlling Splashscreen Duration
Rather than repressing the splash screen, there are times you might
want to display it longer. The system sends primInformSystemReady to
let the VM know that the image is up and running, at which point that
the VM dismisses the splash screen.

To increase the duration, you might override postSnapshotBootstrap in
class Snapshot, including a Delay. For example:

postSnapshotBootstrap
"We're returning from a snapshot, bootstrapping from a disk image.
Start up everything."

Subsystem markAllInactive.
self signalSystemEvent: #earlySystemInstallation.
Processor activeProcess priority: originalPriority.

"Now delay so the user can see the glory of the splash screen."

(Delay forSeconds: 3) wait.
self signalSystemEvent: #returnFromSnapshot.
ObjectMemory primInformSystemReady.
21-16 VisualWorks

Creating the Deployment Image
Creating the Deployment Image
A deployment image is a Smalltalk image that has been stripped of
the development environment, to be run as an end-user application.
Once you have done all the necessary preparation of your
application, you are ready to run Runtime Packager to create the
deployment image.

Running Runtime Packager
To create a deployment image, you use the Runtime Packager utility.
Runtime Packager removes development tools and other unwanted
classes from an image, leaving an image file that occupies
significantly less disk space because it contains only objects required
by your application.

To use Runtime Packager:

1 Set up your application as you want it to be delivered:

2 Load the Runtime Packager parcel.

3 In the Launcher, select Tools > Runtime Packager, or in a Workspace
execute:

RuntimePackager open
Runtime Packager starts and displays a window that allows you
to choose what you want to remove from your development
image before saving it as a deployment image.
Application Developer’s Guide 21-17

Application Delivery
Runtime Packager UI leads you through the process, providing a
general description for each step as well as more detailed help.
Some of that information will be repeated here. For other, please read
the tool’s online help.

The basic procedure consists of the following steps. Each of these
step requires more explanation, which is provided in the following
section.

1 Clean Up Image. Check the image for extraneous global objects.

2 Set Common Options. Specify parameters used in later steps.

3 Specify Items to Keep and Delete. Customize the items to be
kept for runtime.

4 Scan for Unreferenced Items. Scan the image for unreferenced
classes, methods, and globals.

5 Review Kept Items. Review the results of the previous scan.

6 Save Loadable Parcels. Save any parcels needed for the
runtime image.

7 Test the Application. Interactively detect missed references to
application classes and methods.

8 Set Runtime Memory Parameters. Set sizes for different
spaces on startup and set memory policy values.

9 Strip and Save Image. Create a stripped image for stand-alone
application execution.

A Short-cut Procedure
The basic procedure can be rather slow, and you don’t always need
to perform every step. The menu command File > Package Runtime
Image creates a runtime image in one operation by automatically
executing the Scan for unreferenced items, Save loadable parcels, and the
final Strip and save steps.

You still need to set options appropriately, especially specifying how
to handle parcels. But, once you understand the whole process, know
what you do and do not need to do for your image, or have a
parameters file that specifies various features, this short-cut
procedure can be a great convenience. (Refer to Saving Runtime
Packager Parameters for details on this file.)
21-18 VisualWorks

Creating the Deployment Image
Examples
The following short examples use the RuntimeExample application that
is loaded as part of the Runtime Packager parcel.

Building a Stand-alone Image
For simple applications you build the deployment image with all of the
application code directly in the image.

This is the simplest procedure. The only options that need to be set
are the Startup Class and Startup Method. Runtime Packager begins with
the resulting startup message and analyzes code the image to which
code must remain and which may be deleted.

1 Load and start Runtime Packager in the usual way, into a clean
image.

2 Do the Clean up image step. Undeclared and DependentFields should
both be clean.

3 Do the Set common options step. On the Basics page set the
following:

Startup Class: RuntimePackager.RuntimeExample

Startup Method: open

Runtime Image Page Name: runtime1

Then close the Common Options window.

4 Do the Scan for unreferenced items step, to search for classes and
methods to keep and delete.

5 Do the Review kept classes and methods step.

Explore the results as you desire, but be sure to look at the
following. Select RuntimePackager in the Packages/Bundles pane, and
in the Kept Classes/Globals pane, select RuntimeExample. Notice that
all of the RuntimeExample methods are in the Kept Methods pane,
except for postLoadActionFor:. This method, which is included for
use when the example is loaded as a parcel, is not used because
we have specified a startup class and method. Runtime Packager
has discovered that fact, and excluded the method from the
application.

Close the window.

6 Do to the Strip and Save Image step.
Application Developer’s Guide 21-19

Application Delivery
The image is saved as runtime1.im. Launch the image using a
command such the following.

visual.exe runtime1.im
The image should launch and open the example application.

Building an Image Using Parcels
Building an application as a baseline image with loadable parcels is
most easily done by first loading all parcels used in the application
into the development image. The runtime image and runtime parcels
are then created from the development image.

Parcels that will load at runtime are identified as part of the Set
common options step (see Set Common Options) on the Parcels page.
After the scan for unreferenced items, if any, is completed, runtime
versions of parcels can be created.

While the same parcels can be used for development as for runtime,
Runtime Packager permits the parcels to be analyzed for unused
classes and methods.

Classes that are to be loaded as part of a parcel should not be
specified as deleted unless they are to be removed from the runtime
version of the parcel as well.

To illustrate the process for building an image in which applications
are loaded through parcels, the following procedure describes how
an image executing the example application can be created. The
method postLoadActionFor: has been added to the RuntimeExample
class to illustrate opening the application with a post-load action.

We begin by building a parcel out of the example, and then building
the deployed application.

1 Load and start Runtime Packager in the usual way.

2 Do the Specify common options step, and specify:

Runtime Image Path Name on the Basics page: runtime2

Process command line on the Details page: yes (checked).

3 In the Parcels page of the Common Options window, click the New
Parcel button, and enter RuntimeExample to create a new parcel.

4 Open a Browser (select Browse > System in the Launcher window),
and set its navigator to display parcels (select Browser > Parcel). In
the browser, select both the RuntimeExample parcel and the
21-20 VisualWorks

Runtime Packager Process Details
RuntimeExample class. Then select Class > Move > All to Parcel..., to
add the class to the parcel.

5 In the parcel’s Properties display (select the Properties tab), set the
Post-Load Action to be the following:

[:pkg | #{RuntimePackager.RuntimeExample}
 value postLoadActionFor: pkg]

6 In the Runtime Packager Common Options window, on the Parcels
page, select the RuntimeExample parcel and set the following
options:

Parcel is loaded into image at runtime: yes (checked)

Strip unreferenced items and save: yes (checked)

Path name: RuntimeExample.pcl

Close the Common Options window.

7 Do the Scan for Unreferenced Items step.

8 Do the Save Loadable Parcels step. The file RuntimeExample.pcl
should be written to the current directory.

9 Do to the Strip and Save Image step.

The runtime image is saved as runtime2.im. Launch the image using a
command such the following.

visual.exe runtime2.im -pcl RuntimeExample.pcl
The image should launch and open the example application.

Note that a number of other parameters can be specified on the
command line. See the description of the Process command line
option in the Options step for a complete list of the parameters
supported.

Runtime Packager Process Details
The following provide details about the operations performed by
Runtime Packager in the series of steps.

Saving Runtime Packager Parameters
At any time during the procedure before doing the Strip and save
image step, you can save the parameters you have set, simplifying
subsequent runs of Runtime Packager.
Application Developer’s Guide 21-21

Application Delivery
To save the current parameters, select File > Save parameters... . This
creates a file, named with a .rtp extension, that contains Smalltalk
code defining the parameters.

To load a parameters file, select File > Load parameters... .

Clean Up Image
Objects can accumulate in a development image that are not needed
for runtime execution and would occupy storage needlessly. This step
scans for global objects that commonly arise in the development
process.

The scan for referenced and unreferenced items detects
unreferenced globals appearing in the system name spaces.

Unreferenced globals that are either undeclared variables or non-
model objects that have dependents cannot be detected in the scan
of referenced items. When this step is performed, inspectors are
opened on the contents of Undeclared and DependentsFields. If no
suspicious contents are found, you will be notified and no inspectors
are opened.

If entries exist in the Undeclared dictionary, you will be prompted to
remove any items that are apparently unreferenced and which are
also currently bound to nil before opening the inspector. These
entries can be left behind when classes are removed from the
system, for example. Removing these entries should normally be
harmless and will greatly simplify analyzing the Undeclared items.
However, there is no provision for restoring entries deleted by this
process, so the image should first be saved if you are not sure that
the entries are extraneous.

In most cases, undeclared variables represent some type of problem
in the development process and each entry should be investigated to
ensure that no problems are lurking in the application. If no
references to an entry can be found, the entry can be eliminated. Be
especially careful when removing items from DependentsFields if you
do not understand why they are there.

If parcels are loaded that contain facilities used only in the
development image, such as the UIPainter and Store parcels, they
should be unloaded before beginning the packaging process. If you
are unable to account for entries in Undeclared after unloading these
parcels, close the Runtime Packager window, invoke garbage
collection, and open Runtime Packager again.
21-22 VisualWorks

Runtime Packager Process Details
This step can be skipped if you do not want to eliminate the types of
global objects detected here.

Set Common Options
Options and data entry fields used in later steps are entered here.
For simplicity of organization, the options are grouped into pages of a
notebook. Pages in the notebook are as follow.

Basics Page
This page includes the essential elements that are always needed.
These are:

Startup Class and Startup Method

Enter the fully qualified name of the Startup Class, and the Startup
Method message selector. This message provides a convenient
way to open the initial window of the application or do other
application initializations. The initial message is included in the
scan of sent messages done later. If you do not use a Startup Class
and Startup Method, you will need to specify the starting point for
scanning referenced classes and methods in the next step.

Image Path Name

When the image is finally stripped, it is saved to the file named
here. For obvious reasons, this field is required and the file
named must be writable. The same conventions for appending
suffixes to the file name are used here as are normally used for
image saves (that is, don’t include the .im suffix).

Details Page
This page includes a variety of options that are commonly selected:

Remove compiler classes

Remove classes related to the public interface to the system
compiler. In many cases the compiler will be required in the
runtime environment.

Install emergency evaluator as a dialog

The emergency evaluator is invoked by pressing Control-Shift-Y.
If this box is checked, a dialog will appear confirming that the
user wants to exit the image. If this box is not checked, Control-
Shift-Y is ignored.
Application Developer’s Guide 21-23

Application Delivery
Build headless image

Create an image that does not access the display. Refer to
Creating an Application without a GUI for more information.

Clear parcel search path

Clears the list of directories to be searched when loading parcels.
If this is not selected, the Settings values are preserved in the
runtime image.

Use three-step procedure

A three-step procedure is recommended for optimal runtime
images. The procedure will be used if this box is checked.
Because of the extra time required for three saves, the default is
to create a slightly less optimal image in a single step.

The three step save process does the following:

a Do Perm Save Image As..., then exit and restart.

b Do Collect All Garbage, snapshot, exit, restart (removes
transient objects in PermSpace).

c Snapshot one more time (compacts objects in PermSpace).

Skip default scan for unreferenced items

The menu item File > Package Runtime Image normally performs a
scan for unreferenced items as part of the packaging process. To
skip doing the scan, select this option.

Suppress splash screen and herald sound

Prevents the splash screen from being displayed, and the herald
sound from being played, upon image startup. See Splashscreen
and Sound for additional options.

Action on last window close

This option selects what is to be done when the last window in
the runtime image is closed. The choices are:

• Shutdown image - shutdown the image using normal quit
procedures

• Continue - continue processing without any windows open

• Standard Behavior - allow base image behavior to determine the
action
21-24 VisualWorks

Runtime Packager Process Details
If you select Shutdown image, and there are no windows open when
the application startup procedure completes, then the image will
be shutdown at that time.

For a headless application, these options have special meaning.
Refer to Delivering a Headless Application for more information.

Platforms Page
This page allows you to select UILooks and Operating Systems to be
supported in the runtime image. By default only the current platform
and look are supported and any others required must be selected.
These selections are used to set defaults for classes to be deleted
from the system.

Exceptions Page
This page specifies information needed to handle exceptions in the
runtime image:

Error Notifier Class

The default class, RuntimeEmergencyNotifier, notifies the user and
creates a diagnostic dump when an unhandled exception is
detected. If you want to enhance the standard behavior, you can
subclass RuntimeEmergencyNotifier and specify your class here.
Other error handler classes provided with Runtime Packager are
RuntimeDebugNotifier and RuntimeQuietEmergencyNotifier. The fully
qualified name of the class to be used must be entered in this
field.

Image Dumper Class

The default class, RuntimeImageDumper, is used by
RuntimeEmergencyNotifier to create the diagnostic dump when an
unhandled exception occurs. If your emergency error handler
does not use the dumper class, the dumper class may be omitted
here. The fully qualified name of the class to be used must be
entered in this field.

Error Log Path Name

The diagnostic dump created on unhandled exceptions is written
to the file named here. This file should be writable by the runtime
user for a dump to be created. Exceptions occurring during the
final stages of the image stripping process are also reported as
dumps to this file. If you do not want dumps to be created, leave
this field blank.
Application Developer’s Guide 21-25

Application Delivery
Parcels Page
This page allows you to provide information about parcels that will be
loaded into the runtime image. Each parcel defined in the current
image is listed, enclosed in brackets (<>). Parcels and applications
indicated as loadable are shown in the selection list as bold items.

The following information can be provided for each parcel or
application by selecting it from the list:

Parcel is loaded into image at runtime

Select this option for each parcel that is to be loaded into the
image during runtime execution. If unchecked, the code
contained in the parcel is saved in the image, and the parcel
does not need to be included with the application. If checked,
other parcel options can be set, such as saving the parcel.

Unload before saving runtime image

Select this option to cause the parcel or application to be
unloaded in the normal way before stripping and saving the
runtime image. If this option is not selected, all classes and
methods defined in the parcel or application are deleted before
saving the runtime image, but pre-unload and remove actions are
not performed.

Save options

The Save Loadable Parcels step to follow allows you to save parcels
that are loaded into the runtime image. This option controls how
the selected parcel is to be handled in that step. The choices are:

• Strip unreferenced items and save

Saves only those classes and methods that are determined
to be referenced. The contents of the parcel in the image are
not changed, but the version of the parcel saved omits
unreferenced items.

• Save full parcel

The full contents of the parcel, including unreferenced items
are saved based on the current definition of the parcel in the
image.
21-26 VisualWorks

Runtime Packager Process Details
• Do not save parcel

The parcel is not saved. You should ensure that the parcel is
saved by using the Parcel Browser before the Test step is
done and before using the runtime image.

Path name

After the scan for referenced items is completed, loadable
parcels are stored. Each parcel is stored in the file specified with
this option. The path is required for the parcels that are to be
saved. If the parcel is not to be saved, empty this field.

Parcel operations
The following operation buttons are provided for convenience. The
operations can also be performed in a Parcel browser.

• New Parcel - creates a new empty parcel and adds it to the list.

• Unload Parcel - unloads the currently selected parcel. This removes
classes and extension methods defined in the parcel from the
current image.

• Discard Parcel - discards the currently selected parcel. This
removes the definition of the parcel from the image and copies
source of the parcel to ensure that the changes are recorded.

• Browse Parcels - open the Parcel Browser.

Stripping Page
This page allows specification of options that control the final
stripping step. These options are:

Remove system organization

Remove the system organization and categories. This option will
reduce the size of the runtime image, but may conflict with some
services that require categories to be present. Defined
categories are replaced with empty category objects so that
functions which expect such objects to be present can operate
without raising exceptions.

Package external interfaces

Prior to creating the stripped image, evaluate each instance of
CMacroDefinition and replace it with the resulting value.
Application Developer’s Guide 21-27

Application Delivery
Merge method and block byte codes

The byte codes that control the operation of the virtual machine
are merged so that unique values are stored in a single instance
of ByteArray rather than being duplicated.

Use compact compiled methods

CompiledMethod objects contain pointers to source code and other
objects not used in the runtime image. This option will cause a
replacement class to be used eliminating the extra storage
needed for the pointers.

Merge literals

Multiple instances of compiler generated literals with the same
value are merged into single instances. This option should be
used very carefully since it can cause some application bugs to
be manifest in ways that could be very difficult to debug.

Merge methods

Multiple instances of methods that are equal except for the class
in which they appear are merged into a common method. In
many cases, this operation is safe, but since the identity of
merged methods cannot be determined in all cases, there are
possible exposures, especially in some exception handling logic.

Remove unreferenced globals

Unreferenced globals are set to nil and removed from their name
spaces during the final stripping step if this option is selected.

Trace Level

During the final stripping step additional information can be
logged in the progress notifier window so that hangs or crashes
can be isolated. For the Medium setting, classes and globals being
removed are shown. For the High setting, individual methods are
shown as they are stripped from the image.

Prestrip Class

Prestrip Class names a class to which a message will be sent
before the actual stripping processing commences. This
message can be used to invoke user logic for customizing some
aspects of the stripping process, for example, by becoming a
dependent of RuntimeManager and monitoring changed: messages
21-28 VisualWorks

Runtime Packager Process Details
used to inform of progress through the different steps in the
stripping process. The fully qualified name of the class should
entered in this field.

Prestrip Method

Prestrip Method names the method to which the pre-strip message
is to be sent. This method must be one the prestrip class can
respond to. If no message is to be sent, Prestrip Method and Prestrip
Class should be blank.

Specify Items to Keep and Delete
In this step you specify globals, classes, and methods that should be
kept or deleted in the final runtime image. Items are divided into three
major categories:

• Deleted - these are always deleted in the runtime image.

• Contingent - these are deleted if no references to them can be
detected.

• Kept - these are kept in any case.

Being deleted has different meanings for different types of objects.
For globals, being deleted means that the global's name is removed
from the system, and any previous references to the global by name
become references to nil. For classes, being deleted means that the
class is replaced with a subclass of Object having no methods of its
own and having the class name removed from the system. Deleting a
method means removing it from the method dictionary in which it
appears.

When a class is kept, only the definition of the class is necessarily
kept in its entirety. Methods that are unreferenced can still be deleted
from kept classes. When a method is kept, it will remain in the
runtime image only if its defining class is not otherwise deleted.

Several rules are enforced in the specification of kept and deleted
items. You cannot delete a class if subclasses of it are kept.
Specifying that a class is to be deleted implicitly specifies that its
subclasses are also to be deleted.

The packages/bundles selection list allows you to select which
package or bundle for which classes and shared variables (“Globals”)
are displayed. When you select a package or bundle, all classes in
that package/bundle are shown in the class selection boxes. When
Application Developer’s Guide 21-29

Application Delivery
you select classes, all methods implemented on either as instance
methods or as class methods are shown in the method selection
boxes.

Name spaces do not appear with the list of classes and shared
variables. There is no provision for keeping or deleting a name space,
and by default all name spaces are kept.

The status of classes and methods can be changed by pressing the
buttons between the selection boxes. The meaning of the buttons is
mnemonic:

>> means move all selected items from the left to the right.

<< means move all selected items from the right to the left.

After items are moved, they become the selected items in the box to
which they are moved. Hence, you can easily undo an erroneous
button press by pressing the button for movement in the opposite
direction.

Pop-up menus are provided in each selection box. These can be
used to select all items currently appearing in the box, clear all
selections, look at specific items, and scan for references. Two types
of reference scan are provided. The standard reference scan is
provided by the Browser classes and may miss some references that
will be detected during the more complete scan for referenced items
in the next step. The extended reference scan is more inclusive. It
also allows you to filter out the items that are not being kept in the
runtime image, which is especially useful after the scan for
referenced items has been completed in the following step.

Classes that are dynamically loaded through the use of parcels
should be indicated as contingent or kept in the runtime image.

A menu option is provided for resetting classes and methods to their
default settings. Only classes and methods in currently selected
categories (or applications) will be affected. This permits a more
selective way to reset to default values than would be achieved by
pressing TAKE DEFAULTS in the main window.

Pop-up Menus
The following pop-up menus are used to perform actions with respect
to applications, categories, classes, and methods shown in this step.
These pop-up menus can also be selected from the window's main
menu.
21-30 VisualWorks

Runtime Packager Process Details
Packages/Bundles Menu

• Select all - Select all categories or applications

• Clear all - Clear all category/application selections

• Find Package ... - Search list for packages

• Find Class/Variable/Name Space... - Search list for classes, shared
variables, and name spaces

• Keep - move all package/bundle contents to the Kept list.

• Delete - move all package/bundle contents to the Deleted list.

• Make Contingent - move all package/bundle contents to the
Contingent list.

• Browse - Open a system browser on the selected packages/
bundles.

• Reset to Defaults - Reset either all or only selected packages/
bundles to their default settings.

Classes Menu

This menu is available as a pop-up menu for Deleted, Contingent,
and Kept classes. This menu can also be selected via the Classes
entry in the window's menu bar.

• Select all - Select all classes in the related selection list

• Clear all - Clear all selections in the related selection list

• Browse - Open a browser on the selected class

• References - Use the Extended References Browser to located
references to the selected class

Methods Menu

This menu is available as a pop-up menu for Deleted, Contingent,
and Kept methods. This menu can also be selected via the
Methods entry in the window's menu bar.

• Select all - select all methods in the selection list

• Select category - select methods in a chosen category

• Clear all - clear all selections in the selection list

• Browse - open a method browser on selected methods
Application Developer’s Guide 21-31

Application Delivery
• Implementors - browse all implementors of the chosen selector

• References - Use the Extended References Browser to located
references to the chosen selector

By default, some classes are kept. These are kernel classes and they
are almost certainly needed to make a runtime image. For a
complete list, see the method defaultClassesKeptVW in class
RuntimeBuilderItems.

Class RuntimeManager within Runtime Packager is needed for image
start-up and is by default also a kept class. RuntimeManagerStripper is
a special subclass of RuntimeManager used to complete the stripping
operation and is required. It is eliminated in the final runtime image.

Global objects are not kept by default, but the major system globals
are referenced in numerous places will be detected as referenced.

Classes that are not generally used in the runtime image are deleted
by default. These classes come from the Tools name space and
related Tools categories. For a complete list, see the method
defaultClassesDeletedVW in class RuntimeBuilderItems.

When an image starts, ObjectMemory sends update:with:from:
messages to all its dependents. By default, the classes of all
dependents of ObjectMemory are kept. If you know that a dependent is
not needed in the runtime image, you can specify the class as
deleted.

Scan for Unreferenced Items
In this step the image is scanned to detect classes, methods, and
globals that should be kept in the runtime image. Conceptually, the
scan is a straightforward process. Kept methods within kept classes
are scanned for selectors representing message sends and
references to classes and globals. As new methods, classes, and
globals are detected, they are added to the list of kept items and, in
turn, scanned for references to other items. Eventually the processes
reaches the point at which no new references can be detected and
the scan ends. For details of this process and how to modify it, see
Customizing Detected References.

The initial kept classes and methods are those indicated as such in
the previous step plus the application startup class and method as
well as classes named in the various Options specifications.
21-32 VisualWorks

Runtime Packager Process Details
If a baseline image is to be built where unreferenced classes and
methods are kept for future use, the Scan for Unreferenced Items step
should be skipped. When this step is skipped, only classes and
methods explicitly indicated as deleted and those associated with
runtime loadable parcels will be removed from the current image to
create the baseline.

Deleted classes are bypassed in the scan for referenced items, as
are deleted globals and methods.

The following special class methods are used to allow classes to
specify additional items to be kept:

dynamicallyReferencedClasses

Answer a collection of classes or qualified class names that are
to be kept in the runtime image.

dynamicallyReferencedSelectors

Answer a collection of symbols naming methods that are to be
kept in the runtime image.

dynamicallyReferencedGlobals

Answer a collection of qualified names of globals that are to be
kept in the runtime image.

itemsReferencedBySelector: aSymbol

Answer the collection of literals including symbols, variable
bindings, and classes referenced in the instance method named
by aSymbol. In the scan, these literals replace entirely those
found in the method itself.

itemsReferencedByClassSelector: aSymbol

Answer the collection of literals including symbols, variable
bindings, and classes referenced in the class method named by
aSymbol. In the scan, these literals replace entirely those found
in the method itself.

When these selectors are implemented as class methods, the
answers provided by them are used during the scan to include
classes, methods, and globals to be considered referenced and thus
kept in the runtime image. If an improper answer is returned by these
selectors, a dialog is used to alert you to the error.
Application Developer’s Guide 21-33

Application Delivery
To start scanning, click the Do This Step button. A window will open to
show you progress reports. Scanning a large image might take some
time. When the scan is complete, a dialog box opens summarizing
the results of the scan. You can see more detailed information by
proceeding to the next step.

If you choose to bypass this step, only classes, methods, and globals
that you have explicitly indicated as deleted will be removed from the
runtime image.

Review Kept Items
In this step, you review the detailed results of the previous step. The
first time through, this might not be especially meaningful, but you
probably want to make sure that your application was not somehow
bypassed in the scan and thus declared deleted. If you are pursuing
an aggressive strategy of removing all extraneous classes, you would
want to check here to see that you have eliminated exactly what you
intended.

When you click Do This Step, a window with a collection of selection
boxes opens, that can be used to view categories, classes, and
methods. In this step, there is no contingent category. Everything
being deleted is shown as such.

You can select classes to see which of their methods are being
deleted. If you select a deleted class, you will be shown methods,
some of which may be kept and some deleted. All methods are
removed from a deleted class even if some appear as kept here. You
can use pop-up menus to browse or scan references for all methods
shown.

There are no decisions to make in this step. If you find that something
needs to be changed, you must return to an earlier step to make the
change. In all likelihood, you will want to rerun the scan for
referenced items after your change.

RuntimeManagerStripper is shown as kept when, in fact, it will be
eliminated in the final runtime image. This class is a special case due
to the need to discard the stripper methods after the final image has
been created, but not before. Similarly, copyright methods are
preserved in the final image but may appear as deleted here. These
are also treated as special cases to preserve copyright markings.
21-34 VisualWorks

Runtime Packager Process Details
Press the Close button to close this window. If you want to write a
report file, press the Report button. You will be prompted for the name
of the file to which the report should be written. After the report is
written, a file browser is opened on the report file created.

The pop-up menus used in this step function the same as those
described in Specify Items to Keep and Delete.

Save Loadable Parcels
Parcels identified as loadable in the runtime image are saved to files
in this step. The identification of which parcels are loadable and the
file names under which they will be saved occurred in the Set Common
Options step earlier. Changing which parcels are loadable would affect
the outcome of the previous scan step.

Parcels are saved in their entirety except for those where the Save only
referenced classes and methods option was selected. For these
parcels, only classes and methods found to be referenced in the
previous scan step will be saved. The contents of the parcel in the
current image are not changed.

Parcels are saved without source. Care should be taken that a
version of the parcel file (*.pcl) is not overwritten when a
corresponding parcel sources file (*.pst) is present. If the overwrite
occurs, the source file will not be usable and the source for the parcel
may be lost.

To start this step, click Do This Step. The names of parcels saved are
written to the Transcript as the saves proceed. If a file is about to be
overwritten, you will be prompted for permission to overwrite the file
before proceeding.

If there are no runtime loadable parcels, this step can be skipped. If
no parcels have been defined as runtime loadable, you will be notified
if this step is attempted.

Test the Application
It would be nice to say that the process of scanning references was
foolproof and that you could rest assured that all the classes and
methods, and only the classes and methods, needed to run your
application will remain in the runtime image. This, however, is not the
case. A number of types of references can slip past unnoticed
causing the application to die an untimely death in the runtime
version.
Application Developer’s Guide 21-35

Application Delivery
Typically the problems revolve around dynamically created names.
For example, the following code would cause an undetected
reference:

pickOne: aString
self perform: (#pick, aString) asSymbol.

In general, there is no way to know what values aString might
assume, even if you could connect them together with the naming
convention that prefixes them with #pick to form a selector name.
Classes and globals can be referenced in similar dynamic fashion.

Similarly, extraneous references are very common. For example,
there is frequently a chain of references leading to Visual Launcher,
which, in turn, references most programming tools, none of which are
probably needed in the runtime image. The only way to eliminate
these extraneous references is to delete either classes or methods
explicitly.

This step provides a way for you to take a broad-brush approach
towards which classes and methods are needed and find out where
you were wrong by running test cases. When you reference a deleted
class or method during a test, it is recorded as referenced and can be
fed back to the selection of kept items. If your test cases are
sufficient, you will discover all dynamic references. At a minimum,
you should be able to discover the pattern of which things are
dynamically referenced and which are not.

Note that image startup and shutdown processing is not included
within the scope of a test. Deleting classes or methods used in
startup or shutdown is a common source of difficulty in creating a
viable runtime image. In most cases, dumps written to the error log
are the best way to debug startup or shutdown problems.

If you have extra windows open, for example a browser, you should
close or minimize them before beginning an application test.
References to classes and methods from all open windows are
considered part of the application being tested. Having extra windows
open tends to result in extraneous references and may cause you to
include unneeded classes and methods in the runtime image.

Buttons along the top of the window control activities during the
application test. These buttons are:
21-36 VisualWorks

Runtime Packager Process Details
Save Image

In spite of all precautions to the contrary, it is possible that the
image could be corrupted during the test. If you don’t have a
recently saved image, click this button to save it now. Once the
test starts, you do not want to save the image.

Begin Test

This button begins the test process. All deleted classes and
methods are altered to allow the detection of any references to
them. When that process has been completed, the startup
message, if any, is sent and the application starts its execution in
the normal way.

End Test

When you have completed application testing, pressing this
button will restore the image to its status prior to the beginning of
the test. If debugger windows are opened during the test, you
might want to press this button before debugging the problem.

Accept Dynamic References

As deleted classes and methods are referenced, they are
reported in the scrollable text area below. If you want to accept all
such classes and methods as items to be kept in the runtime
image, press this button.

Ignore Dynamic References

In some cases you may see references to items that are clearly
not part of your application. For example, you may see
references to the debugger if an error occurs. To ignore the
dynamic references appearing in the text area below, press this
button. All dynamic references displayed will be ignored. This
button is active both during and after the test. If pressed during
the test, displayed dynamic references revert to the status they
had at the beginning of the test. If pressed after the test,
displayed dynamic references are simply ignored.

References to classes and methods that would have been deleted in
the runtime image are shown in the scrollable text area as they occur.
Only the first reference to each item is shown. Once the references
are accepted or are ignored, the text area is cleared.
Application Developer’s Guide 21-37

Application Delivery
After the test ends, press OK to have all accepted dynamic references
included as kept items. You might want to go back and rerun the scan
step at this time to pick up other classes and methods that are now
reachable but just did not happen to get used in your test. If you
press Cancel, no changes are made to the kept items and the window
is simply closed.

Classes and methods that are potentially loadable through parcels do
not get special treatment in this step. The assumption is that loadable
parcels will be loaded into the image through command processing at
start up or through some equivalent process. Do not allow parcels to
be loaded during the test or you not be able to recover the source for
methods contained in such parcels, as would be case if runtime
parcels into any development image.

Set Runtime Memory Parameters
This step provides a way to set memory parameters for the runtime
image.

Space sizes

• Eden - initial space used for creating new object

• Survivor - space used for new objects that have graduated
from Eden

• Large - space for objects larger than 1K

• Stack - space holding the portion of the stack not converted to
objects

• Code Cache - cache of dynamically compiled method machine
code

• Old - tenured objects that have graduated from survivor space

Policy Values

• Growth Increment - how much additional memory to allocate at
a time when growing memory

• Retry Decrement - how much less to ask for if memory is not
available when an attempt is made to grow memory

• Growth Regime Limit - size at which reclaiming space is
preferred to expansion

• Memory Limit - maximum amount of memory allocated
21-38 VisualWorks

Runtime Packager Process Details
Space sizes have a minimum value of 10000 bytes and a
maximum value of 1000 times the default sizes at startup. Growth
Increment must be at least twice Retry Decrement and no more than
Memory Limit.

Spaces sizes are derived from values supplied by the method
ObjectMemory class>>defaultSizesAtStartup.

Memory policy values are taken from the following aspects of
MemoryPolicy:

• preferredGrowthIncrement

• growthRetryDecrement

• growthRegimeUpperBound

• memoryUpperBound

When the values specified here are recorded in the parameters file,
they are recorded as double floating point fractions of the default
sizes at image startup. It is possible that a small difference could
appear between the value entered and the value restored when
loaded from the parameters file. When moving from one platform to
another, the values will be converted proportional to the default
values of the new platform. This conversion should be reviewed
whenever a parameters file created for one platform is used on
another since simple proportions may not be the optimal settings. If
you have not changed any of the values provided here from their
initial defaults, then the default values on image start-up would
always be used regardless of platforms since the fraction recorded in
the parameters file would be 1.0 in each case.

Strip and Save Image
This step is the final one. Deleted classes and methods are removed
and the final image is saved under the name provided earlier on the
options window. The final image is created with the following steps:

1 The image is checked for instances of applications that will be
deleted. Associated windows will be closed automatically if you
press Yes in the dialog box.

2 VisualLauncher instances are closed if you so authorize by
pressing Yes in the dialog box. You probably do not want the
standard launcher in your runtime image, but you might want to
use instances of the launcher in your application. If so, you
Application Developer’s Guide 21-39

Application Delivery
should close the launchers manually and just say No here instead
of closing all launchers automatically.

3 You will be given one last chance to change your mind.

4 Parcels that are loadable at runtime are removed from the image.
Only the definitions are removed. Classes and methods defined
in these parcels are removed in a later step of the stripping
process.

5 Subclasses of ExternalInterface are packaged for the runtime
environment. C macros are fully expanded.

6 The emergency notifier is installed. If you are using the default
notifier class RuntimeEmergencyNotifier, any errors after this point
will cause a dump file to be written. If the debuggers are stripped
out this could be the only way to debug a problem in this step.

7 Sources are discarded. That is, the image will no longer look for
sources or create changes entries.

8 A new emergency evaluator is installed. The evaluator is invoked
when you press Ctrl-Shift-Y. The replacement evaluator is a
dialog confirming that you want to quit now.

9 A series of mundane clean-ups are done. One of these is
clearing the Transcript. The transcript is written to the dump file
on errors, and you might want to place application error
messages there even if the transcript is not shown to the user.

10 If you requested deletion of the compiler, the default pop-up
menu for text fields that could contain code is replaced with the
menu for straight text (the compiler is needed to evaluate
anything). A few other menus that reference the compiler are not
altered. If you select DoIt from these menus, the request is
ignored.

11 System and method categories are discarded if the remove
system organization and categories option was selected.

12 Methods, classes, and globals are deleted from the image.
Copyright notices in the method named copyright are always
retained.

13 If selected, literals are merged based on value.

14 If selected, multiple instances of the same byte code string are
consolidated into a single instance referenced from multiple
methods.
21-40 VisualWorks

Debugging a Deployed Image
15 If selected, multiple instances of the same method are
consolidated into a single instance as a method in
RuntimeMergedMethodOwner.

16 If the compact compiled methods option was selected the
method dictionaries are rebuilt with instances of CompiledMethod
replaced by RuntimeCompiledMethod instances.

17 The symbol table is rehashed to reclaim space from
unreferenced symbols.

18 You are informed that the image is about to be saved. This
window and the one appearing later do not have controllers. You
will be given 5 seconds to read the contents and then the window
is closed automatically.

19 The garbage collector runs to remove all the deleted objects from
the image. A Perm Save is then done.

20 Another window appears letting you know that the save was done
successfully.

21 The image exits.

If you are using the three step procedure for saving the image, the
image is left in a state in which another save is done upon image
startup for the next two times the image is launched. A garbage
collection is done before the first of these saves.

You now have a stripped runtime image.

Debugging a Deployed Image
Although a deployed image does not contain development tools, such
as the debugger, there is still a limited amount of debugging facility
available for a deployed image.

The default Runtime Packager configuration opens a notifier with a
brief message describing the error. It also writes a file, by default
named error.log, which contains more diagnostic information and a
message stack. These actions are specified on the Set common options,
Exceptions page.

Given the information provided in the error log file, you should be able
to trace the source of the error in the unstripped image using the
usual methods.
Application Developer’s Guide 21-41

Application Delivery
You may also provide your own Emergency Notifier to enhance the
information and features of the one provided by Runtime Packager.

Customizing the Emergency Notifier
Notifiers to handle otherwise handled exceptions are provided in
RuntimeErrorNotifier and its subclasses. A different class, for example,
a subclass of RuntimeEmergencyNotifier, can be specified as an option
for the Error Notifier Class. This notifier is invoked by sending the class
the message

notify: anException context: aContext
 when an unhandled exception occurs.

RuntimeErrorNotifier provides the basic mechanics for handling the
exception, but does not include a user interface. Typically one of the
subclasses of RuntimeErrorNotifier would supply the necessary
support for the user interface. The following hierarchy is supplied with
Runtime Packager:

RuntimeErrorNotifier "abstract class"
RuntimeEmergencyNotifier "terminates after notifier"

RuntimeDebugNotifier "user decides whether to terminate"
RuntimeQuietEmergencyNotifier "writes error log without notification"

Class variables in RuntimeEmergencyNotifier carry the text of messages
presented to the user and permit changing the messages merely by
changing the value of the class variable prior to stripping the image.
The string values of these variables can be changed through the
following accessor functions:

RuntimeErrorNotifier prevents recursive error conditions by setting the
class variable ErrorState to different values as the error notification
processing is done. If another unhandled exception occurs during the
notification process itself, processing is restarted with few steps
being attempted. Subclasses of RuntimeErrorNotifier can take
advantage of this behavior by overriding only selected methods. See
RuntimeQuietEmergencyNotifier for an example.

dumpFailedMsg: a diagnostic dump could not be written

userInterruptMsg: control-Y was pressed (user interrupt)

errorOccurredMsg: an unhandled exception has occurred (programming
error)

emergencyAbortText: shift-control-Y was pressed (normally emergency
evaluator
21-42 VisualWorks

Customizing Detected References
Actions taken to record diagnostic information are controlled by the
Image Dumper Class option specification, which by default is
RuntimeImageDumper. To change this behavior, either supply your own
class or use a class from the following hierarchy:

RuntimeDumperFramework
RuntimeShortImageDumper

RuntimeImageDumper

Customizing Detected References
The process of scanning for unreferenced items can be customized
for the classes, methods, and globals that are discovered as
referenced. These references can be altered by explicit specification
through the user interface, but including the overrides in the
application itself offers advantages in terms of maintenance and
removes some possibilities of error.

These customizations are performed by way of class methods
detected during the scan process. When a class is found to
referenced, the class methods implemented by the class itself, as
opposed to those inherited, are examined. The following class
methods are invoked if implemented by the class:

dynamicallyReferencedClasses

Answers a collection of classes or qualified class names that are
to be kept in the runtime image. This method could be simple as
a literal containing an array of class names or much more
complex.

dynamicallyReferencedSelectors

Answers a collection of symbols naming methods that are to be
kept in the runtime image. Again, this method could be a simple
literal, enforce an application naming convention, or perform a
more complex analysis of the image.

dynamicallyReferencedGlobals

Answers a collection of qualified names for globals that are to be
kept in the runtime image.

When a selector is found as referenced, all implementations of the
selector in referenced classes are examined for further references.
The following class methods can be implemented by the
implementing class. If found, these methods can supply an
Application Developer’s Guide 21-43

Application Delivery
alternative collection of references to replace the references that
would have been inferred by the usual algorithm used in the scan
process.

itemsReferencedBySelector: aSymbol

Answer the collection of literals including symbols, variable
bindings, and classes referenced in the instance method named
by aSymbol. In the scan, these literals replace entirely those
found in the method itself.

itemsReferencedByClassSelector: aSymbol

Answer the collection of literals including symbols, variable
bindings, and classes referenced in the class method named by
aSymbol. In the scan, these literals replace entirely those found
in the method itself.

If nil is answered by these methods, then the normal inferred
references are used.

Examples of the general pattern used by these customizing methods
can be found in class RuntimeManager.

Customizing Image Stripping
RuntimeManager provides for customizing the stripping process in
several ways.

The Set common options, Stripping page options allow you to name a
class and method to be invoked just prior to stripping the image in the
Prestrip Class and Prestrip Method fields. The method you supply allows
you to establish the necessary environment for further stripping, if
needed.

During the stripping operations, RuntimeManager changed: messages
are sent to allow your application to monitor progress in the final
stages of stripping the image and to insert the necessary special
processing required for the particular application being stripped.

RuntimeManager class>>postStripBlock: allows you to register a block
that is evaluated after the stripped image has been created. The
block is evaluated just before the image save. The postStripBlock is a
convenient place to release any relationships used only during the
stripping process.
21-44 VisualWorks

Trouble Shooting
Trouble Shooting

Workspace or Browser is Opened with the Application
Typically this is because you left the window open before stripping.
Perhaps it was minimized. Make sure all windows are closed and
restrip the image.

Parcel File not Readable
A notifier tells you that “Parcel file xxx.pcl is not readable.”

If you are using a parcel not built by Runtime Packager, the parcel is
probably not on the deployed image’s parcel path. Try copying the
parcel file to the image directory.

Application Cannot Find a Parcel Source File
A notifier tells you that it “Failed to find source file xxx.pst.”

This occurs if you are using a parcel not built by Runtime Packager,
and was saved with sources, but the source file is not in the same
directory with the .pcl file. For deployment purposes, you should
rebuild the parcel without sources.

Application Exits Immediately
The splash screen displays, but the application exits immediately.

Usually you want the application to close when there are no more
windows open (Action on last window close option on the Common Options,
Details page). If the specified action is Shutdown image, which is the
default, then your application is not opening a window for some
reason.

If you are trying to build your deployment image with an application
window open, check to make sure your application code is being kept
(see the Specify classes and methods to keep step).

Otherwise, investigate to see why your Startup method and class or
your post-load action are failing to open your application window.

An Identifier has no Binding
A notifier opens saying “Unhandled exception: The identifier xxx has no
binding”
Application Developer’s Guide 21-45

Application Delivery
This indicates that the item specified (xxx), usually a class, is not
defined in the system. On opening an application that is defined in a
parcel, it may mean that you didn’t specify the parcel on the
command line. Later in an application it may mean the same thing,
that the defining parcel isn’t loaded, or simply that the class is not
defined in the system.
21-46 VisualWorks

A

Abstract Smalltalk Syntax

Overview
In the sections that follow, the syntax of the Smalltalk language is
formally defined with the aid of Backus-Naur form. The following
characters have special meanings unless they are enclosed in
quotation marks.

Character Description

= expands to

‘ ’ terminal (single quotes surround an atomic literal)

“ ” comment (double quotes surround a comment)

| or

+ one or more

* zero or more

[] zero or one

\ excluding the following

... through

() grouping

< > keyboard key
Application Developer’s Guide A-1

Lexical Primitives
The lexical syntax is formally ambiguous, in that, for example, the
string abc: can be parsed either as an identifier followed by a non-
quote-character, or as a keyword. We resolve this ambiguity in all
cases in favor of the longest token that can be formed starting at a
given point in the source text. Thus abc: is always considered to be a
keyword, if the a is the beginning of the token.

Character Classes
The definition of token is not used anywhere else in the syntax; it is
supplied only for exposition.

Numbers

token = number | identifier | special-character | keyword | block-argument |
assignment-operator | binary-selector | character-constant | string

digit = ‘0’ | ... | ‘9’

letter = ‘A’ | ... | ‘Z’ | ‘a’ | ... | ‘z’ | non_ASCII_Unicode_letters

binary-character = ‘+’ | ‘/’ | ‘\’ | ‘*’ | ‘~’ | ‘<’ | ‘>’ | ‘=’ | ‘@’ | ‘%’ | ‘|’ | ‘&’ | ‘?’ | ‘!’ | ‘,’
| Unicode_Symbol_math | Unicode_Symbol_currency |
Unicode_Symbol_other

whitespace-character = <tab> | <space> | <newline>

non-quote-character = digit | letter | binary-character | whitespace-character |
‘[’ | ‘]’ | ‘{’ | ‘}’ | ‘(’ | ‘)’ | ‘_’ | ‘^’ | ‘;’ | ‘$’ | ‘#’ | ‘:’ | ‘.’ | ‘-’ | ‘`’

digits = digit+

big-digits = (digit | letter)+ “as appropriate for radix”

number = digits (‘r’ [‘-’] big-digits | optional-fraction-and-exponent)

optional-fraction-and-exponent = [‘.’ digits] [(‘e’ | ‘d’ | ‘s’) [‘-’] digits]
A-2 VisualWorks

Atomic Terms
Other Lexical Constructs

Atomic Terms

Note that “binding” here is used in a more general sense than
elsewhere in this document, to include variables and bindings.

extended-letter = letter | ‘_’

identifier = extended-letter (extended-letter | digit)*

block-argument = ‘:’ identifier

assignment-operator = ‘:’ ‘=’

keyword = identifier ‘:’

binary-selector = (‘-’ | binary-character) [binary-character]

unary-selector = identifier

character-constant = ‘$’ (non-quote-character | ‘'’ | ‘"’)

symbol = identifier | binary-selector | keyword+

string = ‘'’ (non-quote-character | ‘'’ ‘'’ | ‘"’)* ‘'’

comment = ‘"’ (non-quote-character | ‘'’)* ‘"’

separator = (whitespace-character | comment)+

literal = [‘-’] number | named-literal | symbol-literal | character-literal | string |
array-literal | byte-array-literal | binding-literal

named-literal = ‘nil’ | ‘true’ | ‘false’

symbol-literal = ‘#’ (symbol | string)

array-literal = ‘#’ array-literal-body

array-literal-body = ‘(’ (literal | symbol | array-literal-body | byte-array-literal-
body)* ‘)’

byte-array-literal = ‘#’ byte-array-literal-body

byte-array-literal-body = ‘[’ number* “integer between 0 and 255” ‘]’

binding-name = identifier \ (named-literal | pseudovariable-name | ‘super’)

extended-binding-name = binding-name [(‘.’ binding-name)*]

binding-reference = ‘#’ ‘{’ extended-binding-name ‘}’
Application Developer’s Guide A-3

We originally intended that the definition of array-literal be the
following:

array-literal = ‘#’ ‘(’ literal* ‘)’
This would have simplified the syntax, eliminating the need for array-
literal-body and byte-array-literal-body as separate constructs.
However, this definition is not backward-compatible with previous
versions of the Smalltalk-80 language. Specifically, it requires
symbols and arrays appearing within an array literal to be quoted with
#. Because of this, we adopted the more complex definition.

Expressions and Statements

primary = extended-binding-name | binding-reference | pseudovariable-
name | literal | block-constructor | ‘(’ expression ‘)’

pseudovariable-name = ‘self’ | ‘thisContext’

unary-message = unary-selector

binary-message = binary-selector primary unary-message*

keyword-message = (keyword primary unary-message* binary-message*)+

cascaded-messages = (‘;’ (unary-message | binary-message | keyword-
message))*

messages = unary-message+ binary-message* [keyword-message] |
binary-message+ [keyword-message] | keyword-message

rest-of-expression = [messages cascaded-messages]

expression = (extended-binding-name | binding-reference) (assignment-
operator expression | rest-of-expression) | keyword ‘=’ expression “see
below” | primary rest-of-expression | ‘super’ messages cascaded-messages

expression-list = expression (‘.’ expression)* [‘.’]

temporaries = ‘|’ temporary-list ‘|’ | ‘||’

temporary-list = declared-variable-name*

declared-variable-name = binding-name

statements = [‘^’ expression [‘.’] | expression [‘.’ statements]]

block-constructor = ‘[’ [block-declarations] statements ‘]’

block-declarations = temporaries | block-argument+ (‘|’ [temporaries] | ‘||’
temporary-list ‘|’ | ‘|||’)
A-4 VisualWorks

Methods
In order to keep lexical analysis and parsing separate, but still allow
constructs like x:=3 (without a space, making it look like a keyword,
x:), we have had to introduce the alternative

keyword ‘=’ expression
for assignment. This should really be read as though it were

binding-name ‘:=’ assignment

Methods

A special case of a pragma are the <primitive: N> and
<primitive: N errorCode: errName> pragmas. In these cases, the
method invokes a primitive before or instead of invoking the following
statements. The N may be an integer between 0 and 65535. The
errName is not a literal, but a binding-reference, which identifies an
object explaining why the primitive could not run successfully.

method = message-pattern pragma* [temporaries] statements

message-pattern = unary-selector | binary-selector declared-variable-name |
(keyword declared-variable-name)+

pragma = ‘<’ unary-selector | (keyword literal)+ ‘>’
Application Developer’s Guide A-5

A-6 VisualWorks

B
Special Characters

Overview
A variety of special characters, such as the yen sign (¥), can be typed
into VisualWorks text views by using a special key sequence. A prefix
known as the compose key is the first element in the key sequence,
followed by two characters that define the desired special character. On
some keyboards, a single key has been defined to send the required
sequence, such as the dollar sign on American keyboards. If the font in
use does not contain a character, it is displayed as a black square.

For example, <Control>-k = Y is the sequence for composing the yen
sign.

The default compose key is <Control>-k. To change the default key,
execute the expression CharacterComposer setComposeKey. The new
compose key will affect newly created views but not existing views.

To create special characters programmatically, send an asCharacter
message to the numeric representation of the character. Numeric codes
are given in the following charts as hexadecimal values, and so can be
displayed as follows, again, for the yen sign:

Transcript cr; nextPut: 16r00A5 asCharacter; flush
Note that not all characters can be displayed on all platforms, but are
dependent on fonts installed on the platform. Unsupported characters are
displayed as a black box.
Application Developer’s Guide B-1

Composed Characters
The following table lists the special characters in the left column. The two
characters that make up the body of the compose sequence are shown in
the second column. The hexadecimal equivalents of these two columns
are displayed in the right-hand columns. A description is shown in the
middle column.

Special character Composition sequence Description Character
hex code

characters hex codes

+ + 2B 2B number sign 0023

$ | S 7C 53 dollar sign 0024

@ A A 41 41 at 0040

[((28 28 left bracket 005B

\ / / 2F 2F backslash 005C

])) 29 29 right bracket 005D

{ (- 28 2D left brace 007B

| / ^ 2F 5E vertical bar 007C

}) - 29 2D right brace 007D

~ ^ ^ 5E 5E tilde 007E

¡ ! ! 21 21 inverted exclamation 00A1

¢ | c 7C 63 cent sign 00A2

£ = L 3D 4C pound sign 00A3

¤ x o 78 6F currency 00A4

¥ = Y 3D 59 yen sign 00A5

§ ! s 21 73 section 00A7

© O C 4F 43 copyright 00A9

ª _ a 5F 61 ordfeminine 00AA

« < < 3C 3C << 00AB

- - - 2D 2D horizontal bar 00AD

® O R 4F 52 registered 00AE

° ^ 0 5E 30 degree sign 00B0

± + - 2B 2D plus or minus 00B1
B-2 VisualWorks

Composed Characters
2 ^ 2 5E 32 superscript 2 00B2

3 ^ 3 5E 33 superscript 3 00B3

µ / u 2F 75 micro, mu 00B5

¶ ! p 21 70 paragraph sign 00B6

· . ^ 2E 5E middle dot 00B7

1 ^ 1 5E 31 superscript 1 00B9

º _ o 5F 6F ordmasculine 00BA

» > > 3E 3E >> 00BB

¼ 1 4 31 34 one fourth 00BC

½ 1 2 31 32 one half 00BD

¾ 3 4 33 34 three fourths 00BE

¿ ? ? 3F 3F inverted ? 00BF

Æ A E 41 45 AE diphthong 00C6

Ð + D 2B 44 capital eth 00D0

× x x 78 78 cross 00D7

Ø / O 2F 4F O slash 00D8

| O 7C 4F capital thorn 00DE

ß s s 73 73 German double-s 00DF

æ a e 61 65 ae diphthong 00E6

+ d 2B 64 small eth 00F0

÷ - : 2D 3A divide 00F7

ø / o 2F 6F o slash 00F8

| o 7C 6F small thorn 00FE

Ð - D 2D 44 D with stroke 0110

- d 2D 64 d with stroke 0111

- H 2D 48 H with stroke 0126

- h 2D 68 h with stroke 0127

. i 2E 69 dotless i 0131

Special character Composition sequence Description Character
hex code

characters hex codes

d

H

h

i

Application Developer’s Guide B-3

IJ I J 49 4A IJ ligature 0132

ij i j 69 6A ij ligature 0133

k k k 6B 6B kra 0138

. L 2E 4C L with dot 013F

. l 2E 6C l with dot 0140

- L 2D 4C L with stroke 0141

- l 2D 6C l with stroke 0142

’n n ’ 6E 27 n apostrophe 0149

N) 4E 29 capital eng 014A

n) 6E 29 small eng 014B

Œ O E 4F 45 OE diphthong 0152

œ o e 6F 65 oe diphthong 0153

- T 2D 54 T with stroke 0166

- t 2D 74 t with stroke 0167

‘ ‘ 1 60 31 single quote left 2018

’ ’ 1 27 31 single quote right 2019

“ ‘ ‘ 60 60 double quote left 201C

” ’ ’ 27 27 double quote right 201D

€ = C 3D 43 euro 20AC

™ T M 54 4D trademark 2122

Ω o m 6F 6D omega 2126

1/8 1 8 31 38 one eighth 215B

3/8 3 8 33 38 three eighths 215C

5/8 5 8 35 38 five eighths 215D

7/8 7 8 37 38 seven eighths 215E

← - < 2D 3C arrow left 2190

↑ | ^ 7C 5E arrow up 2191

→ - > 2D 3E arrow right 2192

Special character Composition sequence Description Character
hex code

characters hex codes

L.

l.

L

l

T

t

B-4 VisualWorks

Diacritical Marks
Diacritical Marks
A diacritical mark, such as a circumflex (^), is combined with a character
in a similar fashion. The compose key (<Control>-k by default) comes
first, then a character representing the diacritical mark (taken from the
table below) and finally the base character. For example, to get ñ, you
would type <Control>-k, followed by a tilde (~) and the letter ‘n’.

Programmatically, add the diacritical by sending, for example:

| baseChar diacrit composedChar |
baseChar := $a.
diacrit := 16r0300 asCharacter.
composedChar := baseChar composeDiacritical: diacrit.
Transcript cr; nextPut: composedChar; flush

You can also identify the diacritical by name:

diacrit := Character diacriticalNamed: #grave.
The names are specified in the diacriticalNamed: method definition.

In the following table, the diacritical mark is shown in position relative to a
broken circle representing the base character.

↓ | v 7C 76 arrow down 2193

n o 6E 6F musical note 266A

. j 2E 6A dotless j FC10

Diacritical mark Composition sequence Description Diacritical
hex code

character hex code

` 60 grave 0300

’ 27 acute 0301

^ 5E circumflex 0302

~ 7E tilde 0303

- 2D macron 0304

u 75 breve 0306

. 2E dot above 0307

Special character Composition sequence Description Character
hex code

characters hex codes

j

Application Developer’s Guide B-5

" 22 dieresis 0308

* 2A ring above 030A

: 3A double acute 030B

v 76 hacek (caron) 030C

, 2C cedilla 0327

; 3B ogonek 0328

_ 5F underline 0332

Diacritical mark Composition sequence Description Diacritical
hex code

character hex code
B-6 VisualWorks

C

Virtual Machines

VisualWorks provides special-purpose virtual machines for
development, deployment, server (headless) deployment, linking with
external libraries, and for engine debugging.

This appendix describes each virtual machine and its appropriate
use. These optional VMs are available for each supported platform.

For details on command line options used when starting an engine,
see Virtual Machine Command Line Options.

VisualWorks Virtual Machines
By default, the standard development and deployment virtual
machines are installed in the bin/<platform>/ subdirectory of the root
VisualWorks installation directory. Special-purpose engines are
installed in subdirectories, as noted below.

Production Engines
The production engines are called visual or visual.exe. These are the
standard engines, which are stripped of all debug symbols, and are
suitable for deploying VisualWorks applications because of their
relatively small size.

There are also "unstripped" versions of the production engines, which
can be useful in your own development. These include debug
symbols, and so, if you encounter a crash (e.g. by calling external C
or COM code incorrectly), you may be able to use your platform's
debugger to investigate the problem. They are named vwPlatform, for
example vwlinux86 or vwnt.exe, to distinguish them from the standard
engines.
Application Developer’s Guide C-1

Virtual Machines
On Windows platforms, the vwnt.exe engine is accompanied by
vwntoe.dll. The pair of files provides the debug symbols and the
engine API described in the DLL and C Connect User’s Guide.

Debug Engines
Debug engines include debug symbols and have assertion-checking
code compiled throughout. They are considerably slower than their
production counterparts, but are suitable for debugging object engine
crashes. They are named vwPlatformdbg, for example vwlinux86dbg
or vwntdbg.exe, and are located in the debug/ subdirectory for each
platform engine. All engines contain debug functions that can be
used to examine the state of the system, trace the Smalltalk (engine)
stack, and so on, using platform debuggers.

Assert Engines
These engines are fully-optimized, but with asserts compiled-in and
enabled. They run at least 50% of the speed of the fully-optimized
production engine, even though they check engine asserts. For for
normal development, this provides perfectly acceptable performance
while checking the engine during normal use. They are named
vwPlatformast, for example vwlinux86ast or vwntast.exe, and are located
in the assert/ subdirectory for each platform engine.

Headless and Headful Engines
Most of the Unix platforms now provide a headless engine. These
engines exclude the GUI and window management primitives,
dynamically loading them as required from a shared library. The all-
in-one, “headful” engines are still provided.

The headless engines are named in the vw<platform> format, as
usual. The GUI inclusive engines are named vw<platform>gui.

Each headless engine automatically searches for an associated GUI
shared library when a GUI primitive is first invoked. Engines look for a
shared library of the same name as the engine with “gui.so”
appended. For example, the vwlinux86 engine is headless, and will
search for linux86gui.so if a GUI primitive is invoked. Headful engines
have “gui” appended to their name, to the corresponding headful
engine is vwlinux86gui.
C-2 VisualWorks

DLLandCConnectGuide.pdf

Virtual Machine Command Line Options
Linkable Object Engines
All VisualWorks object engines can access external code by
dynamically loading external libraries (called variously shared
libraries, shared objects, DLLs, etc.). This is the preferred way of
interfacing to external libraries. But, if required, you can statically link
in code using the linkable object engines. These are called visual.o or
visual.lib, and are in the $(VISUALWORKS)/bin/<platform>/userprim
directories, along with associated makefiles.

Console Object Engines
In server configurations one may want to run the system from the
command-line, or console, possibly without a user interface
(headless), and possibly to read from standard input and/or write to
standard output. On the Unix and Linux platforms, the standard
object engines can run from the command-line. But on Windows, GUI
and command-line applications require different executables. So for
Windows we also provide “console” versions of the three standard
engines called, vwconsole.exe, vwntconsole.exe, vwntdgbconsole.exe,
which can be used to read from standard input and/or write to
standard output.

Virtual Machine Command Line Options
This section describes startup command line options affecting virtual
machine behavior. For options affecting operation at the image level,
refer to Image Level Switches.

All platforms
When starting VisualWorks, you may specify the following command
line switches after the name of the virtual machine:

-?

Report the available object engine command line options.

-h bytes

Increase the startup heap headroom by bytes. The value is
decimal unless prefixed with O for octal or Ox for hexadecimal.
The value is bytes unless suffixed with k for kilobytes, m for
megabytes, or g for gigabytes, or s for 1 left shifted by the value.
Application Developer’s Guide C-3

Virtual Machines
-ieeefp

Allow floating point primitives to answer Inf and NaN results.

-l policy

Overrides the image load policy. The policy argument is one of
the following values:

promote - load all objects into perm space

demote - load all objects into old space

normal - (default) load all objects into their current space

-noherald

Suppress the splash screen on startup.

-v

Report engine and image version information.

-xq

Causes the Object Engine to save a report upon exit to a file
named stack.txt in the engine's current working directory. The
report includes stack traces of all active Smalltalk processes and
the state of the object memory. This dump can be helpful in
diagnosing aborts on start-up and aborts due to low-memory
conditions. Note that this report is not printed if the engine
crashes with a segmentation fault, memory violation, or illegal
instruction.

-X

(Assert and Debug Engines only) Similar to -xq option but causes
a brief stack trace to be saved whenever there is an assertion
failure during engine execution.

-x

(Assert and Debug Engines only) Similar to -X option but
additionally writes a full dump of the active Smalltalk process and
causes the engine to exit.

-z bytes

Make the size of the native methods zone to bytes. The bytes
argument is interpreted as with the -h option.
C-4 VisualWorks

Virtual Machine Command Line Options
Windows platforms
The following options are available only on Microsoft Windows
platforms:

-console

Open a console window for stdout and stderr.

-logo file.bmp

Display the specified bitmap file as the startup splash screen.

-nosound

Suppress playing the startup sound

-sound file.wav

Play the waveform sound file file.wav on image startup.

-walltime

Ignored. Retained for backward compatibility only.

Unix/Linux platforms
The following options are available on Unix and Unix-like systems:

-className classname

Use classname as the object engine's X11 resource class. The
default resource class is St80. This option only applies to
platforms that use X11 for graphical display.

-gui

Load default GUI subsystem shared library on startup.

-guilib guilib

Load specified GUI subsystem shared library on startup.

All Unix and Linux VMs now write all herald information to /dev/tty,
instead of stdout, so VisualWorks can be used on a pipe.
Application Developer’s Guide C-5

Virtual Machines
C-6 VisualWorks

Index
Symbols
^ 5-13
.st files 8-28
#{ } 6-14
= 5-10, 7-1
== 5-10, 7-1
~= 5-11
~~ 5-11

A
aboutToQuit 21-9
aboutToQuit event 21-9
aboutToSnapshot 21-9
abstract class 3-11
access date of a file 13-6
actionForEvent: 10-6, 10-10
activate 9-24, 9-28
adding

class definition 2-17
method definition 2-17

allNamed:from:to: 4-28
allNamed:in: 4-27
ambivalentEventChecking 10-8
animation

double buffering 12-27
flashing 12-25

announcement 11-1
announcing 11-17
handle 11-18
handling 11-13
management 11-7
missed 11-12
process 11-18
registry 11-16
subscribe 11-1, 11-6, 11-16
suspend 11-10
unsubscribe 11-4
veto 11-19
weak 11-15

Announcement class 11-1
appending

text to a file 13-9
appendStream 13-9

application
framework 9-1
model 9-1

ApplicationWindow class 12-8
argument variable 4-7
ArithmeticError class 15-3
array

defined 4-4
asComposedText 13-13
asFilename 13-2
asQualifiedReference 6-13
asRetainedMedium 12-17
assigning variable values 4-17
atEnd 14-4

B
beCurrentDirectory 13-5
behavior, defined 3-5
Bezier curve 12-6
binary 4-20
binary file

See also BOSS
BinaryObjectStorage 14-2
binaryReaderBlockForVersion:format: 14-8
binding 6-10
binding reference 6-12
BindingReference class 6-12
BindingReference v. LiteralBindingReference

6-14
bitmap 12-3
block expression 4-24
BlockClosure class 7-1
Boolean class 7-1
boolean values 4-4
BOSS

retrieving contents of a file 14-3
retrieving specific objects 14-5
searching for an Object 14-4
sequential access 14-4
skipping the initial scan 14-3
storing a class 14-6
storing objects 14-1
storing objects in a file 14-1
stream positioning 14-2
Application Developer’s Guide Index-1

Index
using custom storage formats 14-8
versioning 14-7

BOSS vs. file out 14-6
branching 7-1
button 2-2

C
CachedImage class 12-17
canBeWritten 13-15
canTriggerEvent\

 10-10
cap style of a line 12-21
capitalization conventions 4-5
cascade 4-22
case statement 7-3
change

veto 11-19
Change Set

sharing code between images 8-28
character literal 4-3
Circle class 12-6
class

abstract 3-11
creating 2-17
defined 3-7
hierarchy 3-9
in a BOSS file 14-6
inheritance 3-9
method 3-7
variable 3-7

class tab 2-16
cleanup blocks 15-9
clippingBounds 12-14, 12-24
clippingRectangle: 12-14
clippingRectangleOrNil 12-24
clippingRectangleOrNill 12-14
close 13-9
code

formatting 4-29
testing 2-5

code override 8-16
collection

looping 7-7
color editing 2-19
ColorEditing parcel 2-19
ColorValue class 12-18
command line

capture options 21-11
define options 9-27
format 1-3
image options 1-3

process options 21-11
virtual machine options C-3

comparing
files or directories 13-11

component 8-1
ComposedText 13-13
composite object 3-3
conditional looping 7-5
conditional selection 7-1
constructEventsTriggered 10-8
contents 14-3
contentsOfEntireFile 13-7, 13-12
control structure 7-1
conventions

naming 3-6, 3-7
convertForGraphicsDevice: 12-13
copyArea:from:sourceOffset:destinationOffs

et: 12-19
copyTo: 13-10
CoverageValue class 12-18
creating

point 12-4
process 17-1
signal instance 15-15

currentCursor 12-31
currentCursor: 12-31
Cursor class 12-29

D
dates 13-6
deactivate 9-24
Debug it 2-7
debugging

execution stack 16-20
external libraries 16-34
inspect variables 16-22
trace message flow 16-22
virtual machine code 16-34

debugging techniques
tracing message flow 16-24

decompiled code 2-17
defaultAction 15-14
defaultDirectory 13-5
DefaultDirectoryString shared variable 13-5
Defines 9-25
Delay class 17-5
delete 13-10
deleting a file or directory 13-10
deploy

headless 20-8
diacritical mark B-5
Dictionary class 5-10
Index-2 VisualWorks

Index
dimension
of a display surface 12-8

directory
characteristics 13-4
comparing 13-11
contents 13-7
creating 13-3
dates 13-6
default 13-5
deleting 13-10
distinguishing from file 13-6
parent 13-5

directoryContents 13-8, 13-12
display surface

mapped 12-16
unmapped 12-17

display surface types 12-8
displayFilledOn: 12-12
displayOn: 12-11
displayOn:at: 12-11, 12-13
displayStrokedOn: 12-12
DisplaySurface class 10-8, 12-8, 12-16
diving inspector 2-21
Do it 2-7
domain model 9-1
double buffering, in animation 12-27
dumpFailedMsg 21-42
Duration object 17-6

E
earlySystemInstallation 21-9
editing

source code 2-17
ElipticalArc class 12-6
Emergency Evaluator 1-8
Emergency exit 1-8
emergencyAbortText 21-42
ensure: 14-2
equality 5-10
error

compilation 5-12
Error class 15-3

nonresumable exceptions 15-9
errorOccurredMsg 21-42
Event class 10-9
eventHandlers instance variable 10-9
EventHandlers shared variable 10-6, 10-9
EventManager class 10-9
events 10-1

aboutToQuit 21-9
defining 10-7
exceptional 15-3

register handler 10-3
removing handlers 10-6
returnFromSnapshot 21-9
triggering 10-2

eventsHandled 10-10
exception

adding handlers 15-12
cleaning up 15-11
defined 15-1
defining handlers 15-4
environment 15-12
executing handler blocks 15-9
exiting handlers 15-7
flow of control 15-17
get description 15-3
handling 15-4, 15-11
nonresumable 15-9
raising 15-12
resumable 15-9
setting parameters 15-16
signaling 15-12
terminating handler blocks 15-8
translating 15-10

Exception class 15-14, 15-15
exception handlers 15-4

active 15-12
exiting explicity 15-6

Exception subclasses 15-10
ExceptionSet class 15-6
execution stack 16-20
executor 19-8
exists 13-4
exiting the system

emergency 1-8
expression 4-19
extension method 8-15
extent: 12-17
extent:on: 12-17
extent:on:initialize: 12-17

F
false 4-4
figure:transparentAtPoint: 12-31
file

binary
See also BOSS 14-1

characteristics 13-4
comparing 13-11
contents 13-7
creating 13-3
dates 13-6
deleting 13-10
Application Developer’s Guide Index-3

Index
distinguishing from directory 13-6
parts of name 13-6
printing 13-13
storing text 13-8

file name
create 13-1

file out
vs. a BOSS file 14-6

Filename class 13-1
file-out file 8-27
FileOut30 8-28
fileSize 13-4
finalization 19-2, 19-5
findDefaultDirectory 13-5
finding a method 3-9
finishedSnapshot 21-9
flashing, in animation 12-25
follow:while:on: 12-26
font: 12-23
FontDescription class 12-23
FontPolicy class 12-23
fontPolicy: 12-23
forgetInterval: 14-5
fork 17-1
formatting conventions 4-29
functions

see Methods 5-11

G
garbage collection 19-1
GenericBindingReference class 6-12
geometric

circle 12-6
elliptical arc 12-6
line and line segment 12-6
polyline 12-6
rectangle 12-6
spline curve 12-6

graphic image
as graphic object 12-7

graphics
coordinate system 12-3
display surfaces 12-8
image 12-7

graphicsContext 12-11
GraphicsMedium class 12-8, 12-16
GUI-less application 20-1

H
halt 16-30
HandleRegistry class 19-8
hasActionForEvent: 10-10

hash 5-10
headless application 20-1
hierarchy of objects 3-4

I
Icon class 12-31
identity 5-10
if statements 7-1
image 1-5

Smalltalk 1-1
Image class 12-7
image:mask:hotSpot\

name: 12-30
immediate object 5-6
import binding reference 6-16
indexed instance variable 4-9
inherited method, overriding 3-10
Inspect it 2-7
inspector

debugger 16-22
defined 2-20
dive 2-21
pop 2-21
variable 16-19

instance
defined 3-7

instance method 3-7
instance tab 2-16
instance variable 4-8
isDirectory 13-6
isInteger 5-11
isNil 4-4, 5-11
isResumable 15-10
iterative operations 7-4

J
join style of a line 12-22

L
line

cap style 12-21
join style 12-22
thickness 12-20

LineSegment class 12-6
lineWidth: 12-20
literal

array 4-4
character 4-3
number 4-1
string 4-3
symbol 4-3

LiteralBindingReference class 6-12
Index-4 VisualWorks

Index
looping 7-1
types of 7-4

loose coupling 10-1

M
main 9-25
makeDirectory 13-4
makeUnwritable 13-15
makeWritable 13-15
Mask class 12-9, 12-17
memory leak 5-8
message 3-6

cascade 4-22
expression 4-19
in sequence 4-22
keyword 4-22
selector 3-6
types 4-20
unary 4-20

message display 2-2
MessageNotUnderstood class 15-3
method 3-5, 3-10

category 3-6
class method 3-7
creating 2-17
defined 3-3
grouping 3-6
instance method 3-7
overriding 3-10

method lookup 3-7, 3-9
model

application 9-2
domain 9-1

modification date of a file 13-6
mouse button operations 2-2
moveTo: 13-11
moveTo:on:restoring: 12-26
mutually exclusive 17-5
myEventTable 10-10
myEventTable: 10-10

N
name 5-6
name space 6-1

binding reference 6-12
browse 6-6
class as 6-9
contents 6-3
create 6-7
hierarchy 6-4
import 6-15
naming 6-8

path 6-10
referencing 6-10, 6-12
reorganize 6-9
Root 6-3, 6-4
Smalltalk 6-3, 6-4

name space.dotted name 6-10
name space.import 6-11
name spaces 3-13, 4-16
named change sets 8-25
named instance variable 4-8
naming conventions 3-6, 3-7, 4-5
nextPut: 14-2
nextPutAll: 13-9, 14-2
nextPutClasses: 14-7
nil 4-4
nonresumable exceptions 15-9
Notification class 15-3
notifier

debugging window 16-18
execution stack 16-20

notify:context: 21-42
notNil 5-11
number literal 4-1

O
object

behavior 3-5
composite 3-3
examining variable values 2-20
hierarchy 3-4
state, defined 3-5

Object class 3-11
object engine

command line switches C-3
object engine, See virtual machine
object file

See also BOSS 14-1
ObjectMemory 21-9, 21-12
ObjectMemory class 9-24
object-oriented programming 3-1
on:do: 15-4, 15-8, 15-9, 15-12
onNew: 14-2
onOld: 14-2, 14-3
onOldNoScan: 14-3
Options

application-specific 9-12
override 8-16
overrides

packages 8-20
parcels 8-20
Application Developer’s Guide Index-5

Index
P
package

creating 8-7
overrides 8-20
prerequisites 8-12

pad source 8-23
paint: 12-23
paintPolicy: 12-24
paintPreferences: 12-24
parcel 2-9

overrides 8-20
prerequisites 8-12

parcel path 2-10
pass 15-7, 15-9
pause 9-24
pauseAction 9-25
persistence

See also BOSS 14-1
pixel 12-3
Pixmap class 12-9, 12-17
Point class

arithmetic functions supported 12-4
creating an instance 12-4
specifying polar coordinates 12-4

Polyline class 12-6
position: 14-5
postSnapshotBootstrap 21-16
Pragma class 4-25
pragmas 4-25

in settings 9-13
Preferences 9-12
preSave: 8-5
Print it 2-7
printing

a text file 13-13
printTextFile 13-13
priority level 17-3
proceedability attribute 15-15
process 15-11

coordinating 17-2, 17-4
creating 17-1
fork 17-1
postponing 17-5
running multiple 17-1
scheduling 17-2
setting the priority level 17-3
sharing data 17-7
states of 17-2
terminating 17-2

Processor object 17-2
Promise 17-6

protected blocks of code 15-10

Q
quitBlock: 21-11

R
raiseSignal 15-2
raiseSignal: 15-12
range

iterating on numbers 7-6
read stream 13-14
readAppendStream 14-2
readStream 14-3
rectangle

creating 12-5
Rectangle class 12-6
registry

handles 19-8
release 10-7
releaseEventTable 10-7
removeAction:forEvent: 10-7
removeActionsWithReceiver:forEvent: 10-6
renameTo: 13-11
resignalAs: 15-7, 15-11
resumable exceptions 15-9
resume 9-24
resumeAction 9-25
retained medium 12-9
retainedMediumWithExtent: 12-18
retry 15-7, 15-8
retryUsing: 15-7, 15-8
return 15-8

from a method 5-13
return: 15-7
returnFromSnapshot 21-9, 21-12
returnFromSnapshot event 21-9
Runtime Packager 21-1
RuntimeErrorNotifier class 21-42
RuntimeManager 21-11

S
save source code 2-17
scale: 12-25
scavengeOccurred 21-9
ScheduledWindow class 12-8
selector 3-6
self 4-18
Semaphore 17-4
Semaphore class 17-4
sequential access

in a BOSS file 14-4
Set class 5-10
setDispatchTableForPlatform 1-7
Index-6 VisualWorks

Index
Settings framework 9-12
Settings Manager 9-12
Settings tool 2-25
setToEnd 14-2
setUp 9-25
shared variables tab 2-16
SharedQueue class 17-7
shortcut

brackets 2-4
quotes 2-4
text format 2-3

show 12-30
showWhile: 12-30
shutdown 21-9, 21-10
signal 15-2, 15-12

choosing 15-15
creating 15-15
global 15-15
nested 15-18

Signal class 15-14
signaling exceptions 15-12
signalWith: 15-12
Smalltalk at: 5-6
snap-shot 1-5
sound C-5
source code

editing 2-17
missing 2-17
saving 2-17

sourceMode: 14-6
spawn command 5-13
special characters B-1–B-6
splash screen C-4
Spline class 12-6
stack 16-20
startup 21-9
startup sound C-5
state of an object 3-5
stream

closing 13-9
creating 13-9

string literal 4-3
strong reference 19-1
Subsystem class 9-24
super 4-18
superclass 3-11
symbol 4-3
syntax

fixed-point numbers 4-2
floating-point numbers 4-2
integers 4-1
nondecimal numbers 4-2

numbers 4-1
scientific notation 4-2

System Browser 2-12
system constant 3-7
system events 21-9
system variable 13-2
SystemEventInterest 21-9
SystemEventInterest class 9-24

T
tearDown 9-25
temporary variable 4-6
text

storing in file 13-8
TextCollector 2-2
TextCollector class 2-2
thickness of a line 12-20
thisContext 4-18
tilePhase: 12-24
time change 17-6
tools

Settings 2-25
Workspace 2-5

Transcript 2-2
translating exceptions 15-10
triggerEvent: 10-2
true 4-4

U
unary message 4-20
unwind protection 15-11
user interrupt 16-30
User settings 9-12
userInterruptMsg 21-42

V
variable

argument 4-7
assignment 4-17
defined 3-5
instance 4-8
system 13-2
temporary 4-6

variables
workspace 2-6, 2-7

version
of a BOSS file 14-7

virtual image 1-5
virtual machine 1-1

command line switches C-3
debugging and deployment C-1

VisualComponent class 10-8
Application Developer’s Guide Index-7

Index
W
Warning class 15-3, 15-9
weak array 19-1

finalization 19-5
weak reference 19-1
WeakDictionary class 19-8
when:send:to: 10-3
widget:when:do: 10-11
Window class 12-8, 12-16
working directory 13-5
Workspace 2-5
workspace variables 2-7
write stream 13-14
writeStream 13-9

Z
ZeroDivide class 15-3
Index-8 VisualWorks

	About This Book
	Overview
	Audience

	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information
	Smalltalk Tutorial
	Online Help
	News Groups
	Commercial Publications
	Examples

	The VisualWorks Environment
	Running VisualWorks
	VisualWorks Command Line Options
	Image Level Switches

	Running Multiple Versions Under Windows

	Saving Your Work
	Saving the Image
	Restoring the Original Image
	Sources and Changes

	Exiting VisualWorks
	Closing on Windows Shutdown
	Emergency Exit

	Programming in VisualWorks
	VisualWorks Launcher
	Mouse (Pointer) Operations
	Text Entry and Formatting
	Character Formatting
	Short-cut Controls
	Enclosing an Expression

	Evaluating Smalltalk Code in a Workspace
	Evaluating Commands
	Workspace Variables
	Name Spaces in Workspaces
	Saving Workspace Contents

	Loading Code Libraries
	Using the Parcel Manager
	Loading Parcels Programmatically
	Setting the Parcel Path

	Browsing and Editing Smalltalk Code
	Browsing the System
	Browser Navigator
	Package View
	Hierarchy View
	Class / Name Space View
	Instance, Class, and Variable Views

	Working with the Browser
	Editing Source Code
	Missing Source Code
	Searching
	Drag and Drop
	Controlling Visibility of Methods
	Using Multiple Views
	Source Code Formatting

	Browsing Files
	Exploring Objects
	Inspecting an Object
	Modifying Objects
	Evaluating Expressions
	Browsing and Editing Behavior

	Painting a GUI
	System Settings
	VisualWorks Home
	Settings
	Saving and Loading System Settings

	Object Orientation
	Procedures vs. Objects
	Objects and Methods
	Composite Objects
	Variables and Methods
	Method Names
	Method Categories

	Classes and Instances
	Class Variables
	Class Methods vs. Instance Methods

	Class Inheritance
	Looking up a Method
	Overriding an Inherited Method
	Abstract Classes
	Choosing a Superclass

	Syntax
	Literals
	Numbers
	Integers
	Floating Point Numbers
	Fixed-Point Numbers
	Nondecimal Numbers
	Numbers in Scientific Notation

	Characters
	Strings
	Symbols
	Byte Arrays
	Arrays
	Booleans
	nil

	Variables
	Variable Names and Conventions
	Private Variables
	Temporary Variables
	Argument Variables
	Instance Variables
	Class Instance Variables

	Shared Variables
	Class Variables
	Pool Variables
	Class and Name Space Names
	Constant and Variable Bindings
	Public and Private Shared Variables
	Initializing Shared Variables

	Assigning a Value to a Variable
	Special Variables
	Undeclared Variables

	Message Expressions
	Unary Messages
	Binary Messages
	Keyword Messages
	Messages in Sequence
	Cascading Messages
	Parsing Order for Messages

	Block Expressions
	Pragmas
	Declaring Pragmas
	Including a Pragma in a Method
	Processing Pragmas
	Collecting Pragmas
	Performing Operations with Pragmas
	Accessing Pragma Components

	Formatting Conventions

	Classes and Instances
	Defining a Class
	Creating a Class using the New Class Dialog
	Editing a Class Definition
	Class Types

	Locating a Class by Name
	Working with Instances
	Creating an Instance
	Destroying an Instance
	Finalization
	Lingering Instances

	Immutable objects
	Object Comparison

	Methods
	Creating a Method
	Fixing Common Errors at Compile Time
	Undeclared temporary variables
	Undeclared class and instance variables
	Missing period
	Missing delimiters

	Returning from a Method
	Returning From an Enclosed Block
	Returning the Result of a Message
	Returning a Conditional Value

	Name Spaces
	Getting Started
	Name Spaces and Their Contents
	Name Space Contents
	The Name Space Hierarchy
	Smalltalk.Root.Smalltalk

	Working with Name Spaces
	Browsing Name Spaces
	Creating Name Spaces
	Naming a Name Space
	When to Create a New Name Space
	Rearranging Name Spaces
	Classes as Name Spaces

	Referencing Objects in Name Spaces
	Dotted Names and Name Space Paths
	Binding References
	Binding Reference Resolution
	When to Use BindingReference or LiteralBindingReference

	Importing Bindings
	Importing Classes and Name Spaces
	Importing Class Variables
	Importing Pool Variables
	Circular System Imports

	Binding Rules and Errors

	Control Structures
	Branching
	Conditional Tests
	Compound Conditions

	Looping
	Simple Repetition
	Conditional Looping
	Number Iteration
	Collection Iteration

	Managing Smalltalk Source Code
	Organizing Smalltalk Code
	Package and Bundle Contents
	Browsing Packages and Bundles
	Loading Code into Packages and Bundles
	Loading from Parcels
	Loading from File-in Files
	Loading from a Store Repository

	Controlling Load and Unload Behavior
	Saving
	Loading
	Unloading

	Managing Packages
	Creating a Package
	Adding Definitions to a Package
	Removing a Package

	Managing Bundles
	Creating and Arranging Bundles
	Editing a Bundle Specification
	Removing a Bundle

	Designing a Package Structure
	Package and Bundle Properties
	Prerequisites
	Warning Suppression Action
	Prerequisite Version Selection Action
	Load and Unload Actions
	Other Properties

	Specifying Prerequisites
	Specifying a Prerequisite Version
	Marking a Component as Functional

	References Between Packages
	Code Overrides
	Creating an Override
	Reviewing Overrides
	Resolving Overrides
	Publishing Parcels and Packages with Overrides

	Publishing Packages
	Publishing as Parcels

	Source Code Files
	Managing Changes
	Recovering Changes
	Compressing Changes
	Using Change Sets
	Change Set Manager
	Selecting a Current Change Set
	Creating a New Change Set
	Saving Changes

	File-Out Files
	Filing Out Code
	Filing In Code

	Parcels
	Parcel Files
	Loading and Unloading Parcels
	Loading Parcels Programmatically
	Loading Parcels with Command Line Options
	Parcel Search Path

	Managing Parcels
	Guidelines for Clean Loading and Unloading
	Limitations and Restrictions
	Restrictions on Parcel Contents
	Partial Loading
	Shape Change Tolerance

	Application Framework
	Separating the Domain and the User Interface
	Application Model Acts as Mediator
	Value Model Links Widget to Attribute
	Builder Assembles User Interface

	Dependencies Between Objects
	The Update/Change System
	Notifications From Value Model to Application Model
	Notifications From Any Object to Any Object
	DependencyTransformer
	Direct Dependency
	Removing Dependents
	Circular Dependencies

	Application Startup and Shutdown
	Selecting an Interface
	Prebuild Intervention
	Postbuild Intervention
	Postopen Intervention
	Application Cleanup

	User Settings Framework
	Settings
	Browsing the Definition for a Setting
	Defining a Setting
	Additional Setting Parameters
	Controlling the Vertical Position of a Setting
	Settings Pages
	Defining a Page of Settings
	Setting Types
	Creating a Setting Model
	Backward Compatibility with VisualWorks UISettings
	Using Drop-Down List and Radio Button Settings
	Defining a Settings Domain
	Saving and Loading Settings

	Responding to System Events
	Defining System Event Actions
	Command Line Processing in a Subsystem
	Activating a Subsystem
	Dependency Ordering of Subsystems

	Trigger-Event System
	Triggering Events
	Event Triggering Messages

	Registering an Event Handler
	Handling an Event with Arguments
	Handler Registration Messages

	Removing Event Handlers
	RemoveAction messages

	Defining Event Sets
	Specifying event strictness
	Specifying events to trigger
	Event classes

	How Handlers are Registered
	Trigger Event System Support Methods
	Trigger Event Support Methods Available to All Objects
	Trigger Event Support Methods In ApplicationModel

	Announcements
	Subscribing to Announcements
	Unsubscribing
	How Subscriptions are Managed
	Selecting Subscriptions
	Suspending a Subscription
	Batching Missed Announcements
	Substituting a Handler
	Making Subscriptions Weak

	Accepting Subscriptions
	Announcing an Event
	Handling an Announcement
	Processing an Announcement
	Vetoing an Event

	Working With Graphics and Colors
	A Note about the Examples
	The VisualWorks Graphics Environment
	Pixels
	Coordinate System
	Points
	Rectangles
	Graphical Objects
	Text Objects
	Geometric Objects
	Bitmap Image Objects
	VisualPart

	Colors and Patterns
	Graphics Media and Display Surfaces
	Windows
	Pixmaps
	Masks

	Graphics Context
	Graphics Device

	Displaying a Graphic
	Getting a GraphicsContext
	Displaying a Graphical Object on a GraphicsContext
	Drawing a Transient Shape
	Displaying a Bitmap Image
	Shifting (Translating) the Display Position
	Displaying a Restricted Area
	Copying from a Display

	Working with Pixmaps and Masks
	Creating a Display Surface from an Image
	Creating a New Display Surface
	Composing on a Pixmap
	Displaying a Display Surface
	Copying from a Display Surface

	GraphicsContext Attributes
	Line Properties
	Line Width
	Line Cap Style
	Line Join Style

	Font Properties
	Paint Properties
	Clipping Properties
	X and Y Offsets
	Scaling

	Animating Graphics
	Moving a Static Object
	Animating a Changing Object

	Using Graphics in an Application
	Cursors
	Icons
	As a Component in an Application Window
	Graphics as Labels and Decoration
	As a Custom View

	Files
	File Names
	Creating a Filename
	Constructing a Portable Filename

	Creating a File or Directory
	Creating an Empty File
	Creating a New Disk Directory

	Getting File Information
	Testing for Existence
	Getting the Size of a File
	Getting and Setting the Working Directory
	Getting the Parent Directory
	Getting the Parts of a Pathname
	Distinguishing a File from a Directory
	Getting the Access and Modification Times

	Getting File or Directory Contents
	Getting the Contents of a File
	Getting the Contents of a Directory

	System Variables
	Storing Text in a File
	Writing a Stream to a File
	Appending Text to a File

	File System Maintenance Operations
	Deleting a File or Directory
	Copying a File
	Moving a File
	Renaming a File

	Comparing Two Files or Directories
	Compare Filenames
	Compare File Contents
	Compare Two Directories

	Printing a File
	Print a Text File
	Printing a File Directly

	Writing and Reading Data Fields
	Setting File Permissions
	Unix Volume List

	Binary Object Files (BOSS)
	Storing Objects in a BOSS File
	Storing a Collection of Objects
	Appending an Object to a File

	Getting Objects from a BOSS File
	Retrieving All Objects
	Searching Sequentially for an Object
	Getting an Object at a Specific Position

	Storing and Getting a Class
	Storing a Collection of Classes
	Loading a Collection of Classes
	Converting Data After Changing a Class

	Customizing the Storage Representation
	Performance considerations

	Exception and Error Handling
	ANSI Exception Handling
	Adapting Signal-based Code
	Reinitializing Signal Creators and Initializers
	Name Signals
	Do Not Depend on Signal noHandlerSignal

	Exception Classes
	Handling Exceptions
	Exception Sets
	Exiting Handlers Explicitly
	Resumable and Nonresumable Exceptions
	Translating Exceptions
	Unwind Protection

	Signaling Exceptions
	Exception Environment
	Using a Signal to Handle an Error
	Choosing or Creating a Signal
	Proceedability
	Creating an Exception
	Setting Parameters
	Passing Control From the Handler Block
	Using Nested Signals

	Debugging Techniques
	Software Probes
	Breakpoint
	Watchpoint
	Setting Probes
	Setting a breakpoint
	Setting a variable watchpoint
	Setting an expression watchpoint
	Removing probes
	Making a probe conditional
	Select a watch window
	Modifying a probe
	Probe location
	Recompiling a Probed Method
	Limitations

	Class Probes
	Adding class probes
	On Instance Variable Access...
	On Message Receipt...

	Remove class probes
	Browse probed methods

	Debugger
	Walkback Notifier
	Debugger Window
	Reading the Execution Stack
	Editing a Method Definition
	Inspecting and Changing Variables
	Inspecting the Stack
	Tracing the Flow of Messages
	Stack menu
	Method menu
	Execute menu
	Correct menu

	Inserting Probes in the Debugger
	Temporary Probes
	Probe context management

	Debugging Tips
	Inserting probes into blocks
	Iteration debugging
	Interrupting a Program

	Global Probe Management
	Probe library
	Expression libraries
	Storing CompiledMethods Externally

	Debugging Within the Virtual Machine

	Process Control
	Creating a Process
	Scheduling a Process
	Setting the Priority Level
	Semaphore
	Mutual Exclusion

	Delay
	Delay and Time Change Interaction

	Promise
	Sharing Data Between Processes

	Refactoring
	Refactoring Browser Support
	Class-oriented refactorings
	Method-oriented refactorings
	Statement-oriented refactorings

	Refactoring for Abstraction
	Creating an Abstract Class
	Moving Instance Variables to a Superclass
	Consolidating Common Code

	Inlining Methods

	Refactoring Classes
	Creating a Subclass
	Renaming a Class and Its References
	Safely Removing a Class
	Changing a Class to a Sibling
	Adding a Variable
	Renaming a Variable and its References
	Removing a Variable
	Moving a Variable from or to a Subclass
	Creating Variable Accessors
	Abstracting a Variable
	Making a Variable Concrete

	Refactoring Methods
	Moving a Definition to Another Component
	Renaming a Method and its References
	Safely Removing a Method
	Adding a Parameter to a Method
	Inlining all Sends to Self
	Moving a Method to or from a Superclass

	Refactoring Portions of a Method
	Extracting a Method
	Inlining a Temporary Variable
	Converting a Temporary into an Instance Variable
	Removing a Parameter
	Inlining a Parameter
	Renaming a Temporary
	Moving a Temporary to an Inner Scope
	Extracting to a Temporary
	Inlining a Message

	Weak Reference and Finalization
	Ephemerons
	Finalization
	EphemeronDictionary

	Weak Collections
	WeakArray
	Finalization
	Finalization Example

	WeakDictionary
	Finalization
	HandleRegistry

	Creating an Application without a GUI
	Setting Up a Headless Image
	Running an Application in Headless Mode
	Starting on Unix/Linux
	Starting on Windows
	When an Image Starts
	If an Application Attempts to Access a Display

	Debugging a Suspended Process
	Creating a Headful Copy of a Headless Image
	Tips for Programming a Headless Application
	Techniques for Starting a Headless Application
	Techniques for Communicating with a Headless Application
	Terminating a Headless Application
	Sending Output to the System Console
	Preventing Access to the Display

	Delivering a Headless Application

	Application Delivery
	Choosing a Delivery Strategy
	Single Image File
	Parcels
	Combined Deployment

	Packaging for Distribution
	Deploying as a Single File
	VisualWorks Installer

	Running a Deployed Image
	Loading Parcels At Start Up
	Opening a Runtime Application
	Exiting a Deployed Image
	Installing as a Service on Windows

	Preparing an Image for Deployment
	Loading Application Code
	Code Developed in the Image
	Code Saved in File-outs
	Code Saved in Parcels
	Code in a Store Database

	Removing Source Files
	The Transcript
	Handling Errors
	Registering an Interest in System Events
	Pragma-based Event Dependency
	Message-based Event Dependency

	Shutdown When the Last Window Closes
	Handling Command Line Options
	Pragma-based Option Processing
	Message-based Option Processing

	Unload Tools Parcels
	Removing Undeclared Variables
	Garbage Collecting Lingering Instances
	Splashscreen and Sound
	Replacing the Splashscreen and Sound
	Suppressing the Splashscreen and Sound
	Controlling Splashscreen Duration

	Creating the Deployment Image
	Running Runtime Packager
	A Short-cut Procedure
	Examples
	Building a Stand-alone Image
	Building an Image Using Parcels

	Runtime Packager Process Details
	Saving Runtime Packager Parameters
	Clean Up Image
	Set Common Options
	Basics Page
	Details Page
	Platforms Page
	Exceptions Page
	Parcels Page
	Parcel operations
	Stripping Page

	Specify Items to Keep and Delete
	Pop-up Menus

	Scan for Unreferenced Items
	Review Kept Items
	Save Loadable Parcels
	Test the Application
	Set Runtime Memory Parameters
	Strip and Save Image

	Debugging a Deployed Image
	Customizing the Emergency Notifier

	Customizing Detected References
	Customizing Image Stripping
	Trouble Shooting
	Workspace or Browser is Opened with the Application
	Parcel File not Readable
	Application Cannot Find a Parcel Source File
	Application Exits Immediately
	An Identifier has no Binding

	Abstract Smalltalk Syntax
	Overview
	Lexical Primitives
	Character Classes
	Numbers
	Other Lexical Constructs

	Atomic Terms
	Expressions and Statements
	Methods

	Special Characters
	Overview
	Composed Characters
	Diacritical Marks

	Virtual Machines
	VisualWorks Virtual Machines
	Production Engines
	Debug Engines
	Assert Engines
	Headless and Headful Engines
	Linkable Object Engines
	Console Object Engines

	Virtual Machine Command Line Options
	All platforms
	Windows platforms
	Unix/Linux platforms

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

