
Cincom Smalltalk™

COM Connect User's Guide

P46-0123-05

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

Copyright © 1997–2009 by Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0123-05

Software Release 7.7

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, the Cincom logo and Cincom Smalltalk logo are
registered trademarks of Cincom Systems, Inc. ParcPlace and VisualWorks are
trademarks of Cincom Systems, Inc., its subsidiaries, or successors and are registered in
the United States and other countries. ObjectLens, ObjectSupport, Cincom Smalltalk,
Database Connect, DLL & C Connect, COM Connect, and StORE are trademarks of
Cincom Systems, Inc., its subsidiaries, or successors. ENVY is a registered trademark of
Object Technology International, Inc. All other products or services mentioned herein are
trademarks of their respective companies. Specifications subject to change without notice.

Microsoft Note:

This document contains information obtained from Microsoft’s Developer Network Library
Visual Studio 98. This information is reprinted with Microsoft’s permission. For more about
COM and other Microsoft offerings, see their website at: http://www.microsoft.com

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation © 1997–2009 by Cincom Systems, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior written consent
from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

http://www.microsoft.com

Contents
About This Book xiii

Audience ...xiii
Organization ..xiii
Conventions .. xv

Typographic Conventions ... xv
Special Symbols ... xv
Mouse Buttons and Menus ..xvi

Getting Help ...xvii
Commercial Licensees ..xvii

Before Contacting Technical Support ...xvii
Contacting Technical Support ..xvii

Non-Commercial Licensees ... xviii
Additional Sources of Information ... xviii

Documentation ...xix
Books ..xix
COM Specification .. 1-xix
Resource Links ...xix
DCOM and CORBA .. xx

Chapter 1 COM Connect Basics 1-1

The Component Object Model ..1-1
Objects and Interfaces ..1-2
Publishing COM Objects ...1-3
COM Applications ...1-4
Learning More About COM ...1-4

COM Automation Basics ..1-5
Overview of Automation ..1-5
Why Expose Objects? ...1-6
Automation = Cross-Application Macros ..1-8
What Is An ActiveX Object? ..1-9
What Is An ActiveX Client? ...1-12
COM Connect User’s Guide iii

Contents
How Do Clients and Objects Interact? .. 1-12
Accessing an Object Through the IDispatch Interface 1-15
Accessing an Object Through the VTable 1-16
In-Process and Out-of-Process Server Objects 1-17

What Is a Type Library? .. 1-17

Chapter 2 Using COM Objects 2-1

Acquiring COM Objects ... 2-1
Basic COM Interface Support .. 2-2
Acquiring COM Interfaces and Creating COM Objects ... 2-2
Managing Object References .. 2-6
Using COM Interface Functions ... 2-9
Error Handling ... 2-10
Managing Memory ... 2-11
In Depth: Class Factories and Object Creation Contexts 2-12

Accessing Objects With IClassFactory ... 2-14
Class Context Definitions .. 2-14
Class Context Processing .. 2-16

Chapter 3 Implementing COM Objects 3-1

COMObject Framework ... 3-1
Implementation Examples ... 3-2
Design Guidelines for Implementing COM Objects ... 3-4
Supporting COM Interfaces ... 3-5
Reusing COM Objects ... 3-10
Configuring Interface Function Processing .. 3-14

Configuring a Direct Interface Binding .. 3-16
Configuring an Adaptor Interface Binding ... 3-16

Implementing Interface Functions .. 3-20
Releasing a COM Object ... 3-21
Returning Values From an Interface Function ... 3-23
Implementing Reference Counting .. 3-24
Memory Management .. 3-25

Chapter 4 COM Infrastructure Support 4-1

COM Pools .. 4-1
Basic COM Data Types .. 4-1

Globally Unique Identifiers .. 4-1
HRESULT Values .. 4-2
iv VisualWorks

Contents
COM Enumerators ...4-3
Using COM Enumerators ..4-3
Implementing COM Enumerators ..4-3

COM Monikers ...4-4
COM Structured Storage Support ..4-5
COM Uniform Data Transfer Support ...4-6

Clipboard Data Transfer ..4-6
COM Event Support ...4-7

Overview of Connectable Object Technology ..4-8
Overview of Receiving COM Events in VisualWorks4-8
Using a COM Event Sink ...4-9
Configuring an Event Sink ...4-9
Connecting an Event Sink ...4-11
Registering Handlers on an Event Sink ...4-12
Disconnecting an Event Sink ...4-13

VisualWorks Extensions ...4-14
Image Management Services ...4-14
User Interface Extensions ...4-16
Working With External Structures ...4-17
DLL & C Connect Extensions ...4-18

Win32 Support Facilities ..4-20
COM Host Binding Framework ..4-21

COM Data Structures ..4-22
COM Function Binding Classes ..4-22

COMDynamicLinkLibrary ..4-22
COMInterfacePointer ..4-23
COMInterfaceImplementation ..4-23

Chapter 5 COM Connect Development Tools 5-1

COM Resource Browser ..5-1
Inspecting Resources ..5-3
Releasing Resources ..5-3
Common Resources ...5-3

COM Trace Manager and COM Trace Viewer ..5-4
COMInterfaceTraceAdaptor ...5-5

Automation Browser ...5-5
Usage Features ...5-7

Inspector Extensions ..5-8
Automation Member Description tab ...5-9
Automation items tab ...5-10

COM Automation Editor ...5-10
COM Event Trace Viewer ...5-11
COM Connect User’s Guide v

Contents
COM Automation Type Analyzer .. 5-11
Interface Class Generation Tools ... 5-11

Smalltalk COM Interface Binding Architecture .. 5-12
Interface Class Responsibilities .. 5-13

COMInterface Framework .. 5-13
COMInterfacePointer Framework .. 5-13
COMInterfaceImplementation Framework 5-13

Creating the Interface Type Definitions ... 5-14
Creating COM Interface Wrapper Classes ... 5-16

Chapter 6 Using Automation Objects 6-1

Creating an Automation Object .. 6-1
Creating Visible and Invisible Objects ... 6-3

Obtaining an Active Application Object .. 6-3
Activating an Automation Object From a File ... 6-3
Setting a Property .. 6-4
Getting a Property ... 6-5
Calling a Method .. 6-5

Calling a Method With Arguments .. 6-5
Calling a Method With Named Arguments .. 6-6
Calling a Method With Arguments by Reference .. 6-6

Subscribing for events ... 6-7
Simple Calling Syntax .. 6-7

Calling Automation Methods ... 6-8
Accessing properties .. 6-8
Considerations .. 6-9

Data Types ... 6-9
Functions vs. Procedures .. 6-10
Object Destruction ... 6-11
What to Do With an IDispatch .. 6-11
Get the Methods and Properties of an Object .. 6-12
Using Type Libraries .. 6-13

Creating an Instance of a COMTypeLibrary .. 6-13
Configuring a COMTypeLibrary for a Server Application 6-14

Automation Object Constants .. 6-15
Accessing Objects with IClassFactory ... 6-17
Inside the Dispatch Driver .. 6-18
What Specification Policy to Use ... 6-19

Performance Tradeoffs .. 6-20
Using the Default Specification Policy .. 6-20
Setting a Specification Policy .. 6-21

The Type Compiler Policy .. 6-22
vi VisualWorks

Contents
The Type Library Policy ..6-22
The Variant Policy ..6-22
The Lazy Initialization Policy ..6-23
Dynamically Changing a Specification Policy6-23

Using a Specification Table ..6-24
Building Specification Tables ..6-24

Building a Specification Table from a Type Library6-24
Building All Specifications From a Type Library ..6-26
Building Specifications From Type Information ...6-27

Summary ..6-27

Chapter 7 Using ActiveX Controls 7-1

Using ActiveX Controls in a VisualWorks Application ..7-1
Loading ActiveX Support ...7-1
Adding an ActiveX Control to your application ..7-1
Configuring the Control ...7-2

Extended Configuration ..7-3
Configuring Data Bindings ..7-3
Configuring Events ..7-5

Calling Control Methods ...7-6
Licensing Support ..7-6

Chapter 8 Implementing Automation Objects 8-1

Overview ..8-1
Installing the Automation Server Samples ..8-2
Basic Concepts of Automation Object Implementation8-2
Automation Object Implementation Techniques ..8-3

Exposing a Smalltalk Class ..8-5
Implementing Properties ...8-7
Rules for Handling Interfaces ..8-8
Implementing a Method ...8-9
Terminating an Application ..8-10

Creating Class Identifiers ...8-10
Creating the Type Library ...8-12

Type Libraries and the Object Description Language8-13
Generating a Type Library With MIDL ...8-13
Automation Data Types ...8-14

Creating the Programmable Interface ..8-16
Creating Methods ...8-16
Creating Properties ..8-17
Property Accessor Functions ...8-17
COM Connect User’s Guide vii

Contents
Implementing the Value Property .. 8-18
Handling Events ... 8-18

Creating the Type Library IDL File .. 8-18
Building the Type Library .. 8-19

Mapping COM Interface Functions to a Class .. 8-20
Mapping DISPID Requests to Your Class ... 8-24
Mapping a DISPID to a Method .. 8-24
Mapping a DISPID to a Method With Arguments 8-25
Mapping a DISPID to a Property .. 8-25

Exposing Classes Through IDispatch ... 8-26
The Big Picture ... 8-26

Image Startup .. 8-27
Object Creation .. 8-28
Object Function Invocation .. 8-29

Class Initialization .. 8-29
Application Startup ... 8-30

Verify Startup for an Automation Server 8-31
Verify Type Library Registration ... 8-31
Register the Class Factory .. 8-32

Type Library Management .. 8-33
Run-Time Installation .. 8-35

Supporting Multiple National Languages ... 8-35
Implementing IDispatch for Multilingual Applications 8-35
Creating Separate Type Libraries ... 8-35

Passing Formatted Data Using IDataObject .. 8-36
Implementing the IEnumVARIANT Interface .. 8-37
Returning an Error ... 8-38

Passing Exceptions Through IDispatch .. 8-38
Troubleshooting Q & A ... 8-38

Chapter 9 Publishing Automation Objects 9-1

Creating a Registration File ... 9-1
Registering the Application ... 9-1
Registering Classes .. 9-2
Registering a Type Library .. 9-5
Registering Interfaces ... 9-7

Example ... 9-8
Creating a Run-Time Image .. 9-9

Publishing an Object Through IDispatch ... 9-9
Publishing an Object Through a Dual Interface .. 9-10
Creating the Deployment Image ... 9-10

Object Server Application Termination Considerations ... 9-11
viii VisualWorks

Contents
Testing an Object Server Application EXE ...9-12
Troubleshooting an Object Server Application EXE ...9-14

Server Startup Problems ...9-14
Server Termination Problems ..9-15

Stripping an Object Server Application Using RTP ..9-16
Test the COM Server Application for Dynamic References9-17
Strip the Image ..9-18

Chapter 10 Publishing using the Automation Wizard 10-1

What the Automation Wizard Does ..10-1
The Classes Step ..10-2
The GUIDs Step ..10-3
The Type Library Step ...10-4
The Reg File Step ...10-5
The Deploy Step ..10-6
Saving and loading Settings ..10-6

Example of Using the IAAutomationWizard ...10-7
The Classes Step ..10-7
The GUIDs Step ..10-7
The Type Library Step ...10-7
The Reg File Step ...10-7
The Deploy Step ..10-8

The Test ...10-8

Chapter 11 Exposing Classes Through Dual Interfaces 11-1

Exposing Objects ...11-2
The Big Picture ...11-3

Image Startup ...11-3
Object Creation ...11-4
Object Function Invocation ..11-5
The Published Class ...11-5

IDL Requirements ..11-6
Creating the Dual Interface Data Type ...11-8
Creating the Dual Interface Virtual Function Table Definition11-8
Modifying Existing Virtual Function Table Definition ..11-17
Creating the Dual Interface Classes ...11-18
Creating the Interface Class ...11-19

Automatically Generating the Interface Class ...11-19
General Pattern for Getting Output Parameter Values11-20
Getting Scalar Output Values ..11-20
Getting Interface Output Arguments ...11-21
Getting VARIANT Output Values ...11-22
COM Connect User’s Guide ix

Contents
Passing Input Parameter Values ... 11-23
Calling a Method ... 11-23
Calling a Method With Arguments .. 11-23
Class Initialization ... 11-24

Creating the Interface Implementation Binding Class .. 11-24
Automatically Generating the Interface Implementation Class 11-25
General Pattern for Returning a Value in an Output Parameter 11-26
Copying Output Values to External Memory ... 11-26
General Pattern for Getting Values From Input Parameters 11-28
Optimizing Same Image Clients ... 11-30
Class Initialization ... 11-31

Creating the Interface Pointer Binding Class ... 11-31
Automatically Generating the Interface Pointer Class 11-32
Getting Output Parameter Values ... 11-33
Setting Input Parameter Values .. 11-35
Setting Input Parameters for Scalar Values .. 11-35
Setting Input Parameters for BSTR Values ... 11-35
Setting Input Parameters for CURRENCY Values 11-36
Setting Input Parameters for DATE Values ... 11-37
Setting Input Parameters for Interface Values .. 11-37
Setting Input Parameters for SAFEARRAY Values 11-37
Setting Input Parameters for VARIANT Values 11-38
Setting Input Parameters for VARIANT_BOOL Values 11-39
Class Initialization ... 11-39

Create a COMDualInterfaceObject Subclass .. 11-40
COMDualInterfaceObject Subclass Responsibilities 11-40
Implementing Methods and Properties ... 11-41
Implementing Class Initialization .. 11-42
Providing Class Factory Support .. 11-43
Summary .. 11-43
Implementing Type Library Management ... 11-44
Implementing Run-Time Installation ... 11-44

Converting Existing Objects to Dual Interfaces ... 11-45

Chapter 12 Using Distributed COM 12-1

Locating a Remote Object ... 12-1
Accessing Objects on Remote Machines .. 12-2
The Remote Server Name Key .. 12-2
In Depth: The COSERVERINFO Structure .. 12-3
Optimizing Querying Interfaces ... 12-4
Determining Whether DCOM Is Available .. 12-5
x VisualWorks

Contents
Making VisualWorks COM Server a Windows NT 4.0 Service12-6
System Requirements ...12-6
Configuration Procedure ...12-6
Reference Material ..12-8

Chapter 13 Automation Controller Framework 13-1

Examples ...13-1
The MS Excel Monster Damage Example ..13-1
The MS Excel Import Text File Example ...13-2
The MS Word Class Formatter Example ...13-3

Creating New Controller Classes ...13-4
Subclassing a Framework Class ...13-4
Rules for Adding an Application Object ...13-6
Rules for Adding a Standard Object ..13-8
Adding Behavior to a Standard Object ..13-9
Adding a Collection Controller ...13-10
Releasing Return Values ...13-10

Using Non-Standard Objects ...13-11
Using the Default Specification Policy ..13-11

Setting the Default Specification Policy ...13-12

Chapter 14 Standard Automation Objects and Naming Guidelines 14-1

Using Standard Objects ...14-2
Accessing Objects ..14-3
Method and Property Names ...14-3
Standard Object Properties ..14-4
Collection Object Properties ..14-4
Collection Methods ...14-5
Kinds of Collections ..14-6
Using the Application Object in a Type Library ...14-7
Document Object Properties ..14-10
Documents Collection Object ...14-12
The Font Object ...14-13

Chapter 15 Under the Hood 15-1

Using AutomationObject With COMDispatchDriver ...15-1
The Dispatch Interface ...15-1
Passing Arguments to a Dispatch Interface ..15-2

Specification Policies ..15-5
Class Hierarchy ...15-5
COMSpecificationPolicy ..15-6
COM Connect User’s Guide xi

Contents
COMTypedSpecificationPolicy ... 15-6
COMUntypedSpecificationPolicy ... 15-7
COMLookupSpecificationPolicy ... 15-7
COMNoLookupSpecificationPolicy ... 15-7
COMTypeCompilerLookupSpecificationPolicy .. 15-8
COMTypeLibraryLookupSpecificationPolicy ... 15-8
COMVariantLookupSpecificationPolicy .. 15-8

Chapter 16 COM Connect Server Examples 16-1

Registering the Example COM Server .. 16-1
How to Publish the COM Automation Server Example Image 16-2
Modifying the Examples to Match Your Directory Structure 16-4
Starting a Deployed Image Manually ... 16-5
The Smalltalk Commander Examples ... 16-6

COM Connect Client Example: The Smalltalk Commander 16-7
Accessing With the Standard IDispatch 16-7
Accessing With the Dual Interface ISmalltalkCommanderDisp ... 16-7
Releasing the Interface .. 16-8

Visual Basic Client Example: The Smalltalk Commander 16-8
Visual Basic Client Example: The Class Hierarchy Browser 16-9
Visual C++ Client Example: The Smalltalk Commander 16-9
Visual J++ Client Example: The Smalltalk Commander 16-10

The AllDataTypes Examples .. 16-10
The AllDataTypes Example Server ... 16-11
The COM Connect Example Client ... 16-11

Accessing With the Standard IDispatch 16-11
Accessing With the Dual Interface IAllDataTypesDisp 16-12
Releasing the Interface .. 16-14

Glossary Glossary-1

Index Index-1
xii VisualWorks

About This Book

Programs that use or publish objects adhering to Microsoft Component
Object Model (COM) interface standards are able to interact with other
COM-based applications independent of operating system or
programming language restrictions.

This guide describes how to use VisualWorks COM Connect to access or
publish COM objects from within VisualWorks applications. It also
provides procedural and reference information for using COMAutomation
(formerly called OLE Automation) with VisualWorks.

Audience
This guide is intended for experienced VisualWorks application
developers who want to access or publish COM objects from within
VisualWorks applications. To get the most out of this document, you
should also be familiar with the Microsoft Windows 95/98 and NT
programming environments, and with COM and Automation concepts.

Organization
This guide is organized as follows:

• This preface describes conventions used in this guide, related
documents that might be helpful, and instructions for contacting
Cincom if you need assistance.

• Chapter 1, COM Connect Basics introduces COM concepts and
describes the basics of VisualWorks COM Connect facilities.

• Chapter 2, Using COM Objects describes how to write VisualWorks
code capable of interacting with COM objects.

• Chapter 3, Implementing COM Objects describes how to provide
access to your application through interfaces used by external COM
clients.
COM Connect User’s Guide xiii

About This Book
• Chapter 4, COM Infrastructure Support describes COM infrastructure
technologies supported in COM Connect.

• Chapter 5, COM Connect Development Tools describes tools for
developing and debugging COM applications in Smalltalk, as well as
tools for COM developers that are freely available from Microsoft.

• Chapter 6, Using Automation Objects describes how to create and
access Automation objects, and how to access methods and
properties of a particular Automation object through its dispatch
interface (the IDispatch interface).

• Chapter 7, Using ActiveX Controls describes adding and configuring
AciveX components for use in an application GUI.

• Chapter 8, Implementing Automation Objects describes the facilities
and frameworks available for publishing externally accessible COM
Automation objects.

• Chapter 9, Publishing Automation Objects discusses run-time image
preparations for a published object, and object server application
testing methods.

• Chapter 11, Exposing Classes Through Dual Interfaces describes
how to implement dual interfaces for exposed ActiveX objects in your
application.

• Chapter 12, Using Distributed COM describes how to support
communication among objects on different computers— on a LAN, a
WAN, or the Internet.

• Chapter 13, Automation Controller Framework describes the
framework that provides Smalltalk wrappers for standard Automation
objects, as well as abstract classes you can subclass to add support
for other Automation objects.

• Chapter 14, Standard Automation Objects and Naming Guidelines
describes the standard ActiveX objects, and discusses naming
guidelines for creating and using objects that are unique to
applications, especially user-interactive applications that support a
multiple-document interface (MDI).

• Chapter 15, Under the Hood presents additional information that is
not essential to learning how to use VisualWorks COM Connect
Automation classes but helps you understand COM Connect
technology.
xiv VisualWorks

• Chapter 16, COM Connect Server Examples provides examples of
how to publish COM Automation objects.

• The Glossary defines many of the terms used in this guide.

Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Special Symbols
This book uses the following symbols to designate certain items or
relationships:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File > New Indicates the name of an item (New) on a menu
(File).

<Return> key

<Select> button

<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.
COM Connect User’s Guide xv

About This Book
Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or
combinations:

Note: This is a different arrangement from how VisualWorks used
the middle and right buttons prior to 5i.2.
If you want the old arrangement, toggle the Swap Middle and Right Button
checkbox on the UI Feel page of the Settings Tool.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>

Examples Description
xvi VisualWorks

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

• The version id, which indicates the version of the product you are
using. Choose Help > About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help > About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to
supportweb@cincom.com.

Web
In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com
COM Connect User’s Guide xvii

mailto:supportweb@cincom.com
mailto:supportweb@cincom.com
http://supportweb.cincom.com

About This Book
Telephone
Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.

Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:

• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu

with the SUBJECT of "subscribe" or "unsubscribe". You can then
address emails to vwnc@cs.uiuc.edu.

• A Wiki (a user-editable web site) for discussing any and all things
VisualWorks related at:

http://www.cincomsmalltalk.com/CincomSmalltalkWiki

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincomsmalltalk.com/documentation/

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.
xviii VisualWorks

mailto:vwnc-request@cs.uiuc.edu
mailto:vwnc@cs.uiuc.edu
http://www.cincomsmalltalk.com/CincomSmalltalkWiki
news:comp.lang.smalltalk
http://www.cincomsmalltalk.com/documentation/

Documentation
In addition to this guide, the following documents (available at
bookstores) might be useful when developing interoperable VisualWorks
applications:

Note: Web URLs referenced in this document were valid at the time
of publication; however, web page references are volatile and
therefore some of these links may become obsolete over time. If you
find an obsolete link, please email publications@cincom.com.

Books
• Inside COM. Dale Rogerson. Microsoft Press.

ISBN 1-57231-349-8.

This book provides an excellent introduction for the programmer to
the basic COM architectures and concepts.

• Inside OLE, Second Edition. Kraig Brockschmidt. Microsoft Press.
ISBN 1-55615-843-2.

• Understanding ActiveX and OLE. David Chappell.
ISBN 1-57231-216-5.

This book provides a high-level overview of COM technology.

• OLE2 Programmer’s Reference. Volume 1 (COM and OLE). Volume
2 (Automation). Microsoft Press.
ISBN 1-57231-584-9.

• Professional DCOM Programming. Richard Grimes.
ISBN: 1-86100-060-X.

• Creating Components with DCOM and C++. Don Box.
ISBN 13: 9780614284423

• The Underground Guide to Microsoft Office, OLE and VBA. Lee
Hudspeth, Timothy-James Lee. Addison Wesley Publishing
Company. ISBN 0-201-41035-4.

COM Specification
http://msdn.microsoft.com/en-us/library/ms694363(VS.85).aspx

Resource Links
• The ActiveX Working Group.

http://www.activex.org
COM Connect User’s Guide xix

http://msdn.microsoft.com/en-us/library/ms694363(VS.85).aspx
http://www.activex.org

About This Book
• Cetus Links.

http://www.objenv.com/cetus/oo_ole.html

DCOM and CORBA
• Comparing ActiveX and CORBA/IIOP.

http://www.omg.org/library/activex.html
• Mappings and interoperability.(Chapter 13)

ftp://ftp.omg.org/pub/docs/ptc/96-08-04.ps
xx VisualWorks

http://www.objenv.com/cetus/oo_ole.html
http://www.omg.org/library/activex.html
ftp://ftp.omg.org/pub/docs/ptc/96-08-04.ps

1

COM Connect Basics

VisualWorks COM Connect provides support in Smalltalk for COM
and related fundamental technologies based on COM. COM Connect
supports:

• Basic COM functionality, including call-out and call-in of interface
functions

• Distributed COM (DCOM)

• COM object server application delivery

• COM structured storage

• COM clipboard data transfer

• Automation

• COM events (connectable objects)

• Embedding Active-X Controls in a VisualWorks Applications

Examples are provided that demonstrate both using and
implementing COM and Automation objects. A complete VisualWorks
object server example is provided to demonstrate how to publish
COM objects, and includes VisualBasic, Visual C++, and Java clients
to demonstrate interoperable server development.

The Component Object Model
COM is a system object model that enables modular system
construction and reliable application integration. COM is widely used
as the basis of many features in the Windows family of operating
systems and is the foundation of a number of technologies.
COM Connect User’s Guide 1-1

COM Connect Basics
COM provides functions that enable you to build components that are
distributed, and reusable.

Distributed COM (DCOM), discussed under Using Distributed COM,
supports communication between clients and components located on
different computers. This communication is identical to that between
clients and components residing on the same computer.

Automation builds on top of COM to enable scripting tools and
applications to manipulate objects that are exposed on Web pages or
in other applications. Other technologies derived from COM include
ActiveDirectory, OLE Messaging, Active Controls, Active Data
Objects, ActiveX Scripting, Web Browsing.

Objects and Interfaces
In COM, an object supports one or more interfaces. Each interface is
a collection of functions that provide a related set of services to
clients of the object. An interface is a collection of typed function
signatures, representing a contract between a client and a server.

A number of standard interfaces are defined for common services
and COM object implementors are encouraged to support existing
interfaces where appropriate. COM object implementors can also
define new interfaces as needed to publish the services of their
server objects.

As shown in the following figure, an interface is uniquely identified by
an interface id, or IID, which clients use to obtain an interface from a
COM object. Interfaces are also referred to by a common name,
which by convention is prefixed by the uppercase letter “I” to denote
an interface. A function in a particular interface is discussed using the
interface name and the function name together. For example, the
QueryInterface function in the standard IUnknown interface is referred to
by the IUnknown::QueryInterface notation.
1-2 VisualWorks

The Component Object Model
Diagramming a COM Object

An important characteristic of the COM architecture is that a COM
object can only be manipulated by clients by referencing its available
interfaces. Clients only obtain interfaces, never direct references to
an object, so a COM object is entirely encapsulated. If you consider
the data object depicted in the above figure, a client can obtain
references to the IUnknown or IDataObject interfaces supported by
the object, but never has a reference directly to the object itself. In
COM, only interfaces are real.

Publishing COM Objects
A COM object is published by registering information about its object
class with COM. Published COM objects are identified by a class ID,
commonly referred to as the CLSID. A COM object class can also be
identified by its program ID, or PROGID, which is a short string name
that identifies the application in the registry.

A published COM object class is supported by a class factory. A class
factory is an object used by COM or the client to create new
instances of the published object class. The IClassFactory interface
contains a CreateInstance function, which allows clients to
manufacture new objects.

Many COM identifiers, such as CLSID and IID, are GUID (Globally
Unique IDentifier) values. A GUID is a 16-byte value that is
guaranteed to be unique across any machine. Anyone can allocate a
new GUID, which enables COM developers to independently publish
new classes and interfaces with confidence that the identifiers they
use are unique.
COM Connect User’s Guide 1-3

COM Connect Basics
Clients use COM objects by obtaining interfaces and invoking
functions, then releasing interfaces when they are done using their
services. Clients can create new instances of published server
objects using standard capabilities provided by COM. In some cases,
COM objects can also be obtained from other COM objects already
in use by a client. Typically, such dependent or related objects are
obtained by invoking some COM interface function that is defined to
return an interface from another COM object.

Distributed COM (DCOM) technology extends the existing COM
architecture by providing network communication capabilities from
the existing model to enabled distributed object applications. DCOM
extends the basic concepts of objects and interfaces to the domain of
distributed object applications. For information on using DCOM with
an application, see Using Distributed COM.

COM Applications
COM applications are either clients or servers of COM objects, or
both. COM server applications create and maintain objects. COM
client applications are consumers of these objects. Many COM
applications have both roles, in that they both use COM objects
provided by other applications and implement COM objects
themselves.

Each COM object is created and maintained by an object server
application, which can implement one or more COM object classes. A
class factory is supported for each COM object class that can be
created independently by clients.

COM object server applications can be developed and written
independently in any language. By using COM and COM-based
technologies, you can integrate the services of different server
applications with your application.

Learning More About COM
While this documentation is intended to provide the basic information
needed to begin developing COM applications in VisualWorks
Smalltalk, it does not provide detailed information about advanced
topics. To supplement this material, refer to the widely available
sources about COM.

A good introduction to COM and COM-based technologies is David
Chappel’s Understanding ActiveX and OLE. While much of his book
is dedicated to discussing the OLE compound document architecture
and the ActiveX controls technology, the book also provides a good
1-4 VisualWorks

COM Automation Basics
introduction to the basic concepts of COM and the more fundamental
COM-based technologies, such as Automation. It also discusses
DCOM, which many view as a competitor to the Common Object
Request Broker Architecture (CORBA) distributed object standard.

An excellent introductory text for programmers, specifically with
regard to COM architecture and fundamental COM mechanisms, is
provided by Dale Rogerson’s Inside COM. This book is more
technical and focused than Chappell’s book.

The standard programmer’s introductory text used by many is Kraig
Brockschmidt’s Inside OLE. This material is aimed at C and C++
programmers and provides a more detailed understanding of specific
topics. However, much of this book is focused on the OLE container
architecture rather than COM facilities.

More detailed programmer documentation is available in Microsoft’s
OLE Programmer’s Reference manuals and in the programming tools
provided by the Windows SDK. Other material is available from the
MSDN Web site: http://msdn.microsoft.com.

COM Automation Basics
This section is an adaptation of an overview of Automation that can
be browsed on Microsoft’s Developer Network Library Visual Studio
97 CD and on Microsoft’s Web site.

Overview of Automation
Automation (formerly called OLE Automation) is a technology that
allows software packages to expose their unique features to scripting
tools and other applications. Automation uses the Component Object
Model (COM), but can be implemented independently of other COM-
based technologies, such as the OLE container architecture or
ActiveX controls. Using Automation, you can:

• Create applications and programming tools that expose objects.

• Create and manipulate objects exposed in one application from
another application.

• Create tools that access and manipulate objects. These tools can
include embedded macro languages, external programming
tools, object browsers, and compilers.
COM Connect User’s Guide 1-5

http://msdn.microsoft.com

COM Connect Basics
The objects an application or programming tool exposes are called
COM or ActiveX objects. Applications and programming tools that
access those objects are called COM or ActiveX clients. ActiveX
objects and clients interact as shown in the following figure:

ActiveX objects and clients

Applications and other software packages that support COM and
ActiveX technology define and expose objects that can be acted on
by COM and ActiveX components. COM and ActiveX components
are physical files (for example .exe and .dll files) that contain classes,
which are definitions of objects. Type information describes the
exposed objects, and can be used by COM and ActiveX components
at either compile time or runtime.

Why Expose Objects?
Exposing objects through Automation provides a way to manipulate
an application’s tools programmatically. This allows customers to use
a programming tool that automates repetitive tasks that might not
have been anticipated.

For example, Microsoft® Excel® exposes a variety of objects that can
be used to build applications. One such object is the Workbook,
which contains a group of related worksheets, charts, and macros;
1-6 VisualWorks

COM Automation Basics
the Microsoft Excel equivalent of a three-ring binder. Using
Automation, you could write an application that accesses Microsoft
Excel Workbook objects, possibly to print them, as in the figure
below:

Accessing objects from an application

With Automation, solution providers can use your general-purpose
objects to build applications that target a specific task. For example,
you could create a general-purpose drawing tool to expose objects
that draw boxes, lines, and arrows, insert text, and so forth. Another
programmer could build a flowchart tool by accessing the exposed
objects and then adding a user interface and other application-
specific features.

Exposing objects to Automation or supporting Automation within a
language offers several benefits:

• Exposed objects from many applications are available in a single
programming environment. Software developers can choose
from these objects to create solutions that span applications.

• Exposed objects are accessible from any macro language or
programming tool that implements Automation. Systems
COM Connect User’s Guide 1-7

COM Connect Basics
integrators are not limited to the programming language in which
the objects were developed. Instead, they can choose the
programming tool or macro language that best suits their own
needs and capabilities.

• Object names can remain consistent across versions of an
application, and can conform automatically to the user’s national
language.

Automation = Cross-Application Macros
Automation allows programming languages and other tools running a
script of some sort to access and manipulate objects without having
compile-time knowledge of table layouts. Such tools, called
automation controllers, can create objects from any components or
applications as necessary, thus enabling end users or developers to
write cross-application macros.

As shown in the following figure, a controller can gain access from
VisualWorks, Visual, C++ or VisualBasic, through Automation to the
exposed objects of OLE Server applications like Microsoft Word,
Microsoft Excel, VisualWorks and VisualSmalltalk.

Cross-application access through automation
1-8 VisualWorks

COM Automation Basics
What Is An ActiveX Object?
An ActiveX object is an instance of a class that exposes properties,
methods, and events to ActiveX clients. ActiveX objects support the
COM standard. An ActiveX component is an application or library that
is capable of creating one or more ActiveX objects. For example,
Microsoft Excel exposes many objects that you can use to create new
applications and programming tools. Within Microsoft Excel, objects
are organized hierarchically, with an object named Application at the
top of the hierarchy.

The figure below shows some of the objects in Microsoft Excel.

Microsoft Excel objects

Each ActiveX object has its own unique member functions. Exposing
the member functions makes the object programmable by ActiveX
clients. Three types of members for an object can be exposed:

• Methods are actions that an object can perform. For example, the
Worksheet object in Microsoft Excel provides a Calculate method
that recalculates values in the worksheet.
COM Connect User’s Guide 1-9

COM Connect Basics
• Properties are functions that access information about the state
of an object. The Worksheet object’s Visible property determines
whether the worksheet is visible.

• Events are actions recognized by an object, such as clicking the
mouse or pressing a key. You can write code to respond to such
actions. In Automation, an event is a method that is called, rather
than implemented, by an object.

For example, you might expose objects like those listed in the
following table in a document-based application by implementing
these methods and properties:
1-10 VisualWorks

COM Automation Basics
Often, an application works with several object instances, which
together make up a collection object. For example, an ActiveX
application based on Microsoft Excel might have multiple workbooks.
To provide an easy way to access and program the workbooks,
Microsoft Excel exposes an object named Workbooks, which refers to
all of the current Workbook objects. Workbooks is a collection object.

ActiveX object Methods Properties

Application Help
Quit

Save

Repeat
Undo

ActiveDocument
Application

Caption

DefaultFilePath
Documents

Height

Name
Parent

Path

Printers
StatusBar

Top

Value
Visible

Width

Document Activate

Close

NewWindow
Print

PrintPreview

RevertToSaved
Save

SaveAs

Application

Author

Comments
FullName

Keywords

Name
Parent

Path

ReadOnly
Saved

Subject

Title
Value
COM Connect User’s Guide 1-11

COM Connect Basics
In the figure above, collection objects in Microsoft Excel are shaded.
Collection objects let you work iteratively with the objects they
manage. If an application is created with a multiple-document
interface (MDI), it might expose a collection object named Documents
with the methods and properties listed as follows:

What Is An ActiveX Client?
An ActiveX client is an application or programming tool that
manipulates one or more ActiveX objects. The objects can exist in
the same application or in another application. Clients can use
existing objects, create new instances of objects, get and set
properties, and invoke methods supported by the object.

VisualWorks can now be an ActiveX client, just like VisualBasic,
Visual C++, or Java. You can use VisualWorks and similar
programming tools to create applications that access Automation
objects. You can also create clients in these ways:

• Write code within an application that accesses another
application’s exposed objects through Automation.

• Revise an existing programming tool, such as an embedded
macro language, to add support for Automation.

• Develop a new application, such as a compiler or type
information browser, that supports Automation.

How Do Clients and Objects Interact?
ActiveX clients can access objects in two different ways:

• By using the IDispatch interface

• By calling one of the member functions directly in the object’s
virtual function table (VTable)

An Automation interface is a group of related functions that provide a
service. All ActiveX objects must implement the IUnknown interface
because it manages all of the other interfaces that are supported by

Collection object Methods Properties

Documents Add
Close

Item

Open

Application
Count

Parent
1-12 VisualWorks

COM Automation Basics
the object. The IDispatch interface, which derives from the IUnknown
interface, consists of functions that allow access to the methods and
properties of ActiveX objects.

A custom interface is a COM interface that is not defined as part of
COM. Any user-defined interface is a custom interface.

The VTable lists the addresses of all the properties and methods that
are members of an object, including the member functions of the
interfaces that it supports. The first three members of the VTable are
the members of the IUnknown interface. Subsequent entries are
members of the other supported interfaces. The following figure
shows the VTable for an object that supports the IUnknown and
IDispatch interfaces.

VTable for an object that supports the IUnknown and IDispatch
interfaces

If an object does not support IDispatch, the member entries of the
object’s custom interfaces immediately follow the members of
IUnknown. For example, the following figure shows the VTable for an
object that supports a custom interface named IMyInterface.
COM Connect User’s Guide 1-13

COM Connect Basics
VTable for an object that supports a custom interface

When an object for Automation is exposed, you must decide whether
to implement an IDispatch interface, a VTable interface, or both.
Microsoft strongly recommends that objects provide a dual interface,
which supports both access methods.

In a dual interface, the first three entries in the VTable are the
members of IUnknown, the next four entries are the members of
IDispatch, and subsequent entries are the addresses of the dual
interface members.

The following figure shows the VTable for an object that supports a
dual interface named IMyInterface:
1-14 VisualWorks

COM Automation Basics
VTable for an object that supports a dual interface

In addition to providing access to objects, Automation also provides
information about exposed objects. By using IDispatch or a type
library, an ActiveX client or programming tool can determine which
interfaces an object supports, as well as the names of its members.
Type libraries, which are files or parts of files that describe the type of
one or more ActiveX objects, are especially useful because they can
be accessed at compile time. For information on type libraries, refer
to What Is a Type Library? below, and Implementing Automation
Objects.

Accessing an Object Through the IDispatch Interface
ActiveX clients can use the IDispatch interface to access objects that
implement the interface. The client must first create the object, and
then query the object’s IUnknown interface for a pointer to its
IDispatch interface.

Although programmers might know objects, methods, and properties
by name, IDispatch keeps track of them internally with a number
called the dispatch identifier (DISPID). Before an ActiveX client can
access a property or method, it must have the DISPID that maps to
the name of the member.
COM Connect User’s Guide 1-15

COM Connect Basics
With the DISPID, a client can call the member IDispatch::Invoke to
access the property or invoke the method, and then package the
parameters for the property or method into one of the IDispatch::Invoke
parameters.

The object’s implementation of IDispatch::Invoke must then unpack the
parameters, call the property or method, and handle any errors that
occur. When the property or method returns, the object passes its
return value back to the client through an IDispatch::Invoke parameter.

DISPIDs are available at runtime, and, in some circumstances, at
compile time. At runtime, clients get DISPIDs by calling the
IDispatch::GetIDsOfNames function. This is called late binding because
the controller binds to the property or method at runtime instead of at
compile time.

The DISPID of each property or method is fixed, and is part of the
object’s type description. If the object is described in a type library, an
ActiveX client can read the DISPIDs from the type library at compile
time, and avoid calling IDispatch::GetIDsOfNames. This is called ID
binding. Because it requires only one call to IDispatch (the call to
Invoke), rather than the two calls required by late binding, it is
generally about twice as fast. Late-binding clients can improve
performance by caching DISPIDs after retrieving them, so that
IDispatch::GetIDsOfNames is called only once for each property or
method.The IDispatch interface and class is wrapped in Smalltalk by
the COMDispatchDriver class, which handles all the low-level
mechanics of using the IDispatch API. The class COMDispatchDriver
is described under Using Automation Objects.

Accessing an Object Through the VTable
Automation allows an ActiveX client to call a method or property
accessor function directly, either within or across processes. This
approach, called VTable binding, does not use the IDispatch
interface. The client obtains type information from the type library or a
header file at compile time, and then calls the methods and functions
directly. VTable binding is faster than both ID binding and late binding
because the access is direct, and no calls are made through
IDispatch.

Using a dual interface form is described under Exposing Classes
Through Dual Interfaces.
1-16 VisualWorks

COM Automation Basics
In-Process and Out-of-Process Server Objects
ActiveX objects can exist in the same process as their controller, or in
a different process. In-process server objects are implemented in a
dynamic-link library DLL) and are run in the process space of the
controller. Because they are contained in a DLL, they cannot be run
as stand-alone objects. Out-of-process server objects are
implemented in an executable file and are run in a separate process
space. Access to in-process objects is much faster than to out-of-
process server objects because an interface function call does not
need to make remote procedure calls across the process boundary.

The access mechanism (IDispatch or VTable) and the location of an
object (in-process or out-of-process server) determine the fixed
overhead required for access. The most important factor in
performance, however, is the quantity and nature of the work
performed by the methods and procedures that are invoked. If a
method is time consuming or requires remote procedure calls, the
overhead of the call to IDispatch can make a call to VTable more
appropriate.

What Is a Type Library?
A type library is a file or part of a file that describes the type of one or
more ActiveX objects. Type libraries do not store objects; they store
type information. By accessing a type library, applications and
browsers can determine the characteristics of an object, such as the
interfaces supported by the object and the names and addresses of
the members of each interface. A member can also be invoked
through a type library. For details about the interfaces, refer to the
OLE Programmer’s Reference manuals or equivalent programmer
documentation.

When ActiveX objects are exposed, creating a type library to make
objects easily accessible to other developers is recommended. The
simplest way to do this is to describe objects in an Object Description
Language file (.odl or .idl), and then compile the file with the MIDL or
MkTypLib utility, as described in “Type Libraries and the Object
Description Language” on the MSDN web site.

For this release of Automation, the Microsoft Interface Definition
Language (MIDL) compiler can also be used to generate a type
library. For information about the MIDL compiler, refer to the Microsoft
Interface Definition Language Programmer’s Guide and Reference in
the Win32 Software Development Kit (SDK) section of the Microsoft
Developer’s Network (MSDN).
COM Connect User’s Guide 1-17

COM Connect Basics
1-18 VisualWorks

2

Using COM Objects

A COM application is an application that employs COM objects in
defining its operation. COM objects provide services to clients by
supporting interfaces, sets of functions that a client application can
call to perform whatever processing is supported by the object.

VisualWorks COM Connect provides the mechanisms necessary to
access external COM objects and invoke their processing by calling
functions in COM interfaces. You can also, and often must, implement
a COM object using COM Connect to make its interfaces available to
external clients.

Acquiring COM Objects
In the simplest case, a Smalltalk COM application is a client of an
external COM object. External COM objects occupy their own
memory space, and you gain the use of an external COM object by
establishing a connection with one or more of its interfaces.

The actual connecting work of creating a new COM server object is
done by underlying COM mechanisms built into the COM library on
the host platform. You need only be able to identify an object and
request one of its interfaces.

To use a COM object in an application, you create a new instance of
the object and send messages to it, as is usual for Smalltalk objects.
The public Smalltalk interface implemented for the object manages
the intricacies of invoking interface functions directly.
COM Connect User’s Guide 2-1

Using COM Objects
Basic COM Interface Support
The most important aspect of COM is the interface, which provides
the connection between a COM object and its clients. A COM object
typically supports several interfaces that together represent the
services provided by the object.

An interface is simply a collection of related functions, representing a
well-defined contract between an object and its clients. The interface
definition specifies the syntax and semantics of each function in the
interface.Remember that when you use a COM object, you always do
so through an interface; you can never reference a COM object
directly. To use the COM object, you obtain an interface reference
through which you invoke the services supported by the object.

In COM Connect, interfaces are represented by subclasses of the
COMInterface abstract superclass. Since all COM objects support
the IUnknown interface, it is implemented by the IUnknown class
under COMInterface. All other interfaces are implemented as
subclasses of IUnknown.

Each interface reference that your application obtains on a COM
object is represented by an instance of the concrete COMInterface
class that supports that interface, as indicated by its IID. COM
interface functions are invoked by sending messages to the
COMInterface instance that represents the interface references.

Acquiring COM Interfaces and Creating COM Objects
COM objects implement specific behavior for the functions supported
by their interfaces. To acquire a specific interface from a COM object,
you must first have a reference to some interface supported by the
object supporting that interface. From this interface you can then get
references to additional interfaces supported by the object.

Typically, you first must create a new instance of a COM object that
you know is installed on your system and listed in the system
registration database. Once you have obtained the first interface on a
COM object, which you get when creating a new instance of a
published COM object class, you can obtain additional interfaces.
Depending on the object and its capabilities, you might also be able
to obtain references to other COM objects, through services
published by the COM object you created.
2-2 VisualWorks

Acquiring COM Interfaces and Creating COM Objects
You instantiate a COM object by calling either COM interface
functions or API’s. To create new COM object instances in Smalltalk,
COM object creation API’s are generally made available as class
methods of suitable COMInterface subclasses. For example, the
IMoniker interface class provides services for creating new instances
of standard types of COM moniker objects and returning an IMoniker
interface instance on the newly created moniker. Similarly, the
COMCompoundFile class provides services for creating or opening
COM structured storage files and obtaining an IStorage interface
instance on the COM storage.

The general mechanism for instantiating a COM object is to use the
object creation services provided by the IClassFactory interface
class. The createInstance:iid: message instantiates a COM object of
the specified CLSID and returns the specified interface from the
newly created COM object. The COM object class can be specified
either by the CLSID (a GUID) or by the PROGID string name that
identifies the object server application to COM.

Since all COM objects implement IUnknown, you often ask for that
interface first. The createInstance: message can be used in this case.
For example, to create a new instance of some COM class and
obtain its IUnknown interface, evaluate an expression of the form:

anIUnknown := IClassFactory createInstance: clsid.
where clsid is the class ID or ProgID name for the COM class. For
example, the following code fragments demonstrate creating a
standard Windows Paintbrush object by specifying either the CLSID
or the ProgID of the COM object class:

" specify a COM class by a CLSID "
anIUnknown := IClassFactory createInstance: CLSID_Paintbrush_Picture.
" specify the COM class by a ProgID "
anIUnknown := IClassFactory createInstance: 'PBrush'.

The following figure depicts the processing that occurs when you
create a new COM object using IClassFactory. When you create a
new object, the COM library obtains the class factory for the object
COM Connect User’s Guide 2-3

Using COM Objects
class you specify in your creation request, starting the object server
application, if necessary, and creates a new COM object. The
interface that you request is returned to you.

Creating a COM Object

The createInstance: family of messages in IClassFactory includes
additional variations for advanced use, allowing you to specify
additional attributes of the created object and its server application,
including specifying a remote server to access an object through
DCOM.

Once you have a reference to one of an object’s interfaces, you can
acquire additional interfaces by sending queryInterface: to a known
interface. For example, having anIUnknown as above, you can acquire
a reference to the object’s IDataObject interface, if it supports this
interface, by sending:

anIDataObject := anIUnknown queryInterface: IID_IDataObject
2-4 VisualWorks

Acquiring COM Interfaces and Creating COM Objects
To create an inner object, for use within an aggregate object, you
must specify the controlling unknown of the aggregate when
instantiating the inner object. For example:

anInnerUnknown := IClassFactory createInstance: clsid
iid: IID_IUnknown
controllingUnknown: self controllingUnknown.

If you need to create several instances of the class, you can obtain an
instance of the class factory for the COM object class by sending the
message forCLSID: to IClassFactory. Once you have the class factory
itself, you can create any number of objects. For example, to create
two instances of some COM object, you could evaluate an expression
such as the following:

aClassFactory := IClassFactory forCLSID: clsid.

"Create and get IUnknown"
anUnknown := aClassFactory createInstance.

"Create and get IID_IDataObject"
anIDataObject := aClassFactory createInstance: IID_IDataObject.
aClassFactory release.

The following figure depicts one situation in which you acquire an
interface to an existing COM object, rather than creating an entirely
new object. The COM library provides a service that allows you to
obtain an IDataObject interface on a COM data object representing
the contents of the system clipboard.
COM Connect User’s Guide 2-5

Using COM Objects
Acquiring a COM Object

Managing Object References
COM interface reference counting is the mechanism in COM for
managing object lifetimes in a system of cooperating software
components. Briefly, the reference count mechanism is used to keep
track of how many clients are using an interface and, ultimately, its
underlying COM object. The object continues to provide services as
long as any client is using at least one of its interfaces.

When a client acquires an interface, the reference count of that
interface is incremented. When the client is done using the interface,
it is responsible for releasing the interface by sending the release
message, which invokes the IUnknown::Release function. Releasing
the interface decrements its reference count and allows the object to
determine whether its services are still required. When an object no
longer has any clients, it can terminate itself, releasing any interfaces
it has acquired.

The period between when a client obtains an interface and when it
releases the interface constitutes the lifetime of the client’s ownership
of that interface. During this lifetime, the client, or any object with
which the client shares the interface, can freely invoke any function in
that interface.
2-6 VisualWorks

Managing Object References
The COM specification, with which you should be familiar, defines
several rules for reference counting. The rules are fairly simple for
client applications, and for a Smalltalk COM application these amount
to requirements for releasing interfaces and for making separately
countable references to interfaces.

In the simplest case, an application acquires a single reference to an
interface, either by sending queryInterface: or through some class
message that creates a new COM object. While in possession of the
interface, the application can invoke any function supported by the
interface. When finished using the interface, perhaps as part of the
application shutdown processing, it releases the interface by sending
release to the interface.

The simplest usage pattern is the case where you create a new COM
object by requesting a specific interface that provides the services
you want to use, invoke some services using that interface, and
release the interface when you are done. The following illustrates this
simple pattern:

| anIDataObject |
anIDataObject := IClassFactory createInstance: clsid

iid: IDataObject iid.
" … invoke various functions in the IDataObject interface…"
anIDataObject release.

A more typical example occurs when you create a new COM object
and use services from several interfaces supported by the object.
This more typical pattern tends to look like the following:

| anIUnknown anIDataObject anIPersistFile|
"create a new COM object that contains some data "
anIUnknown:= IClassFactory createInstance: clsid.
" do something to its state via IDataObject "
anIDataObject := anIUnknown queryInterface: IID_IDataObject.
" … invoke, say, IDataObject ::SetData… "
anIDataObject release.
" now save this object to a file "
anIPersistFile := anIUnknown queryInterface: IID_IPersistFile.
anIPersistFile saveAs: 'tempobj.dat'.
anIPersistFile release.
" release the COM object when we are done with it "
anIUnknown release.

Note that the preceding two code fragments demonstrate two styles
of specifying an IID argument. You can always send the iid message
to an interface class to get the IID identifier of the interface. You can
also use the constants defined in the COMConstants pool, using the
COM Connect User’s Guide 2-7

Using COM Objects
standard C names of the interface IID constants, as long as
COMConstants pool is included in the compilation name space
context in which you are working (e.g., when writing a method in a
class you add it to the class’s list of pool dictionaries).

Usage is not always this simple, however, and can require several
references to an interface. Smalltalk applications involve many
objects with varying lifetimes. Any object can acquire an interface
reference and, since the interface is represented by a Smalltalk
object, can be shared with any other object. The application
developer’s responsibility is to make sure that objects have separate
references to a shared interface when necessary.

Any time your application gets a new interface reference by making
an API or a function call to a COM object, it receives a new,
separately counted reference. Your application is responsible for
ensuring that the interface is released when you are done using it.
This applies to every interface reference that you obtain. For
example, if you make more than one QueryInterface call to obtain the
same interface from an object, you must invoke release for each
separate reference you obtained.

Note that some care must be taken here, because the reference is
represented as a Smalltalk object, and as an instance of a
COMInterface subclass, it can be shared by any number of other
Smalltalk objects.

You can always use an interface reference as an argument to any
function call (message send), since the receiver only has the
reference for the duration of the function call. Since the lifetime of the
function call is completely contained within the lifetime of the sender,
the sender and receiver objects can use the same copy of the
interface, and the sender retains control of the lifetime of the
reference.

Cooperating objects within your application can also share a
reference to an interface that one of your application objects has
acquired. An interface reference can be freely shared with other
objects in your application, as long as the object that acquired the
interface can ensure that no other object is still using the interface
when it is ready to release it. In some cases, it is not possible for a
cooperating object to assure the original owner that it will be finished
using the interface when the owner is ready to release the interface.
In this situation, a separate copy of the interface should be made by
2-8 VisualWorks

Using COM Interface Functions
sending the separateReference message to the interface. This creates a
separate reference to the interface that can be used independently by
the cooperating object.

Each of your application objects can now use the interface
independently and release it when they are done. The original owner
releases the original interface reference when it is done using it, as
usual, while the cooperating object is responsible for releasing its
separate reference to the interface when it is done.

Using COM Interface Functions
A COM object client invokes the functions in the COM interfaces it
has acquired by sending messages to an instance of the relevant
COMInterface subclass. Subclasses of COMInterface define each
COM interface that has been wrapped for use with COM Connect.

Subclasses of COMInterface are named with the common name of
the interface, e.g., IUnknown, or IDataObject. The interface
represented by a class is identified by its unique IID (interface
identifier), which can be obtained by sending the iid message to the
interface class. The IID of an interface instance can also be obtained
by sending the iid message to the instance. Interface IID values are
also defined in the COMConstants pool.

COMInterface subclasses provide the public interface to COM
interfaces and their functions in Smalltalk. The public interface
includes a message for every function defined in the COM interface.
The class can also implement methods to simplify common usage
patterns.

The interface function methods in a COMInterface class handle the
details of invoking the native host-level interface and API functions.
Where necessary, transformations are provided between Smalltalk
values and the host data type values used to directly invoke the
native host function. This encapsulation of the host data type
management within the interface class allows you to invoke COM
interface functions in a natural fashion in your Smalltalk application,
with normal Smalltalk objects provided as arguments to the interface
function message and returned as the message result value.

The following figure depicts the processing that occurs when you
invoke an interface function by sending a message to a
COMInterface instance.
COM Connect User’s Guide 2-9

Using COM Objects
Using a COM Interface

Error Handling
When you design a COM application, as with any application, it is
your responsibility to provide suitable error handling. Almost all COM
interface functions and API’s can signal the COMError exception to
indicate failure conditions. You must decide how to handle such error
conditions in your application. Using the standard facilities of the
Smalltalk exception system, you have great flexibility in determining
how to implement error handling and where in your application to
locate the logic to handle exception conditions resulting from function
failures.
2-10 VisualWorks

Managing Memory
Almost all COM interface functions return a status code indicating
success or failure as the function value. In Smalltalk, an error result
from an interface function results in an instance of the error exception
COMError being signalled. Processing of the interface function is
terminated when an error is signalled.

A COMError includes the HRESULT return code, as well as a
message describing the error. In your exception handler block, you
can send the hresult message to the exception to obtain the
HRESULT error code. You can send the description message to the
exception to obtain a string describing the error. The COM error
description is obtained from the host system.

In a small number of cases, a COM error code returned by an
interface function is considered to be a “normal” return code and not
signalled as an error. For example, the Smalltalk binding of the
IUnknown::QueryInterface function treats the E_NOINTERFACE error
code as a reasonable return condition, for which nil is returned, with
no error signalled.

Some interface functions return a status code indicating that the
function succeeded, but that provides additional information. For
example, the IStorage::CreateStorage function returns
STG_S_CONVERTED when the existing storage of the same name
was replaced with a new storage containing the single stream
CONTENTS.

In Smalltalk, a success result other than S_OK from an interface
function is indicated by signalling COMResultNotification, which
includes the HRESULT return code, as well as a message describing
the result code. Clients can use the Smalltalk exception handling
system to detect such success notifications if this is of interest.
Processing proceeds normally after the notification is signalled,
independent of whether a client exception handler is provided.

Managing Memory
A COM application must follow certain memory management rules
whenever an allocated block of memory is passed as an argument to
an interface function or a COM API. When you call a COM function
that returns the address of a value, such as a structure or a string
that the callee allocated to service your request, you must release the
memory when you are done with the data by sending the release
message.
COM Connect User’s Guide 2-11

Using COM Objects
COM interface functions and API calls classify parameters into one of
three groups: IN, OUT, and IN/OUT. An IN parameter is allocated and
freed by the caller. Since ownership of the memory is not transferred,
an IN parameter can be allocated in whatever fashion is preferred by
the caller. On the other hand, OUT and IN/OUT parameters that
contain pointers to memory represent memory whose ownership is
transferred, and so these must be allocated using the COM task
memory allocator.

An OUT parameter is allocated by the callee then transferred to the
caller; thus it must be released by the caller. An IN/OUT parameter is
allocated and eventually freed by the caller, but the callee can free
and reallocate the memory as necessary. Since ownership of the
memory is transferred, IN/OUT and OUT parameters must be
allocated and released using the COM task memory allocator.

A Smalltalk COM application is responsible for releasing any memory
it obtains as a return value from an interface function, when it is done
using that memory. This situation usually occurs when a data
structure or string is allocated in external memory by an interface or
API function that you called. You release the memory by sending it
the release message. In most cases, the actual COM memory address
is returned as a Smalltalk object, such as a String or COMStructure
data structure class. Sending release ensures that any memory that
was allocated is properly released when you are done with the data
that was returned from the COM function.String return values are
generally brought into Smalltalk memory immediately as a side effect
of converting the Unicode string encoding returned by COM functions
into a Smalltalk string in the host binding wrapper method of a COM
interface or API function. Consequently, the memory containing the
returned string is released before returning the string result value to
the Smalltalk caller.

In Depth: Class Factories and Object Creation Contexts
This section takes an in depth look at the creation of objects. You can
skip this part if you do not need to learn to control this process in
detail.

This section refers to the COSERVERINFO structure and the
RemoteServerName key, both of which are described under
Publishing COM Objects.
2-12 VisualWorks

In Depth: Class Factories and Object Creation Contexts
To create and use COM objects, you need a way to identify and
create instances of an object class. Ideally, the class identification is
tied as closely as possible to the CLSID. Storing the name in the
registry as the value of the CLSID is a good technique for doing this.
A class can also be identified (less precisely) using the ProgID or
VersionIndependentProgID; these are keys in the registration
database. Another way to find a class is by specifying a filename that
is associated with the class.

In Smalltalk, the IClassFactory class is used to instantiate objects by
wrapping the COM CoCreateInstance API.

The following figure illustrates what happens when a client requests a
new instance of an object:

A COM Client creates objects through a Class Factory.

The steps involved are as follows:

1 The client asks COM to create a new object.

2 COM causes the class factory in the server to create a new
object and answer an interface pointer.

3 COM returns the pointer to the client.

Note: The client and server can be in the same process, in
separate processes, or in separate machines.
COM Connect User’s Guide 2-13

Using COM Objects
Accessing Objects With IClassFactory
The Smalltalk class IClassFactory provides several class messages,
which are used to create a single uninitialized object of the class
associated with a specified CLSID. Call a createInstance method when
you want to create only one object on the local system.

To create a single object on a remote system, call a method with a
serverName: argument. To create multiple objects based on a single
CLSID, refer to the getClassObject method for the CLSID: method,
which gets you an IClassFactory interface reference through which
you can manufacture any number of objects of that COM class.

Class Context Definitions
Different pieces of code can be associated with one CLSID for use in
different execution contexts, such as in-process, local, object handler,
or remote. The context in which the caller is interested is indicated by
the context: parameter of class methods in the COMDispatchDriver
and IClassFactory classes. The context is a group of flags taken from
the enumeration CLSCTX and defined in the COMConstants Pool
Dictionary:

typedef enum tagCLSCTX {
CLSCTX_INPROC_SERVER= 0x1,
CLSCTX_INPROC_HANDLER= 0x2,
CLSCTX_LOCAL_SERVER= 0x4,
CLSCTX_REMOTE_SERVER= 0x10,

} CLSCTX;
The several contexts are tried in the sequence in which they are
listed here. Multiple values can be combined (using bitwise OR)
indicating that multiple contexts are acceptable to the caller:

#define CLSCTX_INPROC (CLSCTX_INPROC_SERVER |
CLSCTX_INPROC_HANDLER)

#define CLSCTX_SERVER (CLSCTX_INPROC_SERVER |

CLSCTX_LOCAL_SERVER | CLSCTX_REMOTE_SERVER)

#define CLSCTX_ALL(CLSCTX_INPROC_SERVER |

CLSCTX_INPROC_HANDLER | CLSCTX_LOCAL_SERVER |
CLSCTX_REMOTE_SERVER)

These context values have the following meanings, which apply to all
remote servers, as well:
2-14 VisualWorks

In Depth: Class Factories and Object Creation Contexts
The COM Library should attempt to load in-process servers first, then
in-process handlers, then local servers, then remote servers. This
order helps to minimize the frequency with which the library has to
launch separate server applications, which is generally a much more
time-consuming operation than loading a DLL, especially across the
network.

Note 1:
For example, in OLE 2, built on top of COM, there is an interface
called IViewObject through which a client can ask an object to draw
its graphical presentation directly to a Windows device context (HDC)
through IViewObject::Draw. However, an HDC cannot be shared
between processes, so this interface can only be implemented inside
as part of an in-process object. When an object server wants to
provide optimized graphical output but does not want to completely
implement the object in-process, it can use a lightweight object
handler to implement just the drawing functionality where it must
reside, relying on the local server for the full object implementation.

Value Action Taken by the COM Library

CLSCTX_INPROC_SERVER Load the in-process code (DLL) which
creates and completely manages the
objects of this class. If the DLL is on a
remote machine, invoke a surrogate server
as well to load the DLL.

CLSCTX_INPROC_HANDLER Load the in-process code (DLL) which
implements client-side structures of this
class when instances of it are accessed
remotely. An object handler generally
implements object functionality that can be
implemented only from an in-process
module, relying on a local server for the
remainder of the implementation. See Note
1 below.

CLSCTX_LOCAL_SERVER Launch the separate-process code (EXE)
which creates and manages the objects of
this class. See Note 2 below.

CLSCTX_REMOTE_SERVER Launch the separate-process code (EXE)
on another machine that creates and
manages objects of this class. The
LocalServer32 or LocalService code that
creates and manages objects of this class
is run on a different machine. This flag
requires Distributed COM to work.
COM Connect User’s Guide 2-15

Using COM Objects
Note 2:
In some cases the object server might already be running and might
allow its class factory to be used multiple times, in which case the
COM Library simply establishes another connection to the existing
class factory in that server, thus eliminating the need to launch
another instance of the server applications entirely. While this can
improve performance significantly, it is the option of the server to
decide between a single-use or multiple-use class factory. See the
CoRegisterClassObject function for more information.

Class Context Processing
When you are using IClassFactory object creation services on
DCOM-enabled systems, before being passed to DCOM, the value
CLSCTX_REMOTE_SERVER is added automatically to
CLSCTX_SERVER and CLSCTX_ALL.

Given a set of CLSCTX flags, the execution context to be used
depends on the availability of registered class codes and other
parameters according to the following algorithm:

The first part of the processing determines whether
CLSCTX_REMOTE_SERVER should be specified as follows:

1 If the call specifies either

• an explicit server name (in the COSERVERINFO structure
from a serverName: argument) indicating a machine different
from the current machine, or

• there is no explicit COSERVERINFO structure specified, but
the specified class is registered with either the
RemoteServerName or ActivateAtStorage named-value, then
CLSCTX_REMOTE_SERVER is implied and is added to the
context flags. The second case allows applications written
prior to the release of DCOM to be the configuration of
classes for remote activation to be used by client applications
available prior to DCOM and the
CLSCTX_REMOTE_SERVER flag.

2 If the explicit COSERVERINFO parameter indicates the current
machine, CLSCTX_REMOTE_SERVER is removed (if present)
from the context flags.

The rest of the processing proceeds by looking at the value(s) of
the context flags in the following sequence.
2-16 VisualWorks

In Depth: Class Factories and Object Creation Contexts
3 If the context flags includes CLSCTX_REMOTE_SERVER and
no COSERVERINFO parameter is specified, if the activation
request indicates a persistent state from which to initialize the
object (with CoGetInstanceFromFile,
CoGetInstanceFromIStorage, or, for a file moniker, in a call to
IMoniker::BindToObject) and the class has an ActivateAtStorage
sub-key or no class registry information whatsoever, the request
to activate and initialize is forwarded to the machine where the
persistent state resides.

4 If the context flags includes CLSCTX_INPROC_SERVER, the
class code in the DLL found under the class’s InprocServer32 key
is used if this key exists. The class code runs within the same
process as the caller.

5 If the context flags includes CLSCTX_INPROC_HANDLER, the
class code in the DLL found under the class’s InprocHandler32
key is used if this key exists. The class code runs within the same
process as the caller.

6 If the context flags includes CLSCTX_LOCAL_SERVER, the
class code in the Win32 service found under the class’s
LocalService key is used if this key exists. If no Win32 service is
specified, but an EXE is specified under that same key, the class
code associated with that EXE is used. The class code (in either
case) is run in a separate service process on the same machine
as the caller.

7 If the context flags is set to CLSCTX_REMOTE_SERVER and an
additional COSERVERINFO parameter to the function specifies a
particular remote machine, a request to activate is forwarded to
this remote machine with the context flags modified to be
CLSCTX_LOCAL_SERVER. The class code runs in its own
process on this specific machine, which must be different from
that of the caller.

8 Finally, if the context flags includes
CLSCTX_REMOTE_SERVER and no COSERVERINFO
parameter is specified, if a machine name is given under the
class’s RemoteServerName named-value, the request to activate
is forwarded to this remote machine with the context flags
modified to be CLSCTX_LOCAL_SERVER. The class code runs
in its own process on this specific machine, which must be
different from that of the caller.
COM Connect User’s Guide 2-17

Using COM Objects
2-18 VisualWorks

3

Implementing COM Objects

COM applications are not usually pure client applications, but often
must themselves present an interface to a serving object. To do this,
an application must implement one or more COM objects that give
access to interfaces used by the external client.

COM objects are implemented in Smalltalk as subclasses of the
abstract superclass COMObject, which provides a framework for
implementing the responsibilities of a COM object. A COM object is
associated with one or more interfaces. The object implements
methods that perform the functions in those interfaces and maintain
its internal state.

COMObject Framework
The COMObject superclass provides a standard implementation for
the IUnknown interface, which is required of all COM objects. The
COMObject superclass also provides support for the COM reuse
mechanism of aggregation as a standard capability. The IUnknown
implementation handles object life cycle services, through the
IUnknown AddRef and Release reference counting services, and it
provides the framework for releasing COM object resources when the
object is no longer in use. A standard framework is provided for
supporting IUnknown::QueryInterface processing, so that subclasses
have a simple way to hook interfaces they support into the COM
IUnknown interface for negotiation and processing.

The COMObject framework allows you to focus on the specific
capabilities your object class offers through its supported interfaces.
Implementing a COM object in Smalltalk involves creating a concrete
subclass of COMObject, specifying the set of interfaces supported by
COM Connect User’s Guide 3-1

Implementing COM Objects
the object so that they can be exposed through
IUnknown::QueryInterface, and creating methods to implement your
object’s supported interface functions.

Note: You can implement a COM object anywhere in the class
hierarchy, but you must satisfy the public protocol requirements of
the COMObject class and implement the IUnknown
responsibilities of a COM object suitably. Subclassing the
COMObject implementation framework makes the job of
developing a new COM object much simpler, because the
COMObject superclass handles all the standard responsibilities
of supporting IUnknown and provides a basic framework for
expressing the additional capabilities of a new object class.

Implementation Examples
To demonstrate the basic techniques for implementing COM objects,
two sample COM object implementations are provided with
VisualWorks COM Connect. The COM object implementation
samples are installed with the COM Connect software and can be
found in the COM—COM Samples category in your VisualWorks
system browser.

The COMRandomNumberGeneratorObject class publishes a simple
random number generator (RNG) through a COM interface
IRandomNumberGenerator. It demonstrates how to implement support
for a simple COM interface and provide the standard services within
the COMObject framework to support IUnknown operations. As
discussed later in this document, the class also provides minimal
functionality to support the IDataObject interface, in order to
demonstrate some additional techniques for implementing interface
function processing.

As shown in the following figure, the COMPersistent-DataObject class
demonstrates a COM object with a simple internal state, which is
exposed to clients through the standard IDataObject interface and
allows clients to save and load the persistent data object (PDO) from
various external backing stores, through the standard COM IPersist
family of interfaces.
3-2 VisualWorks

Implementation Examples
Supporting a COM interface

The COMPersistentDataObject sample is a slightly more complex COM
object implementation than the RNG class. It supports several COM
interfaces and uses the COM technique of aggregation in order to
implement its support for the IDataObject interface. In addition, the
PDO sample demonstrates how to add support for publishing a COM
object as an object server application, which is achieved by adding
logic during image startup for object server application initialization
and providing an application termination policy to shut down the
image when the server is no longer required.

Note: The COMRandomNumberGeneratorObject sample does not
currently include a demonstration of publishing the RNG COM
object as an object server application. This is not a fundamental
deficiency of the COM RNG object implementation or of the
VisualWorks COM support; doing so is simply a matter of
providing some additional mechanisms for external publication,
such as a type library, interface marshalling for the
IRandomNumberGenerator custom interface, and a .REG file to
register the object server application EXE in the system registry.
The RNG sample is deliberately simple to focus on the internal
Smalltalk programming tasks involved with implementing a COM
object. Other examples that demonstrate the additional steps
involved in creating and publishing a VisualWorks object server
application are provided with COM Connect.

Both sample COM objects come with simple test drivers that
demonstrate exercising the supported interface functions of the RNG
and PDO objects. In addition, the COMPersistentDataObjectBrowser
application is provided as a sample COM client of the persistent data
COM Connect User’s Guide 3-3

Implementing COM Objects
object. Using the PDO browser tool, you can create new objects,
save them to files in the various persistence formats, and reload
saved objects.

Design Guidelines for Implementing COM Objects
When you implement a COM object by implementing a new subclass
of COMObject, the functionality you publish through COM interfaces
is typically provided in one of two ways. One technique is to
implement the functions directly in your COMObject class.
Alternatively, you can separate the core functionality of the object
from the COM-specific responsibilities of the COMObject framework
by delegating the function processing to another object.

Separating the object implementation from the COM object
mechanisms is the same design principle that you apply when
separating the domain objects from the view in an application. In both
cases, the fundamental behavior of the domain object is separated
from the mechanisms by which the object is exposed to users or
clients, whether it be through an application view on a business
object or a COM object exposing services through COM interfaces.
Separation of the domain object from the COM object increases the
reusability of your application objects, but requires some additional
design work to structure your classes and their interactions
appropriately.

Implementing the functionality of your COM object directly in your
COMObject subclass is usually appropriate when the object’s
purpose is fundamentally COM-specific. For example, a class factory
is only useful for COM purposes, so factoring the implementation to
separate the domain processing from the COMClassFactoryObject itself
is of no particular value. Similarly, the COMPersistentDataObject sample
has no interesting functionality that might be useful to reuse or
access other than through the COM interfaces that it supports, so the
functionality of this COM object is implemented directly in the
COMObject class.

It is useful to separate a domain object from the COMObject
implementation that exposes its services through COM interfaces,
when the application object can be used in ways other than simply by
COM clients. For example, the COM random number generator
sample separates the RNG implementation from the
COMRandomNumberGeneratorObject, which exposes its services
through a COM interface. This separation of the application object
3-4 VisualWorks

Supporting COM Interfaces
from the COM object mechanisms is a more flexible architecture, in
that the RNG object can be used in other contexts and different
implementations can easily be published through the COM interface
simply by delegating to a different application object.

The automation object implementation examples all follow this more
generalized architectural pattern, separating the application object
from the COM object class(es) that publish the services through
COM interfaces. This separation makes it easier to evolve an
implementation of an automation object from an initial simple
publication, using the standard COMAutomationServer that supports
IDispatch, into a dual interface object, which supports both IDispatch
and VTable interface clients through a dual interface.

Supporting COM Interfaces
The capabilities of a COM object are determined by the interfaces
that it exposes to clients and by the implementation of its interface
functions. Specifying the interfaces supported by the object and
implementing the processing of interface functions are the main
activities of COMObject subclass implementation.

Every COM object must support the IUnknown interface, which is
created when the object is instantiated. Additional interfaces
supported by the object determine its personality and behavior. A
COM object must be able to return each of its supported interfaces
when requested by a client through an invocation of the
IUnknown::QueryInterface function.

The COMObject framework class provides a standard
implementation of the IUnknown::QueryInterface function, which
handles requests for the IUnknown interface that are allocated and
managed by the superclass, and delegates to its subclasses the
responsibility for responding to other interface requests. Each
subclass is responsible for providing storage for its other supported
interfaces, typically by allocating an instance variable for each
supported interface, and for reimplementing the getInterfaceForIID:
method to handle requests for any interfaces other than IUnknown.
The method should return the requested interface, if the interface is
supported, or nil if it is not.

When you implement a COM object, you can choose either to create
all of its supported interfaces at once, when the object is created, or
to implement a “lazy” allocation scheme in which interfaces are
constructed only when requested by a client. Pre-allocation is the
COM Connect User’s Guide 3-5

Implementing COM Objects
usual technique for interfaces that are typically used during the
lifetime of the object. Lazy allocation is appropriate when your object
supports interfaces that are used only occasionally, perhaps by
specific clients or under certain circumstances. Lazy allocation allows
you to avoid the overhead of unnecessarily allocating external
resources needed to support an interface. The object implementation
framework allows either strategy to be implemented with equal ease.

To allocate a supported interface at object creation, you reimplement
the initializeInterfaces method in your COMObject subclass. The
COMRandomNumberGeneratorObject sample demonstrates the standard
pattern for preallocating interfaces at object creation time; its
initializeInterfaces method is as follows:

initializeInterfaces
" Private - Allocate any interfaces that are expected
to be required during the object's lifetime. Invoke the
superclass method to ensure that the inner IUnknown
is allocated. "

super initializeInterfaces.
iRandomNumberGenerator := IRandomNumberGenerator

on: self.
The COM RNG object preallocates the IRandomNumberGenerator
interface, which it stores in a iRandomNumberGenerator instance
variable, because IRandomNumberGenerator is the primary service
interface supported by the RNG object, and it is expected that all
clients will want to use it.

Note: The on: message is sent to an interface class to construct
an interface that is connected to your COM object. This is the
standard interface construction technique. As discussed later in
this section, the RNG object actually implements an optimized
form of the interface binding using the directBindingOn: message.
The discrepancy between the sample method shown here and
the actual implementation in the RNG class is deliberate.

Each interface you construct in your COM object’s initializeInterfaces
method must also be listed in the getInterfaceForIID: method in your
COMObject subclass. This is required to support the standard
implementation of the IUnknown::QueryInterface function in
COMObject. The getInterfaceForIID: method simply answers the value
of the preallocated interface created in initializeInterfaces when the IID
argument specifies that interface.
3-6 VisualWorks

Supporting COM Interfaces
The COMRandomNumberGeneratorObject demonstrates the standard
pattern for implementing the getInterfaceForIID: method in a COM
object to support IUnknown::QueryInterface requests. This example
demonstrates both preallocation when constructing an interface, and
the lazy allocation technique for allocating interfaces on demand. In
addition to its primary IRandomNumberGenerator interface, the COM
RNG object also supports the standard IDataObject interface.

Since the RNG object’s support for IDataObject services can be
characterized as only minimal (in fact it does nothing useful!), it is
expected to be used only rarely by clients. Consequently, the
IDataObject interface is allocated on demand in the getInterfaceForIID:
method when a client actually requests it through an
IUnknown::QueryInterface call. The getInterfaceForIID: method in
COMRandomNumberGeneratorObject is as follows:

getInterfaceForIID: iid
“ Private - answer the interface identified by the GUID
 <iid>. Answer nil if the requested interface is not
 supported by the receiver. "

" preallocated interfaces that are always constructed

are simply returned "
iid = IRandomNumberGenerator iid

ifTrue: [^iRandomNumberGenerator].

" lazy allocation constructs the supported interface
on demand "

iid = IID_IDataObject
ifTrue: [

iDataObject isNil
ifTrue: [iDataObject := IDataObject on: self].

^iDataObject].
^super getInterfaceForIID: iid

In these examples, a supported interface on a COM object is
constructed by sending the message on: to the interface class. For
example, an IDataObject interface for a COM object can be created
by an expression of the form:

IDataObject on: self
The result is an IDataObject interface with a binding that dispatches
invocations of the functions to the methods in your COM object class.
The COM RNG actually constructs its IDataObject interface using the
flexible configuration techniques discussed later in this section, rather
than the standard on: interface construction message used in the
COM Connect User’s Guide 3-7

Implementing COM Objects
preceding code example. The discrepancy between the sample
method provided here and the actual implementation in the RNG
class is deliberate.

The on: message creates a flexible binding between interface
functions and your object; this binding can be configured in a number
of different ways to allow you to easily specify the processing for each
interface function supported by your object. For more information,
see Configuring Interface Function Processing.

For the fairly common case where you implement all functions in an
interface in your COM object, using the standard function selectors
for your methods, you can construct the interface using a more
efficient mechanism that binds the interface functions directly to your
object. A direct binding of the interface, for the case where you have
implemented the complete signature of the interface, is constructed
by sending the directBindingOn: message to the interface class. For
example, the COM RNG class implements methods for all the
functions in the IRandomNumberGenerator interface. Consequently, it
constructs the interface binding using an expression of the form:

IRandomNumberGenerator directBindingOn: self
The result is an IRandomNumberGenerator interface with a binding that
dispatches invocations of the functions from the methods directly to
the COM RNG object. You cannot configure the function processing
through a function adaptor binding in this case, but if you implement
the complete interface in your object anyway and do not need the
additional flexibility of the adaptor, you get better performance using a
direct binding.

In addition to supporting QueryInterface processing, the IUnknown
support of a COMObject must provide for both shutting down the
object when the last client interface reference on the COM object is
released and releasing any external resources consumed by the
object. You must implement two “housekeeping” methods in your
COMObject subclass to support releasing the interfaces allocated by
your object during its lifetime. These methods are discussed under
Releasing a COM Object.

If an object you implement supports a large number of interfaces, all
of which might not be used during its lifetime, or if ease of
implementation is more important than optimizing the size of your
objects, you can implement your COM object as a subclass of
COMObjectWithInterfaceStorage, an abstract subclass of COMObject.
This class allocates a dictionary to hold all allocated interfaces
3-8 VisualWorks

Supporting COM Interfaces
supported by the object, with the IID of the interface used as the key
to perform lookups in the dictionary. Subclassing this branch of the
COMObject hierarchy is slightly simpler, because you do not have to
define instance variables for each supported interface and implement
the housekeeping methods needed to release them when the object
is shut down.

The COMObjectWithInterfaceStorage class has a standard
implementation of the getInterfaceForIID: method, which obtains
already-allocated interfaces directly from the interface storage
dictionary. This method should not be reimplemented in its
subclasses. Subclass participation to support QueryInterface
processing is required only the first time a supported interface is
requested by a client. When you subclass
COMObjectWithInterfaceStorage, you need only reimplement the
createInterfaceForIID: method, which simply returns a newly
constructed instance of the requested interface if it is supported. This
is slightly simpler to implement than getInterfaceForIID: and does not
require an implementation of the two corresponding release methods,
as must be done for a direct COMObject subclass.

The sample COM object implementation COMPersistentDataObject,
provided with COM Connect, demonstrates the various techniques
for supporting interfaces in a COMObjectWithInterfaceStorage subclass.
This sample object contains a simple state that it exposes to clients
through the IDataObject interface. The object can be made persistent
on various backing storage mediums through the standard COM
IPersist interfaces.

The createInterfaceForIID: method in COMPersistentDataObject is similar
to the following:

createInterfaceForIID: iid
" Private - answer a new instance of the interface
identified by the GUID <iid> on the receiver.
Answer nil if the interface is not supported. "

iid = IID_IPersistFile

ifTrue: [
^IPersistFile on:: self].

iid = IID_IPersistStorage
ifTrue: [

^ IPersistStorage on: self].
iid = IID_ IPersistStream

ifTrue: [
^ IPersistStream on: self].
COM Connect User’s Guide 3-9

Implementing COM Objects
iid = IID_IDataObject
ifTrue: ["this is discussed later…"].

^super createInterfaceForIID: iid

Note: The actual code in the createInterfaceForIID: method in the
COMPersistentDataObject class is not exactly like the preceding. In
particular, the PDO implementation uses a variety of techniques
for configuring the interface processing of the IPersist interfaces.
The persistence interface that it considers the most likely to be
used by clients uses an optimized direct binding, while the other
persistence interfaces are constructed using the flexible
configuration capabilities of an adaptor interface binding to
manage the name space collisions within this family of interfaces.
In addition, the IDataObject support is provided using the COM
aggregation technique to reuse the capabilities of another COM
object. The discrepancy between the sample method provided
here and the actual implementation in the class is deliberate.

A simple application that allows you to create, save, and load
COMPersistentDataObject instances is also provided as part of the COM
Connect samples. You can run this sample application by evaluating
the following expression:

COMPersistentDataObjectBrowser open.
This application is a standard COM client that creates the COM PDO
through a class factory, obtains interfaces using
IUnknown::QueryInterface, and uses the object’s services through these
COM interfaces.

Reusing COM Objects
Reuse of existing components is accomplished in COM through the
mechanisms of containment and aggregation. When you implement a
COM object, you can create instances of other COM objects whose
services you use to implement the functions of your own object.
When you create a contained object, you obtain an interface and can
keep it as long as you want to use the services of the inner object.
Your object can use any services provided by an inner object through
its supported interfaces, in the usual fashion.

The following figure depicts a COM object implemented using
containment, which is a COM term that describes the function activity
of using other objects in your implementation. Just as you might use
3-10 VisualWorks

Reusing COM Objects
a Dictionary when you implement an object that needs to maintain a
mapping table as part of its state, you can use another COM object to
use its services as part of your object implementation.

Reuse by Containment

Aggregation is a special case of containment that occurs when the
controlling object wants to directly expose an interface of an inner
object as its own. This is useful when you want to simply delegate the
processing of all the functions of an interface directly to the inner
object. Aggregation allows you to avoid the overhead of
reimplementing all the functions of an interface when all your object
needs to do is to relay the message to the inner object for processing.

When implementing a controlling object, you obtain the IUnknown
interface of the inner object when you create it; this is referred to as
the “inner IUnknown” of the contained object. Generally, you hold this
inner unknown interface of the contained object for the lifetime of your
object, and you release it when your object is itself released. As with
interfaces that your object supports directly, you can choose to
preallocate an inner object when your object is first created, typically
by reimplementing the standard initialize method, or you can create
the contained object on demand, to provide its services when the
object is first needed.

When you use containment in your COM object implementation,
reimplement the releaseInnerObjects method when the containing
object is terminated to release the inner objects your containing
object created during its lifetime.

Using aggregation, you can expose any interfaces of an inner object
as your own by implementing suitable logic to obtain the interface
from the inner object when an IUnknown::QueryInterface request is
COM Connect User’s Guide 3-11

Implementing COM Objects
made of your object. Because you are querying the inner object and
thus obtaining a new separately reference counted copy of the
interface, you must hook up QueryInterface support for inner objects
of an aggregate by reimplementing the getInnerObjectInterfaceForIID:
method.

Note: If you query an inner object within your aggregate object’s
getInterfaceForIID: method, as you ordinarily do to expose your
object’s supported interfaces to clients, double reference
counting occurs. The standard COMObject implementation of
IUnknown::QueryInterface assumes both that interfaces obtained in
this fashion are obtained directly from the object’s private state
and that a separately reference counted copy must be returned
to the caller, in conformance with the COM rules for interface
reference counting. In the case of an interface obtained from an
inner object, however, this generally results in a second
undesired AddRef being done. This kind of reference counting bug
in object implementations can be tricky to locate and debug - the
symptom is that your object does not ever get released, since it
still thinks there is an outstanding reference to it, because it has
inadvertently bumped its own reference count an extra time.

The sample COM object COMPersistentDataObject demonstrates using
aggregation to directly expose an interface of an inner object. The
COMPersistentDataObject reuses the capabilities of an existing COM
object to support the IDataObject interface. The inner object used by
the aggregate is created on demand by the PDO implementation,
which does a lazy allocation of the inner object only when a client
actually requests the IDataObject interface. Once created, the inner
IUnknown of the data object is saved in an instance variable of the
controlling object, which now owns this inner object for the remainder
of its lifetime.

The following figure illustrates reuse by aggregation.
3-12 VisualWorks

Reusing COM Objects
Reuse by Aggregation

The getInnerObjectInterfaceForIID: method of COMPersistentDataObject
looks like the following:

getInnerObjectInterfaceForIID: iid
" Private - answer a separate reference to the interface
identified by the GUID <iid> of an inner object, which
is to be directly exposed to clients as an interface of the
controlling object of an aggregate. Answer nil there is
no such interface. "

iid = IID_IDataObject

ifTrue: [
innerUnknownDO isNil

ifTrue: [self allocateDataObject].
^innerUnknownDO queryInterface: IID_IDataObject].

^super getInnerObjectInterfaceForIID: iid

Note: The actual code inthe getInnerObjectInterfaceForIID: method
in the COMPersistentDataObject class in your image is not exactly
like the preceding. The discrepancy between the sample method
provided here and the actual implementation in the COM object
class is deliberate.

The inner object is released when the containing object is itself
released by reimplementing the releaseInnerObjects method, as
follows:
COM Connect User’s Guide 3-13

Implementing COM Objects
releaseInnerObjects
" Private - release any inner objects owned by the receiver. "
self releaseDataTransferObject.
super releaseInnerObjects.

The COMObject framework provides complete support for
aggregation, so that any COM object that you create can in turn be
used by other objects through the mechanisms of containment and
aggregation. If for some reason you create an object that you do not
want reused within an aggregate, reimplement the supportsAggregation
class method to return a false value.

Configuring Interface Function Processing
When you construct an interface that is supported by your object, the
interface binding dispatches invocations of the functions in the
interface to your object. For example, the binding for the
IUnknown::AddRef function of the IUnknown interface causes the
AddRef message to be sent to your COM object when the AddRef
function is invoked. This interface is supported by every COM object
and must be included among the interface functions of every interface
your object supports. Similarly, interface functions are dispatched to
your COM object for each function in a supported interface.

The following figure illustrates the processing involved when a client
invokes an interface function implemented by a VisualWorks COM
object.
3-14 VisualWorks

Configuring Interface Function Processing
Implementing an interface function

In many cases, the standard interface function dispatching is
sufficient. When you decide to support an interface, you simply
provide the necessary support for QueryInterface and for releasing,
as described in the previous section, and implement methods in your
class corresponding to the functions in the interface.

Note that you do not need to implement the IUnknown interface
functions, since standard implementations of the interface negotiation
and reference counting capabilities of a COM object are provided by
the COMObject class. You should almost never reimplement the
IUnknown operation methods.

When you support an interface, you must implement methods in your
COM object class for the interfaces functions’ selectors published by
the interface. To get a list of function names in VTable order, use the
functionNames method defined in COMInterface class. For example:

IDataObject functionNames inspect
COM Connect User’s Guide 3-15

Implementing COM Objects
You can also study the VTable function definitions from the C++
header files or an IDL specification of the interface. Another
COMInterface message, describeInterfaceFunctions, can be used to
obtain more detailed information about the interface functions. For
example, to obtain a detailed description of the IDataObject interface
functions, with complete type information about each function
signature, evaluate the expression:

IDataObject describeInterfaceFunctions

Configuring a Direct Interface Binding
If your object implements the complete set of standard function
selectors for an interface that you support, you can construct a more
efficient binding of the interface onto your object by using the
directBindingOn: message to create a direct binding of the interface. A
direct binding requires that you support exactly the standard
message signatures for every function in the supported interface.
Unlike an adaptor binding constructed by sending the on: message to
the interface class, a direct binding cannot be configured to map the
function selectors onto alternate protocol supported by your object or
to dispatch certain functions to other objects for processing. However,
the flexibility of an adaptor binding is not always necessary, and in
this case it is more efficient to use a direct binding.

Configuring an Adaptor Interface Binding
In some cases, you might need to configure the interface function
processing for your object in a more flexible manner than is provided
by the standard dispatching connections, which simply send the
message corresponding to the interface function to your object. For
example, if you support two interfaces that contain a function of the
same name, to provide appropriate function processing for each
distinct interface function, you need to configure the interface function
processing to invoke two separate methods in your object class.
Smalltalk interface support provides facilities that allow you to
configure a customized interface binding when you need additional
flexibility for your COM object implementation.

Configurable interface function processing for a COM object is
enabled by constructing an interface binding on your object using the
adaptorBindingOn: message. An adaptor binding uses a function
adaptor to map the standard interface function message selectors
onto specified function processing actions for which you registered
function dispatch handlers. An adaptor binding makes it easy to map
interface function selectors to alternate message names that are sent
3-16 VisualWorks

Configuring Interface Function Processing
to your object. This is useful when two interfaces that your object
supports have the same message selector for functions with different
semantics. It can also be used to implement partial support for an
interface by mapping some of the operations onto a standard “not
implemented” handler.

An interface function handler is usually a method in the implementing
object, since the implementation of the desired behavior often
requires access to the object’s private state. Also, the behavior
provided for functions in different interfaces supported by the object
often must be coordinated, which requires that the state of the
implementing object be known.

An interface function handler does not need to be implemented as a
method in the COM object class, however. The function handler can
be any evaluable action, including a block or a message sent to
another object. For more information on interface function handlers,
refer to Implementing Interface Functions.

An interface binding with customized function dispatching is typically
constructed by a COMObject instance in one of two ways, depending
on whether the object implements all of its interface functions itself, or
implements only some of its interface functions, possibly delegating
others to another object.

If the object itself implements all the interface functions, it can
construct the supported interface using the on:selectors: class method,
specifying itself as the implementing object and providing the list of
message selectors to be sent to it for each function. The function
processing selectors must be in VTable order when specified in this
fashion. The standardIUnknownSelectors message can be sent to self to
obtain the list of standard IUnknown function handler selectors.
VTable selector lists should be constructed by using
standardIUnknownSelectors and concatenating the remaining selectors
of the interface to complete the VTable selector list.

Whenever possible, name the interface function methods in your
COM object classes with the standard function name, using the
native function name as the primary keyword of the method’s
message selector (which typically has an uppercase first character, in
contrast to the usual Smalltalk message naming convention) and
using the standard anonymous keyword (the underscore character
_:) for any additional argument keywords. For example,
QueryInterface:_: is the standard message selector for the two-
argument IUnknown::QueryInterface function. This is the convention
assumed by the standard interface function dispatching. In addition,
COM Connect User’s Guide 3-17

Implementing COM Objects
using the standard function name for your method provides a tangible
reminder that you are in a COM interface function implementation,
which has some special rules about how processing is implemented
and results are returned to the caller.

If you find that you must implement two methods in your class to
support functions with the same name, but from different interfaces,
choose a simple convention to modify the basic message selector in
a consistent way, so that your method selector reflects in an obvious
way the interface function name and the containing interface.

If your object does not implement all functions in an interface, or if it
delegates processing responsibility of any interface functions to
another object, construct the interface for your object using the on:
class method in the usual fashion, then reconfigure the function
processing specifications as desired using the function adaptor of the
interface. Send the functionAdaptor message to an adaptor interface to
obtain the function adaptor used to configure interface function
processing.

The standard mapping provided by an adaptor interface binding
dispatches all interface functions to your object using the standard
message selectors of the interface functions. You can reconfigure
these default dispatching specifications in several ways, which allows
great flexibility in specifying the function processing for an interface. A
function dispatch handler for an interface binding is registered with
the function adaptor using the standard registration messages of the
Smalltalk application event system, such as when:send:to:, with the
name of the interface function specified as the event name.

If you implement only a few functions in the interface, you can easily
reconfigure the interface binding to support only the standard
IUnknown functions and the specific functions for which you have
implemented methods in your object. To install a minimal function
binding specification, which dispatches the standard IUnknown
operations to your object and answers the E_NOTIMPL result code
for all other functions in the interface, send
installMinimumDispatchHandlers to the interface binding that you are
constructing.

Using the standard registration facilities of the Smalltalk application
event system, you can then configure function processing for the
specific functions that you support. This makes it easy to support an
interface in which you need to implement a few functions, without
having to implement a large number of methods that do nothing
besides returning E_NOTIMPL to the caller.
3-18 VisualWorks

Configuring Interface Function Processing
The COMRandomNumberGeneratorObject example demonstrates using
an adaptor binding to easily implement partial support for an
interface. The COM RNG object provides a degenerate
implementation of IDataObject that does nothing useful, simply to
show how easy it is when you want to do very little. The IDataObject
interface has eight functions and the RNG object is interested in
supporting only one of them, the EnumFormatEtc function (which does
not actually do much either, but that is what the implementor intends
in this case).

Rather than implementing methods for each of the seven
unsupported functions, which would all simply answer the
E_NOTIMPL result code, the COM RNG constructs an adaptor
binding for the IDataObject interface that maps the unsupported
functions onto a standard not-implemented handler provided by the
function adaptor. A function dispatch handler is then configured for
the supported EnumFormatEtc function.

The adaptor binding construction of the IDataObject interface in the
COMRandomNumberGeneratorObject class looks like the following:

createIDataObject
" Private - answer a new IDataObject interface
on the receiver. "

| anIDataObject |
anIDataObject := IDataObject adaptorBindingOn: self.
anIDataObject functionAdaptor

installMinimumDispatchHandlers;
when: #EnumFormatEtc

send: #EnumFormatEtc:_:
to: self;

yourself.
^anIDataObject

After constructing the adaptor binding, the
installMinimumDispatchHandlers message is sent to the function
adaptor to install the default not-implemented handler for all functions
other than the minimum set required to support IUnknown.
(Generally, the IUnknown operations should never be remapped.
They are configured to dispatch the IUnknown functions to the
standard COMObject methods.) A function dispatch handler is then
configured for the single function supported in the RNG object.
COM Connect User’s Guide 3-19

Implementing COM Objects
Note: The actual implementation of RNG does a little more than
is shown in the preceding code sample. For example, it also
demonstrates configuring a block as a function handler. The
discrepancy between the sample method provided here and the
actual implementation in the COM object class is deliberate.

To delegate processing of interface functions to an object other than
the COM object that supports the interface, simply configure a
function handler that sends the appropriate message to the object
that you want to have perform the actual function processing. For
example, the installMinimumDispatchHandlers message causes function
handlers to be installed that send a message to the interface binding
rather than to your implementing object. Any interface function that
you do not subsequently configure with a specific handler that
dispatches the function call to your implementing object is then
handled by the adaptor binding without notifying you, since
presumably you do not have an implementation of that function.

Implementing Interface Functions
The majority of the logic in a subclass of COMObject is the
implementation of the function processing for the interfaces that are
supported by the object. The methods that you implement and the
private state that you maintain in your COM object class are
determined entirely by the purpose of your object and the behavior
that you choose to give the object. As with any Smalltalk class, you
can use existing classes or create new classes as appropriate to
produce the desired behavior in your COM object.

A function processing method should indicate an error condition by
returning an appropriate HRESULT value. It should not signal the
COMError exception. By design, signalling COMError is the
responsibility of COM interface pointer and interface implementation
classes. Signalling COMError in a function handler is at best
redundant and at worst returns a nonspecific result to an external
caller in an expensive way. All the standard HRESULT values are
defined in the COMStatusCodeConstants pool.

Output arguments are provided by the caller as value references.
Your function handler method sets the value of an output argument
by sending the value: message to the caller’s reference.
3-20 VisualWorks

Releasing a COM Object
A function processing method must follow the COM rules for interface
reference counting and memory allocation when an interface or a
block of memory allocated by the callee is returned to the caller. An
interface returned to the caller must be reference counted by the
callee. This is usually done either by obtaining a separate reference
to an interface using the standard IUnknown::QueryInterface service or
by sending separateReference to a known interface instance. Memory
that is allocated by the callee and returned to the caller must be
allocated using the COM task allocator. Reference counting is
discussed in more detail under Using COM Objects. Memory
management and using the COM task memory allocator is also
discussed this chapter.

Releasing a COM Object
A Smalltalk COM object maintains an overall reference count on the
object, which is incremented and decremented as its interfaces are
reference counted. The reference count of a COMObject instance is
set to zero when the object is created. The reference count is
incremented and decremented each time the IUnknown::AddRef and
IUnknown::Release functions are invoked on any interface supported by
the object. When the reference count is decremented to zero, you
can assume there are no longer any clients of any of the interfaces
supported by your COM object. Under the COM reference counting
rules, a COM object is allowed (and indeed expected) to release its
resources and destroy itself when its reference count reaches zero.

Termination processing of a COM object is implemented in the
releaseResources method. The standard cleanup performed by the
implementation in COMObject includes releasing the external
resources of all supported interfaces. This is an important service,
because each interface you supply to an external client causes
external memory to be allocated. This memory is not managed by the
Smalltalk object memory manager, and must be released explicitly.

To support releasing the resources of interfaces supported by your
object, you must reimplement the following methods in your
COMObject subclass:

• allocatedInterfacesDo:, which must evaluate a one-argument block
on each interface that has been allocated during the object’s
lifetime. The primary use of this message is by the object release
logic in COMObject to release the resources used by a COM
object when the last client interface reference in released.
COM Connect User’s Guide 3-21

Implementing COM Objects
• resetAllocatedInterfaces, which clears any references in the object’s
instance variables to the deallocated interfaces.

Note: These two methods do not need to be implemented if you
have subclassed COMObjectWithInterfaceStorage.

For example, the cleanup methods in the COM random number
generator object sample are as follows:

allocatedInterfacesDo: aOneArgBlock
" Private - enumerate the interfaces supported by the
receiver which have been allocated during its lifetime
and evaluate <aOneArgBlock> with each. "

super allocatedInterfacesDo: aOneArgBlock.
iRandomNumberGenerator notNil

ifTrue: [
aOneArgBlock value: iRandomNumberGenerator].

iDataObject notNil
ifTrue: [aOneArgBlock value: iDataObject].

resetAllocatedInterfaces

" Private - reset the references to the interfaces
supported by the receiver. "

super resetAllocatedInterfaces.
iRandomNumberGenerator := iDataObject := nil.

The releaseInnerObjects method should be reimplemented in any
subclass of COMObject that creates inner objects for reuse through
containment or aggregration. For example, the sample COM class
COMPersistentDataObject implements this method to release the data
object it uses to support the IDataObject interface through
aggregation.

The releaseResources method should be reimplemented in any
subclass of COMObject whose instance state contains resources
other than supported interfaces and inner objects that should be
released when the object’s lifetime is terminated.
3-22 VisualWorks

Returning Values From an Interface Function
Returning Values From an Interface Function
COM interface functions are almost always designed to conform to
the convention that the return value of the function is an HRESULT
value, which provides the caller with a status code describing the
outcome of the function. Output values are returned to the caller
through OUT arguments, which the callee sets if the function
succeeds.

The standard HRESULT status codes are defined as pool variables in
the COMStatusCodeConstants pool. When you implement a function
in your COM object, you can answer an HRESULT as the return
value of the function using these constants.

Arguments to your interface function that have OUT semantics are
provided by the interface binding mechanisms as reference values. In
your interface function method, you return a value for an OUT
parameter by sending the value: message to the provided reference
argument. Note that you should never set the value of an output
argument unless you are also returning a success result code from
your function.

For example, the sample COMRandomNumberGenerator object
implements the IRandomNumberGenerator::Next function, as follows:

Next: resultReference
" Private - implement the
RandomNumberGenerator::Next operation. "

resultReference value: rng next.
^S_OK

As with most COM interface functions, this function returns a value to
the caller by sending value: to the reference argument to set the
return value, and it answers an HRESULT status code that indicates
whether the function succeeded.

Special considerations exist when the value you return is an
interface. Specifically, any interface value returned by a COM function
must be reference counted by the callee (your COM object, in this
case). The interface reference that your function returns becomes the
responsibility of the caller, which is required to release its reference
when done using the interface returned to the caller. The next section
discusses in more detail how the COM reference counting rules apply
when returning an interface value from a function that you implement,
and it discusses function implementation techniques you can use.
COM Connect User’s Guide 3-23

Implementing COM Objects
Implementing Reference Counting
COM objects implemented in Smalltalk must implement the COM
reference counting rules for the interfaces they support, whenever
interfaces are returned from a function implementation to the caller.

Every time a request is made for a COM interface, the supporting
object must return a new reference to that interface and increment
the count for that interface by one. To do this in Smalltalk, send the
separateReference message to the interface instance. For example, the
standard implementation in COMObject of IUnknown::QueryInterface
returns a separately reference-counted copy of the interface to its
caller as the return value of the function.

There are two standard patterns in Smalltalk COM object interface
function implementations for returning an interface to a caller as the
value of an output argument. To return an interface to which your
object already has a reference, use the separateReference message
when setting the value of the output argument. For example, if your
COM object has acquired some interface that it uses in its processing
and has the interface saved in an instance variable, you would return
this interface to a caller using an expression such as the following:

resultReference value: someInterface separateReference.
The second pattern occurs when you return an interface that you
obtain by asking some other COM object for a reference to a
particular interface. This is typically done using an expression of the
form:

resultReference value: (anInterfaceInstVar queryInterface: iid).
Since the queryInterface: message always returns a separately
reference-counted interface to the caller, you return this directly to the
caller.

Some reference counting rules also apply to interfaces passed as
input arguments to a function. An interface that is passed as a
function argument does not need to be reference counted by the
caller and can be used freely by the callee for the duration of the
function invocation. Within the implementation of an interface function
in a COM object you implement, you do not have to do anything if you
use only an interface argument during the actual function call. Do not
increment the reference count of the interface, and do not release it.
In most cases, this means that you can use the interface arguments
in your function implementation without worrying about reference
counting.
3-24 VisualWorks

Memory Management
If your implementation of an interface function needs to keep an
interface argument for use after the function is completed, however,
you must keep a separate reference to the interface argument. For
example, to save an interface argument in an instance variable of
your COM object for later use, evaluate an expression of the form:

someInterface := anInterfaceArgument separateReference.
Since your object now owns a new, separately reference counted
copy of the interface, you are responsible for controlling the lifetime of
the reference and must release it when finished using it.

These two patterns cover most of the situations that you encounter
when implementing a COM object in Smalltalk. Special situations
might arise as a result of shared use of an interface or in cases
where reference counting cycles can occur. Generally these can be
resolved by remembering that an interface is an object in Smalltalk
and analyzing the lifetime characteristics of how the interface is used
by the various clients. If the interface needs to be used by another
object and the lifetime of that usage is not known to be contained
within the lifetime of the owner’s usage, create a separately
reference-counted copy of the interface.

Reference counting cycles can occur in situations where two objects
are mutually dependent, with each holding interface references to the
other. This situation can be resolved by making suitable exceptions to
the normal reference counting rules, after careful analysis of object
dependencies and lifetimes.

Memory Management
In an earlier section, it was explained that an application is
responsible for releasing any memory block received from an
interface or API function call. This applies also to COM objects
implemented in Smalltalk.

You must follow the COM memory allocation rules when
implementing an interface function in a COM object that is
responsible for allocating and returning memory to the caller. In this
case, you must use the COM task allocator to allocate the memory.

The COMMemoryAddress class is used to allocate memory blocks
using the COM task allocator. To allocate a block of memory, send
the allocateMemory: class message to COMMemoryAddress,
specifying in the message argument the size in bytes of the memory
to be allocated. All IN/OUT parameters passed to a COM function, or
COM Connect User’s Guide 3-25

Implementing COM Objects
returned from a COM interface implementation as the value of an
OUT parameter that contains a pointer to a memory block, must be
allocated in this way.

The most common situation in which you need to concern yourself
with memory allocation occurs when you implement a function that
allocates a structure and returns a pointer to the structure as the
value of an OUT argument. The COMStructure class provides
standard services for allocating structures in external COM task
memory to facilitate properly allocated structures to return as OUT
argument values. The createExternalStructure: message is sent to the
COMStructure class to allocate the COM structure whose name is
specified as the message argument using the COM task memory
allocator.

For example, suppose you implement a function that returns a newly
allocated POINT to the caller as the value of an OUT argument of the
function. The C declaration of such a function would look like the
following:

HRESULT GetExtent (/* [out] */ POINT * lpExtent)

Your method that implements this function would look like the
following:

GetExtent: resultReference
"Implement the IFoo::GetExtent function."
aPointStruct :=

COMStructure createExternalStructureNamed: #POINT.
aPointStruct

memberAt: #x put: 2;
memberAt: #y put: 4;

resultReference value: aPointStruct.
^S_OK.

The COM memory that you allocated for the return value is released
by the caller.
3-26 VisualWorks

4

COM Infrastructure Support

This chapter describes various COM infrastructure technologies that
are supported in VisualWorks COM Connect.

COM Pools
The following pools define COM pool variables:

The pool variables contained in these pools are exactly those defined
as the constant name in the C header files.

Basic COM Data Types
COM Connect provides support for the basic COM data types as
described in these sections.

Globally Unique Identifiers
A globally unique identifier (GUID) is a 16-byte (128-bit) value that is
guaranteed to be unique. GUID values are used extensively in COM;
for example, they are used as COM object class identifiers (CLSID)
and interface identifiers (IID). In Smalltalk, the GUID class contains
GUID values.

COMAutomationConstants Constants used in COM Automation
applications

COMConstants COM constants and enumerated type values

COMStatusCodeConstants COM function status codes and HRESULT
values
COM Connect User’s Guide 4-1

COM Infrastructure Support
A new GUID is allocated by evaluating the expression:

GUID new
This is typically done when allocating a GUID to identify a new
interface or COM object class that you want to publish.

A GUID can be created by sending the asGUID message to a string
containing the display name of a GUID. For example, the IID of the
IUnknown interface can be obtained by evaluating the expression:

'{00000000-0000-0000-C000-000000000046}' asGUID

Note: You usually obtain this particular value simply by using the
IID_IUnknown constant in the COMConstants pool or by sending
the iid message to the IUnknown class.

There are also instance creation messages in the GUID class that
invoke COM APIs to obtain GUID values.

Conversions between CLSID and ProgID values are supported. To
convert a CLSID to the corresponding ProgID name of its application,
you use the asProgID message. For example, to obtain the ProgID of
the Windows Paintbrush application, evaluate the following
expression:

CLSID_Paintbrush_Picture asProgID
To obtain the CLSID of a ProgID, you send the asGUID message to
the string name of the application. For example, you can obtain the
CLSID of the Excel application object by evaluating the following
expression:

'Excel.Application' asGUID

HRESULT Values
The standard convention, used by almost all COM interface and API
functions, is to return an HRESULT status code as the function result
value. The abstract class HRESULT provides the standard COM
services for testing HRESULT values, as well as for accessing fields
and constructing HRESULT values.

For example, the standard test for a successful HRESULT that is
commonly used in COM interface binding classes is expressed as
follows:
4-2 VisualWorks

COM Enumerators
| hresult |
hresult := anInterface someFunction: ...

" invoke some interface function "
(HRESULT succeeded: hresult)

ifTrue: [... success logic ...]
ifFalse: [... error handling ...].

The HRESULT class also provides utility services for obtaining
information about an HRESULT code, such as the error message
defined by the operating system or a string describing the condition
represented by an HRESULT.

COM Enumerators
Enumeration is provided in COM by a family of interfaces that
enumerate collections containing a specific element type. Collections
are homogeneous and each element type has a unique interface
defined for enumerating collections of that type.

Using COM Enumerators
In Smalltalk, enumerators of all element types are supported by the
interface class IEnum. Supported enumeration element types are
interfaces, structures, and strings. An IEnum interface reference that
is obtained from an API or interface function has an instance-specific
IID associated with it, which identifies the type COM enumeration
interface for the element type of the collection being enumerated. For
example, an enumerator on a collection of IUnknown interface values
is an IEnum interface instance with an IID of IID_IEnumUnknown, while
an enumerator on a collection of FORMATETC data format description
structures is an IEnum instance with an IID of IID_IEnumFORMATETC.

The standard COM enumerator interfaces and their element types
are predefined in the IEnum class. Additional enumerator interfaces
can be supported by registering the IID and the element type in
IEnum enumerator registry. Register an interface and type by sending
the class message:

IEnum registerEnumeratorIID: aGUID for: aClass

Implementing COM Enumerators
Enumerators are implemented in Smalltalk by the
COMEnumeratorObject family of COM object implementations. To
support an IEnum interface, you create an instance of the appropriate
enumerator object class, providing a homogeneous collection of
COM Connect User’s Guide 4-3

COM Infrastructure Support
interface or structure instances. Clients can then enumerate the
elements of the collection that you provided using the appropriately
typed IEnum interface, which is supported by the Smalltalk COM
enumerator.

To provide an enumerator on a collection of interfaces, you create a
COMInterfaceEnumerator on a collection of interfaces. For example, if
you are implementing a COM object that supports the IEnumMoniker
interface to allow clients to enumerate a collection of monikers that
your object owns, you would construct an enumerator by an
expression such as:

COMInterfaceEnumerator forIID: IID_IEnumMoniker
elements: ("… a collection of monikers … ")

To provide an enumerator on a collection of structures, you create a
COMStructureEnumerator on a collection of structures. For example, if
you are implementing a COM data object that supports the
IEnumFORMATETC interface, to allow clients to enumerate a collection
FORMATETC structures describing the formats in which your object
allows its data to be obtained or set, you construct an enumerator by
an expression such as:

COMStructureEnumerator forIID: IID_IEnumFORMATETC
elements: ("… a collection of FORMATETC structures… ")

To provide an enumerator on an arbitrary collection of values that are
rendered using the self-describing VARIANT structure used in
Automation, you create a COMVariantEnumerator on a collection of
values. In contrast to other collections, the values exposed through a
VARIANT collection need not be homogeneous. Any value that can
be represented as a VARIANT can be contained in the collection. For
example, if you are implementing a COM data object that supports
the IEnumVARIANT interface, to allow clients to enumerate a collection
of attribute values, construct an enumerator with an expression such
as:

COMVariantEnumerator on: #(1 3.14 -99 'string' true false)

COM Monikers
A COM moniker is a reference to a specific COM object that can be
stored in persistent external storage and reloaded in the future. The
primary operation of a moniker is to bind to the referenced object.
The IMoniker class is the interface class for the primary interface to
COM monikers.
4-4 VisualWorks

COM Structured Storage Support
COM provides a number of standard system moniker types, such as
file, item, and composite monikers. To create new instances of the
system-supported monikers, the IMoniker class provides a number of
class messages, such as create File Moniker: to create a file moniker,
and create Item Moniker: to create an item moniker.

COM Structured Storage Support
One of the basic technologies of COM is structured storage, which is
a hierarchical model of persistent storage similar to the directory and
file model of hierarchical file systems. COM structured storage is
used by container applications to manage compound document files.

COM storages and streams provide support for various storage and
access modes. A COM storage is a directory-like object that can
contain streams and other storages. A COM stream contains data
bytes. The COM structured storage facilities include support for
managing shared access to storage elements and a transaction
model for controlling how changes in working state are committed to
persistent storage.

The COM persistent storage facility is also referred to as compound
document storage. A structured storage file containing a compound
document is also referred to as a compound file or a compound
document file.

The IStorage interface provides operations on storages. An IStorage
provides services to create or open the streams and substorages that
it contains, enumerate its contents, move and copy elements
between storages, rename elements, delete elements, and commit
changes to the contents or revert to the original state of the contents.

A COM storage that exists as a file in the file system is accessed
using the COMCompoundFile class, which is an IStorage with additional
class services to create and open a root storage document file.

The IStream interface is used to read and write the underlying bytes in
a stream. An IStream provides services to read and write data bytes
and to commit changes, or to revert to the original state of the
stream.

A temporary storage or stream that is backed by Win32 global
memory, rather than a permanent or temporary file in the file system,
can be created using the COMGlobalMemoryStorage and
COMGlobalMemoryStream classes, respectively.
COM Connect User’s Guide 4-5

COM Infrastructure Support
A COMReadWriteStream is a Smalltalk stream on the data bytes of an
IStream. As with the FileConnection and file system external stream
classes, to which IStream and COMReadWriteStream correspond, most
operations on a data stream by a Smalltalk client are done through
the COMReadWriteStream instance, with the underlying IStream
instance rarely manipulated directly. A COM stream can support
either byte or character semantics for interpreting the underlying data
bytes.

You can construct a COM stream by sending the message on: to
COMReadWriteStream, providing an IStream instance. The default
interpretation is to support character semantics, for consistency with
the string-oriented behavior of the existing Smalltalk Stream classes.
To specifically create a byte or character COM stream, you can send
the asByteStream or asCharacterStream message directly to the IStream.

COM Uniform Data Transfer Support
Uniform Data Transfer is a set of interfaces that allows COM
applications to exchange data in a standard way. Central to uniform
data transfer is the IDataObject interface, which allows a data transfer
object to communicate to the outside world.

An application that implements a data transfer object supporting the
IDataObject interface can use the object in various data transfer
mechanisms, such as the system clipboard or drag-drop transfer. The
IDataObject interface contains methods for retrieving, setting,
querying, and enumerating data, and handle data exchange
notifications.

The COMDataTransferObject class is a COM object provided by COM
Connect that supports the IDataObject interface and can be used to
provide the source data for a data transfer operation. A data transfer
object is configured with a set of one or more values, one for each
format in which the data can be rendered.

Clipboard Data Transfer
COM clipboard support is provided using the IDataObject interface. A
server application places an IDataObject on the clipboard, while a data
consumer obtains an IDataObect from the clipboard.
4-6 VisualWorks

COM Event Support
COM provides two APIs for setting and retrieving data from the
clipboard: OleGetClipboardData and OleSetClipboardData. These APIs are
wrapped in the getClipboardObject method in IDataObject, and in the
copyToClipboard method in IDataObject and in
COMDataTransferObject.

The IDataObject clearClipboard message clears the clipboard contents.
The OleFlushClipboard API empties the clipboard and removes the
IDataObject instance. This API is wrapped by the flushClipboard class
method in IDataObject.

A COMDataTransferObject is used as a data source object to copy data
onto the system clipboard. One or more formats can be specified,
according to the form of the data being provided and the rendering
formats supported by the data source. The following code fragment
copies data in the form of a string to the clipboard:

| aDataTransferObject |
aDataTransferObject := COMDataTransferObject new.
aDataTransferObject addRendering: ' Hello world '

format: 'String'.
aDataTransferObject copyToClipboard.

The IDataObject interface provides services for obtaining data from the
clipboard. The following code fragment demonstrates obtaining data
in the form of a string from the clipboard

| anIDataObject aString |
anIDataObject := IDataObject getClipboardObject.
(aString := anIDataObject renderFormat: 'String') isNil

ifTrue: [MessageBox warning: 'no string available'].
Transcript show: 'Got a string via COM data transfer:'; cr;

tab; show: aString; cr.
anIDataObject release.

For additional information about other supported data transfer
formats, consult Microsoft’s programmer’s reference manuals.

COM Event Support
The COM architecture defines a generalized event model based on
the dispatch technology, which is the foundation of the automation
technology. The COM event system provides for connecting an object
that generates events with clients interested in receiving notifications
of those events through a dispatch interface connection.
COM Connect User’s Guide 4-7

COM Infrastructure Support
Overview of Connectable Object Technology
A COM object that generates events supports an outgoing dispatch
interface for each event set that it supports. An interested client
registers to receive event notifications by constructing a matching
dispatch interface that it connects to the event source. This allows the
object generating the events to notify clients when the event occurs
by invoking the appropriate member function in the client’s incoming
dispatch interface.

When a client is no longer interested in receiving event notifications,
it disconnects the notification channel that it has provided the event
source object.

Overview of Receiving COM Events in VisualWorks
You can create an event sink through which event notifications are
received by creating an instance of COMEventSink. The event sink is
configured by providing it with the IID of an event set interface and
specifications describing the supported events. As when configuring
an dispatch driver to use an automation object from another
application, there are services provided in the
COMDispatchSpecificationTable class, which construct the dispatch
member specifications for an event set interface from its type library
information. There are also development utilities provided in the
COMAutomationTypeAnalyzer class, which can be used at development
time to explore dispatch interface definitions in type libraries and
cache event table specifications used to configure an event sink.

After you have configured an event sink and are ready to receive
event notifications, you establish a notification channel to connect the
event sink to an event source object. The COMEvent-Sink object you
have created handles the mechanics of establishing a connection
with the event source object.

Once the event notification channel between the source and sink
objects is connected, the event sink receives COM event notifications
from the event source object through its incoming dispatch interface.
When an event sink receives an event notification from the event
source object to which it is connected, it provides suitable
transformations between the dispatch value encodings and
appropriate Smalltalk values for all event argument values and
triggers a Smalltalk application event.
4-8 VisualWorks

COM Event Support
The names of the application events that are triggered by the event
sink are determined by the selectors that are defined in the dispatch
member specifications that are provided for each event when you
configure the event sink. In your application, you can configure a
COMEventSink and then register event handlers for COM events using
the standard facilities of the Smalltalk application event system.

When you no longer want to receive event notifications, you must
disconnect the event sink from the event source object. The
COMEventSink object handles the mechanics of destroying the
connection to the event source object.

Using a COM Event Sink
Using an event sink to receive COM event notifications in
VisualWorks involves the following steps:

1 Configure the event sink.

2 Connect the event sink to the event source object.

3 Register Smalltalk application event handlers on the event sink to
receive notifications.

4 Disconnect the event sink from its source object when done.

Configuring an Event Sink
To configure an event sink, you need the IID of the event interface
and a COMDispatchSpecificationTable containing the specifications of
the supported events. The information needed to configure an event
sink can be constructed dynamically when the event sink is being
constructed, if suitable information is available at execution time from
the event source object itself or a type library. Alternatively, the
specifications can be determined during development and defined by
a specification literal, which is used to efficiently configure the event
sink at execution time.

Event specifications can be constructed dynamically directly from the
event source object if it supports the interface IProvideClassInfo, which
allows a client to access the type information about the component
object class. Obtaining event type information directly from an event
source object is done using the getEventTypeInfoOf: service of
COMDispatchSpecificationTable. The argument is any interface that you
already have on the event source object. If the object supports an
event interface and can directly provide type information about its
events, the getEventTypeInfoOf: message returns an ITypeInfo interface
from which the event set specifications can be derived. If not, this
COM Connect User’s Guide 4-9

COM Infrastructure Support
message returns nil, in which case you must either attempt to obtain
the event set ITypeInfo interface from some other source such as a
type library or use specifications that you have constructed at
development time. Once you have obtained the event set ITypeInfo
interface, you can pass it to the constructEventSinkSpecificationTable:
service in COMDispatchSpecificationTable to construct a
COMDispatchSpecificationTable containing the event specifications.

For example, suppose you have created an object and have obtained
some interface anInterface on the object (typically but not necessarily
IUnknown or Dispatch). The following code fragment demonstrates
constructing an event sink on this object by configuring the sink with
dynamically constructed type information obtained directly from the
event source object.

| anITypeInfo eventSpecifications |

 " construct the event specifications from the object’s type info "
anITypeInfo := COMDispatchSpecificationTable getEventTypeInfoOf:

anInterface.
anITypeInfo isNil

ifTrue: [^nil]. " no type info or not an event source object "
[
eventSpecifications := COMDispatchSpecificationTable

constructEventSinkSpecificationTable: anITypeInfo.
] ensure: [

anITypeInfo release].

^COMEventSink iid: eventSpecifications iid

specificationTable: eventSpecifications.
An alternative to dynamically constructing the event specifications at
runtime from an ITypeInfo interface of the event source object is to
construct the specifications during development and cache them in a
dispatch table specification literal, from which the
COMDispatchSpecificationTable needed to configure the event sink can
be efficiently instantiated at runtime. Instantiating the event
specifications from a literal specification is faster than constructing
them from an ITypeInfo each time you connect to an event source
object.

To construct an event specification literal at development time, you
need the ITypeInfo interface that describes the event set. As when
constructing the event specifications at the time you connect an event
sink to an event source object, you can obtain the type information
about the event set either by creating an instance of the event source
object and using the getEventType-InfoOf: service of
4-10 VisualWorks

COM Event Support
COMDispatchSpecificationTable as described above or by obtaining the
appropriate ITypeInfo from a type library containing the specifications
of the event source object. Event set interfaces are marked as
outgoing dispatch interfaces (the IMPLTYPEFLAG_FSOURCE flag).
If the object supports multiple event sets, the primary event set is
distinguished by being marked with the IMPLTYPEFLAG_FDEFAULT
flag. The generateEventTypeInfoSpecification: service of
COMAutomationTypeAnalyzer is used to generate a dispatch table
specification literal for the event set.

Note that the event specification table is indexed by DISPID of the
event members, because the COM event mechanism is based on the
source object triggering events in the dispatch interface that is
supported by the event sink. This is denoted by a dispatch
specification table whose key is the symbol #memberID.

After you have used COMAutomationTypeAnalyzer to generate the event
set specification literal, you need to save it so that you can obtain it at
runtime. Typically, you save event specifications by creating a method
containing the dispatch specification table literal in your application
class that establishes the event sink. Event specifications are
instantiated by sending the message decodeAsLiteralArray to the literal
array.

For example, suppose that in your class that is going to construct an
event sink you have saved the event specifications literal in a method
named eventSpecificationLiteral. The following code fragment
demonstrates constructing an event sink configured for the event
source object from the cached event set specifications that you
obtained at development time.

| eventSpecifications |
eventSpecifications := self eventSpecificationLiteral

decodeAsLiteralArray.
^COMEventSink iid: eventSpecifications iid

specificationTable: eventSpecifications.

Connecting an Event Sink
After an event sink has been created and configured with the event
specifications, you must connect the sink to the event source object
in order to enable notifications to be received. The event sink is
connected by sending it the establishConnectionTo: message, providing
any interface on the event source object as an argument. The event
COM Connect User’s Guide 4-11

COM Infrastructure Support
sink handles the mechanics of establishing a connection to the event
source object and maintaining the information needed to terminate
the connection when you are done with the event sink.

Continuing the example from the previous section, where anEventSink
was created and configured so that it can be connected to an object
that has anInterface, the connection is established by simply
evaluating the following:

anEventSink establishConnectionTo: anInterface.

Registering Handlers on an Event Sink
To receive notifications of events from your event sink after it is
connected to the event source object, you configure the event sink
with the processing actions for the events of interest to you by
registering event handlers using the standard when:send:to: family of
messages of the Smalltalk application event system. The event
names that you use for registering event handlers are determined by
the selectors defined in the event specification table, which by default
are formed from the textual event name with anonymous keywords
appended as needed to denote argument values.

Following the convention of the application event system, an event
name is a symbol formed by one or more keywords denoting event
argument values. This is of course the same convention you are
familiar with for keyword message selectors in Smalltalk. For
example, typical event names might be:

Generally, event names are spoken according to the basic textual
keyword from which the event name is formed, e.g., the Loaded event
and the Saved event, but the event handler that you register to
specify the action to evaluate when an event of interest is triggered
uses the keyword event name symbol, e.g., #Loaded and #Saved:.

For example, suppose you have configured an event sink and
connected it to an event source that triggers notification events when
the object is loaded from or saved to a backing file. These

LButtonUp:with: LButtonUp - integer x, y arguments

Loaded Loaded - no arguments

Saved: Saved - string argument with file name
4-12 VisualWorks

COM Event Support
hypothetical events might be called Loaded, with no arguments, and
Saved, with the file name provided as argument. To register handlers
for these events, you would write something like the following:

anEventSink
when: #Loaded

send: #ringBell to: Screen default;
when: #Saved:

evaluate: [:name |
Transcript show:'Saved to: ', name; cr].

Of course, in a real application you would probably register handlers
that send messages to your application object and cause something
useful to happen.

If you want to have all event notifications from the event source
routed to a single destination, you can register a handler for the event
sink relay event eventNotification:arguments:. The first argument of this
event is the name of the event, while the second argument is an array
containing the argument values provided by the event (if any).
However, carefully consider the performance implications before
using this generic event notification relay mechanism, since the
dispatch parameters from the event source must be realized as a
Smalltalk arguments array for each notification, even if the relayed
notification is not used for any useful purpose.

The generic relay event can be useful for development tools, such as
the COMEventTraceViewer, which is provided with COM Connect to
enable you to hook up a trace window to an event sink in which you
can view trace information about each event and its arguments as
COM event notifications are received. However, be extremely
cautious about using the facility in a real application, as it might
cause noticeable performance degradation of your application.

Disconnecting an Event Sink
When you are done using an event sink and are no longer interested
in receiving COM event notifications from the event source object,
you must disconnect the event sink from the event source object:

anEventSink releaseConnection.
COM Connect User’s Guide 4-13

COM Infrastructure Support
Note: In general, it is probably advisable to disconnect the event
sink before releasing the last interface that you hold on the
object. It is probably unwise to assume that holding an event sink
keeps the object alive. It is a good idea to manage disconnecting
the event sink with your application shutdown logic or other
application logic that releases the event source object.

Note: While in most cases you send the release message to a
COM resource when you are done using it, you do not need to do
so when you are done using an event sink. An event sink is
simply a Smalltalk object you are using that happens to use COM
services in order to implement its functions. You use a sink by
connecting and disconnecting it from an event source object that
provides notifications; it is not an interface that you acquired and
thus you do not need to release it when you are done.

VisualWorks Extensions
The COM Connect software includes a small number of extensions to
existing VisualWorks classes and some new general-purpose
facilities that are used by COM Connect. The support components
that are brought in with COM Connect and used by the COM Connect
software, but which are not inherently COM-specific facilities, are
discussed in this section.

Image Management Services
The ImageConfiguration class represents the configuration of the
image, notably whether the image is a development configuration or a
deployment image. The command line arguments for this invocation
of the image are also part of the public protocol.

By default, an image is considered to be a development image. When
you prepare a deployment image for delivery, you can install the
runtime image configuration setting by evaluating the expression:

ImageConfiguration isDevelopment: false.
To test whether the image is configured as a development image or a
deployment image, evaluate the expression:

ImageConfiguration isDevelopment
4-14 VisualWorks

VisualWorks Extensions
The ImageManager class coordinates the startup, save, and shutdown
of the image. Other subsystems can arrange to be notified of these
operations by configuring application event handlers.

Image startup notifications are provided by the ImageManager
coreStartupCompleted and startupCompleted events, where the former is
triggered early in image startup (prior to the installation of the window
system) and the latter is triggered after the base system startup
processing is completed. To configure additional image startup
processing that should be performed only in a development image,
register a handler for the ImageManager developmentStartup event. To
configure additional image startup processing that should be
performed only in a deployment image, register a handler for the
ImageManager deploymentStartup event.

Image shutdown notifications are provided by the ImageManager
shutdown event. Application-specific processing, such as cleanup or
release of external resources, can be configured by registering
handlers for this event.

Image save notifications in a development image are provided to
enable you to configure processing that needs to be involved at
image save time. When an image save is about to be initiated,
ImageManager triggers the veto-able confirmSave event to announce
the impending save operation. If you need to be involved in a decision
about whether an image save can be allowed, you register a handle
for this event. If for some reason you need to veto the proposed
image save operation, you can do so by evaluating the following
expression:

ImageManager abortSaveImage.
If the proposed image save operation has not been vetoed, the image
save operation is initiated by triggering the aboutToSave event. Any
processing that your application needs to do when an image save
operation is going to proceed, but has not yet started, should be
installed by configuring a handler for this event. Finally,
ImageManager triggers the saveCompleted event when the image save
operation has been completed.
COM Connect User’s Guide 4-15

COM Infrastructure Support
Note: The ImageManager events that provide image lifecycle
operation notifications are derived from existing dependent
notification capabilities provided by the VisualWorks
ObjectMemory class. As noted in the previous section that
reviewed the application event system, however, configuring your
processing using application event notifications is typically more
straightforward than expressing the equivalent interaction through
a dependent notification, which requires your application to
handle the routing of the notification according to the source
object and aspect information provided with the notification. It is
generally much easier to configure your image processing using
the ImageManager events, letting the ImageManager handle the
routing and dispatching, so that you need only implement the
actual notification handler logic of interest to your application.

User Interface Extensions
A few useful user interface extensions are provided with COM
Connect.

The FileDialog class provides a small set of standard services for
opening a dialog to obtain a file path name from the user. FileDialog
can be used in your application when an interaction with the user is
desired, to obtain the name of a file to be opened or the name of the
file to which data is to be saved.

Services for obtaining the name of a file to be opened are:

FileDialog openFile.
FileDialog openFile: '*.txt'.
FileDialog openFileTitle: 'Open File' pattern: '*.txt'.

Services for obtaining the name of a file in which data is to be saved
are:

FileDialog saveFile: 'Untitled.txt'.
FileDialog saveTitle: 'Save As' fileName: 'Untitled.txt'.

Platform-specific bindings of the FileDialog protocol to host UI dialogs
can be provided, as desired. If no platform-specific binding is defined,
a standard VisualWorks emulated dialog is used to support the
operations.

The MessageBox class provides a small set of standard services for
opening a dialog to display a message to the user or to obtain
confirmation for some request.
4-16 VisualWorks

VisualWorks Extensions
To display a notification to the user:

MessageBox message: 'This is a message for you.'.
MessageBox warning: 'Consider yourself warned!'.
MessageBox notify: 'Title String' withText: 'Message text...'.

To obtain a confirmation from the user:

MessageBox confirm: 'Is this what you want?'.
MessageBox threeStateNotify: 'Title String' withText: 'Message

text...'.
Platform-specific bindings of the MessageBox protocol to host UI
dialogs can be provided, as desired. If no platform-specific binding is
defined, a standard VisualWorks emulated dialog is used to support
the operations.

The TextWindow class combines the Smalltalk expression evaluation
support of a workspace with the file-backing services of a file editor
view, without any limitation on the size of the text that can be
contained in the view other than what the creator of the text window
view might want to specify.

To open a text window:

TextWindow open.
TextWindow label: 'TextWindow Example '.

To open a text window with some initial text contents displayed in the
view:

TextWindow openOn: 'This is some initial text'.
TextWindow openOn: 'This is some initial text'

label: 'TextWindow Example'
To open a text window on the contents of a file:

TextWindow openOnPathName: 'readme.txt'.
The ListDialog and MultiSelectListDialog classes provide services for
allowing a user to make a selection from a list of choices presented in
a dialog. A list dialog can be configured with a title and one or more
lines of explanatory text, in addition to the list of choices. The
MultiSelectListDialog provides additional operation buttons to facilitate
user actions like selecting all or none of the list items in a multiple-
choice list dialog.

Working With External Structures
External data structures are modeled in Smalltalk using the DLL & C
Connect definition facilities and external data support facilities. To
make it easier to work with host data structures in a VisualWorks
COM Connect User’s Guide 4-17

COM Infrastructure Support
development image, inspectors are provided for C structure type
definitions (instances of CCompositeType) and structure instances that
are allocated in either Smalltalk memory or in external heap storage
memory (CComposite and CCompositePointer instances).

In some cases, it is useful to create a structure wrapper class in
Smalltalk to encapsulate operations on the contents of external
structures or to provide associated services to create and manipulate
such structures. The ExternalStructure class is used to wrap instances
of external structures, which might be allocated in either Smalltalk
object memory or in external memory such as the heap storage
accessed with the malloc family of external data services.

ExternalStructure can either be instantiated directly, to wrap a specific
structure instance, or used as a framework for implementing
subclasses, which provide customized structure wrappers with an
extended protocol appropriate for a particular external structure.
ExternalStructure provides a few convenience operations that make it
easier to work with external structures in a Smalltalk application.
Facilities are also provided for configuring an ExternalStructure
instance with protocol adaptor specifications, which allow you to
automatically wrap member access operations with additional
processing, to provide additional semantics for manipulating structure
members.

DLL & C Connect Extensions
The DLL & C Connect extension included with COM Connect
provides improved support for using Boolean values when working
with external structures and functions. Improved support for certain
standard host platform procedure call conventions is also provided.
These DLL & C Connect improvements are supported by syntax
extensions that you use in external data and function declarations, as
well as by enhanced support mechanisms in the VisualWorks object
engine and run-time support services.

The syntax for defining external data types is extended to support a
new __bool modifier for integer data types. A structure member or
external function argument that is defined as a __bool integer value
accepts Smalltalk Boolean values directly. Without this feature, when
you work with a value that is semantically a boolean but declared in
the C fashion as a standard integer value, you are responsible for
providing integer values corresponding to the standard C TRUE and
FALSE values whenever setting a structure member or providing a
function argument.
4-18 VisualWorks

VisualWorks Extensions
Similarly, you must work with the integer value that you obtain back
from a structure member or a function call. Often, this results in
providing explicit conversion between a Smalltalk Boolean and the
corresponding C integer constant at the point where the external
function or structure is used, so that the rest of your application need
not be concerned with mixing representations.

The new __bool modifier enables you to work directly with Boolean
values in external structures and functions, and let the VisualWorks
Object Engine external data support handle any necessary mapping
to the C encoding, automatically. Any integer data type can be
marked as a boolean value, using the following syntax as a DLL & C
Connect declaration:

[const] __bool char
[const] __bool short
[const] __bool int
[const] __bool long
[const] __bool long long

The structure member accessing operations memberAt: and
memberAt:put: accept and return a Smalltalk Boolean for a __bool
member. When you invoke external function with an argument
declared as a __bool value, you simply provide the argument as a
normal Smalltalk Boolean, and no conversion is needed to ensure
that the argument value is mapped to the corresponding C integer
encoding.

In Win32 generally and almost uniformly in COM, a standard data
type and function definition convention is followed for defining how a
function should return a status code and result values to its caller.
The data type HRESULT is a standard data type with a well-defined
specification of how status values are encoded to indicate success or
failure of the operation, the facility that reported the status, and a
specific status code value. By convention, a function is defined to
return HRESULT as the function value, with any output values
returned by the function to its caller declared as OUT arguments to
the function.

The HRESULT return type is now supported by a new integer data
type modifier __hresult, which provides improved support for detecting
and reporting external function call failures. A function that is
declared with an __hresult return value returns from an external
function call with a SystemError exception, generated automatically
by the VisualWorks Object Engine, if the HRESULT return value
indicates an error code.
COM Connect User’s Guide 4-19

COM Infrastructure Support
The SystemError for an HRESULT error code is named #’hresult
error’ and the parameter value is the HRESULT code returned by the
external function. The HRESULT error code from the external access
failure exception can be handled immediately in failure code that you
write for a specific function declaration. More generally, the
HRESULT failure can be mapped to a Smalltalk exception in the
standard externalAccessFailedWith: processing that is used when an
external access failure is reported by the object engine for an
external function call. This automatic mapping into a Smalltalk
exception eliminates the need to write status code checking logic
explicitly everywhere you call an HRESULT function, and it is a far
more efficient mechanism for detecting and reporting error
conditions.

Win32 Support Facilities
To enable COM Connect support on Windows platforms, some
Win32 support facilities are provided to enable access to basic Win32
system services.

The Win32RegistrationDatabase class provides services for accessing
and manipulating the contents of the Win32 system registration
database.

The Win32ClipboardInterface class provides services for accessing the
system clipboard and clipboard format constants on a Win32 system.
Standard Win32 CF_ clipboard format constants are defined in the
Win32Constants pool.

The Win32FileDialog class provides a Smalltalk binding to the standard
Win32 file dialog. The Windows file dialog is generally used indirectly,
through the platform-independent FileDialog class. However, clients
that are willing to accept an explicit dependency on the Win32
platform in their applications can choose to use the Win32FileDialog
class directly, in order to exploit enhanced capabilities that are
specific to the Windows dialog.

The Win32Message class provides a Smalltalk binding to the standard
Win32 message box dialog. The Windows message dialog is
generally used indirectly, through the platform-independent
MessageBox class.

The Win32GlobalMemoryAddress is used to allocate memory using the
Win32 global memory allocator. Instances of
Win32GlobalMemoryAddress represent an external memory address,
4-20 VisualWorks

COM Host Binding Framework
which references memory allocated outside Smalltalk object space,
using the Win32 global memory allocator. A Win32 global memory
address can be used interchangeably with a CPointer that references
external memory allocated from the Smalltalk external memory heap.
The standard Win32 GMEM_ constants used to specify the option
flags that control a global memory allocation operation are defined in
the Win32Constants pool.

COM Host Binding Framework
COM interfaces are typically provided by COM servers external to
your VisualWorks COM application. To use such an interface in a
Smalltalk COM application, it must be wrapped by Smalltalk classes
and methods.

This section describes the host binding implementation framework
provided by COM Connect for representing interfaces for use in an
application. It is assumed in this section that you already know how to
access COM interfaces from another language, such as C, and so
you only need specific pointers to implementing the same
functionality in Smalltalk.

Implementing a host binding wrapper for a COM API or interface
requires that you first use the capabilities of DLL and C Connect to
create the necessary data type definitions in an ExternalInterface
class. Specifically, all COM data type definitions are created in the
COMExternalInterface class. This pool of C type definitions provides the
context for all API functions, which are wrapped by function
declarations implemented in subclasses of COMDynamicLinkLibrary,
and interface definitions, which are wrapped by function declarations
implemented in subclasses of COMInterfacePointer. Refer to the DLL
and C Connect Guide for additional information about the external
interface capabilities that VisualWorks provides and available
developer support tools.

Note that the material in this section is of interest only if you need to
provide support for an API or COM interface that is not already
provided by COM Connect. COM applications are insulated from this
lowest layer of the COM Connect architecture by COMInterface
interface wrapper classes and other Smalltalk service classes that
expose various COM facilities.
COM Connect User’s Guide 4-21

DLLandCConnectGuide.pdf
DLLandCConnectGuide.pdf

COM Infrastructure Support
COM Data Structures
COM data structures are usually accessed through structure wrapper
classes, which are implemented as subclasses of the COMStructure
abstract class. These classes provide methods for manipulating
COM-specific data types in structure fields. Structures are allocated
using the class messages defined in COMStructure.

COMStructure can be used as a wrapper for any host structure. A
customized structure wrapper class can be created as a subclass of
COMStructure if you want to support convenience protocol methods,
add services that encapsulate complex operations on the contents or
the structure, or provide extended semantics for releasing the
structure.

COM Function Binding Classes
The COM Connect framework allows accessing COM objects defined
outside Smalltalk, using callout facilities, as well as implementing
COM objects in Smalltalk, allowing call-in access by client objects. A
typical COM application involves an exchange between externally
defined and internally defined COM objects.

The COM Connect support framework uses classes described in the
following sections, which discuss implementing wrapper classes that
provide bindings for COM interfaces and API’s.

COMDynamicLinkLibrary
The COM API functions are supported by API primitive methods in
subclasses of COMDynamicLinkLibrary. The abstract superclass
provides utility services to support native API function invocation. A
COM DLL defines the API function primitives that invoke a native host
API function directly and manage the low-level host data type
transformations involved in an external function call.

Subclasses of COMDynamicLinkLibrary have the following
responsibilities:

• Implement public protocol for the API functions.

• Perform argument transformations between Smalltalk objects
and host data types.

• Implement methods to call API function primitives.

• Signal COM exception conditions to a Smalltalk caller.
4-22 VisualWorks

COM Host Binding Framework
COM API functions should usually be invoked through messages
supported by the appropriate COMInterface class.

COMInterfacePointer
An interface has a binary representation in memory consisting of a
pointer to a pointer to a list of functions (the interface VTable).
Instances of COMInterfacePointer contain the first of these pointers,
which indirectly points to entries in the VTable. An interface pointer
class defines the COM function primitives that directly invoke a native
host function in the interface and manage the low-level host data type
transformations involved in an external function call.

Subclasses of COMInterfacePointer have the following
responsibilities:

• Implement public protocol for the interface functions.

• Perform argument transformations between Smalltalk objects
and host data types.

• Implement methods to call COM function primitives.

• Signal COM exception conditions to a Smalltalk caller.

The COMInterfacePointer class hierarchy should parallel the
COMInterface hierarchy, providing the same inheritance structure.
Each interface pointer class is uniquely identified by its IID, which can
be obtained by sending the iid message to the interface.

The public protocol of an interface pointer class should consist of
exactly the interface of the interface functions. “Civilizing” functions
should not be defined in these classes.

Calling a COM function is similar to making an API call, but employs
the special COM calling convention for invoking a function entry point
in an interface VTable.

COMInterfaceImplementation
Interfaces are implemented in Smalltalk as subclasses of
COMInterfaceImplementation. These primarily provide call-in services
allowing external clients to invoke a COM object implemented in
Smalltalk.

The COMInterfaceImplementation classes provide the call-in binding to
allow external clients to invoke interfaces supported by a COM object
implemented in Smalltalk. Since all interfaces support IUnknown, all
implementations are defined under IUnknownImplementation.
COM Connect User’s Guide 4-23

COM Infrastructure Support
The interface implementation callback mechanism relies on the
C type definition of the VTable structure containing the function
pointers of the interface. VTable structure definitions are created in
the COMInterfaceVTableSignatures class, using the standard facilities of
DLL and C Connect to define the C structure. The VTable structure
must reflect the underlying C calling convention, with an explicit first
argument (typically named This) representing the interface
implementation.

An interface implementation manages the interface data structure in
external memory, and dispatches function processing to support
invocation of its interface functions.

The COMInterfaceImplementation class hierarchy should parallel the
COMInterface hierarchy, providing the same inheritance structure.
Each interface implementation class is uniquely identified by its IID,
which can be obtained by sending the iid message to the interface.
4-24 VisualWorks

5

COM Connect Development Tools

COM Connect provides several tools to assist you in developing and
debugging COM applications in VisualWorks Smalltalk. The tools can
be launched in the VisualLaunch from the Tools > COM menu.

A number of useful tools for COM developers are also freely available
from Microsoft. Refer to the MSDN website for information about and
access to these tools.

COM Resource Browser
A COM application that you develop typically uses a variety of
services provided by other COM objects or the COM platform
support. At any point during the activity of your COM client
processing, you own a number of interface pointers to objects you
have created or acquired. You might also own COM memory that you
have allocated or acquired. If your application publishes COM
objects, you might also be supporting a number of interfaces that are
exported to clients outside of your Smalltalk image.

The COM Resource Browser allows you to browse the COM
resources that are currently in use by or exported from your Smalltalk
COM application. It can be very helpful to analyze the COM resource
usage of your application at various points in time, which can help
you understand the interactions between your application and other
COM applications. It is also useful for tracking down resource leaks,
in interfaces or memory, of which you have acquired ownership but
have not released.

To open the COM Resource Browser, select Tools > COM >
Browse Resources in the Launcher.
COM Connect User’s Guide 5-1

COM Connect Development Tools
Another useful expression opens the resource browser only when
resources are currently in use by your COM application session:

COMSessionManager sessionHasResources
ifTrue: [COMResourceBrowser open].

The browser displays five lists.

Special resources:

Special COM resources that are managed by the basic COM
Connect infrastructure on behalf of all clients in the session. The
COM task memory allocator is most commonly listed.

Owned interfaces:

The interfaces used by your application.

Owned memory:

The addresses of any memory allocated by the COM task
allocator that you own.

Exported interfaces:

Interfaces defined by object implemented in Smalltalk and
exported to external clients over their lifetime.

Exported objects:

COM objects implemented by this Smalltalk application that are
currently in use.

The browser also has two buttons:

Update lists

Updates the resource browser view when you have performed
activity elsewhere in your application that affects the COM
resource usage state of the session. Typically you must refresh
the view either when you run something that acquires COM
resources or after you run some portion of your application that
releases resources it was using.

Clean up lists

Updates the resource browser view after performing a garbage
collect to ensure that spurious references are eliminated.
5-2 VisualWorks

COM Resource Browser
Inspecting Resources
You can inspect any owned or exported resource by selecting it and
invoking the Inspect command from the context menu, or by
doubleclicking on it.

The Registries menu opens inspectos on the underlying resource
tracking registries used to support COM resource management.

Releasing Resources
To free a resource, select the release command on the context menu.
This is useful when cleaning up resource leaks or recovering from the
effects of a damaged object you are developing. However, you must
use the release capability with extreme caution, and with a good
understanding of what you are doing.

Releasing interfaces from your application can cause unexpected
failures. Even more dangerous, forcibly releasing an exported object
that is still in use by another application can have serious
consequences, including crashing the client of your object or hanging
your system.

The Cleanup menu provides operations that release mass quantities of
owned or exported resources. These brute-force cleanup operations
are even more dangerous than the individual resource release
operations, and they are prone to failure due to subtle order
dependencies that can occur as a result of interactions between
owned and exported resources. Use these global cleanup operations
with extreme caution.

Common Resources
The IMalloc class obtains and manages a single reference to the
COM task memory allocator, which is shared by all clients in the
process that need to allocate COM memory for any reason. If you
allocate COM memory, either directly through the IMalloc functions
available though the shared interface reference:

IMalloc taskMemoryAllocator
or as a consequence of allocating external COM memory through
services provided by the COMMemoryAddress and COMStructure
classes, you see an entry in the special resources list of the
COMResourceBrowser.
COM Connect User’s Guide 5-3

COM Connect Development Tools
The IRunningObject table also manages a special shared interface
reference to the system running object table, which is used for certain
operations involving monikers.

COM Trace Manager and COM Trace Viewer
The COM Trace Manager and COM Trace Viewer tools provide
dynamic insight into the behavior of your application and its
interactions with other COM objects.

COM tracing capabilty can be installed/uninstalled and enabled/
disabled during application development, so that the overhead of
tracing is incurred only when you need it. When tracing is installed,
you can dynamically enable and disable tracing on specific types of
function calls and individual interfaces to observe the desired
behavior.

COM Trace Manager is a prerequisite for the viewer. To install it,
select Tools > COM > Install Trace Manager. You can uninstall it later with
Tools > COM > Uninstall Trace Manager.

The COM Trace Viewer tool provides the primary user interface to the
COM Connect tracing capability. To open the COM Trace Viewer,
select Tools > COM > Trace Viewer.

The viewer allows you to set several global flags with a few
checkboxes:

• enable tracing - controls whether tracing is currently enabled

• trace callout - Trace outgoing interface function calls

• trace callin - Trace incoming interface function calls from external
clients

• trace internal calls - Trace internal interface calls between Smalltalk
clients and objects in the same image.

In most cases, you will be interested in the outgoing and incoming
interface function calls, since these two categories of interface
function calls allow you to observe the interface between your
application and external COM clients or server objects.

The Callout options and Callin options buttons allow you to select which
function (classes) specifically to trace, providing better focus to the
trace. This allows you to configure the trace settings of your system
5-4 VisualWorks

Automation Browser
so that you can observe specific interactions, while ignoring
interfaces that represent activity in which you are not interested (at
least at the moment).

Because interface tracing can produce voluminous output, you
typically use the COMTraceViewer selectively. Generally, you want to
turn the global enable tracing switch off while configuring the desired
trace option settings and getting your application to the state at which
you want to observe its activity. When you are ready to collect trace
feedback, turn on the global tracing switch and perform the
operations of interest in your application. When you are done
collecting information, simply turn off the global tracing switch again.

COMInterfaceTraceAdaptor
An interface trace adaptor is interposed between the caller and callee
when interface tracing is enabled. A trace adaptor supports the
message protocol of the interface that it is tracing and simply
forwards the function call to the real implementor of the interface after
recording suitable information in the trace log, according to the
current trace option settings you have configured.

The interface function call trace output is provided by a set of special
development support classes that provide both generalized and
customized interface tracing capabilities. Interface tracing is provided
by subclasses of COMInterfaceTraceAdaptor.

The default trace of argument and result values that is provided is
generally adequate for many interfaces. If you want to customize the
tracing output for a particular interface, you can implement a trace
adaptor class and simply add implementations for any functions
whose default tracing you want to override.

Automation Browser
The Automation Browser is an extension to the system browser that
supports viewing type libraries and their contained type descriptions.
COM Connect User’s Guide 5-5

COM Connect Development Tools
To open the Automation Class Browser open select Tools > COM >
Browse Automation Classes… from the Launcher menu.

The browser consists of four upper list panes and a special source
description pane in the lower half of the window:

Type Library pane

The first, leftmost list pane contains all type libraries registered in
the system. Type libraries contain detailed information about
objects and types provided by a specific COM server.

Types pane

The second list pane contains the types described for the type
library selected in the type library pane. Types may be

• CoClasses

• Interfaces
5-6 VisualWorks

Automation Browser
• Enumerations

• Aliases

• Structures

• Unions

Each type is identified visually by an icon. Below this pane three
check boxes select which types are listed: Coclasses and
Interfaces (including Dispatched); all other types; all types that
are system types or are marked as hidden.

Protocols pane

The third pane contains the protocols of the selection in the
Types pane. These are not protocols in the Smalltalk sense but
static categories for each kind of type. While, for example,
Interfaces and CoClasses have the protocols “methods” and
“properties,” Enumerations will have the protocol “constants.”

Members pane

The rightmost list pane displays the members of the selected
type depending on the selection in the Protocol pane.

Source Description pane

Selecting a member in the Members pane displays detailed
informationin the lower half of the window. Unlike the System
Browser, the pane does not allow editing of its contents. The
Source Description pane has an option to explain selected text,
such as parameter types of methods.

Usage Features
The browser supports these features.

Explain

Explain on the context menu attempts to provide a short
explanation for whatever is selected in the Source Description
pane and will allow you to open a new Browser on the selected
element, if the element is a custom type provided by an
Automation Server. This feature operates across type libraries
and for hidden types.
COM Connect User’s Guide 5-7

COM Connect Development Tools
Search

You may search for a type by using the search input field in the
top-right of the browser window. As in the System Browser, if you
enter the name of a type to search for and presses Enter the
Browser will list Types it finds in a dialog. Select the Type to
navigate to. The search string may contain the name of a type
library, (e.g., a possible query may be "Word.Application"). If
nothing is found, the user will be asked whether to search for
methods. Method search can be enforced by adding an hash sign
(#) in front of the search phrase.

Search References

Two context menu items allow searching references to a specific
type, which are occurrences of a type inside another type or as
parameter/return value type. Type aliases will be resolved and
references to the alias will also be listed. Local References lists all
references inside the type library in which the type is defined.
Global References searches all type libraries for references that are
registered on the computer. Searching all global references may
take some time.

Instance creation

The browser allows creating instances of a coclass and directly
interacting with it in an inspector. To do this, select a coclass type
in the Type list pane and select "Create Instance and inspect"
from its context menu. An inspector will open on the created
coclass.

Implementors

It is now possible to browse implementors of a method or
property. There are two versions, local implementors and global
implementors. A search for local implementors conducts a search
within a single type library whereas a global implementors search
searches all type libraries registered on the computer.

Inspector Extensions
The Inspector has been enhanced to show additional information
about instances of COMDispatchDriver.
5-8 VisualWorks

Inspector Extensions
The Basic tab has been extended to support the display and update of
Automation properties of the inspected object. You may set
properties of the remote server object in an inspector just by typing a
new value in the inspector and accepting it.

Most application classes have a Visible property. When such an
object is created, this property usually is set to false, which means
that the application window is invisible. When the value is changed to
true and accepted, the application window should become visible.

Automation Member Description tab
In addition to Automation property display support, the inspector
shows additional tabs, depending on the kind of Automation object
being inspected.

The Automation Member Description tab is displayed for all kinds of
classes represented by an AdvancedDispatchDriver.

On the left it contains a list of all members of the Automation object.
That means methods, properties and events.

On the right, VisualBasic and Smalltalk representations of the
selected member will be displayed. The actual kind of information
displayed will vary depending on the type of the selected member.
While for methods the call code will be displayed, for events the
inspector will display the code for being informed about the
occurrence.

Both VB and Smalltalk representations are displayed because
specific types of information can be more easily acquired from either
of them. For example, the Smalltalk syntax does not say anything
about the result type but provides detailed information about classes
which may be used to pass arguments.

The tab also contains a help button which opens a help window on
the selected member if there is a help file available.

An additional feature of the tab is the Send/Send-And-Dive
Functionality. This Automation version of the send functionality allows
calling parameterized methods and properties by providing a dialog
which allows entering parameter values. An Automation send can be
performed by selecting Send/Send and Dive from a member’s context
menu.
COM Connect User’s Guide 5-9

COM Connect Development Tools
Automation items tab
For collection coclasses, an additional tab will be displayed which
provides access to all items of the collection.

Editing items is supported in the inspector (if the coclass supports it)
but make sure the correct type of object is used.

COM Automation Editor
The COMAutomationEditor is a simple workspace window that can
be connected to the dispatch interface of a COM automation object
and allows you to interactively evaluate Smalltalk expressions that
access properties and invoke functions of an automation object to
which it is connected.

The sample COM random number generator discussed elsewhere in
this documentation to demonstrate the basic techniques of
implementing a COM object and supporting an interface can also be
used through COM automation.

The COMAutomationRandomNumberGenerator is a subclass of the
COMRandomNumberGeneratorObject object that allows the functions of
the IRandomNumberGenerator interface to be accessed by COM
automation by adding support for the IDispatch interface. A simple
test driver class that demonstrates writing interface test cases for the
RNG object also provides a utility operation to open a
COMAutomationEditor on an automation-enabled RNG object. You
can open the automation editor on an automation-enabled RNG test
object by evaluating the following expression:

COMAutomationRNGTestDriver testInAutomationEditor.
Within the text pane of the automation editor view, you can type and
evaluate expressions that send messages to the automation object to
which the view is connected. By default, the automation object is
referenced by the dispatcher variable name. You can evaluate the
following sample expressions to exercise the random number
generator COM object’s functions through the automation dispatch
interface:

" get the next RNG value "
dispatcher invokeMethod: 'Next'.

" get the current property values "
dispatcher getProperty: 'LowerBound'.
dispatcher getProperty: 'UpperBound'.
5-10 VisualWorks

COM Event Trace Viewer

" change the bounds of the RNG sequence "
dispatcher setProperty: 'LowerBound' value: 10.
dispatcher setProperty: 'UpperBound' value: 20.

The automation editor can be connected to any automation object
that supports the IDispatch interface. It provides the interactive
flexibility, standard within the Smalltalk development environment, so
that you can use COM automation objects to dynamically explore the
results of sending messages to an object in order to observe an
object’s behavior and results.

COM Event Trace Viewer
The COM Event Trace Viewer allows you to obtain debug tracing
information from COM event notifications. The COM Event Trace
Viewer can be hooked up as an event sink on any event-generating
COM object to dynamically observe COM event notifications. A trace
control toggle switch allows you to dynamically enable and disable
event notification tracing.

To open the COM Event Trace Viewer on a particular interface, send:

COMEventTraceViewer openOn: anInterface

COM Automation Type Analyzer
The COM Automation Type Analyzer provides a number of services
for analyzing COM type libraries in order to generate descriptive
reports and Smalltalk bindings for use in automation applications,
such as specification tables used for configuration. This is strictly a
programmatic tool, invoked by evaluating various expressions; this
tool has no user interface.

The services provided by the COM Automation Type Analyzer are
discussed in the section on implementation of COM automation
objects that support the IDispatch interface under Implementing
Automation Objects.

Interface Class Generation Tools
To create or use a COM interface, you need to define interface
wrapper classes that provide your client or COM object with a
Smalltalk binding for the functions defined in the interface. While
COM Connect User’s Guide 5-11

COM Connect Development Tools
COM Connect provides interface wrapper classes for many of the
standard COM interfaces, you might need to create new interface
classes if you want to use a standard COM interface for which a
Smalltalk binding is not already provided.

You must also create interface classes when you define a new
interface for a COM object that you publish. For example, if you
published an object through Automation using the
COMAutomationServer provided with COM Connect to provide
IDispatch support, and you want to augment your object with dual
interface support, you must create interface wrapper classes for the
dual interface that you define, both to expose your object’s
automation properties and methods through Vtable entry points, and
for the benefit of clients that want to exploit the improved efficiency of
a static interface binding.

Smalltalk COM Interface Binding Architecture
The Smalltalk binding of a COM interface has a two-level
architecture. The lowest level of the interface binding is implemented
by a class that handles the direct interaction between the Smalltalk
process and external objects. A COMInterfacePointer binding class
handles external function callout from the Smalltalk process to invoke
an interface function supported by an external COM object. A
COMInterfaceImplemention binding class handles external function
callbacks to the Smalltalk process from external clients that are
invoking a function in an interface supported by a Smalltalk COM
object. The low-level interface bindings are encapsulated by the
COMInterface wrapper classes, which provide Smalltalk clients with
the protocol for invoking COM interface functions, which is natural to
a Smalltalk programmer.

When you write a COM application, you work with COM interfaces
using COMInterface instances, which allows you to write code that is
natural for a Smalltalk programmer and uses the standard Smalltalk
objects that you normally work with as arguments and message
return values. The two-level interface binding architecture insulates
you from the low-level mechanics of external function calls, and
leaves you free to focus on your application logic.
5-12 VisualWorks

Interface Class Generation Tools
Interface Class Responsibilities

COMInterface Framework
A COMInterface subclass is created to provide Smalltalk protocol
corresponding to the functions in the interface. The COMInterface
interface reference class provides a protocol that makes it easy for a
Smalltalk client to invoke the interface functions, such as by
encapsulating the details of obtaining OUT parameter values, so that
the value can simply be returned to the caller. A COMInterface
subclass typically also provides convenience operations that simplify
function invocation for common cases that you expect to encounter.
For example, the IClassFactory interface class
createInstance:controllingUnknown: message invokes the
IClassFactory::CreateInstance function and returns the interface that is
obtained from the COM function through an OUT argument result
value as the return value of the message. This service makes it easy
for a Smalltalk client to create a new COM object using a protocol
that is normal in the Smalltalk environment. The createInstance
message is provided by the IClassFactory interface wrapper class as
convenience protocol for the common case where you want to create
a non-aggregated object and obtain its IUnknown interface.

COMInterfacePointer Framework
To invoke functions in an interface that is supported by a COM object
implemented in another application, from either a local process or a
process running on a remote system through DCOM, or from an
object whose server is packaged as a DLL to run in the client’s
address space, a COMInterfacePointer subclass is needed to provide
the interface binding for making external interface function calls. A
interface pointer binding class defines the primitive COM external
function declarations for each function in the interface and provides
any argument marshalling support needed to convert between
Smalltalk values and the host data type representations needed by
the external function. For example, an interface pointer binding for a
function that takes a string argument and obtains an interface back
from the called function through an OUT argument maps the
Smalltalk string argument into a string pointer in external memory
and maps a “raw” interface pointer address result value from the OUT
argument into a suitable Smalltalk interface object.

COMInterfaceImplementation Framework
To support an interface on a COM object implemented in Smalltalk, a
COMInterfaceImplementation subclass is needed to provide the
interface binding for allowing external clients to invoke the interface
COM Connect User’s Guide 5-13

COM Connect Development Tools
functions. An interface implementation binding class provides
external function callback methods that are used by the VisualWorks
COM binding mechanisms provided by the Object Engine to map
external function invocations to the implementing interface binding in
the image. The interface implementation binding’s external function
callback methods provide any argument marshalling support needed
to convert between the host data type representations used by the
external function and corresponding Smalltalk values.

In addition to the primary responsibility of supporting function
invocation from external clients, an interface implementation binding
usually provides a full set of function methods to allow internal
Smalltalk clients to invoke the interface methods directly, without
going through an external callout and callback into the same image,
with the associated overhead of marshalling and unmarshalling
Smalltalk values through the external data representations.

Directly connecting a Smalltalk client of the interface to the interface
implementation binding installed in the interface reference is a
performance optimization that can be exploited at the discretion of
the application developer. It is also useful for testing object
implementations, enabling test drivers to be written to exercise the
functions supported by a COM object without the additional factor of
external argument marshalling interposed in the test case.

Creating the Interface Type Definitions
To create the interface wrapper classes for a COM interface, you
must first ensure that any data types referenced in the interface
functions are defined. The external data types are defined using the
usual facilities of VisualWorks DLL & C Connect. Most of the
standard COM data types you are likely to use are already declared
in the Win32ExternalInterface and COMExternalInterface classes, which
define the external type definition name space for API and COM
interface function declarations. If your interface requires any data
types that are not already defined, you must import the declarations
by creating DLLCC type definitions in COMExternalInterface. You can
do this manually, by creating the <C:…> declaration in a method in a
browser, or using the tools provided with DLLCC.

To define a Smalltalk binding for an interface, you must first create a
type definition for the interface type in COMExternalInterface. By
convention, the Smalltalk interface type definitions always map to a
generic declaration of an interface pointer named __IAnonymous.
While this is not strictly correct from the point of the C type
5-14 VisualWorks

Interface Class Generation Tools
declarations, where the actual interface type declaration is a structure
containing a pointer to a structure defining the VTable function layout
of the interface, it is sufficient for the purposes of the Smalltalk
binding.

For example, the standard COM IClassFactory interface is declared
in COMExternalInterface, as follows:

IClassFactory
"Define the interface data type. Using __IAnonymous instead of
__IClassFactory is a space optimization that avoids defining
extraneous data types that are not needed by the COM Connect

 runtime."
"<C: typedef struct __IClassFactory IClassFactory>"
<C: typedef struct __IAnonymous IClassFactory>

You must also provide a declaration of the interface VTable, a
structure containing the function pointers of the interface, by creating
a VTable type declaration in the COMInterfaceVTableSignatures class.
The name of the VTable definition type is by convention the name of
the interface, prefixed by a double-underscore and with 'Vtbl' as the
suffix. For example, the definition of the IClassFactory interface VTable
is declared in COMInterfaceVTableSignatures, as follows:

__IClassFactoryVtbl
"
<C: struct __IClassFactory {

struct __IClassFactoryVtbl * lpVtbl;
}>

<C: typedef struct __IClassFactory IClassFactory>
"
<C: struct __IClassFactoryVtbl {

HRESULT (__stdcall * QueryInterface)(IClassFactory * This,
const IID * const riid, void * * ppvObject);

ULONG (__stdcall * AddRef)(IClassFactory * This);
ULONG (__stdcall * Release)(IClassFactory * This);
HRESULT (__stdcall * CreateInstance)(IClassFactory * This,

IUnknown * pUnkOuter, const IID * const riid, void * *
ppvObject);

HRESULT (__stdcall * LockServer)(IClassFactory * This,
BOOL fLock);

}>
Note that the interface function declarations in the VTable structure
must conform to the C calling convention, in which the object that
supports the interface is explicitly declared as the first parameter of
the function and by convention is named 'This'. The VTable function
declaration is the only place where this explicit recognition of the
COM Connect User’s Guide 5-15

COM Connect Development Tools
receiver is exposed. The <COM:…> function declaration in a
COMInterfacePointer class follows the C++ notation, in which the
receiver is an implicit argument of the function.The VTable type
declarations in the COMInterfaceVTableSignatures class are part of
the development support environment of COM Connect. This class
and the associated VTable type declarations are not required by the
COM runtime binding mechanisms and do not need to be included in
a deployed image.

Creating COM Interface Wrapper Classes
After you have defined the interface type and the VTable layout, you
can use the interface class generation tools provided with COM
Connect to create a rough draft of the interface wrapper classes
needed to provide the Smalltalk binding of a COM interface. It is
important to understand that the interface class generation tools are
creating a prototype of the interface wrapper class for you. Because
the tools currently work only from the interface data type declarations,
they do not have sufficient semantic information available to
guarantee that a correct interface class can be generated
automatically. Consequently, you must recognize that the tool is
generating only a rough draft, which you need to review and
complete. It is usually a pretty good cut and solves ninety percent of
the problem, but you do need to do the final polishing by hand.

In most cases, the interface generation tool indeed generates the
correct code for the interface wrapper class, or provides hints about
how the needed code is likely to look. The tools handle the majority of
the straightforward cases and correctly generate most of the standard
“boilerplate” program text for you; so primarily, your concern is
reviewing the result for semantic correctness and providing the
contextual and semantic input to resolve difficult cases.

Watch for certain cases where the tool has difficulty. In general, be
sure to check OUT parameters that are GUID values or structures.
Because a GUID argument is passed as a pointer, the tool cannot
always distinguish between the usual case of an IN parameter and
the relatively infrequent cases where the GUID value is actually an
OUT value that is set by the callee. The default assumption is to treat
GUID values as IN arguments, so you must correct the generated
code if the value is semantically an OUT parameter. The generated
code for structure arguments has similar difficulties. Because
structures are usually passed as pointer values, the interface
5-16 VisualWorks

Interface Class Generation Tools
generation tools cannot distinguish correctly between IN values (the
usual case) and OUT values. Some cases also exist where string
arguments are not handled correctly, so watch out for these.

Another typical case that the tool cannot handle in isolation is the
case where the function takes an IID argument that identifies an
interface and returns an interface pointer of the specified interface as
an OUT argument value. The generated code notes this and provide
hints about what to do, but you must provide the correct expression
for obtaining the OUT value in the wrapper method. Usually, this
entails filling in the suggested expression with the name of the input
argument that specifies the IID. To generate the prototype
COMInterfacePointer binding for an interface to support external callout
function invocation of its functions, evaluate an expression of the
form:

COMInterfacePointerClassGenerator
generateInterfacePrototypeFor: #IFoo

where #IFoo is the name of the interface whose VTable structure is
defined by the declaration of #__IFooVtbl.

To generate the prototype COMInterfaceImplementation binding for an
interface that is supported by a Smalltalk COM object, to support
external function callback invocation of its functions, evaluate an
expression of the form:

COMInterfaceImplementationClassGenerator
generateInterfacePrototypeFor: #IFoo

where #IFoo is the name of the interface whose VTable structure is
defined by the declaration of #__IFooVtbl.

To generate the prototype COMInterface wrapper class for an interface
to provide a usable interface for clients in your Smalltalk application,
evaluate an expression of the form:

COMInterfaceClassGenerator generateInterfacePrototypeFor: #IFoo
where #IFoo is the name of the interface whose VTable structure is
defined by the declaration of #__IFooVtbl.

While there is generally less review and correction of argument
handling required for a COMInterface class than for the low-level
binding classes, you should spend time customizing the interface
protocol supported by the interface class to conform to the usual
conventions of Smalltalk message naming. Usually, you should
provide suitable keywords for the argument values in the message
selector, following the usual Smalltalk programming style. Also, to
COM Connect User’s Guide 5-17

COM Connect Development Tools
determine whether to support any additional protocol that provides
convenience services to Smalltalk clients for common patterns of
function invocation, review the semantic specifications of the interface
and the intended use of the services that it provides.
5-18 VisualWorks

6

Using Automation Objects

The COMDispatchDriver class is used to create Automation objects,
access existing Automation objects, and access methods and
properties of a particular Automation object through it’s dispatch
interface (the IDispatch interface).

Creating an Automation Object
Automation servers always provide at least one type of object.
Complex applications might support a number of objects. For
example, a word processing application might provide an application
object, a document object, and a toolbar object.

To create an Automation object, assign the object returned by the
COMDispatchDriver createObject: class method to a variable, as
follows:

aDispatchDriver := COMDispatchDriver createObject: 'ProgID'.
The createObject: method creates an Automation object, based on the
specified ProgID. The ProgID has the form:

AppName.ObjectName[.VersionNumber]
The AppName is the name of the application, and the ObjectName
identifies the type of object to create. Here is an example for creating
an Excel spreadsheet using a version-independent ProgID:

aDispatchDriver := COMDispatchDriver createObject:
 'Excel.Application'.

The COMDispatchDriver createObject: class message can also create
a new dispatch driver from a ProgID or a CLSID. For example:
COM Connect User’s Guide 6-1

Using Automation Objects
From a ProgID:

aDispatchDriver := COMDispatchDriver createObject:
'Excel.Application.5'.

From a CLSID:

aCLSID := '{00020841-0000-0000-C000-000000000046}' asGUID.
aDispatchDriver := COMDispatchDriver createObject: aCLSID.

The COMDispatchDriver message release should always be called
when you are done with an object:

aDispatchDriver release.
Some applications require that you call a Quit or Close method in order
release all resources on the server and have the server itself quit.
The release message just releases the interface, as far as the client
is concerned. The server object might not be coded to quit and
release itself from memory, when no clients are referencing it.

Working with version-independent ProgIDs and CLSIDs is described
in more detail in Implementing Automation Objects.

The following table shows some of the Microsoft Office application
object types and class names:

Unlike Microsoft Excel 7, Microsoft Word 7 is an application with a
monolithic or unitary object model. Word does not have an object
hierarchy. All methods are accessed through the top-level object
called Word.Basic. Starting with Word97, Word’s object model will be
broken up into a hierarchy.

Application Object Type Class Name

Excel, version 5.0 Application

Worksheet

Chart

Excel.Application

Excel.Worksheet

Excel.Chart

Project, version 4.0 Application

Project

MSProject.Application

MSProject.Project

Word, version 4.0 WordBasic Word.Basic

Word 97 Application Word.Application
6-2 VisualWorks

Obtaining an Active Application Object
Creating Visible and Invisible Objects
Generally, automation application objects can start themselves as
visible or invisible. For example when you start a Microsoft Word 7
Word.Basic object, the application does not display itself. Most
application objects have a Visible property that you can set to true or
false to make the application show or hide itself on the display
screen.

Obtaining an Active Application Object
The onActiveObject: method returns the currently active object of the
specified ProgID. For example:

aDispatchDriver := COMDispatchDriver
onActiveObject: 'Spreadsheet.Application'.

If there is no active object of the class Spreadsheet.Application, an
error occurs.

Activating an Automation Object From a File
Many Automation applications let the user save objects in files. For
example, a spreadsheet application that supports Worksheet objects
lets the user save the worksheet in a file. The same application might
also support a Chart object that the user can save in a file.

To activate an object from a file, use one of the following
COMDispatchDriver methods:

• pathName: aFileName

• onActiveObject: aProgID

• pathName: aFileName progID: aProgID

The aFileName argument is a String containing the full pathname of
the file to be activated. For example, an application named
Spreadsheet.exe creates an object that was saved in a file named
Revenue.spd. The following invokes Spreadsheet.exe, loads the
Revenue.spd file, and assigns Revenue.spd to a variable:

aDispatchDriver := COMDispatchDriver pathName:
'C:\My Documents\Revenue.spd'.

In addition to activating an entire file, some applications let you
activate a specific item within a file. To activate part of a file, add an
exclamation point (!) or a backslash (\) to the end of the file name,
COM Connect User’s Guide 6-3

Using Automation Objects
followed by a string that identifies the part of the file you want to
activate. For information on how to create this string, refer to the
object's documentation.

For example, if Spreadsheet.exe is a spreadsheet application that
uses R1C1 syntax, the following code could be used to activate a
range of cells within Revenue.spd:

aDispatchDriver := COMDispatchDriver
pathName: 'C:\My Documents\Revenue.spd!R1C1:R10C20'.

These examples invoke an application and activate an object. In
these examples, the application name (Spreadsheet.exe) is never
specified. When one of these method is used to activate an object,
the registry determines the application to invoke and the object to
activate based on the file name or ProgID that is provided. If a ProgID
is not provided, Automation activates the default object of the
specified file.

Some ActiveX components, however, support more than one class of
object. Suppose the spreadsheet file, Revenue.spd, supports three
different classes of objects: an Application object, a Worksheet
object, and a Toolbar object, all of which are part of the same file. To
specify which object to activate, an argument must be supplied for the
optional ProgID parameter. For example:

aDispatchDriver := COMDispatchDriver
pathName: 'C:\My Documents\Revenue.spd'
progId: 'Spreadsheet.Toolbar'.

This statement activates the Spreadsheet.Toolbar object in the file
Revenue.spd.

Setting a Property
The COMDispatchDriver setProperty:value: message is used to set
property values. For example:

aDispatchDriver setProperty: 'Name' value: 'Gary'.
The example above sets a property called 'Name' to a String 'Gary'.

aDispatchDriver setProperty: 'Regions' value: #('North' 'South'
 'East' 'West').

The example above sets a property named 'Regions' to the values
'North', 'South', 'East' and 'West' defined in the array.
6-4 VisualWorks

Getting a Property
The property name is a String and the argument is any Smalltalk
object that can be mapped to an Automation data type.

Getting a Property
The COMDispatchDriver getProperty: message is used to get property
values. For example:

aName := aDispatchDriver getProperty: 'Name'
This example gets a property named 'Name'.

The property name is a String and the answer is a Smalltalk object
whose class is mapped from an Automation data type.

Calling a Method
The COMDispatchDriver message invokeMethod: is used to invoke an
object’s methods. For example:

aDispatchDriver invokeMethod: 'Calculate'.
The method name is a String. The method can answer a Smalltalk
object whose class is mapped from an Automation data type.

Calling a Method With Arguments
The COMDispatchDriver invokeMethod:with: or
invokeMethod:withArguments: message is used to invoke an object’s
methods with argument values. All positional arguments must be
specified and can be any Smalltalk object that can be mapped to an
Automation data type. For example:

aDispatchDriver
invokeMethod: 'Insert' with: ' some text'.

The example above invokes a fictitious method 'Insert' with one
String argument.

arguments := Array with: 'Gary' with: 'Los Angeles' with: 31.
aDispatchDriver

invokeMethod: 'SubmitData' withArguments: arguments.
The example above invokes a fictitious method, SubmitData, with two
String arguments and one Integer argument.
COM Connect User’s Guide 6-5

Using Automation Objects
The method name is a String and the argument can be any Smalltalk
object that can be mapped to an Automation data type. If only one
argument is passed, use the invokeMethod:with: method. Use
invokeMethod:withArguments: for any number of arguments.

Calling a Method With Named Arguments
The COMDispatchDriver invokeMethod:withNamedArguments: message is
used to invoke an object’s methods with named arguments. Using
named arguments lets you submit a subset of all possible
parameters. Named arguments are passed to a method using a
standard Smalltalk Dictionary where the keys are the parameter
names are the values the parameter values. For example:

"Build the Dictionary."
namedArgs := Dictionary new

at: 'Name' put: 'Gary';
at: 'OrderDate' put: Date today;
at: 'WidgetId' put: 'W1234';
at: 'Quantity' put: 3;
yourself.

aDispatchDriver

invokeMethod: 'SubmitOrder'
withNamedArguments: namedArgs.

The method invoked might have many more arguments and can
supply default values for the missing arguments.

In Microsoft Excel 7, the OpenText method normally takes the
following arguments: filename, origin, startRow, dataType,
textQualifier, consecutiveDelimiter, tab, semicolon, comma, space,
other, otherChar, fieldInfo. Using named arguments you can just
provide a filename and nothing else. Using named arguments saves
from having to provide default values for all parameters.

Calling a Method With Arguments by Reference
The COMDispatchDriver messages invokeMethod:with:,
invokeMethod:withArguments: or invokeMethod:withNamedArguments: can
be used to invoke an object’s method and pass one or more
arguments by reference. When you want to pass a parameter by
reference, an intermediary object must be created with the message
asValueReference. The new value can be read after the method call by
the message value to the reference. For example:
6-6 VisualWorks

Subscribing for events
"Create the reference"
resultReference := COMVariantValueReference new.

"Build the argument array"
args := Array with: 'This argument is By Value'

with: resultReference.

"Invoke the method"
aDispatchDriver invokeMethod: 'MyMethod'

withArguments: args.

"Retrieve the reference argument"
myNumber := resultReference value.

The method name is a String and the argument can be any Smalltalk
object that can be mapped to an Automation data type.

Subscribing for events
COMDispatchDriver instances can inform interested parties about
occurring Automation events using the common TriggerEvent
mechanism. This means it is possible to evaluate a block or send a
message to a previously specified object on occurrence of such an
event.

Registering for an event is done using one of the following methods:

• when:send:to:

• when:do:

• when:do:for:

Unsubscription is achieved using on of the following methods:

• unsubscribe:

• unsubscribe:from:

Simple Calling Syntax
Although it is possible to access all kind of functionality of an
Automation object in the previously described way there is also a
more simple way of calling a method or setting a property.
COM Connect User’s Guide 6-7

Using Automation Objects
If you would be calling a Smalltalk method you would not want to do
that by sending an invokeMethod: message passing the actual method
name as a symbol or the arguments in an array you have to create
before.

Therefore COMDispatchDriver provides the functionality which allows
calling Automation methods as if they were Smalltalk methods.

Calling Automation Methods
Calling a parameterless method is accomplished by simply sending
the name of the method to the COMDispatchDriver instance:

aCOMDispatchDriver MyAutomationMethod
Unlike Smalltalk methods, Automation methods may start with an
uppercase letter.

Sending a one-argument message is achieved by adding a colon to
the message name.

aCOMDispatchDriver MyAutomationMethod: anArgument
For any subsequent parameters additional keywords can to be
added:

aComDispatchDriver MyAutomationMethod: firstArgument
withName: aString

The keyword itself does not matter and is only used to pass an
additional parameter. So you may chose a keyword describing the
parameter or use a generic keyword like with:.

Accessing properties
The same scheme can also be applied when accessing properties.
The difference is that, depending on whether the property value
should be retrieved or set, the prefix get or set has to be added to the
selector.

Retrieving the value of some Name property can be done in the
following way:

aCOMDispatchDriver getName
Setting the value of the Name property to a new value can be done
like this:

aCOMDispatchDriver setName: aString
6-8 VisualWorks

Data Types
Any further rules already mentioned for methods can also be applied
here. For example, accessing a collection item might be
accomplished by:

aCollectionDispatchDriver getItem: anIndex
Accessing an element of a two-dimensional array could be achieved
in the following way:

aCollectionDispatchDriver getItem: x with: y

Considerations
When accepting a Smalltalk method with such sends, the compiler
will very probably complain about sending non-existent method. This
can be ignored. As long as the object exists in the Automation object
it will work.

When sending messages with multiple parameters, all keywords after
the first do not really matter–any valid Smalltalk keyword may be
used. For the sake of being able to find message senders again,
using a consistent naming scheme.

Data Types
Automation data types and Smalltalk classes are mapped as follows:

Map of Automation data types and Smalltalk classes

Automation Data Type Smalltalk Class

VT_I4 Integer

VT_UI1 Integer

VT_I2 Integer

VT_R4 Float

VT_R8 Double

VT_BOOL Boolean

VT_ERROR Integer

VT_CY FixedPoint with a scale of 4

VT_DATE Timestamp

VT_BSTR String

VT_UNKNOWN IUnknown
COM Connect User’s Guide 6-9

Using Automation Objects
When you get a property or a return value from a method invocation,
the Smalltalk object you get back has been translated from an
Automation data type. When you pass a Smalltalk object to an
Automation object, use an object whose class matches its
Automation counterpart. An Automation server can coerce objects
(from the type you supply to the type the server needs) for you, but it
is not obligated to do so.

Functions vs. Procedures
Some Automation methods are defined not to return any data at all
by using the VT_VOID return type. From a programming languages
point of view, this is the distinction between a function (which always
has a return value) and a procedure (which never has a return value).
Unless you are using the Variant specification policy, these
procedures (the VT_VOID methods) must be invoked with the
invokeProcedure: methods. Invoking an Automation procedure with an
invokeMethod: call raises an error.

For example, most Word 7 methods are defined as procedures:

aDispatchDriver := COMDispatchDriver createObject: 'Word.Basic'.
[
aDispatchDriver

invokeProcedure: 'FileNewDefault';
invokeProcedure: 'InsertDateField';
invokeProcedure: 'InsertTimeField';
invokeProcedure: 'AppClose'.

] ensure: [aDispatchDriver release].
All comments that apply to the invokeMethod: method also apply to the
invokeProcedure: methods. Note that Word 7 is the only application
observed that uses procedures.

VT_DISPATCH COMDispatchDriver or IDispatch

VT_ARRAY (Combined with another
type)

Array (of Smalltalk objects)

Automation Data Type Smalltalk Class
6-10 VisualWorks

Object Destruction
Object Destruction
The controller must provide a way for the user to say. “This object is
no longer needed,” which internally calls the object’s release function
followed by COMSessionManager freeUnusedLibraries, if wanted.

COMDispatchDriver are automatically released by finalization when no
longer in use. While there is not general requirement as to when the
release method is called explicitely, some applications require that
you call a Quit or Close method in order to release all resources on the
server and have the server itself quit. The release message only
releases the interface as far as the client is concerned. The server
object might not be coded to quit and release itself from memory
when there are no clients referencing it.

The freeUnusedLibraries message unloads any DLLs that were loaded
as a result of COM object creation calls, but which are no longer in
use, and that, when loaded, were specified to be freed automatically.
Client applications can call this function periodically to free up
resources:

COMSessionManager freeUnusedLibraries.
It is most efficient to call freeUnusedLibraries either at the top of a
message loop or in some idle-time task. DLLs that are to be freed
automatically have been loaded with the bAutoFree parameter of the
CoLoadLibrary function set to TRUE. The method freeUnusedLibraries
internally calls DllCanUnloadNow for DLLs that implement and export
that function.

Instances of COM interface pointers must always be released. For
more information COM Connect Basics.

What to Do With an IDispatch
Some operations answer an IDispatch interface. What are you
supposed to do with that interface? This section also applies to dual
interfaces that are interfaces subclassed from COMDualInterface.
Where this document refers to IDispatch, it is also referring to any
dual interface subclasses.

The IDispatch interface pointer is represented by an instance of
IDispatch. You typically acquire an IDispatch interface pointer in one
of the following ways:
COM Connect User’s Guide 6-11

Using Automation Objects
1 By specifying IID_IDispatch as the initial interface, when creating a
new object using the IClassFactory createInstance:[…] class
method. The IID can be that of a dual interface, as well.

2 As the result of a queryInterface: call.

3 As a return value from an Automation object’s method or property
invocation.

This happens all the time in Excel, for example. Actually, Excel 7.0
has 39 different dispatch interfaces. In Excel, those interfaces act as
functionality groups, where a lot of dispinterfaces have similar entries.
All Excel dispinterfaces have an ‘Application’ and a ‘Parent’ function.
The ‘Application’ function answers a dispinterface pointer. Some
dispinterfaces only give you access to an object’s properties, while
others can have any number of functions.

The default behavior is to automatically wrap IDispatch answers with
a COMDispatchDriver (through the default lookup policy). When your
starting point is an IDispatch, the simplest is to use the on: message:

aDispatchDriver := COMDispatchDriver on: anIDispatch.
This creates a COMDispatchDriver with the default specification policy.
You can also create a COMDispatchDriver with a specific specification
policy:

aDispatchDriver := COMDispatchDriver
on: anIDispatch
specificationPolicy: COMSpecificationPolicy newTypeCompilerPolicy.

The on:specificationTable: method creates a COMDispatchDriver with a
‘complete’ specification policy specified by the argument. No lookups
are performed if a name is not found, and an error is raised. This
method is explained in the section on specification policies.

Get the Methods and Properties of an Object
If the object you are using does not come with its own
documentation, you can use the COMAutomationTypeAnalyzer class to
help identify the method and properties an Automation object has, as
well as what arguments each methods expects. These tools can work
on a live object or a type library. Examples of using this tool can be
found in the class comment of some of the sample classes:
AutomationAllDataTypes, AutomationSmalltalkCommander,
ExcelApplicationController, Word95BasicController.
6-12 VisualWorks

Using Type Libraries
The Automation Browser tool (Tools > Com > Automation Browser) also
allows you to explore type libraries.

Microsoft also provides the OLE/COM Object Viewer tool that lets
you browse COM objects and type libraries.

Using Type Libraries
Methods in the COMAutomationTypeAnalyzer class and methods that
you write when publishing a COM object work with instances of a
COMTypeLibrary. This section describes how to create and use a
COMTypeLibrary.

A COMTypeLibrary instance can be used to work in the Windows
Registration Database to:

• Register a type library.

• Update the registration for a type library.

• Unregister a type library.

A COMTypeLibrary is also used to get type information interfaces:

• Get an ITypeLib interface from a type library.

• Get an ITypeInfo interface from a type library.

• Get an ITypeInfo interface for a specific GUID from a type library.

Creating an Instance of a COMTypeLibrary
You create an instance of a COMTypeLibrary with one of the class
messages or by creating and configuring a new instance of the class.
The class methods are:

libraryID: aLibID

Answer a new instance of the receiver representing the library
identified by the aLibID GUID.

new

Answer a new initialized instance of the receiver.

pathName: aPathName

Answer a new instance of the receiver representing the type
library in the file named aPathName.
COM Connect User’s Guide 6-13

Using Automation Objects
For example, the following expression creates a COMTypeLibrary and
passes it to the COMAutomationTypeAnalyzer to generate a literal
specification. Note that you must release the type library.

| anITypeLib |
anITypeLib := COMTypeLibrary pathName:
 'c:\vw30\com\examples\comauto\stcom\typelibrary\vwstcom.tlb'.
[COMAutomationTypeAnalyzer
 generateTypeLibrarySpecificationsFromUser: anITypeLib]
 ensure: [anITypeLib release].

Configuring a COMTypeLibrary for a Server Application
More complex examples are found in the AutomationAllDataTypes,
AllDataTypesCOMObject, AutomationSmalltalkCommander, and
SmalltalkCommanderCOMObject example COM server classes. The
AutomationSmalltalkCommander class defines the newTypeLibraryEnglish
class method, as follows:

newTypeLibraryEnglish
"Answer a type library for the English language for the application."

^COMTypeLibrary new

libraryID: self typeLibraryID;
lcid: COMTypeLibrary lcidEnglish;
directoryName: COMSessionManager absoluteCOMDirectoryName,

'Examples\COMAuto\StCom\TypeLibrary';
fileName: 'VwStCom.tlb';
majorVersion: 1
minorVersion: 0

This complete specification for a COMTypeLibrary permits the
COMTypeLibrary updateRegistration method to perform the following,
when the example server image is started as an Automation server:

• If the type library has never been registered on the system, the
library is registered, which requires the full pathname of the
library file. The directoryName: and fileName: methods are used,
respectively, to set the absolute directory and the filename.

• If the type library is present on the system, the registry database
is updated with dispatch interface information from the type
library.

The other messages of interest are:
6-14 VisualWorks

Automation Object Constants
createRegistration

Makes sure that a library is properly registered. Load the type
library from its file name and register the dispatch interfaces. This
is normally done once when the application is installed.

removeRegistration

Removes type library information from the system registry. Use
this message to allow applications to properly uninstall
themselves. This service is not supported on the GA version of
Windows 95.

The example servers call updateRegistration every time the server is
started. While this can incur more overhead, it ensures that the type
libraries are present and that the Registration Database contains the
proper interface information. If the type libraries are not present, an
error is raised. An alternative is to register the type libraries only on
installation with createRegistration, or by adding entries yourself to the
.reg for your server.

Automation Object Constants
If you are familiar with writing VBA code in Excel, you are familiar with
the various constants prefixed with xl. It is far more easier to use
these constants than hard-coded numbers. The
COMAutomationTypeAnalyzer class lets you create a Pool Dictionary for
each constant enumeration defined in a type library.

The ExcelApplicationController class used the following expression to
generate a pool dictionary for the Excel constants:

"Utilities For Pool Dictionaries
====================="
"Create a text window describing the constants."
COMAutomationTypeAnalyzer describeConstants: self typeLibrary.

"Answer a dictionary of pool dictionaries."
COMAutomationTypeAnalyzer makePoolDictionaries: self

typeLibrary.

"Show me the pool dictionaries you want to add before you do it."
COMAutomationTypeAnalyzer promptAndDefinePoolDictionaries:

self typeLibrary.

"Or, add the pool dictionaries to Smalltalk automatically."
COM Connect User’s Guide 6-15

Using Automation Objects
COMAutomationTypeAnalyzer definePoolDictionaries: self
typeLibrary promptUser: true.

"Inspect the results."
Smalltalk at: #ExcelConstants.

These expressions are contained in the class comment. Here is a
brief reference of the methods used:

definePoolDictionaries: aCOMTypeLibrary promptUser: promptUser

Add to the image a PoolDictionary for each enumeration constants
defined in the aCOMTypeLibrary type library. Each dictionary
name is the concatenation of the library name and an
enumeration name. If promptUser is true, and an entry already
exists in the Smalltalk dictionary for a given pool dictionary name,
ask the user if they want to overwrite the entry. If promptUser is
false, the pool dictionary is always added to Smalltalk.

describeConstants: aCOMTypeLibrary

Describe in a text window all the enumeration constants defined
in the aCOMTypeLibrary type library.

makePoolDictionaries: aCOMTypeLibrary

Make a PoolDictionary for each enumeration constants defined in
the aCOMTypeLibrary type library. Answer a dictionary where
each key is the concatenation of the library name and an
enumeration name and each value is a PoolDictionary.

promptAndDefinePoolDictionaries: aCOMTypeLibrary

Show the user a multiple selection list box for all of the pool
dictionary name that can be made from the aCOMTypeLibrary
library. The user chooses which Pool Dictionaries to generate.
Add to the image a PoolDictionary for each enumeration constants
chosen. Each pool dictionary name is the concatenation of the
library name and an enumeration name. If an entry already exists
in the Smalltalk dictionary for a given pool dictionary name, ask
the user if they want to overwrite the entry.
6-16 VisualWorks

Accessing Objects with IClassFactory
Accessing Objects with IClassFactory
The Smalltalk class IClassFactory is used to a create single
uninitialized object of the class associated with a specified CLSID.
Call a createInstance method when you want to create only one
object on the local system. To create a single object on a remote
system, call a method with a serverName: argument.

To create multiple objects based on a single CLSID, refer to the
getClassObject method. The IClassFactory services are used by the
COMDispatchDriver class to create Automation objects. When you
need to create objects for the purpose of Automation, you do not
need to use the IClassFactory class directly. The class
COMDispatchDriver provides class messages that wrap IClassFactory
services for you. Here is an example of using IClassFactory.This
example uses the IID_IDispatch constant from the COMConstants pool.
If this pool is not in your evaluation context, add it or replace
IID_IDispatch with (COMConstants at: #IID_IDispatch).

" Get an IDispatch from MS Excel. The argument CLSCTX_SERVER or
CLSCTX_LOCAL_SERVER must be used with MS Excel."

anIDispatch := IClassFactory

createInstance: 'Excel.Application'
iid: IID_IDispatch
controllingUnknown: nil
context: CLSCTX_SERVER.

"… do some work …"

anIDispatch release.

The first argument is the CLSID of the object to create. It is
recommended that you use the COM Server’s Application object or
whatever object is at the root of the application’s Automation object
hierarchy.

The second argument is the interface ID, or IID, of the interface to
request for the created object. In the case of Automation controllers,
the object’s dispatch interface is always requested, defined by the
constant IID_IDispatch.

The third argument is the controlling unknown, if any. The controlling
unknown is part of a reuse technique known as aggregation and is
only of interest when implementing a new object.
COM Connect User’s Guide 6-17

Using Automation Objects
The fourth argument is the context in which to create the object. This
argument is explained later in this section.

Inside the Dispatch Driver
A COMDispatchDriver’s behavior is governed by three attributes: an
IDispatch interface, a specification table and a specification policy.
For a dispatch driver to properly construct the arguments to the
IDispatch::Invoke function, it must know about the method or property it
is calling. These three attributes are defined as follows:

• The IDispatch interface makes the function calls to the
Automation object.

• The Specification Table defines one Member Specification for
each method and property that can be used on the Automation
object. In general, each Member Specification contains a name,
a dispatch ID, type information for a return value and the names
and data types of any parameters.

• The Specification Policy defines the algorithm for dynamically
defining Member Specifications for methods and properties not
found in the Specification Table. The algorithms defined in the
policy classes reflect certain speed and space tradeoffs as well
as ease of use for the programmer. A Specification Policy
contains a Specification Lookup Policy that defines where to look
for and how to create Member Specifications.

There are two styles for creating a COMDispatchDriver:

• By specifying a Specification Table

• By specifying a Specification Policy

A Specification Table can be defined at design time and reused at
runtime with an IDispatch to create a COMDispatchDriver. With a
Specification Table, when a method or property is used that is not
defined in the Specification Table, an error occurs. If a Specification
Table is not used to create a COMDispatchDriver, unknown
properties and methods need to have a Member Specification
created for the IDispatch::Invoke call by a Specification Lookup Policy.

There are various ways Member Specifications can be created at
run-time by a Specification Lookup Policy:

• From a type library
6-18 VisualWorks

What Specification Policy to Use
• From a type compiler

Another way is not to look anywhere and just use the generic Variant
Automation data type familiar to Visual Basic programmers. The
generic Variant method is used by the default Specification Policy, it
always works since it does not rely on a type library or type compiler
being around. The following figure shows the internal layout of a
Dispatch Driver.

The internal layout of a Dispatch Driver

What Specification Policy to Use
The first question to answer is: can I rely on the controlled
Automation object’s type information to be present at runtime?
Microsoft strongly recommends that all applications ship with a type
library, and again, MS Word 7 from Office 95 does not. A type library
can be a stand-alone file or be included as a resource in a DLL or
COM Connect User’s Guide 6-19

Using Automation Objects
EXE file. The documentation for the Automation object you want to
use should tell you if a type library is shipped. The typed specification
policies (type compiler and type library, described below) require that
a type library be present. The untyped specification policies (variant
and complete, described below) do not require that a type library be
present.

Performance Tradeoffs
The tradeoff in dealing with specification policies and specification
tables is as follows: Populating a specification table at run-time by
querying the dispatch interface’s type information can be slow if you
use many of the dispatch interface’s methods and properties. For
example, Microsoft Word 7 has a monolithic object model
(Word.Basic), with hundreds of methods exposed in one object, but
this is an extreme case. The upside to the load on demand approach
is that a controller does not use memory needed to store a literal
array defining a specification table. On the other hand, using literal
arrays to create specification tables at run-time is very fast. The
downside is that the literal arrays take up space in memory; in the
case of Word, a lot of it.

If you really need to use a large specification table, a remedy is to
generate and use the entire literal array at development time and
then manually prune the array of all unused methods and properties
for run time use. Another approach would be to load on demand the
methods and properties individually. For the latter, you are using a
different specification policy (type library or type compiler).

Currently there are two policies that use the type library:
TypeLibraryPolicy and LazyInializationPolicy. The first loads each
individual function specification on demand while the latter loads all
of them when it is first accessed. This approach is required to benefit
from the Automation Inspector extensions.

Using the Default Specification Policy
The default specification policy is used automatically when a new
COMDispatchDriver is created. The default is set LazyInitializationPolicy
on installation. For example:

aDispatchDriver := COMDispatchDriver
createObject: 'Excel.Application'.

or:

aDispatchDriver := COMDispatchDriver on: anIDispatch.
6-20 VisualWorks

What Specification Policy to Use
or:

aDispatchDriver := anIDispatch asDispatchDriver.
The default policy is set to the lazy initialization policy by the system
but can be queried and reset by the programmer with the
COMSpecificationPolicy classes defaultPolicy and defaultPolicy:
messages. For example, you can query for the default specification
policy with the expression:

COMSpecificationPolicy defaultPolicy
You can set the default Specification Policy with the expression:

COMSpecificationPolicy defaultPolicy: <aSymbol>
where aSymbol is one of the following:

• #newTypeCompilerPolicy

• #newTypeLibraryPolicy

• #newLazyInitializationPolicy

• #newVariantPolicy

Setting a Specification Policy
The COMDispatchDriver class on:specificationPolicy: message creates
a new dispatch driver from an IDispatch and a specification policy.
The dispatch driver uses the specification policy instance (Type
Compiler, Type Library, or Variant) to dynamically create
specifications for methods and properties the dispatch driver’s
specification table does not know about. For example:

aDispatchDriver := COMDispatchDriver
on: anIDispatch
specificationPolicy: COMSpecificationPolicy newTypeCompilerPolicy.

One of the following COMSpecificationPolicy class messages can be
used when passing a specification policy to the on:specificationPolicy:
method:

• #newTypeCompilerPolicy

• #newTypeLibraryPolicy

• #newLazyInitializationPolicy

• #newVariantPolicy
COM Connect User’s Guide 6-21

Using Automation Objects
The Type Compiler Policy
This algorithm looks for properties and methods through a dispatch
driver’s ITypeComp interface, the type compiler interface (obtained
from the dispatch driver’s ITypeInfo interface). This policy creates
complete and typed specifications and caches member specifications
in the specification table by default.

This interface is not always supported but is efficient since the lookup
is a direct one step process. If the application you are using is not
associated with a type library through the Win32 Registry Database,
this policy cannot be used.

The Type Library Policy
This algorithm looks for properties and methods in a dispatch driver’s
type library through its ITypeInfo interface. This policy creates
complete and typed specifications and caches them by default. This
policy is useful if the Type Compiler policy cannot be employed.

Memory is required to keep track of the name to index maps. If the
application you are using is not associated with a type library through
the Win32 Registry Database, this policy cannot be used.

The Variant Policy
This algorithm looks for properties and methods through a dispatch
driver’s IDispatch::GetIDsOfNames mechanism. This policy creates
untyped specifications using VT_VARIANT as the generic data type.
During method invocation it is possible that VT_VARIANT be rejected
as the return type, in which case VT_VOID is used.

In Automation, a method is defined to have a return type, which can
be generically processed by asking for a VT_VARIANT return data
type. A method can have no return value at all, similar to the
difference between a procedure and a function, in which case it must
be invoked with the VT_VOID return type. Unlike the parameter
passing logic, a return data type of VT_VARIANT cannot be used
generically for this purpose. The COMUntypedSpecificationPolicy
method invocation logic first attempts a VT_VARIANT return type
invocation and upon failure for the above stated reason, attempts a
VT_VOID return type invocation. If you know in advance (almost all
methods in MS Word 7 from Office 95 are like this) that a method is
defined not to return anything, use invokeProcedure: instead of
invokeMethod:, which is faster, since no retry on failure takes place.
6-22 VisualWorks

What Specification Policy to Use
The Variant policy is a quick way to use a dispatch driver, since no
additional COM API calls are necessary to properly construct all data
structures associated with a particular invocation, the VT_VARIANT
type is used generically to create a new specification every time. The
default is to not update the specification table, since a call on the
same name might have different parameter names creating different
specifications. No additional memory is used since the untyped
specifications are not stored, the specification table is always empty.

The Lazy Initialization Policy
This policy is a different kind of Type Library Policy. While the above
mentioned only provides information about members (functions,
properties) when it is explicitely asked for them, this policy loads all
member information when the dispatch driver needs any. The
advantage is that subsequent querying of members information is not
required. Furthermore, supposing that you don't already have a
complete specification table stored in the DispatchDriver, this is the
only policy that currently can be used to benefit from the Automation
Inspector Extensions, which provide a human-readable
representation for all members of a living Automation object.

Dynamically Changing a Specification Policy
You can dynamically change the specification policy of a dispatch
driver with the specificationPolicy: message. For example:

aDispatchDriver specificationPolicy:
COMSpecificationPolicy newVariantPolicy.

A specification policy can be configured to record new specifications
in the dispatch driver’s specification table. The default is to do so for a
COMTypedSpecificationPolicy (Type Compiler and Type Library policies)
but not for a COMUntypedSpecificationPolicy (Variant policy). The default
for the Variant policy is to not update the specification table, since a
call on the same name might have different parameters creating
different specifications. This option can be toggled with the
specification policy’s updateSpecificationTable: message. For example:

aDispatchDriver specificationPolicy updateSpecificationTable: true.
and:

aDispatchDriver specificationPolicy updateSpecificationTable: false.
COM Connect User’s Guide 6-23

Using Automation Objects
Using a Specification Table
The COMDispatchDriver class on:specificationTable: message creates
a new dispatch driver from an IDispatch with a Complete
specification policy defined by the specification table argument. No
specifications are dynamically added the dispatch driver’s
specification table using this specification policy. If a method or
property is not found in the specification table, a COMError is
signaled.

Building Specification Tables
The current choices to build a COMDispatchSpecificationTable include:

• Building a specification table using a type library

• Building a specification table using the type information interface

There are a number of class methods provided by
COMDispatchSpecificationTable for constructing a specification table
from type information describing an Automation object. In addition,
the COMAutomationTypeAnalyzer class provides utilities to describe and
generate literal specifications for dispatch interfaces and constant
enumerations. See COM Connect Development Tools. The
COMAutomationTypeAnalyzer class is not a run-time class.

Building a Specification Table from a Type Library
This technique uses a COM server application’s Type Library. In the
case where the Type Library is a standalone file, the COM server
application is not loaded in memory. Note that while Excel 7 is
shipped with a Type Library, Word 7 is not (you have to download it
from a Microsoft site).

The following shows how support for a specification table was added
to the ExcelApplicationController example. The expressions are found in
the class comment of ExcelApplicationController.

Run the COMAutomationTypeAnalyzer on the wanted Excel class:
When this code is evaluated, a dialog box displays, holding a
multiple-select list box containing a list of all available dispatch
interface names in the type library. Only the ‘Application’ class is
6-24 VisualWorks

Building Specification Tables
chosen. This example outputs a text window containing the literal
notation of the specification tables for the dispatch interfaces
selected. You can also name which interface you want directly:

COMAutomationTypeAnalyzer
generateDispatchInterfaceNamed: 'Application'
typeLibrary: ExcelApplicationController typeLibrary.

1 The text in the window was then copied and pasted into a new
ExcelApplicationController class method called literalSpecification:

literalSpecification
"Answer a collection of all method and property specification
literals. This only needs to be here if you want to use the complete
specification policy #newCompleteSpecification with this
controller."
" Dispatch Interface Application "

" Methods and Properties "
^#(#COMDispatchSpecificationTable

#specificationKey: #name
#name: 'Application'
#iid: #(#GUID #[16r41 8 2 0 0 0 0 0 16rC0 0 0 0 0 0 0 16r46])
#lcid: 9

 " Methods "

#('method' 'Acos' 16r4063
#typeCode: #VT_VARIANT
)

#('method' 'Acosh' 16r40E9
#typeCode: #VT_VARIANT
)

"Etc …"

)

2 This process is repeated for all of the Excel Controller classes.
When you decide to use specification tables through the
#newCompleteSpecificationPolicy for an application’s controllers, you
must provide a literalSpecification method for all controller classes
related to this application. To test the various specification tables,
see the class comments of the ExcelExampleMonsterDamage and
ExcelExampleFileImport classes. For example:

"Test all specification policies."
ExcelApplicationController defaultSpecificationPolicy:
#newVariantPolicy.
ExcelExampleMonsterDamage runInvisible. "or runVisible"

COM Connect User’s Guide 6-25

Using Automation Objects
ExcelApplicationController defaultSpecificationPolicy:
#newTypeLibraryPolicy.
ExcelExampleMonsterDamage runInvisible. "or runVisible"

ExcelApplicationController defaultSpecificationPolicy:
#newTypeCompilerPolicy.
ExcelExampleMonsterDamage runInvisible. "or runVisible"

ExcelApplicationController defaultSpecificationPolicy:
#newCompletePolicy.
ExcelExampleMonsterDamage runInvisible. "or runVisible"

If you do not want to use the controller framework to drive an
application with a specification table, you need to construct the
specification table object before passing it the COMDispatchDriver
on:specificationTable: method, as follows:

1 Save the literal specification in a method.

2 Construct the specification table using the decodeAsLiteralArray
message.

For example, this is how the controllers do it:

specificationTable
"Private. Answer the specification table for the receiver. Only
used by controllers with the complete specification policy."

^self literalSpecification decodeAsLiteralArray
3 You now have all the elements to build a COMDispatchDriver:

aDispatchDriver := COMDispatchDriver
on: anIDispatch
specificationTable: self specificationTable

Building All Specifications From a Type Library
This is essentially the same as above with the difference that the
COMAutomationTypeAnalyzer class is used to generate the
specifications for all dispinterfaces in an application. As above, the
following expression opens a dialog box on all dispinterfaces, if you
click OK, since all items are checked, a specification table for all
dispinterfaces is generated:

COMAutomationTypeAnalyzer
generateTypeLibrarySpecificationsFromUser:

ExcelApplicationController typeLibrary.
6-26 VisualWorks

Summary
You can also do the same without the list box, using the following
expression:

(MessageBox confirm: 'This might take a while, proceed?')
ifTrue: [COMAutomationTypeAnalyzer

generateTypeLibrarySpecifications:
ExcelApplicationController typeLibrary].

Building Specifications From Type Information
Since not all applications are shipped with a type library, a way is
needed to create a specification table without a type library. This can
be done by creating an instance of the object you need to control and
querying its dispatch interface for type information. There is a one-to-
one relationship between a dispatch interface and its type information
(ITypeInfo). This is different from a type library, which defines the type
information for many dispatch interfaces.

This example uses the COMAutomationTypeAnalyzer to load the
dispatch specifications for Word from the type information. The
method specifications are loaded from the literal encoding
constructed at development time using the utility service:

COMAutomationTypeAnalyzer generateForID: 'Excel.Application'.
You then create the initialization methods from the resulting
information as described above.

Summary
The COMDispatchDriver class is used to instantiate Automation
objects, get to existing Automation objects and to access methods
and properties of a particular Automation object through it’s dispatch
interface (the IDispatch interface).

A dispatch driver is created with one of the following
COMDispatchDriver class messages:

createObject: aProgID

This creates a COMDispatchDriver from a ProgID or a CLSID. The
new instance has the default specification policy. This is
equivalent to the Visual Basic CreateObject() function.
COM Connect User’s Guide 6-27

Using Automation Objects
pathName: aFileName

Answer a new instance of the receiver on the automation object
in the file named aFileName. This is equivalent to the Visual
Basic GetObject(FileName) function.

pathName: aFileName progID: aProgID

Create an new Automation object of the aProgIDOrCLSID class
and load aFileName into it. Answer an instance of the receiver on
the automation object. The aProgID automation class must
support IPersistFile. This is equivalent to the Visual Basic
GetObject(FileName,ProgID) function.

onActiveObject: aProgID

Answer a new instance of the receiver on the active object of the
aProgID automation object class. Raise a COMError if there is no
active object. ProgID refers to a String representing ProgID or a
GUID representing a CLSID. This is equivalent to the Visual
Basic GetObject(,ProgID) function.

on: anIDispatch

This creates a COMDispatchDriver to wrap anIDispatch with the
default specification policy.

on: anIDispatch specificationPolicy: aCOMSpecificationPolicy

This creates a COMDispatchDriver to wrap anIDispatch with the
supplied specification policy.

on: anIDispatch specificationTable: aCOMSpecificationTable

This creates a COMDispatchDriver to wrap anIDispatch with a
‘complete’ policy specified by the argument. No lookups are
performed if a name is not found, and an error is raised.

If your starting point is an IDispatch, the simplest way to create a
dispatch driver is to use the on: message. The performance and
usability trade-offs of using other specification policies are outlined in
this document.

With a COMDispatchDriver you can:

• Invoke a method with the invokeMethod: [with: | withArguments: |
withNamedArguments:] message.

• Get a property with the getProperty: message.

• Set a property with the setProperty:value: message.
6-28 VisualWorks

7

Using ActiveX Controls

ActiveX controls are components that provide an easy way to add
functionality to an application, including user interface components.
They can be used directly in an application or embedded in other
controls.

ActiveX Controls are actually complex COM Objects that utilize a
many features provided by COM such as event support, Automation
Calls, OLE Data Transfer, and Embedding. They are commonly
stored in OCX Files, actually DLLs, which act as a file container for
the controls, providing functionality to register and access the
controls.

COM Connect includes support for using ActiveX Controls in your
application’s user interface. Configuration features remove the
requirement of dealing with the COM layer as far as possible.

Using ActiveX Controls in a VisualWorks Application

Loading ActiveX Support
To use ActiveX controls in your VisualWorks application, load the
ActiveX-All parcel.

Adding an ActiveX Control to your application
You add an ActiveX Control to your application by adding it to the
user interface, using the VisualWorks UI Painter.

1 As usual, click the control button in the UI palette and place the
control widget on your canvas as usual. The control is initially
COM Connect User’s Guide 7-1

Using ActiveX Controls
shown only as a black bordered rectangle. This will change once
the widget has been configured.

2 Provide an Aspect name, which will variable name for accessing
the control.

3 Select the Control that shall be embedded from the list of
available controls.

4 Click the Apply button.

The look of your control in the UI will change to take on the look of
the control you chose.

Configuring the Control
While you can use a control with its default settings, you generally will
want to configure it for your own needs. For example, you may want
to change the range of a slider control. Configuration parameters are
provided on Properties tab in the GUI Painter Tool.
7-2 VisualWorks

Extended Configuration
The tab provides a list of properties and allows assigning values to
them which will be used as initial values when the application starts.

The middle row contains input fields in which values can be entered.
If possible, a list of suitable values for specific properties is provided
in a drop-down menu.

Right to the value row is a row describing the type of the property. In
cases where it is not possible to provide a list of suitable values in the
drop down menu, this row may help you to guess suitable values.

The values are immediately assigned to the control to provide an
instant preview of the result. In case you are not satisfied with the
result, you may change it back or use the Cancel button to undo all
changes since the last Apply.

Finally Apply the change and Install the changes into the application UI
specification method.

The Browse Class button opens an Automation Browser on the Control
class.

Extended Configuration
Some extended properties may not be set from the UI Painter. This
includes properties which hold other COM objects. These properties
need to be set in the source code. Because the control is instantiated
using the specification method, this can not be done inside the
controls aspect method.

Many controls are only completely operational when they are
embedded. The postOpenWith: method of the application model is the
usual place to fine-tune the control configuration. This can be even
simplified by using data bindings.

Configuring Data Bindings
Data Bindings provide a way to bind control properties to application
aspects. This is similar to using an AspectAdaptor for accessing
specific aspects of objects hold by your application. The difference is
that the values do not exist in Smalltalk but inside the Active-X
contorl.
COM Connect User’s Guide 7-3

Using ActiveX Controls
The Property Bindings Pane allows you to define such adaptors
inside the UI Painter for using them in your application.

The advantage is that the UI provides the developer with all available
information. The user does not have to know the exact name of the
property he wants to access.

The pane contains three columns, titled Property, Aspect and Event.
Two buttons, labelled "+" to add a new binding, and "-" to remove a
binding.

When you press the add button, a new line is added to the table in
which a new binding can be defined. In the first column, which is
labelled Property, you should provide the name of the control
property which shall be bound to an application aspect.

In the aspect column, provide the name of the application aspect.
The name should reflect the respective property. The editor will assist
you by suggesting an aspect name based on control and property
name.

Many ActiveX Controls do not inform the client of runtime property
changes using the PropertyChanged event. In spite of this they raise a
custom event which indicates that a specific property has changed.

The Event column allows you to specify such an event. When the
event appears, the binding will check for a value change and inform
interested parties if needed.

Apply any changes and Install the UI specification. Also, create the
corresponding aspect methods using the Define button.
7-4 VisualWorks

Extended Configuration
Configuring Events
In addition to binding property-specific events, the UI Painter allows
you to configure non-specific events in a convenient way. The Events
tab provides the functionality needed for mapping control events to
application model methods.

To map events to methods:

1 Press the + button to add a new line to the table.

2 Select an event from the drop-down menu in the event column.

The editor will suggest a selector based on control-, event-, and
parameter names. You can change it, but the editor will take care
that the provided selector will accept the correct number of
arguments.

3 Apply the changes and Install the UI specification, as usual.

4 Define the event handler method.

5 Provide the needed code in the method, for example:

sliderOLEDragDrop: data effect: effect button: button
shift: shift x: x y: y
"This method was generated by UIDefiner for a Control Event.
Any edits made here may be lost whenever methods are
 automatically defined."
Dialog warn:

(#AlthoughItDoesNotMatterSomethingWasDroppedOn
TheSlider << #examples >> 'Although it does not matter
something was dropped on the slider').
COM Connect User’s Guide 7-5

Using ActiveX Controls
In this example the slider will react when something is dropped on it,
such as a file from the Explorer.

Calling Control Methods
For calling control methods the ControlProxy provides three methods:
invokeMethod, invokeMethod:with:, and invokeMethod:withArguments:. The
first parameter has to be a string containing the name of the method
to be called.

Licensing Support
The ActiveX Widget supports runtime licensing model of common
container applications. This means, if the widget supports licensing, a
valid license key is queried when the UI is created. This key is used
at application runtime to verify that the User is allowed to utilize the
control. There is no need to configure anything. It will be done for you
automatically.
7-6 VisualWorks

8

Implementing Automation Objects

Overview
COM Automation is a technology that enables application objects to
be manipulated by other applications through a standard interface for
dispatching client requests. COM Connect enables you to develop
applications known as automation controllers, which manipulate
objects published by other applications. Automation controller
concepts and facilities are described in the chapters Using
Automation Objects and Publishing Automation Objects.

VisualWorks COM Connect Automation support also contains
facilities that assist you in implementing COM Automation objects
within your own application and publishing them to enable other
applications to manipulate your application’s objects or access
services. This section describes the facilities and frameworks that are
available for implementing COM Automation objects.

As always when you design a new object, you need to decide what
services your Automation object will provide. To publish these
capabilities through COM Automation, you must first implement the
desired behaviors and then provide a description of how the services
appear to a COM Automation client as method and property
members of a dispatch interface by creating a type library.
Additionally, your COM objects can choose to support a dual
interface.

After implementing your automation objects, you need to package
your application as a COM object server and publish it so that your
automation objects can be accessed from other applications.
Creating a COM object server application requires a few steps to
COM Connect User’s Guide 8-1

Implementing Automation Objects
provide class factory support, so that clients can create new
instances of your object, and a small amount of COM-specific
application startup and termination logic.

To complete publishing a COM Automation object server, you need to
create an executable application EXE containing your application
code and register the server application with COM. The steps
involved in creating an object server EXE and registering the
application and its type library information with COM are also
described in this documentation.

To summarize, publishing a COM Automation object involves the
following steps:

1 Implementing the Automation objects

2 Creating a type library describing each Automation object

3 Mapping the COM interface functions to your class

4 Providing class factory support

5 Creating a .reg file to register the object server application

6 Implementing the object server application logic

7 Creating an object server application EXE

Installing the Automation Server Samples
The topics discussed in the document use several sample COM
Automation objects to demonstrate the concepts and techniques.

The automation object server samples are installed with the COM
Connect software and can be found in the ‘COM-Automation-Server
Samples’ category in your VisualWorks system browser.

Basic Concepts of Automation Object Implementation
The basic notion of COM Automation is pretty simple. A COM
Automation object is a COM object that supports the IDispatch
interface, which clients use to invoke methods and access properties
supported by your object through the IDispatch::Invoke function. A
dispatch member invocation is similar to performing a message in
Smalltalk: a dispatch invocation request contains the name of the
operation the receiving object is to perform and the argument values
for the operation. An automation object uses the information in the
dispatch invocation request to perform the requested service and
return a result value to the client.
8-2 VisualWorks

Overview
Your task as an Automation object developer is to decide what
operations and properties to support for your object, then make them
available through an IDispatch interface binding to a COM object. The
VisualWorks Smalltalk Automation support in Smalltalk provides
facilities to assist in the mechanics of providing the IDispatch support,
so that you can focus of the specifics of your own application.

When you implement a COM Automation object, you must define the
methods and properties that your object supports. Each dispatch
member has a unique integer name, referred to as its DISPID, as well
as a string name. You must assign a unique DISPID to each method
and property that your automation object supports. Choose positive
integer values; negative values are reserved for predefined system
uses and should be used only when implementing dispatch members
that comply with the published standards. (You can obtain more
information on standard COM Automation objects from Microsoft’s
OLE Programmer’s Reference documentation.)

In addition to assigning unique DISPID’s, specify a string name for
each method and property. This enables use of your automation
object from macro scripting clients such as Visual Basic. (Not to
mention making it easier to describe your automation object and talk
about its services!)

Finally, you must specify the type signature of each method and
property. COM automation provides a well-defined set of data types,
including such basic data types as integers, floating point numbers,
and strings.

Even though this dispatch member information can all be specified
inside a Smalltalk COM server, following standards and publishing
this information through a COM type library is recommended. The
MIDL Compiler takes an IDL text file to produce a type library and
automatically assign DISPIDs for you.

Automation Object Implementation Techniques
VisualWorks provides an implementation framework and a
configurable automation object server that you can use to easily
publish objects through COM Automation. Your implementation
options include:

• Publishing a Smalltalk object using the general-purpose
automation server (IDispatch)

• Publishing a Smalltalk object using a custom Automation server
(dual interface)
COM Connect User’s Guide 8-3

Implementing Automation Objects
The COMAutomationServer class provides a generalized
implementation of dispatch support, which can be used to publish the
services of Smalltalk objects through COM Automation. A
COMAutomationServer is configured by providing it with the object
whose capabilities are being exposed through COM Automation and
a specification table describing the methods and properties of the
automation object. The dispatch specification table is indexed by the
DISPID and contains a COMDispatchMemberSpecification entry for each
method and property defining the string name of the member, its
DISPID, and the automation data types of the value and any
parameters needed to invoke the member. Each entry must also
include the message selector, which is sent to the automation object
being published to invoke the method or to get or set the property. A
literal notation for dispatch member specifications is supported to
enable a compact specification notation from which the execution
dispatch specifications can be rapidly constructed.

A dual interface object supports the same functionality as an object
published through an IDispatch with a COMAutomationServer with the
added feature that all methods and properties can also be accessed
through custom written interface functions. The COMDualInterfaceObject
class provides a dual interface framework, which you can use to
publish the services of Smalltalk objects through COM Automation.
Implementing support for a dual interface is more complex but can
yield to higher performance objects.

The configurable COMAutomationServer class is the easiest approach
to use for most automation objects that you might wish to implement.
However, you might encounter cases in more sophisticated
applications where the standard automation object server facilities do
not solve your particular problem. To develop customized automation
objects, you can subclass the COMAutomationObject or
COMDualInterfaceObject implementation framework to provide the
desired IDispatch services or support additional interfaces.

To give an example of exposing a Smalltalk object through
Automation, a subclass of Object called AutomationAllDataTypes is
created and published through an IDispatch. The purpose of this
example is to show how to use all of the Automation data types.
Using all of the data types is easy when publishing an object through
an IDispatch, but it is more complicated for a dual interface, since
more code has to be written.
8-4 VisualWorks

Exposing a Smalltalk Class
Under Publishing Automation Objects, the AutomationAllDataTypes
example class is upgraded so that it can be published through a dual
interface.

The code examples in this document for publishing a Smalltalk object
through an IDispatch interface come from the example class
AutomationAllDataTypes. The code examples in this document for
publishing a Smalltalk class through a dual interface class come from
the example classes AutomationAllDataTypes and
AllDataTypesCOMObject.

Exposing a Smalltalk Class
As always when you design a new object, you need to decide what
services your Automation object will provide. To publish these
capabilities through COM Automation, you must first implement the
desired behaviors and then provide a description of how the services
appear to a COM Automation client as method and property
members of a dispatch interface by creating a type library.

The tasks described in this section are common to exposing objects
through an IDispatch or through a dual interface.

Publishing a class consists of the following tasks.

• Create or choose a Smalltalk class to publish. If your class is
going to keep a copy of any interfaces, follow the rules for
interface reference counting in this section.

• Create GUIDs to identify your classes, type libraries, and
interfaces.

• Create an IDL file describing each class to publish from the
image. Compile the IDL file into a type library.

• If you choose to implement a dual interface, implement the
interface class, the interface implementation class and the COM
class. Also implement the interface pointer class if you want to
access the object from VisualWorks.

• Create a registration file (.reg) that describes to COM where to
find your application.

• Make a run-time image.
COM Connect User’s Guide 8-5

Implementing Automation Objects
You can publish any class in the hierarchy. To demonstrate the
techniques of publishing a COM object, a subclass of Object called
AutomationAllDataTypes is defined. This example shows how to support
all of the standard Automation data types.

Object subclass: #AutomationAllDataTypes
instanceVariableNames: 'propertyLONGValue propertyBYTEValue

propertySHORTValue propertyFLOATValue propertyDOUBLEValue
propertyVARIANT_BOOLValue propertySCODEValue
propertyDATEValue propertyBSTRValue
propertyIUnknownReference propertyIDispatchReference
propertyVARIANTValue propertyCURRENCYValue
propertySAFEARRAY_I4Value
propertySAFEARRAY_DISPATCHValue
propertySAFEARRAY_UNKNOWNValue
propertySAFEARRAY_BSTRValue '

classVariableNames: 'TypeLibraries '
poolDictionaries: 'COMConstants COMAutomationConstants '
category: 'COM-Automation-Server Samples'

The example class defines an instance variable for each data type
that can be used for automation.

Example Instance variable COM data type COM Type Code Smalltalk Class

propertyLONGValue longLONG VT_I4 Integer

propertyBYTEValue unsigned char BYTE VT_UI1 Integer

propertySHORTValue shortSHORT VT_I2 Integer

propertyFLOATValue floatFLOAT VT_R4 Float

propertyDOUBLEValue doubleDOUBLE VT_R8 Double

propertyVARIANT_BOOLValue booleanBOOLEAN VT_BOOL Boolean

propertySCODEValue SCODE VT_ERROR Integer

propertyDATEValue DATE VT_DATE Timestamp

propertyBSTRValue BSTR VT_BSTR String

propertyIUnknownReference IUnknown* VT_UNKNOWN IUnknown

propertyIDispatchReference IDispatch* VT_DISPATCH IDispatch

propertyVARIANTValue VARIANT VT_VARIANT An object

propertyCURRENCYValue CURRENCY VT_CY FixedPoint w/
scale of 4
8-6 VisualWorks

Exposing a Smalltalk Class
Notes:

• An Integer can be a large negative integer or a large positive
integer.

• A COM DATE holds its time part in two second intervals.

• A VARIANT can hold an object of any of the types in the table
above.

• A SAFEARRAY can be of any COM Automation-compatible type.
Not all combinations for SAFEARRAYs are shown in the above
table.

Implementing Properties
By convention, the selector of the get method, which returns the value
of the property, is the same as the name of the property function
defined in the type library (which was compiled from the IDL file) and
is prefixed with get. The selector of the set method, which sets the
value of the property, is the same as the name of the property
function defined in the type library (which was compiled from the IDL
file) and is prefixed with set.

For example, the accessor and mutator methods for the
propertyBSTRValue instance variable are:

getBSTRValue
"Answer the BSTRValue property. Answer a Smalltalk object that
has been mapped from its Automation counterpart."
^propertyBSTRValue

setBSTRValue: aValue

"Set the BSTRValue property. <aValue> is a Smalltalk object that has
been mapped from its Automation counterpart."
propertyBSTRValue := aValue

propertySAFEARRAY_I4Value SAFEARRAY (LONG) VT_ARRAY |
VT_I4

Array of Integers

propertySAFEARRAY_BSTRValue SAFEARRAY (BSTR) VT_ARRAY |
VT_BSTR

Array of Strings

propertySAFEARRAY_DISPATCHValue SAFEARRAY
(IDispatch*)

VT_ARRAY |
VT_DISPATCH

Array of
IDispatches

propertySAFEARRAY_UNKNOWNValue SAFEARRAY
(IUnknown*)

VT_ARRAY |
VT_UNKNOWN

Array of
IUnknowns

Example Instance variable COM data type COM Type Code Smalltalk Class
COM Connect User’s Guide 8-7

Implementing Automation Objects
In the example class, the TypeLibraries class variable is used to keep
track of the type libraries defined by the application. The type library
in the example defines one object with one interface for the English
language. Multiple type libraries are used when multiple languages
are supported. The code associated with managing this variable is
described later in the sections Application Startup and Type Library
Management

Rules for Handling Interfaces
The data types that necessitate special handling are the interface
types IDispatch and IUnknown. In COM, interfaces have special
reference counting rules that must be closely followed. For more
details, see COM Connect Basics in this document.

If an object returns an interface through an out parameter or as the
function return value, then it must give away a separately counted
reference of the interface. This is achieved by sending the message
separateReference to the interface and giving away the answer.

The following is an example of giving away an IDispatch reference:

getIDispatchReference
"Answer the IDispatchReference property. Answer a Smalltalk object
that has been mapped from its Automation counterpart. The answer
is a separate reference of the interface that must be released by the
caller."
^propertyIDispatchReference isNil

ifTrue: [propertyIDispatchReference]
ifFalse: [propertyIDispatchReference separateReference]

If an object retains a copy of an interface reference passed to it as a
function in parameter for longer then the duration of the function call,
then it must keep a separately counted reference of the interface.
This is achieved by sending the message separateReference to the
interface argument. The following is an example of keeping an
IDispatch reference. Remember that the object keeping the interface
is also responsible for releasing its reference to the interface when it
is done using the interface.

setIDispatchReference: aValue
"Set the IDispatchReference property. <aValue> is a Smalltalk object
that has been mapped from its Automation counterpart."
| anInterface |
"Release the current interface if present."
propertyIDispatchReference isCOMInterface

ifTrue: [
anInterface := propertyIDispatchReference.
8-8 VisualWorks

Exposing a Smalltalk Class
propertyIDispatchReference := nil.
anInterface release].

aValue isCOMInterface
ifTrue: [

"To keep a separate reference of the interface passed in."
propertyIDispatchReference := aValue separateReference]

ifFalse: [
propertyIDispatchReference := aValue]

Saving a reference to an IUnknown interface follows the same pattern
as is shown here for IDispatch.

The same care must be applied when dealing with SAFEARRAYs of
IDispatches and IUnknowns as illustrated by the following methods.
Again, only the IDispatch version is shown.

getSAFEARRAY_DISPATCHValue
"Answer the SAFEARRAY_DISPATCHValue property. Answer a
Smalltalk object that has been mapped from its Automation
counterpart. The answer is made of separate references of the
interfaces that must each be released by the caller."
^propertySAFEARRAY_DISPATCHValue isNil

ifTrue: [propertySAFEARRAY_DISPATCHValue]
ifFalse: [propertySAFEARRAY_DISPATCHValue collect:

[: anInterface | anInterface separateReference]]

setSAFEARRAY_DISPATCHValue: aValue

"Set the SAFEARRAY_DISPATCHValue property. <aValue> is a
Smalltalk object that has been mapped from it's Automation
counterpart."
| interfaces |
"Release the current interface if present."
interfaces := propertySAFEARRAY_DISPATCHValue.
propertySAFEARRAY_DISPATCHValue := Array new.
interfaces notNil

ifTrue: [COMSafeArray releaseInterfacesIn: interfaces].
COMSafeArray acquireInterfacesIn: aValue.
propertySAFEARRAY_DISPATCHValue := aValue.

Implementing a Method
By convention, the selector for a method called by COM is the same
as the function name defined in the type library (which was compiled
from the IDL file). For example, a Reset method is defined.

Reset
"Reset the values in the receiver to the initialized state."
self initialize
COM Connect User’s Guide 8-9

Implementing Automation Objects
Terminating an Application
When you create a deployment image for delivery as a COM object
server application, you are responsible for providing the application
startup logic that checks the startup conditions and registers the
class factories for the COM object classes that your application
supports with COM. Your application is also responsible for deciding
how to shut itself down and when this occurs.

Continue with this section only if you arranged for a COM object
server application that never shuts down. For more information see
Publishing Automation Objects

This setting is useful when you want your server to always be
executing in anticipation of client requests. Once started, the object
server application continues running indefinitely, with your class
factories registered with COM and everything prepared to handle
client object creation requests immediately.

The server session termination service revokes the class factories
registered by your application with COM and shuts down the
Smalltalk process. Determining when to actually terminate the
application is your responsibility.

If you are implementing an Automation application object following
the guidelines defined by Automation for the standard Application
object, it is required that your application object support a Quit
method, which exits the application and closes all open documents.
To implement the Quit command for an application object, the Quit
method in your application should conform to the following pattern:

Quit "Quit the application."
" ... close all open documents ... "
COMSessionManager terminateServerSessionDeferred.

Note the use of the terminateServerSessionDeferred message in this
case. The deferred termination service is necessary here because
the Quit method is invoked by a client, and you need to ensure that
your function returns to the caller before the Smalltalk process is shut
down.

Creating Class Identifiers
When you are ready to publish your COM object so that it can be
used by other applications, you must have a unique CLSID that
identifies the COM object class. CLSIDs are universally unique
identifiers (UUIDs, also called globally unique identifiers, or GUIDs)
8-10 VisualWorks

Creating Class Identifiers
that identify class objects to COM. The CLSID is included in an
application, and must be registered with the operating system when
an application is installed. The CLSID is how other applications can
create or access instances of your object and must be registered with
the operating system when an application is installed.

You can create a new GUID value to assign as the CLSID of your
automation object by evaluating the expression:

GUID new
A new GUID value created is guaranteed to be unique and can be
used to name your automation object class.

When you are ready to assign a CLSID to your object class,
implement in your automation object class an accessing method that
returns the CLSID.

The CLSID of the AutomationAllDataTypes class is defined in its
class method clsid as follows:

clsid
"Answer the CLSID under which a the receiver is published as an
Automation object."
" '{DB5DE8E3-AD1F-11d0-ACBE-5E86B1000000}' asGUID storeString "

^GUID fromBytes: #[16rE3 16rE8 16r5D 16rDB 16r1F 16rAD 16rD0
 16r11 16rAC 16rBE 16r5E 16r86 16rB1 0 0 0]

While the string representation of the CLSID is more readable, as you
can see by the variation in the comment, it is more efficient to
construct the CLSID from the byte encoding. You can obtain this
expression by pasting the result of evaluating the following
expression into the clsid class method of your automation object
class.

GUID new storeString
Note that while the clsid message can be sent to any COMObject
class, not all COM objects have a CLSID. A COM object without a
CLSID is not available to clients independently, in that clients cannot
arbitrarily request such an object to be created. Such objects typically
occur as part of implementing cooperating objects as part of a
running application. This is actually quite common; for example, the
COMDataTransferObject, which you can use to implement COM data
transfer support for an object you are implementing, does not have a
CLSID, since it is only instantiated within the implementation of your
Smalltalk COM application.
COM Connect User’s Guide 8-11

Implementing Automation Objects
The AutomationAllDataTypes example generated the following
GUIDs.

• a CLSID {DB5DE8E3-AD1F-11d0-ACBE-5E86B1000000}

• a Type library ID for vwAllDT.tlb {DB5DE8E1-AD1F-11d0-
ACBE-5E86B1000000}

• an Interface ID for IAllDataTypesDisp {DB5DE8E2-AD1F-11d0-
ACBE-5E86B1000000}

Creating the Type Library
Create a type library for each set of exposed objects. Because VTBL
references are bound at compile time, exposed objects that support
VTBL binding must be described in a type library.

Type libraries provide these important benefits:

• Type checking can be performed at compile time. This might help
developers of ActiveX clients to write fast, correct code to access
objects.

• Visual Basic applications can create objects with specific
interface types, rather than the generic Object type, to take
advantage of early binding.

• VisualWorks and VisualSmalltalk applications can create objects
with specific interface types, rather than the generic IDispatch
type, to take advantage of early binding.

• ActiveX clients that do not support VTBLs can read and cache
DISPIDs at compile time, improving run-time performance.

• Type browsers can scan the library, allowing others to see the
characteristics of objects.

• The RegisterTypeLib function can be used to register exposed
objects in the registration database. This operation is performed
by the COMTypeLibrary createRegistration method.

• The UnRegisterTypeLib function can be used to completely
uninstall an application from the system registry. This operation is
performed by the COMTypeLibrary removeRegistration method.

• Local server access is improved because Automation uses
information from the type library to package the parameters that
are passed to an object in another process.
8-12 VisualWorks

Creating the Type Library
Type Libraries and the Object Description Language
When you expose ActiveX objects, type libraries allow interoperability
with the programs of other vendors. For vendors to use these objects,
they must have access to the characteristics of the objects
(properties and methods). To make this information available
developers must:

• Publish object and type definitions (for example, as printed
documentation).

• Code objects into so they can be accessed using
IDispatch::GetTypeInfo or implementations of the ITypeInfo and
ITypeLib interfaces.

• Use the Microsoft Interface Definition Language (MIDL) compiler
or the MkTypLib utility to create a type library that contains the
object descriptions, then make the type library available.

The MIDL compiler and the MkTypLib utility both compile scripts that
are written in the Object Description Language (ODL). Microsoft has
expanded the Interface Definition Language (IDL) to contain the
complete ODL syntax. Use the MIDL compiler in preference to
MkTypLib, since support for MkTypLib is being phased out.

For more information about the MIDL compiler, refer to the MIDL
Programmer’s Guide and Reference in the Win32 Software
Development Kit (SDK).

Generating a Type Library With MIDL
Microsoft’s Interface Definition Language (IDL) now includes the
complete Object Definition Language (ODL) syntax. This allows you
to use the 32-bit MIDL compiler instead of MKTYPLIB.EXE to generate
a type library and optional header files for a COM application.

Note: When the documentation refers to an ODL file, this means
a file that MKTYPLIB can parse. When it refers to an IDL file, this
means a file that MIDL parses. This is strictly a naming
convention. The MIDL compiler parses an input file regardless of
its filename extension.

The top-level element of the ODL syntax is the library statement
(library block). Every other ODL statement, with the exception of the
attributes that are applied to the library statement, must be defined
within the library block. When the MIDL compiler sees a library block
COM Connect User’s Guide 8-13

Implementing Automation Objects
it generates a type library in much the same way as MKTYPLIB does.
With a few exceptions, the statements within the library block should
follow the same syntax as in the ODL language and MKTYPLIB.

You can apply ODL attributes to elements that are defined either
inside or outside the library block. These attributes have no effect
outside the library block unless the element they are applied to is
referenced from within the library block. Statements inside the library
block can reference an outside element either by using it as a base
type, inheriting from it, or by referencing it on a line as shown:

<IDL definitions including definitions for interface IFoo and struct bar>
[<some attributes>]
library a
{
interface IFoo;
struct bar;
...
};

If an element defined outside the library block is referenced within the
library block, then its definition is put into the generated type library.

The MIDL compiler treats the statements outside of a library block as
a typical IDL file and parses those statements as it has always done.
Normally, this means generating C-language stubs for an RPC
application.

The Win32 SDK contains full documentation for MIDL and the IDL
language at:http://www.microsoft.com

Automation Data Types
In the .idl file used to define a type library, the oleautomation attribute
indicates that an interface is compatible with COM Automation. The
parameters and return types specified for its members must be
compatible with COM Automation, as listed in the following table.
Keep in mind that the set of data types you can use must come from
this table or be equivalent to them for the MIDL compiler.

Automation Data Types

Type Description Maps to Class

boolean Data item that can have the value
TRUE or FALSE. In MIDL, the size
corresponds to unsigned char.

Smalltalk Boolean

BSTR Length-prefixed string, as described
in the COM Automation topic BSTR.

Smalltalk String
8-14 VisualWorks

http://www.microsoft.com

Creating the Type Library
Type Description Maps to Class

DATE 64-bit floating-point fractional
number of days since December 30,
1899.

Smalltalk Timestamp

double 64-bit IEEE floating-point number. Smalltalk Double

CY (Formerly CURRENCY) A currency
number stored as an 8-byte, two’s
complement integer, scaled by
10,000 to give a fixed-point number
with 15 digits to the left of the
decimal point and 4 digits to the
right. This representation provides a
range of money, or for any fixed-
point calculation where accuracy is
particularly important.

Smalltalk FixedPoint
(with a scale of 4)

enum Signed integer, whose size is
system-dependent. In remote
operations, enum objects are
treated as 16-bit unsigned entities.
Applying the v1_enum attribute to
an enum type definition allows enum
objects to be transmitted as 32-bit
entities.

Smalltalk Integer

float 32-bit IEEE floating-point number. Smalltalk Float

IDispatch * Pointer to IDispatch interface
(VT_DISPATCH).

Smalltalk IDispatch

int Integer whose size is system
dependent. On 32-bit platforms,
MIDL treats int as a 32-bit signed
integer.

Smalltalk Integer

Type Description Maps to Class

IUnknown * Pointer to interface that is not
derived from IDispatch
(VT_UNKNOWN). (Any COM
interface can be represented by its
IUnknown interface.)

Smalltalk IUnknown

long 32-bit signed integer. Smalltalk Integer

SCODE Built-in error type that corresponds
to HRESULT.

Smalltalk Integer

short 16-bit signed integer. Smalltalk Integer

unsigned char 8-bit unsigned data item. Smalltalk Integer

Type Description Maps to Class
COM Connect User’s Guide 8-15

Implementing Automation Objects
A parameter is compatible with COM Automation if its type is a COM
Automation-compatible type, a pointer to a COM Automation-
compatible type, or a SAFEARRAY of a COM Automation-
compatible type. A SAFEARRAY maps to a Smalltalk Array.

A return type is compatible with COM Automation if its type is an
HRESULT, SCODE or void. However, MIDL requires that interface
methods return either HRESULT or SCODE. Returning void
generates a compiler error.

A member is compatible with COM Automation if its return type and
all its parameters are COM-Automation compatible.

An interface is compatible with COM Automation if it is derived from
IDispatch or IUnknown, it has the oleautomation attribute, and all
of its VTBL entries are COM-Automation compatible. For 32-bit
platforms, the calling convention for all methods in the interface must
be STDCALL. For 16-bit systems, all methods must have the CDECL
calling convention.

Every dispinterface is implicitly COM Automation-compatible.
Therefore, do not use the oleautomation attribute on
dispinterfaces.

The oleautomation attribute is not available when you compile
using the MIDL compiler /osf switch.

Type Libraries and the MIDL compiler are discussed in further detail
later in this document.

Creating the Programmable Interface
An object’s programmable interface comprises the properties,
methods, and events that it defines. Organizing the objects,
properties, and methods that an application exposes is like creating
an object-oriented framework for an application. The chapter
Standard Automation Objects and Naming Guidelines discusses
some of the concepts behind naming and organizing the
programmable elements that an application can expose.

Creating Methods
A method is an action that an object can perform, such as a request
to perform a debit or credit transaction. Methods can take any
number of arguments (including optional arguments), and they can
be passed either by value or by reference. A method might or might
not return a value.
8-16 VisualWorks

Creating the Type Library
Creating Properties
A property is a member function that sets or returns information
about the state of the object, such as a social security number or
birthday. Most properties have a pair of accessor functions; a function
to get the property value and a function to set the property value.
Properties defined to be read-only or write-only, however, have only
one accessor function.

Property Accessor Functions
The accessor functions for a single property have the same dispatch
identifier (DISPID). The purpose of each function is indicated by
attributes that are set for the function. These attributes are set in the
.idl file description of the function, and are passed in the wFlags
parameter to IDispatch::Invoke in order to set the context for the call.
The attributes and flags are shown in the following table.

Note: VisualWorks encapsulates the IDispatch interface gore
through the COMDispatchDriver class.

The propget attribute designates the accessor function that gets the
value of a property. When a COM Connect client needs to get the
value of a property, it calls the COMDispatchDriver method
getProperty:. The argument is the property name.

The propput attribute designates the accessor function that sets the
value of a property. When a COM Connect client needs to set the
value of a property, it calls the COMDispatchDriver method
setProperty:value:. The first argument is the property name and the
second argument is the property value.

The propputref attribute indicates that the property should be set
by reference, rather than by value. When a COM Connect client
needs to set the reference of a property, it calls the
COMDispatchDriver method setProperty:value:. The first argument is
the property name and the second argument is the property
reference.

Purpose of function ODL attribute wFlags

Returns a value. propget DISPATCH_PROPERTYGET

Sets a value. propput DISPATCH_PROPERTYPUT

Sets a reference. propputref DISPATCH_PROPERTYPUTREF
COM Connect User’s Guide 8-17

Implementing Automation Objects
Implementing the Value Property
The Value property defines the default behavior of an object when no
property or method is specified. It is typically used for the property
that users associate most closely with the object. For example, a cell
in a spreadsheet might have many properties (Font, Width, Height,
and so on), but its Value property defines the value of the cell. To
refer to this property in Visual Basic, a user does not need to specify
the property name Cell(1,1).Value, but can simply use Cell(1,1). The
Value property is identified by the standard DISPID named
DISPID_VALUE. In an .idl file, the Value property for an object has
the attribute id(0).

Handling Events
In addition to supporting properties and methods, ActiveX objects
can be a source of events. In Automation, an event is a method that is
called by an ActiveX object, rather than implemented by the object.
For example, an object might include an event method named Button
that retrieves clicks of the mouse button. Instead of being
implemented by the object, the Button method returns an object that
is a source of events.

In Automation, you use the source attribute to identify a member
that is a source of events. The source attribute is allowed on a
member of a co-class, property, or method. See the discussion of
COM event support under Implementing COM Objects.

Creating the Type Library IDL File
To create a type library, you must write an IDL file to describe the
methods and properties of the objects you want to publish. An IDL file
describes one type library. A type library can hold definitions for
multiple objects, each object with multiple interfaces. The example
type library contains one object with one interface.

By convention, all interface names have an ‘I’ prefix, and dispatch
interface names have a ‘Disp’ suffix. The dispatch interface
supported by the AutomationAllDataTypes object is called
IAllDataTypesDisp. For this example, the following GUIDs are defined:

• a CLSID {DB5DE8E3-AD1F-11d0-ACBE-5E86B1000000}

• a Type library ID for vwAllDT.tlb {DB5DE8E1-AD1F-11d0-ACBE-
5E86B1000000}

• an Interface ID for IAllDataTypesDisp {DB5DE8E2-AD1F-11d0-
ACBE-5E86B1000000}
8-18 VisualWorks

Creating the Type Library
For example, view the IDL file for the example in COM\Examples\
COMAuto\AllDataT\TypeLibrary\VWAllDT.idl.

When the example is upgraded to a dual interface under, as
described in Publishing Automation Objects, a slightly different IDL
file will be used. A SAFEARRAY can be of any COM Automation-
compatible type. Not all combinations for SAFEARRAYs are shown in
this example.

Building the Type Library
The IDL file for the example is compiled by running the
COM\Examples\COMAuto\AllDataT\TypeLibrary\
MakeLibrary.bat batch file, which contains the following
command:

MIDL @vwAIIDT.rsp
The response file vwAIIDT.rsp contains:

/win32
/tlb vwAllDt.tlb
/iid iid_vwAllDT.cpp
/h midl_vwAllDT.h
/o vwAllDT.log
/proxy vwAllDT_p.c

This example response file for the MIDL compiler contains directives
to perform the following operations:

/win32
1 The target environment is Microsoft Windows 32-bit (NT).

/iid iid_vwAllDT.cpp
2 Specify interface UUID file name. The name of this output file is

set with the ‘iid_’ prefix to hint at its content and indicate that it
was produced from the MIDL compiler.

/h midl_vwAllDT.h
3 Specify header file name. The name of this output file is set with

the ‘midl_’ prefix to indicate that it was produced from the MIDL
compiler.

/o vwAllDT.log
4 Redirects output from the screen to a file.

vwAllDT.idl
The input file.
COM Connect User’s Guide 8-19

Implementing Automation Objects
The examples use the /iid and /h and directives in order to avoid a
potential file name collision with Visual C++. With Visual C++, files
can be automatically generated from a type library to create files
containing C++ utilities.

Mapping COM Interface Functions to a Class
A Specification Table for a COM Automation server object is used to
map incoming requests to methods implemented by the published
class. A Specification Table defines one Member Specification for
each method and property that can be used on the Automation
object. In general, each Member Specification contains a name, a
dispatch ID, type information for a return value and the names and
data types of any parameters. The type information is used to
translate objects between their COM and Smalltalk representation.
For a COM Automation server, this table is indexed by DISPID.

A specification table is created in the examples by decoding its literal
representation which is defined by a method, typically implemented in
the class being published. A literal specification for a specification
table is created from the information in the type library by the
COMAutomationTypeAnalyzer development utility. The next
expression can be found in the class comment for
AutomationAllDataTypes.

The following figure shows how a literal specification is derived.
8-20 VisualWorks

Mapping COM Interface Functions to a Class
Deriving a literal specification

"Create the specification for all dispatch interfaces in the type library."
COMAutomationTypeAnalyzer

generateTypeLibrarySpecifications: AutomationAllDataTypes
typeLibraryEnglish

forRole: #server.
In the preceding example, the text generated by the
COMAutomationTypeAnalyzer class is cut and pasted into a method
called literalSpecification. Note the following about the literal
specification:

• The specification table is indexed by member ID:

#specificationKey: #memberID
• No selectors are explicitly defined in the literal specification, so

the default selectors are used.

• For a method, the default selector is the method name itself and
arguments keywords are _:.

• For properties, the default set selector is set<Proper-tyName>:
and the default get selector is get<PropertyName>.

literalSpecification
" Type Library VWALLDT Dispatch Interfaces "
" Generated by COMAutomationTypeAnalyzer on June 19, 1997
17:30:52.000 "
" From VisualWorks(R), Release 2.5.2 of September 26, 1995 "
" This is the specification table literal for the dispatch Interface:
COM Connect User’s Guide 8-21

Implementing Automation Objects
Name:IAllDataTypesDisp
Locale ID:1033
IID: {DB5DE8E2-AD1F-11D0-ACBE-5E86B1000000}
Methods:3
Properties:18

 This interface is indexed for use by a server. "
" Specification Table Header "
^#(#COMDispatchSpecificationTable

#specificationKey: #memberID
#name: 'IAllDataTypesDisp'
#iid: #(#GUID #[16rE2 16rE8 16r5D 16rDB 16r1F 16rAD 16rD0

16r11 16rAC 16rBE 16r5E 16r86 16rB1 0 0 0])
#lcid: 1033
" Methods (3) "
" The selector sent to the published object is by default the

method name itself. "
" The keyword for method arguments is by default #with: "
" The selector can be set manually in each methodspecification

by using the pattern: "
" #selector: #mySelector "
#('method' 'Quit' 16r60020024

)
#('method' 'Reset' 16r60020025

)
#('method' 'ManyArguments' 16r60020026

#typeCode: #VT_VARIANT
#parameterTypes: #(#VT_DISPATCH #VT_BSTR #VT_I4)
#parameterNames: #('AnIDispatch' 'PropertyName' 'Number')
)

" Properties (18) "
" The selector sent to the published object to set a property is

by default set<PropertyName>: "
" The selector sent to the published object to get a property is

by default get<PropertyName>: "
" The selector can be set manually in each property

specification by using the pattern: "
" #setSelector: #mySelector: "
" #getSelector: #mySelector "
#('property' 'LONGValue' 16r60020000

#typeCode: #VT_I4
#parameterTypes: #(#VT_I4)
)

#('property' 'BYTEValue' 16r60020002
#typeCode: #VT_UI1
#parameterTypes: #(#VT_UI1)
)

#('property' 'SHORTValue' 16r60020004
8-22 VisualWorks

Mapping COM Interface Functions to a Class
#typeCode: #VT_I2
#parameterTypes: #(#VT_I2)
) #('property' 'FLOATValue' 16r60020006
#typeCode: #VT_R4
#parameterTypes: #(#VT_R4)
)

#('property' 'DOUBLEValue' 16r60020008
#typeCode: #VT_R8
#parameterTypes: #(#VT_R8)
)

#('property' 'VARIANT_BOOLValue' 16r6002000A
#typeCode: #VT_BOOL
#parameterTypes: #(#VT_BOOL)
)

#('property' 'SCODEValue' 16r6002000C
#typeCode: #VT_ERROR
#parameterTypes: #(#VT_ERROR)
)

#('property' 'DATEValue' 16r6002000E
#typeCode: #VT_DATE
#parameterTypes: #(#VT_DATE)
)

#('property' 'BSTRValue' 16r60020010
#typeCode: #VT_BSTR
#parameterTypes: #(#VT_BSTR)
)

#('property' 'IUnknownReference' 16r60020012
#typeCode: #VT_UNKNOWN
#parameterTypes: #(#VT_UNKNOWN)
)

#('property' 'IDispatchReference' 16r60020014
#typeCode: #VT_DISPATCH
#parameterTypes: #(#VT_DISPATCH)
)

#('property' 'VARIANTValue' 16r60020016
#typeCode: #VT_VARIANT
#parameterTypes: #(#VT_VARIANT)
)

#('property' 'CURRENCYValue' 16r60020018
#typeCode: #VT_CY
#parameterTypes: #(#VT_CY)
)

#('property' 'SAFEARRAY_I4Value' 16r6002001A
#typeCode: #(#VT_ARRAY #VT_I4)
#parameterTypes: #(#(#VT_ARRAY #VT_I4))
)

#('property' 'SAFEARRAY_DISPATCHValue' 16r6002001C
COM Connect User’s Guide 8-23

Implementing Automation Objects
#typeCode: #(#VT_ARRAY #VT_DISPATCH)
#parameterTypes: #(#(#VT_ARRAY #VT_DISPATCH))
)

#('property' 'SAFEARRAY_UNKNOWNValue' 16r6002001E
#typeCode: #(#VT_ARRAY #VT_UNKNOWN)
#parameterTypes: #(#(#VT_ARRAY #VT_UNKNOWN))
)

#('property' 'SAFEARRAY_BSTRValue' 16r60020020
#typeCode: #(#VT_ARRAY #VT_BSTR)
#parameterTypes: #(#(#VT_ARRAY #VT_BSTR))
)

#('property' 'SAFEARRAY_VARIANTValue' 16r60020022
#typeCode: #(#VT_ARRAY #VT_VARIANT)
#parameterTypes: #(#(#VT_ARRAY #VT_VARIANT))
)

).
" End of specification "

Note: A SAFEARRAY can be of any COM Automation-
compatible type. Not all combinations for SAFEARRAYs are
shown in this example.

Mapping DISPID Requests to Your Class
When an invocation request comes into VisualWorks, a DISPID is
supplied to identify which method or property is to be invoked on
behalf of the client. This input DISPID is used as an the index into the
specification table for the object being invoked. Once the
corresponding member specification is found in the specification
table, it identifies which method to call on the published object. The
member specification also indicates how to decode the arguments
and return value.

Mapping a DISPID to a Method
The selector used to call a method on a published object is by default
the same as the method name, case included. For example, the
example Reset method is mapped to the published object (an instance
of AutomationAllDataTypes) method Reset. The method to call can be
overridden in the method specification with the #selector: specifier. For
example, you could change the definition of Reset to invoke the
initialize method. The current definition is as follows:

#('method' 'Reset' 16r60020025)
8-24 VisualWorks

Mapping COM Interface Functions to a Class
A new definition might be as follows:

#('method' 'Reset' 16r60020025
#selector: #initialize)

Mapping a DISPID to a Method With Arguments
The selector used to call a method on the published object is by
default the same as the method name, case included. For each
argument selector the default keyword _: is used. For example, the
ManyArguments method is mapped to the published object (an
instance of AutomationAllDataTypes) method ManyArguments:_:_:.
This method takes three input argument and answers a value. At the
interface level, answers are actually placed in the last argument
which is marked in the IDL file by [out, retval]. The method to call can
be overridden in the method specification with the #selector: specifier.
For example, you could change the definition of ManyArguments to
invoke another method selector. The current definition is as follows:

#('method' 'ManyArguments' 16r60020026
#typeCode: #VT_VARIANT
#parameterTypes: #(#VT_DISPATCH #VT_BSTR #VT_I4)
#parameterNames: #('AnIDispatch' 'PropertyName' 'Number')

)
A new definition might be as follows:

#('method' 'ManyArguments' 16r60020026
#typeCode: #VT_VARIANT
#parameterTypes: #(#VT_DISPATCH #VT_BSTR #VT_I4)
#parameterNames: #('AnIDispatch' 'PropertyName' 'Number')
#selector: #SomeNewName:argNumber2:argNumber3:

)

Mapping a DISPID to a Property
For properties, two messages can be used, a get message (or
accessor) and a set message (or mutator). By default, the get selector
is defined as #get concatenated to the property name. The set
selector is defined as #set concatenated to the property name. In the
example, the LONGValue property is defined as follows:

#('property' 'LONGValue' 16r60020000
#typeCode: #VT_I4
#parameterTypes: #(#VT_I4))

This definition indicates the return value for the property is a COM
long (VT_I4 which maps to a Smalltalk Integer). The parameter types
shows that when the property is set the argument is also a COM long.
COM Connect User’s Guide 8-25

Implementing Automation Objects
When a property get invocation comes into Smalltalk, the method
getLONGValue is invoked on the published object and answers an
Integer. When a property set invocation comes into Smalltalk, the
method setLONGValue: is invoked on the published object with an
Integer argument.

To change either methods invoked on the published object, the literal
member specification can be redefined with custom selectors. For
example, you can change the definition to invoke a pair of methods
myLongValue, myLongValue:

#('property' 'LONGValue' 16r60020000
#typeCode: #VT_I4
#parameterTypes: #(#VT_I4)
#getSelector: #myLongValue
#setSelector: #myLongValue:)

Exposing Classes Through IDispatch
Publishing a class through an IDispatch consists of the following
tasks:

• Create or choose a Smalltalk class to publish. If your class is
going to keep a copy of any interfaces, follow the rules for
interface reference counting in this section.

• Implement the class initialization code. This code is meant to be
executed when the class is installed in an image. It should not
cause COM APIs to be called.

• Create an IDL file describing each class to publish from the
image. Compile the IDL file in a type library.

• Implement the application startup logic. This code hooks up your
class to COM when the run-time image starts up.

• Create a .reg File that describes to COM where to find your
application.

• Make a run-time image.

The Big Picture
This section presents an overview of the process of image startup,
object creation and object function invocation.
8-26 VisualWorks

Exposing Classes Through IDispatch
Image Startup
When a object server application image startup method is called for a
published object, the steps shown in the following figure should
occur.

Image startup sequence

In step 3 an instance of COMAutomationServerClassFactoryObject is
created by your application startup logic and managed by COM
Connect. This is a COM class factory that is used to create instances
of the published class through a COMAutomationServer. You
configure the class factory with the class to be published (your
automation class) and the dispatch specifications describing the
capabilities of the published object.
COM Connect User’s Guide 8-27

Implementing Automation Objects
Object Creation
When an object server application image is started as a result of a
client request to COM to create an instance of your COM object, the
steps shown in following figure take place.

Object creation sequence
8-28 VisualWorks

Exposing Classes Through IDispatch
Object Function Invocation
When the published object is running and a dispatch invocation call
comes in from the client, the steps in following figure take place.

Object function invocation sequence

Class Initialization
For a class used in Automation to be properly managed in the image,
the class must:

• Ask to be notified of a run-time image startup in order to connect
the Smalltalk class to the COM world.

• Ask to be notified of image shutdown and image save in order to
release type libraries.
COM Connect User’s Guide 8-29

Implementing Automation Objects
These tasks are accomplished by implementing initialization code
meant to be executed when the class is installed in the image. The
example includes a ClassInitializer class method:

ClassInitializer
"This method is run at COM Connect installation time."
" self ClassInitializer "
self registerSessionEventHandlers.

registerSessionEventHandlers
"Install the event handlers for the receiver."
self removeSessionEventHandlers. " always safe "
COMSessionManager

when: #shutdownImage
send: #releaseTypeLibraries to: self.

COMSessionManager
when: #confirmSaveImage
send: #releaseTypeLibraries to: self.

ImageManager
when: #deploymentStartup
send: #startUpApplication to: self.

The registerSessionEventHandlers method performs the following:

• Call removeSessionEventHandlers as a safety.

• Ask to be notified of image shutdown and image save in order to
release type libraries.

• Ask to be notified of a run-time image startup in order to connect
the class to COM.

Note: A ClassInitializer method must not cause any COM APIs to
be called.

The methods implementing these functions are described in the
sections Type Library Management and Application Startup.

Application Startup
In the example, the message startUpApplication is sent to the class
when a run-time image is started. On application startup, your
'startUpApplication' method must perform the following tasks:

• Verify that the image is properly started for serving an
Automation server session.

• Verify that type libraries are properly registered.
8-30 VisualWorks

Exposing Classes Through IDispatch
• Register the class factory for each class to publish. This causes
each Specification Table to be constructed.

• Set the termination policy.

A startUpApplication method is typically defined on the class side as
follows:

startUpApplication
"Start up the Automation object server."
"Initialize COM and verify that the application is being run as an object
server."
COMSessionManager initializeAutomationServer.
"Make sure the type libraries are ok."
self updateTypeLibraries.
"Register the class factory for the object server application."
COMAutomationServer registerServerClassFactoryForClass:self.
"Arrange for server application termination "
COMSessionManager exitIfNotInUse: false.

The steps in the startUpApplication methods are explained below.

Verify Startup for an Automation Server
The COMSessionManager class method initializeAutomationServer
initializes COM and verifies that the application is being run as an
Automation object server. The session is terminated if the necessary
conditions for an object server application are not satisfied.

COMSessionManager initializeAutomationServer.
If the server EXE is not started with the /Automation command line
argument, a dialog displays instructions to set the command
argument, then terminates.

Verify Type Library Registration
On application startup, the class should make sure that type libraries
are properly registered:

self updateTypeLibraries.
The example method updateTypeLibraries updates the registry for each
type library defined by the application. For each type library, this
method makes sure that the type library is properly registered by
performing the following tasks:

1 Try to load the library as registered. If OK, then
COM Connect User’s Guide 8-31

Implementing Automation Objects
2 Update the registry with dispatch interface information from the
type library.

3 If (1) fails, then try to load the type library from its file name and
register the dispatch interfaces.

Register the Class Factory
Register the object’s class factory with COM so other applications
can use it to create new objects:

COMAutomationServer registerServerClassFactoryForClass: self.
A look at the COMAutomationServer class method
registerServerSessionClassFactoryForClass shows that your class must
implement the class methods clsid, specificationTable and typeLibraries
in order to use this class factory registration service.

registerClassFactoryForClass: aClass
" Register a class factory to create instances of <aClass>. Answer the
class factory. Answer nil if class factory registration failed. "
^self registerClassFactoryForClass: aClass

clsid: aClass clsid
specificationTable: aClass specificationTable
typeLibraries: aClass typeLibraries

You can call the COMAutomationServer
registerClassFactoryForClass:clsid:specificationTable:typeLibraries: method
and provide the necessary argument values explicitly, if the pattern of
the protocol expected of the class argument does not suit your
application.The example, using the registerClassFactoryForClass:,
defines the methods clsid, specificationTable and typeLibraries as
follows:

clsid
"Answer the CLSID under which a the receiver is published as an
Automation object."
" '{DB5DE8E3-AD1F-11d0-ACBE-5E86B1000000}' asGUID storeString "

^GUID fromBytes: #[16rE3 16rE8 16r5D 16rDB 16r1F 16rAD 16rD0
16r11 16rAC 16rBE 16r5E 16r86 16rB1 0 0 0]

specificationTable
"Private. Answer the specification table for the receiver."

^self literalSpecification decodeAsLiteralArray

typeLibraries
"Answer the type library dictionary. The dictionary keys are LCIDs and
the values are instances of COMTypeLibrary."| aTypeLibrary |
8-32 VisualWorks

Exposing Classes Through IDispatch
TypeLibraries isNil ifTrue: [
TypeLibraries := Dictionary new.
aTypeLibrary := self newTypeLibraryEnglish.
TypeLibraries at: aTypeLibrary lcid put: aTypeLibrary.
"Other type libraries can be added for additional languages...
aTypeLibrary := self typeLibraryLanguageX.
TypeLibraries at: aTypeLibrary lcid put: aTypeLibrary."

].
^TypeLibraries

Type Library Management
Each class should be described in a type library to properly play the
Automation game. When an Automation class is used, at least one
type library should be registered. There can be an additional type
library for each additional language supported.

You must create and compile an IDL file for the objects you want to
publish. Type libraries are discussed in further detail elsewhere in this
document. An IDL file defines a type library with a type library ID, a
locale ID, a library name, a major and minor version.

The most important method in the example is newTypeLibraryEnglish,
which defines the COMTypeLibrary instance used with the
COMAutomationServer class. The newTypeLibraryEnglish method
answer a new instance of a COMTypeLibrary, which is used to create
the type library entries in the registration database at installation time
and to update the type library entries at runtime.

newTypeLibraryEnglish
"Answer a type library for the English language for the
application."
^COMTypeLibrary new

libraryID: self typeLibraryID;
lcid: COMTypeLibrary lcidEnglish;
directoryName: COMSessionManager absoluteCOMDirectoryName,
'Examples\COMAuto\AllDataTypes\TypeLibrary';
fileName: 'VwAllDT.tlb';
majorVersion: 1;
minorVersion: 0

The example implements type library management as listed below.
(Note that when this example is upgraded to use a dual interface,
most of this code is unnecessary, since the dual interface framework
handles type library management.)
COM Connect User’s Guide 8-33

Implementing Automation Objects
registerTypeLibraries
"Register the type libraries."
self typeLibraries do: [: aTypeLibrary |

aTypeLibrary createRegistration]

releaseTypeLibraries
"Release the type libraries."
| toBeReleased |
"This test does not use self to avoid loading."
TypeLibraries isNil ifTrue: [^self].
toBeReleased := TypeLibraries.
TypeLibraries := nil.
toBeReleased do: [: aTypeLibrary | aTypeLibrary release].

typeLibraries
"Answer the type library dictionary. The dictionary keys are
LCIDs and the values are instances of COMTypeLibrary."
| aTypeLibrary |
TypeLibraries isNil ifTrue: [

TypeLibraries := Dictionary new.
aTypeLibrary := self newTypeLibraryEnglish.
TypeLibraries at: aTypeLibrary lcid put: aTypeLibrary.
"Other type libraries can be added for additional languages...
aTypeLibrary := self typeLibraryLanguageX.
TypeLibraries at: aTypeLibrary lcid put: aTypeLibrary."

].
^TypeLibraries

typeLibraryEnglish
"Answer a type library for the English language for the application."
^self typeLibraries at: COMTypeLibrary lcidEnglish

typeLibraryID
"Answer the IID of the receiver's type library."
" '{DB5DE8E1-AD1F-11d0-ACBE-5E86B1000000}' asGUID storeString "
 ^GUID fromBytes: #[16rE1 16rE8 16r5D 16rDB 16r1F 16rAD
16rD016r11 16rAC 16rBE 16r5E 16r86 16rB1 0 0 0]

unregisterTypeLibraries
"Unregister the type libraries."
self typeLibraries do: [: aTypeLibrary |

aTypeLibrary removeRegistration]

updateTypeLibraries
"Update the registry for the type libraries."
self typeLibraries do: [: aTypeLibrary |

aTypeLibrary updateRegistration]
8-34 VisualWorks

Supporting Multiple National Languages
Run-Time Installation
“Publishing Automation Objects describes the steps involved in
saving an image for run-time deployment. For a Smalltalk class
published with an IDispatch interface, your class should implement
an installRuntime method to provide some housekeeping hooks for
your type libraries.

The example class AutomationAllDataTypes class method installRuntime
is defined as follows:

installRuntime
" Prepare the receiver for deployment in a run-time image
configuration. You can extend this method and place installation
code in it. "
" self installRuntime "
self

releaseTypeLibraries;
registerTypeLibraries.

Supporting Multiple National Languages
In order to support multiple languages, you must create a type library
for each language. Each type library must then be wrapped by an
instance of COMTypeLibrary in your type library management code
for the published class. If you are implementing a dual interface
object, this would be done through your COMDualInterfaceObject
subclass getTypeLibraries class method.

Implementing IDispatch for Multilingual Applications
When creating applications that support multiple languages, you
need to create separate type libraries for each supported language,
as well as for versions of the IDispatch member functions that include
dependencies for each language.

Creating Separate Type Libraries
For each supported language, write and register a separate type
library. The type libraries use the same DISPIDs and globally unique
identifiers, but localize names and Help strings based on the
language. You must also define the LCIDs for the supported
languages.
COM Connect User’s Guide 8-35

Implementing Automation Objects
The following registration file example includes entries for U.S.
English and German.

// Type library registration information.
HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826

-00DD01103DE1}

HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826-

00DD01103DE1}\2.0 =Hello 2.0 Type Library

HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826-

00DD01103DE1}\2.0\HELPDIR
=
// U.S. English.
HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826-

00DD01103DE1}\2.0\409\win32 = helloeng.tlb
// German.
HKEY_CLASSES_ROOT\TypeLib\{F37C8060-4AD5-101B-B826-

00DD01103DE1}\2.0\407\win32 = helloger.tlb

Passing Formatted Data Using IDataObject
Often, an application needs to accept formatted data as an argument
to a method or property. Examples include a bitmap, formatted text,
or a spreadsheet range. When handling formatted data, the
application should pass an interface reference to an object that
implements the COM IDataObject interface.

By using this interface, applications can retrieve the data of any
Clipboard format. Because a COM object that supports the
IDataObject interface can provide data of more than one format, a
caller can provide data in several formats and let the called object
choose which format is most appropriate.

If the data object implements IDispatch, it should be passed using the
VT_DISPATCH flag. If the data object does not support IDispatch, it
should be passed with the VT_UNKNOWN flag.

For more information on the IDataObject interface, see Implementing
COM Objects.
8-36 VisualWorks

Implementing the IEnumVARIANT Interface
Implementing the IEnumVARIANT Interface
Automation defines the IEnumVARIANT interface to provide a
standard way for ActiveX clients to iterate over collection of values.
Every collection object should expose a read-only property named
_NewEnum to let ActiveX clients know that the object supports
iteration. The _NewEnum property returns an enumerator object that
supports IEnumVARIANT.

The IEnumVARIANT interface provides a way to iterate through the
items contained by a collection object. This interface is supported by
an enumerator object that is returned by the _NewEnum property of
the collection object, as in the following figure.

Implementing the IEnumVARIANT interface

The IEnumVARIANT interface defines these member functions:

• Next. Retrieves one or more elements in a collection, starting
with the current element.

• Skip. Skips over one or more elements in a collection.

• Reset. Resets the current element to the first element in the
collection.

• Clone. Copies the current state of the enumeration so you can
return to the current element after using Skip or Reset.

IEnumVARIANT can be supported by using the
COMVariantEnumerator object provided with COM Connect. For
more information, see Implementing COM Objects.

The _NewEnum property identifies an object as supporting iteration
through the IEnumVARIANT interface. This property has the following
requirements:

• Must be named _NewEnum and must not be localized.

• Must return a reference to the enumerator object’s IUnknown
interface.
COM Connect User’s Guide 8-37

Implementing Automation Objects
• Must use the reserved DISPID for _NewEnum:
DISPID_NEWENUM (-4). This constant is defined in
COMAutomationConstants.

Returning an Error
ActiveX objects typically return rich contextual error information,
including an error number, a description of the error, and the path of a
Help file that supplies more information. Objects that do not need to
return detailed error information can simply return an HRESULT that
indicates the nature of the error.

Passing Exceptions Through IDispatch
When an error occurs, objects invoked through IDispatch can return
DISP_E_EXCEPTION and pass the details in the pexcepinfo
parameter (an EXCEPINFO structure) to IDispatch::Invoke.

Troubleshooting Q & A

Problem:

The client gets the error RPC_E_SERVERFAULT when invoking
virtual function table methods for a dual interface object. From a
COM Connect client, the walkback title would read: “Unhandled
Exception: The server threw an exception (HRESULT
RPC_E_SERVERFAULT)”.

Solution 1:

The dual interface classes need to be re-initialized. For example:

IAllDataTypesDispPointer ClassInitializer.
IAllDataTypesDispImplementation ClassInitializer.
IAllDataTypesDisp ClassInitializer.

Solution 2:

This usually means that the server object has not been created.
This can happen when you attempt to register a class factory for
a CLSID that is already in use. Since the CLSID is in use for
another class factory, the new class is not registered. For
example, when you upgrade the sample class
8-38 VisualWorks

Troubleshooting Q & A
AutomationAllDataTypes from being an Automation only object to
AllDataTypesCOMObject, which supports a dual interface, make
sure to un-install the old class.

Solution 3:

Does the .reg file point to the image and object engine that your
server application needs to use? Did you update your server
image but forgot to copy it to the location indicated by the .reg
file?

Problem:

The COM server does not start, causing an error.

Solution:

If you deleted your COM server .exe file, COM changed the
Registration Database to reflect the deletion or the move to the
deleted file space. If you copy your COM server to the same
place, the Registration Database is not modified. You must re-
register the COM server by running its .reg file.
COM Connect User’s Guide 8-39

Implementing Automation Objects
8-40 VisualWorks

9

Publishing Automation Objects

Creating a Registration File
Before an application can use COM and Automation, the COM
objects must be registered with the user's system registration
database. Sample registration files to perform this task are provided
for the COM objects and the sample applications. Registration makes
the following possible:

• ActiveX clients can create instances of the objects through
CoCreateInstance. In COM Connect, this is encapsulated in the
classes IClassFactory and COMDispatchDriver.

• Automation tools can find the type libraries that are installed on
the user’s computer.

• COM can find code for the dealing with interfaces remotely.

Registering the Application
Registration maps the ProgID of the application to a unique CLSID,
so that you can create instances of the application by name, rather
than by CLSID. For example, registering Microsoft Excel associates a
CLSID with the ProgID Excel.Application. In COM Connect, you use the
ProgID to create an instance of the application as follows:

aDispatchDriver := COMDispatchDriver createObject: 'Excel.Application'.
You can pass a ProgID or GUID with the following
COMDispatchDriver class messages:

• pathName: aFileName

• onActiveObject: aCLSIDOrProgID
COM Connect User’s Guide 9-1

Publishing Automation Objects
• pathName: aFileName progID: aCLSIDOrProgID

• createObject: aCLSIDOrProgID serverName: serverName

Only applications whose objects are created via their ProgID or
CLSID need to be registered.

The registration file uses the following syntax for the application:

\AppName.ObjectName[.VersionNumber] = human_readable_string
\AppName.ObjectName\CLSID = {UUID}

Where the names are defined as:

AppName

The name of the application.

ObjectName

The name of the object to be registered.

VersionNumber

The optional version number of the object.

human_readable_string

A string that describes the application to users. The
recommended maximum length is 40 characters.

GUID

The universally unique identifier for the application CLSID. To
generate a UUID for your class, evaluate the expression: GUID new

Registering Classes
Objects that can be created through Automation must be registered
with the system. For these objects, registration maps a CLSID to the
Automation component file (.dll or .exe) in which the object
resides. The CLSID also maps an ActiveX object back to its
application and ProgID.
9-2 VisualWorks

Creating a Registration File
The following figure shows how registration connects ProgIDs,
CLSIDs, and ActiveX components.

ProgIDs and Clsids in the registry

The type library can be obtained from its CLSID using the following
syntax:

\CLSID\TypeLib = {UUID of type library}
The following syntax indicates that the server is an ActiveX
component:

\CLSID\Programmable
The following example shows required COM class registry keys:

HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826
-00DD01103DE1}

= Hello 2.0 Application
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-

00DD01103DE1}
\ProgID = Hello.Application.2
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826

00DD01103DE1}
\VersionIndependentProgID = Hello.Application
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-

00DD01103DE1}
\LocalServer32 = hello.exe /Automation
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-

00DD01103DE1}
\TypeLib = {F37C8060-4AD5-101B-B826-00DD01103DE1}
HKEY_CLASSES_ROOT\CLSID\

{F37C8061-4AD5-101B-B826-00DD01103DE1}\Programmable
COM Connect User’s Guide 9-3

Publishing Automation Objects
The registration file uses the following syntax for each class of each
object that the application exposes:

\CLSID\{UUID} = human_readable_string
\CLSID\{UUID}\ProgID = AppName.ObjectName.VersionNumber
\CLSID\{UUID}\VersionIndependentProgID = AppName.ObjectName
\CLSID\{UUID}\LocalServer[32] = filepath[/Automation]
\CLSID\{UUID}\InProcServer[32] = filepath[/Automation]

Where the names are defined as:

human_readable_string

A string that describes the object to users. The recommended
maximum length is 40 characters.

AppName

The name of the application, as specified in the application
registration string.

ObjectName

The name of the object to be registered.

VersionNumber

The version number of the object.

UUID

The universally unique identifier for the application CLSID. To
generate a UUID for your class, evaluate the expression: GUID new

filepath

The full path and name of the file that contains the object. The
optional /Automation switch tells the application it was launched for
Automation purposes. Specify the switch for the Application
object’s class.

The ProgID and VersionIndependentProgID are used by other
programmers to gain access to the objects you expose. These
identifiers (IDs) should use consistent naming guidelines across all
your applications as follows:

• Can contain up to 39 characters.

• Must not contain any punctuation (except for the period).

• Must not start with a digit.
9-4 VisualWorks

Creating a Registration File
Version-independent names consist of an AppName.ObjectName,
without a version number. For example, Word.Document or Excel.Chart.

Version-dependent names consist of an
AppName.ObjectName.VersionNumber, such as Excel.Application.5.

LocalServer[32]
Indicates that the ActiveX component is an .exe file and runs in a
separate process from the ActiveX client. The optional 32 specifies a
server intended for use on 32-bit Windows systems.

InProcServer[32]
Indicates that the ActiveX component is a DLL and runs in the same
process space as the ActiveX client. The optional 32 specifies a
server intended for use on 32-bit Windows systems. The filepath you
register should give the full path and name. Applications should not
rely on the MS-DOS PATH variable to find the object.

Registering a Type Library
Tools and applications that expose type information must register the
information so that it is available to type browsers and programming
tools. The correct registration entries for a type library can be
generated by calling the RegisterTypeLib function on the type library.
This operation is performed by the COMTypeLibrary method
createRegistration. The regedit.exe file supplied with the Win32
SDK, as well as with Windows NT and Windows 95, can then be
used to write the registration entries from a text file into the system
registration database.

The following information is registered for a type library:

\TypeLib\{libUUID}
\TypeLib\{libUUID}\major.minor = human_readable_string
\TypeLib\{libUUID}\major.minor\HELPDIR = [helpfile_path]
\TypeLib\{libUUID}\major.minor\Flags = typelib_flags
\TypeLib\{libUUID}\major.minor\lcid\platform =
localized_typelib_filename

Where the names are defined as:

libUUID

The universally unique ID of the type library.
COM Connect User’s Guide 9-5

Publishing Automation Objects
major.minor

The two-part version number of the type library. If only the minor
version number increases, all the features of the previous type
library are supported in a compatible way. If the major version
number changes, code that compiled against the type library
must be recompiled. The version number of the type library might
differ from the version number of the application.

human_readable_string

A string that describes the type library to users. The
recommended maximum length is 40 characters.

helpfile_path

The location of the Help file for types in the type library. If the
application supports type libraries for multiple languages, the
libraries might refer to different filenames in the Help file
directory.

typelib_flags

The hexadecimal representation of the type library flags for this
type library. These are the values of the LIBFLAGS enumeration,
and are the same flags specified in the uLibFlags parameter to
ICreateTypeLib::SetLibFlags. These flags cannot have leading zeros
or an 0x prefix.

lcid

The hexadecimal string representation of the locale identifier
(LCID). It is one to four hexadecimal digits with no 0x prefix and
no leading zeros. The LCID might have a neutral sublanguage ID.

platform

The target operating system platform: 16-bit Windows, 32-bit
Windows, or Apple® Macintosh®.

localized_typelib_filename

The full name of the localized type library.

Using the LCID specifier, an application can explicitly register the file
names of type libraries for different languages. This allows the
application to find the desired language without having to open all
type libraries with a given name.
9-6 VisualWorks

Creating a Registration File
For example, to find the type library for Australian English (309), the
application first looks for it. If that fails, the application looks for an
entry for standard English (a primary identifier of 0x09). If there is no
entry for standard English, the application looks for
LANG_SYSTEM_DEFAULT (0). For more information on locale
support, refer to your operating system manuals for the national
language support (NLS) interface.

Note: The registration of type libraries described in this section
can be performed automatically when your application uses a
COMTypeLibrary object with the framework.

Registering Interfaces
Applications that add interfaces need to register the interfaces in the
registration database so COM can find the appropriate marshaling
code for interprocess communication. By default, Automation
registers dispinterfaces that appear in the .odl or .idl file. It also
registers remote Automation-compatible interfaces that are not
registered elsewhere in the system registry under the label
ProxyStubClsid32 (or ProxyStubClsid on 16-bit systems).

The syntax of the information registered for an interface is:

\Interface\{UUID} = InterfaceName
\Interface\{UUID}\Typelib = {LIBID}
\Interface\{UUID}\ProxyStubClsid[32] = {CLSID}

Where the tags are defined as follows:

UUID

The universally unique ID of the interface.

InterfaceName

The name of the interface.

LIBID

The universally unique ID associated with the type library in
which the interface is described.

CLSID

The universally unique ID associated with the proxy/stub
implementation of the interface, used internally by COM for
interprocess communication. ActiveX objects use the proxy/stub
implementation of IDispatch.
COM Connect User’s Guide 9-7

Publishing Automation Objects
Note: The registration of interfaces described in this section can
be performed automatically when your application uses a
COMTypeLibrary object with the framework.

Example
Here is the example from COM\Examples\COMAuto\ AllDataT\VWAllDT.reg

REGEDIT
/

*
/* VisualWorks COM All Data Types Example
/* Copyright (c) 1997 ObjectShare
/*
/* Summary of GUIDs:
/*
/* CLSID_VWAllDataTypes:{DB5DE8E3-AD1F-11d0-ACBE-
5E86B1000000}
/* Type library: vwAllDT.tlb{DB5DE8E1-AD1F-11d0-ACBE-
5E86B1000000}
/*
/* Created by Gary Gregory
/* Last update: May 19-1997.
/*
/

*
; Version independent registration. Points to version 1.0
HKEY_CLASSES_ROOT\VisualWorks.AllDataTypes = VisualWorks

All Data Types
HKEY_CLASSES_ROOT\VisualWorks.AllDataTypes\Clsid =

{DB5DE8E3-AD1F-11d0-ACBE-5E86B1000000}

; Version 1.0 registration
HKEY_CLASSES_ROOT\VisualWorks.AllDataTypes.1 = VisualWorks

All DataTypes 1.0
HKEY_CLASSES_ROOT\VisualWorks.AllDataTypes.1\Clsid =

{DB5DE8E3-AD1F-11d0-ACBE-5E86B1000000}
HKEY_CLASSES_ROOT\CLSID\{DB5DE8E3-AD1F-11d0-ACBE-

5E86B1000000} = VisualWorks All Data Types 1.0
HKEY_CLASSES_ROOT\CLSID\{DB5DE8E3-AD1F-11d0-ACBE-

5E86B1000000}\ProgID = VisualWorks.AllDataTypes.1
HKEY_CLASSES_ROOT\CLSID\{DB5DE8E3-AD1F-11d0-ACBE-

5E86B1000000}\VersionIndependentProgID =
VisualWorks.AllDataTypes
HKEY_CLASSES_ROOT\CLSID\{DB5DE8E3-AD1F-11d0-ACBE-
9-8 VisualWorks

Creating a Run-Time Image
5E86B1000000}\LocalServer32 = C:\vw30\Bin\vwnt.exe
C:\vw30\Com\Examples\Automation\vwComSrv.im /Automation
HKEY_CLASSES_ROOT\CLSID\{DB5DE8E3-AD1F-11d0-ACBE-

5E86B1000000}\TypeLib = {DB5DE8E1-AD1F-11d0-ACBE-
5E86B1000000}
HKEY_CLASSES_ROOT\CLSID\{DB5DE8E3-AD1F-11d0-ACBE-

5E86B1000000}\Programmable
; About Type Library and interface registrations.
; All interfaces that support virtual function table binding must be
registered.
; The RegisterTypeLib and LoadTypeLib APIs do this automatically
through
; the COMTypeLibrary services.
; eof

In this example, note that object engine executable file name is
vwnt.exe and the image file name is vwComSrv.im. These names
must match the object engine and image name to publish.

Creating a Run-Time Image
This section describes how to prepare a run-time image for an object
published with an IDispatch and a dual interface.

Publishing an Object Through IDispatch
When you are ready to make a run-time image to publish an object
through IDispatch, you must do the following:

1 Perform any clean up.

2 Reset the COMSessionManager to install run-time image
configuration settings.

3 Configure the COMSessionManager with run-time settings
appropriate for your application.

4 Install your Smalltalk classes.

The example of publishing the AutomationAllDataTypes class through
an IDispatch is installed as follows:

"Un-register the other example to avoid CLSID clash since second
example is an upgrade from the first"
AllDataTypesCOMObject unregister.
"Always"
COMSessionManager installRuntime.

COM Connect User’s Guide 9-9

Publishing Automation Objects
"Set the directory where COM Connect is installed so type libraries can be
located."
COMSessionManager defaultCOMDirectoryName: 'C:\vw30\COM'.
"Your application run-time installation, for example:"
AutomationAllDataTypes installRuntime.

Publishing an Object Through a Dual Interface
When you are ready to make a run-time image to publish an Object
through a dual interface, you must do the following:

1 Perform any clean up.

2 Reset the COMSessionManager to install run-time image
configuration settings.

3 Configure the COMSessionManager with run-time settings
appropriate for your application.

4 Install your COMDualInterfaceObject subclasses.

The example of publishing AutomationAllDataTypes through a dual
interface is installed as follows:

"Un-register other example to avoid CLSID clash since second example is
an upgrade from the first"
AutomationAllDataTypes unregister.
"Always"
COMSessionManager installRuntime.
"Set the directory where COM Connect is installed so type libraries can be
located."
COMSessionManager defaultCOMDirectoryName: 'C:\vw30\COM'.
"Your application run-time installation, for example:"
AllDataTypesCOMObject installRuntime.

These expressions are stored in the COM\Examples\COMAuto\
servers.txt file.

Creating the Deployment Image
You can now save your image with a new name, these examples use
the image name VwComSrv.im. For these examples, the image is
then copied to its destination directory:

COM\Examples\ComAuto

You must make sure that the object engine image file locations
matches with the registration file (.reg).
9-10 VisualWorks

Object Server Application Termination Considerations
Object Server Application Termination Considerations
When you create a deployment image for delivery as a COM object
server application, you are responsible for providing the application
startup logic that checks the startup conditions and registers the
class factories for the COM object classes that your application
supports with COM. Your application is also responsible for deciding
how and when to shut itself down.

In the simplest case, your object server application should run for as
long as it supports objects that were created by COM clients. When
the last object created for a client by one of your class factories has
been released by the last client using it, your application should shut
down by terminating the Smalltalk process. This application
termination policy is the common case and is made easy for you to
support by facilities provided by COMSessionManager. To specify
that the termination policy for your application is that it should shut
down when the last object being supported is released, simply
include the following expression in your application startup logic:

COMSessionManager exitIfNotInUse: true.
This configures your image so that the release logic for COM objects
that are manufactured by a class factory you registered in your
startup logic causes the process to be terminated when the
application no longer supports any objects.

To arrange for a COM object server application that never shuts
down, use the following expression to configure your image during
application startup:

COMSessionManager exitIfNotInUse: false.
This setting is useful when you want your server to always be
executing in anticipation of client requests. Once started, the object
server application continues running indefinitely, with your class
factories registered with COM and everything prepared to handle
client object creation requests immediately.

You might find that you require a more complex application
termination policy than the simple case of simply shutting down when
there are no longer any COM objects supported. For example, this
can occur if your application provides a user interface in addition to
manufacturing objects for COM clients. In this case, the application
termination policy is something along the lines of “shut down the
application when there are no longer any COM objects being
supported and any open windows have been closed by the user.”
COM Connect User’s Guide 9-11

Publishing Automation Objects
You are responsible for implementing complex termination policies in
whatever manner is suitable for your application. The
COMSessionManager class provides you with some services to
assistance in writing such application specific termination policies. To
determine whether your application is currently supporting any COM
objects that have been created by clients, evaluate the expression:

COMSessionManager isServerInUse
To shut down the object server application, evaluate the expression:

COMSessionManager terminateServer
The server session termination service revokes the class factories
registered by your application with COM and shuts down the
Smalltalk process. Determining when to actually terminate the
application is your responsibility.

If you are implementing an automation application object following
the guidelines defined by Automation for the standard Application
object, it is required that your application object support a Quit
method, which exits the application and closes all open documents.
To implement the Quit command for an application object, the Quit
method in your application should conform to the following pattern:

Quit
"Quit the application."
" ... close all open documents ... "
COMSessionManager terminateServerDeferred.

Note the use of the terminateServerDeferred message in this case. The
deferred termination service is necessary here because the Quit
method is invoked by a client, and you need to ensure that your
function returns to the caller before the Smalltalk process is shut
down.

Testing an Object Server Application EXE
After you create the deployment image for your object server
application EXE, you need to verify that your application installs and
works correctly as a COM object server application.

To test your object server, create (or update) a directory in which the
deployed server application files are placed. At a minimum, this
typically includes the VisualWorks object engine vwnt.exe and the
.im file of the deployment image you created. Optionally, you might
want to include the sources or change files of the image, to enable
debugging by a developer. You might also include other files that you
9-12 VisualWorks

Testing an Object Server Application EXE
intend to deliver with the server, such as the type library and any
other supporting files needed by the deployed application, by placing
the files either in your deployment directory or in subdirectories. The
files and directory structure of your delivery directory is, of course,
entirely under your control.

To verify that you correctly installed the image configuration settings
and your application startup logic in the object server you are
delivering, try running the application directly. As always, you can
create a shortcut invocation, or simply double-click on the .im
deployment image if your image is properly configured to run the
VisualWorks object engine on image files. Alternatively, in an
Explorer view you can drag the .im deployment image and drop it on
the vwnt.exe.

If you built the deployment image correctly and hooked up your
application startup logic, you should now see the expected startup
behavior of your application. In most cases, this results in a dialog
informing you that your application has not been started with the
expected flags, which indicates that it is being executed by COM as
an object server application and that your application is therefore
immediately terminating itself. This is good. It is what you asked for in
this case.

To fully test your object server, you need to register it with COM. If
you have not already registered the application you have created, do
so now.

First, verify that the .reg file you created for your application has the
correct pathnames to the deployment files you created and placed in
the desired delivery directory structure. Make any necessary
corrections, then double-click on the .reg file to register the object
server application.

The standard Win32 regedit.exe program processes the
information in the .reg file and updates the system registry
information. If you correctly specified the directory names, the COM
library service manager now has all the information that it needs to
run your object server application when a client application asks to
create a new instance of the object you are publishing.

To verify that your object server application is correctly configured
and registered with COM, run a client application to create and
exercise your automation object through the standard COM
mechanisms. The simplest test case is to start up your VisualWorks
development image and try to create an instance of your class using
COM Connect User’s Guide 9-13

Publishing Automation Objects
the standard IClassFactory createInstance: message. Specify either the
CLSID or the ProgID of the class you are publishing in the server you
have just created.

If your server is correctly registered with COM and your application
startup logic correctly initializes the application and registers the
class factory for each object class supported by the server
component, executing your object creation request should result in a
short delay while the COM library starts your object server and then
creates and returns an interface reference to the new instance of
your object, which has been created from the local process server
running your server application.

If you have other test drivers available to exercise your object, or you
have a code fragment that opens a COMAutomationEditor to exercise
your object through a COMDispatchDriver that you construct on the
newly created object, you might want to run them now. If you want to
see a tracing report to verify that the dispatch functions are being
invoked by external function callouts to the object in another process,
you can open a COMTraceViewer before creating and testing the
objects you are creating in the object server process.

When you are done testing the object, release the interface(s) in the
usual fashion. Depending on the server termination policy you
implemented in your object server application, you should now verify
that the server process has been terminated, if that is what you
expected at this point. You can use the Windows task manager to
inspect your system and confirm whether the object server
application is still running.

Troubleshooting an Object Server Application EXE

Server Startup Problems
Problems with creating objects in your object server usually reflect
one of two configuration problems.

The first kind of problem that typically occurs is an error message
from COM indicating that the server can not be started when you try
to create a new object. This typically reflects either a configuration
problem, where some file that is needed to run the executable
application is not available, or a problem with the pathnames in the
.reg file. Check that you have assembled the necessary files in your
delivery directory and that the information you installed in the
Windows system registry is correct.
9-14 VisualWorks

Troubleshooting an Object Server Application EXE
The other problem that typically occurs when deploying an object
server application is that your object creation requests returns with an
error message from COM indicating that the server was started but
did not register a class factory. In this case, you probably have not
correctly installed your application startup logic, or have failed to
properly register the necessary class factory. You can verify your
basic startup logic, as described in a previous section, by double-
clicking directly on the object server and verifying whether your
startup displays the expected message, that it is shutting down the
application immediately because it was not run by COM. If you
observe the expected behavior but the creation request failed
because COM could not obtain the class factory, review your
application startup logic to determine why the class factory that you
are attempting to use is not registered correctly.

Server Termination Problems
Problems with your object server not terminating as expected might
reflect a number of conditions.

The simplest case is when you have failed to specify a server
application termination policy for your application, either by using
COMSessionManager services that configure the image settings to
specify process termination when the server is no longer in use, or in
some other suitable fashion ensuring that your application terminates
at some point. If this is the case, simply correct your defective
application logic and rebuild the deployment image.

Other cases of server termination problems are typically more
complex to analyze. For example, failure of the object server to
terminate when you expect might reflect a reference counting bug in
either your object implementation or the client code that you are
using to exercise the object. COM interface reference counting bugs
are typically difficult to detect and correct. They are usually best
tackled by fully testing your object implementation and client code in
a Smalltalk development image, using tools such as the
COMTraceViewer and COMResourceBrowser, which are provided with
COM Connect to assist in analyzing COM application behavior,
before attempting to deploy an object server application.
COM Connect User’s Guide 9-15

Publishing Automation Objects
Stripping an Object Server Application Using RTP
Once your object server is mature and well tested you may wish to
remove unnecessary objects from the image to reduce its
deployment size. As a first step, save the image with all development
and example parcels unloaded. To remove additional classes, shared
variables, and methods from your image use RuntimePackager as
described here. For more information on use of RuntimePackager
refer to the VisualWorks Application Developer’s Guide.

1 Load the RuntimePackager parcel into an image with the COM
classes and server application ready.

2 Load the Headless parcel if you wish to remove support for
windows in the image.

3 Open RuntimePackager (Tool > Runtime Packager)

4 Load the parameters file comserver.rtp located in the
VisualWorks COM directory. This file specifies the following:

• All COM classes, shared variables, and methods are
retained, except COM examples and development tools.
Certain COM example and development classes are
retained, if RuntimePackager determines that they are used.
You may need to retain additional examples.

• The runtime image will not shutdown when its last window is
closed. The default option to shut down the runtime image on
last window close would prevent a windowless COM runtime
server image from starting up. If you decide your COM server
should continue only while any of its windows are open,
select the option to shutdown the image on last window
close. Otherwise, be certain the server application method
startUpApplication specifies

COMSessionManager exitIfNotInUse: true
• This will ensure that the server is shutdown when all its

clients have released all references.

• A single step save procedure will be used.

• The stripped image will be saved named as “vwcomsvr”.
Rename this entry as you please. The startup class and
method specified in RuntimePackager should remain blank.
9-16 VisualWorks

AppDevGuide.pdf

Stripping an Object Server Application Using RTP
5 Specify which of your application classes to keep in the deployed
image.

6 Scan for unreferenced items.

7 Set the COMSessionManager default COM directory string and
install the server runtime (see section "Creating a Run-Time
Image").

8 Before continuing with stripping the image, we stongly
recommend that you save the current image and
RuntimePackager parameters file. If the final stripped image later
fails due to removal of an unexpected object, the strip procedure
can resume from this image.

There are two choices at this step: one can either test the server
before stripping or proceed directly to strip the image. The procedure
continues through the next two section. You may skip the testing
steps if you want to proceed directly to stripping the image.

Test the COM Server Application for Dynamic References
Since the COM server image must be saved and registered in order
for it to be used by a client, the RuntimePackager test step cannot be
performed without first saving the image before stripping. This test
step is important to discover any dynamic references to objects that
may otherwise be stripped from the final runtime image.

1 Save the image with the RuntimePackager window open and quit
the image.

2 Register the image above with the Windows registry using its
registration file (.reg). Ensure the registration file entry for
LocalServer32 has the correct path information entered.

3 From the command line, start up the image. Include the /
Automation flag. For an example see section Starting a Deployed
Image Manually.

4 Begin tests in RuntimePackager by pressing its Begin Test button.

5 Exercise the server by opening a client on its interfaces then
invoking all its methods and accessing its properties. For
example, this can be done by a combination of:

• inspecting the COM server interfaces using the OLE/COM
Object Viewer, and

• starting another VisualWorks COM image, opening a
COM Connect User’s Guide 9-17

Publishing Automation Objects
COMAutomationEditor on the COM server image's automation
interfaces, and interactively evaluating Smalltalk expressions
that access server properties and invoke functions.

6 Release all client references to the COM server interfaces. In the
RuntimePackager, accept dynamic references and end the test.

7 Optionally save the image and RuntimePackager parameters file.
Accept the notifier that opens warning that open interfaces will be
rebuilt on image startup. Note that unless you specify the path
information, by default the image will be saved to the Windows
system32 directory.

Strip the Image
1 Close any unnecessary windows in the server image and select

the RuntimePackager option to strip the image. Accept the
notifier that opens warning that open interfaces will be rebuilt on
image startup.

2 Register the image with the Windows registry using its
registration file (.reg). Ensure the registration file entry for
LocalServer32 has the correct path information entered.

Once the stripped image is complete be sure to test it thoroughly
before distribution.
9-18 VisualWorks

10

Publishing using the Automation
Wizard

The IAAutomationWizard is a tool for publishing COM automation
objects. This section briefly describes how to use the tool and
assumes you are familiar with creating, implementing, and publishing
COM automation objects, as described in the preceding chapters.

To review, there are a few steps that you follow when publishing a
COM automation object:

1 Implement the automation object.

2 Create a type library describing each automation object.

3 Map the COM interface functions to your class.

4 Provide class factory support.

5 Create a .reg file to register the object server application.

6 Implement the object server application logic.

7 Create an object server application.

What the Automation Wizard Does
The IAAutomationWizard uses method pragmas to help generate the
IDL and type library for the classes you want to publish. See the class
and class comment of Examples. WizardAutomationAllDataTypes for
examples of using those pragmas. This class is a variation of the
AutomationAllDataTypes example, so it is advisable to become familiar
with that example before using this tool.
COM Connect User’s Guide 10-1

Publishing using the Automation Wizard
The IAAutomationWizard streamlines the steps listed above,
simplifying building an object server. To open up the
IAAutomationWizard, select Tools > COM > Open the Automation Wizard...
from the VisualLauncher.

The wizard walks you through several steps, to identiry classes,
GUIDs, the Type Library, the Reg File, and Deployment. The following
describes each step and the information required in each.

The Classes Step
In this step you select the classes that you want to publish. You can
use the Class Finder (by clicking on the magnifying glass button) to
find the classes that you want. After you have found a class, select
OK from the ClassFinder and click on the Add button to add the class
into the selected classes list. Next, select the class(es) that you want
to publish.
10-2 VisualWorks

What the Automation Wizard Does
The GUIDs Step
This step is where the class identifier, support instance, and class
methods are created for the class you have selected. There will be
default values in the various widgets and those values do not need
normally to be modified.

Class: A combo box with the classes that you have added to the
wizard.

Interface name: The name of the dispatch interface with which a
Smalltalk object is published as a COM automation object.

External name: The name of the COM object as it is known outside of
VisualWorks (must be different than Interface name).

Type Library

• Local: The selected class that holds the type library support code.

• Class: Specify another class to hold the type library support code.

Instance methods: The instance side methods to be auto-generated for
the selected class. See Chapter 7, “Implementing Automation
Objects.”

Class methods: The class side support methods to be auto-generated
for the selected class. See Implementing Automation Objects.
COM Connect User’s Guide 10-3

Publishing using the Automation Wizard
There are two Generate buttons. The left one generates the instance
methods, and the right one generates the class methods.

The Type Library Step
This step is where the IDL and type library will be auto-generated
based on the pragmas that you used in the class to be published.

Library Holder Class: The selected class that will hold the Type Library
information.

LibraryName: The name you want to give the library.

Version: Defaults to 1.0 (supply a different version if you prefer).

Library Dir: The full path name to where the library file will be stored.

LibraryFile: The name of the library file that will be generated.

Author: Your name.

Company: Your company name.

There are also three buttons:
10-4 VisualWorks

What the Automation Wizard Does
Generate IDL - This button will generate the IDL file that will be used by
the MIDL compiler. After it is generated, a TextWindow will open on
the file so you can review it for any errors.

Compile IDL - This button will invoke the MIDL compiler to create the
library file. A console window will be displayed while the compilation
occurs. Then notepad will open to display the log file that was
generated by the compilation processes. This log file would contain
information on any errors encountered during compilation.

Register Library - This button will register the library with the operating
system.

The Reg File Step
This step is where the registration file is created and registered with
the operating system.

For Class: The class for which you are generating the registration file.

Reg. File: The name of the registration file (must end with .reg).

Description: See Publishing Automation Objects

ProgID: See Publishing Automation Objects
COM Connect User’s Guide 10-5

Publishing using the Automation Wizard
Version: See Publishing Automation Objects

LocalServer: See Publishing Automation Objects

InProcServer: See Publishing Automation Objects

Automation Switch: Check this if you want the server image to start up
with the /AUTOMATION flag.

ActiveX Control: See Publishing Automation Objects

There are two buttons here: Generate File and Register. Generate File
will generate the file that you can use to register the object in the
registry. Register will merge the .reg file with the registry.

The Deploy Step
This step helps you prepare the deployment image. The fields reflect
the both the type library directory and the image file as you’ve
defined during the setup.

Saving and loading Settings
The Automation Wizard allows you to save settings and load these
settings again. This allow you to repeat the publishing process.
Loading and saving settings is done using the respective menu items.
10-6 VisualWorks

Example of Using the IAAutomationWizard
Example of Using the IAAutomationWizard
This is an example of using the IAAutomationWizard, with an
illustration showing the properly completed fields in each step.

The Classes Step
1 Use the class finder (click the magnifying glass button) to find the

class WizardAutomationAllDataTypes (it is in the examples
workspace) and click OK.

2 The fully qualified name of the class will now be in the input field.
Click Add.

3 Select the class in the list pane.

The GUIDs Step
1 Select Local.

2 Click on the Generate button under the instance methods list.

3 Click on the Generate button under the class methods list.

The Type Library Step
1 Supply a library name.

2 Set the proper library directory, be sure it is a full path.

3 Set the name to use for the library file that is going to be
generated.

4 Set the Author.

5 Set the Company.

6 Click Generate IDL.

7 Click Compile IDL.

8 Click Register Library.

The Reg File Step
1 Supply a name for the reg file.

2 Supply a string for the description.

3 Supply a Prog ID.
COM Connect User’s Guide 10-7

Publishing using the Automation Wizard
4 Set the LocalServer to be something like (be sure to replace with
your path to the engine and image):

e:\visualworks\7\bin\visual.exe
e:\visualworks\7\image\vwcomsrv.im

5 Set the InProcServer to be something like (be sure to replace
with your path to the engine and image):

e:\visualworks\5i\bin\visual.exe
e:\visualworks\5i\image\vwcomsrv.im

6 Click Generate File.

7 Click Register.

The Deploy Step
1 Save your image with the same name as in the Image File input

field.

2 Click Run Setup, you should be told that you can now save the
image

3 Save the image.

4 Quit the image.

The Test
1 Start up a VisualWorks image and load COM Connect.

2 Open up a class hierarchy browser on the
WizardAutomationAllDataTypes.

3 Look at the class comment of the class and follow the
instructions.
10-8 VisualWorks

11

Exposing Classes Through Dual
Interfaces

Although Automation allows you to implement an IDispatch interface,
a VTBL interface, or a dual interface (which encompasses both), it is
strongly recommended that you implement dual interfaces for all
exposed ActiveX objects. Dual interfaces have significant advantages
over IDispatch-only or VTBL-only interfaces.

• Binding can take place at compile time through the VTBL
interface, or at run time through IDispatch.

• ActiveX clients that can use the VTBL interface might benefit
from improved performance.

• Existing ActiveX clients that use the IDispatch interface continue
to work.

• The VTBL interface is easier to call from C++.

Note: The example class used to illustrate this section is
AllDataTypesCOMObject, which publishes the class
AutomationAllDataTypes. While reusing the AutomationAllDataTypes
class, be aware that there are no requirements on this class. The
class methods created for the IDispatch publication example are
now unnecessary, since the COMObject framework provides all
of the necessary behavior.
COM Connect User’s Guide 11-1

Exposing Classes Through Dual Interfaces
Exposing Objects
Publishing a class through a dual interface consists of the following
tasks.

• Create or choose a Smalltalk class to publish. If your class is
going to keep a copy of any interface pointers, follow the rules for
interface reference counting defined under Implementing
Automation Objects.

• Create an IDL file describing each class to publish out of the
image. Compile the IDL file to a type library.

• Create a data type method for your dual interface in the
COMExternalInterface class.

• Create a dual interface virtual function table method in the
COMInterfaceVTableSignatures class.

• Create a subclass of COMDualInterfaceObject, this is the object that
is actually published to COM. Implement all of the subclass
responsibilities.

• Implement a subclass of COMDispatchInterface. This public class is
the interface definition for both incoming and outgoing calls.

• Implement a subclass of COMDispatchInterfaceImplementation. This
private class defines the low-level virtual function table for
incoming interface calls from the COM world.

• Implement a subclass of COMDispatchInterfacePointer if you want to
access the COM object from Smalltalk. This private class defines
the low-level virtual function table for outgoing interface calls to
the COM world.

• Create a .reg File that describes to COM where to find your
application.

• Make a run-time image.

Note: You can use the interface class generator tools provided
with COM Connect to assist you in creating the interface wrapper
classes from the VTable definition of your dual interface. See
COM Connect Development Tools.
11-2 VisualWorks

The Big Picture
The Big Picture
This section presents an overview of the process of image startup,
object creation and object function invocation.

Image Startup
When an object server application image starts up, the
startUpApplication method of COMDualInterfaceObject is called, as
shown in the following figure:

Image startup sequence
COM Connect User’s Guide 11-3

Exposing Classes Through Dual Interfaces
Object Creation
When an object server application image is started as a result of a
client request to COM to create a new instance of your COM dual
interface object, the steps shown in the following figure take place.

Object creation sequence
11-4 VisualWorks

The Big Picture
Object Function Invocation
When the published object is running and a dispatch invocation call
comes in from a client, the steps in following figure occur.

Object function invocation sequence

The Published Class
In the example, the class AutomationAllDataTypes is published. This
class is upgraded from being published with an IDispatch to being
published with the IAllDataTypesDisp custom dual interface.
COM Connect User’s Guide 11-5

Exposing Classes Through Dual Interfaces
IDL Requirements
The IDL file must declare the interface as a dual interface with the
dual keyword, as shown in the Dual_vwAllDT.idl file:

// ---
//
// vwAllDT.idl: IDL source for VisualWorks Automation All Data Types
// Example.
// Publish IAllDataTypesDisp as a dual interface (not just a dispinterface).
//
//**
//** Differences between a dispinterface and dual interface are marked
// with '//**'
//**
//
// This file will be processed by the MIDL compiler to
// produce the type library (vwAllDT.tlb) and marshalling code.
//
// CLSID_VWAllDataTypes:{DB5DE8E3-AD1F-11d0-ACBE-
// 5E86B1000000}
// Type library: vwAllDT.tlb {DB5DE8E1-AD1F-11d0-ACBE-
// 5E86B1000000}
// Interface:IAllDataTypesDisp{DB5DE8E2-AD1F-11d0-ACBE-
5E86B1000000}
//
// For the legal data types permited on an [oleautomation] interface see
// Microsoft Developer Network Library -- Visual Studio 97 CD:
// mk:@ivt:pdapp/native/sdk/rpc/src/mi-laref_100.htm
//
// ---
cpp_quote("//--
")
cpp_quote("//")
cpp_quote("// VisualWorks Automation: All Data Types Example")
cpp_quote("// Created by Gary Gregory")
cpp_quote("// Copyright (C) ObjectShare, 1997.")
cpp_quote("//")
cpp_quote("//--
")
//**
//** Declare the dual interface IAllDataTypesDisp
//**
[

object,
uuid(DB5DE8E2-AD1F-11d0-ACBE-5E86B1000000), //

DIID_IAllDataTypesDisp
11-6 VisualWorks

IDL Requirements
helpstring("VisualWorks All Data Types dispatch interface"),
pointer_default(unique),
dual,//** Mark this interface as a dual interface.
oleautomation

]
interface IAllDataTypesDisp : IDispatch
{

import "oaidl.idl";
//
// Properties
//

[propput, helpstring("Sets or returns the LONGValue property
(VT_I4).")]

HRESULT LONGValue([in] LONG Value);
[propget]
HRESULT LONGValue([out, retval] LONG* Value);

//
//... All other property and method definitions...
//
// A method with many arguments, just for show

[helpstring("Fancy method with many arguments.")]
HRESULT ManyArguments(

[in] IDispatch* AnIDispatch,
[in] BSTR PropertyName,
[in] LONG Number,
[out,retval] VARIANT* Value);

};
//
// Component and type library descriptions
//
[
 uuid(DB5DE8E1-AD1F-11d0-ACBE-5E86B1000000), //

LIBID_VWALLDT
lcid(0x0409),
version(1.0),
helpstring("VisualWorks All Data Types")

]
library VWALLDT
{
 importlib("stdole32.tlb");
 // Class information for VWAllDataTypes
 [
 uuid(DB5DE8E3-AD1F-11d0-ACBE-5E86B1000000), //

CLSID_VWAllDataTypes
helpstring("VisualWorks All Data Types Class."),

]
coclass VWAllDataTypes
COM Connect User’s Guide 11-7

Exposing Classes Through Dual Interfaces
{
//**
//** This next line surfaces the dual interface from the class.
//**
[default] interface IAllDataTypesDisp;

};
};
// eof

Creating the Dual Interface Data Type
In the COMExternalInterface class, create a method to define your new
dual interface data type. By convention, the name of the method is
the same as the interface name. This example defines a type called
IAllDataTypesDisp in a method called IAllDataTypesDisp in the framework
class COMExternalInterface.

IAllDataTypesDisp
"Define the interface data type. Using __IAnonymous instead of
__IAllDataTypesDisp is a space optimization that avoids defining

extraneous
data types that are not used by the COM Connect runtime."

<C: typedef struct __IAnonymous IAllDataTypesDisp>

Note: The data type definition used in the Smalltalk binding for
an interface type declaration is always mapped to the standard
__IAnonymous structure definition, which defines a structure
whose first member is a pointer to a Vtable. Interface structure
types are not defined for each interface, because the extra level
of Ctype definitions to connect the actual Vtable definition is not
needed to support the run-time facilities of the COM Connect
interface binding machinery.

Creating the Dual Interface Virtual Function Table Definition
In the class COMInterfaceVTableSignatures, create a method to define
the virtual function table layout for your interface. It is important for
your virtual function table method to follow the pattern defined below.

The Vtable structure definition must conform to the C declaration of
the interface, in which the object that supports the function is
explicitly declared in a leading ‘This’ parameter. (In contrast, the
receiver is implicit in the equivalent C++ declaration.)
11-8 VisualWorks

Creating the Dual Interface Virtual Function Table Definition
Note that the custom interface function definitions start after the
IUnknown and IDispatch function definitions since, by definition, a
dual interface implements the IUnknown and IDispatch function.

__ISomeInterfaceNameVtbl

<C: struct __ISomeInterfaceNameVtbl {

HRESULT (__stdcall * QueryInterface)(IAllDataTypesDisp * This, const

IID * const riid, void * * ppvObject);
ULONG (__stdcall * AddRef)(IAllDataTypesDisp * This);
ULONG (__stdcall * Release)(IAllDataTypesDisp * This);

HRESULT (__stdcall * GetTypeInfoCount)(IAllDataTypesDisp * This,

UINT * pctinfo);
HRESULT (__stdcall * GetTypeInfo)(IAllDataTypesDisp * This, UINT

itinfo, LCID lcid, ITypeInfo * * pptinfo);
HRESULT (__stdcall * GetIDsOfNames)(IAllDataTypesDisp * This, const

IID * const riid, LPOLESTR * rgszNames, UINT cNames, LCID lcid,
DISPID * rgdispid);

HRESULT (__stdcall * Invoke)(IAllDataTypesDisp * This, DISPID

dispidMember, const IID * const riid, LCID lcid, WORD wFlags,
DISPPARAMS * pdispparams, VARIANT * pvarResult, EXCEPINFO *
pexcepinfo, UINT * puArgErr);

/* The custom function definitions start here */
}>

Even though you can write the virtual function table definition from
scratch, it is better to use the header file generated by the MIDL
compiler. The example IDL processing generated the
COM\Examples\COMAuto\AllDataT\TypeLibrary\ midl_VWAllDT.h header file.
The relevant section for this task is the C (not C++) definition of the
header file.

#if defined(__cplusplus) && !defined(CINTERFACE)
(snip)
#else /* C style interface */

typedef struct IAllDataTypesDispVtbl
{

BEGIN_INTERFACE

HRESULT (STDMETHODCALLTYPE __RPC_FAR *QueryInterface)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ REFIID riid,
/* [iid_is][out] */ void __RPC_FAR *__RPC_FAR *ppvObject);
COM Connect User’s Guide 11-9

Exposing Classes Through Dual Interfaces

ULONG (STDMETHODCALLTYPE __RPC_FAR *AddRef)(

IAllDataTypesDisp __RPC_FAR * This);

ULONG (STDMETHODCALLTYPE __RPC_FAR *Release)(
IAllDataTypesDisp __RPC_FAR * This);

HRESULT (STDMETHODCALLTYPE __RPC_FAR

*GetTypeInfoCount)(
IAllDataTypesDisp __RPC_FAR * This,
/* [out] */ UINT __RPC_FAR *pctinfo);

HRESULT (STDMETHODCALLTYPE __RPC_FAR *GetTypeInfo)(

IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ UINT iTInfo,
/* [in] */ LCID lcid,
/* [out] */ ITypeInfo __RPC_FAR *__RPC_FAR *ppTInfo);

HRESULT (STDMETHODCALLTYPE __RPC_FAR

*GetIDsOfNames)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ REFIID riid,
/* [size_is][in] */ LPOLESTR __RPC_FAR *rgszNames,
/* [in] */ UINT cNames,
/* [in] */ LCID lcid,
/* [size_is][out] */ DISPID __RPC_FAR *rgDispId);

/* [local] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*Invoke)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ DISPID dispIdMember,
/* [in] */ REFIID riid,
/* [in] */ LCID lcid,
/* [in] */ WORD wFlags,
/* [out][in] */ DISPPARAMS __RPC_FAR *pDispParams,
/* [out] */ VARIANT __RPC_FAR *pVarResult,
/* [out] */ EXCEPINFO __RPC_FAR *pExcepInfo,
/* [out] */ UINT __RPC_FAR *puArgErr);

/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE

__RPC_FAR *put_LONGValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ LONG Value);

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_LONGValue)(
IAllDataTypesDisp __RPC_FAR * This,
11-10 VisualWorks

Creating the Dual Interface Virtual Function Table Definition
/* [retval][out] */ LONG __RPC_FAR *Value);

/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE
__RPC_FAR *put_BYTEValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ BYTE Value);

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_BYTEValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ BYTE __RPC_FAR *Value);

/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE

__RPC_FAR *put_SHORTValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ SHORT Value);

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_SHORTValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ SHORT __RPC_FAR *Value);
/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE

__RPC_FAR
*put_FLOATValue)(

IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ FLOAT Value);

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_FLOATValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ FLOAT __RPC_FAR *Value);

/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE

__RPC_FAR *put_DOUBLEValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ DOUBLE Value);

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

 *get_DOUBLEValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ DOUBLE __RPC_FAR *Value);

/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE

__RPC_FAR
*put_VARIANT_BOOLValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ VARIANT_BOOL Value);
COM Connect User’s Guide 11-11

Exposing Classes Through Dual Interfaces

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_VARIANT_BOOLValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ VARIANT_BOOL __RPC_FAR *Value);

 /* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE

__RPC_FAR
*put_SCODEValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ SCODE Value);

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_SCODEValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ SCODE __RPC_FAR *Value);

/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE

__RPC_FAR
*put_DATEValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ DATE Value);

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_DATEValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ DATE __RPC_FAR *Value);

/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE

__RPC_FAR
*put_BSTRValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ BSTR Value);

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_BSTRValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ BSTR __RPC_FAR *Value);

/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE

__RPC_FAR
*put_IUnknownReference)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ IUnknown __RPC_FAR *Value);

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_IUnknownReference)(
11-12 VisualWorks

Creating the Dual Interface Virtual Function Table Definition
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ IUnknown __RPC_FAR *__RPC_FAR

 *Value);

/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE
__RPC_FAR
*put_IDispatchReference)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ IDispatch __RPC_FAR *Value);

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_IDispatchReference)(
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ IDispatch __RPC_FAR *__RPC_FAR *Value);

/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE

__RPC_FAR
*put_VARIANTValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ VARIANT Value);

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_VARIANTValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ VARIANT __RPC_FAR *Value);

/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE

__RPC_FAR
*put_CURRENCYValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ CURRENCY Value);

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_CURRENCYValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ CURRENCY __RPC_FAR *Value);

/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE

__RPC_FAR
*put_SAFEARRAY_I4Value)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ SAFEARRAY __RPC_FAR * Value);

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_SAFEARRAY_I4Value)(
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ SAFEARRAY __RPC_FAR * __RPC_FAR
COM Connect User’s Guide 11-13

Exposing Classes Through Dual Interfaces
*Value);

/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE
__RPC_FAR
*put_SAFEARRAY_DISPATCHValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ SAFEARRAY __RPC_FAR * Value);

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_SAFEARRAY_DISPATCHValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ SAFEARRAY __RPC_FAR * __RPC_FAR

*Value);

/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE
__RPC_FAR
*put_SAFEARRAY_UNKNOWNValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ SAFEARRAY __RPC_FAR * Value);

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_SAFEARRAY_UNKNOWNValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ SAFEARRAY __RPC_FAR * __RPC_FAR

*Value);

/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE
__RPC_FAR
*put_SAFEARRAY_BSTRValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ SAFEARRAY __RPC_FAR * Value);

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_SAFEARRAY_BSTRValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ SAFEARRAY __RPC_FAR * __RPC_FAR

*Value);

/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE
__RPC_FAR
*put_SAFEARRAY_VARIANTValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ SAFEARRAY __RPC_FAR * Value);

/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR
*get_SAFEARRAY_VARIANTValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ SAFEARRAY __RPC_FAR * __RPC_FAR
11-14 VisualWorks

Creating the Dual Interface Virtual Function Table Definition
*Value);
/* [helpstring] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*Quit)(
IAllDataTypesDisp __RPC_FAR * This);

/* [helpstring] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR
*Reset)(
IAllDataTypesDisp __RPC_FAR * This);

/* [helpstring] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR
*ManyArguments)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ IDispatch __RPC_FAR *AnIDispatch,
/* [in] */ BSTR PropertyName,
/* [in] */ LONG Number,
/* [retval][out] */ VARIANT __RPC_FAR *Value);

END_INTERFACE

} IAllDataTypesDispVtbl;
(snip)

By convention the method defined in COMInterfaceVTableSignatures is
named after the interface name prefixed with two underscores ‘__’
and terminated with ‘Vtbl’. For the IAllDataTypesDisp interface, a
method named __IAllDataTypesDispVtbl was created.

__IAllDataTypesDispVtbl

<C: struct __IAllDataTypesDispVtbl {

HRESULT (__stdcall * QueryInterface)(IAllDataTypesDisp * This, const

IID * const riid, void * * ppvObject);
ULONG (__stdcall * AddRef)(IAllDataTypesDisp * This);
ULONG (__stdcall * Release)(IAllDataTypesDisp * This);

HRESULT (__stdcall * GetTypeInfoCount)(IAllDataTypesDisp * This,
UINT * pctinfo);

HRESULT (__stdcall * GetTypeInfo)(IAllDataTypesDisp * This, UINT
itinfo, LCID lcid, ITypeInfo * * pptinfo);

HRESULT (__stdcall * GetIDsOfNames)(IAllDataTypesDisp * This, const
IID * const riid, LPOLESTR * rgszNames, UINT cNames, LCID lcid,
DISPID * rgdispid);

HRESULT (__stdcall * Invoke)(IAllDataTypesDisp * This, DISPID
dispidMember, const IID * const riid, LCID lcid, WORD wFlags,
DISPPARAMS * pdispparams, VARIANT * pvarResult, EXCEPINFO *
pexcepinfo, UINT * puArgErr);

HRESULT (__stdcall * put_LONGValue)(IAllDataTypesDisp * This,

LONG Value);
COM Connect User’s Guide 11-15

Exposing Classes Through Dual Interfaces
HRESULT (__stdcall * get_LONGValue)(IAllDataTypesDisp * This,
LONG *Value);

HRESULT (__stdcall * put_BYTEValue)(IAllDataTypesDisp * This, BYTE
Value);

HRESULT (__stdcall * get_BYTEValue)(IAllDataTypesDisp * This, BYTE
*Value);

HRESULT (__stdcall * put_SHORTValue)(IAllDataTypesDisp * This,
SHORT Value);

HRESULT (__stdcall * get_SHORTValue)(IAllDataTypesDisp * This,
SHORT *Value);

HRESULT (__stdcall * put_FLOATValue)(IAllDataTypesDisp * This,
FLOAT Value);

HRESULT (__stdcall * get_FLOATValue)(IAllDataTypesDisp * This,
FLOAT *Value);

HRESULT (__stdcall * put_DOUBLEValue)(IAllDataTypesDisp * This,
DOUBLE Value);

HRESULT (__stdcall * get_DOUBLEValue)(IAllDataTypesDisp * This,
DOUBLE *Value);

HRESULT (__stdcall * put_VARIANT_BOOLValue)(IAllDataTypesDisp *
This, VARIANT_BOOL Value);

HRESULT (__stdcall * get_VARIANT_BOOLValue)(IAllDataTypesDisp *
This, VARIANT_BOOL *Value);

HRESULT (__stdcall * put_SCODEValue)(IAllDataTypesDisp * This,
SCODE Value);

HRESULT (__stdcall * get_SCODEValue)(IAllDataTypesDisp * This,
SCODE *Value);

HRESULT (__stdcall * put_DATEValue)(IAllDataTypesDisp * This,
DATE Value);

HRESULT (__stdcall * get_DATEValue)(IAllDataTypesDisp * This, DATE
*Value);

HRESULT (__stdcall * put_BSTRValue)(IAllDataTypesDisp * This,
BSTR Value);

HRESULT (__stdcall * get_BSTRValue)(IAllDataTypesDisp * This,
BSTR *Value);

HRESULT (__stdcall * put_IUnknownReference)(IAllDataTypesDisp *
This, IUnknown *Value);

HRESULT (__stdcall * get_IUnknownReference)(IAllDataTypesDisp *
This, IUnknown **Value);

HRESULT (__stdcall * put_IDispatchReference)(IAllDataTypesDisp *
This, IDispatch *Value);

HRESULT (__stdcall * get_IDispatchReference)(IAllDataTypesDisp *
This, IDispatch **Value);

HRESULT (__stdcall * put_VARIANTValue)(IAllDataTypesDisp * This,
VARIANT Value);

HRESULT (__stdcall * get_VARIANTValue)(IAllDataTypesDisp * This,
VARIANT *Value);

HRESULT (__stdcall * put_CURRENCYValue)(IAllDataTypesDisp *
11-16 VisualWorks

Modifying Existing Virtual Function Table Definition
This, CURRENCY Value);
HRESULT (__stdcall * get_CURRENCYValue)(IAllDataTypesDisp *

This, CURRENCY *Value);
HRESULT (__stdcall * put_SAFEARRAY_I4Value)(IAllDataTypesDisp *

This, SAFEARRAY *Value);
HRESULT (__stdcall * get_SAFEARRAY_I4Value)(IAllDataTypesDisp *

This, SAFEARRAY **Value);
HRESULT (__stdcall * put_SAFEARRAY_DISPATCHValue)(

IAllDataTypesDisp * This, SAFEARRAY *Value);
HRESULT (__stdcall * get_SAFEARRAY_DISPATCHValue)(

IAllDataTypesDisp * This, SAFEARRAY **Value);
HRESULT (__stdcall * put_SAFEARRAY_UNKNOWNValue)(

IAllDataTypesDisp * This, SAFEARRAY *Value);
HRESULT (__stdcall * get_SAFEARRAY_UNKNOWNValue)(

IAllDataTypesDisp * This, SAFEARRAY **Value);
HRESULT (__stdcall * put_SAFEARRAY_BSTRValue)(

IAllDataTypesDisp * This, SAFEARRAY *Value);
HRESULT (__stdcall * get_SAFEARRAY_BSTRValue)(

IAllDataTypesDisp * This, SAFEARRAY **Value);
HRESULT (__stdcall * put_SAFEARRAY_VARIANTValue)(

IAllDataTypesDisp * This, SAFEARRAY *Value);
HRESULT (__stdcall * get_SAFEARRAY_VARIANTValue)(

IAllDataTypesDisp * This, SAFEARRAY **Value);
HRESULT (__stdcall *Quit)(IAllDataTypesDisp * This);
HRESULT (__stdcall *Reset)(IAllDataTypesDisp * This);
HRESULT (__stdcall *ManyArguments)(IAllDataTypesDisp * This,

/* [in] */ IDispatch *AnIDispatch,
/* [in] */ BSTR PropertyName,

/* [in] */ LONG Number,
/* [retval][out] */ VARIANT *Value);

}>

Note: A SAFEARRAY can be of any COM Automation-
compatible type. Not all combinations for SAFEARRAYs are
shown in this example.

Modifying Existing Virtual Function Table Definition
Any time during development that you modify the virtual function
table method for an interface, make sure to reinitialize your interface
binding classes.
COM Connect User’s Guide 11-17

Exposing Classes Through Dual Interfaces
The interface binding classes contain class state derived from the
Vtable definition, which is used to support the run-time mechanisms
of the COM interface binding. This information must be reset if you
modify the interface function definitions while developing your dual
interface class.

For example, when modifying the method __IAllDataTypesDispVtbl in
the COMExternalInterface framework class, the expression below must
be evaluated in order to re-initialize the affected dual interface
classes.

IAllDataTypesDispPointer ClassInitializer.
IAllDataTypesDispImplementation ClassInitializer.

Note: Modifying an interface definition should occur only during
initial development. Once you publish the interface, do not
change its signature or semantics, since there might be clients
relying on your commitment to the “contract” represented by the
published COM interface.

Creating the Dual Interface Classes
Two classes must be created: an interface class as a subclass of
COMDispatchInterface and an implementation class as a subclass of
COMDispatchInterfaceImplementation. To access this object from
Smalltalk, you must also create a pointer class as a subclass of
COMDispatchInterfacePointer. COM Connect provides tools to assist the
creation of necessary wrapper classes for a COM interface. See
COM Connect Development Tools.

The AllDataTypes example defines all three interface classes and
uses all Automation data types to show you all of the code patterns
you use to implement a dual interface object. While most example
methods show function calls with only one argument, multiple
arguments are handled by simply following the same method
patterns defined in this section for each additional argument.
11-18 VisualWorks

Creating the Interface Class
Creating the Interface Class
The IAllDataTypesDisp class is defined as a subclass of
COMDispatchInterface. The class IAllDataTypesDisp inherits the basic
IDispatch behavior from COMDispatchInterface.

Object
COMInterface ('interface')

IUnknown
COMDispatchInterface

IAllDataTypesDisp
COMDispatchInterface subclass: #IAllDataTypesDisp

instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: 'COMStatusCodeConstants

COMAutomationConstants
COMConstants '

category: 'COM-Automation-Server Samples'
By convention, you always define the interface operations method
category for the methods in an interface class. These methods
provide a Smalltalk presentation of interface functions.

By convention, you match the function names from the header file
generated from the MIDL compiler for interface function names. The
interface functions defined for properties are prefixed with get_ for
property get functions and put_ for property put functions. There is no
modification for method names.

Automatically Generating the Interface Class
A prototype of the interface class of a COM interface can be
generated automatically using tools provided with COM Connect. For
example,

COMInterfaceClassGenerator
generateInterfacePrototypeFor: #IAllDataTypesDisp.

This generates code that you must review.

The COMInterfaceClassGenerator class is discussed under COM
Connect Development Tools. You need to review and customize the
prototype class, but the tool provides an initial “rough draft” to get you
started.
COM Connect User’s Guide 11-19

Exposing Classes Through Dual Interfaces
General Pattern for Getting Output Parameter Values
The general method pattern for getting output parameter values for
subclasses of COMDispatchInterface is defined as follows:

<Get PropertyName Function>
"Answer the <PropertyName> property."
| resultReference |
resultReference := <Value Reference Object>.
interface <Get PropertyName Function>: resultReference.
^resultReference value

The Value Reference Object is used to get the output parameter from
the function. The expression to create this object depends on the
data type of the parameter and is discussed in more detail below.

The interface instance variable holds an instance of the interface
pointer class. In the example, this instance variable holds an instance
of IAllDataTypesDispPointer.

While this method pattern is defined for properties, it also applies for
any argument that needs to be returned through an output parameter.
Output parameters are marked in the IDL file with the out tag. In
addition when they are meant to be a return value, as is the case for
returning a property value, they are also marked with the retval tag.

Getting Scalar Output Values
To get a scalar output parameter value, the method pattern is as
follows:

<Get PropertyName Function>
"Answer the <PropertyName> property."
| resultReference |
resultReference := nil asValueReference.
interface <Get PropertyName Function>: resultReference.
^resultReference value

This method pattern can be applied for the following data types:

Example instance variable COM data type COM Type Code Smalltalk Class

propertyLONGValue longLONG VT_I4 Integer

propertyBYTEValue unsigned
charBYTE

VT_UI1 Integer

propertySHORTValue shortSHORT VT_I2 Integer

propertyFLOATValue floatFLOAT VT_R4 Float
11-20 VisualWorks

Creating the Interface Class
Note: A SAFEARRAY can be of any COM Automation-
compatible type. Not all combinations for SAFEARRAYs are
shown in the above table.

By convention, all of the method names match the names from the C
header file. For example, the BSTRValue property is accessed by
defining the following interface method.

get_BSTRValue
"Answer the BSTRValue property."
| resultReference |
resultReference := nil asValueReference.
interface get_BSTRValue: resultReference.
^resultReference value

Getting Interface Output Arguments
To get an interface output parameter, the method pattern is as
follows:

<Get PropertyName Function>
"Answer the <PropertyName> property."

propertyDOUBLE-Value doubleDOUBLE VT_R8 Double

propertyVARIANT_BOOLValue booleanBOOLEAN VT_BOOL Boolean

propertySCODEValue SCODE VT_ERROR Integer

propertyDATEValue DATE VT_DATE Timestamp

propertyBSTRValue BSTR VT_BSTR String

propertyCURRENCYValue CURRENCY VT_CY FixedPoint with
a scale of 4

propertySAFEARRAY_I4Value SAFEARRAY
(LONG)

VT_ARRAY | VT_I4 Array of
Integers

propertySAFEARRAY_ BSTRValue SAFEARRAY
(BSTR)

VT_ARRAY |
VT_BSTR

Array of Strings

propertySAFEARRAY_ DISPATCHValue SAFEARRAY
(IDispatch*)

VT_ARRAY |
VT_DISPATCH

Array of
IDispatches

propertySAFEARRAY_ UNKNOWNValue SAFEARRAY
(IUnknown*)

VT_ARRAY |
VT_UNKNOWN

Array of
IUnknowns

propertySAFEARRAY_ DISPATCHValue SAFEARRAY
(IDispatch*)

VT_ARRAY |
VT_DISPATCH

Array of
IDispatch

Example instance variable COM data type COM Type Code Smalltalk Class
COM Connect User’s Guide 11-21

Exposing Classes Through Dual Interfaces
| resultReference |
resultReference := <Interface Class> new asValueReference.
interface <Get PropertyName Function>: resultReference.
^resultReference value

This method pattern can be applied for the following data types:

By convention, all of the method names match the names from the C
header file. For example, the IDispatchReference property is accessed
by defining the following interface method:

get_IDispatchReference
"Answer the IDispatchReference property."
| resultReference |
resultReference := IDispatch new asValueReference.
interface get_IDispatchReference: resultReference.
^resultReference value

Getting VARIANT Output Values
To get a VARIANT output parameter, the method pattern is:

<Get PropertyName Function>
"Answer the <PropertyName> property."
| resultReference |
resultReference := COMVariantValueReference new.
interface <Get PropertyName Function>: resultReference.
^resultReference value

This method pattern can be applied for the following data types:

Example Instance variable COM data type COM Type Code Value Reference Class

propertyIUnknownReference IUnknown* VT_UNKNOWN IUnknown

propertyIDispatchReference IDispatch* VT_DISPATCH IDispatch

Example Instance
variable

COM data type COM Type Code Smalltalk Class

propertyVARIANT-
Value

VARIANT VT_VARIANT An object
11-22 VisualWorks

Creating the Interface Class
By convention, all of the method names match the names from the C
header file. For example, the propertyVARIANTValue property is
accessed by defining the following interface method:

get_VARIANTValue
"Answer the VARIANTValue property."
| resultReference |
resultReference := COMVariantValueReference new.
interface get_VARIANTValue: resultReference.
^resultReference value

Passing Input Parameter Values
To set an input parameter value, the method pattern is as follows:

<Put PropertyName>: aValue
"Set the <PropertyName> property."
interface <Put PropertyName Function>: aValue

This method pattern can be applied for all data types.

By convention, all of the method names match the names from the C
header file. For example, the propertyBSTRValue property is set by
defining the following interface method:

put_BSTRValue: aValue
"Set the BYTEValue property."
interface put_BSTRValue: aValue

Calling a Method
To call a COM method, a method is implemented to pass the call to
the interface binding that performs the low-level Vtable function call.
In an interface class, method names should be “civilized” to follow the
Smalltalk convention by starting with a lower-case letter.

For example, the example defines the reset method as:

reset
"Invole the IAllDataTypesDisp::Reset function.."
interface Reset

Calling a Method With Arguments
To call a COM method, a method is implemented to pass the call to
the interface binding that performs the low-level Vtable function call.
Arguments are handled in the same fashion as defined for properties.
In an interface class, method names should be ‘civilized’ to follow the
Smalltalk convention by starting with a lower-case letter. The
COM Connect User’s Guide 11-23

Exposing Classes Through Dual Interfaces
argument selectors should be Smalltalk-like as well, since the
anonymous argument selector _: is used only at the function level in
the interface pointer and implementation binding classes.

For example, the following defines the manyArguments: propertyName:
aLongValue: method.

manyArguments: anIDispatch propertyName: aPropertyName
 aLongValue: aLong

"Call ManyArguments and answer a VARIANT value."
| resultReference |
resultReference := COMVariantValueReference new.
interface ManyArguments: anIDispatch _: aPropertyName _: aLong _:

resultReference.
^resultReference value

Class Initialization
The class method used to initialize the class is as follows:

ClassInitializer
" self ClassInitializer "
self iid: IAllDataTypesDispPointer iid.
self initialize.

Class initialization comprises the following steps:

1 Setting the class interface identifier with iid:.

2 Calling super initialize.

Creating the Interface Implementation Binding Class
Implementing an interface implementation binding class is required
when you want a Smalltalk object to support a COM interface. An
interface implementation class is used when a client calls into
VisualWorks.

The IAllDataTypesDispImplementation class is defined as a subclass of
COMDispatchImplementation. The IAllDataTypesDispImplementation class
inherits the IDispatch behavior. It is through these methods that COM
Connect is invoked from the external world.
11-24 VisualWorks

Creating the Interface Implementation Binding Class
Object
COMInterfaceBinding

COMInterfaceImplementation ('implementor' 'interfaceAddress')
IUnknownImplementation

COMDispatchImplementation
IAllDataTypesDispImplementation

COMDispatchImplementation subclass:
 #IAllDataTypesDispImplementation
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: 'COMConstants COMAutomationConstants

COMStatusCodeConstants '
category: 'COM-Automation-Server Samples'

By convention, you always define two method categories for the
methods in an interface pointer class:

interface operations

These methods provide an optimization for Smalltalk clients that
call the interface from the same image. They are also useful for
testing your object.

private-invocation

These methods define the interface function callback entry
points. These methods receive the external client calls.

The convention used by COM Connect for incoming call is to call a
method with a selector prefix of invoke followed by the interface
function name. Following the COM Connect argument convention,
the anonymous keyword _: is used for argument selectors. The first
argument of all interface functions is always noted as the this, which
is familiar to C++ programmers.The ‘This’ argument of an external
function invocation is provided by the Object Engine COM callback
machinery. It is always the interface binding that is processing the
callback; it is not used by the image binding.

Automatically Generating the Interface Implementation Class
A prototype of the interface implementation binding class of a COM
interface can be generated automatically using tools provided with
COM Connect. For example:

COMInterfaceImplementationClassGenerator
generateInterfacePrototypeFor: #IAllDataTypesDisp.

This generates code that you must review.
COM Connect User’s Guide 11-25

Exposing Classes Through Dual Interfaces
The COMInterfaceImplementationClassGenerator class is discussed under
COM Connect Development Tools. You need to review and customize
the prototype class, but the tool provides an initial “rough draft” to get
you started.

General Pattern for Returning a Value in an Output Parameter
The general method pattern used to return a value in an output
parameter is defined as follows:

invoke<Get SomeName Function>: this _: pvarResult
"Private. Invoke the <InterfaceName>::<Get SomeName Function>
 function for an external caller. "

"An additional comment with the C function definition from the header
file. "

^[" terminate exception stack unwind at external callin boundary "

| resultReference hresult |

self reportExternalFunctionEntry.
pvarResult isValid

ifFalse: [^E_INVALIDARG].
resultReference := <Value Reference Object>.
hresult := implementor <Get SomeName Function>: resultReference.
(HRESULT succeeded: hresult)

ifTrue: [<Copy ‘resultReference value’ to the memory location
 ‘pvarResult’>].

hresult
] on: self rootExceptions

do: (self exceptionHandlerForHRESULTReturnValue: #externalCallin)
The Value Reference Object is used to get the output parameter from
the implementor object. The expression to create this object depends
on the data type of the parameter. In most cases, the expression ‘nil
as Value Reference’ is used in an external function invocation.

The instance variable implementor holds an instance of the published
COM class. In the example, this instance variable holds an instance
of AllDataTypesCOMObject.

Copying Output Values to External Memory
The following table lists the variations in the method pattern for
copying a COM representation of a Smalltalk object into external
memory.
11-26 VisualWorks

Creating the Interface Implementation Binding Class
COM data type Value reference class Setting the result value pointer

BSTR nil self bstrResultAtAddress: pvarResult put:
resultReference value

BYTE nil self scalarResultAtAddress: pvarResult put:
resultReference value

CURRENCY nil self currencyResultAtAddress: pvarResult put:
resultReference value

DATE nil self dateResultAtAddress: pvarResult put:
resultReference value

DOUBLE nil self scalarResultAtAddress: pvarResult put:
resultReference value

FLOAT nil self scalarResultAtAddress: pvarResult put:
resultReference value

IDispatch* nil self interfaceResultAtAddress: pvarResult put:
resultReference value

IUnknown* nil self interfaceResultAtAddress: pvarResult put:
resultReference value

LONG nil self scalarResultAtAddress: pvarResult put:
resultReference value

SAFEARRAY of BSTR nil self safeArrayResultPointerAtAddress:
pvarResult put: resultReference value
elementType: VT_BSTR

SAFEARRAY of DISPATCH nil self safeArrayResultPointerAtAddress:
pvarResult put: resultReference value
elementType: VT_DISPATCH

SAFEARRAY of UNKNOWN nil self safeArrayResultPointerAtAddress:
pvarResult put: resultReference value
elementType: VT_UNKNOWN

SAFEARRAY of VT_I4 nil self safeArrayResultPointerAtAddress:
pvarResult put: resultReference value
elementType: VT_I4

SCODE nil self scalarResultAtAddress: pvarResult put:
resultReference value

SHORT nil self scalarResultAtAddress: pvarResult put:
resultReference value

VARIANT_BOOL nil self variantBoolResultAtAddress: pvarResult
put: resultReference value

VARIANT COMVariant Value-
Reference

selfvariantResultAt Address: PvarResult
put:resultReference value
COM Connect User’s Guide 11-27

Exposing Classes Through Dual Interfaces
A SAFEARRAY can be of any COM Automation-compatible type. Not
all combinations for SAFEARRAYs are shown in above table. The
selectors in above table that are sent to self are methods
implemented in the COM Connect framework superclass
COMInterfaceImplementation.

For example, to answer a BSTR value to a client, in the
IAllDataTypesDisp dual interface class a function called
invokeget_BSTRValue:_: is defined. The first argument is noted as the
this, which is familiar to C++ programmers. The second argument is a
pointer to a BSTR.

invokeget_BSTRValue: this _: pvarResult
"Private. Invoke the IAllDataTypes::get_BSTRValue function for an
external caller. "

"/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_BSTRValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [retval][out] */ BSTR __RPC_FAR *Value);"
^[" terminate exception stack unwind at external callin boundary "

| resultReference hresult |
self reportExternalFunctionEntry.
pvarResult isValid

ifFalse: [^E_INVALIDARG].
resultReference := nil asValueReference.
hresult := implementor get_BSTRValue: resultReference.
(HRESULT succeeded: hresult)

ifTrue: [self bstrResultAtAddress: pvarResult
put: resultReference value].

hresult

] on: self rootExceptions
do: (self exceptionHandlerForHRESULTReturnValue:

#externalCallin)

General Pattern for Getting Values From Input Parameters
The general method pattern used to get a value from an input
parameter is defined as follows:

invoke<Put SomeName Function>: this _: aValue
"Private. Invoke the <InterfaceName>:: <Put SomeName Function>
 function for an external caller. "
"An additional comment with the C function definition from the header
 file. "
^[" terminate exception stack unwind at external callin boundary "
implementor <Put SomeName Function>:
11-28 VisualWorks

Creating the Interface Implementation Binding Class
(<Convert ‘aValue’ to its Smalltalk representation>).
] on: self rootExceptions

do: (self exceptionHandlerForHRESULTReturnValue: #externalCallin
)

This table lists the variations in the method pattern.

Note: A SAFEARRAY can be of any COM Automation-
compatible type. Not all combinations for SAFEARRAYs are
shown in above table. The selectors in above table that are sent
to self are methods implemented in the framework class
COMInterfaceImplementation.

COM data type Getting the value

BSTR self stringAtBSTRPointer: aValue

BYTE aValue

CURRENCY self currencyValueAtAddress: aValue

DATE self dateValueAtAddress: aValue

DOUBLE aValue

FLOAT aValue

IDispatch* self interfaceAtAddress: aValue type: IDispatch

IUnknown* self interfaceAtAddress: aValue type: IDispatch

LONG aValue

SAFEARRAY of BSTR self safeArrayValueAtAddress: pvarResult put: aValue elementType:
VT_BSTR

SAFEARRAY of DISPATCH self safeArrayValueAtAddress: pvarResult put: aValue elementType:
VT_DISPATCH

SAFEARRAY of UNKNOWN self safeArrayValueAtAddress: pvarResult put: aValue elementType:
VT_UNKNOWN

SAFEARRAY of VT_I4 self safeArrayValueAtAddress: pvarResult put: aValue elementType:
VT_I4

SCODE aValue

SHORT aValue

VARIANT self variantValueFrom: aValue

VARIANT_BOOL self booleanFromVariantBool: aValue
COM Connect User’s Guide 11-29

Exposing Classes Through Dual Interfaces
For example, to set a BSTR value in an object, a function called
invokeput_BSTRValue:_: is defined in the IAllDataTypesDisp dual interface
class. The first argument is noted as the this familiar to C++
programmers. The second argument is a BSTR.

invokeput_BSTRValue: this _: aValue
"Private. Invoke the IAllDataTypes::put_BSTRValue function for an
external caller. "

"/* [helpstring][propput] */ HRESULT (STDMETHODCALLTYPE

 __RPC_FAR
*put_BSTRValue)(
IAllDataTypesDisp __RPC_FAR * This,
/* [in] */ BSTR Value);"

^[" terminate exception stack unwind at external callin boundary "
implementor put_BSTRValue: (self stringAtBSTRPointer: aValue).
] on: self rootExceptions

do: (self exceptionHandlerForHRESULTReturnValue:
#externalCallin)

Optimizing Same Image Clients
You can publish COM objects from many places, including the image
you are running from. When a COM object is implemented in the
same image it is called from, it is possible to optimize the call path by
avoiding going out to COM and back in again. This optimization is
enabled by implementing interface methods on the interface
implementation class. Invoking interface functions internally is also
useful for testing your object during development. By convention,
these methods are placed in a category called ‘interface operations.’

The method pattern is as follows:

<Interface Function Name>
"Invoke the IAllDataTypes:: <Interface Function Name> function. Raise
an exception if an error occurs. Answer the result code."

| hresult |
hresult := [" terminate exception stack unwind at function invocation

boundary "
implementor <Interface Function Call>
] on: self rootExceptions

do: (self exceptionHandlerForHRESULTReturnValue:
#internalCallin).

self checkHresult: hresult.
^hresult
11-30 VisualWorks

Creating the Interface Pointer Binding Class
For example, the example IAllDataTypesDispImplementation method
get_BSTRValue: is defined as follows:

get_BSTRValue: resultReference
"Invoke the IAllDataTypes::get_BSTRValue function. Raise an exception
if anerror occurs. Answer the result code."
| hresult |
hresult := [" terminate exception stack unwind at function invocation
boundary "

implementor get_BSTRValue: resultReference
] on: self rootExceptions

do: (self exceptionHandlerForHRESULTReturnValue:
#internalCallin).

self checkHresult: hresult.
^hresult

Class Initialization
The class method used to initialize the class is as follows:

ClassInitializer
" self ClassInitializer "
self iid: IAllDataTypesDispPointer iid.
self vtableSignatureTypeName: #__IAllDataTypesDispVtbl.
self initialize.

Class initialization comprises the following steps:

1 Set the class interface identifier with iid:.

2 Specify the name of the virtual function table with the
vtableSignatureTypeName: method. The argument is a selector for
the virtual function table method defined for the dual interface in
the COMInterfaceVTableSignatures class.

3 Call super initialize.

Creating the Interface Pointer Binding Class
Implementing an interface pointer class is required when you want a
Smalltalk client to access a COM object implemented by another
application. An interface pointer class is used to call out of
VisualWorks.
COM Connect User’s Guide 11-31

Exposing Classes Through Dual Interfaces
The class IAllDataTypesDispPointer is defined as a subclass of
COMDispatchPointer.The class IAllDataTypesDispPointer inherits IDispatch
behavior from COMDispatchInterfacePointer. It is through these methods
that COM Connect calls out to the COM world.

Object
COMInterfaceBinding

COMInterfacePointer ('interfaceAddress')
IUnknownPointer

COMDispatchInterfacePointer
IAllDataTypesDispPointer

COMDispatchInterfacePointer subclass: #IAllDataTypesDispPointer

instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: 'COMStatusCodeConstants

COMAutomationConstants COMConstants '
category: 'COM-Automation-Server Samples'

By convention, you always define two method categories for the
methods in an interface pointer class:

interface operations

These methods convert as necessary any arguments for calling
the functions.

private-invocation

These methods define the function entry points for the external
function call.

Automatically Generating the Interface Pointer Class
A prototype of the interface pointer class of a COM interface can be
generated automatically using tools provided with COM Connect. For
example,

COMInterfacePointerClassGenerator
generateInterfacePrototypeFor: #IAllDataTypesDisp.

This generates code that you must review.

The COMInterfacePointerClassGenerator class is documented under
COM Connect Development ToolsCOM Connect Development Tools.
You need to review and customize the prototype class, but the tool
provides an initial “rough draft” to get you started.
11-32 VisualWorks

Creating the Interface Pointer Binding Class
Getting Output Parameter Values
The general pattern for methods getting output parameter values in
the ‘interface operations’ category is as follows:

<Get Function name>: resultReference
"Invoke the IAllDataTypesDisp::<Get Function name> function. Raise an
exception if an error occurs. Answer the result code."
| resultBuffer hresult |
resultBuffer := <Create result value buffer>.
hresult := self invoke<Get Function name>: resultBuffer

asPointerParameter.
resultReference value: (<Get value from buffer>).
^hresult

The following table lists variations in the method pattern.

COM data type Creating the result value buffer Getting the value from the buffer

BSTR BSTR resultValueBuffer. resultBuffer contents

BYTE COMExternalInterface scalarResultBufferFor:
#BYTE.

resultBuffer contents

CURRENCY COMStructure resultValueBuffer: #CY. resultBuffer contents

DATE COMDate resultValueBuffer. resultBuffer contents

DOUBLE COMExternalInterface scalarResultBufferFor:
#DOUBLE.

resultBuffer contents

FLOAT COMExternalInterface scalarResultBufferFor:
#FLOAT

resultBuffer contents

IDispatch* IDispatchPointer resultValueBuffer. resultBuffer contents

IUnknown* IUnknownPointer resultValueBuffer. resultBuffer contents

LONG COMExternalInterface scalarResultBufferFor:
#LONG.

resultBuffer contents

SAFEARRAY of BSTR COMSafeArray resultValueBufferFor: VT_BSTR resultBuffer contents

SAFEARRAY of
DISPATCH

COMSafeArray resultValueBufferFor:
VT_DISPATCH

resultBuffer contents

SAFEARRAY of
UNKNOWN

COMSafeArray resultValueBufferFor:
VT_UNKNOWN

resultBuffer contents

SAFEARRAY of VT_I4 COMSafeArray resultValueBufferFor: VT_I4 resultBuffer contents

SCODE COMExternalInterface scalarResultBufferFor:
#SCODE

resultBuffer contents

SHORT COMExternalInterface scalarResultBufferFor:
#SHORT.

resultBuffer contents
COM Connect User’s Guide 11-33

Exposing Classes Through Dual Interfaces
A SAFEARRAY can be of any COM Automation-compatible type. Not
all combinations for SAFEARRAYs are shown in above table.

The general pattern for methods in the ‘private-invocation’ category is
defined below. By convention all interface methods are prefixed with
invoke.

invoke<Function Name>
"Private."
" The C header file interface Function definition is included here "
<COM: HRESULT <Function definition>= <Virtual function table

position>>
^self externalAccessFailedWith: _errorCode

Note: The virtual function table position is a 0-based index, with
0 predefined for IUnknown::QueryInterface, 1 for IUnknown::AddRef
and so on until 6 for IDispatch::Invoke. Therefore, the first available
index for a dual interface entry is always 7.

For example, the IAllDataTypesDispPointer class implements the
get_BSTRValue: and invokeget_BSTRValue: methods.

get_BSTRValue: resultReference
"Invoke the IAllDataTypesDisp::get_BSTRValue function. Raise an
exception if an error occurs. Answer the result code."
| resultBuffer hresult |
resultBuffer := BSTR resultValueBuffer.
hresult := self invokeget_BSTRValue: resultBuffer asPointerParameter.
resultReference value: resultBuffer contents.
^hresult

invokeget_BSTRValue: Value

"Private."
"/* [propget] */ HRESULT (STDMETHODCALLTYPE __RPC_FAR

*get_BSTRValue)(
IAllDataTypesDisp __RPC_FAR * This,
 /* [retval][out] */ BSTR __RPC_FAR *Value);"
<COM: HRESULT __stdcall get_BSTRValue(BSTR *Value) = 24>
^self externalAccessFailedWith: _errorCode

VARIANT COMStructure resultValueBufferFor:
#VARIANT.

resultBuffer contents

VARIANT_BOOL COMExternalInterface scalarResultBufferFor:
#VARIANT_BOOL

COMExternalInterface
booleanFromVARIANT_BOO
L: resultBuffer contents

COM data type Creating the result value buffer Getting the value from the buffer
11-34 VisualWorks

Creating the Interface Pointer Binding Class
Setting Input Parameter Values
The following sections introduce method patterns for converting a
Smalltalk object into its COM representation suitable for an external
interface function call.

Setting Input Parameters for Scalar Values
This section applies to following COM Automation data types:

• BYTE

• DOUBLE

• FLOAT

• LONG

• SCODE

• SHORT

The method pattern to convert one of these values from a Smalltalk
object into COM bits is as follows. There is actually no work to do for
scalar types, in the pattern and example the value in aValue is just
passed to the interface function entry point.

<Put Function Name>: aValue
"Invoke the <InterfaceName>::<Put Function Name> function. Raise an
exception if an error occurs. Answer the result code."
^self invoke<Put Function Name>: aValue

For example, the IAllDataTypesDispPointer class defines the
put_BYTEValue: method to deal with a BYTE input parameter, as
follows:

put_BYTEValue: aValue
"Invoke the IAllDataTypesDisp::put_BYTEValue function. Raise
an exception if an error occurs. Answer the result code."
^self checkHresult: (self invokeput_BYTEValue: aValue)

Setting Input Parameters for BSTR Values
The method pattern to convert a Smalltalk String into COM bits is as
follows:

<Put Function Name>: aValue
"Invoke the <InterfaceName>::<Put Function Name> function. Raise an

exception if an error occurs. Answer the result code."
| aBSTR hresult |
aBSTR := BSTR allocateString: aValue.
[

COM Connect User’s Guide 11-35

Exposing Classes Through Dual Interfaces
hresult := self invoke<Put Function Name>:
aBSTR asPointerParameter.

] ensure: [aBSTR release].
^hresult

For example, the IAllDataTypesDispPointer class defines the
put_BSTRValue: method to deal with a BSTR input parameter, as
follows:

put_BSTRValue: aValue
"Invoke the IAllDataTypesDisp::put_BSTRValue function. Raise an
exception if an error occurs. Answer the result code."
| aBSTR hresult |
aBSTR := BSTR allocateString: aValue.
[
hresult := self invokeput_BSTRValue: aBSTR asPointerParameter.
] ensure: [aBSTR release].
^hresult

Setting Input Parameters for CURRENCY Values
The method pattern to convert a Smalltalk FixedPoint representing a
CURRENCY value into COM bits is as follows:

<Put Function Name>: aNumber
"Invoke the <InterfaceName>:: <Put Function Name>function. Raise an

exception if an error occurs. Answer the result code.
<aNumber> represents a CURRENCY with a scale of 4."

^self invoke<Put Function Name>:

(COMExternalInterface asCYParameter: aNumber)
For example, the IAllDataTypesDispPointer class defines the
put_CURRENCYValue: method to deal with a CURRENCY input
parameter, as follows:

put_CURRENCYValue: aFixedPoint
"Invoke the IAllDataTypesDisp::put_CURRENCYValue function. Raise
an exception if an error occurs. Answer the result code. <aFixedPoint>
represents a CURRENCY with a scale of 4."

^self invokeput_CURRENCYValue:

(COMExternalInterface asCYParameter: aNumber)
11-36 VisualWorks

Creating the Interface Pointer Binding Class
Setting Input Parameters for DATE Values
The method pattern to convert a Smalltalk Date, Timestamp or
LimitedPrecisionReal into COM bits is as follows:

<Put Function Name>: aValue
"Invoke the <InterfaceName>::<Put Function Name> function with the
argument <aValue> is a Timestamp or a Date. Raise an exception if an
error occurs. Answer the result code."

^ self invoke<Put Function Name>:

(COMExternalInterface asDATEParameter: aValue))
For example, the IAllDataTypesDispPointer class defines the
put_DATEValue: method to deal with a DATE input parameter, as
follows:

put_DATEValue: aValue
"Invoke the IAllDataTypesDisp::put_DATEValue function with the
argument <aValue> is a Timestamp or a Date. Raise an exception if an
error occurs. Answer the result code."

^self invokeput_DATEValue:

(COMExternalInterface asDATEParameter: aValue)

Setting Input Parameters for Interface Values
The method pattern to convert a Smalltalk interface into COM bits is
as follows:

<Put Function Name>: aValue
"Invoke the <InterfaceName>::<Put Function Name> function. Raise an
exception if an error occurs. Answer the result code."
^self invoke<Put Function Name>: aValue asPointerParameter

For example, the IAllDataTypesDispPointer class defines the
put_IDispatchReference: method to deal with an IDispatch input
parameter, as follows:

put_IDispatchReference: aValue
"Invoke the IAllDataTypesDisp::put_IDispatchReference function. Raise
an exception if an error occurs. Answer the result code."

^self invokeput_IDispatchReference: aValue asPointerParameter

Setting Input Parameters for SAFEARRAY Values
The method pattern to convert an Array into COM bits is as follows:
COM Connect User’s Guide 11-37

Exposing Classes Through Dual Interfaces
<Put Function Name>: aValue
"Invoke the <InterfaceName>::<Put Function Name> function. Raise an

exception if an error occurs. Answer the result code."
| hresult aComSA |
aComSA := COMSafeArray fromCollection: aValue elementType: <An

Automation VT Constant>
[
hresult := self invoke<Put Function Name>:

aComSA asPointerParameter.
] ensure: [aComSA release].
^hresult

For example, the IAllDataTypesDispPointer class defines the
put_SAFEARRAY_DISPATCHValue: method to deal with a SAFEARRAY
of IDispatch references input parameter, as follows:

put_SAFEARRAY_DISPATCHValue: aValue
"Invoke the IAllDataTypesDisp::put_SAFEARRAY_DISPATCHValue

function.
Raise an exception if an error occurs. Answer the result code."

| hresult aComSA |
aComSA := COMSafeArray fromCollection: aValue elementType:

VT_DISPATCH.
[
hresult := self invokeput_SAFEARRAY_DISPATCHValue: aComSA

asPointerParameter.
] ensure: [aComSA release].
^hresult

Setting Input Parameters for VARIANT Values
The method pattern to convert any Smalltalk object whose class is
compatible with a COM Automation data type into COM bits is as
follows:

<Put Function Name>: aValue
put_VARIANTValue: aValue

"Invoke the <InterfaceName>::<Put Function Name> function. Raise an
exception if an error occurs. Answer the result code."

 ^self invoke<Put Function Name>:

aValue asCOMVariant asStructureParameter
For example, the IAllDataTypesDispPointer class defines the
put_VARIANTValue: method to deal with a VARIANT input parameter,
as follows:
11-38 VisualWorks

Creating the Interface Pointer Binding Class
put_VARIANTValue: aValue
"Invoke the IAllDataTypesDisp::put_VARIANTValue function. Raise an
exception if an error occurs. Answer the result code."

^self invokeput_VARIANTValue: aValue asCOMVariant

asStructureParameter

Setting Input Parameters for VARIANT_BOOL Values
The method pattern to convert a Smalltalk Boolean into COM bits is
as follows:

<Put Function Name>: aValue
"Invoke the <InterfaceName>::<Put Function Name> function. Raise an
exception if an error occurs. Answer the result code."

^self invoke<Put Function Name>:

(COMExternalInterface asVARIANT_BOOL: aValue)
For example, the IAllDataTypesDispPointer class defines the
put_DATEValue: method to deal with a DATE input parameter, as
follows:

put_VARIANT_BOOLValue: aValue
"Invoke the IAllDataTypesDisp::put_VARIANT_BOOLValue function.
Raise an exception if an error occurs. Answer the result code."

^self invokeput_VARIANT_BOOLValue:

(COMExternalInterface asVARIANT_BOOL: aValue)

Class Initialization
The class method used to initialize the class is as follows:

ClassInitializer
" self ClassInitializer "
" '{DB5DE8E2-AD1F-11d0-ACBE-5E86B1000000}' asGUID storeString "

self iid: (GUID fromBytes: #[16rE2 16rE8 16r5D 16rDB 16r1F 16rAD

16rD016r11 16rAC 16rBE 16r5E 16r86 16rB1 0 0 0]).
self initialize.

Class initialization comprises the following steps:

1 Setting the class interface identifier with iid:.

2 Calling super initialize.
COM Connect User’s Guide 11-39

Exposing Classes Through Dual Interfaces
Create a COMDualInterfaceObject Subclass
Creating a COMDualInterfaceObject subclass involves implementing the
following:

• Class initialization

• Methods and properties

• Class factory creation

• Type library management

• Run-Time installation

Subclassing the COMDualInterfaceObject class allows you to inherit
default implementation for IDispatch and IUnknown. The example
defines the AllDataTypesCOMObject subclass, as follows:

Object
COMObject ('referenceCount' 'controllingUnknown' 'innerUnknown')

COMAutomationObject ('iDispatch' 'valueAdaptor')
COMDispatchObject ('publishedObject' 'registrationToken')

COMDualInterfaceObject
AllDataTypesCOMObject

COMDualInterfaceObject subclass: #AllDataTypesCOMObject
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: 'COMStatusCodeConstants '
category: 'COM-Automation-Server Samples'

COMDualInterfaceObject Subclass Responsibilities
The COMDualInterfaceObject subclass must implement the following
class methods:

ClassInitializer

Initialize the class when loaded.

newClassFactory

Answer a new class factory that creates instances of the receiver.

installRuntime

Install this class in the image for delivery.
11-40 VisualWorks

Create a COMDualInterfaceObject Subclass
getTypeLibraries

Answer a Collection of the type libraries used for the application.

These methods and their implementation are discussed next.

Implementing Methods and Properties
Implementing Automation Objects explains how to create the link
between the incoming COM interface functions calls and your
COMDualInterfaceObject subclass. Once the calls arrive in your
COMDualInterfaceObject subclass, your application takes over. In the
case of the AllDataTypes example, all non-COM-specific work is
delegated to the AutomationAllDataTypes class. For example, the
Reset method is implemented to call on the AutomationAllDataTypes
method of the same name as follows:

Reset
"Implement ISmalltalkCommanderDisp::Reset."
self publishedObject Reset.
^S_OK

The return value of each method must be an HRESULT. If your code
does not detect any error conditions, the answer should be the
constant S_OK.

By convention, the names of the methods in a COMDualInterfaceObject
subclass are identical to the names of the interface in the header file
generated by the MIDL compiler.

When an object is called to get one of its properties, a value
reference is passed as an argument for the object to fill in. The
message value: is used to set the answer to a Smalltalk object.

For example, the example defines the get_BSTRValue: message, as
follows:

get_BSTRValue: resultReference
"Implement IAllDataTypesDisp::get_BSTRValue."
resultReference value: (self publishedObject getBSTRValue).
^S_OK

When an object is called to set one of its properties, a Smalltalk
object is passed as an argument for the object to fill save. For
example, the example defines the put_BSTRValue: message, as
follows:
COM Connect User’s Guide 11-41

Exposing Classes Through Dual Interfaces
put_BSTRValue: aValue
"Implement IAllDataTypesDisp::setBSTRValue."
self publishedObject setBSTRValue: aValue.
^S_OK

The keyword used for passing multiple arguments is the anonymous
_: , as the next example illustrates.

ManyArguments: anIDispatch _: aPropertyName _: aLong _:
resultReference

"Implement ISmalltalkCommanderDisp::ManyArguments."
resultReference value: (self publishedObject

ManyArguments: anIDispatch
propertyName: aPropertyName aLong: aLong).
^S_OK

Implementing Class Initialization
When the class AllDataTypesCOMObject is loaded in the system it
must be initialized with the CLSID and dual interface class for the
object it represents. This is done in the ClassInitilizer method.

ClassInitializer
"This method is run at COM Connect installation time."
" self ClassInitializer "
self initialize.

initialize
"This method is run at COM Connect installation time."
" self ClassInitializer "
super initialize.
self clsid: AutomationAllDataTypes clsid.
self dualInterfaceClass: IAllDataTypesDisp.

Class initialization comprises the following steps:

1 Calling super initialize.

2 Setting the class identifier (CLSID) with clsid:. In the example, the
definition from AutomationAllDataTypes class was reused.

3 Setting the dual interface class with dualInterfaceClass: to the
custom dual interface class. The class is IAllDataTypesDisp in the
example.
11-42 VisualWorks

Create a COMDualInterfaceObject Subclass
Providing Class Factory Support
A class factory is constructed by the newClassFactory method, as
follows:

newClassFactory
"Answer a new class factory that creates instances of the receiver."
^self newClassFactoryForClass: AutomationAllDataTypes

clsid: self clsid
specificationTable: AutomationAllDataTypes specificationTable
typeLibraries: self typeLibraries

The newClassFactory method publishes the AutomationAllDataTypes
class. The published class can be anywhere in the hierarchy. There
are no requirements on the published class. The only requirements
are on your COMDualInterfaceObject subclass presented in this section.
For this example, the existing specification table method from the
AutomationAllDataTypes class was not duplicated in the
AllDataTypesCOMObject class.

In this example, the
newClassFactoryForClass:clsid:specificationTable:typeLibraries: message
answers a new class factory that creates instances of the receiver.
This COMDualInterfaceObject subclass publishes a new instance of
itself as a COM Automation object with the CLSID ‘self clsid’. The
dispatch specifications for the properties and methods that are
published for the subclass are defined by AutomationAllDataTypes
specificationTable, which is indexed by DISPID. The type libraries for
this object are specified by self typeLibraries, a dictionary of
COMTypeLibrary objects indexed by locale IDs (LCIDs). The example
has one type library for the English language.

Summary
The published COM class AllDataTypesCOMObject inherits IUnknown
and IDispatch behavior from the COMObject framework. The
AllDataTypesCOMObject class implements the interface for the
additional members of the IAllDataTypesDisp dual interface. The
AllDataTypesCOMObject class passes all non-grunt-COM work to its
published Smalltalk class AutomationAllDataTypes, which can reside
anywhere in the hierarchy.
COM Connect User’s Guide 11-43

Exposing Classes Through Dual Interfaces
Implementing Type Library Management
The getTypeLibraries method answers a collection of COMTypeLibrary
objects. Have one type library for each language your application
supports.

getTypeLibraries
"Answer a Collection of the type libraries used for the application. The

locale ID must be specified for each COMTypeLibrary since the
framework uses this field as an index."

| myTypeLibraries |
myTypeLibraries := OrderedCollection new.
myTypeLibraries

add: self newTypeLibraryEnglish.
^myTypeLibraries

newTypeLibraryEnglish

"Answer a type library for the English language for the application."
^COMTypeLibrary new

libraryID: AutomationAllDataTypes typeLibraryID;
lcid: COMTypeLibrary lcidEnglish;
directoryName: COMSessionManager absoluteCOMDirectoryName,

'Examples\COMAuto\AllDataT\TypeLibrary';
fileName: 'VwAllDT.tlb';
majorVersion: 1;
minorVersion: 0

Implementing Run-Time Installation
When ready to make a deployment image, you must first send the
installRuntime message to your class.

installRuntime
" Prepare the receiver for deployment in a run-time image
configuration. You can extend this method and place installation code
 in it. "

" self installRuntime "
super installRuntime.
"You can override the default for server application termination:"
"self exitIfNotInUse: true."
"You can also change the adaptor binding policy:"
"self useAdaptorBinding: true."
11-44 VisualWorks

Converting Existing Objects to Dual Interfaces
Converting Existing Objects to Dual Interfaces
If you already implemented exposed objects that support only the
IDispatch interface, it is recommended that you convert them to
support dual interfaces. Do the following:

1 Edit the .odl or .idl file to declare a dual interface instead of an
IDispatch-only interface.

2 Rearrange the parameter lists so that the methods and
properties of your exposed objects return an HRESULT and pass
their return values in a parameter.
COM Connect User’s Guide 11-45

Exposing Classes Through Dual Interfaces
11-46 VisualWorks

12

Using Distributed COM

Microsoft’s distributed COM (DCOM) extends the Component Object
Model (COM) to support communication among objects on different
computers —on a LAN, a WAN, or the Internet. With DCOM, your
application can be distributed at locations that make the most sense
to your customer and to the application.

Because DCOM is an evolution of COM, you can take advantage of
your existing investment in COM-based applications, components,
tools, and knowledge to move into the world of distributed computing.
As you do so, DCOM handles low-level details of network protocols
so you can focus on your real business.

Locating a Remote Object
With the advent of COM for distributed systems, COM uses the basic
model for object creation, and adds more than one way to locate an
object that may reside on another system in a network, without
overburdening the client application.

DCOM has added registry keys that permit a server to register the
name of the machine on which it resides, or the machine where an
existing storage is located. Thus, client applications, as before, need
know only the CLSID of the server.

However, for cases where it is desired, DCOM lets you use a
structure called COSERVERINFO through a serverName: argument to
the IClassFactory object creation services, which allows a client to
specify the location of a server. Another important value is the class
context (CLSCTX), which specifies whether the expected object is to
be run in-process, out-of-process local, or out-of-process remote.
Taken together, these two values and the values in the registry
COM Connect User’s Guide 12-1

Using Distributed COM
determine how and where the object is to be run. Instance creation
calls, when they specify a server location, can override a registry
setting. The algorithm COM uses for doing this is described in the
description of the CLSCTX enumeration in Using Automation
Objects.

The client and server machines must both be members of domains
with a trust relationship for all types of remote activation.

Accessing Objects on Remote Machines
While it is possible to monkey with the Registry Database or use
DCOMCnfg.exe and turn a local server into a remote server, you can
also programmatically specify that you want to access a remote
server. For an example of using IClassFactory to create a remote
component, see Optimizing Querying Interfaces.

The following is an example of using createObject:onServer: to create a
remote component:

aDispatchDriver := COMDispatchDriver
createObject: ‘MyApp.SomeObjectClass’
serverName: ‘MyRemoteServerName’.

The serverName: argument is used to construct a DCOM
COSERVERINFO structure and describes the machine on which to
instantiate the object. This argument might be nil, in which case the
object is instantiated on the current machine or at the machine
specified in the registry under the class’s RemoteServerName
named-value, according to the interpretation of the context flags
parameter. See the CLSCTX documentation for details.

The Remote Server Name Key
The server name is used to identify a remote system in object
creation functions. Machine resources are named using the naming
scheme of the network transport. By default, all UNC (\\server or
server) and DNS names (server.com, www.foo.com, or 135.5.33.19)
names are allowed.
12-2 VisualWorks

In Depth: The COSERVERINFO Structure
A server can install the RemoteServerName named-value on client
machines to configure the client to request that the object be run at a
particular machine whenever an activation function is called, for
which a server name is not specified. A RemoteServerName Registry is
defined as follows:

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\APPID\{AppID_valu}
\RemoteServerName = server_name

As described in the section on CLSCTX enumeration and the
COSERVERINFO structure, one of the parameters of distributed
COM activation is a pointer to a COSERVERINFO structure. When
this value is not nil, the information in the COSERVERINFO structure
overrides the setting of the RemoteServerName key for the function
call.

RemoteServerName allows simple configuration management of client
applications - they might be written without hard-coded server
names, and can be configured by modifying the RemoteServerName
registry values of the classes of objects they use.

You can specify a context for object creation with class messages
from IClassFactory and COMDispatchDriver. The context: keyword is
used to denote the class context parameter.

In Depth: The COSERVERINFO Structure
The object creation messages currently presented by
COMDispatchDriver and IClassFactory let you set only the server
name attribute of the DCOM COSERVERINFO structure. This
assumes that you are using the default NTLMSSP security package,
for which the pAuthInfo parameter is set to zero.

The COSERVERINFO structure identifies a remote machine
resource to the new or enhanced activation functions. The structure
is defined in the Wtypes.h header file, as follows:

typedef struct _COSERVERINFO
 {
 DWORD dwReserved1;
 LPWSTR pwszName;
 COAUTHINFO *pAuthInfo;
“ DWORD dwReserved2;” } COSERVERINFO;
COM Connect User’s Guide 12-3

Using Distributed COM
When using NTLMSSP, the pAuthInfo value must be set to zero. A
non-zero value, which is a pointer to a COAUTHINFO structure, is
used only when a security package other than NTLMSSP is being
used.

If you are a vendor supporting another security package, refer to
COAUTHINFO documentation from Microsoft. The mechanism
described there is intended to allow DCOM activations to work
correctly with security providers other than NTLMSSP, or to specify
additional security information used during remote activations, for
interoperability with alternate implementations of DCOM. If pAuthInfo
is set, those values are used to specify the authentication settings for
the remote call. These settings are passed to RpcBindingSetAuthInfoEx.

If the pAuthInfo field is not specified, any values in the AppID section
of the registry are used to override the following default
authentication settings:

dwAuthnSvc RPC_C_AUTHN_WINNT
dwAuthzSvc RPC_C_AUTHZ_NONE
pszServerPrincName NULL
dwAuthnLevel RPC_C_AUTHN_LEVEL_CONNECT
dwImpersonationLevel RPC_C_IMP_LEVEL_IMPERSONATE
pvAuthIdentityData NULL
dwCapabilities RPC_C_QOS_CAPABILITIES_DEFAULT

Optimizing Querying Interfaces
To in-process components, queryInterface: calls are very fast. To
components in local servers, the queryInterface: is still pretty fast. But
when you need to move across a network, the overhead of calling a
function increases greatly. It is not inconceivable for an application to
grind to a halt as it repeatedly makes any function calls, including
queryInterface: calls. Therefore, to reduce the impact of calling
queryInterface:, DCOM has created a new structure named MULTI_QI.
The MULTI_QI structure allows you to query for several interfaces at
the same time. This can save considerable overhead. In Smalltalk,
you can create a component with IClassFactory and request multiple
interfaces at the same time:

requestedInterfaceIIDs := Array with: IID_IDispatch with: IID_IUnknown.
interfaces := IClassFactory

createInstance: aCLSIDOrProgID
iids: requestedInterfaceIIDs
controllingUnknown: nil
context: CLSCTX_SERVER
12-4 VisualWorks

Determining Whether DCOM Is Available
serverName: serverName.
“Work with the interfaces
…
and release them when you are done.”
interfaces do: [: anInterface | anInterface release].

This example requests two interface pointers by passing the desired
IIDs in an Array. If the call succeeds, the answer is an array of
interfaces. In this example, instances of IDispatch and IUnknown.

When the controllingUnknown: parameter is non-nil, this indicates the
instance is being created as part of an aggregate, and the parameter
is to be used as the new instance’s controlling IUnknown.
Aggregation is currently (in Windows NT 4.0) not supported cross-
process or cross-machine. When instantiating an object out of
process, CLASS_E_NOAGGREGATION is returned if this parameter
is non-nil.

The COMDispatchDriver methods with a serverName: parameter use
this IClassFactory facility. For further information, consult the
Microsoft documentation for the CoCreateInstan-ceEx API.

Determining Whether DCOM Is Available
To determine whether DCOM services are enabled, first check to see
whether OLE32.DLL supports free threading:

COMSessionManager isFreeThreadingAvailable.
The isFreeThreading method checks if the OLE32.DLL library
implements the CoInitializeEx API.

After determining whether your system supports free threading,
check to see whether DCOM is enabled:

COMSessionManager isDCOMEnabled.
The isDCOMEnabled method checks if the Registration Database has
the value:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Ole\EnableDCOM
set to Y or y.

You can check for both with the isDCOMAvailable method:

COMSessionManager isDCOMAvailable.
COM Connect User’s Guide 12-5

Using Distributed COM
Making VisualWorks COM Server a Windows NT 4.0 Service
This section describes making a VisualWorks COM server image a
Windows NT 4.0 service, using as an example, the COM example
class VisualWorks.SmalltalkCommander.

System Requirements
The Windows NT Resource Kit provides two utilities that allow you to
create a Windows NT user-defined service for an application
(executable) or batch file. This section uses two Windows NT
Resource Kit utilities, SRVANY.EXE and INSTSRV.EXE, to set up
SmalltalkCommander as a Windows NT service. In this section you
are instructed to use the REGEDT32.EXE Registry Editor. Using the
Registry Editor incorrectly can cause serious, system-wide problems
that might require you to reinstall Windows NT to correct them.
Cincom or Microsoft cannot guarantee that any problems resulting
from the use of Registry Editor can be solved. Use this tool at your
own risk.

Before you start, make sure that your VisualWorks image is properly
configured as a deployment image.

Configuration Procedure
To configure SmalltalkCommander as a Windows NT service, follow
these step-by-step instructions:

1 Copy SRVANY.EXE and INSTSRV.EXE to your system32 directory.

2 Select a name for your service, VWNTOE for instance (you can
give it a different name later), and install it as a new service using
the following command:

INSTSRV VWNTOE c:\tools\srvany.exe
3 When the new service is created, you see a notice with

instructions.

Note: VWNTOE is the name chosen for this new service; any
unused service name suffices.

4 Go to the Control Panel and open the Services utility.

5 Select your new service, in this case VWNTOE, and click the
Startup button.
12-6 VisualWorks

Making VisualWorks COM Server a Windows NT 4.0 Service
6 Create a domain account, like MYDOMAIN\Smalltalk, for Smalltalk
to use. Configure the VWNTOE service to start up using the
MYDOMAIN\Smalltalk login (and appropriate password), and to
start either automatically or manually.

To have your service start every time you boot your machine,
select Automatic for Startup Type in the Service dialog box.
Otherwise, select Manual or Disabled. If you select Manual, you must
go into the Services utility, select the service, and click the Start or
Stop button every time you want to start or stop the service.

7 Run REGEDT32.EXE (not regedit.exe).

8 Create a Parameters key under:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\VWNTOE

9 Under this key, create an Application value of type REG_SZ and
specify the full path of the VisualWorks object engine executable.

10 Create values to specify the command line parameters and the
default directory; for example:

Application: REG_SZ: C:\vw30\Bin\Vwnt.exe
AppDirectory: REG_SZ: C:\vw30\Bin
AppParameters: REG_SZ:
C:\vw30\Com\Examples\ComAuto\Vwcomsrv.im /Automation

This tells SRVANY what application it should start when SRVANY
itself is started as the VWNTOE service.

11 It is useful to also establish a dependency to make sure the
RPCSS service is started before the system attempts to start the
VisualWorks server. Under the HKEY_LOCAL_MACHINE\
SYSTEM\CurrentControlSet\Services\VWNTOE key, create a
DependOnService value of type REG_MULTI_SZ, and give it the
value RPCSS, as follows:

DependOnService: REG_MULTI_SZ: RPCSS
12 At this time, take the opportunity to modify the default display

name:

DisplayName: REG_SZ: VisualWorks NT Object Engine
13 SRVANY is now configured to start up VisualWorks as a service;

however, once you have read and understood the contents of the
“COM Servers Activation and NT Windows Stations” article (see
references at the end of this section), it is necessary to set up the
VisualWorks.SmalltalkCommander class to launch as the
COM Connect User’s Guide 12-7

Using Distributed COM
MYDOMAIN\Smalltalk user. For this, you need to use the
DCOMCNFG.EXE utility included with Windows NT 4.0.

However, for VisualWorks.SmalltalkCommander to be recognized by
DCOMCNFG as a LOCAL server (so that you can modify the Run
As setting), you must temporarily strip off any command line
parameters that got registered in the LocalServer32 value. This
appears to be a bug in DCOMCNFG, which somehow gets
confused by anything other than <pathname>\<filename>.exe in
LocalServer32.

Thus, the steps are:

a Strip off the parameters using REGEDT32.

b Run DCOMCNFG and set up SmalltalkCommander to Run As
MYDOMAIN\Smalltalk (with password).

c Restore command line parameters in LocalServer32.

After doing all this, you can reboot your machine, and if you set
up the service (it now appears as “VisualWorks NT Object
Engine” in the Services applet) to be automatic, you have a
running instance of VisualWorks that is ready to handle COM
and DCOM requests from any user that has the privilege to
access the VisualWorks.SmalltalkCommander class.

One last note. When DCOMCNFG was used to set up the
SmalltalkCommander class to run as MYDOMAIN\Smalltalk, it created a
RunAs entry in the registry under the AppID key referenced by the
SmalltalkCommander’s CLSID. To save lots of effort, it is advisable
that all classes implemented within your VisualWorks application use
the SAME AppID, unless you explicitly want to start a separate
instance of the VisualWorks Object Engine executable for some
subset(s) of classes (perhaps for security purposes). If so, you could
set up the other AppIDs to RunAs different users, with different sets
of privileges.

Reference Material
The following Microsoft Knowledge Base articles are very insightful:

• “COM Servers Activation and NT Windows Stations”

• “HOWTO: Run Automation Manager as a Windows NT Service” :

• “How To Create A User-Defined Service”
12-8 VisualWorks

http://support.microsoft.com/kb/169321
http://support.microsoft.com/kb/193238
http://support.microsoft.com/kb/137890

13

Automation Controller Framework

When writing Automation controller programs, you might find yourself
writing the same kind of code over and over again. When you work
with a COMDispatchDriver, you must know the name of each object’s
methods and properties. You must also take care of parameters,
named or not, optional and required, as well as some possible data
type conversion issues.

It turns out that some applications also define the same kind of
standard ActiveX objects like collections, documents and fonts. The
Automation Controller framework provides Smalltalk wrappers for
these standard Automation objects, as well as abstract classes you
can subclass to add support for other Automation objects. You can
define controllers to provide a Smalltalk front-end to Automation
objects. Clients of a controller use a Smalltalk class without dealing
with the details of the Automation object and its COMDispatchDriver.

Examples

The MS Excel Monster Damage Example
This Excel Automation example illustrates using the Automation
Controller Framework. This example requires Microsoft Excel 97 or
Microsoft Excel for Windows 95, version 7.0 (from Office 95). This
sample contains the ExcelExampleMonsterDamage class, which
performs the following operations:

1 Start Excel.

2 Fill a spreadsheet with some numbers.

3 Create and format a chart for those numbers.
COM Connect User’s Guide 13-1

Automation Controller Framework
4 Save the work to a file

5 Quit Excel.

Sample expressions to run this sample can be found in the
ExcelExampleMonsterDamage class comment:

“The following examples will create its Monster.xls output file in
theCOM\Examples\COMAuto\Output directory.”

"Run and save the report in a background invisible Excel process."
ExcelExampleMonsterDamage runInvisible.

"Make Excel visible to run and chart the report in the foreground."
ExcelExampleMonsterDamage runVisible.

"Run, save and print the report in a background invisible Excel
 process."
ExcelExampleMonsterDamage runInvisibleAndPrint.

The resulting Monster.xls spreadsheet is shown in following figure:

Result of the Excel Monster Damage Sample

The MS Excel Import Text File Example
This Excel Automation example illustrates using the Automation
Controller Framework. This example requires Microsoft Excel 97 or
Microsoft Excel for Windows 95, version 7.0 (from Office 95). This
sample uses the ExcelExampleFileImport class, which performs the
following operations:
13-2 VisualWorks

Examples
1 Start Excel.

2 Import a text file of fixed width column format (COM\Exam-
ples\COMAuto\Input\Stocks.txt). This text file was obtained by
saving a CompuServe stock quote window to a text file.

3 Format the spreadsheet.

4 Save the work to a file.

5 Print the file.

6 Read the spreadsheet into a Smalltalk Collection from Excel and
display it in a text widow.

7 Quit Excel.

Sample expressions to run this sample can be found in the
ExcelExampleFileImport class comment:

"Run and save the report in a background invisible Excel process."
ExcelExampleFileImport runInvisible.

"Make Excel visible to run and chart the report in the foreground."
ExcelExampleFileImport runVisible.

"Run, save and print the report in a background invisible Excel
process."
ExcelExampleFileImport runInvisibleAndPrint.

The MS Word Class Formatter Example
The WordExampleClassFormatter class is an example of using a non-
standard Automation object: the ‘Word.Basic’ object from Microsoft
Word for Windows 95 version 7.0, which is required for this example.
This example takes a class and creates a word document containing
a description of the class including tables of class, class instance and
instance variables; class method and instance method categories.

Sample expressions to run this sample can be found in the
WordExampleClassFormatter class comment:

"Show Word running the formatting but do not save."
WordExampleClassFormatter showClass: WordExampleClassFormatter.

"Run the formatter in an invisible background Word process.
The formatted document is saved in the directory
COM\Examples\COMAuto\Output with the class name as a file name."

WordExampleClassFormatter saveClass: WordExampleClassFormatter.
COM Connect User’s Guide 13-3

Automation Controller Framework

"Run the formatter and print the document in an invisible backgroung
Word process. Do not save."
WordExampleClassFormatter printClass: WordExampleClassFormatter.

Documentation on Word 7 (Office 95) objects, methods and
properties can be found in the file Wrdbasic.hlp. This Microsoft
Word 7 file can be found on the Microsoft CD, it is not normally
copied during installation.

Creating New Controller Classes
To create a new controller class for an Automation object you must
follow this recipe:

1 Subclass the right framework class

2 Define a class message to match your controller to an
Automation class.

3 Implement methods to wrap the Automation object’s methods
and properties.

4 In general you should create a controller class to provide a
customized wrapper for each automation object supported by the
application that you want to use in your program.

Next are some examples with the Microsoft Excel 7 objects: the
Application object, the Workbooks Collection object, and the Range
object.

Subclassing a Framework Class
For the Excel Application object, a subclass of COMAutomation-
ApplicationController was created called ExcelApplicationController. For
the Workbooks collection, a subclass of
COMAutomationCollectionController was first created for all of the Excel
collection objects, called ExcelCollectionController. Under
ExcelCollectionController a subclass called ExcelWorkbooksController was
created. For the Range object, a subclass of
COMAutomationObjectController was created for all of the Excel objects.
Under COMAutomationObjectController a subclass called
ExcelRangeController was created.

The Excel sample controllers included are:
13-4 VisualWorks

Creating New Controller Classes
Object
COMAutomationController

COMAutomationObjectController
ExcelObjectController

ExcelChartAreaController
ExcelChartController
ExcelRangeController
ExcelWorkbookController
ExcelWorksheetController

COMAutomationApplicationController
ExcelApplicationController

COMAutomationCollectionController
ExcelCollectionController

ExcelChartsController
ExcelSheetsController
ExcelWorkbooksController

COMAutomationDocumentsController
COMAutomationDocumentController
COMAutomationFontController

A subclass of COMAutomationController should re-implement one of the
following class methods in order for the instance creation method to
access Automation objects:

clsid

Answer the receiver’s CLSID (a GUID). If not re-implemented by
a subclass, the #progID is used to find the CLSID. If #progID is not
re-implemented, the #versionIndependentProgID is used and must
then be re-implemented by the subclass.

progId

Answer the receiver’s ProgID. This can be re-implemented by
concrete subclasses.

versionIndependentProgID

Answer the receiver’s Version Independent ProgID. This can be
re-implemented by concrete subclasses if #progID is not.

Even though you can access an application from any of its objects, in
general, it is recommended that you start from the program’s
Application object. This means you can implement these messages
in any concrete subclass of COMAutomationController, it is
recommended that you do so for your application objects as
subclasses of COMAutomationApplicationController. See the next section
of this document for an example.
COM Connect User’s Guide 13-5

Automation Controller Framework
The COMAutomationController defines methods to ease access to its
dispatch driver by providing the following methods:

getProperty:
invokeMethod:
invokeMethod:with:
invokeMethod:with:with:
invokeMethod:with:with:with:
invokeMethod:withArguments:
invokeProcedure:
invokeProcedure:with:
invokeProcedure:with:with:
invokeProcedure:with:with:with:
invokeProcedure:withArguments:
setProperty:value

These methods are not documented here, because they are covered
in the COMDispatchDriver reference. Other methods of interest are:

dispatchDriver

Answer the receiver’s dispatch driver.

releaseResources

Release any resources associated with receiver. This method is
called by release just before the dispatch driver is released. It can
be reimplemented by a subclass. Default implementation does
nothing.

isMethod: aMethodName

Answer if there is a method named aMethodName.

isProperty: aPropertyName

Answer if there is a property named aPropertyName.

isValid

Answer true if the receiver is valid for use, false otherwise.

All other classes in this framework are derived from
COMAutomationController.

Rules for Adding an Application Object
By convention, the Application object is the “root” object of the
application and provides access to its basic capabilities and major
domain objects.
13-6 VisualWorks

Creating New Controller Classes
To add support for an Application object, create a subclass of
COMAutomationApplicationController. In general, it is recommended that
you access an application’s objects through its Application object,
even though you can start an application from any of its objects. To
identify the Application object, define one of the following class
methods:

• clsid

• progId

• versionIndependentProgId

For example, the following ExcelApplicationController class method is
defined:

versionIndependentProgID
"Answer the ProgID describing the receiver in the registration
database."
^'Excel.Application'

In addition, a subclass of COMAutomationApplicationController must
define a class method called controllerClasses to answer all of the
controller classes in the application’s domain. The
ExcelApplicationController class defines the following class methods:

controllerClasses
"Answer the collection of classes that work with this application
controller."
^(Array with: self),

ExcelObjectController allSubclasses,
ExcelCollectionController allSubclasses

The controllerClasses method permits the framework to create a
mapping between the name of COM objects (like Application) and a
controller class (like Excel97ApplicationController). This mapping is used
by the controllerFor: method to answer a controller class from a
dispatch driver argument.

ClassInitializer
"This method should be called on application installation."
self initialize.

Implementing the controllerClasses methods permits the controllerFor:
method to work. This mechanism allows a dispatch driver returned
from a method or property invocation to be matched to its controller
class.
COM Connect User’s Guide 13-7

Automation Controller Framework
Rules for Adding a Standard Object
To add support for a standard object, create a subclass of
COMAutomationObjectController. Standard objects are defined in and
always define two properties that help you navigate an application’s
objects: parent and application.

All subclasses of COMAutomationObjectController should answer
appropriately to the class messages:

applicationClass

Answer the Application controller class for this class. This
supports the application and the controllerFor: methods.

automationClassName

Answer the Automation name of the receiver. This is the #name of
the COMDispatchDriver.

For example, in abstract ExcelControllerObject abstract class is defined:

applicationClass
"Answer the Application controller class for this class."
^ExcelApplicationController

Each of the Excel controller classes define an automationClassName
method, for example in ExcelRangeObject:

automationClassName
"Answer the name of the receiver."
^'Range'

The COMAutomationObjectController class defines the controllerFor:
controller utility method as:

controllerFor: aValue
"If <aValue> is a dispatch driver then wrap <aValue> with a new
controller and answer the new controller. Otherwise answer <aValue>.
If no class is registered for a dispatch driver, answer the dispatch
driver (aValue)."

aValue class == self class dispatchDriverClassifTrue:

[^self class newControllerObject: aValue].^aValue
This method knows what controller to use for an application’s
dispatch driver, because application controller classes register which
classes are part of their domain at startup.
13-8 VisualWorks

Creating New Controller Classes
Adding Behavior to a Standard Object
When a controller class is defined in the framework, you can define
instance methods to access properties and invoke methods. The
messages for doing so are defined in the root controller class
COMAutomationController. For a set property example, the
ExcelRangeController defines the value: method as:

value: anObject
"Set the Value property to <anObject>."
^self setProperty: 'Value' value: anObject

For a get property example, the ExcelWorkbookController defines the
name method as:

name
"Answer a String for the Name property."
^self getProperty: 'Name'

For a method invocation example, the ExcelWorksheetController defines
the getRange: method as:

getRange: aRangeString
"Answer a controller for the Range property defined by the range of
cells <aRangeString>."
^self controllerFor: (self invokeMethod: 'Range' with: aRangeString)

You might choose to hard-code a controller class to use with a
particular method for one of two reasons:

First, you might want to associate a stock framework controller to an
answer. Exactly that is done in the ExcelChartArea font method:

font
"Answer the Font property."

^COMAutomationFontController on: (self getProperty: 'Font')
Second, you do not or cannot rely on the run-time use of
controllerFor:. For example, we define the ExcelApplicationController
charts method as:

charts
"Answer the Charts collection Controller."
"Implementation note: This method refers to the class name
ExcelChartsController directly instead of using the #controllerFor:
service since it seems Excel 7 uses the same class name. You could
add behavior to a charts collection vs. Worksheets for a fancier
sample."
"some caching added for this sample."

COM Connect User’s Guide 13-9

Automation Controller Framework
^self cachedControllers at: 'Charts'
ifAbsentPut: [ExcelChartsController on: (self invokeMethod:
'Charts')].

Adding a Collection Controller
To add support for a standard collection object, create a subclass of
COMAutomationCollectionController. Standard collection objects are
defined under Automation Controller Framework.

Just like other controller classes, you must define the applicationClass
and automationClassName methods. In the ExcelCollectionObjects
abstract class is defined:

applicationClass
"Answer the Application controller class for this class."
^ExcelApplicationController

Concrete subclasses of ExcelCollectionObjects define
automationClassName; for example, ExcelSheetsController defines:

automationClassName
"Answer the name of the receiver."
^'Sheets'

The collection controller has an additional level of control that lets you
define which controller class to use for each item in the collection (if
the items are represented by a dispatch interface). The
COMAutomationCollectionController class method itemControllerClass
might be re-implemented to answer the controller class to be used for
each item in the collection. If not re-implemented by a subclass, the
controllerFor: service is used. For example, the ExcelChartsController
defines the itemControllerClass class method as:

itemControllerClass
"Answer the Controller class to be used for each item in the
collection."
^ExcelChartController

For the Excel Chart Collection, the item: and add methods answer a
controller on a chart object.

Releasing Return Values
You are responsible for releasing any resources returned from a
method invocation or a get property call. The only resources that you
need be concerned with are marked VT_DISPATCH or
VT_UNKNOWN. A VT_DISPATCH return value gets mapped to an
IDispatch, a COMDispatchDriver, or an Automation Controller class.
13-10 VisualWorks

Using Non-Standard Objects
A VT_UNKNOWN return value gets mapped to an IUnknown. All can
be released with a release message. Any memory used by a
VT_BSTR value is handled automatically.

It is possible for Automation objects to return entire Arrays of objects
(VT_ARRAY combined with another type), in which case you should
be careful to release the contents of the array, if necessary. For
example, the ExcelApplicationController class defines its setRange:to:
method as:

setRange: aRangeString to: anObject
"Set the range defined by <aRangeString> to <anObject>."

| range |
"Get a range controller for <aRangeString>."
range := self getRange: aRangeString.

"Set the range to <aValue> and release the range."
[range value: anObject]

ensure: [range release]
To release an Array of interfaces, you can use the COMSafeArray utility
releaseInterfacesIn: method.

Using Non-Standard Objects
Some Automation objects and applications do not organize their
objects according to the Microsoft guidelines presented in this
section. For example, Microsoft Word for Windows 95 version 7.0
does not have any standard objects. In fact, it is a monolithic
application; it has only one object, Word.Basic, which contains
hundreds of procedures. Since it is an Automation application
nonetheless, it can still be controlled through a dispatch driver.

To support a nonstandard object, you can subclass
COMAutomationController and add Smalltalk behavior to your subclass.
For example, the Word 95 sample class WordBasicController is a
subclass of COMAutomationController.

Using the Default Specification Policy
Specification policies and specification tables are described in Using
Automation Objects.
COM Connect User’s Guide 13-11

Automation Controller Framework
While a default specification policy for each automation controller
class is tracked to account for non-standard classes, you can control
an application through only one specification policy set on the
application’s Application class. The default specification policy is used
automatically when new controllers are created. The default is set to
the Variant policy on installation.

Setting the Default Specification Policy
The default policy is set to the Variant policy but can be queried and
reset with the COMAutomationController defaultSpecificationPolicy and
defaultSpecificationPolicy: class messages. This message must be sent
to your application’s class, not to COMAutomationController. For
example, you can query for the default Specification Policy with the
expression:

ExcelApplicationController defaultSpecificationPolicy.
You can set the default Specification Policy with the expression:

ExcelApplicationController defaultSpecificationPolicy: <aSymbol>.
Where aSymbol is one of the following:

• #newCompletePolicy

• #newTypeCompilerPolicy

• #newTypeLibraryPolicy

• #newVariantPolicy

If you choose the #newCompletePolicy, each controller class for your
application must define a literalSpecification class method.
13-12 VisualWorks

14

Standard Automation Objects and
Naming Guidelines

This chapter describes the standard ActiveX objects defined by
Microsoft, and discusses naming guidelines for creating and using
objects that are unique to applications, especially user-interactive
applications that support a multiple-document interface (MDI). If an
ActiveX object is not user-interactive or supports only a single-
document interface (SDI), the standards and guidelines should be
adapted as appropriate.

Standard objects comprise a set of objects defined by Automation.
You can use them as appropriate to your application. The objects
described in this chapter are oriented toward document-based, user-
interactive applications. Other applications (such as non-interactive
database servers) may have different requirements.

Naming guidelines are recommendations meant to improve
consistency across applications.

The standards and guidelines are subject to change according to
Microsoft.

The classes the COM Connect Automation Controller framework
defines are:

Object
COMAutomationController

COMAutomationObjectController
COMAutomationApplicationController
COMAutomationCollectionController

COMAutomationDocumentsController
COMAutomationDocumentController
COMAutomationFontController
COM Connect User’s Guide 14-1

Standard Automation Objects and Naming Guidelines
Using Standard Objects
The following table lists the Automation standard objects. Although
none of these objects are required, user-interactive applications with
subordinate objects should include an Application object.

The following figure shows how the standard objects fit into the
organization of objects provided by an application.

An organization of objects in an application

The following sections describe the standard properties and methods
for all objects, all collection objects, and each of the standard objects.
These sections list the standard methods and properties for each
object, as well as the standard arguments for those properties and
methods. You can define additional application-specific properties
and methods for each object. You can also provide additional optional

Class name Automation object name Description

COMAutomationApplicationController
Application

Top-level object. Provides a
standard way for ActiveX clients
to retrieve and navigate an
application’s subordinate objects.

COMAutomationDocumentController
Document

Provides a way to open, print,
change, and save an application
document.

COMAutomationDocumentsController
Documents

Provides a way to iterate over and
select open documents in MDI
applications.

COMAutomationFontController Font Describes fonts that are used to
display or print text.
14-2 VisualWorks

Accessing Objects
arguments for any of the listed properties or methods; however, the
optional arguments should follow the standard arguments in a
positional argument list.

Accessing Objects
The abstract root class COMAutomationController defines the
following instance creation methods:

new

Answer a new instance of the receiver on a new Automation
object defined by the receiver’s identity (CLSID, ProgID or
Version Independent ProgID).

on: aDispatchDriver

Answer a new instance of the receiver initialized with
aDispatchDriver.

onActiveObject

Answer a new instance of the receiver on the active Automation
object defined by the receiver’s identity (CLSID, ProgID or
Version Independent ProgID).

serverName: aServerName

Answer a new instance of the receiver on a new Automation
object on aServerName. If aServerName is nil, the object will be
created on the same machine as the receiver.

pathName: aFileName

Answer a new instance of the receiver on the Automation object
in aFileName.

You must make sure to send the release message to any controller
you create.

Method and Property Names
Automation names are not case sensitive. The name of an
Automation method or property is usually given in upper case. The
Smalltalk wrapper methods in the controller classes for Automation
COM Connect User’s Guide 14-3

Standard Automation Objects and Naming Guidelines
methods and properties always start with a lower case letter, as usual
in Smalltalk. The first column of the tables in this section contains the
method and property names.

When an Automation object defines a property called MyName for
example, the controller class will define a set method called
myName: and a get method myName.

If an Automation object defines a boolean property called Visible for
example, the controller class will define a set method called isVisible:
and a get method isVisible. If the property is read-only, there will be
only a get method.

Standard Object Properties
All objects, including the Application object and collection objects are
subclasses of the COMAutomationObjectController abstract class.

All objects, including the Application object and collection objects,
must provide the properties listed in the following table:

The Application and Parent properties of the Application object return
the Application object.

Collection Object Properties
Collection objects are wrapped by the
COMAutomationCollectionController class.

A collection provides a set of objects over which iteration can be
performed. All collection objects must provide the properties listed in
the following table:

Property method
name

Answer class Automation type Description

application COMAutomationApplication-
Controller VT_DISPATCH

Returns the Application
object; read only.

parent COMAutomationApplication-
Controller VT_DISPATCH

Returns the creator of the
object; read only.
14-4 VisualWorks

Collection Methods
Collection Methods
Methods for collections are described in following table. The item:
method is required; other methods are optional.

The class COMAutomationCollectionController also defines utility
methods like at:, do: and size to provide a more Smalltalk-like
protocol.

All collection objects must provide at least one form of indexing
through the Item method. The dispatch identifier (DISPID) of the Item
method is DISPID_VALUE. It can be used in the following form:

thirdObject = myWords at: 3.

Property method
name

Answer class Automation
type

Description

count IntegerVT_I4 Returns the number of items
in the collection; read only.
Required.

Method name Answer class Automation
type

Description

add A Controller class or
undefinedVT_DISPATCH
or VT_EMPTY

Adds an item to a collection.
Returns a COMDispatchDriver
(VT_DISPATCH) if the object is
created (object cannot exist
outside the collection) or
VT_EMPTY if no object is
created (object can exist
outside the collection).

item: A Controller class. Varies
with type of collection

Returns the indicated item in
the collection. Required. The
Item method may take one or
more arguments to indicate the
element within the collection to
return. This method is the
default member
(DISPID_VALUE) for the
collection object.

remove: undefinedVT_EMPTY Removes an item from a
collection. Uses indexing
arguments in the same way as
the Item method.
COM Connect User’s Guide 14-5

Standard Automation Objects and Naming Guidelines
The Item method takes one or more arguments to indicate the index.
Indexes can be numbers, strings, or other types. For example:

dogObject = myWords at: ‘dog’.

Kinds of Collections
The standard for collections lets you describe two kinds of
collections, depending on whether it makes sense for the collected
objects to exist outside the collection.

In some cases, it is not logical for an object to exist independently of
its collection. For example, an application’s Documents collection
contains all Document objects currently open. Opening a document
means adding it to the collection, and closing the document means
removing it from the collection. All open documents are part of the
collection. The application cannot have open documents that are not
part of the collection. The relationship between the collection and the
members of the collection can be shown in the following ways:

The Documents collection add method creates an object (an open
document) and adds it to the collection. Because an object is
created, a reference to it is returned.

myDocController := myDocuments add.
The Document close method removes an object from the collection.

someDocController := myDocuments at: 3.
someDocController close.
someDocController release.

In other cases, it is logical for the objects to exist outside the
collection. For example, a Mail application might have Name objects,
and many collections of these Name objects. Each Name object
would have a user’s e-mail name, full name, and possibly other
information. The e-mail name and full name would likely be
properties named EmailName and FullName.

Additionally, the application might have the following collections of
Name objects.

• A collection for the "To" list on each piece of e-mail.

• A collection of the names of the people to whom a user has sent
e-mail.

The collections of Name objects could be indexed by using either
EmailName or FullName.
14-6 VisualWorks

Using the Application Object in a Type Library
For these collections, the add method does not create an object
because the object already exists. Therefore, the add method should
take an object as an argument, and should not return a value.

Assuming the existence of two collections (AddressBook and ToList),
a user might execute the following code to add a Name object to the
ToList collection:

aCollection := myAddressBook names.
aNameRef := aCollection at: 'John Smith'.
aToList := aMessage toList.
aToList add: aNameRef.

The Name object already exists and is contained in the AddressBook
collection. The first line of code obtains a reference to the Name
object for "John Smith" and points to aNameRef. The second line of
code adds a reference to the object to the toList collection. No new
object is created, so no reference is returned from the add method.

Unlike the relationship between Documents and Document, there is
no way for the collected object (the Name) to know how to remove
itself from the collections in which it is contained.

To remove an item from a collection, use the Remove method, as
follows:

aToList := aMessage toList.
aToList remove: 'John Smith'.

This line of code removes the Name object that has the FullName
"John Smith." The "John Smith" object might exist in other
collections, but they are unaffected.

Using the Application Object in a Type Library
Application objects are wrapped by the
COMAutomationApplicationController class.

If you use a type library, the Application object should be the object
that has the appobject attribute. Because some ActiveX clients use
the type information to allow unqualified access to the Application
object’s members, it is important to avoid overloading the Application
object with too many members.

The Application object should have the properties listed in the
following table. The Application, FullName, Name, Parent, and Visible
properties are required; other properties are optional.
COM Connect User’s Guide 14-7

Standard Automation Objects and Naming Guidelines
Property method name Answer class Automation type Description

activeDocument COMAutomationDocumentController
VT_DISPATCH, VT_EMPTY

Returns the active document
object or VT_EMPTY if none;
read only.

application COMAutomationApplicationController
VT_DISPATCH

Returns the Application object;
read only. Required.

caption caption: StringVT_BSTR Sets or returns the title of the
application window; read/write.
Setting the Caption to
VT_EMPTY returns control to
the application.

defaultFilePath
defaultFilePath:

StringVT_BSTR Sets or returns the default path
specification used by the
application for opening files;
read/write.

documents COMAutomationDocumentController
VT_DISPATCH

Returns a collection object for
the open documents; read only.

fullName StringVT_BSTR Returns the file specification for
the application, including path;
read only. For example,
C:\Drawdir\Scribble. Required.

height height: FloatVT_R4 Sets or returns the distance
between the top and bottom
edge of the main application
window; read/write.

isInteractiveisInteractive: BooleanVT_BOOL Sets or returns True if the
application accepts actions
from the user, otherwise False;
read/write.

leftleft: FloatVT_R4 Sets or returns the distance
between the left edge of the
physical screen and the main
application window; read/write.

name StringVT_BSTR Returns the name of the
application, such as "Microsoft
Excel"; read only. The Name
property is the default member
(DISPID_VALUE) for the
Application object. Required.

parent COMAutomationApplicationController
VT_DISPATCH

Returns the Application object;
read only. Required.
14-8 VisualWorks

Using the Application Object in a Type Library
The Application object should have the methods listed in the following
table. The quit method is required; other methods are optional.

Application object methods

path StringVT_BSTR Returns the path specification
for the application’s executable
file; read only. For example,
C:\Drawdir if the .exe file is
C:\Drawdir\Scribble.exe.

statusBarstatusBar: StringVT_BSTR Sets or returns the text
displayed in the status bar;
read/write.

top top: FloatVT_R4 Sets or returns the distance
between the top edge of the
physical screen and main
application window; read/write.

isVisibleisVisible: BooleanVT_BOOL Sets or returns whether the
application is visible to the user;
read/write. The default is False
when the application is started
with the /Automation command-
line switch. Required.

width width: FloatVT_R4 Sets or returns the distance
between the left and right
edges of the main application
window; read/write.

Property method name Answer class Automation type Description

Method name Answer class Automation type Description

help undefinedVT_EMPTY Displays online Help. May take three optional
arguments: helpfile (String, VT_BSTR), helpcontextID
(Integer, VT_I4), and helpstring (String, VT_BSTR).
The helpfile argument specifies the Help file to display;
if omitted, the main Help file for the application is
displayed. The helpcontextID and helpstring arguments
specify a Help context to display; only one of them can
be supplied. If both are omitted, the default Help topic
is displayed.

quit undefinedVT_EMPTY Exits the application and closes all open documents.
Required.

repeat undefinedVT_EMPTY Repeats the previous action in the user interface.

undo undefinedVT_EMPTY Reverses the previous action in the user interface.
COM Connect User’s Guide 14-9

Standard Automation Objects and Naming Guidelines
Document Object Properties
Document objects are wrapped by the
COMAutomationDocumentController class.

If the application is document based, it should provide a Document
object named Document. Use a different name only if Document is
inappropriate (for example, if the application uses highly technical or
otherwise specialized terminology within its user interface).

The Document object should have the properties listed in the
following table. The properties Application, FullName, Name, Parent,
Path, and Saved are required; other properties are optional.

Document object properties

Property method name Answer class Automation type Description

application COMAutomation ApplicationController
VT_DISPATCH

Returns the Application object; read
only. Required.

author author: StringVT_BSTR Sets or returns summary information
about the document’s author; read/
write.

comments comments: StringVT_BSTR Sets or returns summary information
comments for the document; read/
write.

fullName StringVT_BSTR Returns the file specification of the
document, including the path; read
only. Required.

keywords keywords: StringVT_BSTR Sets or returns summary information
keywords associated with the
document; read/write.

name StringVT_BSTR Returns the file name of the
document, not including the file’s
path specification; read only.

parent COMAutomationApplicationController
VT_DISPATCH

Returns the Parent property of the
Document object; read only.
Required.

path StringVT_BSTR Returns the path specification for the
document, not including the file name
or file name extension; read only.
Required.

readOnly BooleanVT_BOOL Returns True if the file is read only,
otherwise False; read only.
14-10 VisualWorks

Document Object Properties
The Document object should have the methods listed in the following
table. The methods Activate, Close, Print, Save, and SaveAs are
required; other methods are optional.

Document object methods

saved BooleanVT_BOOL Returns True if the document has
never been saved, but has not
changed since it was created.
Returns True if it has been saved and
has not changed since last saved.
Returns False if it has never been
saved and has changed since it was
created; or if it was saved, but has
changed since last saved. Read only;
required.

subject subject: StringVT_BSTR Sets or returns summary information
about the subject of the document;
read/write.

title title: StringVT_BSTR Sets or returns summary information
about the title of the document; read/
write.

Property method name Answer class Automation type Description

Method name Answer class
Automation type

Description

activate undefined
VT_EMPTY

Activates the first window associated with
the document. Required.

close undefined
VT_EMPTY

Closes all windows associated with the
document and removes the document
from the Documents collection. Required.
Takes two optional arguments,
saveChanges (Boolean, VT_BOOL) and
filename (String, VT_BSTR). The
filename argument specifies the name of
the file in which to save the document.

newWindow undefined
VT_EMPTY

Creates a new window for the document.

print undefined
VT_EMPTY

Prints the document. Required. Takes
three optional arguments: from (Integer,
VT_I2), to (Integer, VT_I2), and copies
(Integer, VT_I2). The from and to
arguments specify the page range to
print. The copies argument specifies the
number of copies to print.
COM Connect User’s Guide 14-11

Standard Automation Objects and Naming Guidelines
Documents Collection Object
Documents objects are wrapped by the
COMAutomationDocumentsController class.

If an application supports a multiple-document interface (MDI), it
should provide a Documents collection object. The collection name
should be Documents, unless the name is inappropriate for the
application. The Documents collection object should have all of the
properties listed in the following table.

Documents collection object properties

The Documents collection object should have all of the methods
listed in the following table:

printOut undefined
VT_EMPTY

Same as Print method, but provides an
easier way to use the method in Visual
Basic, because Print is a Visual Basic
keyword.

printPreview undefined
VT_EMPTY

Previews the pages and page breaks of
the document. Equivalent to clicking Print
Preview on the File menu.

revertToSaved undefined
VT_EMPTY

Reverts to the last saved copy of the
document, and discards any changes.

save undefined
VT_EMPTY

Saves changes to the file specified in the
document’s FullName property. Required.

saveAs undefined
VT_EMPTY

Saves changes to a file. Required. Takes
one optional argument, filename (String,
VT_BSTR). The filename argument can
include an optional path specification.

Method name Answer class
Automation type

Description

Property method name Answer class Automation type Description

application COMAutomation ApplicationController
VT_DISPATCH

Returns the Application object; read
only. Required.

count Integer, VT_I4 Returns the number of items in the
collection; read only. Required.

parent COMAutomationApplicationController
VT_DISPATCH

Returns the parent of the Documents
collection object; read only. Required.
14-12 VisualWorks

The Font Object
Documents collection object methods

The Font Object
Font objects are wrapped by the COMAutomationFontController
class.

The Font object may be appropriate for some applications. The
properties Application, Bold, Italic, Parent, and Size are required;
other properties are optional. The Font object should have the
properties listed in the following table:

Font object properties

Method name Answer class Automation type Description

add COMDispatchDriver
VT_DISPATCH

Creates a new document and adds it to the
collection. Returns the document that was created.
Required.

close undefined VT_EMPTY Closes all documents in the collection. Required.

item: COMDispatchDriver
VT_DISPATCH or VT_EMPTY

Returns a Document object from the collection or
returns VT_EMPTY if the document does not exist.
Takes an optional argument, index, which may be a
string (String, VT_BSTR) indicating the document
name, a number (Integer, VT_I4) indicating the
ordered position within the collection, or either
(VT_VARIANT). If index is omitted, returns the
Document collection. The Item method is the default
member (DISPID_VALUE). Required.

open COMDispatchDriver
VT_DISPATCH or VT_EMPTY

Opens an existing document and adds it to the
collection. Returns the document that was opened,
or nil (VT_EMPTY) if the object could not be opened.
Takes one required argument, filename, and one
optional argument, password. Both arguments are
Strings (VT_BSTR). Required.

Property name Answer class Automation type Description

application COMAutomationApplicationController
VT_DISPATCH

Returns the Application object; read only.
Required.

isBold isBold: BooleanVT_BOOL Sets or returns True if the font is bold,
otherwise False; read/write. Required.

color color: Integer, VT_I4 Sets or returns the RGB color of the font;
read/write.

isItalic isItalic: BooleanVT_BOOL Sets or returns True if the font is italic;
otherwise False, read/write. Required.

name StringVT_BSTR Returns the name of the font; read only.
COM Connect User’s Guide 14-13

Standard Automation Objects and Naming Guidelines
isOutlineFont
isOutlineFont:

BooleanVT_BOOL Sets or returns True if the font is scaleable,
otherwise False. For example, bitmapped
fonts are not scaleable, whereas TrueType®
fonts are scaleable; read/write.

parent COMAutomationApplicationController
VT_DISPATCH

Returns the parent of the Font object; read
only. Required.

isShadow
isShadow:

BooleanVT_BOOL Sets or returns True if the font appears with a
shadow, otherwise False; read/write.

size size: FloatVT_R4 Sets or returns the point size of the font;
read/write. Required.

isStrikethrough
isStrikethrough:

BooleanVT_BOOL Sets or returns True if the font appears with a
line running through it, otherwise False; read/
write.

isSubscript
isSubscript:

BooleanVT_BOOL Sets or returns True if the font is subscripted,
otherwise False; read/write.

isSuperscript
isSuperscript:

BooleanVT_BOOL Sets or returns True if the font is
superscripted, otherwise False; read/write.

Property name Answer class Automation type Description
14-14 VisualWorks

15

Under the Hood

This section presents additional information that is not essential to
learning how to use VisualWorks COM Connect Automation classes
but helps you understand COM Connect technology.

Using AutomationObject With COMDispatchDriver
This section introduces the nuts and bolts used to control automation
objects and the two objects it needs to accomplish this task: the
IDispatch interface and the specification table.

The Dispatch Interface
The core of automation is the dispatch interface, or dispinterface for
short, which is a specific implementation of the interface named
IDispatch, which responds only to certain DISPIDs. In C++, the
interface IDispatch is defined as follows:

interface IDispatch : public IUnknown
{
public:

 HRESULT GetTypeInfoCount(
/* [out] */ UINT __RPC_FAR *pctinfo);

HRESULT GetTypeInfo(

/* [in] */ UINT itinfo,
/* [in] */ LCID lcid,
/* [out] */ ITypeInfo * *pptinfo);

 HRESULT GetIDsOfNames(

/* [in] */ REFIID riid,
/* [size_is][in] */ LPOLESTR *rgszNames,
/* [in] */ UINT cNames,
COM Connect User’s Guide 15-1

Under the Hood
/* [in] */ LCID lcid,
/* [size_is][out][in] */ DISPID *rgdispid);

HRESULT Invoke(

/* [in] */ DISPID dispidMember,
/* [in] */ REFIID riid,
/* [in] */ LCID lcid,
/* [in] */ WORD wFlags,
/* [unique][in] */ DISPPARAMS *pdispparams,
/* [unique][out][in] */ VARIANT *pvarResult,
/* [out] */ EXCEPINFO *pexcepinfo,
/* [out] */ UINT *puArgErr);

 };

In COM Connect, the IDispatch class is used to invoke the functions
in this interface. Client code typically uses an IDispatch through an
instance of COMDispatchDriver.

Included with this release are sample controller applications for Word
and Excel that demonstrate the use of these classes.

Through a COMDispatchDriver, a controller can retrieve the object’s
type information for the dispinterface, map names to DISPIDs, and
invoke methods and properties. The latter happens through
IDispatch::Invoke. This function has a fixed compile-time signature by
which it can accept any number of arguments for the invocation of a
method call, including named and optional arguments. In return,
Invoke can provide any type of return value as well as rich error
information.

Passing Arguments to a Dispatch Interface
In C and C++, arguments and return values handled through Invoke
use the types VARIANTARG and VARIANT.

/* VARIANT STRUCTURE
 *
 * VARTYPE vt;
 * WORD wReserved1;
 * WORD wReserved2;
 * WORD wReserved3;
 * union {
 * LONG VT_I4
 * BYTE VT_UI1
 * SHORT VT_I2
 * FLOAT VT_R4
 * DOUBLE VT_R8
15-2 VisualWorks

Using AutomationObject With COMDispatchDriver
 * VARIANT_BOOL VT_BOOL
 * SCODE VT_ERROR
 * CY VT_CY
 * DATE VT_DATE
 * BSTR VT_BSTR
 * IUnknown * VT_UNKNOWN
 * IDispatch * VT_DISPATCH
 * SAFEARRAY * VT_ARRAY
 * BYTE * VT_BYREF|VT_UI1
 * SHORT * VT_BYREF|VT_I2
 * LONG * VT_BYREF|VT_I4
 * FLOAT * VT_BYREF|VT_R4
 * DOUBLE * VT_BYREF|VT_R8
 * VARIANT_BOOL * VT_BYREF|VT_BOOL
 * SCODE * VT_BYREF|VT_ERROR
 * CY * VT_BYREF|VT_CY
 * DATE * VT_BYREF|VT_DATE
 * BSTR * VT_BYREF|VT_BSTR
 * IUnknown ** VT_BYREF|VT_UNKNOWN
 * IDispatch ** VT_BYREF|VT_DISPATCH
 * SAFEARRAY ** VT_BYREF|VT_ARRAY
 * VARIANT * VT_BYREF|VT_VARIANT
 * PVOID VT_BYREF (Generic ByRef)
 * CHAR VT_I1
 * USHORT VT_UI2
 * ULONG VT_UI4
 * INT VT_INT
 * UINT VT_UINT
 * DECIMAL * VT_BYREF|VT_DECIMAL
 * CHAR * VT_BYREF|VT_I1
 * USHORT * VT_BYREF|VT_UI2
 * ULONG * VT_BYREF|VT_UI4
 * INT * VT_BYREF|VT_INT
 * UINT * VT_BYREF|VT_UINT
 * }
 */
struct tagVARIANT

{
union

{
struct __tagVARIANT

{
VARTYPE vt;
WORD wReserved1;
WORD wReserved2;
WORD wReserved3;
union
COM Connect User’s Guide 15-3

Under the Hood
{
LONG lVal;
BYTE bVal;
SHORT iVal;
FLOAT fltVal;
DOUBLE dblVal;
VARIANT_BOOL boolVal;
_VARIANT_BOOL bool;
SCODE scode;
CY cyVal;
DATE date;
BSTR bstrVal;
IUnknown __RPC_FAR *punkVal;
IDispatch __RPC_FAR *pdispVal;
SAFEARRAY __RPC_FAR *parray;
BYTE __RPC_FAR *pbVal;
SHORT __RPC_FAR *piVal;
LONG __RPC_FAR *plVal;
FLOAT __RPC_FAR *pfltVal;
DOUBLE __RPC_FAR *pdblVal;
VARIANT_BOOL __RPC_FAR *pboolVal;
_VARIANT_BOOL __RPC_FAR *pbool;
SCODE __RPC_FAR *pscode;
CY __RPC_FAR *pcyVal;
DATE __RPC_FAR *pdate;
BSTR __RPC_FAR *pbstrVal;
IUnknown __RPC_FAR *__RPC_FAR *ppunkVal;
IDispatch __RPC_FAR *__RPC_FAR *ppdispVal;
SAFEARRAY __RPC_FAR *__RPC_FAR *pparray;
VARIANT __RPC_FAR *pvarVal;
PVOID byref;
CHAR cVal;
USHORT uiVal;
ULONG ulVal;
INT intVal;
UINT uintVal;
DECIMAL __RPC_FAR *pdecVal;
CHAR __RPC_FAR *pcVal;
USHORT __RPC_FAR *puiVal;
ULONG __RPC_FAR *pulVal;
INT __RPC_FAR *pintVal;
UINT __RPC_FAR *puintVal;
} __VARIANT_NAME_3;

} __VARIANT_NAME_2;
DECIMAL decVal;
} __VARIANT_NAME_1;
15-4 VisualWorks

Specification Policies
};
typedef VARIANT __RPC_FAR *LPVARIANT;

Both types, which are structurally identical, contain a type identifier
(VARTYPE) and a value appropriate to that type, whether it is a
pointer, an integer, a string pointer, a date or currency value, and so
on. The value is stored in one field of a large union of types within the
VARIANT. Two of these types are used frequently in Automation: the
BSTR (Basic string) and the Safe Array (an array that carries its
bounds with it). COM provides services to coerce a VARIANT of one
type into another, compatible, type if the conversion is at all possible.

The VARIANT data type is not only used by IDispatch::Invoke but can
also be used to define the types of arguments and return values for
an Automation object’s methods and properties. In fact, if you look at
the member specifications for Excel 7, you see that the VT_VARIANT
type is used everywhere. What this means is a controller does not
have to worry about passing a number or a string argument, it just
passes whatever suits it. It is the job of the server object to coerce the
argument. On the other hand, Word 7 is not so flexible, instead of
VT_VARIANT, you see types like VT_I4, VT_BSTR, etc. While COM
Connect makes appropriate conversions between objects and
Automation types, using the VT_VARIANT type gives the controller
the most degree of flexibility.

In COM Connect the class BSTR is used to wrap the OLE Basic
String type. All low-level Automation services are accessed through
the OLEAutomationDLL class.

Specification Policies
The policy classes define various algorithms for method and property
specification lookup and invocation. The algorithms defined in the
policy classes reflects speed and space tradeoffs, as well as
convenience for the programmer.

Class Hierarchy
The following defines specification class hierarchies:

Object
COMSpecificationPolicy (updateSpecificationTable lookupPolicy)

COMTypedSpecificationPolicy
COMUntypedSpecificationPolicy

COMLookupSpecificationPolicy
COMNoLookupSpecificationPolicy
COM Connect User’s Guide 15-5

Under the Hood
COMTypeCompilerLookupSpecificationPolicy
COMTypeLibraryLookupSpecificationPolicy
COMVariantLookupSpecificationPolicy

COMSpecificationPolicy
This is an abstract class that is subclassed by all other policy classes.
A specification policy controls the method invocation mechanism and
delegates lookup of unknown method and property specifications to
its lookup policy.

Once created, a policy can be queried with canSupportIDispatch: to
find out whether or not it can perform its job for a given IDispatch. A
controller can then gracefully replace its choice of policy from say, a
Type Compiler policy to a Variant policy.

A policy is created with one of the following class messages:

• newDefaultPolicy

• newCompletePolicy

• newTypeCompilerPolicy

• newTypeLibraryPolicy

• newVariantPolicy

The proper subclass is created and is configured with an appropriate
lookup policy.

If a method or property specification is not present in the driver’s
specification table, the look-up policy creates a new method or
property specification that is used for invocation. This new
specification can be added to the dispatch driver’s specification table
(or not) depending on the setting of the updateSpecificationTable
Boolean instance variable.

COMTypedSpecificationPolicy
An instance of this class is created for the following class messages:

• newDefaultPolicy (if it is one of the following)

• newTypeCompilerPolicy

• newTypeLibraryPolicy
15-6 VisualWorks

Specification Policies
COMUntypedSpecificationPolicy
An instance of this class is created for the class message
newVariantPolicy.

This class message overrides the default method invocation of its
superclass COMSpecificationPolicy. In Automation, a method is defined
to have a return type, which can be generically processed by asking
for a VT_VARIANT return data type. A method can have no return
value at all, similar to the difference between a procedure and a
function, in which case it must be invoked with the VT_VOID return
type. Unlike the parameter passing logic, a return data type of
VT_VARIANT cannot be used generically for this purpose. The
COMUntypedSpecificationPolicy method invocation logic first attempts a
VT_VARIANT return type invocation, and upon failure for the above
stated reason, attempts a VT_VOID return type invocation. Word 7 is
an example, when using the COMDispatchDriver invokeMethod: method.
The invokeProcedure: method can be used to invoke a method with a
VT_VOID return type directly.

COMLookupSpecificationPolicy
This is an abstract superclass for all lookup policy classes. A lookup
policy is associated with a COMSpecificationPolicy subclass to create
method and property specifications that the specification does not
know about when invoking a method or property.

COMNoLookupSpecificationPolicy
This lookup policy is used when all method and property
specifications are supplied when the instance of the
COMDispatchDriver is instantiated with on:specificationTable:. If a
specification is not present when a method or property is invoked, an
error is raised. Specifications are created manually, with the
COMSpecificationTable class or with the COMAutomationTypeAnalyzer tool
class.

This is a fast way to use a dispatch driver since all specifications are
already supplied, therefore no additional OLE API calls are
necessary in order to properly construct all data structures
associated with a particular invocation. The tradeoff is that a
specification table containing all of the methods and properties that a
driver will ever use must be built and kept around (usually as a literal
array), therefore using memory. This can be very large in the case of
Microsoft Word 7, for example.
COM Connect User’s Guide 15-7

Under the Hood
COMTypeCompilerLookupSpecificationPolicy
This lookup policy is used when a COMDispatchDriver is instantiated
with on:specificationPolicy: and the policy is specified with
COMSpecificationPolicy newTypeCompilerPolicy. This algorithm looks for
properties and methods through a dispatch driver’s ITypeComp
interface, the type compiler interface (obtained from the dispatch
driver’s ITypeInfo interface). This policy creates complete and typed
specifications.

The ITypeComp interface is not always supported but is efficient since
the lookup is a direct one-step process. If the application you are
using is not associated with a type library, this policy cannot be used.

COMTypeLibraryLookupSpecificationPolicy
This lookup policy is used when a COMDispatchDriver is instantiated
with on:specificationPolicy: and the policy is specified with
COMSpecificationPolicy newTypeLibraryPolicy. This algorithm looks for
properties and methods in a dispatch driver’s type library through its
ITypeInfo interface. This policy creates complete and typed
specifications. This policy is useful if the Type Compiler policy cannot
be employed.

Memory is required to keep track of the name to index maps. If the
application you are using is not associated with a type library, this
policy cannot be used.

COMVariantLookupSpecificationPolicy
This lookup policy is used when a COMDispatchDriver is instantiated
with on:specificationPolicy: and the policy is specified with
COMSpecificationPolicy newTypeVariantPolicy. This algorithm looks for
properties and methods through a dispatch driver’s GetIDsOfNames
mechanism. This policy creates untyped specifications using
VT_VARIANT as the generic data type. During invocation it is
possible that VT_VARIANT gets rejected as the return type, in which
case VT_VOID is used; see COMUntypedSpecificationPolicy.

This is a very fast way to use a dispatch driver since no additional
COM function calls are necessary to properly construct all data
structures associated with a particular invocation; the VT_VARIANT
type is used generically to create a new specification every time. The
default is to not update the specification table, since a call on the
same name might have different parameters creating different
specifications. No additional memory is used, the untyped
specifications are not stored, the specification table is always empty.
15-8 VisualWorks

16

COM Connect Server Examples

This section describes two examples, which are provided with COM
Connect, of publishing COM Automation objects. The first example is
AllDataTypes, which is used throughout this chapter to demonstrate
the code patterns needed to work with all of the Automation data
types. The second example is SmalltalkCommander, which lets an
ActiveX client evaluate any Smalltalk expression and obtain an
answer by using the Smalltalk Compiler class. Examples are also
provided of client interaction with these Automation objects
implemented in the following environments:

• COM Connect

• Visual Basic

• Visual Java

• Visual C++

Registering the Example COM Server
Both of the VisualWorks COM Server examples are saved and
configured in the Com\Examples\COMAuto\vwComSrv.im image, which
publishes both the AllDataTypes example and the
SmalltalkCommander example through dual interfaces. The image
was saved with the following setting:

COMSessionManager defaultCOMDirectoryName: 'C:\vw30\COM'.
This directory setting permits the start up code in the image to
register the application type libraries with full pathnames. Full
pathnames are required when registering type libraries.

Registration files for the server example expect the following:
COM Connect User’s Guide 16-1

COM Connect Server Examples
• The object engine is located at:

C:\vw30\Bin\vwnt.exe

• The example server image is located at:

C:\vw30\Com\Examples\COMAuto\vwComSrv.im

• The SmalltalkCommander type library is located in:

C:\vw30\Com\Examples\COMAuto\StCom\
TypeLibrary\vwstcom.tlb

• The AllDataTypes type library is located in:

C:\vw30\Com\Examples\COMAuto\AllDataT\
TypeLibrary\vwAllDT.tlb

Do not depend on any PATH settings; all file references must match
exactly. Setting up your system to run with a different directory
structure is discussed under Modifying the Examples to Match Your
Directory Structure.

To run the examples, both registration files for the examples must be
run. These files are located at:

COM\Examples\COMAuto\AllDataT\vwStCom.reg

and

COM\Examples\COMAuto\StCom\vwAllDT.reg.

To register a file, double-click on the .reg file or run REGEDIT.EXE and
follow these steps:

1 Choose Start\Run... from the Windows taskbar, and type
REGEDIT.EXE.

2 Choose Registry\Import registry file... from the REGEDIT menu.

3 Choose the .reg file for the example.

4 Quit REGEDIT.

Once the .reg files are run, you are ready to access the COM
Server objects.

How to Publish the COM Automation Server Example Image
This section shows how to make a deployment image for the COM
Automation server examples. If you installed COM Connect in
C:\vw30\COM, you do not need to make a new example image to
reflect a different directory structure.
16-2 VisualWorks

How to Publish the COM Automation Server Example Image
The following steps can be found in COM\Examples\COMAuto\
Servers.txt:

1 Start with a clean image in which the COM Connect software is
installed.

2 Make sure the COM and Automation examples are installed.

3 Change the directory pathname in the following code to specify
the name of the directory containing your COM installation
directory, if necessary, and then evaluate to configure the image
with run-time settings for an object server application deployment
image:

" Install the COM Automation dual interface servers "
"NOTE: Modify the following to specify the name of your COM
 installation directory."

COMSessionManager defaultCOMDirectoryName: 'C:\vw30\COM'.
COMSessionManager installRuntime.
AutomationAllDataTypes unregister.
AllDataTypesCOMObject installRuntime.
AutomationOnlySmalltalkCommander unregister.
SmalltalkCommanderCOMObject installRuntime.

4 Make a deployment image for the object server application EXE.
Remember to position your open windows or close your open
windows. You can also resize the Transcript window.

At this point, the following deployment image options exist:

Option A: Unload development parcels. If desired, strip the
system using RuntimePackager. Use the RuntimePackager
parameter file comserver.rtp, located in the COM directory, as a
starting basis to strip the image. In RuntimePackager, be sure to
specify to retain all relevant COM example classes (do not strip
out the examples).

Option B: Make a headless image.

Option C: Save the image with a NEW name, for example
VwComSrv.

5 If necessary, copy the new image to the location designated by
your .reg file.

The example COM Connect image is copied to:

COM\Examples\COMAuto
COM Connect User’s Guide 16-3

COM Connect Server Examples
Restore your image configuration to the original development
settings by evaluating the following:

" Unregister the COM Automation dual interface servers. "
ImageConfiguration isDevelopment: true.
AllDataTypesCOMObject unregister.
SmalltalkCommanderCOMObject unregister.

Modifying the Examples to Match Your Directory Structure
The .reg files shipped with COM Connect are based on a directory
structure with a C:\vw30\COM root, as described previously under
Registering the Example COM Server.

For each example server you want to run, modify the registration file
to reflect your directory structure.

The registration file for the AllDataTypes example is located in
COM\Examples\COMAuto\AllDataT\vwAllDt.reg. The
following listing shows which entry must be changed to suit your
directory structure:

HKEY_CLASSES_ROOT
CLSID

{DB5DE8E3-AD1F-11d0-ACBE-5E86B1000000}
LocalServer32 = C:\vw30\Bin\vwnt.exe

C:\vw30\Com\Examples\COMAuto\vwComSrv.im /Automation
The registration file for the SmalltalkCommander example is in
Com\Examples\COMAuto\SmalltalkCommander\vwStCom.reg. The
following listing shows which entry must be changed to suit your
directory structure:

HKEY_CLASSES_ROOT
CLSID

{5FD2D2B1-95A8-11d0-ACAB-E80467000000}
LocalServer32 = C:\vw30\Bin\vwnt.exe

C:\vw30\Com\Examples\COMAuto\vwComSrv.im /Automation
The following class methods must be adapted to your directory
structure only if you change the internal directory structure for the
example directories. For the AllDataTypes example to publish the
AutomationAllDataTypes class with an IDispatch, the
newTypeLibraryEnglish class method must be modified.
16-4 VisualWorks

Starting a Deployed Image Manually
newTypeLibraryEnglish
"Answer a type library for the English language for the application."
^COMTypeLibrary new

libraryID: self typeLibraryID;
lcid: COMTypeLibrary lcidEnglish;
directoryName: COMSessionManager absoluteCOMDirectoryName,

'Examples\COMAuto\AllDataTypes\TypeLibrary';
fileName: 'VwAllDT.tlb';
majorVersion: 1;
minorVersion: 0

For the AllDataTypes example to publish the AutomationAllDataTypes
class with a dual interface, the newTypeLibraryEnglish class method in
AllDataTypesCOMObject must be modified.

newTypeLibraryEnglish
"Answer a type library for the English language for the application."
^COMTypeLibrary new

libraryID: AutomationAllDataTypes typeLibraryID;
lcid: COMTypeLibrary lcidEnglish;
directoryName: COMSessionManager absoluteCOMDirectoryName,

'Examples\COMAuto\AllDataTypes\TypeLibrary';
fileName: 'VwAllDT.tlb';
majorVersion: 1;
minorVersion: 0

The SmalltalkCommander example also has similar methods in the
AutomationSmalltalkCommander and SmalltalkCommanderCOMObject
classes.

Starting a Deployed Image Manually
There might some debugging situations when you want to start an
image that has been saved to serve COM and Automation objects
instead of making a new deployment image.

To start an image that has been saved to serve COM and Automation
objects, start it with an equivalent command line similar to this one,
which includes the /Automation flag.

C:\vw30\Bin\vwnt.exe C:\vw30\Com\Examples\
COMAuto\vwComSrv.im /Automation

This should be similar to the command in the .reg file.
COM Connect User’s Guide 16-5

COM Connect Server Examples
The Smalltalk Commander Examples
The SmalltalkCommander example makes for great demonstrations,
because it allows you to evaluate any Smalltalk expression from any
COM compliant client. This example is located in
COM\Examples\COMAuto\StCom.

This example is comprised of a COM Connect server image and
various client applications used to demonstrate flexibility in choosing
client environments. This example lets a client evaluate any Smalltalk
expression and get an answer either as a string or as an Automation
object. This server example can be published through an IDispatch
interface or through a custom dual interface called
ISmalltalkCommanderDisp.

The following table lists COM\Examples\COMAuto\StCom
subdirectories.

COM Connect example expressions are in the comments for the
AutomationSmalltalkCommander and SmalltalkCommanderCOMObject
classes.The server example uses the VisualWorks class Compiler
and might be subject to restrictions for distribution. Consult the
VisualWorks documentation on this topic.

To run this sample, you must run the registration file located at
COM\Examples\COMAuto\StCom\vwStCom.reg.

To register the file, double-click on the .reg file or run REGEDIT.EXE and
follow these steps:

1 Choose Start\Run... from the Windows taskbar, and type
REGEDIT.EXE.

2 Choose Registry\Import registry file... from the REGEDIT menu.

Subdirectory Description

VB4 Contains a Visual Basic 4 client application.

CStCom Contains a Visual C++ 5.0 client application.

VJ++ Contains a Visual J++ 1.1 client application.

TypeLibrary Contains the .idl source files and header files produced
by the MIDL compiler.

Help Contains the help source and .hlp file for this example
used by the various clients.
16-6 VisualWorks

The Smalltalk Commander Examples
3 Choose the .reg file for the example.

4 Quit REGEDIT.

COM Connect Client Example: The Smalltalk Commander
The class comments for the AutomationSmalltalkCommander and
SmalltalkCommanderCOMObject classes contain example expressions
for running the COM server from a COM Connect image.

Accessing With the Standard IDispatch
To start the server and access its services through the standard
Automation IDispatch interface, evaluate:

"Run the server from here. Inspect the expression:"
COMDispatchDriver createObject: 'VisualWorks.SmalltalkCommander'.

Copy and paste the expressions into the inspector from the
AutomationSmalltalkCommander class comment, and evaluate:

self invokeMethod: 'Evaluate' with: '3+4'.
which answers the Smalltalk Integer 7.

Evaluating the following:

self invokeMethod: 'EvaluateAsString' with: '100 factorial'.
answers the following Smalltalk string:

‘933262154439441526816992388562667004907159682643816214685
929638952175999932299156089414639761565182862536979208272
23758251185210916864000000000000000000000000’

To releases the client resources, evaluate

self release

Accessing With the Dual Interface ISmalltalkCommanderDisp
To start the server and access its services through the custom
ISmalltalkCommanderDisp interface, inspect:

"Get a dispatch driver running on the dual interface. Inspect: "
(IClassFactory

createInstance: SmalltalkCommanderCOMObject clsid
iid: ISmalltalkCommanderDisp iid) asDispatchDriver.

Note that in this example, we wrap the IClassFactory answer with a
COMDispatchDriver. Since ISmalltalkCommanderDisp is a dual interface,
it supports IDispatch. This lets you use the expressions from the
previous section to insure that the same results are obtained,
whether a client uses an IDispatch or the custom
ISmalltalkCommanderDisp interface.
COM Connect User’s Guide 16-7

COM Connect Server Examples
To work with an ISmalltalkCommanderDisp, inspect:

(IClassFactory
createInstance: SmalltalkCommanderCOMObject clsid
iid: ISmalltalkCommanderDisp iid).

Copy the expressions from the SmalltalkCommanderCOMObject class
comment and paste them in the inspector. When you are using a
COMDispatchDriver, you get the dual interface with the dispatchInterface
message.

self dispatchInterface evaluate: '3+4'.
self dispatchInterface evaluateAsString: '100 factorial'.

If you have an ISmalltalkCommanderDisp interface, send the messages
directly.

self evaluate: '3+4'.
self evaluateAsString: '100 factorial'.
self release. “release the client resources. “

Releasing the Interface
The release message releases client resources. The example image is
set up to stay alive even when the last reference to a server object is
released. If this is not the case, the server image quits. The
termination policy for a server image is discussed under Publishing
Automation Objects. If you really want to terminate the server, invoke
the Quit method.

Visual Basic Client Example: The Smalltalk Commander
The Visual Basic 4 example opens a window and lets you evaluate
any Smalltalk expression from a text box. The answer of the Smalltalk
expression is displayed in another text box. Smalltalk errors are
reported in the answer text box, and a stack trace from expression
evaluation errors can be viewed in a separate window.

This example is located in COM\Examples\COMAuto\StCom\ VB4
and includes (among others) the files listed in the following table:
16-8 VisualWorks

The Smalltalk Commander Examples
Visual Basic Client Example: The Class Hierarchy Browser
This example uses the SmalltalkCommander to implement a simple
class hierarchy browser in Visual Basic 4. This example is located in
COM\Examples\COMAuto\CHB and includes (among others) the
following files:

Visual C++ Client Example: The Smalltalk Commander
The C++ 5.0 example opens a window and lets you evaluate any
Smalltalk expression from a text box. The answer of the Smalltalk
expression is displayed in another text box. Smalltalk errors are
reported in the answer text box.

This example is in COM\Examples\COMAuto\StCom\CStCom and
includes (among others) the following files:

Filename Description

vbStCom.vbp The Visual Basic 4 project file. Double-click on this
file to start Microsoft Visual Basic.

VbStCom.exe A run-time version of this Visual Basic example.
Run this EXE if you have Visual Basic 4 or the
Visual Basic 4 runtime installed on your system.

Installer\SetUp.exe An installation program for this example client. Run
this EXE if you do not have Visual Basic 4 or the
Visual Basic 4 run-time installed on your system.
This installer also copies the Visual Basic 4 run-
time files into your system; thus, you do not need a
copy of Visual Basic to run this example.

Filename Description

ChbVw.vbp The Visual Basic project file. Double-click on this file
to start Microsoft Visual Basic.

ChbVw.exe A run-time version of this Visual Basic example.
Run this EXE if you have Visual Basic 4 or the
Visual Basic 4 runtime installed on your system.

Installer\SetUp.exe An installation program for this example client. Run
this EXE if you do not have Visual Basic 4 or the
Visual Basic 4 run-time installed on your system.
This installer also copies the Visual Basic 4 run-
time files to your system; thus, you do not need a
copy of Visual Basic to run this example.
COM Connect User’s Guide 16-9

COM Connect Server Examples
Note that the compiler environment for this project is set to include
“..\TypeLibrary” in the INCLUDE search path.

Visual J++ Client Example: The Smalltalk Commander
The Visual J++ 1.1 example opens a window and lets you evaluate
any Smalltalk expression from a text box. The answer of the Smalltalk
expression is displayed in another text box. Smalltalk errors are
reported in the answer text box.

This example is in COM\Examples\COMAuto\StCom\VJ++ and
includes (among others) the following files:

If you run VJStCom.html by itself (not from Microsoft Visual J++)
and the applet does not run, your system might not be configured
properly. This can happen even if the applet runs when Microsoft
Visual J++ launches your web browser. The Internet Explorer might
place an error message in the status bar, when the mouse is over the
applet area.

The AllDataTypes Examples
This example is comprised of a COM Connect server image and
client example expressions. This example is used throughout this
document to illustrate the use of all Automation compatible data
types. This server example can be published through an IDispatch
interface or through a custom dual interface called IAllDataTypesDisp.

Filename Description

CstCom.dsw The Visual C++ 5.0 workspace file. Double-click on
this file to start Microsoft Visual C++.

Debug\CstCom.exe A debug version of the executable file.

Release\CstCom.exe A release version of the executable file.

Filename Description

VJStCom.dsw The Microsoft Visual J++ 1.1 project workspace.
Double-click on this file to start Microsoft Visual
J++.

VJStCom.java The main Java source file.

VJStCom.html An HTML file to run the applet.
16-10 VisualWorks

The AllDataTypes Examples
This example is in COM\Examples\COMAuto\AllDataT and its
subdirectories.

The AllDataTypes Example Server
The AllDataTypes example is used throughout this chapter to
illustrate the use of all Automation data types to demonstrate all of
the code patterns you might need in creating an Automation object, in
particular an Automation object that implements a dual interface. The
files for this example are located in
COM\Examples\COMAuto\AllDataT. To run this sample, the
COM\Examples\COMAuto\AllDataT\vwAllDT.reg registration
file for the example must be run.

To register a file, double-click on the .reg file or run REGEDIT.EXE
and follow these steps:

1 Choose Start\Run... from the Windows taskbar, and type
REGEDIT.EXE.

2 Choose Registry\Import registry file... from the REGEDIT menu.

3 Choose the .reg file for the example.

4 Quit REGEDIT.

The COM Connect Example Client
The class comments for the AutomationAllDataTypes and
AllDataTypesCOMObject classes contain example expressions to run
the COM server from a COM Connect image.

Accessing With the Standard IDispatch
To start the server and access its services through the standard
Automation IDispatch interface, inspect:

"Run the server from here. Inspect the expression:"
COMDispatchDriver createObject: 'VisualWorks.AllDataTypes'.

Copy from the class comment for AutomationAllDataTypes, paste the
expressions in the inspector, and evaluate the following:

Subdirectory Description

TypeLibrary Contains the .idl source files and header files
produced by the MIDL compiler.
COM Connect User’s Guide 16-11

COM Connect Server Examples
"Setting properties."

| anIUnknown |
self setProperty: 'LONGValue' value: 76000.
self setProperty: 'BYTEValue' value: 1.
self setProperty: 'SHORTValue' value: 2.
self setProperty: 'FLOATValue' value: 0.333.
self setProperty: 'DOUBLEValue' value: 800.001.
self setProperty: 'VARIANT_BOOLValue' value: true.
self setProperty: 'SCODEValue' value: 0.
self setProperty: 'DATEValue' value: Timestamp now.
self setProperty: 'BSTRValue' value: 'Bonjour'.
anIUnknown := self dispatchInterface queryInterface: IUnknown iid.
[self setProperty: 'IUnknownReference' value: anIUnknown] ensure:

[anIUnknown release].
self setProperty: 'IDispatchReference' value: self dispatchInterface.
self setProperty: 'VARIANTValue' value: (Array with: 1 with: 2 with: 3

with: 4).
self setProperty: 'CURRENCYValue' value: 10.

"Getting properties."
self getProperty: 'LONGValue'.
self getProperty: 'BYTEValue'.
self getProperty: 'SHORTValue'.
self getProperty: 'FLOATValue'.
self getProperty: 'DOUBLEValue'.
self getProperty: 'VARIANT_BOOLValue'.
self getProperty: 'SCODEValue'.
self getProperty: 'DATEValue'.
self getProperty: 'BSTRValue'.
self getProperty: 'IUnknownReference'.
self getProperty: 'IDispatchReference'.
self getProperty: 'VARIANTValue'.
self getProperty: 'CURRENCYValue'.
self release.

Accessing With the Dual Interface IAllDataTypesDisp
To start the server and access its services through the custom
IAllDataTypesDisp interface, inspect:

"Get a dispatch driver running on the dual interface. Inspect: "
 (IClassFactory

createInstance: AllDataTypesCOMObject clsid
iid: IAllDataTypesDisp iid) asDispatchDriver.

Note that in this example, we wrap the IClassFactory answer with a
COMDispatchDriver. Since IAllDataTypesDisp is a dual interface, it
supports IDispatch. This lets you use the expressions from the
16-12 VisualWorks

The AllDataTypes Examples
previous section to insure that the same results are obtained,
whether a client uses an IDispatch or the custom IAllDataTypesDisp
interface.

Copy the expressions from the AllDataTypesCOMObject class comment
and paste them in the inspector. When you are using a
COMDispatchDriver, you get the dual interface with the
dispatchInterface message.

"Setting properties."

| anIUnknown anIDispatch aDualInterface |
self dispatchInterface reset.
self dispatchInterface put_LONGValue: 76000.
self dispatchInterface put_BYTEValue: 1.
self dispatchInterface put_SHORTValue: 2.
self dispatchInterface put_FLOATValue: 0.333.
self dispatchInterface put_DOUBLEValue: 800.001.
self dispatchInterface put_VARIANT_BOOLValue: true.
self dispatchInterface put_SCODEValue: 0.
self dispatchInterface put_CURRENCYValue:
(FixedPoint numerator: 9223372036854775807 denominator: 10000

scale: 4).

"The largest CY value."
self dispatchInterface put_DATEValue: Timestamp now.
self dispatchInterface put_BSTRValue: 'Bonjour'.
anIUnknown := self dispatchInterface queryInterface: IUnknown iid.
[self dispatchInterface put_IUnknownReference: anIUnknown] ensure:

[anIUnknown release].
anIDispatch := self dispatchInterface queryInterface: IDispatch iid.
[self dispatchInterface put_IDispatchReference: anIDispatch] ensure:

[anIDispatch release].
self dispatchInterface put_IDispatchReference: self dispatchInterface.
self dispatchInterface put_VARIANTValue: (Array with: 1 with: 2 with: 3
with: 4).
self dispatchInterface put_SAFEARRAY_I4Value: (Array with: 10 with: 20
with: 30 with: 40).
anIDispatch := self dispatchInterface queryInterface: IDispatch iid.
[aDualInterface := self dispatchInterface

queryInterface: IAllDataTypesDisp iid.
self dispatchInterface put_SAFEARRAY_DISPATCHValue:

(Array with: anIDispatch with: aDualInterface)]
ensure: [anIDispatch release. aDualInterface release].

"Getting properties."
self dispatchInterface get_LONGValue.
COM Connect User’s Guide 16-13

COM Connect Server Examples
self dispatchInterface get_BYTEValue.
self dispatchInterface get_SHORTValue.
self dispatchInterface get_FLOATValue.
self dispatchInterface get_DOUBLEValue.
self dispatchInterface get_VARIANT_BOOLValue.
self dispatchInterface get_SCODEValue.
self dispatchInterface get_DATEValue.
self dispatchInterface get_BSTRValue.
(self dispatchInterface get_IUnknownReference) release.
(self dispatchInterface get_IDispatchReference) release.
self dispatchInterface get_VARIANTValue.
self dispatchInterface get_SAFEARRAY_I4Value.
(self dispatchInterface get_SAFEARRAY_DISPATCHValue do:

[: anInterface anInterface release].
self release.

To work with an IAllDataTypesDisp, inspect:

(IClassFactory
createInstance: AllDataTypesCOMObject clsid
iid: IAllDataTypesDisp iid)

If you have an IAllDataTypesDisp interface, you can send the messages
directly, as follows:

self put_LONGValue: 76000.
self get_LONGValue.

Releasing the Interface
The release message releases client resources. The example image is
set up to stay alive even when the last reference to a server object is
released. If this is not the case, the server image quits. The
termination policy for a server image is discussed under Publishing
Automation Objects. If you really want to terminate the server, invoke
the Quit method.
16-14 VisualWorks

Glossary

accessor function A function that sets or retrieves the value of a property. Most
properties have a pair of accessor functions. Properties that are
read-only may have only one accessor function.

ActiveX Microsoft’s brand name for the technologies that enable
interoperability using the Component Object Model (COM).
ActiveX technology includes, but is not limited to, OLE.

class identifier (CLSID) A universally unique identifier (UUID) for an application class
that identifies an object. An object registers its class identifier
(CLSID) in the system registration database so that it can be
loaded and programmed by other applications.

class factory An object that implements the IClassFactory interface, which
allows it to create other objects of a specific class.

coclass (component class) Component object class. A top-level object in the object
hierarchy.

code page The mapping between character glyphs (shapes) and the 1-byte
or 2-byte numeric values that are used to represent them.

collection object A grouping of exposed objects. A collection object can address
multiple occurrences of an object as a unit (for example, to draw
a set of points).

Component Object Model (COM)

The programming model and binary standard on which OLE is
based. COM defines how objects and their clients interact within
processes or across process boundaries.

compound document A document that contains data of different formats, such as
sound clips, spreadsheets, text, and bitmaps, created by
different applications. Compound documents are stored by
container applications.

container application An OLE-based application that provides storage, a display site,
and access to a compound document object.
COM Connect User’s Guide Glossary-1

Glossary
custom interface A user-defined COM interface that is not defined as part of
OLE.

Dispatch identifier (DISPID) The number by which a member function, parameter, or data
member of an object is known internally to the IDispatch
interface.

dispinterface(dispatch interface)

An IDispatch interface that responds only to a certain fixed set
of names. The properties and methods of the dispinterface are
not in the virtual function table (VTBL) for the object.

dual interface An interface that supports both IDispatch and VTBL binding.

event An action recognized by an object, such as clicking the mouse
or pressing a key, and for which you can write code to respond.
In Automation, an event is a method that is called, rather than
implemented, by an Automation object.

event sink A function that handles events. The code associated with a
Visual Basic form, which contains event handlers for one or
more controls, is an event sink.

event source A control that experiences events and calls an event handler to
dispose of them.

exposed object See Automation object.

HRESULT A value returned from a function call to an interface, consisting
of a severity code, context information, a facility code, and a
status code that describes the result. For 16-bit Windows
systems, the HRESULT is an opaque result handle defined to
be zero for a successful return from a function, and nonzero if
error or status information is to be returned. To convert an
HRESULT into a more detailed SCODE (or return value),
applications call GetSCode(). See SCODE.

ID binding The ability to bind member names to dispatch identifiers
(DISPIDs) at compile time (for example, by obtaining the IDs
from a type library). This approach eliminates the need for calls
to IDispatch::GetIDsOfNames, and results in improved
performance over late-bound calls. See also late binding and
VTBL binding.

in-place activation The ability to activate an object from within an OLE control and
to associate a verb with that activation (for example, edit, play,
change). Sometimes referred to as in-place editing or visual
editing.
Glossary-2 VisualWorks

Glossary
in-process server An object application that runs in the same process space as
the Automation controller.

interfaces One or more well-defined base classes providing member
functions that, when implemented in an application, provide a
specific service. Interfaces may include compiled support
functions to simplify their implementation.

late binding The ability to bind member names to dispatch identifiers (IDs) at
run time, rather than at compile time. See also ID binding and
VTBL binding.

LCID (locale identifier) A 32-bit value that identifies the human language preferred by a
user, region, or application.

locale User-preference information, represented as a list of values
describing the user's language and sublanguage.

MkTypLib utility A library creation utility that compiles scripts written in the
Object Description Language. This utility is obsolete; the
Microsoft Interface Definition Language (MIDL) compiler should
be used instead of MkTypLib.

marshaling The process of packaging and sending interface parameters
across process boundaries.

member function One of a group of related functions that make up an interface.
See also method and property.

method A member function of an exposed object that performs some
action on the object, such as saving it to disk.

MIDL compiler The Microsoft Interface Definition Library (MIDL) compiler can
be used to generate a type library. For information about the
MIDL compiler, refer to the Microsoft Interface Definition
Language Programmer’s Guide and Reference in the Win32
Software Development Kit (SDK) section of the Microsoft
Developer’s Network (MSDN).

multiple-document nterface (MDI) application

An application that can support multiple documents from one
application instance. MDI object applications can
simultaneously service a user and one or more embedding
containers. See also single-document interface (SDI)
application.

naming guidelines Recommendations meant to improve consistency and
readability across applications.
COM Connect User’s Guide Glossary-3

Glossary
Object Description Language (ODL)

A scripting language used to describe exposed libraries,
objects, types, and interfaces. ODL scripts are compiled into
type libraries by the MkTypLib tool.

OLE Microsoft’s object-based technology for sharing information and
services across process and machine boundaries (object
linking and embedding).

out-of process server An object application implemented in an executable file that
runs in a separate process space from the Automation
controller.

programmable object See Automation object.

programmatic identifier (ProgID)

An application’s unique name that is mapped to the system
registry by the class identifier (CLSID). For example, registering
Microsoft Excel associates a CLSID with the ProgID
Excel.Application.

property A data member of an exposed object. Properties are set or
returned by means of get and put accessor functions.

proxy An interface-specific object that packages parameters for that
interface in preparation for a remote method call. A proxy runs
in the address space of the sender and communicates with a
corresponding stub in the receiver’s address space. See also
stub, marshaling, and unmarshaling.

running object table (ROT) A globally accessible table on each computer that keeps track
of all COM objects in the running state that can be identified by
a moniker. Moniker providers register an object in the table,
which increments the object's reference count. Before the object
can be destroyed, its moniker must be released from the table.

safe array An array that contains information about the number of
dimensions and the bounds of its dimensions. Safe arrays are
passed by IDispatch::Invoke within VARIANTARGs. Their base
type is VT_tag | VT_ARRAY.

SCODE A DWORD value that is used in 16-bit systems to pass detailed
information to the caller of an interface member or API function.
The status codes for OLE interfaces and APIs are defined in
FACILITY_ITF. See HRESULT.
Glossary-4 VisualWorks

Glossary
single-document interface (SDI) application

An application that can support only one document at a time.
Multiple instances of an SDI application must be started to
service both an embedded object and a user. See also multiple-
document interface (MDI) application.

standard objects A set of objects defined by Automation, including the following:
Application, Document, Documents, and Font.

stub An interface-specific object that unpackages the parameters for
that interface after they are marshaled across the process
boundary, and makes the requested method call. The stub runs
in the address space of the receiver and communicates with a
corresponding proxy in the sender’s address space. See proxy,
marshaling, and unmarshaling.

type description The information used to build the type information for one or
more aspects of an application’s interface. Type descriptions are
written in Object Description Language (ODL), and include both
programmable and nonprogrammable interfaces.

type information Information that describes the interfaces of an application. Type
information is created from type descriptions using OLE
Automation tools, such as MkTypLib or the CreateDispTypeInfo
function. Type information can be accessed through the
ITypeInfo interface.

type information element A unit of information identified by one of these statements in a
type description: typedef, enum, struct, module, interface,
dispinterface, or coclass.

type library A file or component within another file that contains type
information about exposed objects. Type libraries are created
using either the MkTypLib utility or the MIDL compiler, and can
be accessed through the ITypeLib interface.

unmarshaling The process of unpackaging parameters that have been sent
across process boundaries.

Value property The property that defines the default behavior of an object when
no other methods or properties are specified. Indicate the Value
property by specifying the default attribute in ODL.

virtual function table (VTBL) A table of function pointers, such as an implementation of a
class in C++. The pointers in the VTBL point to the members of
the interfaces that an object supports.
COM Connect User’s Guide Glossary-5

Glossary
VTBL binding A process that allows an ActiveX client to call a method or
property accessor function directly without using the IDispatch
interface. VTBL binding is faster than both ID binding and late
binding because the access is direct. See also late binding and
ID binding.
Glossary-6 VisualWorks

Index
A
access mechanism 1-17
active object 6-3
ActiveX 1-4

clients 1-12
objects 1-9, 1-17
objects and clients 1-6
standard objects 14-1

Adaptor interface binding 3-16
AllDataTypes examples 16-10
application objects 14-7
application startup 8-30
Automation

class initialization 8-29
controller framework 13-1
controllers 1-8, 8-1, 13-12
data types 6-9, 8-14
implementation techniques 8-3
implementing objects 8-1
interface 1-12
object constants 6-15
object methods 6-12
object properties 6-12
objects 6-1
overview 1-5
publishing objects 9-1
server object 8-20
servers 6-1
standard objects 14-2
troubleshooting 8-38

Automation server 6-14

B
BSTR value 11-35

C
class factories 2-13
class formatter example 13-3
class identifier (CLSID) 2-14, 8-10
classes

initializing 11-24
registering 9-2

clipboard:COM 4-6
clipboard:data transfer 4-6
collection object properties 14-4

collections 14-6
COM

acquiring interfaces 2-2
acquiring objects 2-1
aggregation 3-11
applications 1-1, 1-4
Automation 1-5, 8-3
Automation server object 8-20
creating applications 2-1
debugging applications 5-1
error handling 2-10
interface functions 2-9
interface support 2-2, 3-5, 3-6
introduction 1-4
object references 2-6
objects 1-1, 1-4
reference counting 3-24
reusing objects 3-10
support 1-1
type libraries 6-13

COM Connect
Automation support 8-1
example client 16-11
overview 1-1
server examples 16-1
under the hood 15-1

COM Connect Client example 16-7
COM objects

implementing 3-1
COM:basic data types 4-1
COM:clipboard 4-6
COM:data structures 4-22
COM:enumerators 4-3
COM:event sinks 4-9, 4-11, 4-13
COM:event support 4-7
COM:function binding classes 4-22
COM:host binding framework 4-21
COM:HRESULT values 4-2
COM:infrastructure support 4-1
COM:monikers 4-4
COM:pools 4-1
COM:storage 4-5
COM:support 4-14
COM:Uniform Data Transfer 4-6
COMAutomationController class 14-3
COM Connect User’s Guide Index-1

Index
COMAutomationDocumentController class
14-10

COMAutomationEditor tool 5-10
COMAutomationTypeAnalyzer tool 5-11
COMConstants pool dictionary 2-14
COMDispatchDriver 13-1
COMDispatchDriver class 2-14, 6-1, 6-18
COMDualInterfaceObject subclass 11-40
COMDynamicLinkLibrary class 4-22
COMEventTraceViewer tool 5-11
COMInterface framework 5-13
COMInterfaceImplementation class 4-23
COMInterfaceImplementation framework

5-13
COMInterfacePointer class 4-23
COMInterfacePointer framework 5-13
COMInterfaceTraceAdaptor tool 5-5
COMLookupSpecificationPolicy class 15-7
Common Object Model 1-1, 4-14
COMNoLookupSpecificationPolicy class

15-7
COMObject framework 3-1
compound document 1-4
COMResourceBrowser tool 5-1
COMSpecificationPolicy class 15-6
COMTraceManager class 5-4
COMTraceViewer tool 5-4
COMTypeCompilerLookupSpecificationPolic

y class 15-8
COMTypedSpecificationPolicy class 15-6
COMTypeLibrary class 6-13
COMTypeLibraryLookupSpecificationPolicy

class 15-8
COMUntypedSpecificationPolicy class 15-7
COMVariantLookupSpecificationPolicy class

15-8
controller classes

creating 13-4
CORBA 1-5
COSERVERINFO structure 2-12, 12-3
cross-application macros 1-8
CURRENCY value 11-36

D
data structures 4-22
data structures:external 4-17
data types 4-1, 6-9, 8-8
DATE value 11-37
debugging COM applications 5-1
deployment image creation 9-10
Direct interface binding 3-16
dispatch driver 6-18

dispatch identifier 1-15
dispatch interface 15-1
DISPID 1-15
DISPID requests 8-24
Distributed COM (DCOM) 12-1, 12-5
DLL C Connect extensions 4-18
document objects 14-10
documents collection objects 14-12
dual interface classes 11-18

creating 11-19
generating automatically 11-19

dual interfaces 9-10
data type 11-8
exposing classes through 11-1
Vtable definition 11-8

dynamic-link library (DLL) 1-17

E
enumerators 4-3
error handling

COM 2-10
event sinks 4-9, 4-12, 4-13
events 1-10, 4-7, 8-18
exposing objects 1-6
extensions:DLL C Connect 4-18
extensions:user interface 4-16
external data structures 4-17

F
font objects 14-13
formatted data

passing 8-36
framework classes

subclassing 13-4

G
globally unique identifier (GUID) 4-1

H
host binding 4-21
HRESULT status codes 3-23
HRESULT value 8-38
HRESULT values 4-2

I
IClassFactory class 2-13, 2-14, 2-16, 6-17
IDataObject interface 2-5
IDispatch

exposing classes 8-26
IDispatch interface 1-12, 1-13, 1-15, 6-1,

6-18
answering 6-11

IEnumVARIANT interface 8-37
Index-2 VisualWorks

Index
image configuration 4-14
import text file example 13-2
IN parameter 8-8
input parameter values 11-23
interface bindings 3-16
interface class generation tools 5-11
interface functions 3-20

processing 3-14
interface output parameters 11-21
interface type definitions 5-14
interface wrapper classes 5-14
interfaces

implementation binding class 11-25
pointer binding class 11-31
querying 12-4
reference counting 3-21
registering 9-7
rules for handling 8-8

ITypeInfo interface 6-22
IUnknown interface 1-13, 3-1

L
languages

support 8-35

M
memory

COM 2-11, 3-25
methods 1-9

calling 11-23
for collection 14-5
implementing 8-9
invoking 6-5
invoking with argument values 6-5
invoking with named arguments 6-6
passing arguments by reference 6-6

Microsoft Interface Definition Language
(MIDL) 1-17

MIDL compiler 8-13
MkTypLib utility 1-17, 8-13
monikers 4-4
Monster 13-1
multiple-document interface (MDI) 14-1

N
naming guidelines 14-1

O
object creation 2-12, 2-16
Object Description Language 1-17
object handler 2-14
object implementation examples 3-2

object server application
terminating 9-11
testing 9-12

objects
adding a standard collection object

13-10
adding a standard object 13-8
adding an application object 13-6
adding behavior to a standard object

13-9
application 14-7
COM 1-1, 1-4
destruction 6-11
document 14-10
documents collection 14-12
exposing 1-6, 11-2
font 14-13
locating remote 12-1
on remote machines 12-2
publishing through a dual interface 9-10
publishing through IDispatch 9-9
using non-standard objects 13-11

objects in files 6-3
OLE Automation 1-5
OUT parameter 8-8
output parameter values 11-20

scalar 11-20

P
performance tradeoffs 6-20
pool dictionaries 4-1
pool variables 4-1
programmable interfaces

creating 8-16
properties 1-10
property values 6-4, 6-5

R
registering a type library 9-5
registering an application 9-1
registering an interface 9-7
registering classes 9-2
registration files

creating 9-1
releasing resources 3-21
RemoteServerName 12-3
resources

releasing 13-10
return values 13-10
reusing COM objects 3-10
run-time image creation 9-9
run-time installation 8-35
COM Connect User’s Guide Index-3

Index
S
SAFEARRAY value 11-37
single-document interface (SDI) 14-1
Smalltalk

binding 5-12
exposing a class 8-5

Smalltalk Commander examples 16-6
specification policy 6-18, 13-12

default 6-20
dynamically changing 6-23
setting 6-21

specification table 6-18, 8-20
building 6-24
using 6-24

standard object properties 14-4
standard objects 14-2
standards 14-1
starting a deployed image manually 16-5
structure wrapper classes 4-22

T
terminating an application 8-10, 9-11
type libraries 1-17, 6-13

and ODL 8-13
creating 8-12
generating with MIDL 8-13
management 11-44
managing 8-33
policy 6-22
registering 9-5

U
Uniform Data Transfer 4-6
user interface extensions 4-16

V
Value property 8-18
VARIANT output parameters 11-22
variant policy 6-22
VARIANT_BOOL value 11-39
virtual function table 1-12
Visible property 6-3
Visual Basic Client example 16-8
Visual C++ Client example 16-9
Visual J++ Client example 16-10
VisualWorks

COM server image 12-6
VTable 1-12, 1-13

binding 1-16

W
Win32 support 4-20
Windows NT service 12-6

wrapper classes 5-14
Index-4 VisualWorks

	About This Book
	Audience
	Organization
	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information
	Documentation
	Books
	COM Specification
	Resource Links
	DCOM and CORBA

	COM Connect Basics
	The Component Object Model
	Objects and Interfaces
	Publishing COM Objects
	COM Applications
	Learning More About COM

	COM Automation Basics
	Overview of Automation
	Why Expose Objects?
	Automation = Cross-Application Macros
	What Is An ActiveX Object?
	What Is An ActiveX Client?
	How Do Clients and Objects Interact?
	Accessing an Object Through the IDispatch Interface
	Accessing an Object Through the VTable
	In-Process and Out-of-Process Server Objects

	What Is a Type Library?

	Using COM Objects
	Acquiring COM Objects
	Basic COM Interface Support
	Acquiring COM Interfaces and Creating COM Objects
	Managing Object References
	Using COM Interface Functions
	Error Handling
	Managing Memory
	In Depth: Class Factories and Object Creation Contexts
	Accessing Objects With IClassFactory
	Class Context Definitions
	Note 1:
	Note 2:

	Class Context Processing

	Implementing COM Objects
	COMObject Framework
	Implementation Examples
	Design Guidelines for Implementing COM Objects
	Supporting COM Interfaces
	Reusing COM Objects
	Configuring Interface Function Processing
	Configuring a Direct Interface Binding
	Configuring an Adaptor Interface Binding

	Implementing Interface Functions
	Releasing a COM Object
	Returning Values From an Interface Function
	Implementing Reference Counting
	Memory Management

	COM Infrastructure Support
	COM Pools
	Basic COM Data Types
	Globally Unique Identifiers
	HRESULT Values

	COM Enumerators
	Using COM Enumerators
	Implementing COM Enumerators

	COM Monikers
	COM Structured Storage Support
	COM Uniform Data Transfer Support
	Clipboard Data Transfer

	COM Event Support
	Overview of Connectable Object Technology
	Overview of Receiving COM Events in VisualWorks
	Using a COM Event Sink
	Configuring an Event Sink
	Connecting an Event Sink
	Registering Handlers on an Event Sink
	Disconnecting an Event Sink

	VisualWorks Extensions
	Image Management Services
	User Interface Extensions
	Working With External Structures
	DLL & C Connect Extensions

	Win32 Support Facilities
	COM Host Binding Framework
	COM Data Structures
	COM Function Binding Classes
	COMDynamicLinkLibrary
	COMInterfacePointer
	COMInterfaceImplementation

	COM Connect Development Tools
	COM Resource Browser
	Inspecting Resources
	Releasing Resources
	Common Resources

	COM Trace Manager and COM Trace Viewer
	COMInterfaceTraceAdaptor

	Automation Browser
	Usage Features

	Inspector Extensions
	Automation Member Description tab
	Automation items tab

	COM Automation Editor
	COM Event Trace Viewer
	COM Automation Type Analyzer
	Interface Class Generation Tools
	Smalltalk COM Interface Binding Architecture
	Interface Class Responsibilities
	COMInterface Framework
	COMInterfacePointer Framework
	COMInterfaceImplementation Framework

	Creating the Interface Type Definitions
	Creating COM Interface Wrapper Classes

	Using Automation Objects
	Creating an Automation Object
	Creating Visible and Invisible Objects

	Obtaining an Active Application Object
	Activating an Automation Object From a File
	Setting a Property
	Getting a Property
	Calling a Method
	Calling a Method With Arguments
	Calling a Method With Named Arguments
	Calling a Method With Arguments by Reference

	Subscribing for events
	Simple Calling Syntax
	Calling Automation Methods
	Accessing properties
	Considerations

	Data Types
	Functions vs. Procedures
	Object Destruction
	What to Do With an IDispatch
	Get the Methods and Properties of an Object
	Using Type Libraries
	Creating an Instance of a COMTypeLibrary
	Configuring a COMTypeLibrary for a Server Application

	Automation Object Constants
	Accessing Objects with IClassFactory
	Inside the Dispatch Driver
	What Specification Policy to Use
	Performance Tradeoffs
	Using the Default Specification Policy
	Setting a Specification Policy
	The Type Compiler Policy
	The Type Library Policy
	The Variant Policy
	The Lazy Initialization Policy
	Dynamically Changing a Specification Policy

	Using a Specification Table
	Building Specification Tables
	Building a Specification Table from a Type Library
	Building All Specifications From a Type Library
	Building Specifications From Type Information

	Summary

	Using ActiveX Controls
	Using ActiveX Controls in a VisualWorks Application
	Loading ActiveX Support
	Adding an ActiveX Control to your application
	Configuring the Control

	Extended Configuration
	Configuring Data Bindings
	Configuring Events

	Calling Control Methods
	Licensing Support

	Implementing Automation Objects
	Overview
	Installing the Automation Server Samples
	Basic Concepts of Automation Object Implementation
	Automation Object Implementation Techniques

	Exposing a Smalltalk Class
	Implementing Properties
	Rules for Handling Interfaces
	Implementing a Method
	Terminating an Application

	Creating Class Identifiers
	Creating the Type Library
	Type Libraries and the Object Description Language
	Generating a Type Library With MIDL
	Automation Data Types
	Creating the Programmable Interface
	Creating Methods
	Creating Properties
	Property Accessor Functions
	Implementing the Value Property
	Handling Events

	Creating the Type Library IDL File
	Building the Type Library

	Mapping COM Interface Functions to a Class
	Mapping DISPID Requests to Your Class
	Mapping a DISPID to a Method
	Mapping a DISPID to a Method With Arguments
	Mapping a DISPID to a Property

	Exposing Classes Through IDispatch
	The Big Picture
	Image Startup
	Object Creation
	Object Function Invocation

	Class Initialization
	Application Startup
	Verify Startup for an Automation Server
	Verify Type Library Registration
	Register the Class Factory

	Type Library Management
	Run-Time Installation

	Supporting Multiple National Languages
	Implementing IDispatch for Multilingual Applications
	Creating Separate Type Libraries

	Passing Formatted Data Using IDataObject
	Implementing the IEnumVARIANT Interface
	Returning an Error
	Passing Exceptions Through IDispatch

	Troubleshooting Q & A

	Publishing Automation Objects
	Creating a Registration File
	Registering the Application
	Registering Classes
	Registering a Type Library
	Registering Interfaces
	Example

	Creating a Run-Time Image
	Publishing an Object Through IDispatch
	Publishing an Object Through a Dual Interface
	Creating the Deployment Image

	Object Server Application Termination Considerations
	Testing an Object Server Application EXE
	Troubleshooting an Object Server Application EXE
	Server Startup Problems
	Server Termination Problems

	Stripping an Object Server Application Using RTP
	Test the COM Server Application for Dynamic References
	Strip the Image

	Publishing using the Automation Wizard
	What the Automation Wizard Does
	The Classes Step
	The GUIDs Step
	The Type Library Step
	The Reg File Step
	The Deploy Step
	Saving and loading Settings

	Example of Using the IAAutomationWizard
	The Classes Step
	The GUIDs Step
	The Type Library Step
	The Reg File Step
	The Deploy Step

	The Test

	Exposing Classes Through Dual Interfaces
	Exposing Objects
	The Big Picture
	Image Startup
	Object Creation
	Object Function Invocation
	The Published Class

	IDL Requirements
	Creating the Dual Interface Data Type
	Creating the Dual Interface Virtual Function Table Definition
	Modifying Existing Virtual Function Table Definition
	Creating the Dual Interface Classes
	Creating the Interface Class
	Automatically Generating the Interface Class
	General Pattern for Getting Output Parameter Values
	Getting Scalar Output Values
	Getting Interface Output Arguments
	Getting VARIANT Output Values
	Passing Input Parameter Values
	Calling a Method
	Calling a Method With Arguments
	Class Initialization

	Creating the Interface Implementation Binding Class
	Automatically Generating the Interface Implementation Class
	General Pattern for Returning a Value in an Output Parameter
	Copying Output Values to External Memory
	General Pattern for Getting Values From Input Parameters
	Optimizing Same Image Clients
	Class Initialization

	Creating the Interface Pointer Binding Class
	Automatically Generating the Interface Pointer Class
	Getting Output Parameter Values
	Setting Input Parameter Values
	Setting Input Parameters for Scalar Values
	Setting Input Parameters for BSTR Values
	Setting Input Parameters for CURRENCY Values
	Setting Input Parameters for DATE Values
	Setting Input Parameters for Interface Values
	Setting Input Parameters for SAFEARRAY Values
	Setting Input Parameters for VARIANT Values
	Setting Input Parameters for VARIANT_BOOL Values
	Class Initialization

	Create a COMDualInterfaceObject Subclass
	COMDualInterfaceObject Subclass Responsibilities
	Implementing Methods and Properties
	Implementing Class Initialization
	Providing Class Factory Support
	Summary
	Implementing Type Library Management
	Implementing Run-Time Installation

	Converting Existing Objects to Dual Interfaces

	Using Distributed COM
	Locating a Remote Object
	Accessing Objects on Remote Machines
	The Remote Server Name Key
	In Depth: The COSERVERINFO Structure
	Optimizing Querying Interfaces
	Determining Whether DCOM Is Available
	Making VisualWorks COM Server a Windows NT 4.0 Service
	System Requirements
	Configuration Procedure
	Reference Material

	Automation Controller Framework
	Examples
	The MS Excel Monster Damage Example
	The MS Excel Import Text File Example
	The MS Word Class Formatter Example

	Creating New Controller Classes
	Subclassing a Framework Class
	Rules for Adding an Application Object
	Rules for Adding a Standard Object
	Adding Behavior to a Standard Object
	Adding a Collection Controller
	Releasing Return Values

	Using Non-Standard Objects
	Using the Default Specification Policy
	Setting the Default Specification Policy

	Standard Automation Objects and Naming Guidelines
	Using Standard Objects
	Accessing Objects
	Method and Property Names
	Standard Object Properties
	Collection Object Properties
	Collection Methods
	Kinds of Collections
	Using the Application Object in a Type Library
	Document Object Properties
	Documents Collection Object
	The Font Object

	Under the Hood
	Using AutomationObject With COMDispatchDriver
	The Dispatch Interface
	Passing Arguments to a Dispatch Interface

	Specification Policies
	Class Hierarchy
	COMSpecificationPolicy
	COMTypedSpecificationPolicy
	COMUntypedSpecificationPolicy
	COMLookupSpecificationPolicy
	COMNoLookupSpecificationPolicy
	COMTypeCompilerLookupSpecificationPolicy
	COMTypeLibraryLookupSpecificationPolicy
	COMVariantLookupSpecificationPolicy

	COM Connect Server Examples
	Registering the Example COM Server
	How to Publish the COM Automation Server Example Image
	Modifying the Examples to Match Your Directory Structure
	Starting a Deployed Image Manually
	The Smalltalk Commander Examples
	COM Connect Client Example: The Smalltalk Commander
	Accessing With the Standard IDispatch
	Accessing With the Dual Interface ISmalltalkCommanderDisp
	Releasing the Interface

	Visual Basic Client Example: The Smalltalk Commander
	Visual Basic Client Example: The Class Hierarchy Browser
	Visual C++ Client Example: The Smalltalk Commander
	Visual J++ Client Example: The Smalltalk Commander

	The AllDataTypes Examples
	The AllDataTypes Example Server
	The COM Connect Example Client
	Accessing With the Standard IDispatch
	Accessing With the Dual Interface IAllDataTypesDisp
	Releasing the Interface

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

