
Cincom Smalltalk™

Basic Libraries Guide

P46-0146-03

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

© 1995–2009 Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0146-03

Software Release 7.7

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, the Cincom logo and Cincom Smalltalk logo are
registered trademarks of Cincom Systems, Inc. ParcPlace and VisualWorks are
trademarks of Cincom Systems, Inc., its subsidiaries, or successors and are registered in
the United States and other countries. ObjectLens, ObjectSupport, Cincom Smalltalk,
Database Connect, DLL & C Connect, COM Connect, and StORE are trademarks of
Cincom Systems, Inc., its subsidiaries, or successors. ENVY is a registered trademark of
Object Technology International, Inc. All other products or services mentioned herein are
trademarks of their respective companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation © 1995–2009 by Cincom Systems, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior written consent
from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents
About This Book xi

Overview .. xi
Audience ..xii
Conventions ...xii

Typographic Conventions ..xii
Special Symbols ..xii
Mouse Buttons and Menus ..xiii

Getting Help ..xiii
Commercial Licensees ...xiv

Before Contacting Technical Support ..xiv
Contacting Technical Support ...xiv

Non-Commercial Licensees ... xv
Additional Sources of Information ... xv

Online Help .. xv
News Groups ...xvi
VisualWorks Wiki ...xvi
Commercial Publications ..xvi

Chapter 1 Collections 1-1

Choosing the Appropriate Class ..1-1
Set ...1-2
Bag ..1-2
Array ..1-2
Interval ..1-3
OrderedCollection ...1-3
SortedCollection ..1-3
List ...1-4
LinkedList ..1-4
Dictionary ..1-4

Creating a Collection ..1-4
Adding Elements ..1-6

Adding an Element to a Collection ..1-6
Basic Libraries Guide iii

Contents
Inserting an Element at a Specific Location ... 1-7
Adding a Collection of Elements ... 1-8
Expanding an Array .. 1-8

Removing Elements .. 1-9
Removing a Subcollection .. 1-9
Removing an Element or Range of Elements by Index 1-9
Removing All Elements That Pass a Test ... 1-10
Removing an Association from a Dictionary ... 1-11
Removing an Element from an Array .. 1-11

Replacing Elements ... 1-11
Replacing Individual Elements .. 1-12
Replacing All Elements ... 1-12
Replacing Specified Elements .. 1-12
Replacing All Occurrences of an Object ... 1-13
Replacing a Subcollection .. 1-13

Copying Elements .. 1-14
Copying a Subcollection ... 1-14
Concatenating Two Collections ... 1-15
Subtracting One Set from Another .. 1-15

Testing Collections ... 1-15
Equality and Identity ... 1-15
Getting the Number of Elements .. 1-16
Getting the Capacity ... 1-16
Testing for Emptiness ... 1-16
Testing for the Presence of an Object ... 1-17

Looping through the Elements (Iterating) .. 1-17
Looping by Index or Key ... 1-18
Collecting the Results of the Processing .. 1-19
Looping through Two Parallel Collections ... 1-19

Sorting a Collection ... 1-19
Converting Collection Types .. 1-20

Chapter 2 Streams 2-1

Stream Class Hierarchy ... 2-1
Basic Protocol .. 2-2

Instance Creation ... 2-2
Positioning .. 2-4
Reading .. 2-5
Writing .. 2-6
Closing a Stream .. 2-7

Internal Streams .. 2-8
Creating an Internal Stream ... 2-8
iv VisualWorks

Contents
Reading and Writing Internal Data ..2-9
Reading and Writing Past the End of Data2-10
Writing and Immutable Objects ..2-11

External Streams ...2-11
Creating an External Stream ...2-11
Reading and Writing External Data ...2-12

Buffered Reading and Writing ..2-13
Reading and Writing Past the End of Data2-14

Positioning ...2-14
Encoded Streams ...2-14

Line-end Conventions ...2-15
Encodings ...2-17
Encoding a Stream ..2-18
Reading and Writing ..2-18
Positioning on an Encoded Stream ...2-19
Encoding and Decoding String Data ...2-19

Stream Exceptions ...2-20
Random Numbers ..2-21

Chapter 3 Numbers 3-1

Numeric Types ...3-1
Numeric Constants ..3-2

Zero ..3-2
Unity ...3-3
Pi ..3-3

Complex Numbers ...3-3
Metanumbers ..3-4

Infinity Class ...3-5
Infinitesimal Class ..3-6
NotANumber Class ..3-6
SomeNumber Class ...3-7

Converting Numeric Type ..3-7
Operations on Numbers ...3-8

Creating a Number ..3-8
Arithmetic Operations ..3-9
Rounding and Truncating ..3-9
Comparing Numbers ...3-10
Testing Numbers for Properties ...3-11
Mathematical Functions ..3-11
Factoring ...3-11
Trigonometric Functions ..3-12
Logarithmic Functions ...3-13
Basic Libraries Guide v

Contents
Chapter 4 Chronology 4-1

Dates ... 4-1
Creating a Date .. 4-1
Getting Information about a Day ... 4-2
Adding and Subtracting with Dates ... 4-3
Comparing Dates .. 4-3
Formatting a Date ... 4-4

Times ... 4-4
Creating a Time .. 4-4
Getting the Seconds, Minutes, and Hours .. 4-5
Adding and Subtracting Times .. 4-5

Timestamp ... 4-6
Creating Timestamp ... 4-6
Comparing Timestamps ... 4-7

TimeZone .. 4-7
Duration ... 4-9
Timer ... 4-10

Chapter 5 Graphical Images 5-1

Color Depth and Images .. 5-1
Creating a Graphic Image .. 5-2

Using the Image Editor ... 5-2
Reading an Image from a File .. 5-3
Capturing an Image from the Screen .. 5-3
Creating a Bitmap Manually .. 5-4
Displaying an Image ... 5-4

Creating a Display Surface Bearing an Image 5-5
Caching an Image .. 5-5
Coloring Pixels in an Image .. 5-6

Changing Color by Color Value .. 5-6
Changing Color by Numeric Value ... 5-6

Masking an Image .. 5-7
Creating a Mask ... 5-7
Masking a Rectangular Area ... 5-8
Masking a Nonrectangular Area .. 5-8

Modifying an Image .. 5-9
Expanding or Shrinking an Image .. 5-9
Flopping an Image ... 5-10
Rotating an Image ... 5-10
Overlaying Images ... 5-11
vi VisualWorks

Contents
Chapter 6 Working with Geometric Objects 6-1

Geometric Objects ...6-2
Rectangles ..6-2

Creating a Rectangle ...6-2
Getting and Setting a Rectangle’s Dimensions6-4
Moving a Rectangle ..6-5
Testing Rectangle Relations ...6-5

Lines ..6-6
Polylines and Polygons ...6-7
Arcs and Ellipses ...6-8
Circles and Dots ..6-10
Curved Lines ...6-11

Drawing a Geometric Object ..6-12
Using a Drawing Style Wrapper ..6-13
Drawing Transient Shapes ..6-14

Transformations on Geometrics ...6-15
Storing Graphic Attributes ..6-15

Chapter 7 Working with Text 7-1

Characters ..7-1
Creating Characters ..7-1
Testing Character Types ..7-2
Comparing Characters ..7-3

Strings ..7-3
Creating a String ...7-4
Getting a String’s Length and Width ..7-5
Combining Strings ...7-5

Modifying String Contents ..7-6
Changing Characters in Place ..7-6
Changing the Case in a String ..7-7
Inserting Line-End Characters ..7-7
Abbreviating a String ...7-8
String Substitution Parameters ..7-8

Substring Operations ...7-10
Copying a Substring ..7-11
Copying a Prefix ..7-11
Removing or Replacing a Substring ..7-11
Replacing a Substring ...7-11
Replacing All Occurrences of a Substring ...7-12
Tokenizing Substrings ...7-12
Basic Libraries Guide vii

Contents
Searching .. 7-13
Get the Index of a Character in a String ... 7-13
Ignoring Case in a Search .. 7-13

Comparing Strings ... 7-14
Testing for Equality and Identity .. 7-14
Comparing by Sorting Order ... 7-15
Rating the Similarity of Two Strings .. 7-16

Chapter 8 Colors and Patterns 8-1

Pixel Coverage ... 8-1
Creating a Color .. 8-2

Create by Color Name .. 8-2
Create by Red, Green, and Blue Values ... 8-2
Create by Hue, Saturation, and Brightness Values 8-3

Coloring a Graphical Object .. 8-4
Creating a Pattern .. 8-4

Applying a Pattern .. 8-4
Adjusting a Pattern’s Tile Phase ... 8-5

Image Color Palettes ... 8-5
Coverage Palettes .. 8-6
Color Palettes ... 8-6
Image Display Performance .. 8-7
Device Color Map ... 8-7
Applying a Palette to an Image ... 8-8
Converting an Image to Use the Default Palette ... 8-9

Color Rendering Policies ... 8-9
NearestPaint ... 8-10
OrderedDither ... 8-10
ErrorDiffusion .. 8-10
Applying a Renderer to an Image ... 8-11

Converting an Image to a Specific Palette 8-11
Setting the Rendering Policy for Nonimage Graphics 8-12

Chapter 9 Socket Programming 9-1

VisualWorks Implementation Classes ... 9-2
Socket Basics .. 9-2

Creating a socket ... 9-2
Making a client or server socket ... 9-3
Closing a socket ... 9-5
Port numbers .. 9-6
Building a TCP socket client .. 9-6
viii VisualWorks

Contents
Building a TCP socket server ...9-7
Building UDP socket clients and servers ...9-9

Connected UDP ...9-10
Reading from and Writing to a Socket ..9-11

Stream Style Communication ..9-11
Positioning on a Stream ..9-12
Line-end conversion ..9-13
Waiting for data ...9-15
Read/Write Style Communication ...9-16
SendTo:/ReceiveFrom: style communication ..9-18

Send/Receive Flags ...9-20
Socket Error Handling ..9-21

Trapping socket and protocol errors ..9-25
Option level control ...9-25
Solving Common Socket Problems ..9-27

How do I avoid the ‘Address in use’ error? ..9-27

Chapter 10 XML Framework 10-1

Working with XML Documents ..10-1
Parsing an XML Document ..10-2
Validating Against a Schema ..10-3
Selecting a XMLParser Driver ...10-3

Accessing XML Document Elements ...10-4
Get Document Root Element ..10-6
Selecting Elements ...10-6
Selecting Attributes ...10-7

Building a Document ..10-8
Create a Basic Document ...10-9
Node Ordering ...10-9
Add Element Nodes ..10-9

Add a Root Element ...10-10
Add Nested Elements ..10-10
Adding Element Attributes ..10-11
Adding Text ...10-11

Add Processing Instructions ..10-11
Writing the XML Document ..10-12

Using XML Namespaces ..10-13
Declare Namespaces ..10-14
Applying a Namespace to an Element ..10-15
Assigning a Namespace to an Attribute ..10-16

Building a SAX Driver ...10-17
Handling SAX Events ..10-18
Basic Libraries Guide ix

Contents
Configuring SAX Features and Properties ... 10-19
Document Fragments ... 10-22

Building a Fragment ... 10-23
Parsing a Fragment ... 10-23

XSL Stylesheet Processing ... 10-24
Loading XSL Support ... 10-24
Applying a Stylesheet to a Document ... 10-24

Using XPath .. 10-26
Creating a Path Expression .. 10-26
Applying an XPath Expression ... 10-28
Selecting Nodes with an XPath .. 10-28

XML Error Handling ... 10-29

Chapter 11 Parser Compiler 11-1

Standard Parser-Compiler ... 11-1
Scanner .. 11-1
Parser ... 11-2
Compiler .. 11-2

Advanced Parser-Compiler .. 11-3
Scanning Source Code ... 11-4
Parsing .. 11-5

A Rule has a Name and a Definition .. 11-6
Rules are Similar to Methods ... 11-6
Temporary Variables Can be Used .. 11-6
A Rule Definition is a Series of Alternatives 11-7
An Alternative is a Series of Terms .. 11-7
A Term is an Action or a Unit-Plus-Qualifier 11-8
A Unit is a Word, Terminal, or Parenthesized Definition 11-8
A Terminal is a Single Token .. 11-10
An Action is a Block or a Special Symbol 11-10
Two Types of Block Syntax are Allowed 11-11

Summary of Grammar for Parsing Methods ... 11-12
Creating your Own Compiler .. 11-13

Index Index-1
x VisualWorks

About This Book

Overview
This document, the VisualWorks Basic Libraries Guide, provides an
introduction to the content and use of several of the core class
hierarchies provided standard with VisualWorks. The descriptions provide
more than reference documentation, and are actually incomplete in that
regard. Instead, they introduce the main features supported by the
libraries and their use, providing a foundation for further explorations.

For complete reference style documentation, use SmalltalkDoc and
browse the hierarchies.

The libraries currently covered in this document are:

• Collections

• Streams

• Numbers

• Graphics

• Geometrics

• Colors

• Text and Fonts

• Sockets

• XML Framework

• The Parcer and Compiler

Additional libraries are covered in other documents.
Basic Libraries Guide xi

About This Book
Audience

This guide assumes that you have at least a beginning familiarity with
object-oriented programming, Smalltalk, and the VisualWorks
environment. For most purposes, this background information is provided
by the Application Developer’s Guide.

Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Special Symbols
This book uses the following symbols to designate certain items or
relationships:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File New Indicates the name of an item (New) on a menu
(File).

<Return> key

<Select> button
<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.
xii VisualWorks

Getting Help
Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or
combinations:

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>

Examples Description
Basic Libraries Guide xiii

About This Book
Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

• The version id, which indicates the version of the product you are
using. Choose Help About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to
supportweb@cincom.com.

Web
In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com
Telephone

Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.
xiv VisualWorks

mailto:supportweb@cincom.com
mailto:supportweb@cincom.com
http://supportweb.cincom.com

Additional Sources of Information
Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:

• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu

with the SUBJECT of "subscribe" or "unsubscribe". You can then
address emails to vwnc@cs.uiuc.edu.

• A Wiki (a user-editable web site) for discussing any and all things
VisualWorks related at:

http://www.cincomsmalltalk.com/CincomSmalltalkWiki

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincomsmalltalk.com/documentation/

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.

Online Help
VisualWorks includes an online help system.

To display the online documentation browser, open the Help pull-down
menu from the VisualWorks main menu bar and select one of the help
options.
Basic Libraries Guide xv

mailto:vwnc-request@cs.uiuc.edu
mailto:vwnc@cs.uiuc.edu
http://www.cincomsmalltalk.com/CincomSmalltalkWiki
news:comp.lang.smalltalk
http://www.cincomsmalltalk.com/documentation/

About This Book
News Groups
The Smalltalk community is actively present on the internet, and willing to
offer helpful advice. A common meeting place is the comp.lang.smalltalk
news group. Discussion of VisualWorks and solutions to programming
issues are common.

VisualWorks Wiki
A wiki server for VisualWorks is running and can be accessed at:

http://brain.cs.uiuc.edu:8080/VisualWorks.1
This is becoming an active place for exchanges of information about
VisualWorks. You can ask questions and, in most cases, get a reply in a
couple of days.

Commercial Publications
Smalltalk in general, and VisualWorks in particular, is supported by a
large library of documents published by major publishing houses. Check
your favorite technical bookstore or online book seller.
xvi VisualWorks

http://brain.cs.uiuc.edu:8080/VisualWorks.1

1

Collections

VisualWorks provides a wide variety of classes for operations
involving collections of objects. In addition to the conventional arrays,
there are bags, dictionaries, sets, linked lists, and more. These
classes and operations involving them classes are discussed in this
chapter.

The first section describes several main collection classes. The
variety of collections is far richer than is covered here, however. Use
a System Browser to explore the collection classes when you need a
special kind of collection.

Iterative operations involving collections are discussed in detail in the
Application Developer’s Guide. A string of characters is also a
collection and shares much of the behavior of other collections.

Choosing the Appropriate Class
There are nine main kinds of collections. Three of them have
specialized variations. A brief description of each collection class
follows, proceeding from the simplest to the more complex. As a rule
of thumb, choose the simplest class that suits your purpose.
Basic Libraries Guide 1-1

AppDevGuide.pdf

Collections
Set
A Set is about as close to a generic collection as you can get. No
index. No sorting. It does discard duplicates, which is often useful.
The fact that an instance of Set has only one special capability should
not distract you from the fact that the generic behavior it inherits, as
described in later sections of this chapter, includes powerful
mechanisms for manipulating elements of a data set.

An IdentitySet is identical in all respects, except that it uses == for
comparisons instead of =.

Bag
An instance of Bag is like a Set, except that it counts the duplicate. For
each element in a Bag there is also a tally of the occurrences of that
object. If each character in the word collection were an element in a
Bag, for example, the tally for the element $c would be 2. Bag does not
create a new element for a duplicate, but increments the counter the
item.

Array
Array allows you to maintain relative positions of elements, via an
integer index. In our collection example, $e can be identified by its
external key, the integer 5. (In a Set or a Bag, by contrast, the position
of $e is unpredictable.) As another example, if a customer name were

Collection class Distinguishing features

Set Discards duplicate elements

Bag Tallies duplicates

Array Integer index (and fastest access)

Interval Integer elements in progression

OrderedCollection Integer index; preserves the order in which
elements are added

SortedCollection Integer index; elements are sorted by user-
defined algorithm (ascending order is default)

LinkedList Each element points to the next element, for
maximum efficiency of dynamic lists

Dictionary Noninteger index; each element consists of a
key-value pair for dictionary-like lookups
1-2 VisualWorks

Choosing the Appropriate Class
to be stored as a collection of three elements—first, middle, and last
names—it would make sense to use an Array rather than a Set
because the relative positions of the elements must be preserved.

A RunArray provides efficient storage for situations in which a value is
repeated consecutively over long stretches of an array. For example,
the font information for a block of text is a likely candidate—a roman
font would be used for many sequences of elements in the array
(letters in the text), with occasional bursts of italic, bold, etc. Although
RunArray responds to the same messages as Array, its internal
representation avoids waste by storing an element only if it differs
from the preceding element, along with a tally of that element’s
repetitions.

A ByteArray provides space-efficient storage for bytes. Its elements
are restricted to the set of SmallIntegers from 0 to 255. WordArray is for
manipulating 16-bit words; its elements can be integers from 0 to
65535.

Interval
An Interval is a finite arithmetic progression, such as the series 2 4 6 8.
It is typically used to control an iterative loop, as described in the
Application Developer’s Guide.

OrderedCollection
An OrderedCollection, like an Array, has an integer index and accepts
any object as an element. Unlike Array, however, an OrderedCollection
permits elements to be added and removed freely. It is frequently
used as a stack (the last element in is the first one removed) or a
queue (first in, first out). However, its uses extend farther because
there are so many situations in which ordering must be preserved as
an arbitrary number of elements are added.

SortedCollection
When elements are not added in the desired order, sorting is
required. SortedCollection provides that extra capability. By default,
elements are sorted in ascending order. You can override this default
by specifying an alternative sort algorithm enclosed in a block. For
example, the expression:

 SortedCollection sortBlock: [:x :y | x >= y]
creates a new collection whose elements will be sorted in descending
order.
Basic Libraries Guide 1-3

Collections
List
A List represents a collection of elements explicitly ordered by the
sequence in which objects are added and removed. Elements are
accessible by their indices. Instances of List continue to extend the
valid range that can be indexed as elements are added. Lists
propagate change notices to their dependents. A List is generally
used with GUI widgets.

LinkedList
As its name suggests, a LinkedList is a collection in which each
element points to the next element. An OrderedCollection can
accomplish the same thing, but is less efficient in circumstances
involving large numbers of additions and deletions. For example, the
ProcessorScheduler class makes use of LinkedList to track the highly
dynamic list of processes. LinkedList achieves its efficiency in a way
that prohibits its elements from belonging to other collections at the
same time.

Dictionary
The Dictionary class, instead of imposing an integer index on each
element, permits any object to be the external key. The result, as in
the familiar Webster’s dictionary, is a collection of key-value pairs. For
example, an element might consist of the word ‘object’ with the
associated definition ‘something solid that can be seen or touched’.
Thus, each element in a Dictionary is typically an instance of
Association, which is a key-value pair. The nil object is specifically
excluded as a valid element.

An IdentityDictionary is similar, except that it uses == for comparisons
instead of =. That is, the values in an IdentityDictionary are expected to
be literals or other unique objects that can be compared with the
more efficient identity operator (==)

Creating a Collection
Typically, you create an empty collection, and then add elements to it.
All collections respond to the new message, as shown here for
OrderedCollection.
1-4 VisualWorks

Creating a Collection
| list |
list := OrderedCollection new.
list add: 'Leonardo';

add: 'Michelangelo';
add: 'Donatello';
add: 'Raphael'.

^list.
Note that add: returns the new element. Consequently, you do not
want to cascade the add: messages directly from the new message,
as you might be inclined to do. Or, if you do, conclude the cascade
with yourself.

For an Array, which cannot add elements, it is necessary to specify
the size of the array. Each element is nil until replaced with another
object.

| array |
array := Array new: 4.
array at: 1 put: 'Leonardo';

at: 2 put: 'Michelangelo';
at: 3 put: 'Donatello';
at: 4 put: 'Raphael'.

^array.
Other collections can be created with an initial size as well.

To create a collection filled with a filler object, send a new:withAll:
message to the desired collection class:

^Array new: 16 withAll: 0.
You can also create a collection by specifying up to four elements.
This approach is typically used to create a small array. Variations of
the with: message, for up to four elements, are provided in
VisualWorks:

| array |
array := Array

with: 'Leonardo'
with: 'Michelangelo'
with: 'Donatello'
with: 'Raphael'.

When an array contains only literal elements, such as numbers and
strings, you can also create the array using its literal form:

| array1 array2 |
array1 := #('Leonardo' 'Michelangelo' 'Donatello' 'Raphael').
array2 := #(1 2 3 4)

Notice the use of # to indicate that a literal is being created.
Basic Libraries Guide 1-5

Collections
Sometimes a new collection needs to be created from an existing
collection. For example, a non-growing array might need to be
expanded to accommodate more elements. Or a dictionary’s keys
might be placed in a list for sorting.

Send a withAll: message to the desired collection class, with an
expression yielding the elements of the old collection, for example:

OrderedCollection withAll: Smalltalk keys

Adding Elements
Different kinds of collections add elements in different ways. Most
collections will add an element when sent an add: message with an
element to add. Arrays are the exception, since they are restricted to
the number of elements with which they are created. A Dictionary
always adds a key-value pair.

Because the elements of a Set are each unique, adding an element
that already exists in the set results in no change; duplicates are
omitted. A Bag, on the other hand, adds duplicates without limit.

By default, an OrderedCollection adds new elements to the end of the
collection. You can also position the additional element at the
beginning of the collection, before a particular element, or before a
particular index. (A Set and a Dictionary do not keep their elements in
an externally visible order, so the notion of inserting a new element
does not apply.)

Adding an Element to a Collection
You can add an element to most collections by sending an add:
message to the collection with an object as the argument. For
ordered collections, the default is to add the object at the end of the
ordering. For classes such as Set, there is no meaningful position.

| list |
list := OrderedCollection new.
list add: 'Leonardo';

add: 'Michelangelo';
add: 'Donatello';
add: 'Raphael'.

^list
1-6 VisualWorks

Adding Elements
To add an element to a Dictionary, send an at:put: message to the
dictionary. The first argument is the lookup key (typically but not
necessarily a Symbol). The second argument is the object to be
associated with the key.

| dict |
dict := Dictionary new.
dict at: #Leader put: 'Leonardo';

at: #Member1 put: 'Michelangelo';
at: #Member2 put: 'Donatello';
at: #Member3 put: 'Raphael'.

^dict

Inserting an Element at a Specific Location
Collection classes which preserve order, such as OrderedCollection,
support protocol for inserting elements at specific positions.

The default position, where an object is added using the add:
message, is the end of the collection. It is sometimes helpful to make
this position explicit, in which case you can use the addLast: message.

To insert an element at the beginning of an ordered collection, send
an addFirst: message, which the new element as the argument.

To insert an element before or after a specific element already in the
collection, send an add:before: message or add:after: message to the
collection. The first argument is the element to be inserted. The
second argument is the element relative to which the insertion is to
take place.

To insert an element at a numbered position, send an add:beforeIndex:
message to the collection. The first argument is the element to be
inserted. The second argument is the index of the element before
which the insertion is to take place.

| list |
list := OrderedCollection new.
list add: 'Raphael';

addFirst: 'Leonardo';
add: 'Michelangelo' before: 'Raphael';
add: 'Donatello' beforeIndex: 3.

^list
Basic Libraries Guide 1-7

Collections
Adding a Collection of Elements
When a collection is used to accumulate the contents of other
collections, additions can be made in batches by adding an entire
collection. For ordered collections, each batch can be inserted at a
specific location.

To add all members of a collection to a collection, send an addAll:
message to the collection, with the collection of elements to be added
as argument. The receiving collection will determine any specific
behavior. For example, a Set will discard duplicate elements, and an
OrderedCollection will add all elements to the end of the collection.

For an ordered collection, the addAllFirst: message inserts all
members of the argument collection at the start of the collection.
Similarly, List, which is a subclass of OrderedCollection used primarily
with widgets, defines the addAll:beforeIndex: message inserts the
collection before the position specified by the second argument.

| sizes totalElements |
sizes := List new: 10000.
sizes addAll: (List allInstances collect: [:list | list size]).
sizes addAllFirst: (Dictionary allInstances collect: [:dict | dict size]).
sizes

addAll: (Array allInstances collect: [:array | array size])
beforeIndex: 2.

totalElements := 0.
sizes do: [:sz | totalElements := totalElements + sz].
^totalElements

Expanding an Array
Although an Array can contain only the number of elements with
which it was created, you can expand an array by creating a copy that
has a new element appended to it. The copy can then be substituted
for the original.

To create the copy, send a copyWith: message to the Array. The
argument is the object that is to be appended to the end of the new
array.

| array copy |
array := #(1 2 3 4 5 6 7 8 9).
copy := array copyWith: 10.
array := copy.
^array
1-8 VisualWorks

Removing Elements
Removing Elements
The basic method for removing an object from a collection is to send
a remove: message to the collection, with the object to be removed as
argument:

| list |
list := OrderedCollection withAll: ColorValue constantNames.
list remove: #red.
^list

If the specified object is not an element in the collection, an error
results. To supply an alternative action (including doing nothing)
when the object is not found, send a remove:ifAbsent: message to the
collection. The first argument is the object to be removed. The
second argument is a block containing the action or actions. An
empty block is an effective means of taking no action, so the process
can continue without an error message or other action.

| list |
list := OrderedCollection withAll: ColorValue constantNames.
list remove: #brickRed

ifAbsent: [Dialog warn: 'You must be kidding -- brickRed?'].
list remove: #moonbeam

ifAbsent: [].
^list

Removing a Subcollection
The removeAll: message allows you to remove all members of one
collection from a target collection. Send removeAll: to the collection
from which you want elements removed. The argument is a collection
containing the elements to be removed.

| list |
list := OrderedCollection withAll: ColorValue constantNames.
list removeAll: #(#red #green #blue).
^list

If an element is not found, an error is reported.

Because removeAll: is defined in Collection, it can be used with any
collections as receiver and argument.

Removing an Element or Range of Elements by Index
Ordered collections provide several messages for removing a single
element at a specified position or a range of elements:
Basic Libraries Guide 1-9

Collections
For example:

| list |
list := List new: 25.
1 to: 25 do: [:i | list add: i].
list removeFirst. "Removes 1"
list removeFirst: 5. "Removes 2 3 4 5 6"
list removeLast. "Removes 25"
list removeLast: 5. "Removes 20 21 22 23 24"
list removeFrom: 8 to: 12."Removes 14 15 16 17 18"
^list

Removing All Elements That Pass a Test
You can remove elements from any ordered collection based on a
test, by sending a removeAllSuchThat: message to the collection. The
argument is a block containing the test. The block must declare one
argument variable for the element to be tested.

| list |
list := OrderedCollection withAll: ColorValue constantNames.
list removeAllSuchThat: [:name | name first == $r].
^list

removeFirst Removes the first element in the collection.

removeFirst: Removes the number of elements specified by the
argument from the beginning of the list.

removeLast Removes the last element.

removeLast: Removes the number of elements specified by the
argument from the end of the list.

removeFrom:to: Returns an Array containing only elements removed
from the collection, from the starting index (first
argument) to the ending index (second argument).
Defined only for List.

removeFrom:to:
returnElements:

Same as removeFrom:to:, except that if the third
argument is false, nil is returned. This is used for
efficiency if the array is not needed.
1-10 VisualWorks

Replacing Elements
Removing an Association from a Dictionary
To remove elements from a Dictionary, you remove the entire
association by sending a removeKey: message to the dictionary. The
argument is the key of the association that you want to remove. The
removed value is returned.

| dict |
dict := Dictionary new.
dict at: #Leader put: 'Leonardo';

at: #Member1 put: 'Michelangelo';
at: #Member2 put: 'Donatello';
at: #Member3 put: 'Raphael'.

dict removeKey: #Member2.
dict removeKey: #Villain ifAbsent: [].
^dict

If the key is not found, an error results. To provide an alternative
response to the key-not-found condition, send a removeKey:ifAbsent:
message to the dictionary, with a block that specifies the action to
take if the key is not found. An empty block causes no action, which is
the same as silently ignoring the condition.

Removing an Element from an Array
To remove occurrences of an object from an array, you create a copy
of the array, omitting each occurrence of a specified object. Send a
copyWithout: message to the Array. The argument is the object to be
removed. The copy can then be substituted for the original array.

The copyWithout: message works for all ordered collections as well as
arrays.

| array copy |
array := #(1 8 3 4 5 6 7 8 9).
copy := array copyWithout: 8.
array := copy.
^array

Replacing Elements
Replacing elements in a collection is useful when the collection has
sufficient structure so that its elements have a position. Indexed
collections, such as List and Array, have the right structure, as do
keyed collections, such as Dictionary. Unordered collections, such as
a Set, do not support replacing of elements, because there is no
corresponding notion of a location at which to make the replacement.
Basic Libraries Guide 1-11

Collections
Replacing Individual Elements
Both keyed and indexed collections support an at:put: message for
replacing elements. For keyed collections, such as Dictionary, the first
argument is the lookup key. For indexed collections, such as List and
Array, the first argument is the index of the element to be replaced.
For both kinds of collection, the second argument is the object that is
to replace the old element.

| list dict |
dict := Dictionary new.
dict at: #Leader put: 'Leonardo';

at: #Member1 put: 'Michelangelo';
at: #Member2 put: 'Donatello';
at: #Member3 put: 'Raphael'.

list := List withAll: dict values.
list sort.
dict at: #Leader put: 'Rembrandt'.
list at: 1 put: 'Rembrandt'.

Replacing All Elements
Sequenced collections, such as List, Array, and OrderedCollection,
allow you to replace all elements with a single object by sending an
atAllPut: message to the collection. The argument is the object that is
to replace all existing elements. This is useful, for example, in
reinitializing the collection.

| list |
list := List new.
1 to: 10 do: [:number | list add: number].
list atAllPut: 0.
^list

Replacing Specified Elements
Sequenced collections, such as List, Array, and OrderedCollection,
allow replacing several specified elements with a single object by
sending an atAll:put: message to the collection. The first argument is a
collection containing the index numbers of the elements to be
replaced. The second argument is the object to be placed in those
slots.
1-12 VisualWorks

Replacing Elements
| list |
list := List new.
list

add: 'red';
add: 'ghoulishGreen';
add: 'red';
add: 'blackAndBlue'.

list atAll: #(1 3) put: 'bloodRed'.
^list

Replacing All Occurrences of an Object
Sequenced collections, such as List, Array, and OrderedCollection,
allow replacing of all occurrences of a specified object with another
object by sending a replaceAll:with: message to the collection. The first
argument is the object whose occurrences you want to replace. The
second argument is the replacement object.

| list |
list := List new.
list

add: 'red';
add: 'ghoulishGreen';
add: 'red';
add: 'blackAndBlue'.

list replaceAll: 'red' with: 'bloodRed'.
^list

Replacing a Subcollection
Sequenced collections, such as List, Array, and OrderedCollection,
allow replacing an interval of objects with objects from another
sequenced collection by sending a replaceFrom:to:with:startingAt:
message to the collection. The first and second arguments are index
numbers identifying the replacement range. The with: argument is a
collection containing the new elements. The startingAt: argument is
the index number in the new collection at which to begin copying the
replacement elements.

| mainList replacements |
mainList := #(1 2 3 4 5 6 7 8 9).
replacements := #(15 14 13 12 11 10 9 8 7 6 5 4 3 2 1).
mainList

replaceFrom: 1
to: mainList size
with: replacements
startingAt: 7.

^mainList
Basic Libraries Guide 1-13

Collections
Copying Elements
A collection, like any other object, can provide a copy of itself in
response to being sent a copy message. The result is a new object
which is a complete copy of the original.

| dict1 dict2 |
dict1 := Dictionary new.
dict1 at: #Leader put: 'Leonardo';

at: #Member1 put: 'Michelangelo';
at: #Member2 put: 'Donatello';
at: #Member3 put: 'Raphael'.

dict2 := dict1 copy.
You can then modify the copy without affecting the original.

Note, however, that the effect of making changes to the elements of
the collections, rather than to the collections themselves, is different
for literal and non-literal elements. Literal elements, such as numbers
and strings, can be modified in one collection without affecting the
other.

For a non-literal element, however, the collections hold the same
object, not copies. Any changes to the object in one collection are
reflected in the other as well. If you do not want this effect of the copy,
you can replace each element with a copy of itself. Since this is a
change to the collection itself, the change will not affect the copy.

Copying a Subcollection
For sequenced collections, such as List, Array, and OrderedCollection,
send a copyFrom:to: message to copy a segment of the collection. The
first argument is the starting index of the range you want to copy, and
the second argument is the ending index.

| list copy |
list := List new.
1 to: 10 do: [:number | list add: number].
copy := list copyFrom: 1 to: 3.
^copy
1-14 VisualWorks

Testing Collections
Concatenating Two Collections
Like strings, sequenced collections, such as List, Array, and
OrderedCollection, can be concatenated using the , (comma) message.
The argument is another sequenced collection. A new collection is
returned, of the same type as the first collection, containing the
elements of both collections.

| list array combinedList |
list := List withAll: ColorValue constantNames.
array := #(#bloodRed #ghoulishGreen #blackAndBlue).
combinedList := list, array.
^combinedList

Subtracting One Set from Another
Instances of Set (and its subclasses) understand subtraction. Send a
-– (minus) message to the set with another set as the argument. A
similar type of collection is returned, containing the elements that
occur in the first set but not the second.

| set1 set2 |
set1 := Set withAll: ColorValue constantNames.
set2 := set1 select: [:name |

(name indexOfSubCollection: 'light' startingAt: 1) > 0].
^set1 - set2

Testing Collections
It is useful to be able to test collections for a variety of properties. The
following sections describe a number of useful tests. For others,
browse the collection classes.

Equality and Identity
One collection is equal (=) to another collection if it is the same type
of collection, has the same number of elements, and all of the
elements are equal.

This example shows that a copy is equal, but a copy with one
changed element is not equal.

| list1 list2 test1 test2 |
list1 := List withAll: ColorValue constantNames.
list2 := list1 copy.
test1 := list1 = list2. "true"
list2 at: 1 put: #burntOrange.
test2 := list1 = list2. "false"
Basic Libraries Guide 1-15

Collections
Testing for identity (==) determines whether two collections are the
same object. While this is a very fast test, it is seldom used since two
distinct collections will fail the test even if they are of the same type,
have the same number of elements, and all of their elements are the
same.

Getting the Number of Elements
To get the number of elements in an collection, send a size message
to the collection. The return value is an integer.

| array |
array := ColorValue constantNames.
^array size

To get the number of occurences of a specific object, send an
occurencesOf: message:

'This is a test' occurrencesOf: $e

Getting the Capacity
Each position in which an element can be stored is known as a slot.
A collection often has more slots than elements to avoid having to
expand the collection each time a new element is added. To get the
number of slots in a collection, send a capacity message to the
collection. The return value is an integer.

| set |
set := Set withAll: ColorValue constantNames.
^set capacity

Testing for Emptiness
Frequently, it is useful to know whether a collection is empty of
elements. To test for emptiness, send an isEmpty message to the
collection. The response is true when the collection has no elements
and false otherwise.

| list |
list := List allInstances.
list isEmpty

ifFalse: [^list first]
Similarly, you can test whether the collection is not empty by sending
a notEmpty message.
1-16 VisualWorks

Looping through the Elements (Iterating)
Testing for the Presence of an Object
Any collection will answer whether it includes a specific object in
response to the includes: message. It will answer true if it includes the
object, and false otherwise. A Dictionary will respond to the more
specific includesKey: and includesAssociation: messages.

A collection will also answer the number of instances of an object in
response to an occurrencesOf: message. The returned value is an
integer, zero if the object is not found.

| list found1 found2 |
list := List withAll: #(#red #green #blue #red #yellow #blue).
found1 := list includes: #red.
found2 := list occurrencesOf: #red.
^Array with: found1 with: found2

Additional messages for testing the presence of an object are
contains:, allSatisfy:, and anySatisfy:.

Looping through the Elements (Iterating)
It is common for an application to perform a set of actions for each
element in a collection. For example, a sales processing application
might want to generate a packing slip for each element in a list of
sales orders. To create a loop that repeats a series of steps for each
element in a collection, send a do: message to a collection. The
argument is a block that performs a series of operations on an
element. The block declares one argument variable to hold the
element being processed.

| list color |
list := List withAll: ColorValue constantNames.
list sort.
list do: [:colorName |

Transcript show: colorName asString; cr.
color := ColorValue perform: colorName.
Transcript

show: color red printString;
tab;
show: color green printString;
tab;
show: color blue printString;
cr; cr].
Basic Libraries Guide 1-17

Collections
Occasionally the elements in a collection need to be processed in
reverse order, starting with the final element and proceeding toward
the first element. To do this, use the reverseDo: message instead of
do:.

Additional variations of do: are available, as are other special-purpose
enumerator methods.

Looping by Index or Key
For indexed collections (such as List and Array) and keyed collections
(Dictionary), it is common to loop on the index or key instead of the
values. This is especially useful with dictionaries, whose values are
sometimes meaningless without the associated keys.

To loop on the index or key, send a keysDo: message to the collection.
The argument is a block that performs a series of operations on each
element. The block is expected to declare one argument variable to
hold the element to be processed.

To loop on the collection and process using both the key or index and
the value, send a keysAndValuesDo: message to the collection. The
argument is a two-argument block that performs a series of
operations on the key and associated value for each element.

| dict randomGenerator gc randomX randomY colorValue |
randomGenerator := Random new.
gc := (ExamplesBrowser prepareScratchWindowOfSize: 300@400)

graphicsContext.
dict := Dictionary new.
ColorValue constantNames do: [:colorName |

colorValue := ColorValue perform: colorName.
dict at: colorName put: colorValue].

dict keysDo: [:colorName |
randomX := randomGenerator next * 300.
randomY := randomGenerator next * 300.
colorName displayOn: gc at: (randomX @ randomY)].

dict keysAndValuesDo: [:colorName :color |
randomX := randomGenerator next * 300.
randomY := randomGenerator next * 300.
gc paint: color.
colorName displayOn: gc at: (randomX @ randomY)].
1-18 VisualWorks

Sorting a Collection
Collecting the Results of the Processing
Frequently the results of iterating on a collection create related
objects that need to be collected in a new collection. The collect:
message is a shorthand way of doing this. The effect is the same as
iterating with do: and explicitly creating the new collection.

| list capitalizedName initial |
list := List withAll: ColorValue constantNames.
list sort.
list collect: [:colorName |

capitalizedName := colorName asString.
initial := (capitalizedName at: 1) asUppercase.
capitalizedName at: 1 put: initial.
capitalizedName].

Looping through Two Parallel Collections
Often two collections need to be processed in tandem. The with:do
message passes corresponding elements from two ordered
collections into a two-argument block. The first argument is a second
ordered collection. The second argument is a two-argument block
that performs a series of operations on a pair of elements, one from
each of the two collections. (The example creates key-value pairs for
a dictionary, taking the keys from one array and the associated
values from a second array.)

| array1 array2 dict |
array1 := #(#Leader #Member1 #Member2 #Member3).
array2 := #('Leonardo' 'Michelangelo' 'Donatello' 'Raphael').
dict := Dictionary new.
array1 with: array2 do: [:array1Element :array2Element |

dict at: array1Element put: array2Element].
^dict

Sorting a Collection
Sorted collections can rearrange themselves either in ascending
order or according to a specified sort criterion. A List has a simplified
form of the sorting messages.

The sort messages assume that the elements respond to < and =
messages, which are used to compare elements during the sorting.
Basic Libraries Guide 1-19

Collections
Sort criteria are specified in a block containing the test for
determining whether one element comes before another. The block is
given two elements to compare, and is expected to answer true when
the first element should precede the second element.

Arbitrary collections are sorted by first being converted to an instance
of SortedCollection.

For example:

| array1 sort1 array2 sort2 |
array1 := #('Leonardo' 'Michelangelo' 'Donatello' 'Raphael').
sort1 := array1 asSortedCollection.
array2 := #('Leonardo' 'Michelangelo' 'Donatello' 'Raphael').
sort2 := array2 asSortedCollection: [:name1 :name2 | name1 > name2].
^Array with: sort1 with: sort2.

Converting Collection Types
The Collection class defines several methods for creating a specific
kind of collection from any other kind of collection. The result is a new
collection of the specified kind. The original collection remains
unchanged. Since these conversion methods are defined in Collection,
they work for all collection types.

| array list |
array := ColorValue constantNames.
list := array asList.
^list.

asSortedCollection Returns a new collection as an instance of
SortedCollection, with the collection’s elements in
ascending order.

asSortedCollection: Returns a new collection as an instance of
SortedCollection, with the collection’s elements
sorted according to the specified sort criteria.

sort Defined for List, and returns a list with the elements
sorted into ascending order.

sortWith: Defined for List, and returns a new list with the
elements sorted according to the specified sort
criteria.

reverse Returns a new collection of the same kind, but with
the elements in reversed order.
1-20 VisualWorks

Converting Collection Types
When converting an unordered collection, such as a Set or Dictionary,
to an ordered collection, an order is imposed. One practical
implication of this is that a later conversion of the same collection
may return a collection with the elements in a different order, making
it unequal to the first conversion.

When a Dictionary is converted, its keys are ignored and the new
collection contains only its values.

The following are a few of the conversion methods. Browse the
Collection class converting protocol for additional methods.

asArray returns an Array

asBag returns a Bag

asList returns a List

asOrderedCollection returns an OrderedCollection

asSet returns a Set
Basic Libraries Guide 1-21

Collections
1-22 VisualWorks

2

Streams

Streams provide a general access mechanism for any sequencable
data, regardless of the source of that data. Streams are used to read
from and write to both internal and external data structures.

Stream Class Hierarchy
The Stream hierarchy contains several abstract classes. In the
following partial list, only classes shown in bold are actually
instantiated.

Object
Stream

PeekableStream
EncodedStream
PositionableStream

ExternalStream
BufferedExternalStream

ExternalReadStream
ExternalReadAppendStream

 ExternalReadWriteStream
ExternalWriteStream

InternalStream
ReadStream
WriteStream

 ReadWriteStream
TextStream

Random
FastRandom
LaggedFibonacciRandom
ParkMillerRandom

MinumumStandardRandom
Basic Libraries Guide 2-1

Streams
The major division of functionality is between internal and external
streams. Internal streams operate on collections that are purely
internal to VisualWorks. External streams operate on collections from
an external data sources, such as files and network connections.
ExternalStream and InternalStream are implemented as subclasses of
PositionableStream, which provides the ability to maintain a position
within the stream.

Within those major divisions are classes providing read and write
access to the data source. Write access is not permitted to all data
sources, or is limited to appending data.

EncodedStream is a wrapper class for streams on which an “encoding”
has been specified. Encodings specify how characters are
represented as byte values. Because of the wide variety of sources
for external data, external streams are almost always wrapped in
EncodedStream by the system upon creation. Internal streams, on the
other hand, hardly ever need to deal with encodings. See Encoded
Streams for more information.

TextStream is useful for writing text with emphases on a stream.

Random and its subclasses provide pseudo-random numeric values
on a stream.

Basic Protocol
Specific behavior of streams depends on the data. However, the
Stream hierarchy polymorphically defines a consistent protocol for
basic stream operations.

Instance Creation
Streams are not created with the usual new message, but instead
using on: and similar messages that identify the collection over which
they stream. The basic messages are:

on: aCollection

Returns a new stream of the receiver class type on aCollection
as the data source.

on: aCollection from: firstIndex to: lastIndex

Returns a new stream of the receiver class type on a copy of
aCollection from firstIndex to lastIndex.
2-2 VisualWorks

Basic Protocol
The pointer is positioned at the beginning of the stream (position 0),
so a write operation will overwrite data starting at that point. In
general, the collection is not initialized, and no assumptions are
made about the availability of data, so the content of the collection is
not reliable until the first read operation.

For internal streams for which it can be assumed that the collection is
already full, there are these additional creation messages:

with: aCollection

Returns a new stream of the receiver class type on aCollection
as the data source.

with: aCollection from: firstIndex to: lastIndex

Returns a new stream of the receiver class type on a copy of
aCollection from firstIndex to lastIndex.

The pointer is positioned at the end of the stream, past the last byte
of data.

Most often, however, you create the appropriate stream type by
sending one of the following messages to the collection or data
source:

readStream

Returns an appropriate read-only stream type on the receiver.

writeStream

Returns an appropriate write-only stream type on the receiver.

readWriteStream

Returns an appropriate read-write stream type on the receiver.

readAppendStream

Returns an appropriate read-append stream type on the receiver.

For example, to open a read stream on a file, you would send a
readStream message to a Filename:

('..\fileList.txt' asFilename) readStream
which creates an ExternalReadStream on the file.
Basic Libraries Guide 2-3

Streams
Positioning
When first created, the stream position pointer is at the beginning of
the stream collection, which is position 0. Read and write operations
advance the pointer, as described below.

Any PositionableStream, of which the read and write streams are all
subclasses, reports its current position in response to this message:

position

Returns the current pointer position.

In a read or read-write stream, the pointer’s position in the stream
can also be set by sending position:. The position specified must be
within the stream’s current collection, or an error notification is
invoked.

position: anInteger

Set the position pointer to anInteger as long as anInteger is
within the bounds of the receiver's contents. If it is not, issue an
error notification.

For a read or read-write stream, you can position by reading through
an object, but without returning the contents.

reset

Set the position of the receiver to the beginning of its stream of
elements.

setToEnd

Set the position of the receiver to the end of its stream of
elements.

skip: anInteger

Move the pointer anInteger positions from the current position.
anInteger may be positive or negative (but not less than -1 for
encoded streams).

skipThrough: anObject

Skips forward through the occurrence of anObject, leaving the
position following anObject. If successful, the stream itself is
returned. If the object is not found the stream is positioned at the
end and nil is returned.
2-4 VisualWorks

Basic Protocol
skipThroughAll: aCollection

Skip forward to the next occurrence of aCollection, leaving the
stream positioned following aCollection, and answers the
receiver. If aCollection is not found the stream is positioned at the
end and nil is returned.

skipUpTo: anObject

Skip forward to the next occurrence, if any, of anObject. If not
found, answer nil. Leaves the stream positioned before anObject.

For non-read streams, these messages do not invoke an error, but
neither do they advance the pointer, because they do not have read
access to the stream.

Reading
The basic “read” message for streams is next, which returns the next
available object on the stream. Additional messages provide read
options.

When reading from a stream, the object at the current position is
returned, then the position pointer advances to the next object.

contents

Returns a copy of the receiver's collection from 1 to readLimit.

next

Returns the object at the current position, then advances the
pointer.

next: anInteger

Returns the next anInteger objects from the stream.

nextAvailable: anInteger

Returns the next anInteger elements of the receiver. If there are
not enough elements available, returns as many as are available.

through: anObject

Returns a subcollection of the receiver from the current position
to and including the first occurrence of anObject. If there are no
occurrences, then returns through the end of the receiver.
Basic Libraries Guide 2-5

Streams
peekFor: anObject

Returns a Boolean indicating whether the next object on the
stream is the same as (=) anObject. If false, does not advance the
pointer; if true, advances the pointer.

throughAll: aCollection

Returns a subcollection of the receiver from the current position
to and including the first occurrence of aCollection in the receiver.
If there are no occurrences, then returns through the end of the
receiver.

upTo: anObject

Returns a subcollection of the receiver from the current position
to the occurrence, if any, of anObject. The stream is left
positioned after anObject. If anObject is not found, returns the
entire remaining stream contents, and leave the stream
positioned at the end.

upToAndSkipThroughAll: aCollection

Returns a subcollection of the receiver from the current position
up to the occurrence, if any, of aCollection. The stream is left
positioned after the occurrence. If no occurrence is found, returns
the entire remaining stream contents, and leave the stream
positioned at the end.

upToEnd

Returns the entire remaining stream contents from the current
position up to the end of the stream.

Writing
The basic “write” message for streams is nextPut:, which writes its
argument value onto the stream at the current position.

nextPut: anObject

Put anObject at the next position in the receiver, and return
anObject.

nextPutAll: aCollection

Put each of the elements of aCollection starting at the current
position of the receiver and return aCollection.
2-6 VisualWorks

Basic Protocol
next: anInteger put: anObject

Put anObject into the next anInteger elements of the receiver,
and return anObject.

When writing to a buffered external stream, such as a file stream, you
should send a commit message to make sure the buffer is flushed
before closing the stream, or any time you rely on written data to be
available on the stream.

The following messages insert text and control characters into a
stream:

cr

Insert a carriage return.

crtab

Insert a carriage return and a single tab.

crtab: anInteger

Insert a carriage return followed by anInterger number of tabs.

space

Insert a space character.

tab

Insert a tab character.

lf

Insert a linefeed character.

print: anObject

Writes the printString representation of anObject on the stream.

Closing a Stream
For internal streams, there is no need to close the stream when you
are done with it. You can send a close message, but it does nothing.

For external streams, however, you should close the stream. This
also releases any external resource. Then, once the references to the
stream have all died, the resources can be reclaimed.
Basic Libraries Guide 2-7

Streams
Internal Streams
Internal streams provide read/write access to collections within
VisualWorks, without any dependency on an external connection. For
example, Arrays or Strings whose elements you need to access
sequentially or randomly by position, can be read and written using
an internal stream.

Because the collection is internal, it can be assumed that the entire
collection is available upon creation of the stream. Access is not
buffered, so writes are immediate and flushing is not necessary. Also,
internal streams do not include encoding information. These
conditions make internal streams very simple to use.

Creating an Internal Stream
You can create a read, write, or read-write stream on any
SequenceableCollection by sending a readStream, writeStream, or
readWriteStream message to the collection. For example, assuming
you both want to be able to position in a stream, which requires
reading, and write to the stream, create a read-write stream on the
collection:

array := Array with: $a with: $b with: $d with: $d.
readStrm := array readWriteStream.
readStrm position: 2.
readStrm nextPut: $c

You can have multiple read and/or write streams on a collection. This
is useful if you are reading and writing at different positions.

coll := 'This is a test' copy.
readStrm := coll readStream.
writeStrm := coll writeStream.

[readStrm atEnd]
whileFalse:

[| char |
char := readStrm next.
writeStrm nextPut: char asUppercase].

^coll
In this example, using two streams avoids the need to reposition
before each write.

The above creation messages leave it to the collection to determine
what type of stream is appropriate for the object, which is generally
the preferred approach. However, two other instance creation
methods, on: and with:, are also useful.
2-8 VisualWorks

Internal Streams
Using on: produces the same effect as readStream, writeStream, and
readWriteStream. For example, repeating the above:

coll := 'This is a test' copy.
readStrm := ReadStream on: coll.
writeStrm := WriteStream on: coll.

The pointer is set to the beginning of the collection.

Using with: differs by positioning the pointer at the end of the stream,
which is useful for appending data on a write stream.

coll := 'This is a test' copy.
writeStrm := WriteStream with: coll.
writeStrm nextPutAll: ' of the emergency broadcast system.'.
^writeStrm contents.

Reading and Writing Internal Data
The ability to read from or write to a stream depends on the kind of
stream. Read streams only allow reading, write streams only allow
writing, and read-write streams allow both.

Since positioning in a stream requires the ability to read from the
stream, the positioning messages are only supported by read and
read-write streams. So, if you need to position for write operations,
use a read-write stream.

The messages for reading and writing are described under Basic
Protocol. For internal streams, the use of these messages is very
straight-forward. A few further illustrations will suffice.

To read the next object on a read or read-write stream, send a next
message, which returns the object, if any, and moves the pointer
ahead. To read a number of successive objects, send a next:
message with the number of objects to return. The objects are
returned in a Collection, and the pointer is advanced past the last
object.

| strm |
strm := ReadStream on: #(eliot dave sam bruce vassili tamara bob).
Transcript cr;

show: strm next printString; cr;
show: (strm next: 3) printString
Basic Libraries Guide 2-9

Streams
Similarly, to write an object to the next position, overwriting any object
currently in that place, send a nextPut: message to the write or read-
write stream. To write a number of successive objects, send a
nextPutAll: message with the object to write as a collection.

| strm |
strm := WriteStream with:

#(eliot dave sam bruce vassili tamara bob) copy.
strm nextPut: #kevin.
strm nextPutAll: #(alan sherry sean martin).
Transcript cr; show: strm contents printString; flush.

To ensure that your data is written, send a flush message to the
internal stream, as illustrated above.

Reading and Writing Past the End of Data
When reading through a collection with next, you eventually reach the
end. As illustrated above, you can test whether the position is at the
end by sending an atEnd message to the stream. The message
returns true if the position is at the end of the collection, and false
otherwise.

Note that if you read past the end of the collection, the returned value
is nil. Because nil can be a legitimate member of a collection, testing
for nil is not suitable for testing the end of the stream.

When writing past the current end of a collection, the collection grows
to accommodate additional values. Note that, due to the growth
algorithm, the collection returned by sending collection to the stream
might be padded with nil, and so not be the collection you want. For
example:

str := 'This is a test' copy.
rwStream := str readWriteStream.
rwStream setToEnd.
rwStream nextPutAll: ' of the emergency broadcast system.'.
^rwStream collection

results in a string of 78 characters in length, rather than the 49
actually required by the string. To get the correct result, you want the
contents of the stream, not the string.

str := 'This is a test' copy.
rwStream := str readWriteStream.
rwStream setToEnd.
rwStream nextPutAll: ' of the emergency broadcast system.'.
rwStream flush.
^rwStream contents
2-10 VisualWorks

External Streams
Writing and Immutable Objects
Some collections are declared by VisualWorks to be “immutable,” as
described in the Application Developer’s Guide. When this is the
case, attempting to write to the collection will trigger a
NoModificationError.

For example, a literal String is an immutable object, so attempting to
write a character to it will evoke the exception:

str := 'This is a test'.
str writeStream nextPut: $D.

If you need to write to the object, create a copy of the original object.
Copies are always mutable:

str := 'This is a test' copy.
str writeStream nextPut: $D.

External Streams
External streams provide read/write access to data external to
VisualWorks, such as data from a file or a socket connection. While
the basic read/write operations are the same as for internal streams,
in some cases the behavior differs in important ways. Because you
are reading and writing an external resource, a variety of
considerations need to be taken into account.

For accessing connections such as for databases, sockets, or
Internet connections, refer to the specific documentation for that
subsystem. In this section we will use files for examples.

Note that additional protocol is added by special purpose
components, such as Net Clients. Refer to the specific
documentation for functionality added by these components.

Creating an External Stream
Read, write, or read-write stream creation messages are available for
all I/O sources supported by VisualWorks. In addition to the usual
readStream, writeStream, and readWriteStream messages, some data
sources also accept appendStream and readAppendStream messages,
indicating that writes go only to the end of the stream. For instance,
when using a socket connection (such as HTTP), it only makes sense
to write to the end of a stream, and so you would use one of these
messages to create the stream.
Basic Libraries Guide 2-11

AppDevGuide.pdf

Streams
For example, to append text to a file, create the stream by sending
appendStream to a Filename:

file := '..\fileList.txt' asFilename.
fileStrm := file appendStream.
fileStrm nextPut: Character cr; nextPutAll: 'Some additional text'.
fileStrm commit.

Note that to ensure writing the buffered content out to the OS, a
commit message is sent to the stream. When closing the stream with
a close message, the commit is performed before closing the stream.

Also note that, when opening a write stream on a file, if the file
already exists, its contents is overwritten. So, for example:

file := '..\fileList.txt' asFilename.
fileStrm := file writeStream.

immediately overwrites the file, rendering it zero length. If this is not
your intention, then use either a more appropriate stream creation
message, or create the stream on a new file.

To ensure that a new stream is created, you can send a
newReadWriteStream or newReadAppendStream message to the
filename.

By default, external streams are created in text mode. To set to binary
mode for working with binary files, send a binary message to the
stream:

file := '..\bin\win\visual.exe' asFilename.
fileStrm := file readStream binary.

Reading and Writing External Data
The ability to read from or write to a stream depends on the kind of
stream. Read streams only allow reading, write streams only allow
writing, and read-write streams allow both. For external streams,
there are also append and read-append streams, which write only to
the end of the stream data.

To read the next object on a read or read-write stream, send a next
message, which returns the object, if any, and moves the pointer
ahead. To read a number of successive objects, send a next:
message with the number of objects to return. The objects are
returned in a Collection, and the pointer is advanced to the first
position past the last object.

| rStrm |
rStrm := '..\fileList.txt' asFilename readStream.
2-12 VisualWorks

External Streams
Transcript cr;
show: rStrm next printString; cr;
show: (rStrm next: 3) printString

Similarly, to write an object to the next position, overwriting any object
currently in that place, send a nextPut: message to the write or read-
write stream. To write a number of successive objects, send a
nextPutAll: message with the object to write as a collection.

| wStrm |
wStrm := '..\newFile.tmp' asFilename writeStream.
#(eliot dave sam bruce vassili tamara bob) do:

[:name |
wStrm nextPutAll: name printString;

nextPut: Character cr].
wStrm close

Buffered Reading and Writing
External I/O is mediated by buffers within Smalltalk, which allow
reading and writing larger blocks (by default, 4K bytes) of data rather
than, for instance, individual bytes. This adds efficiency to the
operations, involving fewer accesses to the external resource.

BufferedExternalStream is an intermediate abstract class, between
ExternalStream and the concrete external stream classes, that
provides the buffering behavior.

You can have multiple read and/or write streams on a resource. This
can be useful, but can also cause problems because of the buffering
and interaction with the OS. For example, the following looks like it
just replaces characters in a file with the uppercase versions.

file := '..\fileList.txt' asFilename.
readStrm := file readStream.
writeStrm := file writeStream.

[readStrm atEnd] whileFalse: [
| char |
char := readStrm next.
writeStrm nextPut: char asUppercase].

^file
In fact, however, because the write buffer flushes when full (at 4K
characters), the read stream suddenly finds itself at the end, and
quits, leaving a much smaller file than expected. In a case like this, a
better solution would be to write to a new file, then delete the old file
and rename the new file to the original file’s name.
Basic Libraries Guide 2-13

Streams
Reading and Writing Past the End of Data
When reading through an external data source with next, you
eventually reach the end. As illustrated above, you can test whether
the position is at the end by sending an atEnd message to the stream.
The message returns true if the position is at the end of data, and
false otherwise.

Note that if you read past the end of the data, the returned value is
nil. Because nil might be a legitimate data value, testing for nil is not a
reliable way to detect the end of data, though it may be a positive
indicator.

When writing past the current end of a data source, the additional
data is simply appended.

Positioning
Since positioning in a stream requires the ability to read from the
stream, the positioning messages are only supported by read and
read-write streams. So, if you need to position for write operations,
use a read-write stream.

The messages for reading and writing are described under Basic
Protocol.

Positioning is maintained for an external resource, and buffers are
updated as necessary. For example,

rStrm := '..\fileList.txt' asFilename readStream.
rStrm position: 5000.

reads the second 4KB worth of data into the buffer. Repositioning to a
location in the earlier part of the file, reloads that earlier 4KB into the
buffer:

rStrm position: 9.

Encoded Streams
When data is communicated between computers in digital form, as a
stream of bits, it is often represented using octets. An octet, which
consists of 8 bits, represents a value between 0 and 255, inclusive.
Different encoding conventions have been established for how these
values represent data. In this section we are specifically concerned
with character data.
2-14 VisualWorks

Encoded Streams
In VisualWorks, a string composed of Latin characters is generally
represented using instances of class ByteString, while strings
containing the most common Unicode characters are generally
represented as instances of TwoByteString. For any character in a
string, you can always get its code-point value by sending asInteger to
the Character object.

To properly interpret character data, its encoding must of course be
identified and properly handled. When streaming, VisualWorks does
this by wrapping the data stream in an EncodedStream instance.

This section discusses both line-end and character encoding issues.

Line-end Conventions
Text streams mark the end of a line in some conventional way, noting
the end of a record, or line of text.

Within Smalltalk there is only one line-end character, CR. Data
coming from or going to external data sources, however, may need to
conform to any number of conventions. For example, on Windows
platforms the standard line-end is a CR-LF combination and on
UNIX, Linux, and Mac OS X it is LF. Line-end conversion replaces the
platform line-end with the internal Smalltalk representation for the
data as it is represented within Smalltalk.

When working in a homogeneous environment, such as a network of
only MS Windows systems, the default line-end convention is
adequate; VisualWorks assigns a line-end convention based on the
platform on which it is running. So, if accessing a local file, no line-
end convention needs to be specified:

'..\fileList.txt' asFilename readStream.
Because this example is run under Windows, the platform default is
used to replace the Windows CRLF with the Smalltalk CR line-end for
the internal representation of the file data.

In a heterogeneous environment, however, it is best to specify a line-
end handling strategy. In general, it is best to let VisualWorks handle
the line-end conversions itself, by sending lineEndAuto to the stream,
e.g.:

aStream := '\\LinuxBox\bboyer\vw7.4\fileList.txt' asFilename readStream.
aStream lineEndAuto.
Basic Libraries Guide 2-15

Streams
This example illustrates a cross-platform environment, in which we
are reading a file on a Linux filesystem from an MS Windows
machine. Here, VisualWorks correctly identifies the line-end
convention of the source, LF, and replaces it with an internal CR.

Conversion is performed both on reads and writes. So, when writing
out data that has been accumulated in VisualWorks using the CR
representation, VisualWorks converts that to the appropriate platform
representation. Note, however, that lineEndAuto cannot be used when
creating a new file, because it takes its convention from existing data.
In this case, you need to know the target filesystem and its
conventions.

If you do not want VisualWorks to convert the line-end
representation, but retain the platform representation, send
lineEndTransparent to the stream:

aStream := '\\LinuxBox\bboyer\vw7.4\fileList.txt' asFilename readStream.
aStream lineEndTransparent.

In this case, the source line-end representation, LF, is retained in the
internal representation, and is not changed upon writing.

In circumstances where the line-end convention must be set explicitly,
such as creating a new file in a cross-platform environment, the
following messages are available:

lineEndCR, lineEndCRLF, lineEndLF

Sets the line-end conversion to the indicated convention.

For example,

| wStream |
wStream := '\\LinuxBox\bboyer\vw7.4\testFile.tmp' asFilename

writeStream lineEndLF.
wStream nextPutAll: 'This is a test';

nextPut: Character cr;
nextPutAll: 'with a linefeed.'.

wStream close.
creates a new file on the Linux system from a Windows machine, with
the correct platform line-end representation.
2-16 VisualWorks

Encoded Streams
Encodings
Encodings provide a mapping between byte data and representations
that are useful to an application. Encodings are used for many
purposes. In VisualWorks they are used primarily for text data, to
identify character set representations for data.

Instances of class EncodedStream are used as a wrapper for streams,
and provides this functionality. As illustrated in the examples below,
you typically create an instance of EncodedStream on a stream and
specify its encoding. EncodedStream provides line-end conversion
behavior just like external streams. StreamEncoder is an abstract
superclass for classes that define stream encoders.

For many years, ASCII was the standard character encoding for
English. In fact, this is a 7-bit encoding, with only 128 defined
characters. The ISO-8859 family of encodings improved upon ASCII,
using one full byte for each character to allow a range of 256 code
points.

The first half (128 characters) of the ISO-8859 encodings are the
ASCII character set, while the second half contains a different set of
characters depending on which region the encoding is aimed at, i.e.
8859-1 is western, 8859-2 central/eastern europe, etc.

Sometimes referred to as ISO Latin 1, ISO-8859-1 is the default
encoding for documents transferred via HTTP with a MIME type of
‘text/’, and each character is represented internally using a single
octet.

As of 2004, the ISO-8859 character sets are no longer under
development, with current standardization efforts being focused on
the Universal Character Set (UCS) and Unicode (UTF-8 and UTF-
16). Unicode can represent nearly all known international characters
using a variable number of bytes for each.

In UTF-8, for example, a single character can require anywhere from
1 to 4 bytes when encoded. As the most compact and compatible
encoding for Latin scripts, UTF-8 is becoming a de facto standard.

UCS-2 is a fixed two-byte encoding, that can represent 65536 code
points. Unicode UTF-16 is an extension of UCS-2, in which each
character can take either 2 bytes or 4 bytes per character.
Basic Libraries Guide 2-17

Streams
VisualWorks provides support for the ISO-8859 family of encodings,
UCS and Unicode. The available encodings are identified in the
EncoderDirectory class variable defined in class StreamEncoder. For
additional discussion of encoding, refer to the Internationalization
Guide.

Encoding a Stream
There are two equivalent methods for creating an encoded stream.

One is to assign an encoding to the external connection, by sending
a withEncoding: message to the data source, and then open a stream
on that. For example:

('..\fileList.txt' asFilename withEncoding: #utf8) readStream
The withEncoding: message actually returns an encoded stream
constructor of some type (a subclass of EncodedStreamConstructor),
which then determines the kind of stream to create.

Filenames, ByteArrays, and ExternalConnections all support the
withEncoding: message to create a stream constructor, which in turn
responds to some subset of readStream, writeStream, appendStream etc.

An alternative is to explicitly create an EncodedStream instance by
sending an on:encodedBy: instance creation message. The arguments
are the stream and the encoding. For example:

EncodedStream
on: ('..\fileList.txt' asFilename readStream)
encodedBy: (StreamEncoder new: #utf8)

Both approaches return the same thing: an encoded stream on the
data source with the specified encoding, but you should use
on:encodedBy: only when you’re trying to wrap a pre-existing stream
object.

Reading and Writing
An encoded stream is generally used for character data, so data is
written and read as characters (unless the stream is set to binary
mode). The read and write protocol is very simple:

next

Return the next character on the stream.

nextPut: aCharacter

Write aCharacter to the next position on the stream.
2-18 VisualWorks

InternationalGuide.pdf
InternationalGuide.pdf

Encoded Streams
For example:

stream := (ByteArray new withEncoding: #ascii) readWriteStream.
stream nextPut: $A.
stream nextPut: (Character value: 66).
stream position: 0.
stream next. "$A"

Positioning on an Encoded Stream
Positioning an encoded stream with position: works as usual.
Positioning using skip:, however, is restricted in a couple of ways.

• Skipping backward more than one character is prohibited, and

• Once having read past the end of an encoded stream, skipping
back is no longer allowed.

In either case, an exception is raised.

The prohibition against skipping backwards more than one character
applies to successive sends of skip: -1, as in:

rStream
skip: -1; "ok"
skip: -1 "error"

as well as to sending with a smaller step:

rStream skip: -2
To capture an attempt to read past the end, and so to protect the
ability to skip back one character, test for EndOfStreamNotification:

rStream := ('..\fileList.txt' asFilename withEncoding: #ascii) readStream .
[rStream atEnd] whileFalse: [rStream next].
[rStream next]

on: EndOfStreamNotification
do: [:x | Transcript cr; show: 'Attempt to read past end.']

rStream skip: -1.

Encoding and Decoding String Data
While the next, next:, and nextPut: messages all work with characters
and strings, in fact the underlying data in an EncodedStream is held as
bytes, not characters. In other words, it’s always bytes at the bottom
and characters at the top. This enables you to use encoded streams
for simple encoding/decoding of string data.
Basic Libraries Guide 2-19

Streams
For example, to encode a string into bytes using UTF-8 encoding,
you can write it into an EncodedStream that wraps a WriteStream on a
ByteArray. To fetch the UTF-8 encoded bytes, use encodedContents:

wStream := (ByteArray new withEncoding: #utf8) writeStream.
wStream nextPutAll: 'à voir et à revoir encore'.
wStream encodedContents.

The message encodedContents returns the contents of the underlying
stream. As a shortcut, you may send asByteArrayEncoding: to a String,
e.g.:

'à voir et à revoir encore' asByteArrayEncoding: #utf8.
To decode bytes, wrap them in a ReadStream, construct an
EncodedStream on top of it, and then read from that. For example:

incomingBytes := #[195 160 32 118 111 105 114].
rStream := (incomingBytes withEncoding: #utf8) readStream.
rStream contents.

Alternately, you can use asStringEncoding: as a shortcut:

#[195 160 32 118 111 105 114] asStringEncoding: #utf8.

Stream Exceptions
Only a few exception classes are defined for streams. The are
organized as follows:

Notification
EndOfStreamNotification

Error
StreamError

IncompleteNextCountError
PositionOutOfBoundsError

EndOfStreamNotification is raised on any attempt to read past the end
of the stream. As illustrated under Positioning on an Encoded
Stream, this can be used to protect the ability to skip backwards on
an encoded stream. Generally, it is useful for specifying actions to
take once the end of stream has been reached. As a test for the end
of the stream, sending an atEnd test message is generally the better
approach.

StreamError is a general exception raised for errors occurring in
stream access. By default, stream errors are resumable.
2-20 VisualWorks

Random Numbers
IncompleteNextCountError is raised if a read operation requests more
elements from the stream than are available. The exception parameter
instance variable holds the number of elements that were read, which
may be useful for determining subsequent processing.

coll := #($a $b $c $d).
rstrm := coll readStream.
[rstrm next: 5]

on: IncompleteNextCountError
do: [:x | Transcript cr; show: 'Not enough elements;',

x parameter printString, ' read.']
PositionOutOfBoundsError is raised on an attempt to position beyond
the bounds of the stream. The exception parameter instance variable
holds the attempted position.

coll := #($a $b $c $d).
rstrm := coll readStream.
1 to: 5 do: [:n | [rstrm skip: 1. Transcript cr; show: 'ok']

on: PositionOutOfBoundsError
do: [:x | Transcript cr; show: 'Out of bounds:',

x parameter printString, '.']]

Random Numbers
A pseudo-random number can be generated by an instance of
Random. This object is a kind of stream, so the next message gets the
next number in the sequence.

Class Random is an abstract superclass for random number
generators that provides a uniform interface for accessing random
numbers, and also makes it simple to add further generators. The
VisualWorks base includes three sample generators: FastRandom and
MinimumStandardRandom (a subclass of ParkMillerRandom), and
LaggedFibonacciRandom. For applications depending on good security,
DSSRandom can be loaded and used (refer to the Security Guide for
an explanation of this generator and its use).

A random stream returns a Double as value, generally between 0 and
1 but dependent on the seed value.

| randomStream x |
randomStream := Random new.
x := randomStream next.
^x
Basic Libraries Guide 2-21

SecurityGuide.pdf

Streams
The seed: message changes the seed value, allowing you to force a
specific sequence. This message is sent to an instance of Random,
and restarts the sequence:

| randomStream x |
randomStream := Random new seed: 4.
x := randomStream next.
^x

The new message invokes the default random generator, which is set
to LaggedFibonacciRandom. FastRandom and ParkMillerRandom are
available for backward compatibility. You can easily subclass Random
to implement your own generator, and make it the default if you wish.
2-22 VisualWorks

3

Numbers

VisualWorks includes a variety of classes defining several types of
numerical and related objects.

• Standard numeric types (integers, floating point, etc.) are
implemented as subclasses of the Magnitude class.

• Complex numbers involve the “imaginary” number, i.

• Metanumbers allow dealing infinite and infinitary numbers, as
well as determining whether an arbitrary object is a number.

Numeric Types
VisualWorks provides several number types, each defined in its own
class. The basic types are:

Integer

The Integer class is an abstract superclass with two subclasses:
SmallInteger and LargeInteger. LargeInteger further has subclasses
LargePositiveInteger and LargeNegativeInteger. A SmallInteger is any
integer in the range 229-1 (536,870,911) to -229, inclusive. Large
integers are limited only by available memory. The system
coerces integers into the proper subclass transparently, so you
rarely need to pay attention to this issue.

Floating Point

The Float class creates instances of single-precision floating point
numbers between plus and minus 1038, with eight or nine digits
of precision. The Double class creates double-precision floating
point numbers between plus and minus 10307, with 14 to 15
Basic Libraries Guide 3-1

Numbers
digits of precision. A floating-point number has a decimal point, at
least one digit before the decimal, and at least one digit after the
decimal.

Because of the imprecise way floating point numbers are
represented in computer memory, mathematically equivalent
representations of floating point numbers may not turn out to be
equivalent in comparisons. So, for comparing numbers, avoid
Float, and consider using instances of Fraction or FixedPoint
instead.

Fraction

An instance of Fraction is a number with an integral numerator
and denominator, separated by a division slash, as in 3/4.
Fractions are always reduced to lowest terms.

Fixed Point

A fixed-point number (an instance of FixedPoint) is useful for
business applications in which a fixed number of decimal places
is required. Their literal representation appends the character $s
to the number (e.g., 5.2s).

Three related classes, Random, Date, and Time, are described later in
this chapter.

Numeric Constants
There are three numeric constants defined in VisualWorks: zero,
unity, and pi. All three are returned by class methods for various
numeric classes.

Zero
The zero message is defined for all numeric classes, and returns the
appropriate value to ensure additive identity. The type of the zero
value varies; for example, Float returns 0.0 and Integer returns 0.

To get a zero of the same class as an existing number, first get the
class of that number by sending a class message to it and then send
zero to the resulting object.

| x y z |
x := Float zero.
y := Integer zero.
z := x class zero.
^x + y + z
3-2 VisualWorks

Numeric Types
Unity
The unity message is defined for all numeric classes, and returns the
appropriate value to ensure multiplicative identity. The type of one
returned varies; for example, Float returns 1.0 and Integer returns 1.

To get a one of the same class as an existing number, first get the
class of that number and then send unity to the resulting object.

| x y z |
x := Float unity.
y := Integer unity.
z := x class unity.
^x + y + z

Pi
The pi message is defined for Float or Double. Float returns a single-
precision version while Double returns a double-precision version.

To get a pi of the same class as an existing number, first get the class
of that number and then send pi to the resulting object.

| x y z |
x := Float pi.
y := Double pi.
z := x class pi.
^x + y + z

Complex Numbers
An instance of class Complex has two components, a real number
such as a Float, and an imaginary number (a multiple of i, which
represents the square root of -1). A Complex number is represented in
the following format: (5.5 + 3 i)—white space inside the parentheses
is ignored.

Support for complex numbers is an optionally loaded component.
Load the AT MetaNumerics parcel to add this support.

An instance can be created by using the literal form shown above, or
via the real:imaginary: method, as in Complex real: 5.5 imaginary: 3.
When the real component is zero, sending the message i to an
integer is sufficient, as in 3 i. When the imaginary component is zero,
the shorter fro-mReal: method can be used. In summary, the
expressions in the left column generate the Complex numbers in the
right column below:
Basic Libraries Guide 3-3

Numbers
Complex numbers support the usual numeric operations, including
accessing, arithmetic, mathematical functions, coercion, comparison,
conversion, testing, and generality. Nonequal comparison, truncation,
and rounding are not valid with complex numbers. Additional
methods include:

Accessing

Arithmetic

Converting

Metanumbers
The MetaNumeric class is an abstract superclass with four subclasses,
as follows:

MetaNumeric
Infinity
Infinitesimal
NotANumber
SomeNumber

3 i (0 + 3 i)

5.5 + 3 i (5.5 + 3 i)

Complex fromReal: 5.5 (5.5 + 0 i)

Complex real: 5.5 imaginary: 3 (5.5 + 3 i)

r Same as abs, which returns an absolute magnitude. For
example, (5.5 + 3 i) r returns 6.26498.

theta Return the angle between the receiver and the positive
real axis, in radians

conjugated Reverse the sign of the imaginary component.

asPoint Return a Point with the real component as the x value
and the imaginary component as the y value.

i Multiply the receiver by (-1 sqrt). This message is also
understood by Number after MetaNum.st is filed in.
3-4 VisualWorks

Numeric Types
Support for metanumbers is an optionally loaded component. Load
the AT MetaNumerics parcel to add this support.

Infinity and Infinitesimal are the best examples of metanumbers,
providing mathematically useful objects. NotANumber and SomeNumber
provide support for inquiring about the numberhood of an object.

The MetaNumeric class provides coercion and conversion support for
its subclasses. Must of this support comes in the form of double
dispatching methods, which bring coercion into play when two unlike
numbers fail in some arithmetic or comparison operation.

For example, suppose you execute the following expression:

 2.3 + (Infinity positive)
The Float method for addition doesn’t know how to add infinity to a
floating point number directly, so it asks the Infinity object to perform
the addition. It does so by evaluating:

(Infinity positive) sumFromFloat: self
The sumFromFloat: method is implemented by MetaNumeric, the
abstract superclass of Infinity. After coercing the floating point number
into meta form (making it an instance of SomeNumber), the superclass
hands off to Infinity to perform the specific addition. All metanumbers
need to have non-metanumbers coerced to meta form, so this
behavior is performed by their common superclass, MetaNumeric.

Infinity Class
Infinity represents a number too large to be represented in any other
form. We will use the terms +infinity and -infinity to denote the
positive and negative forms of this number.

It is defined to mean that for any real number x, the following is true:

-infinity < x < +infinity
The expression Infinity positive creates a positive instance of Infinity,
and Infinity negative creates a negative instance.

The usual numeric operations are supported by Infinity, according to
the following rules (where x is any real number):

x + +infinity = +infinity
x - +infinity = -infinity
x * +infinity = +infinity when x > 0
x * -infinity = -infinity when x > 0
0 * +infinity = 0
+infinity + +infinity = +infinity
-infinity - +infinity = -infinity
Basic Libraries Guide 3-5

Numbers
+infinity * (+/-)infinity = (+/-)infinity
-infinity * (+/-)infinity = (-/+)infinity
+infinity - +infinity = undefined value, and an error occurs

Because +infinity is not a single value, but a set of all real numbers
that are unrepresentably large, it makes no sense to ask whether
+infinity = +infinity. Doing this will cause an error.

Infinitesimal Class
infinitesimal is a number so close to zero it cannot be represented as a
conventional number—it can be thought of as the reciprocal of
Infinity.

Creating an instance of Infinitesimal is done exactly as with Infinity, by
executing an expression such as:

Infinitesimal positive
Infinitesimal negative
Infinitesimal negative: aBoolean

We will use the terms +tiny and -tiny to denote the positive and
negative forms of this number.

The usual numeric operations are supported, according to the
following rules (where x is any real number unless otherwise
specified):

x + +tiny = x when x ~= 0.
0 + +tiny = +tiny
x * +tiny = +tiny when x > 0
x * -tiny = -tiny when x > 0
0 * +tiny = 0
+tiny + +tiny = +tiny
-tiny - +tiny = -tiny
+tiny * (+/-)tiny = (+/-)tiny
-tiny * (+/-)tiny = (-/+)tiny
+tiny - +tiny = undefined value, and an error occurs
x / +infinity = +tiny when x > 0
x / +tiny = +infinity when x > 0
+tiny * +infinity = undefined value, and an error occurs

Loosely speaking, +tiny is not a single value, but a set of all real
numbers that are unrepresentably small. As with infinity, it makes no
sense to ask whether +tiny = +tiny.

NotANumber Class
An instance of NotANumber can be used as a placeholder for the
result of an illegal mathematical expression, such as 8 arcSin. Since
the behavior of NotANumber consists of various kinds of error signals
3-6 VisualWorks

Numeric Types
of the form “You can’t do such-and-such with a NaN,” the result is
substituting one kind of error for another. In theory, NotANumber error
signals could be trapped by a signal handler at a high level in your
application, which could then decide, for example, to continue with
some time-consuming computation, noting the error in a log, rather
than abort because of the error. NotANumber was created for the sake
of completeness—along with Infinity and Infinitesimal, it is defined by
IEEE in the set of floating point numbers.

To create an instance, execute NotANumber new.

NotANumber implements the common arithmetic and comparison
methods, raising an error signal for each.

The printable form of an instance is “NaN” so error strings use that
term, as in:

'Can't perform arithmetic functions on NaN'

SomeNumber Class
SomeNumber represents a conventional scalar number coerced into
metanumeric form so it can be used in both conventional and
metanumeric computations. Such a number responds to numeric
operations as usual, but has the same generality as other
metanumbers and can be used in metanumeric computations. It is
essentially a support class for the other metanumeric classes, so it
has little potential for reusability.

Converting Numeric Type
A number of type conversion messages are available. Refer to the
method definitions for details of their behavior.
Basic Libraries Guide 3-7

Numbers
Operations on Numbers

Creating a Number
Numbers are created either by a literal numerical expression or by an
arithmetic operation. The kind (or class) of a number resulting from
an arithmetical operation depends on the numbers involved and the
operation.

The following are literal expressions for numbers:

The following are arithmetical expressions for numbers:

asFixedPoint: returns a fixed point number with the specified number
of decimal places

asFloat returns a floating point number

asDouble returns a double-precision floating point number

asRational returns an integer or a fraction

asCharacter returns the character represented by the number

printString returns a String representation of the number

printStringRadix: returns a String representation of the number with the
specified radix (base)

100 integer (appropriate Integer subclass)

5.3 floating point (Float)

5.5d double-precision floating point (Double)

3/5 fraction

99.95s fixed point (“s” for “scale”, giving the precision)

99.95s4 fixed point, giving precision explicitly

1.555e3 exponential notation

3.955d2 double precision exponential notation. VisualWorks
accepts q in place of d for compatibility with other
Smalltalk systems

16r1A radix notation: base, followed by “r”, followed by the
number expressed in the base notation.
3-8 VisualWorks

Operations on Numbers
As shown above, fractions are a real class of object. An alternative
method for creating a fraction is to explicitly declare its numerator and
denominator:

y := Fraction
numerator: 3
denominator: 4.

Arithmetic Operations
Arithmetic operators are defined as messages for each class of
number, but each number class defines the standard operations and
many more. Use the system browser to examine the messages in the
arithmetic protocol for each number class for details:

Rounding and Truncating
There are several methods for rounding or truncating numbers.
These are implemented in different numeric classes, as required.

^3 + 8 integer

3 * 100.2 floating point

+ addition

– subtraction

* multiplication

/ division

// division, discarding any remainder for an integer result

\\ division, returning only the remainder

sqrt square root

** raise to a power (x ** 3) or taking the root (x**(1/3))

abs absolute value

reciprocal reciprocal value
Basic Libraries Guide 3-9

Numbers
Comparing Numbers
Numeric comparison operators are defined as messages for each
class of number, but each number class defines the standard
operations and many more. These tests all return a Boolean value:

Note that, when comparing floating point numbers (class Float),
certain comparisons may give incorrect results. For example, equality
and identity (= and ==) may fail between two representations that are
mathematically equal. This is due to the way floating points are
represented by computers, and has nothing specific to do with
Smalltak or VisualWorks. For such comparisons, consider
representing these numbers as Fraction or FixedPoint numbers instead.

rounded Answer the integer nearest the receiver.

roundTo: Answer the integer that is a multiple of the argument,
aNumber, that is nearest the receiver.

truncated Answer a SmallInteger equal to the value of the receiver
without its fractional part.

truncateTo: Answer the next multiple of the argument, aNumber, that
is nearest the receiver toward zero.

= equality

== identity. Identity works only for SmallInteger, so in
general test for equality instead.

~= inequality

~~ non-identity

< less than

> greater than

<= less than or equal to

>= greater than or equal to

min: returns the smaller of two numbers

max: returns the larger of two numbers
3-10 VisualWorks

Operations on Numbers
Testing Numbers for Properties
Because variables have no declared type in VisualWorks, it is
sometimes necessary to test a variable that is expected to hold a
number. If it does hold a number, you can safely send arithmetic and
other number messages to it.

To test whether a variable holds a number, send it a
respondsToArithmetic message. If the object is a number, it responds
true.

| x |
x := 55.
^x respondsToArithmetic

More specific tests are also available, such as isInteger and isReal.

A large variety of messages are available for testing for specific
properties of numbers:

Mathematical Functions
VisualWorks number classes support a large number of advanced
mathematical functions. Browse the number classes for details about
available functions.

Factoring
Three messages are defined for Integer, providing factoring
operations:

isInteger tests for integers

isReal tests, in effect, for members of subclasses of Number

even tests for even numbers

odd tests for odd numbers

isZero tests for zero

positive tests for zero or greater

strictlyPositive test for greater than zero

negative tests for less than zero
Basic Libraries Guide 3-11

Numbers
Trigonometric Functions
Trigonmetrical functions are defined to either operate on or return the
value for an angle expressed in radians.

To convert an angle expressed in degrees to radians, send the
degreesToRadians message to the number:

| x |
x := 45 degreesToRadians.
^x sin

Conversely, to convert a result angle expressed in radians to
degrees, send the radiansToDegrees message:

| x y |
x := 45 degreesToRadians sin.
y := x arcSin radiansToDegrees.
^y

The functions supported are:

gcd: greatest common denominator

lcm: least common multiple

factorial factorial

sin sine

cos cosine

tan tangent

arcSin ArcSine

arcCos ArcCosine

arcTan ArcTangent
3-12 VisualWorks

Operations on Numbers
Logarithmic Functions
Send the following unary messages to a number to perform
logarithmic functions:

log Return the base 10 logarithm

log: base Return the logarithm for the specified base

ln Return the natural logarithm (lowercase l)

exp Return the exponential
Basic Libraries Guide 3-13

Numbers
3-14 VisualWorks

4

Chronology

A timestamp represents a specific temporal point. A duration
represents an interval of time. With these notions, VisualWorks
implements a variety of chrononolgy classes.

Times are commonly specified relative to a time zone, which is a shift
from Coordinated Universal Time (UTC) to local time. A TimeZone
represents a mapping between UTC and local time.

Dates
A Date represents the date part (year, month, day) of a Timestamp.

Creating a Date
There are a variety of messages for creating a date. Browse the class
instance creation methods of Date for the complete list. We will
describe a few methods here.

To create a date for today’s date, send a today message to the Date
class.

| date |
date := Date today.
^date

It is often useful to create a date from a string, which can be done by
sending a readFromString: message to Date. The argument is a string
containing the month, day, and year in any of several formats. The
year is always last. The month can be either a number (1 through 12)
Basic Libraries Guide 4-1

Chronology
or the unique first letters of the name (case is irrelevant). The month,
day, and year can be separated by a space, comma, hyphen, slash,
period, or nothing:

Date readFromString: 'January 31, 1994'
Date readFromString: '31 January 1994'
Date readFromString: '1/31/94'
Date readFromString: '1.31.1994'
Date readFromString: '1-31-1994'
Date readFromString: '31JAN94'

You can create a date by specifying the day, month and year. To
specify each by a number, send a newDay:monthNumber:year:
message to the Date class. Alternatively, specify the month by name,
send a newDay:month:year: message to Date. The month argument is
the unique first letters of a month name expressed as a Symbol:

| date1 date2 |
date1 := Date

newDay: 31
monthNumber: 1
year: 1994.

date2 := Date
newDay: 31
month: #Jan
year: 1994.

^date1 = date2
Note that if a two-digit year is specified, the year is given in the
current century, so

Date newDay: 2 month: 'jan' year: 52
Returns 1952 before the year 2000, and 2057 after 2000. To create a
Date for a year prior to 1000, use newDay:year:, for example:

Date newDay: 136 year: 52
in which the number of days is specified from the start of the year.

Getting Information about a Day
Several messages retrieve information about a date. Browse the Date
class for a complete set of messages:
4-2 VisualWorks

Dates
Adding and Subtracting with Dates
Doing arithmetic with dates is supported by a number of messages.

To add a number of days to a date, send an addDays: message to the
date. The argument can be a negative number:

| date daysToAdd |
date := Date today.
daysToAdd := 60.
^date addDays: daysToAdd

Similarly, you can send a subtractDays: message to the date.

To get the number of days between to dates, send a subtractDate:
message to a date with the date to be subtracted as argument:

| date1 date2 |
date1 := Date today.
date2 := Date readFromString: '31 December 1999'.
^date2 subtractDate: date1

Comparing Dates
The usual numerical comparison operations can be performed on
dates:

weekday returns the name of the week day as a Symbol, such as
#Friday

dayOfMonth returns the day number within the month

day returns the day number within the year

asDays returns the day number since January 1, 1901

monthName returns the month name as a Symbol, as in #January

monthIndex returns the number of the month

daysInMonth returns the number of days in the month

year returns the year number

daysInYear returns the number of days in the year
Basic Libraries Guide 4-3

Chronology
Formatting a Date
A date can describe itself in a string having a variety of formats. The
printFormat: message takes as its argument an array containing six
elements. The six elements are interpreted as follows:

• Day’s position in the string (1, 2, or 3)

• Month’s position in the string (1, 2, or 3)

• Year’s position in the string (1, 2, or 3)

• The separator character

• Month’s format: 1 (numeric), 2 (abbreviation), or 3 (full name)

• Year’s format: 1 (with century) or 2 (without century)

To format a date string, send a printFormat: message to the date with
a six-element array as argument specifying the formats:

| date |
date := Date today.
^date printFormat: #(2 1 3 $- 3 1)

Times
A Time represents the time part (hours, minutes, seconds) of a
Timestamp.

Creating a Time
There are several methods for creating instances of Time. Browse
the class methods in the Time instance creation protocol for details
and the complete set.

= equality

~= inequality

< earlier than

<= earlier than or equal to

> later than

>= later than or equal to
4-4 VisualWorks

Times
To create a time to represent the current time, send a now message
to the Time class:

| time |
time := Time now.
^time

You can create a time from a string representation by sending a
readFromString: message to Time. The argument is a string containing
the hours, minutes, and seconds, separated by colons. The minutes
and/or seconds can be omitted. The “am/pm” designation can be
omitted (“am” is the default) and can be in upper- or lowercase.

| times |
times := OrderedCollection new.
times

add: (Time readFromString: '3:47:26 pm');
add: (Time readFromString: '03:47');
add: (Time readFromString: '::26 PM').

^times
In computations involving times on different dates, it is sometimes
useful to represent each time as a number of seconds since
midnight. At the end of the computation, you can convert the number
of seconds back into an instance of Time. To convert seconds back to
a time, send a fromSeconds: message to Time. The argument is the
number of seconds that have elapsed since midnight:

| time |
time := Time fromSeconds: (60 * 60 * 4).
^time

Getting the Seconds, Minutes, and Hours
Time includes protocol for retrieving its number of seconds, minutes,
and hours individually. Send a seconds message to the time.

| time scnds mins hrs|
time := Time now.
scnds := time seconds.
mins := time minutes.
hrs := time hours

Adding and Subtracting Times
Times can be added and subtracted.
Basic Libraries Guide 4-5

Chronology
To add times, send an addTime: message to a time. To subtract times,
send a subtractTime: message to the time. The argument is either a
time or a date:

| time1 time2 |
time1 := Time readFromString: '5'.
time2 := Time readFromString: '8:51:39 am'.
^time1 addTime: time2

Timestamp
Timestamp represents a moment to millisecond accuracy. It contains
numeric representations of year, month, day, hour, minute, second
and millisecond.

Creating Timestamp
The Timestamp class has two methods to return a new timestamp
representing the current moment:

now

Returns a Timestamp representing the current local time and date.

nowUTC

Returns a Timestamp representing the current UTC time and date.

Timestamp interacts with TimeZone to provide local time.

Other instance creation methods provide creating a Timestamp from
specific information, such as these (browse the instance creation
method category for the full list):

fromDate: aDate andTime: aTime

Returns a Timestamp representing aDate and aTime.

fromMilliseconds: milliseconds

Returns a Timestamp from the number of milliseconds since 12:00
am, January 1, 1901.

Other classes can also return a time stamp. For example, the from a
creation date of a file:

'visual.im' asFilename creationTimestamp
4-6 VisualWorks

TimeZone
Comparing Timestamps
Several methods are available for comparing two time stamps. A few
are shown here. Browse Timestamp instance methods for more.

< aChronologicalValue

Return a Boolean indicating whether the receiver is less than
aChronologicalValue (a Date, Time, or Timestamp).

= aChronologicalValue

Return a Boolean indicating whether the receiver is equal to
aChronologicalValue.

differenceFromDate: aDate

Returns a Duration containing the difference between the receiver
and the start of aDate.

lessFromDate: aDate

Returns a Boolean indicating whether aDate precedes the date of
the receiver.

TimeZone
The virtual machine microsecond clock reports time in UTC
(coordinated universal time, like Greenwich Mean Time, GMT, but
with leap seconds) on all platforms. The Time class converts UTC to
local time with the aid of another class, TimeZone.

The primary tasks performed by a TimeZone are converting a
Timestamp between local and universal time, and between counts of
seconds since the beginning of Smalltalk epoch (1/1/1900).

By default, the TimeZone is set to SystemTimeZone, which accesses
operating system resources to perform the conversion services.
Accordingly, the time zone reflects the operating system’s time zone
configuration.

To invoke the current TimeZone, send a default message. That instance
can then be requested to do a conversion, for example:

TimeZone default localToUniversal: Timestamp now
Browse other conversion methods in the api protocol.
Basic Libraries Guide 4-7

Chronology
As an alternative to the default SystemTimeZone, you can create a
TimeZone object that stores an offset from UTC for local time,
including settings for daylight savings time. You define a TimeZone
instance to set these to appropriate values for your location, and then
set it as the default TimeZone. Two instance creation messages are
provided. The more general form is:

timeDifference: hours DST: amount start: startHour end: endHour
from: startDate to: endDate startDay: startDaySymbol

where:

hours is the difference from UTC (e.g., -5 for Eastern time).

amount is the amount of time change for Daylight Savings Time (usually
one hour).

startHour is the hour at which the change takes effect.

endHour is the hour at which the change ends.

startDate is the integer number of the latest day DST starts.

endDate is the integer number of the latest day DST ends.

startDaySymbol is the name of the day, as a Symbol, of the week
when the change takes effect, prior to startDate and endDate.

To set the time zone in VisualWorks, send a setDefaultTimeZone:
message to the TimeZone class, with a TimeZone instance:

TimeZone setDefaultTimeZone:
(TimeZone timeDifference: -5

DST: 1
start: 2
end: 2
from: 97 "on April 7"
to: 304 "until October 31"
startDay: #Sunday).

CompositeTimeZone represents a collection of TimeZone instances for
timezones in which the policy changes from year to year. The policy
and conversions can then be carried out as appropriate for the year.

Regardless of whether the current TimeZone is a SystemTimeZone or a
TimeZone, you access it the same way, by sending a default message,
and the API methods are the same.

There are, however, differences in the behavior of the API methods
depends on whether the time zone is a SystemTimeZone or a TimeZone.
This is due to SystemTimeZone using operating system services, which
4-8 VisualWorks

Duration
are based on UTC with leap seconds, while TimeZone is based on
GMT without leap seconds. The conversion algorithms are different,
so the results will differ.

When a Timestamp is outside the range of the operating system
timezone facilities, an Error is raised when attempting to do a
conversion. This only occurs for SystemTimeZone, and does not
happen when using TimeZone or CompositeTimeZone. Note that the
ranges differ between operating systems.

Within the range of the operating system timezone, SystemTimeZone is
more accurate, and so is to be the preferred implementation.
TimeZone is to be preferred only:

• when you need to do conversions with Timezone that is different
from the OS timezone

• when you need to convert Timestamps outside of the
SystemTimeZone range

For backwards compatibility, TimeZone keeps both a default time zone
and a reference time zone in the class variables DefaultTimeZone and
ReferenceTimeZone, respectively. There is no longer a distinction
between these.

Duration
Instances of Duration represent an interval of time. It supports
resolution to the nanosecond.

The implementation is based on the ANSII Smalltalk specification,
but refer to the class comments for differences.

The usual methods for creating a Duration are with unary methods
implemented in Number:

4.2 seconds
6800 milliseconds
450 ms
800 microseconds
8 days
9 minutes
-12 hours

There are instance creation methods (class methods), as well,
though these are seldom used.
Basic Libraries Guide 4-9

Chronology
Because Duration is a subclass of Number, durations can be added
and subtracted:

8 seconds + 25 seconds
2 days + 4 hours

They can also be compared, queried for sign, have their sign
changed, and be queried for the component fields (days, hours,
minutes, etc).

Durations are useful for system services which need to specify time
elapsed, such as Delay and profiling. For example, you can cause a
wait state by sending a wait message to a Duration:

8 seconds wait
(This is shorthand for: 8 seconds aDelay wait).

A BlockClosure can be timed by sending a timeToRun message:

[1000 factorial] timeToRun
The returned value is a Duration object.

Timer
Timer performs an action every period after an initial wait period.

The initial period can be a Timestamp (absolute timer) or a Duration
(relative timer).

startAfter: initialPeriod

Start the timer to fire after the initialPeriod duration.

startAt: aTimestamp

Start the timer to fire at aTimestamp.

A Timer action can fork blocks, resume suspended processes, or
signal semaphores.

block: aBlock

Configure the timer to run aBlock in a new process when it fires.

process: aProcess

Configure the timer to resume aProcess when it fires. Hold on to
aProcess so it does not garbage collect while it is waiting.
4-10 VisualWorks

Timer
semaphore: aSemaphore

Configure the timer to signal aSemaphore when it fires. Hold on
to aSemaphore so it does not garbage collect while it is waiting.

If given a repeat period, a timer will keep firing indefinitely after the
initial wait period. If a timer does not repeat, it stops itself after the
first iteration.

period: aDuration

Set aDuration between repetitions.

For example

timer := Timer newblock: [Transcript cr; show: 'Repeating myself'] ;
period: 5 seconds;startAt: Timestamp now

Convenience protocol for setting up timers is provided on the class
side (and illustrated below).

Note that active (scheduled) timers can get garbage collected if not
held strongly. In this case they will be de-scheduled when they
finalize. However, traditionally, active Delays were held strongly. To
allow mimicking the same behavior, Timers that are initialized with
semaphores and processes are automatically registered to prevent
their garbage collection as well. Therefore the following timer will not
be collected until the action is performed:

Timer
after: 10 seconds
resume: [Transcript cr; show: 'Time is up!'] newProcess

However, this is not the case for the more general, block based
actions. This allows to take advantage of automatic reclamation when
desired.

| timer |
timer := Timer every: 0.2 seconds do: [Transcript nextPut: $.; flush].
3 seconds wait.
timer := nil

Timers can be realized using either the “classic” VM facilities or
native OS facilities, where OS facilities are available. These facilities
have different strengths and limitations (more detailed discussion of
these can be found in the class comment of TimerSystem).
Basic Libraries Guide 4-11

Chronology
Both kinds of timers can be used simultaneously. The default choice
can be configured on the TimerSystem. Specific choice for a given
Timer can be forced before the timer is activated, using either
useNativeInterface or useClassicInterface.
4-12 VisualWorks

5

Graphical Images

An Image is a graphic object composed of a rectangular array of
pixels. It is similar to a Pixmap and a Mask in many respects, the main
differences being:

• An Image is stored in Smalltalk memory, so it is saved with the
Smalltalk image. For that reason, a graphical image can be used
as a storage device for Pixmaps and Masks.

• An Image is not a display surface, so you can’t display other
graphic objects on it as a means of assembling the desired
picture.

• An Image can be either color-based or coverage-based,
depending on its palette.

Common uses of images in an application are for cursors and icons,
and increasingly as decoration for an application GUI.

VisualWorks includes support for BMP, JPEG, GIF, and XBM formats
in the base. Support for PNG can be loaded from the
PNGImageReader parcel.

Color Depth and Images
Class Image is an abstract class providing the general protocol for
images. Its concrete subclasses provide specific representations for
images of different color depths (or bits per pixel) of 1, 2, 4, 8, 16, 24,
or 32.

For each pixel, an Image stores the value of the picture at that
position, which is either the color value or the coverage value of the
pixel.
Basic Libraries Guide 5-1

Graphical Images
An Image’s palette can be either color-based or coverage-based (see
Colors and Patterns). The type of palette determines what kind of
display surface the image can be displayed on and copied to. A
coverage-based Image can be displayed on any surface a Mask can,
while a color-based Image can be displayed on a Window or a Pixmap.
When copying a region from an Image to a display surface, however,
the two objects must have similar palettes.

To create a display surface bearing an Image’s contents, send
asRetainedMedium to the Image. A Pixmap is returned when the Image
has a color-based palette, and a Mask is returned when the palette is
coverage-based. This operation is equivalent to creating a new
Pixmap or Mask and then displaying the Image on it.

Creating a Graphic Image
A graphic image is a rectangular painting made up of colored pixels
arranged in rows. Complex graphics that involve non-geometric
elements are typically graphic images.

Using the Image Editor
VisualWorks includes an Image Editor that you can use to paint an
image pixel by pixel, and then store it in a compilable resource
method. Because of the size of the encoded image, the Image Editor
is best suited for producing small images, such as for cursor shapes
or icons.

To open an Image Editor, choose Tools•Image Editor from the
VisualWorks main window.
5-2 VisualWorks

Creating a Graphic Image
Paint the desired image in the scrollable pixel grid. The controls are
pretty standard for simple paint programs.

To make the graphic available to your application, click the Install
button, then specify your application class as the class into which to
install the graphic, and a method name for the graphic. This installs
the graphic as a resource, which you can access in the resources
browser. The method is installed as a class method in a resource
protocol of a selected class.

Reading an Image from a File
To creating an Image from an external source, such as a file, send a
fromFile: message to the ImageReader class, with the name of the file
as a String. The result is an instance of the ImageReader subclass
appropriate for the image format, such as GIFImageReader. To get the
image from the image reader, send an image message to it. For
example:

image := (ImageReader fromFile: '..\bin\win\herald.bmp') image
This returns an Image instance.

It is often useful to store the image in a resource method. To do so,
send an imageFromFile:toClass:selector: message, with the file name,
the target class name, and the resource selector name as
arguments:

ImageReader
imageFromFile: 'herald.bmp'
toClass: DummyTree
selector: #herald

Capturing an Image from the Screen
You can also capture a graphic image from the screen, whether the
image is in a VisualWorks window or another program’s window.

The Image Editor allows you to select a relatively small area of the
screen. To use its capability, open an Image Editor and choose the
Image•Capture command. The cursor changes to a cross-hair. Move
the cursor to the top left of the selection area, press the mouse
button, drag the cursor to the lower-right corner, and release the
mouse button. You can then edit or install the resulting image.
Basic Libraries Guide 5-3

Graphical Images
To capture a larger area, or to invoke the screen capture capability
from your application, send a fromUser message to the Image class.
The cursor changes to a cross-hair, and you can select the area as
above. You will need to capture the image in a variable and process it
as needed. This example simply displays it in a scratch window:

| gc capturedImage |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
capturedImage := Image fromUser.
capturedImage displayOn: gc.

Creating a Bitmap Manually
You can create an Image manually by directly editing its bits. Except
for very simple graphics, this is seldom done directly. In general, you
would create a tool to do this, as is provided by the Image Editor.

An Image is stored in rows that have been padded to multiples of 32
bits, called packed rows.

To manually edit an Image, you can create an intermediate ByteArray
containing one byte for each pixel. In intensive applications, this
wastefulness can become noticeably slow.

An alternate set of bitmap accessors operate on the packed row
format directly:

packedRowAt: rowIndex
packedRowAt: rowIndex into: anArray
packedRowAt: rowIndex into: anArray startingAt: destinationIndex
packedRowAt: rowIndex putAll: anArray
packedRowAt: rowIndex putAll: anArray startingAt: sourceIndex

Use these accessors to manipulate the bit values of one packed row
at a time.

Displaying an Image
As with other visual objects, an image can display itself on a graphics
context. The image’s palette must match that of the graphics context:
coverage-based to display a Mask, color-based to display on a
Window or Pixmap.
5-4 VisualWorks

Creating a Graphic Image
To display an image positioned at the origin (0@0), send a displayOn:
message to the image with the graphics context as argument. To
specify a display position other than the default 0@0, send a
displayOn:at: message to the image with a Point as the second
argument:

| gc logo |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
logo := LogoExample logo.
logo convertForGraphicsDevice: Screen default.
logo displayOn: gc.
logo displayOn: gc at: 50@50.

The convertForGraphicsDevice: message is necessary to ensure that
the image displays properly, by making sure that the color depth and
bits per pixel are correct. While it is not always required, it is strongly
recommended, especially for images that are read from files.

Creating a Display Surface Bearing an Image
A common situation requires creating a hidden display surface (a
Mask or Pixmap) of the same size as an image, and then displaying
the image on it. The asRetainedMedium message returns a Pixmap if
the image has a color-based palette, and a Mask if the image has a
coverage-based palette:

| image pixmap |
image := LogoExample logo.
pixmap := image asRetainedMedium.
^pixmap

Caching an Image
A display surface such as a Pixmap or Mask, because it uses
resources from the operating system, usually can be displayed on
another display surface (such as a window) more quickly than an
equivalent Image. However, an Image has greater longevity because it
does not require a resource from the operating system, so it can be
saved with the image to survive when you quit and restart
VisualWorks.

A CachedImage combines the longevity of an Image with the displaying
speed of a display surface. Whenever its display surface is
unavailable, as when it has been destroyed by a save-and-restart
operation, it is recreated from the image automatically. This relieves
your application from having to recreate such display surfaces
manually.
Basic Libraries Guide 5-5

Graphical Images
A CachedImage must be treated like a display surface, not an image.
For example, you cannot rotate a CachedImage.

Create a CachedImage by sending an on: message to the CachedImage
class, with the image as argument:

| gc logo |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
logo := CachedImage on: LogoExample logo.
logo displayOn: gc.

Coloring Pixels in an Image
Individual pixel colors can be changed by changing the color value at
a point. The colors that you substitute, however, must exist in the
image’s palette.

Changing Color by Color Value
To get the current color of a pixel, send a valueAtPoint: message to the
image, with a Point as argument indicating the coordinates of the pixel
in the image. To set the color of a pixel, send a valueAtPoint:put:
message to the image. The first argument is the location of the pixel,
and the second is a color that exists in the image’s palette.

| gc logo oldColor newColor white black |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
logo := LogoExample logo.
white := ColorValue white.
black := ColorValue black.
"Change each black pixel to white, and vice versa."
0 to: logo height -1 do: [:y |

0 to: logo width - 1 do: [:x |
oldColor := logo valueAtPoint: x@y.
oldColor = white

ifTrue: [newColor := black]
ifFalse: [newColor := white].

logo valueAtPoint: x@y put: newColor]].
logo displayOn: gc

Changing Color by Numeric Value
To get the current color number of a pixel, send an atPoint: message
to the image. The argument is a Point indicating the coordinates of
the pixel in the image. The number that identifies the pixel color in the
image’s palette is returned.
5-6 VisualWorks

Creating a Graphic Image
To change the color of a pixel, send an atPoint:put: message to the
image. The first argument is the location of the pixel and the second
argument is a color number that exists in the image’s palette.

| gc logo oldColor newColor |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
logo := LogoExample logo.
"Change each black pixel to white, and vice versa."
0 to: logo height -1 do: [:y |

0 to: logo width - 1 do: [:x |
oldColor := logo atPoint: x@y.
oldColor = 1

ifTrue: [newColor := 0]
ifFalse: [newColor := 1].

logo atPoint: x@y put: newColor]].
logo displayOn: gc

Masking an Image
Sometimes an image contains extraneous material that needs to be
removed. In the simplest case, you can mask off a rectangular area.
For more complex shapes, a Mask graphical object is used.

A Mask is a DisplaySurface, and so is not saved with the Smalltalk
image, so on startup has a nil value. To preserve a Mask, store it as a
CachedImage with color depth 1.

Creating a Mask
The simplest way to create a mask is using the Image Editor. Select
Image • Store B&W Mask, so this selection is checked. Then draw the
mask shape and install it as a resource in your application. The areas
you draw in black will allow the image to show through, and the areas
in white will be transparent, allowing the background to show through.

For regular geometric shapes, you can create a mask by sending
messages to the Mask class. Send an extent: message to the Mask
class, with a Point as argument specifying the size of the mask. You
can display the desired shape or shapes on the Mask as with a
window or other display surface. In the example, a solid oval is drawn.
The shapes on the mask define the visible regions of the image:
Basic Libraries Guide 5-7

Graphical Images
| ovalMask |
ovalMask := Mask extent: 66@66.
ovalMask graphicsContext

displayWedgeBoundedBy: ovalMask bounds
startAngle: 0
sweepAngle: 360.

^ ovalMask
You can also create a mask from an image by changing the palette of
the image to a coverage palette. Send a
convertToCoverageWithOpaquePixel: message to the image. The
argument is an integer specifying the position in the image palette of
the color to make opaque, to allow the image to show through.

Masking a Rectangular Area
For masking an image to a rectangular area, you do not need to
create a mask. Instead, you can simply specify the rectangle in a
completeContentsOfArea: message that you send to the display surface.

1 Create a display surface (Pixmap) containing the image by
sending an asRetainedMedium message to the image.

2 Send a completeContentsOfArea: message to the display surface,
with a rectangle as argument.

The copied portion is returned as an image, which can then be
displayed on the graphics context.

| gc logo subImage pixmap copyRect |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
logo := LogoExample logo magnifiedBy: 2@2.
pixmap := logo asRetainedMedium.
copyRect := 0@0 extent:

(logo width @ logo height / 2) rounded.
subImage := pixmap completeContentsOfArea: copyRect.
subImage displayOn: gc at: 10@10.

Notice the limitation to this approach, however, that part of the
graphic that you might expect to be treated as background is not.
This is exhibited in the example browser if the background is not
white.

Masking a Nonrectangular Area
When the desired portion of an image is not rectangular, you can
either create a Mask of the desired geometric shape, or specify a
mask resource. The mask is then used as a stencil through which the
image is displayed.
5-8 VisualWorks

Creating a Graphic Image
1 Create a display surface (Pixmap) for the image by sending
asRetainedMedium to the image.

2 Create the desired mask, if necessary.

The mask may be created in a resource method built by the
Image Editor, in another method, or on the fly in the displaying
message.

3 Send a copyArea:from:sourceOffset:destinationOffset: message to the
graphics context of the destination display surface.

The copyArea argument is the mask. The from argument is the
graphics context of the source display surface. The sourceOffset
argument is a Point indicating the origin of the mask when placed
over the source display surface. The destinationOffset argument is
the origin of the subimage when displayed on the destination
display surface.

| gc logo pixmap ovalMask |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
logo := LogoExample logo magnifiedBy: 2@2.
pixmap := logo asRetainedMedium.
ovalMask := Mask extent: 66@66.
ovalMask graphicsContext

displayWedgeBoundedBy: ovalMask bounds
startAngle: 0
sweepAngle: 360.

gc copyArea: ovalMask
from: pixmap graphicsContext
sourceOffset: 0@0
destinationOffset: 10@10.

Modifying an Image
There are a variety of modifications you can make to images using
facilities provided in VisualWorks, such as rotating and expanding.

Expanding or Shrinking an Image
You can get a copy of an image that has been magnified or shrunken
in either the x dimension, the y dimension, or both.

To get an expanded copy of an image, send a magnifiedBy: message
to the image. The argument is a Point whose x value is multiplied by
the width of the image to derive the width of the expanded version;
similarly, the y value controls the height of the expanded version.
Basic Libraries Guide 5-9

Graphical Images
To shrink an image, send a shrunkenBy: message to the image. The
argument is a point that is used as a divisor to reduce the width and
height in the shrunken version.

| gc logo bigLogo tinyLogo |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
logo := LogoExample logo.
bigLogo := logo magnifiedBy: 1@2.
tinyLogo := logo shrunkenBy: 1@2.
logo displayOn: gc.
bigLogo displayOn: gc at: logo extent.
tinyLogo displayOn: gc at: logo extent + bigLogo extent.

Flopping an Image
Sometimes you need a mirror copy of an image. The basic steps
show how to get a reflected copy in which the imaginary mirror is
aligned with the x axis, the y axis, or both. This process of rotating an
image about the x axis or the y axis is known as flopping an image,
from the photographic process in which a negative is flopped onto its
backside to produce a mirror image.

To flop an image about the x axis, send a reflectedInX message to the
image. To flop an image about the y axis, send a reflectedInY
message. To flop an image about both axes, send a reflectedInX
message followed by a reflectedInY message.

| gc helpImage |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
helpImage := ToolbarIconLibrary help20x20 image.
helpImage

displayOn: gc at: 10@10.
helpImage reflectedInX

displayOn: gc at: 60@10.
helpImage reflectedInY

displayOn: gc at: 10@60.
helpImage reflectedInX reflectedInY

displayOn: gc at: 60@60.

Rotating an Image
You can rotate an image about the z axis in 90-degree increments by
sending a rotatedByQuadrants: message to the image. The argument is
an integer indicating how many 90-degree rotations you want. A
rotated copy of the image is returned.
5-10 VisualWorks

Creating a Graphic Image
| gc helpImage rotatedImage |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
helpImage := VisualLauncher helpIcon image.
rotatedImage := helpImage rotatedByQuadrants: 1.
helpImage

displayOn: gc at: 10@10.
rotatedImage

displayOn: gc at: 60@10.
Each rotated copy uses time and memory resources. For a series of
rotations, you can reduce the resources required by reusing the same
scratch image for each subsequent copy, as shown in the variant.
The scratch image must be of the same size as the unrotated image,
so this technique works only when all images in the series are the
same size.

Create a scratch image the same size as the image that is to be
rotated by sending a copyEmpty message to the original image. Then
send a rotateByQuadrants:to: message to the image to be copied. The
first argument is the number of quadrants to rotate the image. The
second argument is the scratch image.

| gc helpImage scratchImage |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
helpImage := ToolbarIconLibrary help20x20 image.
scratchImage := helpImage copyEmpty.
1 to: 4 do: [:quads |

helpImage rotateByQuadrants: quads to: scratchImage.
scratchImage displayOn: gc at: (60 * quads) @ 10]

Overlaying Images
You can achieve a variety of layering effects by combining two images
and applying a filtering algorithm to the overlapping portions.
VisualWorks provides 16 built-in algorithms, called combination rules.
The rules are numbered 0 through 15, and the more commonly used
rules have names. Thus, sending an erase message to the RasterOp
class returns the combination rule for erasing shared pixels from the
combined image. Combining two images involves copying a region
from one image (the source) onto the other image (the destination),
applying the combination rule.
Basic Libraries Guide 5-11

Graphical Images
Raster operations work correctly only on monochrome screens that
have the most commonly used polarity characteristics. On color
screens and on monochrome screens of the opposite polarity, the
effects are unpredictable. Because of this, only the RasterOp over rule
is portable across screen types.

To preserve the destination image in its unchanged state, first make a
copy on which to merge the source image, by sending a copy
message to the image (in the example, triangle).

Next, send a copy:from:in:rule: message to the copy. The copy
argument is a rectangle identifying the region in the destination
image to be merged with the source image (the lower part of the
triangle). The from argument is the origin of the rectangle within the
source image (the origin of the circle, because we want to copy the
entire circle). The in argument is the source image. The rule argument
is an integer identifying a combination rule (which can be derived by
sending and, over, erase, reverse, under, or reverseUnder to the RasterOp
class).

| gc triangle circle scratch |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
triangle := Pixmap extent: 50@100.
triangle graphicsContext

displayPolygon: (Array
with: 0@0
with: 0@50
with: 50@50).

triangle := triangle asImage.
circle := Pixmap extent: 50@50.
circle graphicsContext

displayDotOfDiameter: 50
at: 25@25.

circle := circle asImage.
0 to: 15 do: [:rule |

scratch := triangle copy.
scratch

copy: (0@20 extent: 50@50)
from: 0@0
in: circle
rule: rule.

scratch displayOn: gc at: (50 * rule \\ 400) @ (50 * rule // 400 *
100)]
5-12 VisualWorks

6

Working with Geometric Objects

VisualWorks implements several types of geometric objects, in
subclasses of Geometric.

• A LineSegment connects two points, named start and end.

• A Polyline connects three or more points (its collection of vertices)
as a series of line segments, and is closed between the start and
end points. A polygon is a Polyline that is filled rather than
stroked.

• A Rectangle represents a rectangular region whose axes are
aligned with the x and y axes. Rectangles are frequently used to
describe areas of a screen, but can also be used as a geometric
shape.

• An ElipticalArc is a curved line defined by three parameters:

• The smallest rectangle that can contain the ellipse of which
the arc is a segment (adjusted for line width).

• The angle at which the arc begins, measured in degrees
clockwise from the 3 o’clock position (or counterclockwise for
negative values).

• The angle traversed by the arc, known as the sweep angle.
The sweep angle is measured from the starting angle and
proceeds clockwise for positive values and counterclockwise
for negative values.

• A Bezier is a curve between two endpoints, with a control point for
each endpoint determining the angle of the curve at that
endpoint.
Basic Libraries Guide 6-1

Working with Geometric Objects
• A Circle is a circle, specified by a center and radius.

• A Spline is a curve interpolated through a series of points.

Geometric Objects
This section introduces the classes of geometric objects, all defined
as subclasses of Geometric. Many of the same operations are
defined for each class, and are described together later. This section
will include operations specific to the classes, if any.

Rectangles
Rectangles are used in a variety of graphic operations, from setting the
size of a window to specifying the bounding box of an ellipse, as well
as simply to create a rectangular graphic. Accordingly, rectangles
figure prominently in the discussion of the VisualWorks graphics
framework in the Application Developer’s Guide. In this section we
focus on rectangles simply as geometric objects.

Creating a Rectangle
There are several ways to create a Rectangle, accommodating a
variety of contexts.

One of the most common methods are to send an extent: or corner:
message to an origin (top left) Point. Both of the following expressions
create a rectangle 100 pixels wide, 250 pixels high, with its origin at
50@50:

50@50 extent: 100@250
50@50 corner: 150@300

The extent: message specifies the rectangle by its size, setting the x
and y distance from the starting point. The corner: message, on the
other hand, specifies the absolute corner position.

Most instance creation methods are defined on the Rectangle class
itself. Similar to the above are the origin:extent: and origin:corner:
messages which work the same way:

Rectangle origin: 50@50 extent: 100@250
Rectangle origin: 50@50 corner: 150@300

Instead of specifying the top left and bottom right as points, you can
specify the x- and y-values of the four sides:

Rectangle left: 50 right: 300 top: 50 bottom: 150
6-2 VisualWorks

./AppDevGuide.pdf

Geometric Objects
And if you prefer not to distinguish between the origin and the corner
point, you can let Rectangle do the comparison and create an
instance:

Rectangle vertex: 300@150 vertex: 50@50
These are only a few of the instance creation methods available.
Browse the Rectangle instance creation methods to see the whole set.

There are also a number of messages that return a new Rectangle
based on a model Rectangle.

align: aPoint1 with: aPoint2

Answer a new Rectangle with the same dimensions as the
receiver, but translated by aPoint2 - aPoint1.

expandedBy: aScalarPointOrRectangle

Answer a Rectangle that is outset from the receiver by the
argument, which is a Rectangle, Point, or scalar.

insetBy: aScalarPointOrRectangle

Answer a Rectangle that is inset from the receiver by the
argumetn, which is a Rectangle, Point, or scalar.

insetOriginBy: origin cornerBy: corner

Answer a new Rectangle that is inset from the receiver by the
amounts in origin and corner.

merge: aRectangle

Answer a new Rectangle that contains both the receiver and the
aRectangle.

translatedBy: aScalarOrPoint

Answer a new Rectangle translated by aScalarOrPoint.

A common use for these is to create the model Rectangle with the
desired dimensions, then create a new Rectangle positioned more
appropriately, and use the new Rectangle discarding the model. For
example, to create a rectangle aligned with another rectangle:
Basic Libraries Guide 6-3

Working with Geometric Objects
| gc rect1 rect2 modelRect |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
rect1 := Rectangle origin: 10@10 corner: 50@50.
modelRect := Rectangle origin: 0@0 extent: 75@100.
rect2 := modelRect align: modelRect topLeft with: rect1 bottomLeft.
rect1 displayStrokedOn: gc.
rect2 displayStrokedOn: gc

Getting and Setting a Rectangle’s Dimensions
Once created, a Rectangle can tell you a number of things about its
dimensions and its contents.

Internally, a Rectangle is defined by its origin and corner points, held in
its origin and corner instance variables.

origin

Answer the origin point.

corner

Answer the corner point.

You can change the size and position of the Rectangle with these
corresponding messages:

origin: aPoint

Set the origin point to aPoint.

corner: aPoint

Set the corner point to aPoint.

origin: aPoint corner: anotherPoint

Set the origin point to aPoint and the corner point to
anotherPoint.

A variety of other messages are available to getting and setting the
Rectangle dimensions. For example, the size can be changed by
setting the positions of the sides of the Rectangle.

left: xDimension

Set the position of the left side to xDimension.

top: yDimension

Set the position of the top side to yDimension.
6-4 VisualWorks

Geometric Objects
right: xDimension

Set the position of the right side to xDimension.

bottom: yDimension

Set the position of the bottom side to yDimension.

Browse the accessing method category for additional messages.

Other useful information about a Rectangle can be accessed with
these messages.

area

Answers the receiver's area, the product of its width and height.

height

Answer the height of the receiver.

width

Answer the width of the receiver.

The height and width can also be set, and the size of the Rectangle is
adjusted relative to the origin.

Moving a Rectangle
In addition to being able to create a new rectangle that conforms to
specified conditions, it is often useful to be able to move an existing
rectangle. This ability is provided by two messages:

moveBy: aPoint

Change the corner positions of the receiver so that its area
translates by the amount defined by aPoint.

moveTo: aPoint

Change the corners of the receiver so that its top left position is
aPoint.

Testing Rectangle Relations
It is often necessary or useful to know whether a rectangle contains a
point or an area (another Rectangle). These messages provide this
information.
Basic Libraries Guide 6-5

Working with Geometric Objects
areasOutside: aRectangle

Answer a Collection of Rectangles comprising the parts of the
receiver that do not lie within aRectangle.

contains: aRectangle

Answer true if the receiver is equal to or entirely contains
aRectangle, and false otherwise.

containsPoint: aPoint

Answers true if aPoint is within the receiver, inclusive of the
Rectangle itself, and false otherwise.

intersect: aRectangle

Answer a Rectangle that is the area in which the receiver overlaps
with aRectangle. Note, if the receiver and the argument do not
intersect, then the resulting rectangle will have negative width or
height.

intersects: aRectangle

Answers true if aRectangle intersects the receiver at any point,
and false otherwise.

Lines
A straight line is represented by an instance of LineSegment, which is
simply a straight line between two points.
6-6 VisualWorks

Geometric Objects
To create a line segment, send a from:to: message to the LineSegment
class. The first argument is the starting point of the line and the
second argument is the endpoint.

| gc line scaleFactor |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
scaleFactor := 10@1.
5 to: 400 by: 5 do: [:i |

line := LineSegment from: 0@i to: i@400.
line := line scaledBy: scaleFactor.
line displayStrokedOn: gc].

Polylines and Polygons
A jointed line, or polyline, is created as an instance of Polyline. A
polygon is a filled PolyLine.

To create and display a polyline object, create a Polyline by sending a
vertices: message to the Polyline class, with a collection of points
(vertices) as the argument. Then wrap the polyline in a stroking
wrapper and display it on the graphics context by sending
displayStrokedOn:.

| gc points x y radians polyline |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
points := OrderedCollection new.
0 to: 360 by: 30 do: [:angle |

radians := angle degreesToRadians.
x := 200 - (200 * radians cos).
y := 200 - (200 * radians sin).
Basic Libraries Guide 6-7

Working with Geometric Objects
points add: x@y].
polyline := Polyline vertices: points.
polyline displayStrokedOn: gc.
0.9 to: 0.1 by: -0.1 do: [:scale |

polyline := polyline scaledBy: scale.
polyline displayStrokedOn: gc].

To fill the polyline, make the Polyline, then wrap it in a filling wrapper
and display it by sending displayFilledOn: to the wrapper with the
graphics context as argument.

Arcs and Ellipses

An arc is a curved line defined by three elements of information:

• The smallest rectangle that can contain the ellipse of which the
arc is a segment (adjusted for line width).
6-8 VisualWorks

Geometric Objects
• The angle at which the arc begins, measured in degrees
clockwise from the 3 o’clock position (or counterclockwise for
negative values).

• The angle traversed by the arc, known as the sweep angle. The
sweep angle is measured from the starting angle (not necessarily
the 3 o’clock position) and proceeds clockwise for positive values
and counterclockwise for negative values.

An ellipse is an arc with a sweep angle of 360 degrees. An ellipse
with a square bounding box describes a circle.

If the arc does not describe a closed ellipse, the ends of the arc are
connected to the center of the ellipse to define the filling region,
forming a wedge.

To create either an arc or an ellipse, create an instance of EllipticalArc
by sending a boundingBox:startAngle:sweepAngle: message to the class,
specifying the rectangle that encloses it, the beginning angle, and the
number of degrees traversed (the sweep angle) from that starting
angle.

| gc arc box |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
box := 150@100 extent: 100@200.
"Black stroked arc"
arc := EllipticalArc boundingBox: box

startAngle: 45
sweepAngle: 135.

arc displayStrokedOn: gc.
"Black filled arc"
arc := EllipticalArc boundingBox: box

startAngle: 180
sweepAngle: 90.

arc displayFilledOn: gc.
"Red arc"arc := EllipticalArc boundingBox: box

startAngle: 270
sweepAngle: 135.

arc displayFilledOn: (gc paint: ColorValue red)
For a complete ellipse, the angle is 360, regardless of the start angle.

gc := (Examples.ExamplesBrowser
prepareScratchWindow) graphicsContext.

"Black stroked ellipse"
ellipse := EllipticalArc boundingBox: (150@100 extent: 100@200)

startAngle: 0
sweepAngle: 360.
Basic Libraries Guide 6-9

Working with Geometric Objects
ellipse displayStrokedOn: gc.
"Black filled ellipse"
ellipse := EllipticalArc boundingBox: (160@110 extent: 80@180)

startAngle: -45
sweepAngle: 360.

ellipse displayFilledOn: gc.
"Red ellipse"
ellipse := EllipticalArc boundingBox: (150@175 extent: 100@50)

startAngle: 45
sweepAngle: 360.

ellipse displayFilledOn: (gc paint: ColorValue red)

Circles and Dots

A circle is created by specifying its center point and radius.

| gc circle |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
"Blue filled circle"
circle := Circle center: 200@200 radius: 100.
circle displayFilledOn: (gc paint: ColorValue blue).
"Black stroked circle"
gc paint: ColorValue black; lineWidth: 2.
circle displayStrokedOn: gc.

Graphics contexts understand a displayDotOfDiameter:at: message,
which displays a filled circle with the specified diameter and center
point. This can be used, for example, to display points, which are not
otherwise displayable objects:
6-10 VisualWorks

Geometric Objects
| gc random points |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
random := Random new.
points := OrderedCollection new.
"Create 10000 random points in a 100-pixel square."
10000 timesRepeat: [

points add: ((random next * 100) @ (random next * 100))].
"Display each random point."
points do: [:pt |

gc displayDotOfDiameter: 2 at: pt * 4]

Curved Lines
Besides circular and elliptical arcs, VisualWorks provides two kinds of
smooth curve: Spline and Bezier.

A Spline is similar to a polyline in that it connects a collection of
vertices, except that it smooths the corners.

| gc points spline random x y |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
points := OrderedCollection new.
random := Random new.
"Collect 10 random points."
10 timesRepeat: [

x := random next * 400.
y := random next * 400.
points add: x@y.
gc displayDotOfDiameter: 8 at: points last].

spline := Spline controlPoints: points.
spline displayStrokedOn: gc.

A Bezier curve is similar to a line segment, in that it has a start and an
end point, but it also has two control points that determine the curve
angle. Each control point causes the line to curve toward it, as if
exerting gravity on the line.

| gc points bezier random x y |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
points := OrderedCollection new.
random := Random new.
"Collect 10 random points."
4 timesRepeat: [

x := random next * 400.
y := random next * 400.
points add: x@y.
Basic Libraries Guide 6-11

Working with Geometric Objects
gc displayDotOfDiameter: 8 at: points last].
bezier := Bezier

start: (points at: 1)
end: (points at: 2)
controlPoint1: (points at: 3)
controlPoint2: (points at: 4).

bezier asStroker displayOn: gc.
Splines and Bezier curves support comparison, intersection testing,
scaling, and transforming. A Spline can also be asked whether it folds
back on itself (isCyclic).

When drawing either a Spline or a Bezier, the curve is actually
approximated as a Polyline of some number of short line segments. To
some extent you can specify the number of segments, by setting the
value of the flatness instance variable for a Spline, or the scaledFlatness
instance variable for a Bezier. The are used as divisors on the number
of control points, so a larger number reduces the number of
segments, increasing the degree of “flatness.” See the demoFlatness
class methods in each class for examples.

Drawing a Geometric Object
As illustrated in the examples of the individual geometric objects,
geometrics can be drawn either as line drawings, or “stroked,” or as
solid objects or “filled.” By themselves, the geometrics do not know
whether they are line drawing or solids, although some, such as lines,
can only be line drawings.

There are two ways of specifying the drawing style for geometrics:
either using the display message specifying that style, or explicitly
wrapping the geometric in a StrokingWrapper or FillingWrapper. The
approach you select depends on whether the shape will be displayed
once, without needing to do any other operations on it, or whether the
shape needs to be operated on and displayed or refreshed
repeatedly.

Geometric objects support a pair of messages for directly displaying
themselves on display surfaces:

displayFilledOn: aGraphicsContext

Displays the geometric on aGraphicsContext as a solid. Not all
geometrics implement this (LineSegment, Bezier, and Spline)
6-12 VisualWorks

Drawing a Geometric Object
displayStrokedOn: aGraphicsContext

Displays the geometric on aGraphicsContext as a line drawing.

These messages provide a convenient method for displaying
graphical objects.

These messages have been demonstrated in the previous sections.

Using a Drawing Style Wrapper
A more flexible mechanism is to display such objects using a wrapper
object, either in a StrokingWrapper or in a FillingWrapper object, to
determine the drawing style. Both wrapper objects use a single
message to display themselves: displayOn:. Using the wrapper
technique allows VisualWorks to provide a uniform display interface
for all geometric objects.

The choice of Wrapping object depends on whether the drawing
should be a line drawing (StrokingWrapper), or should be filled with a
color or pattern (FillingWrapper). Some objects, such as lines, cannot
be wrapped in a filling wrapper since that would clearly be
inappropriate.

To display any geometric object, create the object and perform any
needed transformations on it. Then create a wrapper for the
geometric object by sending it one of these message:

asStroker

Wrap the geometric for display as a line drawing.

asFiller

Wrap the geometric for display as a solid.

To display the wrapper object, send the displayOn: message to it, with
the target graphic context as its argument.

For example, the following expression creates a line, performs some
operations on it, wraps the line, and displays it in an examples
browser:

| gc line scaleFactor |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
scaleFactor := 10@1.
5 to: 400 by: 5 do: [:i |

line := LineSegment from: 0@i to: i@400.
Basic Libraries Guide 6-13

Working with Geometric Objects
line := line scaledBy: scaleFactor.
line asStroker displayOn: gc].

When displaying a filled object, you must also specify the color for the
filler:

| gc rect1 rect2 border |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
"Black rectangle"
rect1 := 100@100 extent: 200@200.
rect1 asFiller displayOn: gc.
"Gray rectangle"
border := 3.
rect2 := (rect1 origin + border) corner: (rect1 corner - border).
rect2 asFiller displayOn: (gc paint: ColorValue green).

Drawing Transient Shapes
If you do not want to create the geometric object itself at all, but
simply to draw a shape, GraphicsContext recognizes a number of
messages to do this. The arguments for the messages are
recognizable from the usual creation methods for the relevant
geometric. The following is a sampling. Browse the GraphicsContext
displaying method category for additional messages.

displayArcBoundedBy: aRectangle startAngle: start sweepAngle: sweep

Draws a stroked EllipticalArc on the graphics context.

displayWedgeBoundedBy: aRectangle startAngle: start
sweepAngle: sweep

Draws a filled EllipticalArc on the graphics context.

displayLineFrom: start to: end

Draws a LineSegment (stroked).

No geometric object is actually created by these messages, so no
transformations or other operations can be performed.

| gc |
gc := (Examples.ExamplesBrowser

 prepareScratchWindow) graphicsContext.
5 to: 400 by: 5 do: [:i |

gc displayLineFrom: 0@i to: i@400].
6-14 VisualWorks

Transformations on Geometrics
Transformations on Geometrics
Geometrics respond to two standard transformations: scaling and
translation. Rectangles respond to many more transformations, as
described under Rectangles. The two common messages are:

scaledBy: aScalarOrPoint

Answer a new Geometric scaled by the argument amount, which
can be a Point or a scalar value.

translatedBy: aScalarOrPoint

Answer a Geometric translated within the graphics context by
aScalarOrPoint, which can be a Point or a scalar value.

Note that these return new geometric objects of the same type as the
receiver, rather than transform the receiver itself.

Storing Graphic Attributes
The graphics context holds general display properties, such as line
width and paint policies. These attributes provide the default
properties for any object rendered on that graphics context.

However, frequently the attributes need to be different for individual
graphical objects, for instance to draw lines of different width. When
the attribute properly belongs to the object rather than the context, it
is desirable to store it with the object. This ability is provided by
wrapper classes for the various objects, which allows encapsulating
graphical attributes with the graphical object.

More general and for graphical objects other than geometrics, but
applicable to geometrics as well, is the GraphicsAttributesWrapper.

It is frequently necessary to store color information with the graphic
object. To do this, wrap the geometric object in a GraphicsAttributes-
Wrapper.

1 Wrap the geometric object in a stroking or filling wrapper by
sending asStroker or asFiller to it.

2 Wrap the stroking or filling wrapper in a GraphicsAttributes-Wrapper
by sending an on: message to that class, with the wrapper from
the basic step as the argument.
Basic Libraries Guide 6-15

Working with Geometric Objects
3 Create a new GraphicsAttributes and send a paint: message to it.
The argument is a color or pattern.

4 Install the graphics attributes in the GraphicsAttributesWrapper by
sending an attributes: message with the attributes as the
argument.

5 Display the graphics attributes wrapper by sending a displayOn:at:
message to it. The first argument is the graphics context of the
display surface. The second argument is the origin point at which
the geometric object is to be displayed.

| gc circle wrapper1 wrapper2 random pt attributes1 attributes2 |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
circle := Circle center: 0@0 radius: 50.
wrapper1 := GraphicsAttributesWrapper on: circle asFiller.
attributes1 := GraphicsAttributes new paint: ColorValue red.
wrapper1 attributes: attributes1.
wrapper2 := GraphicsAttributesWrapper on: circle asFiller.
attributes2 := GraphicsAttributes new paint: ColorValue blue.
wrapper2 attributes: attributes2.
random := Random new.
100 timesRepeat: [

pt := random next * 300 + 50 @ (random next * 300 + 50).
wrapper1 displayOn: gc at: pt.
pt := random next * 300 + 50 @ (random next * 300 + 50).
wrapper2 displayOn: gc at: pt]
6-16 VisualWorks

7

Working with Text

Characters and strings are primarily managed by the two classes
Character and String. This chapter discusses operations at the
character level first, followed by string operations.

The final section places Character and String in the context of their
abstract superclasses and, in the case of String its concrete
subclasses.

As a collection of characters, a string responds to the messages
described in Collections The more pertinent behavior is reviewed in
this chapter.

Characters
Character objects are instances of the class Character. As with all
objects in Smalltalk, and unlike many languages, characters are full
blooded objects, not primitive data types.

Note: Any application that manipulates characters should be
prepared to encounter any character value from 0 to 65535.

Creating Characters
Many characters can be represented by printable keyboard
characters. Instances of these characters can be created by
preceding the desired character with a dollar sign:

char := $C
Basic Libraries Guide 7-1

Working with Text
Certain characters cannot be created as keyboard literals, such as
<Delete> and <Return>. Smalltalk provides class messages for
creating many of these characters. Send one of the following
messages to the Character class to create the corresponding
character: backspace, cr, del, esc, leftArrow, lf, newPage, space, tab. For
example:

char := Character cr
A character can also be created from its Unicode numeric equivalent.
Send a value: message to the Character class, with the numeric
Unicode representation for the character:

char := Character value: 67
The numeric value is displayed in a character’s print string.

A composed character is a character consisting of base character
plus a diacritical mark. To create a composed character, send a
composeDiacritical: message to a character. The argument is a
diacritical character, which can be obtained by sending
diacriticalNamed: to the Character class. The argument is a symbol
naming a diacritical character. A list of valid diacritical character
names is included in the method comment.

| baseChar diacrit composedChar |
baseChar := $a.
diacrit := Character diacriticalNamed: #grave.
composedChar := baseChar composeDiacritical: diacrit

Testing Character Types
Because the extended character set contains so many subsets,
Character provides a variety of tests to help you characterize an
instance:
7-2 VisualWorks

Strings
Comparing Characters
Characters can be compared using the usual binary comparison
operators defined for numbers: =, ==, <, >, ~=, and so on.
Comparison is performed based on the integer values of the
characters, so

$C < $D
evaluates as True, but

$c < $D
evaluates as False.

Strings
A String in Smalltalk is a collection, or more specifically an array, of
characters. While protocol is defined at the level of the String class, a
string is actually represented as a platform-specific subclass of String.

Strings are the foundation of all text operations in VisualWorks,
including the text formatting and display operations described later in
this chapter.

Method Returns true if the character is...

isLowercase a-z or a lowercase special character

isUppercase A-Z or an uppercase special character

isAlphabetic a-z, A-Z, or a special character

isVowel in the set: AEIOUaeiou (with or without diacritical
marks)

isDigit 0-9

isAlphaNumeric a-z, A-Z, 0-9, or a special character

isSeparator space, cr, tab, line feed, form feed, or null

isDiacritical a diacritical mark (has a value in the range 16rC1 to
16rCF)

isComposed composed of base and diacritical parts (has a value
of 16rF100 or higher)

isLetter English alphabet or extended character
Basic Libraries Guide 7-3

Working with Text
Creating a String
Most frequently a string is created by enclosing the desired
characters in single quotes:

| string |
string := 'This is a string.'.
^string

You can create an empty string by sending a new message to the
String class. This is equivalent to enclosing nothing between single
quotes.

| emptyString |
emptyString := String new.
^emptyString

Although you can, in effect, grow as a string to accommodate added
characters, this is accomplished in a copy. If you know you will do
this, it is more memory efficient to create a string of the appropriate
size and then change its characters. To do this, send a new: message
to the String class with the length specified:

| newString |
newString := String new: 15.
^newString

By default, the string is filled with null characters, but you can specify
the default character by using the new:withAll: message. The first
argument is the number of characters, and the second argument is
the character to fill the string:

| filledString |
filledString := String new: 10 withAll: $x.
^filledString

It is frequently necessary to represent a character by a string. There
are several ways to create such a string, using obvious variations of
the methods already shown. Another way is to send a with: message
to the String class, with the character that is to be the sole element of
the string as the argument. This is especially useful, and often
necessary, when the character is a non-printing or white-space
character:

| oneCharString |
oneCharString := String with: Character tab.
^oneCharString
7-4 VisualWorks

Strings
Getting a String’s Length and Width
A String is a kind of Collection with characters as its elements.
Counting the characters in a string is accomplished by sending a size
message to the string:

| string |
string := '123456789'.
^string size

The width of a string changes depending on the font and point size
that is used to display it. Because the font choice is controlled by the
graphics context of the display surface, that object can compute the
width of a string in pixels. Send a widthOfString: message to the
graphics context of the display surface on which the string will be
displayed. The argument is the string. The width in pixels is returned.

| window string width |
window := ScheduledWindow new.
string := 'Hello, world'.
width := window graphicsContext

widthOfString: string.
^width

Combining Strings
There are a variety of ways in which two or more strings can be
combined to form longer strings, or to perform replacements within a
string.

The simplest operation is concatenation, which is performed by
putting a comma between the two string expressions, for example:

| firstName lastName fullName space |
firstName := 'Bill'.
lastName := 'Clinton'.
space := String with: Character space.
fullName := firstName, space, lastName.
^fullName
salutation := 'Dear ', fullName.

The result is a new string, without changing either of the original
strings.

Another useful approach, especially for constructing strings of
dynamically generated data, like reports, is to use a WriteStream.
Create a stream by sending an on: message to the WriteStream class.
The argument is typically an empty string, but it could be any string,
such as a preassembled report heading. Then append each string in
Basic Libraries Guide 7-5

Working with Text
the series to the stream by sending a nextPutAll: message to the
stream, with the string as argument. Get the stream contents in the
form of a string by sending a contents message to the stream.

| classNames formalList |
classNames := Smalltalk classNames.
formalList := WriteStream on: String new.
classNames do: [:name |

formalList nextPutAll: 'Class: ';
nextPutAll: name;
cr].

^formalList contents

Modifying String Contents
Class String is implemented as a subclass of CharacterArray.
Accordingly, the contents of a string consists of characters. To
change the content of a String, you change the characters in it.

Changing Characters in Place
You can change a character in a String at a specific location by
sending an at:put: message to the String, with the position and new
character as arguments:

| aString |
aString := String new: 5.
aString at: 1 put: $a;

at: 1 put: $b;
at: 1 put: $c;
at: 1 put: $d;
at: 1 put: $e.

Note, however, that because a literal String is immutable, this fails:

| aString |
aString := 'abcde'.
aString at: 2 put: $x. "ERROR"

Instead, if you need to do this kind of substitution, create a copy of
the original String:

| aString |
aString := 'abcde'.
aString copy at: 2 put: $x. "SUCCESS"
7-6 VisualWorks

Modifying String Contents
Changing the Case in a String
Applications that manipulate strings sometimes need to convert one
or more lowercase letters to uppercase, or vice versa. You can
change the case of an entire string or of a selected letter.

Note: Do not use case-changing protocol with strings whose
characters are caseless (for example, Japanese Katakana
characters).

To convert a string to all lowercase letters, send an asLowercase
message to the string. Similarly, send asUppercase to convert the
entire string to uppercase letters:

| string |
string := 'North American Fertilizer Company'.
^string asUppercase

To change the case of individual characters in a string, you identify
the character by its index (place in the string), use the asUppercase or
asLowercase message to the character, then put the converted
character back in the string at the same location. The following
example uses the keysAndValuesDo: message to cycle through the
string, and set all characters to lowercase except the first and those
preceded by a separator character:

| string prevCharIsSeparator newChar |
string := 'NORTH AMERICAN FERTILIZER COMPANY' copy.
prevCharIsSeparator := true.
string keysAndValuesDo: [:index :char |

prevCharIsSeparator
ifTrue: [newChar := char asUppercase]
ifFalse: [newChar := char asLowercase].

string at: index put: newChar.
prevCharIsSeparator := char isSeparator].

^string
Some character sets contain single lowercase characters that
become multiple characters in their uppercase form. If you are
working with such a character set, your code should handle the
results of asUppercase accordingly.

Inserting Line-End Characters
In Smalltalk methods, certain conventions of indentation and line
wrapping make the code more readable. Sometimes a string disrupts
the readability of the code because it contains embedded carriage
returns.
Basic Libraries Guide 7-7

Working with Text
Rather than embed returns in a string, you can substitute a backslash
character (\). Then, when you print the string, send a withCRs
message to the string to convert the backslashes back to carriage
returns.

Dialog
request: 'This string\has 3 lines\when displayed.' withCRs
initialAnswer: 'No response needed'.

Note: This technique is not recommended for cross-cultural
applications, because it interferes with text lookup in message
catalogs. Instead, use separate strings and recombine them with
literal line-end characters.

Abbreviating a String
Abbreviations are rarely as comprehensible as the full form of a
string, and automatically derived abbreviations tend to be even less
readable. In some situations, however, an abbreviation is useful, and
VisualWorks provides a few useful abbreviation messages. Here are
two methods. Browse the String class and its superclasses for others.

Send a contractTo: message to the string. The argument is the
number of characters in the abbreviation, including three for the
ellipsis. Half of the abbreviation will be taken from the beginning of
the string and the other half from the end.

| string contractedString |
string := 'North American Free Trade Agreement'.
contractedString := string contractTo: 15.
^contractedString

Send a dropFinalVowels message to the string. An abbreviated string
is returned in which only the leading vowel (if any) remains.

| string noVowelString |
string := 'North American Free Trade Agreement'.
noVowelString := string dropFinalVowels.
^noVowelString

String Substitution Parameters
Strings can include formal parameters, enclosed in the angle
brackets < >. The parameters are expanded by sending a version of
the expandMacros: message to the string.
7-8 VisualWorks

Modifying String Contents
Simple parameters are <n> and <t>, which specify substitution of CR
and Tab, respectively. For example, the String 'This is a <n><t>test'
can be expanded:

'This is a <n><t>test.' expandMacros
to print:

This is a
test.

Positional substitution parameters are also allowed. Immediately
following the opening bracket there may be an integer that specifies
which of the expansion arguments to substitute for this parameter.
This allows for substitutions in the string to appear in a different order
than that in which the arguments are passed in, and for the same
argument to be substituted more than once.

Following this parameter index is a character that identifies how the
substitution is to be performed. The characters and the substitution
they indicate are:

p

Substitute the printString value of the argument. For example:

'This is a <1p> test.' expandMacrosWith: 'substitution'
expands to

'This is a ''substitution'' test.'

s

Substitute the argument itself, which must be a CharacterArray. For
example:

'This is a <1s> test.' expandMacrosWith: 'substitution'
expands to

'This is a substitution test.'

?

Requires two arguments in the parameter, and a Boolean
expression argument. The first is substituted if the expression
argument is true

'One is greater than <1?zero:two>.' expandMacrosWith: true
, and the second if the argument is false. For example:expands to

'One is greater than zero.'
Basic Libraries Guide 7-9

Working with Text
#

Requires two arguments in the parameter, and a numeric
expression argument. The first is substituted if the expression
argument is equal to 1; otherwise, the second is substituted. For
example:

'The book "<1#War:Peace> and <2#War:Peace>" is a must read.'
expandMacrosWith: 1 with: 2.

expands to

'The book "War and Peace" is a must read.'

The versions of expandMacros in these examples take one and two
positional substitution arguments. For up to four arguments, there are
also expandMacrosWith:with:with:, and expandMacrosWith:with:with:with:.
For more than four arguments, use exapndMacrosWithArguments:, with
an Array of arguments. All of these expand <n> and <t> as well.

The character $% acts as the escape character. Unless otherwise
specified, any character following the escape character is itself, and
is not treated specially. For example, '%<' becomes '<', which,
because it is preceded by the escape character, is not treated as the
beginning of a formal parameter. So,

'This is %<1s%> test' expandMacrosWith: 'a'
expands to

'This is <1s> test'

Substring Operations
When a string contains two or more parts, getting the parts as
separate strings is a common requirement. For example, you might
need to extract the first and last names from a string containing a full
name. You can copy a portion of a string, using the starting and
stopping character locations.

In certain situations, the only part of a string that you need is a prefix
that ends at a specific character. You can copy the characters that
precede a specific endpoint character.
7-10 VisualWorks

Substring Operations
Copying a Substring
Send a copyFrom:to: message to the string. The first argument is the
starting index and the second argument is the ending index of the
desired substring.

| fullName firstName lastName spaceIndex |
fullName := 'Mahatma Gandhi'.
spaceIndex := fullName indexOf: Character space.
firstName := fullName

copyFrom: 1
to: spaceIndex - 1.

lastName := fullName
copyFrom: spaceIndex + 1
to: fullName size.

^Array with: firstName with: lastName

Copying a Prefix
Send a copyUpTo: message to the string. The argument is the
character that marks the end of the prefix (but is not included in it).

| fullName firstName |
fullName := 'Boris Yeltsin'.
firstName := fullName copyUpTo: Character space.
^firstName

Removing or Replacing a Substring
A string can be quite long and complicated, representing an entire
report or the contents of a lengthy text file. In long strings especially,
replacing a portion of the string with a new substring is frequently
useful.

Removing characters is accomplished by creating a copy in which the
unwanted characters have been replaced by an empty string.

When a string contains multiple occurrences of a substring, you can
replace all occurrences.

Replacing a Substring
To replace characters in a string with another string, send a
copyReplaceFrom:to:with: message to the string. This returns a copy of
the original string with the replacement made. The first and second
arguments are the index locations of the starting and stopping
characters in the substring that is to be replaced. The with: argument
is the substitution string.
Basic Libraries Guide 7-11

Working with Text
You can also use this method to insert a substring without removing
any characters in the existing string, by making the ending index one
less than the starting index.

To remove characters, replace them with an empty string.

For details of the operation of this method, refer to the method
comment.

| aString anotherString newString |
aString := 'abcd'.
anotherString := 'efgh'.
" Replacement, returns 'aefghd' "
newString := aString copyReplaceFrom: 2 to: 3 with: anotherString.
" Insertion, returns 'aefghbcd' "
newString := aString copyReplaceFrom: 2 to: 1with: anotherString.
" Prefixing, returns 'efghabcd' "
newString := aString copyReplaceFrom: 1 to: 0 with: anotherString.
^newString

For replacements with a return size greater than 1024, use
changeFrom:to:with: instead.

Replacing All Occurrences of a Substring
Send a copyReplaceAll:with: message to the string. The first argument
is the substring that is to be replaced. The second argument is the
replacement substring.

| colorNames |
colorNames := String new.
ColorValue constantNames do: [:name |

colorNames := colorNames, name asString, ' '].
colorNames := colorNames"Variant Step"

copyReplaceAll: 'Gray'
with: 'Grey'.

^colorNames

Tokenizing Substrings
It can be useful to convert a String to a collection of elements in it.
Send a tokensBasedOn: message to a String to return a collection of
substrings separated by the argument. For example:

'brave new world' tokensBasedOn: Character space
returns a collection of three strings.
7-12 VisualWorks

Searching
Notice that this method is implemented several classes above String
in the hierarchy. Browse these superclasses for methods that might
provide results that you need.

Searching
The ability to find a specific character or substring is essential in
applications that parse strings. Often a special character or series of
characters identifies a field within a string, especially when the string
represents the contents of a structured text file.

By default, searching is case-sensitive, but there are methods which
ignore case during a search.

Searches can also use wildcard characters. A pound sign (#) takes
the place of any single character, and an asterisk (*) takes the place
of zero or more characters.

Get the Index of a Character in a String
To get the index of a character, send an indexOf: message to the
string. The argument is the search character. If it is not found, zero is
returned.

To find the starting index of a substring, send a -
findString:startingAt:ifAbsent: message to the string. The first argument
is the substring to be found. The second argument is the character
position at which the search is to begin. The third argument is a block
containing actions to be taken if the substring is not found (often an
empty block, to avoid the default error).

| classComment searchChar searchString index1 index2 |
classComment := String comment.
searchChar := $<.
searchString := 'Class Variables:'.
index1 := classComment indexOf: searchChar.
index2 := classComment

findString: searchString
startingAt: 1
ifAbsent: [].

^Array with: index1 with: index2

Ignoring Case in a Search
Send a findString:ignoreCase:useWildcards: message to the string. The
findString argument is the substring to be found. The ignoreCase
argument is true when case difference is to be ignored.
Basic Libraries Guide 7-13

Working with Text
The useWildcards argument is true when the pound sign and asterisk
are to be interpreted as wildcard characters rather than literal
characters. Because the presence of an asterisk wildcard affects the
endpoint of the found string, this variant returns an Interval identifying
the index range of the found string. A zero interval is returned when
the search string is not found.

| classComment searchString interval |
classComment := String comment.
searchString := 'Var*:'.
interval := classComment

findString: searchString
startingAt: 1
ignoreCase: true
useWildcards: true.

^classComment
copyFrom: interval first
to: interval last

Comparing Strings
Unlike characters, strings are not compared by numerical value of
their characters. When comparing strings, case is ignored and
alphabetical order is used, unless the two strings have exactly the
same letters in the same order. In this latter case, numerical values
are used to differentiate uppercase and lowercase letters.

Testing for Equality and Identity
Two strings are equal when both have the same number of
characters, and both have the same characters in the same order.

To test for equality or inequality, send an = or ~= (not equal) message
to one string with another string as argument:

| str1 str2 |
str1 := 'abc'.
str2 := 'ABC'.
^str1 = str2

To compare based on identity, send an == or ~~ (not identical)
message to the object. Two different strings cannot be identical,
though two variables that refer to the same string are identical.

| str1 str2 str3 |
str1 := 'Excellent'.
str2 := 'Excellent'.
7-14 VisualWorks

Comparing Strings
str3 := str1.
^Array

with: (str1 == str2)
with: (str1 == str3)

The sameAs: message compares the equality of strings while ignoring
case:

| str1 str2 str3 |
str1 := 'north'.
str2 := 'North'.
str3 := 'northwest'.
^Array

with: (str1 sameAs: str2)
with: (str1 sameAs: str3)
with: (str2 sameAs: str3)

Comparing by Sorting Order
The usual comparison operators, in addition to equality and identity,
can be used to compare strings:

Comparison is by alphabetical order in most cases, rather than
numerical value of the characters. So,

'BCD' < 'bcde'
evaluates to true.

If two strings have exactly the same letters in the same order, the
integer values of the characters is used to differentiate them. So,

'bcD' > 'bcd'
evaluates to false, because uppercase letters have lower integer
values than lowercase letters.

< less than

<= less than or equal to

> greater than

>= greater than or equal to
Basic Libraries Guide 7-15

Working with Text
Rating the Similarity of Two Strings
Two messages return a similarity rating of strings.

A sameCharacters: message returns an integer indicating how many
characters are the same (including case) up to the first mismatch. So,

'bcDe' sameCharacters: 'bcde'
returns 2.

A spellAgainst: returns an integer from 1 (entirely different) through
100 (equal) is returned, giving a percentage of match to mismatch.
So,

'bcDe' spellAgainst: 'bcde'
returns 75.
7-16 VisualWorks

8

Colors and Patterns

VisualWorks uses Colors and Patterns to draw lines and fill shapes.

Colors as represented as instances of ColorValue. VisualWorks stores
colors as red, green, and blue (RGB) components, but allows colors
to be specified by constant names, by RGB values, or by hue,
saturation, and brightness (HSB) values.

A Pattern is an arrangement of pixels created by replicating a tile
throughout a painted region. For example, the gray background used
by many window managers is created by employing a four-pixel tile.
The tile can be an Image, a Pixmap, or a Mask.

Pixel Coverage
A CoverageValue identifies the fraction of a pixel that is covered. Since
a pixel, by its nature, must be displayed in its entirety, only the values
0 and 1 are typically used. Fractional coverages can be specified,
however, as explained in the discussion of coverage palettes on
Image Color Palettes.

CoverageValue is the paint basis for Masks. An Image can also be
coverage-based, typically when it is used as a storage medium for a
Mask, which does not survive after the system is shut down.

A CoverageValue can be created by name or by value:

CoverageValue transparent
CoverageValue coverage: 0
CoverageValue opaque
CoverageValue coverage: 1
Basic Libraries Guide 8-1

Colors and Patterns
Creating a Color
ColorValue class methods provide simple protocol for creating
instances by either color constant name, RGB values, or HSB values.

Create by Color Name
Several color constants are defined by class method selectors for
each color name. To create a color, send the appropriate color
message to ColorValue class. For example, to create an instance of
cyan, send the cyan message to the ColorValue class:

| gc color |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
color := ColorValue cyan.
gc paint: color.
gc displayDotOfDiameter: 400 at: 200@200.

The following example displays all the predefined colors in a ray
chart.

| gc endPoint colors |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
gc lineWidth: 7.
endPoint := 350@0.
colors := ColorValue constantNames.
colors do: [:c |

endPoint := endPoint + (-10@12).
gc paint: (ColorValue perform: c).
gc displayLineFrom: 0@0 to: endPoint.
gc paint: ColorValue black.
c asString displayOn: gc at: endPoint + (0@8)]

Create by Red, Green, and Blue Values
Send a red:green:blue: message to the ColorValue class. All arguments
are numbers between zero and one, representing the intensity of
their respective colors. In the example, the intensity of green is varied
while the red and blue intensities remain at zero.
8-2 VisualWorks

Creating a Color
| gc origin |
gc := (Examples.ExamplesBrowser

 prepareScratchWindow) graphicsContext.
origin := 0@0.
1 to: 0 by: -0.01 do: [:grn |

gc paint: (ColorValue red: 0.0 green: grn blue: 0.0).
origin := origin + 4.
gc displayRectangle: (origin extent: 400 - origin)]

Create by Hue, Saturation, and Brightness Values
Send a hue:saturation:brightness: message to the ColorValue class. The
hue argument is a number from 0 to 1, where 0 is red, 0.333 is green,
0.667 is blue, and 1 is red again. The saturation argument is a number
from 0 to 1, representing minimum vividness (white) to full color; a
more saturated color makes an object appear closer to the viewer.
The brightness argument is a number from 0 to 1, representing
minimum brightness (black) to full color; varying the brightness is
useful for representing shadows.

| gc r x y |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
r := 50.
gc lineWidth: 2.
gc translation: 150@150.
0 to: 1 by: 0.005 do: [:i |

x := (i * Float pi) cos * r.
y := (i * Float pi) sin * r / 2.
gc paint: (ColorValue hue: 0.0 saturation: 0.5 brightness: i).
gc displayLineFrom: x@y to: 0@-100].

gc translation: 200@200.
0 to: 1 by: 0.005 do: [:i |

x := (i * Float pi) cos * r.
y := (i * Float pi) sin * r / 2.
gc paint: (ColorValue hue: 0.0 saturation: 0.75 brightness: i).
gc displayLineFrom: x@y to: 0@-100].

gc translation: 250@250.
0 to: 1 by: 0.005 do: [:i |

x := (i * Float pi) cos * r.
y := (i * Float pi) sin * r / 2.
gc paint: (ColorValue hue: 0.0 saturation: 1.0 brightness: i).
gc displayLineFrom: x@y to: 0@-100]
Basic Libraries Guide 8-3

Colors and Patterns
Coloring a Graphical Object
By default, a color-based display surface (ApplicationWindow or
Pixmap) displays geometric objects in black. To change the color of an
object, set the color for the graphic context before drawing the object.
To set the color, send a paint: message to the graphics context of the
display surface with the color as argument:

| gc circle colors |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
circle := Circle center: 200@200 radius: 200.
colors := ColorValue constantNames.
colors do: [:colorName |

gc paint: (ColorValue perform: colorName).
circle := circle scaledBy: 0.9.
circle asFiller displayOn: gc]

Creating a Pattern
A Pattern is created by filling a space with a single graphic image that
is repeated in tiles. A Pattern can be used in any situation that you can
use a solid color.

To create a pattern, send an asPattern message to the graphic image
to serve as the tile:

| gc tile |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
tile := Image cincomSmalltalkLogo shrunkenBy: 4@4.
tile := tile asPattern.
gc paint: tile.
gc displayRectangle: (50@50 extent: 300@300).

The graphic image is typically an Image subclass instance, but can
also be a window, Pixmap, or Mask.

Applying a Pattern
Patterns are applied in the same way as colors. Send a paint:
message to the graphics context of the display surface on which the
object is to be displayed. The argument is a pattern, or in the case of
a Mask, a coverage.
8-4 VisualWorks

Image Color Palettes
| gc tile |
tile := Pixmap extent: 10@10.
gc := tile graphicsContext.
"Tile background"
gc paint: ColorValue chartreuse.
gc displayRectangle: (0@0 extent: 10@10).
"Tile foreground"
gc paint: ColorValue red.
gc displayDotOfDiameter: 10 at: 4@4.
"Patterned circle"
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
gc paint: tile asPattern.
gc displayDotOfDiameter: 400 at: 200@200.

Adjusting a Pattern’s Tile Phase
For some patterns, the placement of that first tile can be critical to the
pattern. By default, the first tile is placed with its upper left corner at
the origin of the display surface’s GraphicsContext.

To adjust the start location, send a tilePhase: message to the graphics
context of the display surface on which the patterned object is to be
displayed. The argument is a point that defines the origin of the first
tile in the pattern.

In the example, the tile phase is the same as the origin of the painted
object, which aligns the tiles with the top and left edges of the object.

| gc tile |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
tile := Image cincomSmalltalkLogo shrunkenBy: 4@4.
tile := tile asPattern.
gc paint: tile.
gc tilePhase: 50@50.
gc displayRectangle: (50@50 extent: 300@300).

Image Color Palettes
A Palette represents the collection of colors available for coloring
pixels. For colored objects, such as images, the color of each pixel is
stored as a numeric value. A palette is needed to translate those
numeric values to instances of ColorValue or Cover-ageValue.
Basic Libraries Guide 8-5

Colors and Patterns
Coverage Palettes
A CoveragePalette is used by Masks and masking images, to specify
levels of transparency. It has a maxPixelValue, which determines the
number of levels of transparency. Usually, maxPixelValue is set to 1,
because a pixel can only be fully transparent (pixel value 0) or fully
opaque (1).

However, you may want to allow for intermediate levels of
translucence. By specifying the maxPixelValue, you can create an
image having any number of coverage levels (currently, masks are
restricted to two levels).

Color Palettes
A color palette can be either fixed or mapped.

A FixedPalette breaks a pixel value into red, green, and blue fields,
each of which controls the intensity of that primary color.

A MappedPalette stores a table of colors, so each numeric pixel value
can be associated with an arbitrary color. A MonoMappedPalette is a
MappedPalette that contains only black and white.

Mapped palettes are most appropriate for images on color-mapped
display screens and for images that use a small number of colors.
Fixed palettes support true-color display screens that do not use a
hardware color map. Such true-color screens typically support a large
number of colors. A mapped palette for a typical true-color screen,
which has a depth of 24, requires a color mapping table with more
than 16 million elements.

To create a mapped palette, send a withColors: message to
MappedPalette, specifying an array of colors used to initialize the
palette.

A fixed palette uses RGB values. Depending on the depth of the
image, one set of RGB values might occupy 8 bits, 24 bits, or 32 bits
(or even something in between). When you create a fixed palette, you
must provide it with the means to locate the red bits, the green bits,
and the blue bits. You do so by indicating the number of the bit that
begins each RGB component as well as the maximum value for that
component. In the creation message, the starting bit is called the shift
value and the maximum value is called the mask value.

Fixed palettes for 8-bit pixel values are structured in which the high
three bits specify the red component, the next three bits the green
component, and the low two bits the blue component.
8-6 VisualWorks

Image Color Palettes
Image Display Performance
The composition of an image’s palette greatly affects the amount of
time required to display the image. An image can be displayed
quickly in either of two circumstances:

• Its palette is the same as that of the display surface

• Its palette contains only two colors, which can be rendered
without halftoning.

Otherwise, displaying the image requires creating a temporary
image, which can take a substantial amount of time. To avoid
generating a temporary image, convert the image to the native
palette and then display the converted image. For example, to
convert an image to the color palette of the default screen (and
therefore also of all windows and pixmaps on the default screen),
perform:

anImage convertToPalette: Screen default colorPalette
By default, the convertToPalette: operation employs a NearestPaint
renderer.

Device Color Map
The window manager’s color map is not accessible from within
Smalltalk. The screen’s colorPalette is assembled based on that color
map, as indicated in the following table. In the Comment column,
“Fully populated” means the VisualWorks palette is the same as the
device color map. “Partially populated” means VisualWorks uses only
a portion of the color map, leaving enough unused cells so
neighboring applications will have a chance to allocate their colors,
too. When the platform provides a hint as to the default set of colors
to be shared by applications, we use that set.
Basic Libraries Guide 8-7

Colors and Patterns
Applying a Palette to an Image
In a graphic image, each pixel is associated with a color in the
image’s palette of colors. You can effectively change one or more
colors in an image by creating a new palette with the desired colors
at the old colors positions, and then install the new palette. The new
palette must have the same number of color entries as the old
palette.

1 Create an array representing the old color palette.

To create the array, send a palette message to the image, and
then send a colors message to the resulting palette.

2 Modify the palette by replacing colors in the array as desired.

3 Create a new palette by sending a withColors: message to the
MappedPalette class, with the new array as argument.

4 Install the new palette by sending a palette: message to the
image, with the new palette as argument.

In this example, every white pixel is converted to yellow.

| gc palette image colors whiteIndex |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
image := InputFieldSpec paletteIcon asImage.
colors := image palette colors.

Screen depth Window system Palette type Comment

1 All Mapped Fully populated

2 All Mapped Fully populated

4 All Mapped Fully populated

8 X Mapped* Partially populated

8 MS-Windows Mapped Partially populated

8 Macintosh Mapped Fully populated

15 MS-Windows Fixed RGB values

16 All Fixed RGB values

24 All Fixed RGB values

32 All Fixed RGB values

* Using X, an 8-bit color map can be made fixed instead of mapped.
8-8 VisualWorks

Color Rendering Policies
whiteIndex := colors indexOf: ColorValue white.
colors at: whiteIndex put: ColorValue yellow.
palette := MappedPalette withColors: colors.
image := image palette: palette.
image displayOn: gc at: 10@10.

Converting an Image to Use the Default Palette
When a color palette differs from the palette used by the display
surface, a temporary image is created so VisualWorks can simulate
the desired colors when necessary. This step can take a significant
amount of time. To display an image quickly, convert it to use the
default palette that is used by display surfaces.

To convert the palette for an image, send a convertToPalette: message
to the image. The argument is the default color palette, which can be
accessed by sending a default message to the Screen class and then
sending a colorPalette message to the resulting screen.

| gc image |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
image := Image cincomSmalltalkLogo magnifiedBy: 2@2.
image := image convertToPalette: Screen default colorPalette.
image displayOn: gc at: 10@10.

For a coverage-based image, send a coveragePalette message instead
of colorPalette.

Color Rendering Policies
When an image makes liberal use of the color turquoise, what should
a black-and-white window do when asked to display that alien color?
How about a color window that doesn’t happen to have just the right
shade of turquoise in its palette?

VisualWorks provides three common techniques for rendering
unknown colors, represented by the classes: NearestPaint, Ordered-
Dither and ErrorDiffusion.

Any of the three can be used to render an image, but only NearestPaint
and Ordered-Dither are appropriate for rendering paints. A PaintPolicy
object holds both a paintRenderer and an imageRenderer, which may be
the same.

The default renderers are determined as follows:
Basic Libraries Guide 8-9

Colors and Patterns
NearestPaint
NearestPaint simply chooses the nearest available paint from the
screen’s palette. On color screens, NearestPaint usually produces
satisfactory results and always gives the best performance of the
three renderers.

On a limited palette, such as on a monochrome screen, the results
can be disappointing. For example, a magenta image on a
chartreuse background will result in a white rectangle, because both
colors are luminous enough to be converted to white by NearestPaint.

OrderedDither
OrderedDither employs a threshold array to synthesize unrecognized
colors by blending neighboring colors from the screen’s palette. This
has the effect of smoothing the transition from one palette color to the
next in a continuous tone. While the result is often more pleasing
than with NearestPaint, you pay a price in performance.

ErrorDiffusion
An ErrorDiffusion uses a more sophisticated blending algorithm. When
it makes a choice from the screen’s palette, it keeps track of how far
off that choice was from the requested color. When this error
accumulates sufficiently, the renderer uses the color on the other side
of the threshold.

For example, suppose that a region of the image uses a red-brown
color, but the screen’s palette has only red and brown. An
ErrorDiffusion may supply red at first, but keeps track of the numeric
difference between red and the red-brown. When that remainder
accumulates to a breakpoint, a brown pixel is displayed instead. In
this way, red and brown pixels are blended to give a red-brown effect.

NearestPaint Used by Pixmaps and Windows on color systems

OrderedDither Used by Masks on all types of screens

OrderedDither Used by Pixmaps and Windows on monochrome or
gray-scale systems
8-10 VisualWorks

Color Rendering Policies
Applying a Renderer to an Image
If an image is to be displayed repeatedly, there is a performance
advantage to converting it to use the screen’s renderer, rather than
leaving it to the display surface to perform the conversion each time
the original image is displayed on it.

To convert an image, send a convertForGraphicsDevice:renderedBy:
message to the image. The first argument is typically Screen default.
The second argument is the renderer to use.

| gc r g b im |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
im := Image

extent: 60@60
depth: 15
palette: (FixedPalette

redShift: 10 redMask: 31
greenShift: 5 greenMask: 31
blueShift: 0 blueMask: 31).

0 to: 59 do: [:x |
0 to: 59 do: [:y |

r := 1 - ((x@y - (10@10)) r / 30) max: 0.
g := 1 - ((x@y - (20@50)) r / 30) max: 0.
b := 1 - ((x@y - (50@30)) r / 30) max: 0.
im atPoint: x@y put: (im palette

indexOfPaintNearest:(ColorValue red: r green:g blue: b))]].
(im convertForGraphicsDevice: Screen default

renderedBy: NearestPaint new)
displayOn: gc at: 10@10.

(im convertForGraphicsDevice: Screen default
renderedBy: OrderedDither new)

displayOn: gc at: 80@10.
(im convertForGraphicsDevice: Screen default

renderedBy: ErrorDiffusion new)
displayOn: gc at: 150@10.

Converting an Image to a Specific Palette
The image can be converted to a palette other than the screen’s
palette. This is useful for showing what the image would look like on a
screen that has a limited palette.
Basic Libraries Guide 8-11

Colors and Patterns
Send a convertToPalette:renderedBy: message to the image, where the
first argument is the desired palette (in the example, a monochrome
palette), and the second argument is the desired renderer.

| gc r g b im |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
im := Image

extent: 60@60
depth: 15 palette: (FixedPalette

redShift: 10 redMask: 31
greenShift: 5 greenMask: 31
blueShift: 0 blueMask: 31).

0 to: 59 do: [:x |
0 to: 59 do: [:y |

r := 1 - ((x@y - (10@10)) r / 30) max: 0.
g := 1 - ((x@y - (20@50)) r / 30) max: 0.
b := 1 - ((x@y - (50@30)) r / 30) max: 0.
im atPoint: x@y put: (im palette

indexOfPaintNearest:
(ColorValue brightness: 1-((1-r)*(1-g)*(1-b))))]].

(im convertToPalette: MappedPalette whiteBlack
renderedBy: NearestPaint new)

displayOn: gc at: 10@10.
(im convertToPalette: MappedPalette whiteBlack

renderedBy: OrderedDither new)
displayOn: gc at: 80@10.

(im convertToPalette: MappedPalette whiteBlack
renderedBy: ErrorDiffusion new)

displayOn: gc at: 150@10.

Setting the Rendering Policy for Nonimage Graphics
Graphic objects other than images do not have their own color, so the
rendering is performed by the graphics context of the display surface.
To change the renderer, you install the desired renderer in the
graphics context.

Install a paint policy in the graphics context of the display surface by
sending a paintPolicy: message to the graphics context. The argument
is a PaintPolicy, typically a new instance. Then, set the rendering
algorithm by sending a paintRenderer: message to the paint policy with
either a NearestPaint or an OrderedDither as argument. (ErrorDiffusion is
only used with images).
8-12 VisualWorks

Color Rendering Policies
| gc |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
gc paintPolicy: (PaintPolicy new imageRenderer: OrderedDither new).
gc paintPolicy paintRenderer: NearestPaint new.
0 to: 60 by: 4 do: [:i |

0 to: 60 by: 4 do: [:j |
gc paint: (ColorValue red: i/60 green: j/60 blue: 0).
gc displayRectangle: (i@j+(10@10) extent: 4@4)]].

gc paintPolicy paintRenderer: (OrderedDither order: 1).
0 to: 60 by: 4 do: [:i |

0 to: 60 by: 4 do: [:j |
gc paint: (ColorValue red: i/60 green: j/60 blue: 0).
gc displayRectangle: (i@j+(80@10) extent: 4@4)]].

gc paintPolicy paintRenderer: (OrderedDither order: 6).
0 to: 60 by: 4 do: [:i |

0 to: 60 by: 4 do: [:j |
gc paint: (ColorValue red: i/60 green: j/60 blue: 0).
gc displayRectangle: (i@j+(150@10) extent: 4@4)]].

By default, a new OrderedDither has an order of 6, which means it
synthesizes 65 (2 to the sixth, plus 1) intermediate color values
between each pair of neighboring colors in the palette. You can set
the order by sending an order: message to the OrderedDither class to
create an instance; the argument is the desired order number.
Basic Libraries Guide 8-13

Colors and Patterns
8-14 VisualWorks

9

Socket Programming

Sockets provide the basic communication structure for all internet
programming in VisualWorks. The VisualWorks socket
implementation is a thin Smalltalk API to BSD (UNIX) sockets.

VisualWorks supports all BSD socket types:

• SOCK_STREAM

• SOCK_DGRAM

• SOCK_SEQPACKET

• SOCK_RAW

• SOCK_RDM

Stream sockets are the most common for internet communications,
so this chapter focuses on that type.

While all socket protocols can be used, using the “raw” protocol, only
TCP and UDP protocols are explicitly supported by VisualWorks. Not
all socket options are supported, or supported well, at this time.

Socket communication is a peer-to-peer conversation; both “client”
and “server” sockets are identical kinds of things. They are
configured differently, however, so that a “server” socket listens for
connection requests from “clients.” VisualWorks allows you to
implement both.

In the abstract, sockets are very simple. However, the intricacies of
making a socket-based application robust across multiple platforms
requires perseverance and practice. Those complications are
(mostly) beyond the scope of this document.
Basic Libraries Guide 9-1

Socket Programming
VisualWorks Implementation Classes
Socket support is provided primarily in these classes:

SocketAccessor

Corresponds to the BSD notion of a socket, and provides the
creation and connection protocol.

SocketAddress

Corresponds to the BSD sockaddr C-structure. For internet
purposes, the IPSocketAddress subclass is the most important,
since it provides for identifying an address by host name or IP
address, and port number.

Socket Basics
Creating a socket is a simple matter of sending the appropriate
socket creation message to class SocketAccessor. The basic
procedure is essentially the same in VisualWorks as it is in other
programming environments that implement BSD sockets.

For simplicity, convenience methods for creating server and client
TCP (Transmission Control Protocol) and UDP (User Datagram
Protocol) sockets are provided. We’ll create a simple TCP client and
server using the convenience methods to illustrate a simple pattern
for implementing both.

Creating a socket
The bare socket creation protocol identifies the address family, the
socket type, and possibly the protocol family:

family: addrFamily type: sockType

Creates a socket for family addrFamily of socket type sockType.
The protocol family defaults to PF_UNSPEC.

family: addrFamily type: sockType protocol: protoFamily

Creates a socket for family addrFamily of socket type sockType,
and protocol family protoFamily.
9-2 VisualWorks

Socket Basics
The arguments are integer identifiers, but can be supplied by
SocketAccessor class methods that return the appropriate identifier.
For example, to create a TCP socket for transferring streams of ASCII
data, you can define the socket like this:

sockAccessor := SocketAccessor family: SocketAccessor AF_INET
type: SocketAccessor SOCK_STREAM

Browse the SocketAccessor class method categories constants-address
families, constants-socket types, and constants-protocol families for the
complete set of defined identifiers. The method names are the BSD
API family and type names.

Making a client or server socket
Whether a socket is a service provider (“server”) or user (“client”), it is
the same kind of object. The difference is how it connects to other
sockets: a client “connects” to a server socket at an IP address, and a
server “listens” on (or “binds” to) an IP address (a local address) on
which it is to provide services.

The IP address is represented by an instance of IPSocketAddress. The
address can be defined by host name or IP address, and either with
or without a port number. The available creation messages are:

hostAddress: ipAddress

Creates a new IPSocketAddress for the host specified by
ipAddress, with the port unspecified. ipAddress is specified as an
array of integers (see below).

hostAddress: ipAddress port: portNo

Creates a new IPSocketAddress for the host specified by ipAddress
on port portNo.

hostName: ipName

Creates a new IPSocketAddress for the host specified by ipName,
with the port unspecified.

hostName: ipName port: portNo

Creates a new IPSocketAddress for the host specified by ipName
on port portNo.
Basic Libraries Guide 9-3

Socket Programming
thisHostAnyPort

Creates a new IPSocketAddress for the local machine’s IP address,
with a system-assigned port number. (Send getName to the to
socket to get the assigned IPSocketAddress.)

For example, these both create new IPSocketAddress instances:

sockAddr := IPSocketAddress hostAddress: #[128 16 16 101]
sockAddr := IPSocketAddress hostName: ‘bob.myco.com’ port: 10559

The port number is typically specified by the service you are
accessing, which assigns the port that the server is “listening” on.
Many common services have reserved, well-known, port numbers.
For example, port 80 is reserved for HTTP (web) servers, and port 21
is reserved for the FTP control channel. (Refer to Port numbers for
more information.)

A client socket typically makes a connection to a server socket. To do
this, send a connectTo: message to the socket with an IPSocketAddress
for the server as the argument:

sockAddr := IPSocketAddress hostName: ‘bob.myco.com’ port: 10559.
sockAccessor := SocketAccessor family: SocketAccessor AF_INET

type: SocketAccessor SOCK_STREAM.
sockAccessor connectTo: sockAddr.

This is essentially what newTCPclientToHost:port: does in a single
message. At this point the client can read and write data on the
socket.

.A server, on the other hand, binds to the IP address on which it
offers services, i.e., on which it is willing to accept connections. To do
this, send a bindTo: message to the socket with the IPSocketAddress as
the argument:

sockAddr := IPSocketAddress hostName: ‘bob.myco.com’ port: 10559.
sockAccessor := SocketAccessor family: SocketAccessor AF_INET

type: SocketAccessor SOCK_STREAM.
sockAccessor bindTo: sockAddr.

The server then listens on the socket for incoming connection
requests. To begin listening, send a listenFor: message to the socket
with an integer argument specifying the maximum number of
connection requests the OS will queue up at one time:

sockAccessor listenFor: 5.
9-4 VisualWorks

Socket Basics
Multiple connection requests may come in all at once, and you don’t
want to lose them, or at least not all of them. The queue size
specifies how many will be held in the backlog for pending
connection. Setting the queue size to 5 means 6 connection requests
can be handled at once; one being processed and 5 in the backlog.
This is also a typical system maximum. Setting it to 0 allows handling
only one connection request at a time.

When a connection request does come in, the socket needs to
accept the request. To do this, send an accept message to the socket:

sockAccessor accept.
This creates a new socket on which the server handles
communication with the client, and clears the listening socket to
handle the next incoming connection request. Your application
program will need to loop on the accept message so more than one
connection will be accepted. This is illustrated below.

The original socket continues listening for connection requests.

Closing a socket
When you are finished using a SocketAccessor, you need to close the
connection. Two methods are available:

close

Informs the OS that the accessor's handle should be released.
Also, removes registry references. (Defined in
BlockableIOAccessor.)

shutdown: anInteger

Inform the SocketAccessor that no more IO will be performed: 0 --
read channel 1 -- write channel 2 -- both

shutdown: 2 is more dramatic (and faster) than close because it
discards any pending data anywhere along the network path.
Buffered data on the receiving end may also be lost.

When a Stream is opened on a SocketAccessor, sending close to the
Stream also closes the socket.

Note that closing a socket involves network traffic, if the network is
down an error will result.
Basic Libraries Guide 9-5

Socket Programming
Port numbers
Some services are provided by a server only on a specific port
number.

You can get the port number for many standard services in either of
two ways. You can send the servicePortByName: message to
IPSocketAddress, with the name of the service as a String:

IPSocketAddress servicePortByName: ‘ftp’
This retrieves the port number from a file, usually called services, on
your system (e.g., /etc/services, or c:\windows\services).

Alternatively, a number of service ports are returned by class
methods in SocketAccessor, in the constants-well known ports method
category:

SocketAccessor IPPORT_FTP
Non-standard services typically use large (four digits or more)
numbers to avoid conflicts, just as we’re using 9009 in the example.

Even many four-digit numbers are reserved. For a list of “reserved”
port numbers, see http://www.graffiti.com/services.

“Well-known” ports are controlled by the IANA. An up-to-date list is
available from http://www.iana.org/assignments/port-numbers.

Building a TCP socket client
TCP socket clients are the most common clients for internet
communications. To simplify creating and connecting a TCP client
socket, VisualWorks provides the message newTCPclientToHost:port:.
Send this message to SocketAccessor, as follows:

sockAccessor := SocketAccessor newTCPclientToHost: 'hostname'
port: 9009

This one line both creates the socket and connects it to the specified
host and port, reducing three lines to one.

The socket is now ready to read and write data, but we need to
decide how to do that. For the moment we’ll use Streams as a simple
read/write interface to our socket.

To attach a read/write stream to the socket, send the
readAppendStream message to the SocketAccessor:

stream := sockAccessor readAppendStream
9-6 VisualWorks

http://www.graffiti.com/services
http://www.iana.org/assignments/port-numbers

Socket Basics
The Stream could also have been created as a readStream or a
writeStream, but for most purposes you need a read/write stream.

Once you have the socket open and a stream attached to it, you are
ready to begin sending and/or receiving data using the usual Stream
protocols. (See Stream Style Communication for more information.)

For example, the following is a simple-minded log-in and close
exchange with an FTP server that simply dumps the server
responses to the Transcript. Stream protocol is used for sending the
login commands and receiving the responses.

| sockAccessor stream |
"connect a stream socket"

sockAccessor := SocketAccessor
newTCPclientToHost: 'ftp.parcplace.com' port: 21.

stream := sockAccessor readAppendStream.
"Set the FTP line-end convention"

stream lineEndCRLF.
"Read the server connection response before logging in"

Transcript nextPutAll: (stream upTo: Character cr) ; cr ; flush .
"Log in, writing responses to Transcript"

stream nextPutAll: 'USER anonymous'; cr ; commit.
Transcript nextPutAll: (stream upTo: Character cr) ; cr ; flush.
stream nextPutAll: 'PASS test@parcplace.com' ; cr ; commit.
Transcript nextPutAll: (stream upTo: Character cr) ; cr ; flush.

"close everything down"
stream close. "closes both the stream and the socket"

Obviously, there is a lot more work to do to make an interesting
session.

Building a TCP socket server
A socket server has more responsibility than does a client, and so is
a little more complex. Instead of connecting to a port, the server has
to listen for a connection request on a port.

Analogous to the client, we create a TCP server socket by sending
newTCPServerAtPort: to SocketAccessor:

sockAccessor := SocketAccessor newTCPServerAtPort: 9009
This line creates the AF_INET socket and binds it to the host at the
specified port, on which it will accept connection requests. We’ll use
a good, high port number that isn’t currently reserved for anything.
Basic Libraries Guide 9-7

Socket Programming
Next, the server needs to start listening for connection requests. To
do this, send a listenFor: message to the socket, with the maximum
number of pending connection requests the OS should queue up
before rejecting requests (not the number of connections):

sockAccessor listenFor: 5
At this point the socket is set up and listening for connection
requests. To accept a request, send the accept message to the
socket. When a connection request is received, accept returns a new
SocketAccessor connected to that client:

newSocket := sockAccessor accept.
This message blocks, and will wait indefinitely for a connection
request.

When a request comes in, the message returns a new SocketAccessor
over which the server can communicate with the client. The original
server socket itself returns to listening for and accepting further
connection requests.

Clearly, to accept multiple connections, the server must loop on the
accept message, and the new connections will need to be handled.
One simple way is to fork a process for each new connection.
Another is to use the non-blocking version of accept,
acceptNonBlocking, and use the equivalent of the BSD select()
command. The latter approach will be described later.

Having accepted the connection, we attach a Stream to the socket, to
provide a simple read/write protocol:

newStream := newSocket readAppendStream
Here’s a simple way to fork the new socket process that can be run in
a workspace. All the server does in this example is return anything
the client sends to it:

| server |
server := SocketAccessor newTCPserverAtPort: 9009.
server listenFor: 5.
[| acceptedSocket |

"wait for a new connection"
acceptedSocket := server accept.
"fork off processing of the new stream socket"
[| stream char |

stream := acceptedSocket readAppendStream.
stream lineEndTransparent.
[(char := stream next) isNil] whileFalse: [

stream nextPut: char; commit].
9-8 VisualWorks

Socket Basics
stream close. "close the stream when client disconnects"
] forkAt: Processor userSchedulingPriority -1.

] repeat. “end loop”
You can use your favorite telnet client to connect to port 9009 of your
machine (‘localhost’) to test this server.

Building UDP socket clients and servers
The UDP protocol is the protocol for transferring datagrams. It is
referred to as a “connectionless” protocol, meaning that it usually
does not hold open a connection the way a TCP connection does.

The UDP protocol does not give any guarantee that datagram
packets are received in any particular order, or that they are received
at all, as TCP does. Packets may also get duplicated. Responsibility
for acknowledging receipt of a packet and reassembling the packets
in order is the responsibility of your application. We do not cover
these details here.

To create a UDP socket, two instance creation convenience methods
are provided:

newUDP

Creates a UDP socket with the local machine as host on a
system assigned port.

newUDPserverAtPort: portNo

Creates a UDP socket with the local machine as host on portNo.

Both of these methods create the socket and bind it to an
IPSocketAddress. newUDP is most appropriate for clients, since the port
number isn’t usually important, and the server gets the address when
it receives a message (see below). You can use newUDP for a server
as well, but you will have to then make the system-assigned port
number known somehow; typically you want to specify the port
number.

The long version of the server creation sequence, specifying port
9009, is:

| sockAccessor sockAddr |
sockAccessor := SocketAccessor family: SocketAccessor AF_INET

type: SocketAccessor SOCK_DSOCK.
sockAddr := IPSocketAddress hostAddress: IPSocketAddress thisHost

port: 9009.
sockAccessor bindTo: sockAddr.
Basic Libraries Guide 9-9

Socket Programming
For a system-assigned port, the port can be specified as 0, the
anonymous port. The system then assigns the port.

Since UDP is a connectionless protocol, there is no equivalent to the
connectTo: or accept operations (though there is a “connected mode”
which we’ll describe below). Instead, communication is performed
using the sendTo:/receiveFrom: idiom, (see SendTo:/ReceiveFrom:
style communication).

A very simple UDP server that receives a packet from any client, and
does nothing with it except record the fact by writing “Received” to the
Transcript, might look like this:

| server peerAddr |
server := SocketAccessor newUDPserverAtPort: 9009.
peerAddr := IPSocketAddress new.
buffer := ByteArray new: 1024.
[server readWait.
server receiveFrom: peerAddr buffer: buffer.
Transcript show: ‘Received’ ; cr ; flush.] repeat.

After receiving a message, the server knows the address of the
client, which is now held in peerAddr. This address can be used for
sending back an acknowledgement, or stored in a collection for
broadcasting messages back to all clients (see the chat server
example in SocketAccessor).

An equally simple-minded client that only sends a message to the
server would be the following:

| client serverAddr buffer |
client := SocketAccessor newUDP.
serverAddr := IPSocketAddress hostName: 'bruce-linux' port: 9009.
buffer := 'This is a udp test packet'
client sendTo: serverAddr buffer: buffer.
client close.

The client doesn’t care what its port number is, so newUDP is
appropriate as the creation message. It does need the server
address and port number, which is uses for the sendTo: message. To
receive an acknowledgement, it would have to do a receiveFrom:.

Connected UDP
UDP sockets are usually connectionless, as shown above. There is a
use for connected UDP sockets, however, namely that using a
connected UDP socket is the only way that the client can receive
ICMP error messages back from the server.
9-10 VisualWorks

Reading from and Writing to a Socket
When in connectionless mode, the socket must use sendTo: and
receiveFrom: messages. If the client sends a connectTo: message,
however, the IPSocketAddress to which it connects becomes the
default address, and it can now send and receive using the read/write
idiom.

There is still no equivalent to accept on the server side; it continues to
operate connectionless. The differences are entirely on the client
side. Notably, when connected, only datagram packets received from
the connected peer are returned; all others are ignored.

Reading from and Writing to a Socket
Once you have a socket created and connected, you have your
choice of methods for communicating over that socket.

The simplest defines a read and/or write stream on the socket, and
then communicates using the usual Stream protocol.

Slightly more complicated, but familiar to users of sockets especially
in Unix environments, are the “read/write” and “sendto/recvfrom”
idioms.

Stream Style Communication
Creating a Stream on a socket provides a simple method of
communicating over a socket. The Stream protocol handles a number
of issues that can complicate communication, such as coordinating
reading and writing.

Using Stream protocols has been illustrated in the examples above.
This is a simple mechanism familiar to Smalltalk programmers, and is
quite straight-forward, except to note that you do need to send a
commit message to clear the Stream, to ensure that the entire
contents of the buffer is written.

An important sampling of the protocol for reading and writing a socket
stream is (assuming String and Character data):

next

Read and return the next Character on the Stream.
Basic Libraries Guide 9-11

Socket Programming
upTo: anObject

Read and return a subcollection from the current stream position
up to, but excluding, the first occurrence of the specified
Character.

throughAll: aCollection

Read and returns the Stream from the current position up to, and
including, the first occurrence of aCollection, typically a String.

nextPut: anObject

Write the specified Character onto the Stream.

nextPutAll: aCollection

Write the specified String onto the Stream.

flush

Write any unwritten data in the buffer.

commit

Writes any buffered data to the OS.

Browse the accessing method category in the Stream class for other
important messages.

Note that a socket stream does not usually have an end-of-file (EOF)
until the socket is closed (when read(2) returns 0). Accordingly the
upToEnd message blocks until the socket has closed, and so must be
used with care.

In various examples in the chapter we use both flush and commit
messages. We use flush on internal stream writing to the Transcript,
just so the data goes somewhere. And, we send commit, on the other
hand, to the stream on a socket, which is an external stream, to
ensure that the data is written out to the OS. The commit message, in
this context, is equivalent to flush() on UNIX systems. Sending a flush
message generally works as well.

Positioning on a Stream
A Stream on a socket is not positionable, or at least not reliably so. For
positioning on a socket stream, limit yourself to the following
messages:
9-12 VisualWorks

Reading from and Writing to a Socket
peek

Answer what would be returned with a self next, without changing
position. If the receiver is at the end, answer nil.

peekFor: anObject

Answer false and do not move the position, if the next object is not
anObject, or if the receiver is at the end. Answer true and
increment the position if the next object is anObject.

skipToAll: aCollection

Skip forward to the next occurrence (if any) of aCollection. If
found, leave the stream positioned before the occurrence, and
answer the receiver; if not found, answer nil, and leave the
stream positioned at the end.

throughAll: aCollection

Answer a subcollection from the current position through the
occurrence (if any, inclusive) of aCollection, and leave the stream
positioned after the occurrence. If no occurrence is found, answer
the entire remaining stream contents, and leave the stream
positioned at the end.

upToAll: aCollection

Answer a subcollection from the current position up to the
occurrence (if any, not inclusive) of aCollection, and leave the
stream positioned before the occurrence. If no occurrence is
found, answer the entire remaining stream contents, and leave
the stream positioned at the end.

skipUpTo: anObject

Skip forward to the occurrence (if any, not inclusive) of anObject.
If not there, answer nil. Leaves positioned before anObject.

Line-end conversion
Different operating systems and different protocols use different line-
end conventions, to indicate the end of a line in a text (ASCII) file. For
example, DOS/Windows CR-LF (carriage-return/line-feed), UNIX
uses LF, and Macintosh uses CR. Also, the FTP specification (RFC
959) gives 8-bit ASCII as the default data format, with CR-LF as the
line-end convention. Accordingly, converting line-end characters is
necessary in some Stream transactions, such as file transfers.
Basic Libraries Guide 9-13

Socket Programming
VisualWorks internally uses CR as the line-end character, and, based
on the operating system platform, assumes what a file’s line-end
convention is and converts accordingly. So, if reading a file on a
Windows system, it assumes the line-end is CR-LF, and converts it to
CR upon reading. Similarly, when writing, it converts its internal CR to
a CR-LF, so the file is stored properly according to the platform.

With data and stream formats coming over a socket connection, it is
not as obvious what convention to follow for reading and writing
streams. VisualWorks provides the following simple protocol for
specifying the proper conversion:

lineEndCR

Converts between VisualWorks’ line-end and CR.

lineEndLF

Converts between VisualWorks’ line-end and LF.

lineEndCRLF

Converts between VisualWorks’ line-end and CRLF.

lineEndTransparent

Does no line-end conversion.

For example, with a read/write Stream on a socket doing FTP
transfers, you can specify lineEndCRLF on the Stream. Then, on a read
CRLF is converted to VisualWorks’ internal CR representation, and
on a write the VisualWorks is converted to CRLF for FTP
conventions. The conversion is handled automatically.

We did this in the simple FTP example earlier in this chapter. It began
like this:

sockAccessor := SocketAccessor
newTCPclientToHost: 'ftp.parcplace.com' port: 21.

stream := sockAccessor readAppendStream.
"Set the FTP line-end convention"
stream lineEndCRLF.

By converting to CR within VisualWorks, searching up to an end-of-
line is simplified. Instead of having to know whether you are reading a
stream up to CR, LF, or CRLF to get a line, you can simply do:

line := stream upTo: Character cr.
9-14 VisualWorks

Reading from and Writing to a Socket
Similarly, you can terminate a line simply with cr:

stream nextPutAll: buffer ; cr ; flush.
The conversion is handled by the specified line end convention for the
stream.

In some cases, however, you do not want the line-ends converted at
all. In this case, specify lineEndTransparent, and VisualWorks does no
conversion.

Waiting for data
For process synchronization, you should tell the read and write
processes to wait until data is available. This is handled “under the
covers” by the streaming mechanism. For the read/write and send/
receive idioms described below, however, you need to use readWait
and writeWait messages to wait for data. readWait and writeWait
employ semaphores for signaling when data is ready.

You may be able to get by for some limited testing without using
these, but in the long run you will need them. So, get used to using
these messages, as illustrated in the following sections.

readWait

Blocks indefinitely, until there is data on the socket to read, then
signals to proceed.

readWaitWithTimeoutMs: anInteger

Blocks until there is data on the socket to be read, then signals to
proceed, or times out after the specified number of milliseconds.
Returns true if a time-out occurred, or false otherwise.

writeWait

Blocks indefinitely, until there is data in the buffer to write, then
signals to proceed.

writeWaitWithTimeoutMs: anInteger

Blocks until there is data in the buffer to be written, then signals
to proceed, or times out after the specified number of
milliseconds. Returns true if a time-out occurred, or false
otherwise.
Basic Libraries Guide 9-15

Socket Programming
Read/Write Style Communication
The read/write idiom uses the protocol defined for a general, buffered
I/O in class IOAccessor. In general, this provides support for the
read(2) and write(2) buffered I/O defined on UNIX (but see the note
below). The read/write idiom only makes sense for “connected”
socket protocols, such as TCP.

The read/write messages should only be used with streaming
sockets (type SOCK_STREAM). For “connectionless” protocols, like
UDP, and other socket types, use the send/receive commands.

The readInto:* and writeFrom:* commands map to read(2) and write(2)
on all platforms except Windows, where they map to recvfrom(2) and
sendto(2). Because the error messages returned are different, the
readInto:* and writeFrom:* messages are not cross-platform
compatible.

Reading and writing is done through a buffer, which is either a
ByteArray or a String. The buffer itself is under application control, and
must be managed appropriately. It is also the responsibility of the
application to read from or write to the socket from the buffer
precisely the intended amount of data.

The basic protocol is as follows. Browse the IOAccessor class for
additional methods.

readInto: aBuffer

Attempts to read bytes into aBuffer, until either the buffer is filled
or data is exhausted. Returns the number of bytes actually read,
as a SmallInteger.

readInto: aBuffer startingAt: index for: count

Attempts to read up to count bytes into aBuffer, starting at index
in aBuffer. Returns the number of bytes actually read, as a
SmallInteger.

readInto: aBuffer untilFalse: aBlock

Attempts to read bytes into aBuffer until aBlock evaluates to false
or the buffer is filled. aBlock is a one-arg block that is sent the
count thus far. While it evaluates to true, reads are repeated, up
to the size of the buffer. Returns the number of bytes actually
read, as a SmallInteger.
9-16 VisualWorks

Reading from and Writing to a Socket
writeAll: aBuffer

Attempts to write all data from the buffer onto the socket. Ensures
that the number of bytes written is the same as the buffer size,
unless an error occurs. Returns the number of bytes actually
written, as a SmallInteger.

writeFrom: aBuffer

Attempts to write all data from the buffer onto the socket. Returns
the number of bytes actually written, as a SmallInteger.

writeFrom: aBuffer startingAt: index for: count

Attempts to write count bytes onto the socket, starting at index in
aBuffer. Returns the number of bytes actually written, as a
SmallInteger.

writeFrom: aBuffer startingAt: index forSure: count

Attempts to write count bytes onto the socket, starting at index in
aBuffer. Ensures that count bytes are written, unless an error
occurs. Returns the number of bytes actually written, as a
SmallInteger.

writeFrom: aBuffer startingAt: index for: count untilFalse: aBlock

Attempts to write bytes onto the socket, starting at index in
aBuffer, until either aBlock answers false or count bytes are
written. aBlock is a one-arg block which is sent the number of
bytes written thus far. Returns the number of bytes actually
written, as a SmallInteger.

The following simple example collects text from a dialog, writes the
text out on a socket and reads the reply, displaying it in the Transcript.
Used with the server example above, it receives what it sent.

It maintains two buffers, one for reading and one for writing. The write
buffer is filled with text received from the dialog using Stream
messages, and the buffer contents are then written. Similarly, the
read buffer is filled from the socket, and the buffer contents is then
written to the Transcript using a Stream. The streams themselves,
however, are not involved in the socket communication.

sockAccessor := SocketAccessor
newTCPclientToHost: 'bruce-linux' port: 6001.

buffer1 := ByteArray new: 100.
buffer2 := ByteArray new: 100.
outProc := [[(inputString := Dialog request: 'Say something') isEmpty]
Basic Libraries Guide 9-17

Socket Programming
whileFalse: [
sockAccessor writeWait.
outStream := (buffer1 withEncoding: #UTF_8) writeStream.
outStream nextPutAll: inputString ; cr.
sockAccessor

writeFrom: buffer1 startingAt: 1 for: inputString size + 1.]]
forkAt: Processor activePriority -1.
inProc := [[| size |

(sockAccessor readWaitWithTimeoutMs: 10000)
ifTrue: [sockAccessor close. ^nil].

size := sockAccessor readInto: buffer2.
inStream := (buffer2 withEncoding: #UTF_8) readStream.
1 to: size do: [:x |
"next line should use ForkedUI"
Transcript nextPut: inStream next ; flush]] repeat
] forkAt: Processor activePriority -1

Note that putting data to the Transcript, near the end, is performing a
UI operation in a forked process. This may cause VisualWorks to
crash since the UI is not thread safe. This code should use ForkedUI,
as described in the Application Developer’s Guide.

Since each successive input string can be of different length, and we
only want to write out the current string, not the entire buffer with any
old data or filler zeros, we use the writeFrom:startingAt:for: message,
so just the right part of the buffer is written.

For the read, on the other hand, we want to accept all the data that
the socket has to offer, so we use simply the readInto: message. But,
since we only want to process the new data received, we capture the
number of bytes read and use it when writing to the Transcript.

Notice also the use of writeWait and readWaitWithMs:. Waiting for data
is in general a good practice and will prevent some errors. Using the
time-out version on waiting for read data isn’t necessary, but does
allow us to give up and close a connection, as shown. Here, if there is
no data to read for 10 seconds, we give up and close the socket.

SendTo:/ReceiveFrom: style communication
The send/receive idiom provides a socket-specific interface, similar to
that provided under UNIX by sendto(2), recvfrom(2) and select(2). This
idiom gives you access to all socket behavior, regardless of the
socket type or protocol, except for socket type SOCK_RAW.
9-18 VisualWorks

Reading from and Writing to a Socket
The send/receive idiom is very similar to the read/write idiom
described above, except that send/receive messages specify the
socket accessor, and they require synchronization using readWait and
writeWait. These are described in Waiting for data.

The send and receive protocol is as follows:

receiveFrom: aSocketAddress buffer: aBuffer

Attempts to read bytes from host aSocketAddress into aBuffer.
Returns the number of bytes actually read. As a side effect,
aSocketAddress is set to the sender’s IPSocketAddress.

receiveFrom: aSocketAddress buffer: aBuffer start: index for: count

Attempts to read count bytes from host aSocketAddress into
aBuffer, starting at index. Returns the number of bytes actually
read. As a side effect, aSocketAddress is set to the sender’s
IPSocketAddress.

receiveFrom: aSocketAddress buffer: aBuffer start: index for: count
flags: flags

Attempts to read count bytes from host aSocketAddress into
aBuffer, starting at index. flags is a SmallInteger specifying any
special requirements. Returns the number of bytes actually read.
As a side effect, aSocketAddress is set to the sender’s
IPSocketAddress.

sendTo: aSocketAddress buffer: aBuffer

Attempts to write bytes from aBuffer to the host aSocketAddress.
Returns the number of bytes actually written.

sendTo: aSocketAddress buffer: aBuffer start: index for: count

Attempts to write count bytes from aBuffer, starting at index, to
host aSocketAddress. Returns the number of bytes actually
written.

sendTo: aSocketAddress buffer: aBuffer start: index for: count
flags: flags

Attempts to write count bytes from aBuffer, starting at index, to
host aSocketAddress into. flags is a SmallInteger specifying any
special requirements. Returns the number of bytes actually
written.
Basic Libraries Guide 9-19

Socket Programming
Modifying our previous example slightly, we get the same effect:

sockAccessor := SocketAccessor
family: SocketAccessor AF_INET
type: SocketAccessor SOCK_STREAM.

sockAddr := IPSocketAddress hostName: 'bruce-linux' port: 6001.
sockAccessor connectTo: sockAddr.
buffer1 := ByteArray new: 100.
buffer2 := ByteArray new: 100.
outProc := [[(inputString := Dialog request: 'Say something') isEmpty]

whileFalse: [
sockAccessor writeWait.
outStream := (buffer1 withEncoding: #UTF_8) writeStream.
outStream nextPutAll: inputString ; cr.
sockAccessor sendTo: sockAddr buffer: buffer1 start: 1

for: inputString size + 1.]
] forkAt: Processor activePriority -1.

inProc := [[| size |
sockAccessor readWait.
size := sockAccessor receiveFrom: sockAddr buffer: buffer2.
inStream := (buffer2 withEncoding: #UTF_8) readStream.
1 to: size do: [:x |
"next line should use ForkedUI"
Transcript nextPut: inStream next ; flush]] repeat
] forkAt: Processor activePriority -1

Creating a socket is exactly the same, though in the example above
we show a variant, defining the socket and then connecting to the
host as a separate operation. We do that here because we have to
hold a SocketAddress to the host anyway, for use by the send and
receive commands.

Send/Receive Flags
The argument to the flags: keyword in the
receiveFrom:buffer:start:for:flags: and sendTo:buffer:start:for:flags:
messages specify special handling, as required. The argument is a
SmallInteger, but is provided by using defined constants. Three flags
are implemented:

MSG_OOB

Permits processing out-of-bounds data. (Caution: this doesn’t
work properly at this time.)

MSG_PEEK

Causes the receiver to return data from the beginning of the
receive buffer, without removing the data from the buffer.
9-20 VisualWorks

Socket Error Handling
MSG_DONTROUTE

Sends data without using routing tables.

These constants are implemented as class messages, so the value is
accessed, for example, by:

optionFlags := SocketAccessor MSG_OOB
sockAccessor receiveFrom: host buffer: buffer start:1 for: 10 flags:
optionFlags

To use multiple flags, you can use bitOr: :

optionFlags := SocketAccessor MSG_OOB bitOr: SocketAccessor
MSG_PEEK

Socket Error Handling
Sockets are an operating system provided feature, so socket
communication errors are caught as subclasses of OSError.

As the above table indicates, the error classes alone provide only a
very coarse-grained view of the errors that might be returned by a
socket. Accordingly, error trapping code such as:

[code that can fail with EACCES]
on: OsInaccessibleError
do: [:ex | ex someAction]

OSError Subclass OS Errors Covered

OsIllegalOperation EAFNOSUPPORT, EISCONN, EISDIR,
ENOTCONN, ENOTDIR, ENOTSOCK,
EOPNOTSUPP

OsInaccessibleError EACCES, EADDRINUSE, ENOENT, EPERM,
EROFS

OsInvalidArgumentErro
r

EBADF, EFAULT, EINVAL, ELOOP, EMSGSIZE,
ENAMETOOLONG

OsNeedRetryError EAGAIN, EALREADY, EINTR, EWOULDBLOCK

OsNoResourcesError ENOBUFS, ENOMEM

OsNotification EINPROGRESS

OsTransferFaultError ECONNREFUSED, EIO, ENETUNREACH,
ENOSPC, EPIPE, ETIMEDOUT
Basic Libraries Guide 9-21

Socket Programming
will respond to errors EACCES, EADDRINUSE, ENOENT, EPERM,
or EROFS. This is usually too coarse.

For a finer granularity, most OS errors are represented by instances
of Signal. (Error handling in VisualWorks was done using instances of
Signal before the ANSI-compliant, class-based exception system was
introduced in 3.0).

While not as fine-grained as the socket errors coming from the OS, it
is considerably better, and adequate for most purposes.

OsError subclass OSErrorHolder signal OS socket error

OsIllegalOperation inappropriateOperationSi
gnal

EISDIR, ENOTDIR,
ENOTSOCK,
EOPNOTSUPP

unpreparedOperationSig
nal

EISCONN, ENOTCONN

unsupportedOperationSi
gnal

EAFNOSUPPORT

OsInaccessibleError existingReferentSignal EADDRINUSE

nonexistentSignal ENOENT

noPermissionsSignal EACCES, EPERM,
EROFS

OsInvalidArgumentsErr
or

(None) EFAULT, EINVAL

badAccessorSignal EBADF

rangeErrorSignal ELOOP, EMSGSIZE,
ENAMETOOLONG

OsNeedRetryError notReadySignal EAGAIN, EALREADY,
EWOULDBLOCK

transientErrorSignal EINTR

OsNoResourcesError noMemorySignal ENOBUFS, ENOMEM

OsNotification operationStartedSignal EINPROGRESS

OsTransferFaultError (None) EIO

peerFaultSignal ECONNREFUSED,
ENETUNREACH, EPIPE,
ETIMEDOUT

volumeFullSignal ENOSPC
9-22 VisualWorks

Socket Error Handling
The signals are returned by messages sent to the OSErrorHolder
class, where the message name is the same as the signal shown
above. To use the signals, we slightly modify the schematic example
above:

[code that can fail with EACCES]
on: OSErrorHolder noPermissionsSignal
do: [:ex | ex someAction]

The more specific exception, or Signal, is referenced by the
expression OSErrorHolder noPermissionsSignal. The exception handler
now responds to EACCES, EPERM, and EROFS, but not to
EADDRINUSE or ENOENT, a small improvement. It is, however, a
much larger improvement than appears, because there is a large
number of other OS errors that would trigger OsInaccessibleError, but
not OSErrorHolder noPermissionsSignal.

Note that EFAULT, EINVAL, and EIO do not have a Signal, but map
directly to an exception class (OsInvalidArgumentsError for EFAULT and
EINVAL, and for OsTransferFaultError EIO).

Also, be aware that not all operating systems return the same error
code for a given error; there is some variation. This can be important
for applications that are portable between operating systems, where
you may have to trap more than one error to catch an exception
condition.

If your application needs to distinguish specific conditions for which a
Signal is not provided, you can add it. Browse the initialization class
methods in OSErrorHolder for examples. The system looks up the error
by its error code (using reportOn: and similar messages), some of
which are shown below.

Below are the error names, numbers, and brief descriptions that may
be returned by the principle socket commands. On MS Windows, the
names are prefixed with “WSA” and the error codes are 10000 higher
than on UNIX systems.
Basic Libraries Guide 9-23

Socket Programming
Error Name Description Code Win Code

EPERM Operation not permitted 1 10001

ENOENT No such file or directory 2 10002

EINTR Interrupted system call 4 10004

EIO I/O error 5 10005

EBADF Bad file number 9 10009

EAGAIN Try again 11 10011

ENOMEM Out of memory 12 10012

EACCES Permission denied 13 10013

EFAULT Bad address 14 10014

ENOTDIR Not a directory 20 10020

EISDIR Is a directory 21 10021

EINVAL Invalid argument 22 10022

ENOSPC No space left on device 28 10028

EROFS Read-only file system 30 10030

EPIPE Broken pipe 32 10032

ENAMETOOLONG File name too long 36 10036

ELOOP Too many symbolic links
encountered

40 10040

ENOTSOCK Socket operation on non-socket 88 10088

EMSGSIZE Message too long 90 10090

EAFNOSUPPORT Address family not supported by
protocol

97 10097

EADDRINUSE Address already in use 98 10098

ENETUNREACH Network is unreachable 101 10101

ENOBUFS No buffer space available 105 10105

EISCONN Transport endpoint is already
connected

106 10106

ENOTCONN Transport endpoint is not
connected

107 10107

ETIMEDOUT Connection timed out 110 10110

ECONNREFUSED Connection refused 111 10111
9-24 VisualWorks

Option level control
Trapping socket and protocol errors
The various protocols discussed in the following chapters have their
own error classes. Sometimes you need to trap both protocol-specific
and general socket errors. You do this by nesting on:do: statements.

For example, attempting to establish an HTTP connection may fail
because there is no internet connection at all. This produces a socket
error rather than an HTTP error. However, if the socket succeeds, an
HTTP error may still occur. To trap both, use a construct such as:

client := HttpClient new.
req := HttpRequest get: 'http://www.some.net/page.html'.
[[resp := client executeRequest: req]

on: OS.OsInaccessibleError
do: [:y | y inspect. "dialog - no connection"]
] on: HttpException do: [:ex | ex proceed]

Option level control
The socket level options controls the operation of sockets. Options
may exist at multiple protocol levels, and all are available at the
socket level.

Protocols and options are identified by integer values

To get and set an protocol option, send these messages:

setOptionsLevel: protoInt name: optInt value: value

Sets the option optInt for protocol protoInt to value.

getOptionsLevel: protoInt name: optInt

Returns the value of option optInt for protocol protoInt.

Protocol levels and options are identified by integer values. For
convenience, many of these are represented by class methods,
whose selectors are the protocol and option names, that return the
integer values.

EALREADY Operation already in progress 114 10114

EINPROGRESS Operation now in progress 115 10115

EWOULDBLOCK Operation would block 11 10011

Error Name Description Code Win Code
Basic Libraries Guide 9-25

Socket Programming
For example, the protocol level for sockets is named SO_SOCKET, and
the socket level option that specifies the size of the receive buffer is
named SO_RCVBUF. To retrieve that constant, send the message to
SocketAccessor:

SocketAccessor SO_RCVBUF
So, to set the value of this option, send this message to the socket:

sockAccessor setOptionsLevel: SocketAccessor SOL_SOCKET
name: SocketAccessor SO_RCVBUF
value: 8192.

To retrieve the current value of this option for the socket level, send
this message to the socket:

sockAccessor getOptionsLevel: SocketAccessor SOL_SOCKET
name SocketAccessor SO_RCVBUF

The returned value is a ByteArray representing a 32-bit (4-byte array)
or 64-bit (8-byte array) signed integer. To interpret it, do a conversion
such as:

retVal := sockAccessor getOptionsLevel: SocketAccessor SOL_SOCKET
name: SocketAccessor SO_RCVBUF.

retVal changeClassTo: UninterpretedBytes.
retVal := retVal longAt: 1. “use longLongAt: for an 8-byte array”

Now, instead of something like #[0 32 0 0], the value is a more
meaningful 8192, or whatever the value happens to be.

Currently, the only protocol level defined is SOL_SOCKET, the socket
level. Others can be defined using the same pattern. Browse the
definition in the constants-socket option levels class method category in
SocketAccessor.

Options for a few protocols are defined in other class method
categories. See, for example, constants-socket options, constants-tcp
options, and constants-ip options. Method comments describe their
usage.
9-26 VisualWorks

Solving Common Socket Problems
Solving Common Socket Problems

How do I avoid the ‘Address in use’ error?
During development and testing, you frequently open a socket on an
address, close it, and then want to use it again for a repeat test.
Since addresses aren’t released immediately, you frequently get this
error message.

To avoid this message, set the socket option SO_REUSEADDR.
Send a soReuseaddr: message to your SocketAccessor, as follows:

sockAccessor soReuseaddr: true
Basic Libraries Guide 9-27

Socket Programming
9-28 VisualWorks

10

XML Framework

XML (eXtensible Markup Language) has become an accepted
standard for representing structured data between applications. XML
is used internally to VisualWorks as a portable source code
representation.

The XML framework supports working with XML documents using
either the DOM (Document Object Model) or SAX (Simple API for
XML) APIs.

Schema support as documented in this chapter remains in preview,
but can be loaded from the preview/parcels/ subdirectory of your
VisualWorks installation.

The discussion in this section assumes you already understand the
essentials of XML and its components. For more basic information,
there are a lot of resources available. See http://www.xml.org as a
beginning resource.

Working with XML Documents
XML presents data as a structured document. The XML DOM
(Document Object Model) is an programming interface for accessing
that data as a tree structure. Using the DOM, you can build
documents, navigate their structure, and add, modify, or delete
elements and content.

The DOM represents an XML document as a hierarchy of objects.
Being an object model, it is a natural way for VisualWorks to operate
on XML documents.
Basic Libraries Guide 10-1

http://www.xml.org

XML Framework
Parsing an XML Document
Frequently you receive an XML document as a resource on the
internet. Or, you may have it stored as a file. In any case, a standard
way to work with it is to first represent it in memory. In VisualWorks,
you do this by representing it as a XML.Document, which you do using
XMLParser. (Note that XML.Document is a different class than
Graphics.Document.)

The basic procedure is to generate an instance of XMLParser, and
send it a parse: message with the XML resource to be parsed.

| parser |
parser := XMLParser new.
parser parse: 'mydocument.xml' asFilename.

In this example, the resource is given as a Filename, but it could be an
URI or a ReadStream. For an URI, send asURI to a String describing the
protocol, host, and path (refer to the Internet Client Developer’s
Guide for information on URI support):

| parser |
parser := XMLParser new.
parser parse: 'http://www.w3.org/XML' asURI.

By default, the parser is validating, so the document must include a
document type declaration (DTD). If the document is only well-
formed, you need to turn off validation by sending a validate: message
to the parser with false as argument. For example:

| parser |
parser := XMLParser new.
parser validate: false.
parser parse:

'<?xml version="1.0"?><doc><para>Hello, world!</para></doc>'
readStream.

To summarize this protocol:

parse: aDataSource

Selects aDataSource, which may be an URI, a Filename, or a
ReadStream. If successful, returns a XML.Document.

validate: aBoolean

Sets the parser’s validation flag, determining whether the parser
will validate the document against its document type definition.
By default, this is set to true.
10-2 VisualWorks

./NetClientDevGuide.pdf
./NetClientDevGuide.pdf

Working with XML Documents
Validating Against a Schema
An XML Schema provides an alternative, and more powerful,
document structure specification than does a DTD document. As an
alternative to a DTD, you can validate a document against a schema.
This is done by first parsing the schema, then parsing the document,
and finally by validating the document against the schema. For
example:

schemaURI := 'http://...' asURI.
docURI := 'http://...' asURI.
schema := SchemaHandler new parse: schemaURI.
doc := XMLParser new

validate: false;
parse: docURI.

schema validate: doc
A Schema is returned.

Schema support is provided as a preview at this time. Load the
XSchema parcel, preview/parcels/XSchema.pcl.

Selecting a XMLParser Driver
By default, the parser represents the XML document according to the
Domain Object Model (DOM), and the parser returns an
XML.Document that supports the DOM API. There are occasions,
however, when other processing is necessary.

The parser operates by handling SAX (Simple API for XML) events
as specified by a SAX driver. The default driver is DOM_SAXDriver.
There are a few other drivers provided, and you can build your own
(see Building a SAX Driver).

To specify another driver, send a handlers: message to the parser.

handlers: aSAXDriver

Assigns aSAXDriver as the parser’s current SAX driver.

In general, you only want to assign an alternate driver when you have
built one for your own application. One driver that might be of some
use, however, is the NullSAXDriver. This driver does simple syntax
checking of a XML document without further processing. So, to
substitute this driver to check the file, send a handlers: message with a
new instance of the driver:
Basic Libraries Guide 10-3

XML Framework
| parser |
parser := XMLParser new.
parser handlers: NullSAXDriver new.
parser parse: 'http://www.w3.org/XML' asURI.

This example does its work and returns nil, unless errors occur. For
syntax checking, you still need to provide handlers for syntax errors,
as described in XML Error Handling.

Browse the SAXDriver hierarchy to see what drivers are available. In
general the classes provide superclasses for your own drivers.

For advanced users, it is possible to specify handlers for different
aspects of a document. Browse the XMLParser contentHandler:,
dtdHandler:, entityResolver: and errorHandler: methods for this option.

Accessing XML Document Elements
In the DOM, a document is represented as a tree structure of nodes.
The main node is the document itself. In VisualWorks the DOM is
implemented as a collection of classes, all subclasses of Node.

The following classes give a high-level view of the parts of a
Document:

Node
Attribute
Comment
Document

DocumentFragment
Element
Entity
Notation
PI
Text

To work with the document, a large number of messages are
provided for accessing these various parts of a document.

root

Sent to a Document, returns the root element of the document.

document

For any element, returns the enclosing Document object.
10-4 VisualWorks

Accessing XML Document Elements
children

Returns an OrderedCollection of all nodes immediately in the
receiver, or an empty collection if there are none.

parent

Returns the node immediately containing the receiver.

elementNamed: aNodeTag

Returns the unique child element named aNodeTag in the
receiver. An error is raised if there is not exactly one.

elementsNamed: aNodeTag

Returns an OrderedCollection of child elements named aNodeTag.

anyElementNamed: aNodeTag

Same as elementNamed:, except that the search is recursive from
the receiver, so the receiver, its children, grandchildren, etc., are
included in the search. An error is raised if there is not exactly
one.

anyElementsNamed: aNodeTag

Same as elementsNamed:, except that the search is recursive from
the receiver, so the receiver, its children, grandchildren, etc., are
included in the search.

attributes

Returns a OrderedCollection of Attribute objects in the receiving
Element.

selectNodes: aBlock

Returns an OrderedCollection of Node objects satisfying the
selection criteria specified in aBlock.

The following sections will use these messages to explore a
Document.
Basic Libraries Guide 10-5

XML Framework
Get Document Root Element
The Document object may have many elements besides the root
element, such as various comments or processing instructions. For
example, parsing a help file yields a document with two elements: a
processing instruction and the root element. To verify this, evaluate
the following in a workspace:

parser := XMLParser new.
parser validate: false.
pdoc := parser parse: '..\help\01-xml-language\01-language.xml'

asFilename.
pdoc children inspect.

(The filename in the above example is not portable, so will have to be
written differently on non-Windows platforms.)

To extract only the root element, which contains the whole DOM tree
structure, send a root message to the parsed document:

docRoot := pdoc root.
This is an Element object to which you can send other messages, and
so traverse the document structure.

Selecting Elements
An XML document is structured as a hierarchy of elements with a
single root element. Depending on the individual document, the
structure may be very shallow, as in the case of a well-formed but
unstructured document, or quite deep. To make use of the XML
document involves traversing and digging through this element
hierarchy.

The children message returns an OrderedCollection of elements
contained immediately in the receiving element.

parser := XMLParser new.
pdoc := parser parse:

'http://www.w3.org/XML/1999/XML-in-10-points' asURI.
elementCollection := pdoc root children.

The contents of the resulting collection may not all be elements as
such. For example, elementCollection in the above code contains (at
the time of this writing) some XML.Text nodes as well as Element
nodes. This can be important when working down through the
hierarchy because a Text does not respond to children.
10-6 VisualWorks

Accessing XML Document Elements
The isElement message returns a Boolean indicating whether the
receiver is an Element or not. You can use it to collect just those nodes
that are elements, for example:

elementCollection := pdoc root children select: [:el | el isElement]
The elements of this collection now all respond to children, and you
can continue digging into the hierarchy.

It is also frequently desirable to select only those elements with a
particular tag, or name. For example, when dealing with a specific
node, you may want to deal only with elements tagged “partNum”. To
collect all these elements in a node (aNode), send a elementsNamed:
message with a NodeTag or String argument:

partNumElements := aNode elementsNamed: 'partNum'.
The String format shown here only works if the element is in the
default XML namespace; otherwise the argument must be an
instance of NodeTag. You may retrieve a NodeTag from an element by
sending a tag message to the Element, and then use that tag to
identify other elements with the same tag. This can be useful for
retrieving all other elements with the same tag as one you already
have:

subjTag := someElement tag.
tagGroup := newDoc root elementsNamed: subjTag.

Alternatively, you can create a NodeTag by sending a qualifier:ns:type:
message to a new instance:

subjTag := NodeTag new
qualifier: '' ns: 'http://www.w3.org/1999/xhtml' type: 'a' .

tagGroup := newDoc root anyElementsNamed: subjTag.
There are variants of the elementsNamed: message, such as
elementNamed:, which returns the unique element, if there is one, or
an error otherwise. The messages anyElementNamed: and
anyElementsNamed: (used above) are similar, but are recursive from
the receiver element, and so include the receiver node and all
children nodes, and all their children, etc., in the search. So, the
above example returns all elements tagged “a” in the document.

Selecting Attributes
Elements often have attributes, specifying special features of the
element. The attributes message, sent to an Element (anElement),
returns an OrderedCollection of an element’s attributes.

attrs := anElement attributes.
Basic Libraries Guide 10-7

XML Framework
Attributes are essentially key/value pairs, where the key is the
attribute name, and the value is a String. The messages for accessing
these are:

tag

Returns the Attribute name, as a NodeTag.

value

Returns the Attribute value.

To make use of an Attribute, you will need to search through the
collection of attributes until you find one you are interested in, and
then get its value. For example, if you need to process an “href”
attribute for an element, you will search for that attribute and return
the value. For example:

(attrs detect: [:attr | attr tag type = 'href'] ifNone: []) value.
Since attributes are already key/value pairs, it may be worth setting
them into a Dictionary, especially for repeated access:

attrDict := Dictionary withAll: (aCollection collect:
[:each | Association key: each tag type value: each value]) .

Building a Document
Besides handling XML documents that your application receives, for
conducting web-based commerce it is also necessary to build XML
documents. You can do this simply by assembling a long string and
transmitting that over the transport, but this places all of the
responsibility for building proper XML on your application.

VisualWorks provides facilities for building an XML DOM tree that
alleviates some of the responsibility for building a syntactically correct
XML document.

Not all aspects of a document are supported, however, so you may
need to provide some other mechanism for adding these aspects to
the document. For example, the XML prolog and DTD declarations
are not supported by the XML framework. If required in your
application, these need to be written onto output stream before any
document elements, and so are not handled as part of the document
itself. (See Writing the XML Document).
10-8 VisualWorks

Building a Document
This section describes how to build an XML document using the
VisualWorks XML support, and noting where methods not included in
the XML framework are required. The general procedure is to create
an XML.Document instance and add nodes.

Create a Basic Document
The basic document is built simply by creating an instance of
XML.Document:

newDoc := XML.Document new.
This is too basic to be useful, but this is the object to which you add
nodes to build the document.

Node Ordering
The most straight-forward method for adding nodes is by sending
addNode: to an existing node, with the new node as argument. This is
the method we will use in the following discussion.

However, addNode: adds the new node to the end of the receiver’s
collection of nodes. Accordingly, you need to be careful to add nodes
in order, from the start of the XML document to the end.

If you must insert a node someplace other than at the end, realize
that you can add it using OrderedCollection messages. This may be
useful, for example, to ensure that processing instructions are added
early in the document, prior to the root element.

Add Element Nodes
Most of the document content is in elements, which are represented
as instances of XML.Element. An Element is really just an envelope for
other nodes.

An Element must have a name, called its tag, an instance of NodeTag,
which is used to begin and end the element in the XML output. The
Element may also have attributes and/or entities. To create an Element
with only a tag, send a tag: instance creation message to the class:

XML.Element tag: 'XML'
This simple creation method builds a simple NodeTag for the element,
consisting only of the tag name.

If you employ XML namespaces, things become a little more
complicated. Refer to Using XML Namespaces for further
information.
Basic Libraries Guide 10-9

XML Framework
Add a Root Element
An XML document has a single root element. If the document has a
DTD, the root element tag must match the declared root in the DTD.
To add a root, send an addNode: message to the Document with the
Element as argument:

newDoc := XML.Document new.
newDoc addNode: (XML.PI name: 'xml' text: 'version="1.0" ') .
newDoc addNode: (XML.Element tag: ‘XML’).

A document can have only one root node. All further elements are
added to the root node or further subnodes. To access the root, send
a root message to the document:

newDoc root

Add Nested Elements
Adding other elements is similar; the only difference is the receiver
node of the addNode: message. For example, to create a document
hierarchy like:

XML
heading1

heading2
body

send messages like this:

newDoc := XML.Document new.
newDoc addNode: (XML.PI name: 'xml' text: 'version="1.0" ').
newDoc addNode: (XML.Element tag: 'XML').
newDoc root addNode: ((XML.Element tag: 'heading1')

addNode: ((XML.Element tag: 'heading2')
addNode: (XML.Element tag: 'body'))).

The nodes can, of course, be constructed individually and added to
the containing node in other ways.

The PI element defines a processing instruction. Refer to Add
Processing Instructions for more information.

If you assemble a collection of nodes, you can add them as subnodes
as a group when creating their parent, using the tag:elements: instance
creation method. For example, to add a node structure to newDoc, do:

nodeGroup := Array with: (XML.Element tag: 'body')
with: ((XML.Element tag: 'heading2')

addNode: (XML.Element tag: 'body')).
newDoc root addNode: (XML.Element tag: 'heading1' elements:
nodeGroup).
10-10 VisualWorks

Building a Document
Adding Element Attributes
An element may have attributes, which are additional labels
identifying the contents of an element. For example, an image
element may include alignment and source information:

Attributes are instances of XML.Attribute, which is a subclass of Node.
To add attributes, create the Attribute instances and add them as a
collection by sending a tag:attributes:elements: instance creation
message to Element, sending an addNode: message to the containing
element as usual. The argument to the elements: keyword can be
provided as a collection of elements or as nil.

attrGroup := Array
with: (XML.Attribute name: 'ALIGN' value: 'left')
with: (XML.Attribute name: 'SRC' value:

'http://www.w3.org/Icons/WWW/w3c_home'.)
newDoc root addNode:

(XML.Element tag: 'IMG' attributes: attrGroup elements: nil).
Again, the element tag in this example is simple. To include a
namespace qualifier or declare a namespace, the specified tag must
be an instance of NodeTag.

Adding Text
Many elements have a text content. Text is added as another node,
as an instance of XML.Text. The instance creation method is simply
text:, which takes a String argument.

XML.Text text: 'Hello, World!'
The text node is added using the usual addNode: message.

newDoc := XML.Document new.
newDoc addNode: (XML.PI name: 'xml' text: 'version="1.0" ').
newDoc addNode: (XML.Element tag: 'XML').
newDoc root addNode: ((XML.Element tag: 'body')

addNode: (XML.Text text: 'Hello, World!')).

Add Processing Instructions
Processing instructions contain special instructions to the application
that will process the XML.
Basic Libraries Guide 10-11

XML Framework
A processing instruction is represented by an instance of XML.PI. Its
instance creation method, name:text:, specifies the target application
and the specific instruction, both as Strings. To create the initial
instruction, send:

XML.PI name: 'target' text: 'instruction'
Note that the text contains all instructions for this processing
instruction, including any attributes and values for the instruction (see
the next example).

For example, the processing instruction that occurs at the beginning
of a VisualWorks help file is:

<?xml-stylesheet href="01-language.css" type="text/css" title="Smalltalk
Language" charset="UTF-8"?>:

To create the processing instruction in VisualWorks write:

XML.PI name: 'xml-stylesheet' text: 'href="01-language.css" type="text/
css" title="Smalltalk Language" charset="UTF-8" '

To add this to the document, we send addNode: with the new
processing instruction as the argument:

newDoc := XML.Document new.
newDoc addNode: (XML.PI name: 'xml-stylesheet'

text: 'href="01-language.css" type="text/css"
title="Smalltalk Language" charset="UTF-8" ').

Evaluate and inspect the above code in a workspace to see that it
produces what we want.

Note that the XML prologue line,

<?XML version='1.0'?>
while it looks like a processing instruction, technically is not. It,
together with DTD declarations, is part of the prologue rather than
part of the XML data itself. No support for these items is included in
the XML framework at this time, and so they must be written
separately, before the XML data. Refer to Writing the XML Document
for a suggested approach.

Writing the XML Document
Once you have built a DOM tree, you can write it out as XML on a
Stream. The stream can be on a file or a communication channel.
10-12 VisualWorks

Using XML Namespaces
Remember that the XML framework does not support all aspects of
an XML document, such as the prolog and any document type
definition information. We can handle this, however, by writing this
information on the write stream before the document itself.

To write the document on the stream, send a saxDo: message to the
Document with a SAXWriter instance as argument. The SAXWriter has
its output set to the output stream.

Suppose the goal is this document:

<?xml version="1.0"?>
<!DOCTYPE XML SYSTEM "vwhelp.dtd">
<?xml-stylesheet href="01-language.css" type="text/css"

title="Smalltalk Language" charset="UTF-8" ?>
<xml>Hello, world!</xml>

We create the XML.Document, which has the document content:

newDoc := XML.Document new.
newDoc addNode: (XML.PI name: 'xml-stylesheet'

text: 'href="01-language.css" type="text/css"
title="Smalltalk Language" charset="UTF-8" ').

newDoc addNode: (XML.Element tag: 'xml').
newDoc root addNode: (XML.Text text: 'Hello, world!').

Create an output stream:

str := 'c:\xmlTest\doc2.xml' asFilename writeStream.
Next, write the prolog and any DTD information:

str nextPutAll: '<?xml version="1.0"?>'; cr.
str nextPutAll: '<!DOCTYPE XML SYSTEM "vwhelp.dtd">'; cr.

Finally, we create a SAXWriter, write the document, and close the
stream:

writer := SAXWriter new output: str.
[newDoc saxDo: writer] ensure: [str close].

Examine the resulting file to see that it is what we expected.

Using XML Namespaces
XML namespaces allow documents to employ multiple markup
vocabularies without collision. For example, different parts of a
document might need to refer to different elements both named
“employee”. XML namespaces provide a mechanism for
differentiating these references by associating each with a URI.
Basic Libraries Guide 10-13

XML Framework
Declare Namespaces
A Document can specify one or more namespaces for resolving
element or attribute names within the document. A root element often
specifies a namespace, such as this, from http://www.w3.org/xml:

<html xmlns="http://www.w3.org/1999/xhtml">
A document can also have multiple namespaces, one of which may
have no prefix, as in the above. All additional namespaces must have
a prefix. To specify two XML namespaces, one without and the other
with a prefix, the XML is specified like this:

< html xmlns="http://www.w3.org/1999/xhtml"
xmlns:foo="http://www.noplace/foo" >

To declare these namespace specifications in an XML Document in
VisualWorks, create a Dictionary containing these namespaces, and
then add the Dictionary to the document root element by sending it a
namespaces: message. The Dictionary contains associations between a
prefix string and the URI string. A namespace without a prefix is
associated with an empty prefix.

nsDict := Dictionary new.
nsDict at: '' put: 'http://www.w3.org/1999/xhtml';

at: 'foo' put: 'http://www.noplace/foo'.
newDoc := XML.Document new.
newDoc addNode: (XML.Element tag: 'XML').
newDoc root namespaces: nsDict.

Evaluate the above in a workspace and inspect newDoc to see that
the root element specifies the namespaces as intended.

There is one problem with the above example, however. If you inspect
the newDoc tag variable, which contains a NodeTag, there is no
namespace specified. This is a problem if you need to extract data
from the DOM, or pass it to a processor such as XSchema, XSLT, or
XPath. To include the namespace information in the document tag,
modify the above to:

nsDict := Dictionary new.
nsDict at: '' put: 'http://www.w3.org/1999/xhtml';

at: 'foo' put: 'http://www.noplace/foo'.
newDoc := XML.Document new.
newDoc addNode: (XML.Element tag:

(NodeTag new qualifier: '' ns: (nsDict at: '') type: 'XML')).
newDoc root namespaces: nsDict.
10-14 VisualWorks

http://www.w3.org/xml

Using XML Namespaces
Note that holding the namespace declarations dictionary in a
temporary variable, as above, is not necessary (the dictionary could
be defined inline), but simplifies referring to the namespace, as it is in
the tag definition shown here.

Applying a Namespace to an Element
If you use namespaces, you should use them consistently, and
include the namespace in specifying the element tag. Do this by
creating a NodeTag, and specify the qualifier (namespace prefix
name), namespace, and type (tag name). This is the same as
specifying the NodeTag for the root element shown above. For
example:

nsDict := Dictionary new.
nsDict at: '' put: 'http://www.w3.org/1999/xhtml';

at: 'foo' put: 'http://www.noplace/foo'.
newDoc := XML.Document new.
newDoc addNode:

(XML.Element tag:
(NodeTag new qualifier: '' ns: (nsDict at: '') type: 'XML')).

newDoc root namespaces: nsDict.
newDoc root addNode:

((XML.Element tag:
(NodeTag new

qualifier: 'foo' ns: (nsDict at: 'foo') type: 'heading1'))
addNode: (((XML.Element tag:

(NodeTag new
qualifier: 'foo' ns: (nsDict at: 'foo') type: 'heading2'))

addNode: (XML.Element tag:
(NodeTag new qualifier: '' ns: (nsDict at: '') type: 'body'))))).

which produces the XML:

<XML xmlns:foo="http://www.noplace/foo"
xmlns="http://www.w3.org/1999/xhtml">
<foo:heading1>

<foo:heading2>
<body/>

</foo:heading2>
</foo:heading1>

</XML>
Basic Libraries Guide 10-15

XML Framework
Elements can also declare additional namespaces for use within their
scope. To do this, send a namespaces: message to the element, after it
has been created. In this example, while both the heading1 and
heading2 elements specify the foo namespace qualifier, heading2 is
in a different namespace than heading 1 due to the new declaration:

nsDict1 := Dictionary new.
nsDict1 at: '' put: 'http://www.w3.org/1999/xhtml';

at: 'foo' put: 'http://www.noplace/foo'.
nsDict2 := Dictionary new.
nsDict2 at: 'foo' put: 'http://www.noplace/bar'.
newDoc := XML.Document new.
newDoc addNode:

(XML.Element tag:
(NodeTag new qualifier: '' ns: (nsDict1 at: '') type: 'XML')).

newDoc root namespaces: nsDict1.
newDoc root addNode:

((XML.Element tag:
(NodeTag new

qualifier: 'foo' ns: (nsDict1 at: 'foo') type: 'heading1'))
addNode: ((XML.Element tag:

(NodeTag new
qualifier: 'foo' ns: (nsDict2 at: 'foo') type: 'heading2'))

namespaces: nsDict2 ;
addNode: (XML.Element tag:

(NodeTag new qualifier: '' ns: (nsDict1 at: '') type: 'body')))).
The resulting XML is:

<XML xmlns:foo="http://www.noplace/foo" xmlns="http://www.w3.org/
1999/xhtml">

<foo:heading1>
<foo:heading2 xmlns:foo="http://www.noplace/bar">

<body/>
</foo:heading2>

</foo:heading1>
</XML>

Assigning a Namespace to an Attribute
Attribute names can be assigned a namespace to, as for elements.
Again, instead of a simple String for the name, you define and assign
a NodeTag. So, expanding the example used earlier for attributes,
you can assign a namespace as follows:

nsDict := Dictionary new.
nsDict at: '' put: 'http://www.w3.org/1999/xhtml';

at: 'foo' put: 'http://www.noplace/foo'.
attrGroup := Array
10-16 VisualWorks

Building a SAX Driver
with: (XML.Attribute
name:

(NodeTag new qualifier: 'foo' ns: (nsDict1 at: 'foo') type: 'ALIGN')
value: 'left')

with: (XML.Attribute
name: (NodeTag new qualifier: '' ns: (nsDict1 at: '') type: 'SRC')
value: 'http://www.w3.org/Icons/WWW/w3c_home').

newDoc := XML.Document new.
newDoc addNode:

(XML.Element tag:
(NodeTag new qualifier: '' ns: (nsDict at: '') type: 'XML')).

newDoc root namespaces: nsDict.
newDoc root addNode:

(XML.Element
tag: (NodeTag new qualifier: '' ns: (nsDict at: '') type: 'IMG')
attributes: attrGroup elements: nil).

Namespace declarations are not allowed in attribute specifications.

Building a SAX Driver
SAX (Simple API for XML) is an event-driven interface for accessing
XML documents without having to model the whole document in
memory. Using SAX is often preferred, such as when the application
needs to construct its own data structure from the XML document. In
such a case, modeling the entire node tree first only to discard it is
inefficient.

A SAX parser breaks a document into a linear set of events. For
example, the XML document:

<?xml version="1.0"?>
<doc>
<para>Hello, world!</para>
</doc>

is rendered as this series of events:

start document
start element: doc
start element: para
characters: Hello, world!
end element: para
end element: doc
end document

The application specifies how to process each event in its event
handlers.
Basic Libraries Guide 10-17

XML Framework
Handling SAX Events
To create a SAX application, define a custom SAX driver as a
subclass of SAXDriver or one of its subclasses. Your driver class
defines handler methods for each of the SAX parsing events,
specifying the action to take for each element or attribute of interest.

The default action for events, defined in SAXDriver, is to do nothing.
Your driver overrides these with more appropriate handling. The
following are the basic events to handle. For additional events
provided for special purposes, browse the content handler method
category in SAXDriver, and read the method comments.

startDocument

Triggered once at the start of the document.

endDocument

Triggered once at the end of the document.

startElement: namespaceURI localName: localName qName: name
attributes: attrList

Triggered by an element start tag. namespaceURI is the
namespace URI, or nil if there is none. localName is the name of
the element, without prefix. name is the literal name of the
element, or nil if processing namespaces. attrList is a
SequenceableCollection of Attribute instances.

endElement: namespaceURI localName: localName qName: name

Triggered by an element end tag. Parameters are as described
for startElement:localName:qName:attributes:.

startPrefixMapping: prefix uri: anURI

Triggered by an element with a namespace declaration. prefix is
a String, if a prefix is specified in the declaration. anURI is the
namespace URI, as a String.

endPrefixMapping: prefix

Triggered by the closing tag for an element that declared the
namespace. prefix, if any, is the declared namespace prefix as a
String.

characters: aString

Triggered by character data (CDATA). aString contains the
character data.
10-18 VisualWorks

Building a SAX Driver
skippedEntity: name

Triggered by a skipped entity. name is the name of the skipped
entity. Parameter entity names start with '%'. If the entity is an
external DTD subset, name is '[dtd]'.

processingInstruction: name data: dataString

Triggered by a processing instruction. name is the instruction
name, and dataString is the instruction data.

ignorableWhitespace: aString

Triggered by ignorable whitespace in the document. aString
contains the whitespace characters.

For example, to handle the simple document above, a driver should
handle start and end document, start and end element, and character
events. These five methods could be implemented, say in
MySAXDriver, to simply write information to the Transcript:

characters: aString
Transcript show: 'cdata: ', aString; cr.

startDocument
Transcript show: 'Start of Document'; cr.

endDocument
Transcript show: 'End of Doc';cr.

startElement: nsURI localName: lName qName: name attributes: attrList
Transcript show: 'start: ', name; cr.

endElement: namespaceURI localName: localName qName: name
Transcript show: 'end: ', name; cr.

To exercise this driver on the example document above, evaluate this
in a workspace:

| doc p |
doc := '<?xml version="1.0"?><doc><para>Hello, world!</para></doc>'

readStream.
p := XMLParser new.
p handlers: MySAXDriver new.
p validate: false.
p parse: doc.

Configuring SAX Features and Properties
VisualWorks supports the standard SAX2 interface for querying and
setting the parser’s feature and property set, to control the parser’s
behavior. Features and properties are identified by a URI with which
is associated a Boolean value.
Basic Libraries Guide 10-19

XML Framework
The general messages to set and get parser features and properties
are:

atFeature: featureURI

Returns the Boolean value of featureURI, if recognized; otherwise
raises a SAXNotRecognizedException exception.

atFeature: featureURI put: aBoolean

Sets the value of featureURI to aBoolean, if recognized;
otherwise raises a SAXNotRecognizedException exception.

atProperty: propertyURI

Returns the Boolean value of propertyURI, if recognized. No
properties are recognized, by default, so returns
SAXNotRecognizedException.

atProperty: propertyURI put: aBoolean

Sets the value of propertyURI to aBoolean, if recognized. No
properties are recognized, by default, so returns
SAXNotRecognizedException.

Several common features are represented by shared variables
defined in the XML.SAX namespace. Each shared variable holds a
default URI for the feature, which is set in the variable’s initialization
string. Note that only the SAX namespace, namespace-prefixes, and
validating features are currently supported by the VisualWorks XML
framework, though you may add support for additional features and
properties.

SAXExternalGeneralEntities

Not currently supported. Attempting to set or get the value raises
a SAXNotSupportedException. Would be set false to ignore external
general entities in the document.

SAXExternalParameterEntities

Not currently supported. Attempting to set or get the value raises
a SAXNotSupportedException. Would be set false to ignore external
parameter entities in the DTD.

SAXNamespace

Default true. Set to true if the parser should process namespaces,
or false if the parser should ignore xmlns attributes.
10-20 VisualWorks

Building a SAX Driver
SAXNamespacePrefixes

Default false. Set to true if xmlns attributes should appear in the
attribute list of an element, or false if they should be filtered out.

SAXValidate

Default true. Set to true if the parser should do full validation, or
false to suppress validation.

For accessing the values of the SAXNamespace, SAXNamespacePrefixes,
and SAXValidate features, send these messages to the parser:

isValidating

Returns the Boolean value of the validation feature (SAXValidate).

validate: aBoolean

Sets the Boolean value of the validation feature (SAXValidate).

processNamespaces

Returns the Boolean value of the namespaces feature
(SAXNamespace).

processNamespaces: aBoolean

Sets the Boolean value of the namespace feature (SAXNamespace).

showNamespaceDeclarations

Returns the Boolean value of the namespace-prefixes feature
(SAXNamespacePrefixes).

showNamespaceDeclarations: aBoolean

Sets the Boolean value of the namespace-prefixes feature
(SAXNamespacePrefixes).

Setting the validating feature using the validate: message was
illustrated above, to parse a document without a DTD (see Parsing an
XML Document). Using the more general messages, turning off
validation can be done like this:

parser := XMLParser new.
parser atFeature: SAXValidate put: false.
Basic Libraries Guide 10-21

XML Framework
The feature can also be identified by an URI, in which case the above
could be:

parser := XMLParser new.
parser atFeature: 'http://xml.org/sax/features/validation' put: false.

For setting or getting SAX feature and property values, you should
trap SAXNotRecognizedException and SAXNotSupportedException.

parser := XMLParser new.
featureStr := 'http://xml.org/sax/features/validating' .
[[parser atFeature: featureStr]

on: SAXNotRecognizedException
do: [:e | Dialog warn: 'Feature ', featureStr, ' is not recognized.']]

on: SAXNotSupportedException
do: [:e | Dialog warn: 'Feature ', featureStr, ' is not supported.']

Document Fragments
When using XML to exchange data, it is frequently inconvenient, or
inefficient, to have to parse an entire document up to the element that
one is actually interested in. For example, if you are only interested in
one chapter (e.g., chapter 23), or one paragraph, of a book, it would
be inefficient to have to parse all of the book up to that element.

Document fragments provide a way to represent a part of a
document. The challenge for using fragments is to have enough
context to be able to parse the fragment correctly.

The VisualWorks XML framework supports document fragments in
the XML.DocumentFragment class. The main difference between a
Document and a DocumentFragment is that a DocumentFragment does
not require a single top-level element, but may have a sequence of
elements at its top level. It may also have character data outside of
an element. So, for example, a document fragment could include:

<body>Some introductory text.</body>
<heading2>

Some heading
<body>Discussion of this topic</body>

</heading2>
<heading2>

Some other heading
<body>Discussion of this topic</body>

</heading2>
This is understood as being parsed within a larger XML context that
provides the missing information.
10-22 VisualWorks

Building a SAX Driver
Building a Fragment
To build the above fragment, send the appropriate addNode:
messages to an instance of DocumentFragment.

docFrag := XML.DocumentFragment new.
docFrag addNode: ((XML.Element tag: 'body')

addNode: (XML.Text text: 'Some introductory text.')).
docFrag addNode: (((XML.Element tag: 'heading2')

addNode: (XML.Text text: 'Some heading'))
addNode: ((XML.Element tag: 'body')

addNode: (XML.Text text: 'Discussion of this topic.'))).
docFrag addNode: (((XML.Element tag: 'heading2')

addNode: (XML.Text text: 'Some heading'))
addNode: ((XML.Element tag: 'body')

addNode: (XML.Text text: 'Discussion of this topic.'))).
Attempting this construct with a Document instance would result in
errors due to the multiple top-level nodes, but it is acceptable as a
DocumentFragment.

Parsing a Fragment
If an XML document references a fragment as an entity, you can
parse the entire document as usual. The fragment is simply included
in the document as if it were physically present within the XML.

A fragment-aware application, however, will want to deal with
fragments it may receive from a data source. The application will
have to be able to provide the context necessary for including the
fragment in a document. In the case of the above fragment, the
context may be simply:

<document>
<heading1>

Title
</heading1>

insert fragment here
</heading1>

</document>
The XML framework provides no specific support for providing this
context. Recommendations are available from the World Wide Web
Consortium (see http://www.w3.org/TR/xml-fragment), but it is the
responsibility of your application to implement a strategy.
Basic Libraries Guide 10-23

http://www.w3.org/TR/xml-fragment

XML Framework
XSL Stylesheet Processing
VisualWorks supports applying an XSL stylesheet to an XML file to
transform the XML file into another representation.

Most XSL Transformation elements are supported, and are
implemented as subclasses of XSLCommand.

Loading XSL Support
XSL support is an add-in component to VisualWorks. To use XSL
facilities, load the XSL parcel (xsl.pcl).

XSL support classes are in the XSL namespace. Your application may
need to import this namespace into its own namespace or into
relevant classes.

Applying a Stylesheet to a Document
XMLParser does not automatically apply a stylesheet to an XML
document, even if the stylesheet is specified in the document.
Instead, you generate an XSL rule database from the stylesheet and
apply it to the parsed XML document.

For example (borrowed from The XML Bible, second edition, by
Elliotte Rusty Harold), suppose we have an XML document
representing the periodic table (periodictable.xml):

<?xml version="1.0"?>
<?xml-stylesheet type="text/xml" href="table.xsl"?>
<PERIODIC_TABLE>

 <ATOM STATE="GAS">
 <NAME>Hydrogen</NAME>
 <SYMBOL>H</SYMBOL>
 <ATOMIC_NUMBER>1</ATOMIC_NUMBER>
 <ATOMIC_WEIGHT>1.00794</ATOMIC_WEIGHT>
 <BOILING_POINT UNITS="Kelvin">20.28</BOILING_POINT>
 <MELTING_POINT UNITS="Kelvin">13.81</MELTING_POINT>
 <DENSITY UNITS="grams/cubic centimeter">

 <!-- At 300K, 1 atm -->
 0.0000899

 </DENSITY>
 </ATOM>
 <ATOM STATE="GAS">

 <NAME>Helium</NAME>
 <SYMBOL>He</SYMBOL>
 <ATOMIC_NUMBER>2</ATOMIC_NUMBER>
 <ATOMIC_WEIGHT>4.0026</ATOMIC_WEIGHT>
10-24 VisualWorks

XSL Stylesheet Processing
 <BOILING_POINT UNITS="Kelvin">4.216</BOILING_POINT>
 <MELTING_POINT UNITS="Kelvin">0.95</MELTING_POINT>
 <DENSITY UNITS="grams/cubic centimeter"><!-- At 300K -->

 0.0001785
 </DENSITY>

 </ATOM>
</PERIODIC_TABLE>

and an XSL document (table.xsl) to transform the document into
HTML:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="PERIODIC_TABLE">

 <html>
 <xsl:apply-templates/>

 </html>
 </xsl:template>
 <xsl:template match="ATOM">

 <P>
 <xsl:apply-templates/>

 </P>
 </xsl:template>

</xsl:stylesheet>
First generate the rules database, then parse the document and
apply the rules as follows:

xslRules := (XSL.RuleDatabase new) readFileNamed:
'c:\xmlTest\table.xsl'.
parser := XMLParser new validate: false.
doc := parser parse: 'c:\xmlTest\periodicTable.xml' asFilename
readStream.
transDoc := xslRules process: testDoc.

The result is a new document, actually a DocumentFragment, that has
been transformed according to the rules in the stylesheet:

<html>
<P>

Hydrogen
 H
 1
 1.00794
 20.28
 13.81
0.0000899</P>

<P>
 Helium
Basic Libraries Guide 10-25

XML Framework
 He
 2
 4.0026
 4.216
 0.95
0.0001785

</P>
</html>

Note that the XSL namespace declared in the stylesheet must be
http://www.w3.org/1999/XSL/Transform. If it is not, the resulting
document contains the stylesheet itself and not a transformed
document.

There are several examples of applying an XSL transformation in
class methods of RuleDatabase which you can examine and execute.

Using XPath
XPath is a language for addressing parts of an XML document.
XPath models a document as a tree structure, allowing elements to
be accessed by specifying a path to those elements, like a filesystem
path.

Creating a Path Expression
An XPath expression is a string specifying selection criteria for a
collection of nodes in a document. The XPath specification (http://
www.w3.org/TR/xpath) provides the full, abstract syntax for XPath
expressions. A few examples are:
10-26 VisualWorks

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

Using XPath
The return value of an XPath expression can be either a Number,
String, Boolean, or XPathNodeContext. The above expressions return an
XPathNodeContext, which is a collection of XML nodes.

To use an XPath expression in VisualWorks, it must be parsed, using
XPathParser. For example:

exprString := '//CCC[text()]'.
expr := XML.XPathParser new

parse: exprString as: #expression.
In this example, exprString holds is assigned some legal (per the
XPath specification) XPath expression, as a String. The XPathParser
returns an instance of XPathRoot, which can then be applied to an
XML node to retrieve the desired information.

If the XML uses namespaces, you must also provide the parser with
an XML node that gives the context in which to resolve the
namespace qualifiers. For example, if the expression includes a
namespace qualifier “foo”, a node defining the qualifier must be
provided:

Expression Selection

/AAA The root node AAA

/AAA/BBB/CCC All elements tagged CCC that are children of BBB
that are children of root AAA.

//CCC All elements CCC in the document

//BBB/CCC All elements CCC that are children of BBB

//BBB/* All elements that are children of BBB

/*/*/* All elements with two ancestors

//BBB/CCC[2] Each second instance of element BBB that is a
child of BBB

//CCC[text()] All text elements in any CCC

//BBB | //CCC All elements BBB and CCC

/AAA/BBB/descendant::*i All elements that are descendents of /AAA/BBB

//@id All attributes id

//BBB[@id] Al elements BBB with an id attribute
Basic Libraries Guide 10-27

XML Framework
exprString := '//foo:CCC[text()]'.
expr := XML.XPathParser new

xmlNode: (myDoc root) ;
parse: exprString as: #expression.

The element’s sole purpose is to map "foo" to an URL, but could be,
for example, the document root node, as done above. If you don't use
namespaces in the path, the XML Element is optional.

Applying an XPath Expression
You apply the expression to an XML node by sending a
xpathValueFor:variables: message to the XPathRoot instance, the result
of parsing the expression string.

result := expr
xpathValueFor: otherXmlNode
variables: Dictionary new.

The XML document, or node, to be searched is the first argument
value. The Dictionary passed as the second argument maps variable
names to values, and is only important if the XPath expression uses
variable references.

The return value of an XPath expression can be either a Number,
String, Boolean, or XPathNodeContext, which is a collection of nodes.
Usually the programmer will know, based on the syntax of the
expression string, what type of value will be returned. These four
return types can be converted amongst themselves using
xpathAsBoolean, xpathAsString, and xpathAsNumber. These messages
use the XPath conversion rules.

Selecting Nodes with an XPath
For expressions that return a collection of nodes, you can now use
the XPathRoot to select nodes. First, get the XPathNodeContext by
applying the expression to a node. To do this, send an
xpathValueFor:variables: message to the XPathRoot instance. You can
then retrieve the nodes as a sorted or unsorted collection, by sending
sortedNodes or unsortedNodes message:

nodeSet := expr
xpathValueFor: otherXmlNode
variables: Dictionary new.

nodeSet xpathIsNodeSet
ifTrue: [nodeSet := nodeSet unsortedNodes].
10-28 VisualWorks

XML Error Handling
XML Error Handling
The VisualWorks XML engine is a SAX engine, so all error handling
is provided by SAXException subclasses:

Error
SAXException

SAXNotRecognizedException
SAXNotSupportedException
SAXParseException

InvalidSignal
MalformedSignal

BadCharacterSignal
WarningSignal

Most of these exceptions are raised only during parsing, the
exceptions being SAXNotRecognizedException and
SAXNotSupportedException, which are raised when querying or setting
a SAX parser’s features or properties. Catching these exceptions is
shown under Building a SAX Driver.)

The argument passed into the handler block is an instance of the
specific error class, which you can use for further handling.

parser := XMLParser new.
[pdoc := parser parse:

'..\help\01-xml-language\01-language.xml' asFilename]
on: SAXException do: [:e | Transcript show: e printString ; cr]
Basic Libraries Guide 10-29

XML Framework
10-30 VisualWorks

11

Parser Compiler

The standard VisualWorks parser/compiler classes, Scanner, Parser,
and Compiler, are in the base VisualWorks class library, and are used
for the usual code compiling processes.

For cases creating special parsers and compilers, additional classes
are provided as in an optionally loadable component, in the AT Parser
Compiler parcel.

Standard Parser-Compiler
Although not often used directly, there are three classes that parse
and compile Smalltalk programs: Scanner, Parser and Compiler. The
Scanner parses a string into a sequence of tokens (numbers, names,
punctuation, etc.) according to the lexical rules of the Smalltalk
language. The Parser parses a string into a complete expression or
method definition. The Compiler compiles a string into a method.

Scanner
To create an instance of Scanner, use new. To convert a string to a
sequence of tokens, use scanTokens: as in the expression:

tokenArray := Scanner new scanTokens: aTextOrString
The string is interpreted approximately as though it were an Array,
each word being converted to the equivalent literal (number, symbol,
etc.) and installed as an element. However, the pound sign (#) that
introduces a literal array is incorrectly treated like a binary operator,
and the words “nil”, “true”, and “false” are not treated specially. For
example, the following expression is true:

(Scanner new scanTokens: '3.5 is: GPA') = #(3.5 #is: #GPA)
Basic Libraries Guide 11-1

Parser Compiler
Parser
To create an instance of Parser, use new.

To extract the selector from the source string of a method:

selector := Parser new parseSelector: aString
For example, the following expression is true:

(Parser new
parseSelector: 'from: here to: eternity

^eternity - here')
= #from:to:

To parse an entire method or a doIt (just like a method without the
initial pattern), use an expression such as the following:

methodNode := Parser new
parse: sourceStream
class: aClass
noPattern: noPattern
context: nil
notifying: anEditor
ifFail: aBlock

The noPattern argument is true for a doIt, false for a method. If the
source was constructed by a program, or a TextEditor for interactive
use, anEditor should be nil. If the source is not syntactically legal, this
expression returns the result of evaluating aBlock; otherwise, it returns
an instance of MethodNode.

Compiler
Compiler’s class methods provide the most interesting public behavior,
so there is usually no need to create an instance.

To evaluate a string as a Smalltalk expression:

Compiler
evaluate: aString
for: anObject
notifying: anEditor
logged: logFlag

The string will be evaluated as though it were the body of a method
that had been invoked with anObject as the receiver. If logFlag is true,
the string is written on the changes log. For example, the following
expression returns 7:
11-2 VisualWorks

Advanced Parser-Compiler
Compiler
evaluate: 'x + y'
for: 3 @ 4
logged: false

As for parsing, anEditor should be nil for noninteractive use, or a
TextEditor for interactive use. To compile a source method into a
CompiledMethod object, use an expression of the following form:

aMethod := Compiler
compileClass: aClass
selector: aSymbol
source: aString

This message will rarely be useful, however. More useful methods in
Behavior (such as compile:notifying:) perform the compilation and also
install the result in the method dictionary of a class.

Advanced Parser-Compiler
The parser compiler classes make it easier to write compilers in
Smalltalk. SQL classes (in the AT Parser Example parcel) provide an
example of an SQL compiler written using the parser compiler
facilities.

A typical compiler handles four functions:

• Scanning—breaking the source code into tokens (words,
numbers, operators, etc.).

• Parsing—combining tokens into larger structured units.

• Semantic analysis—verifying that variables have been declared,
performing type checking, etc.

• Code generation—producing a program in machine code or
other final form. This may occur in several phases if optimization
or more than one representation of the output code is involved.

The parser compiler classes provide the following support for these
activities:

• Scanning—the Smalltalk Scanner, slightly modified.

• Parsing—This phase is the primary focus of the Parser Compiler,
providing an efficient language for writing your parser.
Basic Libraries Guide 11-3

Parser Compiler
• Semantic analysis—the Parser Compiler makes it fairly easy to
mix in semantics during parsing. This helps to generate an error
message that points at the right place in the source code.

• Code generation— you’re on your own. The Parser Compiler
itself demonstrates one style of code generation: It generates
Smalltalk source code during parsing. The complexity of most
languages prevents being able to combine code generation with
parsing.

Scanning Source Code
The ParserCompiler class defines seven standard types of token:

• word—a variable or unary message selector

• number—integer or floating point

• character

• string

• binary—infix operators such as + and >=

• keyword—a word followed by a colon (see below)

• signedNumber—a number optionally preceded by a minus sign,
with no intervening delimiters

There is an eighth standard token type, keywords, for one or more
keywords in succession with no intervening delimiters. This produces
a single token. Keywords are only recognized specially if your
grammar uses the word keyword or keywords, or if your grammar
includes any literal keywords. (This is for the benefit of grammars that
don’t use keywords, but use the colon for other purposes.)

In addition, the scanner makes assumptions about delimiters (blank,
tab, end-of-line, and new-page), which separate tokens but aren’t
tokens themselves. It also assumes that the following characters are
tokens on their own: # () | [] . : = ^ and ;. To change any of these
assumptions requires an understanding of the Scanner’s mechanics—
you have to write your own initScanner method that calls super
initScanner and then substitutes the appropriate entries in the
typeTable.
11-4 VisualWorks

Advanced Parser-Compiler
Parsing
For the parsing phase, begin by making your parser a subclass of
ExternalLanguageParser—SQLCompiler has been provided as an
example. If your source language is method-oriented and you want
the output of the parser to be executable CompiledMethods, make your
parser a subclass of GeneralParser instead.

This gives your class basic parsing functionality. The parser scans
source code one character at a time and one token at a time. You
must then write production rules describing the various parts of your
language. These rules define parsing algorithms, which your parser
will use to recognize constructs such as functions and clauses in the
source code. The syntax of production rules will be described in a
moment.

Each clause or other construct found in the source code must be
instantiated as a node in a parse tree. For example, when an SQL
clause is recognized in the source code by SQLCompiler, an instance
of SQLClause is created. Classes such as SQLClause typically are
subclassed from a more general class such as SQLNode.

As an example of this node-creation mechanism, the production rule
implemented by SQLCompiler for recognizing an SQL commit
statement creates an instance of SQLStatement as follows:

EmulationBorderDecorationPolicy unInstallcommitStatement =
#COMMIT #WORK

[statement: 'COMMIT WORK']
In this example, the word COMMIT followed by WORK in the source
causes execution of the block. A statement: message is sent to
SQLCompiler, and that method sends an instance creation message to
SQLStatement with the 'COMMIT WORK' string as the statement name.

The ultimate output of the parser is an array containing objects such
as SQLFunction, which themselves are often composites of smaller
language constructs such as SQLClause. This array represents a
parse tree that you can use to generate code.

As the parse tree is being assembled, it is stored in an
OrderedCollection called stack, held by GeneralParser. This stack
responds to collection protocol such as removeLast, and stack
operations are frequently embedded in blocks within the production
rules. For example, the SQLCompiler>>queryTerm rule contains the
following assignment into a temporary variable:

tableExp := stack removeLast.
Basic Libraries Guide 11-5

Parser Compiler
A Rule has a Name and a Definition
A production rule describes a semantic unit of the language in terms
of other semantic units combined with literal tokens. It introduces the
name of the semantic unit, followed by =, followed by the definition,
which may include references to other production rules or to literal
keywords that are expected at various points in the source-code.

As an example, the following production rule is taken from
SQLCompiler:

assignment =
column #= (scalarExp | #NULL)

When a production rule is invoked, its definition is used as a template
for the current source code. If the template fits, the rule returns true,
triggering creation of the appropriate node in the parse tree. If the
definition doesn’t match, either the rule returns false, or an error
notification occurs.

Rules are Similar to Methods
It is no accident that a production rule looks like a Smalltalk method.
It is created just as a Smalltalk method is, by adding it to the instance
protocol for your compiler class (SQLCompiler, in this case). You can
use the System Browser to do so, or you can file it in. This is possible
because the ParserCompiler’s responsibility is to take production rules
and translate them into equivalent Smalltalk code, which is then
translated into an executable method. Each production rule is
translated into a method whose selector is the name of the
production rule. As a result:

• You can browse production rules in the same way you browse
Smalltalk methods.

• Production rules can call Smalltalk code, and vice versa.

Temporary Variables Can be Used
A production rule can have temporary variables. These are defined
the same way as in Smalltalk, by enclosing the list of names between
two vertical bars.

A production rule begins with a method pattern consisting of the
name of the rule, plus names for any arguments. Except for the
terminating equal sign (=), the syntax is identical to that of a Smalltalk
method, allowing for unary, binary, and keyword patterns.
11-6 VisualWorks

Advanced Parser-Compiler
A Rule Definition is a Series of Alternatives
The body of a production rule, called its definition, is a series of
alternatives, separated by vertical bars (|). The parser tries to match
the current source code to each alternative in turn. If a given
alternative succeeds, the definition succeeds and returns true. If an
alternative fails, the next alternative is tried.

The final alternative in a series can be left empty to return true
immediately. If the series is enclosed in parentheses, the empty
alternative is indicated by a vertical bar preceding the closing
parenthesis. If the series is the body of the definition, the empty
alternative is indicated by making a vertical bar the last element of
the definition.

For example:

(a | b) c The next tokens must match either 'a' or 'b',
followed by 'c'

(a |) c The next token or tokens must match either 'a'
followed by 'c', or 'c' alone

An Alternative is a Series of Terms
An alternative is a series of terms, each alternative optionally
preceded by an at sign (@). Each term is evaluated sequentially
against the source code. If a term succeeds, the parser proceeds to
the next term; otherwise it fails. If the last term in the alternative
succeeds, the alternative returns true. If the alternative fails, behavior
depends on several factors:

• If the at sign is present, the source code stream is rolled back to
the state it was in when the alternative was started, and false is
returned.

• If the term that failed was the first in the alternative, false is
returned.

• Otherwise, an error notification is returned.

Two examples follow:

a b c
Expect to find an a, followed by b and c. If a is not found, proceed to
the next alternative or return false. If b or c is not found, print an error
message.

@ a b c
Basic Libraries Guide 11-7

Parser Compiler
Expect to find an a, followed by b and c. If a, b, and c are not found
when expected, proceed to the next alternative or return false.

Suppose the parser matches a, but fails to match b. For accurate
error detection, the ParserCompiler will not automatically back up on
failure, so in this case a message would appear saying b expected.
However, it is possible that if the source stream were backed up, we
might be able to match c d rather than a b. Therefore, in this case, it is
appropriate to write the rule as:

@ a b | c d
Then, if a succeeds but b fails, the parser will back up and try to
match c followed by d.

Another way to think about it is: When the first term in an alternative
is matched, the parser assumes it has found the correct alternative. If
a later term fails to match, the parser reports an error based on its
assumption that the correct template was applied unsuccessfully. The
at sign removes the assumption so that, instead of generating an
error in this situation, the compiler proceeds to the next alternative.

A Term is an Action or a Unit-Plus-Qualifier
A term can be an action, or it can be a unit followed by one of the
following symbols:

* * ! + +!\ \! !*
We will discuss the more common type of term first: units and their
quantifying modifiers.

A Unit is a Word, Terminal, or Parenthesized Definition
A unit can be a word, a terminal, or a definition wrapped in
parentheses. If it is a word, that word is assumed to be the name of
another production rule. Some examples:

Word and associated production rule

foo Evaluate the production rule foo on the current
source code. If it returns false, fail the current
alternative, else continue.

word=#ABC If the next token in the source is ABC, push it on the
stack and scan another token, else fail the
alternative.

keyword=#ABC: If the next token in the source is ABC:, push it on the
stack and scan another token, else fail the
alternative.
11-8 VisualWorks

Advanced Parser-Compiler
The following examples illustrate the use of the seven quantifying
symbols with units. In these examples, foo pushes a FooNode onto the
stack, while foo2 does not affect the stack.

Quantifying symbols

$(If the next token is the open parenthesis character,
scan another token, else fail the alternative. The
stack is unaffected.

#ABC If the next token in the source is ABC, scan another
token, else fail the alternative. The stack is
unaffected.

#ABC:[keyword type] If the next token in the source is ABC:, scan another
token, else fail the alternative. The stack is
unaffected.

#~= If the next token in the source is ~=, scan another
token, else fail the alternative. The stack is
unaffected.

#’<<=’ If the next token in the source is <<=, scan another
token, else fail the alternative. The stack is
unaffected.

(...) When parentheses are encountered, the enclosed
part of the rule is parsed according to the rules for
alternatives.

foo * Expect zero or more repetitions of foo. The top value
on the stack will be an Array of FooNodes.

foo *! Expect zero or more repetitions of foo. The top N
values on the stack will be FooNodes, where N is the
number of repetitions.

foo + Expect one or more repetitions of foo. The top value
on the stack will be an Array of FooNodes.

foo +! Expect one or more repetitions of foo. The top N
values on the stack will be FooNodes.

foo \ foo2 Expect one or more repetitions of foo, separated by
foo2. The top value on the stack will be an Array of
FooNodes.

foo \! foo2 Expect one or more repetitions of foo, separated by
foo2. The top N values on the stack will be
FooNodes.

foo !* Expect one occurrence of foo. Assume that foo
leaves an Array on the stack. Pop the Array off the
stack and push each of its elements onto the stack.
Basic Libraries Guide 11-9

Parser Compiler
A Terminal is a Single Token
A terminal is a single token in the language, such as a number, a
string, a variable name, or a keyword. In the ParserCompiler, the
following terminals are recognized:

• A dollar sign ($) followed by a single character, representing a
literal character in the source.

• A number sign (#) followed by:

• A string (any sequence of characters enclosed in single
quotes)

• A word (an alphabetic character followed by alphabetic
characters or digits)

• A keyword (a word followed by a colon)

• A binary symbol (anything that represents a legal binary
operator in Smalltalk, such as //, \\, *, ~~, and ~=)

• The sequence word=#someWord, where someWord is a word as
defined above.

• The sequence keyword=#someKeyword, where someKeyword is a
keyword as defined above.

The difference between #someWord and word=#someWord is that in
the former case someWord becomes a reserved word in the language
and is always treated specially. In the latter case, someWord does not
become a reserved word and is treated specially only when it is
preceded by word=.

An Action is a Block or a Special Symbol
An action can be either a Smalltalk block or one of the following
special symbols:
11-10 VisualWorks

Advanced Parser-Compiler
Action symbols

The first four operations are for matching source code positions to
parse nodes. The last two are for use with Smalltalk blocks. When a
Smalltalk block appears in a production rule, the block is evaluated
and the result is pushed onto the stack. If you are interested in the
effect of the block but not the returned value, follow the block with a
period to get rid of the unwanted value. To decide whether to
continue parsing after a block has been evaluated, follow the block
with a question mark to cause the current alternative to proceed or
abort depending on the returned value.

Two Types of Block Syntax are Allowed
Two distinct syntaxes are accepted for Smalltalk blocks. One form of
syntax is identical to that of normal Smalltalk blocks having zero
arguments. The second form is nonstandard and requires further
explanation—it has the advantage of very concise coding, with the
disadvantage of very restricted syntax.

Symbol Description

< Saves the source position in a local variable (specifically, the
temps instance variable in ParserCompiler). Note that only one
source position per production rule is saved, so if you overwrite
it, the old value is lost.

> Assumes that the source position was previously saved via <,
and that the top value on the stack is a parse node. The parse
node is sent a sourcePosition:to: message, with the saved
position as the first argument and the current position as the
second argument. This implies that your node classes must
implement a sourcePosition:to: message when you use this
symbol in a production rule.

<< Pushes the source position onto the stack.

>> Assumes that the top value on the stack is a parse node, and
that the next value is a source position saved by <<. The parse
node is sent a sourcePosition: message, with an interval from
the saved position to the current position as the argument. The
source position is removed from the stack, and the parse node
remains the top element.

? Pops the top value off the stack. If it is true, proceed, otherwise
fail the current alternative.

. Pops the top value off the stack and proceed.
Basic Libraries Guide 11-11

Parser Compiler
Like a normal block, this special block is enclosed in square brackets.
It consists of exactly one message —the message can be either a
binary or keyword message, but not a unary message. The receiver
is specially coded:

• If there is no receiver, the message is sent to the parser itself.

• If the message selector is preceded by a colon (:), the top value
is popped off the stack and used as the receiver.

Each of the arguments is likewise specially coded:

• If there is no argument, or if the argument is a colon (:), the top
value is popped off the stack and used as the argument.

• If the argument is a normal Smalltalk literal (Symbol, String,
Number, Array, ByteArray, Character, or nil, true or false), it is used in
the ordinary way.

• If the argument is a temporary variable, instance variable, class
variable, or global variable, it is used in the ordinary way.

For example, the following block sends a copyWith: message to the
top value on the stack, with the second value on the stack as
argument:

[:copyWith:]
Note that no argument can be the result of a message send.

Summary of Grammar for Parsing Methods
Here is a simplified version of the grammar for parsing methods,
written in itself:

method = pattern #= temporaries definition
pattern = word | (keyword word)+
temporaries = $| word* $| |d
definition = alternative ($| alternative)*
alternative = ($@ |) term*
term = unit

((#* | #*!)
| (#+ | #+!)
| (#\ | #\!) unit |)

unit = word | character
| $# (word | keyword | binary | string)
| $(definition $)
11-12 VisualWorks

Advanced Parser-Compiler
Creating your Own Compiler
In preparation for writing programs in your new language, first define
a compiler class MyLanguageCompiler, then define a dummy class
MyLanguage. Define the following class method for MyLanguage:

compilerClass
^MyLanguageCompiler

Then any methods defined in class MyLanguage or any of its
subclasses will compile with MyLanguageCompiler rather than the
standard Smalltalk compiler. The example methods in the SQL class
are compiled by SQLCompiler in just this way.

The typical instance creation protocol for a parser takes either a
Stream or a String as input, as well as the name of the top-level
production rule to be applied. For example:

CParser parse: aStream as: #cFile
The final step in code generation is done by the message generate:.
This message is defined in GeneralParser on the assumption that the
output of your compiler (i.e., the single element left on the stack at the
end of recognizing a method) is a string that is actually a Smalltalk
source method, which then gets handed to the Smalltalk compiler.

However, you can override this method in your own compiler to do
something different. It should return a selector if the code generation
succeeds, or nil if it fails. In the case of the SQL example, the final
object is an Array containing a parse tree in the form of a hierarchy of
nodes. Try the examples on the instance side of the SQL class,
inspecting the results recursively to see the structure of the parse
tree.

This object responds to Smalltalk messages and can thus be
manipulated to suit the next phase of compilation.
Basic Libraries Guide 11-13

Parser Compiler
11-14 VisualWorks

Index
- (minus)
collection subtraction 1-15

Symbols
’ (single quote) 7-4
* (multiplication) 3-9
** (power function) 3-9
/ (division) 3-9
// (integer division) 3-9
\ (division remainder) 3-9
 1-15
- (minus)

numeric subtraction 3-9
+ (plus)

numeric addition 3-9
<$nopagenum See geometrics, elliptical arc
$ 7-1

A
abs 3-9
absolute value function 3-9
add: 1-5, 1-6
add:before: 1-7
add:beforeIndex: 1-7
addAll: 1-8
addAll:beforeIndex: 1-8
addAllFirst: 1-8
addDays: 4-3
addFirst: 1-7
addTime: 4-6
anyElementNamed: 10-4
anyElementsNamed: 10-4
appending

a string 7-5
arc function 6-8
array

expanding 1-8
remove element 1-11
size 1-5, 1-8

Array class 1-2, 1-3
asDays 4-3
asDouble 3-8
asFixedPoint: 3-8
asLowercase 7-7
asPattern 8-4

asRational 3-8
asRetainedMedium 5-5, 5-8
Association class 1-4
at:put: 1-7, 1-12
atAllPut: 1-12
atFeature: 10-20
atPoint: 5-6
atPoint:put: 5-7
atProperty: 10-20
attributes 10-4

B
Bag class 1-2
Bezier class 6-11
Bezier curve 6-1
Bezier curve, defined 6-11
block: 4-10
boundingBox:startAngle:sweepAngle: 6-9
ByteArray class 1-3

C
caching a graphic image 5-5
changeFrom:to:with: 7-12
character

line ends 7-7
operations 7-2
testing 7-2

Character class 7-1
characters: 10-18
children 10-4
circle 6-9
Circle class 6-2
client sockets, creating 9-4
collect: 1-19
collection 1-15

add element 1-6
capacity 1-16
classes 1-1
combine 1-15
convert 1-20
copy elements 1-14
create 1-4
inserting an element 1-7
looping 1-17
remove element 1-9
Basic Libraries Guide Index-1

replace element 1-11
size 1-5, 1-16
sort 1-19
test for emptiness 1-16

Collection subclasses 1-1
color 8-1

applying 8-4
creating 8-2
dithering 8-9, 8-10
geometric object 8-4
map 8-7
predefined 8-2
rendering policies 8-9
rendering policy 8-9

coloring
a graphic image 5-6

colorPalette 8-9
colors 8-8
ColorValue class 8-1
commit 2-12
comparing

dates 4-3
comparing numbers 3-10
Compiler class 11-2

defined 11-1
completeContentsOfArea: 5-8
Complex number 3-3
composed character 7-2
composeDiacritical: 7-2
contentHandler: 10-4
contractTo: 7-8
convertForGraphicsDevice: 5-5
convertForGraphicsDevice:renderedBy: 8-11
converting numeric types 3-7
convertToPalette: 8-8
convertToPalette:renderedBy: 8-12
copy:from:in:rule: 5-12
copyArea:from:sourceOffset:destinationOffs

et: 5-9
copyEmpty 5-11
copyFrom:to: 1-14, 7-11
copyReplaceAll:with: 7-12
copyReplaceFrom:to:with: 7-11
copyUpTo: 7-11
copyWith: 1-8
copyWithout: 1-11
corner: 6-2
coveragePalette 8-9
creating

parser instance 11-2
scanner instance 11-1

curves 6-11

D
date

comparing 4-3
day information 4-2
formatting 4-4

day information 4-2
dayOfMonth 4-3
daysInMonth 4-3
daysInYear 4-3
default

paint policy 8-9
palette 8-9

degreesToRadians 3-12
diacritical mark 7-2
dictionary

adding element 1-7
remove association 1-11

Dictionary class 1-4
dimension

of a rectangle 6-4
of an image 5-9

displayArcBoundedBy:startAngle:sweepAngl
e: 6-14

displayDotOfDiameter:at: 6-10
displaying

a graphic image 5-4
points 6-10

displayOn:at: 5-5
displayStrokedOn: 6-7
displayWedgeBoundedBy:startAngle:sweep

Angle: 6-14
dithered color 8-10
dithering color 8-9
do: 1-17
document 10-4
Document class 10-2, 10-4
Double class 3-1
dropFinalVowels 7-8
DSSRandom 2-21
dtdHandler: 10-4

E
elementNamed: 10-4
elementsNamed: 10-4
ElipticalArc class 6-1
ellipse

graphic 6-9
EllipticalArc class 6-9
EncodedStream class 2-18
EncodedStreamConstructor class 2-18
endDocument 10-18
endElement: 10-18
Index-2 VisualWorks

endPrefixMapping: 10-18
entityResolver: 10-4
ErrorDiffusion class 8-10
errorHandler: 10-4
errors

avoiding the ’Address in use’ error 9-27
handling in sockets 9-21
trapping socket and protocol errors 9-25

even 3-11
exp 3-13
expanding

graphic images 5-9
extent: 6-2

F
FastRandom class 2-21
findString:ignoreCase:useWildcards: 7-13
findString:startingAt:ifAbsent: 7-13
FixedPoint class 3-2
fixed-point number 3-2
Float class 3-1
FloatingPoint

comparing 3-10
flopping an image 5-10
flush 2-10
formatting

a date 4-4
Fraction class 3-2
from:to: 6-7
fromFile: 5-3
fromSeconds: 4-5
fromUser 5-4

G
geometric

circle 6-2
elliptical arc 6-1
line and line segment 6-1
polyline 6-1
rectangle 6-1
spline curve 6-2

geometrics
arcs, circles, and wedges 6-8
color 8-4
rendering color 8-12
splines and Bezier curves 6-11

graphic image
as graphic object 5-1
caching 5-5
capturing 5-3
coloring 5-6
converting to display surface 5-5

creating 5-2
displaying 5-4
expanding and shrinking 5-9
flopping 5-10
masking 5-8
packed rows 5-4
palette 5-2
performance 8-7
read from file 5-3
rotating 5-10
save as resource 5-3

graphics
image 5-1

GraphicsAttributes class 6-16
GraphicsAttributesWrapper class 6-15

H
handlers: 10-3
hue:saturation:brightness: 8-3

I
IdentityDictionary class 1-4
IdentitySet class 1-2
ignorableWhitespace: 10-18
image 5-3

See also graphic image
Image class 5-1
imageFromFile:toClass:selector: 5-3
includesAssociation: 1-17
includesKey: 1-17
indexOf: 7-13
Infinitesimal 3-6
Infinitesimal class 3-5
Infinity 3-5
Infinity class 3-5
Integer class 3-2
Interval class 1-3
isEmpty 1-16
isInteger 3-11
isZero 3-11

K
keysAndValuesDo: 1-18
keysDo: 1-18

L
LaggedFibonacciRandom class 2-21
LargeInteger class 3-1
LargeNegativeInteger class 3-1
LargePositiveInteger class 3-1
line end characters 7-7
line-end conversion 2-15
lineEndAuto 2-15
Basic Libraries Guide Index-3

lineEndCR 2-16
lineEndCRLF 2-16
lineEndLF 2-16
lineEndTransparent 2-16
LineSegment class 6-1
LinkedList class 1-4
List class 1-4
ln 3-13
log 3-13

M
macro expansion 7-8
magnifiedBy: 5-9
MappedPalette 8-8
mask 5-8
mask value 8-6
MetaNumeric class 3-4
MinimumStandardRandom class 2-21
monthName 4-3

N
negative 3-11
new:withAll: 1-5
newDay:monthNumber:year: 4-2
newReadAppendStream 2-12
newReadWriteStream 2-12
nextPutAll: 7-6
NotANumber 3-6
NotANumber class 3-5
now 4-5
number

creating 3-9
numeric operations 3-9

O
occurrencesOf: 1-17
on:encodedBy: 2-18
OrderedCollection class 1-3
OrderedDither 8-10
origin:corner: 6-2
origin:extent: 6-2

P
packed row, in an image 5-4
paint

applying 8-4
color 8-1
coverage 8-1

paint policy 8-9
paint: 8-4
PaintPolicy class 8-12
paintPolicy: 8-12
paintRenderer: 8-12

palette 8-8
color 8-6
conversion 8-7
coverage 8-6
default 8-9
defined 8-5
effect on performance 8-7
fixed 8-6
mapped 8-6

Palette class 8-5
parent 10-4
ParkMillerRandom class 2-21
parse: 10-2
Parser class

creating an instance 11-2
defined 11-1

Parser Compiler
action terms 11-10
alternatives in rules 11-7
at sign (@) 11-7
backing up in the input 11-7
block syntax 11-11
code generation 11-3
CompiledMethods as output 11-5
compilerClass 11-13
compiling source code 11-13
generate: 11-13
parse tree 11-5
parsing phase 11-5
production rule 11-6
production rules 11-5
quantifying symbols 11-9
rule grammar summary 11-12
rules vs. methods 11-6
scanner delimiters 11-4
scanner tokens 11-4
scanning 11-3
semantic analysis 11-3
SQL example 11-3
stack 11-5
subclassing ExternalLanguageParser

11-5
subclassing GeneralParser 11-5
temporary variables in rules 11-6
terminals 11-10
terms in an alternative 11-8
unit terms 11-8

pattern
applying 8-4
tile phase 8-5

Pattern class 8-1
Index-4 VisualWorks

pattern
See also tile

period: 4-11
phase of a tiled pattern 8-5
pi 3-3
PI class 10-12
Polyline 6-7
Polyline class 6-1
port numbers 9-6
position: 2-19
positive 3-11
power function 3-9
printFormat: 4-4
process: 4-10
processingInstruction: 10-18

R
radiansToDegrees 3-12
Random class 2-21
RasterOp class 5-11
read/write communication in sockets 9-16
readFromString: 4-1, 4-5
reciprocal function 3-9
rectangle

creating 6-2
dimensions 6-4
messages 6-4

Rectangle class 6-1
red:green:blue: 8-2
reflectedInX 5-10
reflectedInY 5-10
remove: 1-9
remove:ifAbsent: 1-9
removeAll: 1-9
removeAllSuchThat: 1-10
removeFirst 1-10
removeFirst: 1-10
removeFrom:to: 1-10
removeKey: 1-11
removeKey:ifAbsent: 1-11
removeLast 1-10
removeLast: 1-10
rendering color 8-9
replaceAll:with: 1-13
replaceFrom:to:with:startingAt: 1-13
respondsToArithmetic 3-11
reverse 1-20
RGB color 8-2
root 10-4
rotateByQuadrants:to: 5-11
rotatedByQuadrants: 5-10
rotating a graphic image 5-10

RunArray class 1-3

S
sameAs: 7-15
sameCharacters: 7-16
SAXDriver class 10-4
SAXExternalGeneralEntities class 10-20
SAXExternalParameterEntities class 10-20
SAXNamespace class 10-20
SAXNamespacePrefixes class 10-20
SAXValidate class 10-20
Scanner class

creating an instance 11-1
defined 11-1

screen
capture 5-3
default palette 8-9

security 2-21
selectNodes: 10-4
semaphore: 4-10
sendTo:/receiveFrom: style communication

introduction 9-18
send/receive flags 9-20

server sockets, creating 9-4
Set class 1-2
shift value 8-6
shrinking graphic images 5-9
shrunkenBy: 5-10
size 1-16, 7-5
skip: 2-19
skippedEntity: 10-18
SmallInteger class 3-1
SocketAccessor class 9-2
SocketAddress class 9-2
sockets

basics 9-2
building

TCP socket client 9-6
TCP socket server 9-7
UDP socket clients and servers 9-9

classes that provide support 9-2
client or server 9-3
closing 9-5
connected UDP 9-10
creating 9-2
error handling in 9-21
introduction 9-1
line-end conversions in Streams 9-13
option level control 9-25
positioning on a socket stream 9-12
read/write communication 9-16
reading from and writing to 9-11
Basic Libraries Guide Index-5

sendTo:/receiveFrom: style
communication 9-18

stream style communication 9-11
types 9-1
waiting for data in streams 9-15

SomeNumber 3-7
SomeNumber class 3-5
sort 1-20
SortedCollection class 1-3
sortWith: 1-20
spellAgainst: 7-16
spline 6-11
Spline class 6-2, 6-11
SQL, parsing example 11-3
sqrt 3-9
square root function 3-9
startAfter: 4-10
startAt: 4-10
startDocument 10-18
startElement: 10-18
startPrefixMapping: 10-18
streams

line-end conversions in 9-13
positioning 9-12
stream style communication 9-11
waiting for data 9-15

strictlyPositive 3-11
string

abbreviating 7-8
concatenation 7-5
evaluating as Smalltalk expression 11-2
length and width 7-5
remove a substring 7-11
searching 7-13

String class 7-1, 7-3
string substitutions 7-8
substitution parameters 7-8
substring operations 7-10
subtractDate: 4-3

T
TCP socket, building

client 9-6
server 9-7

text
size 7-5

tile
pattern 8-1
phase 8-5

tilePhase: 8-5

time
creating 4-4
zones 4-7

time stamp 4-6
Timer 4-10
Timestamp class 4-6
today 4-1
tokensBasedOn: 7-12

U
UDP sockets

building UDP socket clients and servers
9-9

connected 9-10

V
validate: 10-2
valueAtPoint: 5-6
valueAtPoint:put: 5-6

W
wedge 6-9
weekday 4-3
withAll: 1-6
withColors: 8-8
withCRs 7-8
withEncoding: 2-18
WriteStream 7-5

X
XML

accessing elements 10-4
add attribute 10-11, 10-24
add element 10-9
add text 10-11
attributes 10-7
build document 10-8
children 10-6
document fragment 10-22
DOM 10-1
DTD 10-2
error handling 10-29
parser drivers 10-3
parsing 10-2
processing instruction 10-11
root 10-6
SAX 10-17
SAX event handler 10-18
SAX2 10-19
Schema 10-3
select elements 10-6
stylesheet 10-24
validating 10-3
Index-6 VisualWorks

XMLParser class 10-2, 10-4

Y
yourself 1-5
Basic Libraries Guide Index-7

	About This Book
	Overview
	Audience
	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information
	Online Help
	News Groups
	VisualWorks Wiki
	Commercial Publications

	Collections
	Choosing the Appropriate Class
	Set
	Bag
	Array
	Interval
	OrderedCollection
	SortedCollection
	List
	LinkedList
	Dictionary

	Creating a Collection
	Adding Elements
	Adding an Element to a Collection
	Inserting an Element at a Specific Location
	Adding a Collection of Elements
	Expanding an Array

	Removing Elements
	Removing a Subcollection
	Removing an Element or Range of Elements by Index
	Removing All Elements That Pass a Test
	Removing an Association from a Dictionary
	Removing an Element from an Array

	Replacing Elements
	Replacing Individual Elements
	Replacing All Elements
	Replacing Specified Elements
	Replacing All Occurrences of an Object
	Replacing a Subcollection

	Copying Elements
	Copying a Subcollection
	Concatenating Two Collections
	Subtracting One Set from Another

	Testing Collections
	Equality and Identity
	Getting the Number of Elements
	Getting the Capacity
	Testing for Emptiness
	Testing for the Presence of an Object

	Looping through the Elements (Iterating)
	Looping by Index or Key
	Collecting the Results of the Processing
	Looping through Two Parallel Collections

	Sorting a Collection
	Converting Collection Types

	Streams
	Stream Class Hierarchy
	Basic Protocol
	Instance Creation
	Positioning
	Reading
	Writing
	Closing a Stream

	Internal Streams
	Creating an Internal Stream
	Reading and Writing Internal Data
	Reading and Writing Past the End of Data
	Writing and Immutable Objects

	External Streams
	Creating an External Stream
	Reading and Writing External Data
	Buffered Reading and Writing
	Reading and Writing Past the End of Data

	Positioning

	Encoded Streams
	Line-end Conventions
	Encodings
	Encoding a Stream
	Reading and Writing
	Positioning on an Encoded Stream
	Encoding and Decoding String Data

	Stream Exceptions
	Random Numbers

	Numbers
	Numeric Types
	Numeric Constants
	Zero
	Unity
	Pi

	Complex Numbers
	Metanumbers
	Infinity Class
	Infinitesimal Class
	NotANumber Class
	SomeNumber Class

	Converting Numeric Type

	Operations on Numbers
	Creating a Number
	Arithmetic Operations
	Rounding and Truncating
	Comparing Numbers
	Testing Numbers for Properties
	Mathematical Functions
	Factoring
	Trigonometric Functions
	Logarithmic Functions

	Chronology
	Dates
	Creating a Date
	Getting Information about a Day
	Adding and Subtracting with Dates
	Comparing Dates
	Formatting a Date

	Times
	Creating a Time
	Getting the Seconds, Minutes, and Hours
	Adding and Subtracting Times

	Timestamp
	Creating Timestamp
	Comparing Timestamps

	TimeZone
	Duration
	Timer

	Graphical Images
	Color Depth and Images
	Creating a Graphic Image
	Using the Image Editor
	Reading an Image from a File
	Capturing an Image from the Screen
	Creating a Bitmap Manually
	Displaying an Image
	Creating a Display Surface Bearing an Image

	Caching an Image
	Coloring Pixels in an Image
	Changing Color by Color Value
	Changing Color by Numeric Value

	Masking an Image
	Creating a Mask
	Masking a Rectangular Area
	Masking a Nonrectangular Area

	Modifying an Image
	Expanding or Shrinking an Image
	Flopping an Image
	Rotating an Image
	Overlaying Images

	Working with Geometric Objects
	Geometric Objects
	Rectangles
	Creating a Rectangle
	Getting and Setting a Rectangle’s Dimensions
	Moving a Rectangle
	Testing Rectangle Relations

	Lines
	Polylines and Polygons
	Arcs and Ellipses
	Circles and Dots
	Curved Lines

	Drawing a Geometric Object
	Using a Drawing Style Wrapper
	Drawing Transient Shapes

	Transformations on Geometrics
	Storing Graphic Attributes

	Working with Text
	Characters
	Creating Characters
	Testing Character Types
	Comparing Characters

	Strings
	Creating a String
	Getting a String’s Length and Width
	Combining Strings

	Modifying String Contents
	Changing Characters in Place
	Changing the Case in a String
	Inserting Line-End Characters
	Abbreviating a String
	String Substitution Parameters

	Substring Operations
	Copying a Substring
	Copying a Prefix
	Removing or Replacing a Substring
	Replacing a Substring
	Replacing All Occurrences of a Substring
	Tokenizing Substrings

	Searching
	Get the Index of a Character in a String
	Ignoring Case in a Search

	Comparing Strings
	Testing for Equality and Identity
	Comparing by Sorting Order
	Rating the Similarity of Two Strings

	Colors and Patterns
	Pixel Coverage
	Creating a Color
	Create by Color Name
	Create by Red, Green, and Blue Values
	Create by Hue, Saturation, and Brightness Values

	Coloring a Graphical Object
	Creating a Pattern
	Applying a Pattern
	Adjusting a Pattern’s Tile Phase

	Image Color Palettes
	Coverage Palettes
	Color Palettes
	Image Display Performance
	Device Color Map
	Applying a Palette to an Image
	Converting an Image to Use the Default Palette

	Color Rendering Policies
	NearestPaint
	OrderedDither
	ErrorDiffusion
	Applying a Renderer to an Image
	Converting an Image to a Specific Palette
	Setting the Rendering Policy for Nonimage Graphics

	Socket Programming
	VisualWorks Implementation Classes
	Socket Basics
	Creating a socket
	Making a client or server socket
	Closing a socket
	Port numbers
	Building a TCP socket client
	Building a TCP socket server
	Building UDP socket clients and servers
	Connected UDP

	Reading from and Writing to a Socket
	Stream Style Communication
	Positioning on a Stream
	Line-end conversion
	Waiting for data
	Read/Write Style Communication
	SendTo:/ReceiveFrom: style communication
	Send/Receive Flags

	Socket Error Handling
	Trapping socket and protocol errors

	Option level control
	Solving Common Socket Problems
	How do I avoid the ‘Address in use’ error?

	XML Framework
	Working with XML Documents
	Parsing an XML Document
	Validating Against a Schema
	Selecting a XMLParser Driver

	Accessing XML Document Elements
	Get Document Root Element
	Selecting Elements
	Selecting Attributes

	Building a Document
	Create a Basic Document
	Node Ordering
	Add Element Nodes
	Add a Root Element
	Add Nested Elements
	Adding Element Attributes
	Adding Text

	Add Processing Instructions
	Writing the XML Document

	Using XML Namespaces
	Declare Namespaces
	Applying a Namespace to an Element
	Assigning a Namespace to an Attribute

	Building a SAX Driver
	Handling SAX Events
	Configuring SAX Features and Properties
	Document Fragments
	Building a Fragment
	Parsing a Fragment

	XSL Stylesheet Processing
	Loading XSL Support
	Applying a Stylesheet to a Document

	Using XPath
	Creating a Path Expression
	Applying an XPath Expression
	Selecting Nodes with an XPath

	XML Error Handling

	Parser Compiler
	Standard Parser-Compiler
	Scanner
	Parser
	Compiler

	Advanced Parser-Compiler
	Scanning Source Code
	Parsing
	A Rule has a Name and a Definition
	Rules are Similar to Methods
	Temporary Variables Can be Used
	A Rule Definition is a Series of Alternatives
	An Alternative is a Series of Terms
	A Term is an Action or a Unit-Plus-Qualifier
	A Unit is a Word, Terminal, or Parenthesized Definition
	A Terminal is a Single Token
	An Action is a Block or a Special Symbol
	Two Types of Block Syntax are Allowed

	Summary of Grammar for Parsing Methods
	Creating your Own Compiler

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

