
Cincom Smalltalk™

DLL & C Connect User's Guide

P46-0112-07

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

© 1993–2008 by Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0112-07

Software Release 7.6

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, COM Connect, and StORE are trademarks of Cincom Systems, Inc., its
subsidiaries, or successors. ENVY is a registered trademark of Object Technology
International, Inc. All other products or services mentioned herein are trademarks of their
respective companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation © 1993–2008 by Cincom Systems, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior written consent
from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents

About This Book xi

Audience .. xi
Conventions ... xi

Typographic Conventions .. xi
Special Symbols.. xii
Mouse Buttons and Menus ... xii

Getting Help .. xiii
Commercial Licensees... xiii
Non-Commercial Licensees ... xiv

Additional Sources of Information ... xv

Chapter 1 Tools and Techniques

Installing DLL and C Connect ..1-1
External Interface Architecture ...1-1
Dynamic-Link Libraries ...1-3

Placing C Declarations into Smalltalk ..1-3
Accessing C Data Objects ..1-5
Constructing the External Interface ...1-7

User Interface Tools ...1-11
Accessing the Tools ..1-11
External Interface Finder Tool ...1-12
Building an Example: StandardLibInterface ..1-12
Testing the Example: StandardLibInterface ...1-13
External Interface Builder Tool ..1-15

Chapter 2 Defining External Interfaces

Defining Interfaces ...2-1
Defining External Methods ..2-5
Declaring C Data Types ..2-5

Declaring enums ..2-6
Declaring C Functions ...2-7
DLL & C Connect User’s Guide iii

Contents
Calling C Functions ... 2-8
C Function Failure .. 2-9

Declaring Defines, Macros and Pragmas ... 2-9
Declaring Variables ... 2-11

External Variable Failure .. 2-12
Virtual External Interfaces .. 2-12
External Interfaces and Snapshots ... 2-13

Dynamic-Link Libraries .. 2-16
Finding Entry Points .. 2-16

Library Search Order ... 2-17
Libraries and Environment Variables ... 2-17
Programmatic Search .. 2-18

Parsing C Header Files .. 2-19
Pre-Defined Constants ... 2-23
Syntax Errors .. 2-24
Interfacing with Other Languages ... 2-26

Chapter 3 Creating and Accessing C Data

Memory Allocation in Smalltalk .. 3-1
Reclaiming Space .. 3-2
Allocating C Data Types ... 3-3

Allocating Space on an External Heap ... 3-8
Creating C Data ... 3-11

Scalar Data ... 3-11
Enumeration Types .. 3-13

Composite Data .. 3-13
Pointer Data .. 3-17
Array Data ... 3-18
String Data .. 3-19

Casting .. 3-20
External Heap Copying .. 3-21
External Heap Alignment ... 3-22

Unexpected Data Alignment in C Structure Objects 3-24
Changing the Alignment Algorithm .. 3-25

External Heap and Snapshots ... 3-26
Allocating Objects in FixedSpace .. 3-26
Representing C Types ... 3-29

Limitations of CType Definitions .. 3-31
Protocol for C Data Objects ... 3-33
iv VisualWorks

Contents
Chapter 4 Calling Smalltalk From C

Defining Callbacks ...4-1
External Callbacks ...4-2

An External Callback Example ..4-4
Returning From a BlockClosure ..4-6

External Messages ..4-7
Limitations of Callbacks ...4-11

Thunking ...4-11
Ordering of Callbacks ..4-12
Valid Callback Locations ...4-12
Object Pointers ..4-12

Chapter 5 Threaded Interconnect

Overview ..5-1
Threads ..5-2

Threaded Interconnect Example ...5-5
Specifying Threaded External Methods ..5-7

Callbacks ..5-14
Additional Control over Threads ...5-15

Managing Threads ..5-15
Thread Limit and Low Tide ..5-15
Attaching Processes to Threads ...5-17
Threaded Calls and FixedSpace ...5-20

Limitations ..5-22
Thread-Safety of Foreign Code ...5-22
Use of Object Pointers and Message Sends ...5-22
Thread Priority ..5-22
Maximum Number of Threads ...5-23

Performance Considerations ..5-24
Known Problems ..5-25

Process Termination ..5-25

Chapter 6 Exception Handling

External Interface Exceptions ..6-1
C Function Failure ...6-2
C Datum Access Exceptions ...6-8
DLL & C Connect User’s Guide v

Contents
Chapter 7 Packaging Considerations

Overview .. 7-1
General Considerations ... 7-1
Preparing Your Interface Classes .. 7-2
Packaging Your Interface Classes ... 7-3
Relinking C Libraries ... 7-3

Chapter 8 Platform Specific Information

Platform-Specific Development ... 8-1
Compiler Compatibility .. 8-2
Unsafe Compiling ... 8-2
Incremental Loading of Dynamic-Link Libraries .. 8-3

Static Linking ... 8-4
MacOS Classic .. 8-5
MacOS X ... 8-6

Dynamic Libraries ... 8-6
Bundles ... 8-6

MS-Windows ... 8-7
Object Engine Access Interface with MS-Windows 8-7
MS-Windows XP and Vista ... 8-8

32-bit Dynamic-Link Libraries .. 8-8
Structure Layout Issues under MS-Windows XP and Vista 8-8

Declaring the C Functions .. 8-9
Ordinals .. 8-9
Declaring the C Data Types .. 8-10
Strings .. 8-11
Callbacks .. 8-12
Library Search Paths .. 8-13
Defining the DLL Interface .. 8-13
Creating the Definition File ... 8-14
Compiling the External Library Code .. 8-15
Creating the DLL .. 8-16
Creating a Makefile ... 8-17

Chapter 9 Object Engine Access Functions

Overview .. 9-1
Basic Capabilities .. 9-2
Predefined C Data Types ... 9-2
Failure Codes .. 9-3
Dynamic-Link Libraries .. 9-3
General Advice .. 9-4
vi VisualWorks

Contents
Registering Long Lived Objects ...9-5
Restrictions ..9-6
Object Engine Access Overview ..9-6
Object Engine Access Reference ...9-10

oeAllocArray ..9-10
oeAllocByteArray ...9-11
oeAllocFsObject ..9-11
oeAllocRegistrySlot ...9-12
oeAllocString ...9-13
oeAllocVsObject ..9-13
oeBasicAt ..9-14
oeBasicAtPut ...9-14
oeByteAt ..9-15
oeByteAtPut ..9-16
oeClass ...9-17
oeClassType ..9-17
oeCopyCtoOEbytes ...9-18
oeCopyCtoOEfloatArray ..9-18
oeCopyCtoOEintArray ...9-19
oeCopyCtoOEstring ..9-20
oeCopyOEtoCbytes ...9-21
oeCopyOEtoCfloatArray ..9-22
oeCopyOEtoCintArray ...9-23
oeCopyOEtoCstring ..9-23
oeCSendMessage ...9-24
oeCtoOEbool ...9-26
oeCtoOEchar ..9-26
oeCtoOEdouble ...9-27
oeCtoOEfloat ...9-27
oeCtoOEint ..9-28
oeDoubleAt ...9-28
oeFail ...9-29
oeFloatAt ...9-30
oeFloatAtPut ...9-30
oeGetErrorCode ..9-31
oeIndexVarSize ...9-32
oeInitLinkRegistry ...9-32
oeInstall ...9-33
oeInstallPollHandler ..9-34
oeInstVarAt ..9-35
oeInstVarAtPut ..9-36
oeInstVarSize ..9-36
oeIsArrayOfFloat ...9-37
DLL & C Connect User’s Guide vii

Contents
oeIsArrayOfInteger ... 9-37
oeIsBoolean .. 9-38
oeIsByteArray ... 9-38
oeIsByteLike ... 9-39
oeIsCharacter ... 9-39
oeIsDouble .. 9-39
oeIsFloat ... 9-40
oeIsImmediate .. 9-40
oeIsInteger .. 9-41
oeIsKindOf .. 9-41
oeIsString ... 9-42
oeNil ... 9-42
oePostInterrupt ... 9-43
oeRegisteredHandleAt ... 9-43
oeRegisteredHandleAtPut .. 9-44
oeRegisterSymbolAndHandle .. 9-45
oeSendMessage ... 9-46
oeSignalSemaphore ... 9-48
oeOEToCbool ... 9-48
oeOEToCchar ... 9-49
oeOEToCdouble ... 9-49
oeOEToCfloat ... 9-50
oeOEToCint .. 9-50

Unsafe Functions ... 9-51

Chapter A #define Operators

Chapter B Resolving Exceptions

Common ExternalInterface Exceptions ...B-1
ExternalLibraryHolder>>libraryNotFoundSignal ...B-2
ExternalLibrary>>libraryNotLoadedSignal ..B-2
ExternalMethod>>externalObjectNotFoundSignalB-3

Object Engine Access Interface Exceptions ..B-4
Exception Error Codes ..B-5

Chapter C Examples

Launching Applications under Windows ..C-1
The Win32SystemSupport Classes ..C-2

Launching an Application Process ...C-2
Launching and Terminating an Application ProcessC-3

Portability of the API ...C-3
viii VisualWorks

Contents
Vector Functions ... C-4
Building the C Library ... C-4
Calling the Vector Functions Package .. C-5

Organization of the Vector Math Library .. C-5
Description of Class Vector ... C-6
Configuring Class VectorMathExternal ... C-6
Testing the External Vector Math Library C-6

Index Index-1
DLL & C Connect User’s Guide ix

Contents
x VisualWorks

About This Book

This User’s Guide provides comprehensive instructions for using DLL and
C Connect®. This package allows your Smalltalk application to invoke
functions written using the C programming language, to create, modify,
and use C language datatypes, and to send messages to Smalltalk
objects from your C code. The C functions can either be statically linked
into your application’s executable, or dynamically loaded at run-time using
the target platform’s dynamic library loading facilities.

Audience
This User’s Guide assumes you are familiar with VisualWorks tools, as
well as the syntax and basic concepts of the Smalltalk language. You
should also be familiar with the C programming language. All C code
examples are written using ANSI C syntax.

Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.
DLL & C Connect User’s Guide xi

Chapter - About This Book
Special Symbols
This book uses the following symbols to designate certain items or
relationships:

Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File New Indicates the name of an item (New) on a menu
(File).

<Return> key
<Select> button

<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

Example Description
xii VisualWorks

These buttons correspond to the following mouse buttons or
combinations:

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

• The version id, which indicates the version of the product you are
using. Choose Help About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>
DLL & C Connect User’s Guide xiii

mailto:supportweb@cincom.com

Chapter - About This Book
Electronic Mail
To get technical assistance on VisualWorks products, send email to:

supportweb@cincom.com.
Web

In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com
Telephone

Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.

Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:

• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu
with the SUBJECT of "subscribe" or "unsubscribe".

• An excellent Smalltalk archive is maintained by faculty and students
at UIUC, who are long-time Smalltalk users and leading lights in the
Smalltalk community, at:

http://st-www.cs.uiuc.edu/
• A Wiki (a user-editable web site) for discussing any and all things

VisualWorks related at:

http://wiki.cs.uiuc.edu/VisualWorks
xiv VisualWorks

mailto:supportweb@cincom.com
http://supportweb.cincom.com
mailto:vwnc-request@cs.uiuc.edu
http://st-www.cs.uiuc.edu/
http://wiki.cs.uiuc.edu/VisualWorks

• A variety of tutorials and other materials specifically on VisualWorks
at:

http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincomsmalltalk.com/documentation
is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.
DLL & C Connect User’s Guide xv

http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
news:comp.lang.smalltalk
http://www.cincomsmalltalk.com/documentation

Chapter - About This Book
xvi VisualWorks

1
Tools and Techniques

This chapter gives an overview of DLL and C Connect, introducing you to
the basic features of the product, and the special tools it provides for
connecting your Smalltalk applications with C code modules. This chapter
also presents a simple example to demonstrate the different techniques
available for building interfaces to C modules.

Installing DLL and C Connect
Before you begin working with DLL and C Connect, make sure that you
have first installed VisualWorks on your system. For more information on
installing VisualWorks, see the VisualWorks Application Developer’s
Guide. Once VisualWorks has been installed, you may load the DLL and
C Connect parcel to begin development.

External Interface Architecture
The purpose of DLL and C Connect is to enable your Smalltalk
application to interact with code written using a C compiler. Your Smalltalk
application can directly call C functions and directly modify C data
objects. The DLL and C Connect interface provides the mechanism to
allocate C data objects that adhere to a particular platform layout, and
provides the mechanism to call C functions that use that platform’s C
calling conventions.

For multiprocessing applications, threaded function calls are fully
supported. DLL and C Connect maps C data objects into Smalltalk
objects, so not only can you use Smalltalk messages to manipulate C
objects, but you can also share object references (pointers) between your
C code and your Smalltalk application.
DLL & C Connect User’s Guide 1-1

Tools and Techniques
DLL and C Connect also enables your C code to send messages to
Smalltalk objects. Finally, the product provides the mechanism to load
(and link) dynamic-link libraries into your Smalltalk application’s address
space. This linking mechanism makes all the public entry points within
the library available to your Smalltalk application.

The term function is used in this document as a generic term to represent
code routines. Language specific terms include procedure, function, and
subroutine.

DLL and C Connect introduces a new abstract class to the Smalltalk
class hierarchy called ExternalInterface. You can define subclasses of the
ExternalInterface class for the various C function and data object interfaces
that your application must access. Your interface class is used both
during the development of your application and during its deployment.

During development, the interface class provides a way to create the
Smalltalk methods associated with the procedures, the data types, the
macros, and the variables used by the external code. The interface class
can be used to parse existing C header files and automatically generate
all the interface methods. It enables you to load and unload libraries, and
to package your interface into a parcel file so that it may be distributed to
clients. Parcels are now the preferred mechanism for unloading and
reloading interface classes; for a more detailed discussion, see the
VisualWorks Application Developer’s Guide. When your development is
complete and your application is deployed, the interface class is used
(typically transparently) by clients to access the external entry points. It is
possible for your application to define and use multiple libraries,
controlled with one or more interface classes.

The following diagram illustrates a Smalltalk application containing three
interface classes. The first interface class encapsulates control of two C
code modules. The second and third each encapsulate a single module.
Module refers to C code statically linked to the Smalltalk application or
contained in a dynamic-link library.
1-2 VisualWorks

Dynamic-Link Libraries
Smalltalk application model

Dynamic-Link Libraries
Vendors of C code modules typically package their products as
dynamically-linkable libraries (DLLs) of functions. In this situation, DLL
and C Connect provides the means to convert the state and behavior of
Smalltalk objects to C data and functions in a DLL, and vice versa.

Dynamic-linking provides the following benefits:

• Smalltalk applications can take advantage of software provided by
third-parties, such as commercial databases, network
communications packages, or drivers for unusual devices.

• Smalltalk applications are not affected when library updates are
distributed, as the application communicates with the library only
through a well-defined interface.

• Smalltalk applications require less disk space as they do not need to
contain the code that resides in the library.

• Multiple Smalltalk applications can share the same library. Because
there will probably be only one copy of the library in memory, there
will be fewer demands on physical memory and swap space.

Placing C Declarations into Smalltalk
DLL and C Connect extends the syntax of Smalltalk methods to place C
language declarations directly into Smalltalk methods. However, this
extended syntax is only available to subclasses of ExternalInterface.

 Smalltalk Application

Interface 1 Interface 2 Interface 3

C Module 1 C Module 2 C Module 3 C Module 4
DLL & C Connect User’s Guide 1-3

Tools and Techniques
Examples of C language declarations that may appear as methods to
subclasses of ExternalInterface appear below. The constructs are
described here only as an introduction to the syntax extensions provided.

C #define statements
Use the #define methods to answer commonly used constant
expressions. DLL and C Connect supports #define methods that
evaluate to numbers or strings. The following example is a #define
method that answers the SmallInteger 1024.

MAX_FILENAME_LENGTH
<C: #define MAX_FILENAME_LENGTH 1024
>

C type statements
Use typedef methods to answer type objects. These type objects are
used to allocate C data objects, to build larger type structures, and to
define C function prototypes. The following example answers an
instance of the class CTypedefType that represents the Point typedef
type declaration.

Point
<C: typedef struct {

float x;
float y;

} Point>
C function prototypes

Use function prototype methods to define a C function’s argument
types and return type. These prototypes are required so the Smalltalk
execution machinery can correctly make a call to your C function.
The following example declares a procedure, addPoint(), that accepts
two Point type arguments and returns a Point type argument.

addPoint: arg1 with: arg2
<C: Point addPoint(Point arg1, Point arg2)>

C variable declarations
Use variable declaration methods to define the global variable type.
The first method shown below returns the value of the global variable
and the second method sets the global variable’s value to the given
argument.

globalVariable
<C: unsigned long globalVariable>

globalVariable: newValue
<C: unsigned long globalVariable>
1-4 VisualWorks

Dynamic-Link Libraries
Accessing C Data Objects
DLL and C Connect also adds the ability to create and access C data
objects. This occurs in two ways.

• By creating wrapper, or proxy, objects that enable your application to
manipulate C data as if it were a Smalltalk object.

• By providing access to a new memory area called the external heap.
C data objects that are allocated on the external heap are protected
from movement and automatic reclamation by the Smalltalk memory
manager.

A typical Smalltalk application is relieved of the standard memory
management issues by the Smalltalk Object Engine. The Object Engine
releases storage when it is no longer referenced, and compacts memory
fragmented from repeated object allocation and deallocation. To allow a
Smalltalk application to supply data pointers to C code, or to receive data
pointers from C code that was not designed to work with an automatic
memory manager, DLL and C Connect makes available several new
strategies for managing application memory. In particular, it provides
access to a new memory space that is under the control of the application
rather than the Smalltalk memory manager. Pointers to data that reside in
this memory space can be passed freely to your C code. Your application
is responsible for allocating and deallocating memory blocks located in
this space.

Since the memory allocated by dynamic-link libraries is owned and
controlled by the library, the Smalltalk image snapshot routines do not
save the state of a dynamic-link library. It is the responsibility of the
application developer to perform the necessary operations during image
save and restore operations. For further information, consult “External
Interfaces and Snapshots” on page 2-13.

A Smalltalk application can also receive pointers from your C code.
These pointers are packaged into C data proxy objects which enable your
Smalltalk application to manipulate the C data using standard Smalltalk
message expressions.

A general overview of this data proxy and memory space layout is
depicted in the following diagram.
DLL & C Connect User’s Guide 1-5

Tools and Techniques
Smalltalk application memory

Notice the following items in the above design:

• The Smalltalk C data proxy object contains a reference to the C data
object that resides in the external heap. Your Smalltalk application
can access the C data object through the data proxy object.

• The Smalltalk C data proxy object contains a type object. The proxy
object knows the size and layout of the C data object from the data
proxy object.

• The Smalltalk C data proxy object’s external heap reference is broken
on a return from snapshot. The external heap does not survive
across snapshots, so all external heap memory must be
reconstructed after every return-from-snapshot.

In addition to enabling your Smalltalk application to access code written
in C, DLL and C Connect enables your C code to manipulate Smalltalk
objects. This includes creating new object instances, accessing and
setting the fields of an object, or sending messages to objects. This is
done by using the Object Engine Access protocol, which is a set of C
language functions. This interface is described in the chapter “Object
Engine Access Functions” on page 9-1.

These links are broken on a return from snapshot

Smalltalk Application Memory

Smalltalk Heap
(Movable memory-manager controlled
 memory)

External Heap
(Non-movable C-code controlled
 memory)

Smalltalk C Data Proxy
C data object
C data type

Smalltalk C Function Proxy
C function object
C function type

C data

C function
1-6 VisualWorks

Dynamic-Link Libraries
Finally, DLL and C Connect enables you to invoke C code that is either
statically linked to the Smalltalk executable, or dynamically loaded using
the platform’s dynamic-link library facility. Instructions for creating and
using dynamic link libraries on various platforms are provided in the
chapter “Platform Specific Information” on page 8-1. Both static and
dynamic linking are available on all supported platforms.

Constructing the External Interface
The process of developing an interface can be broken into two stages:
first, the creation of Smalltalk ExternalInterface classes, and second, C data
type and function prototype creation. To create an ExternalInterface you
need access to the C module’s Application Programming Interface (API).
The API typically consists of a set of C language type declarations that
specify the data types and function prototypes implemented by the C
code. Use these C language declarations to build your Smalltalk
ExternalInterface class. These declarations enable your interface to
correctly communicate with the C code. Defining and using these C data
types and function prototypes is described in greater detail in following
chapters. For the time being, assume that you have access to these
declarations, either in a manual or in a C language header file.

Starting with the C code’s API, the Smalltalk interface can be created with
the following two techniques:

• The first technique is to create the ExternalInterface class and its
methods manually by using the standard Smalltalk source browsing
and compilation tools. This technique is similar to programming in the
Smalltalk development environment (VisualWorks), and involves
manually entering the Smalltalk methods that represent the C
language interface to the external C module. For each function or
variable you want to access in the C code API, you must define a
corresponding method in your interface class.
DLL & C Connect User’s Guide 1-7

Tools and Techniques
Creating the ExternalInterface class

• The second technique is to use the automated External Interface
Builder tool to generate the ExternalInterface class. This tool parses a
C language header (.h) file, and builds the interface class using the
C language definitions. Every C language construct in the header file
is compiled into an associated Smalltalk method in the interface
class. This technique is faster, but may result in larger interface
classes if your interface header file includes other header files
(typically system supplied header files). Use this automatic facility
with care.

ExternalInterface
Subclass

Source Files

.h .h...
1-8 VisualWorks

Dynamic-Link Libraries
Generating the ExternalInterface class

C code modules are platform dependent, but typically consist of one of
the following code objects:

• Third-party dynamic-link libraries

• User generated dynamic-link libraries

• C code statically linked to your Smalltalk Object Engine (either third-
party code or your own code)

The process of building dynamic-link libraries and statically linked Object
Engines is summarized in the following diagram, which illustrates the
various possible paths when designing and building interface classes.

Source Files

.h .h...
ExternalInterface

Subclass
Parser
DLL & C Connect User’s Guide 1-9

Tools and Techniques
Building dynamic-link libraries and statically linked Object Engines

Conceptually, DLL and C Connect is divided into two parts. The first part
is a group of development tools. These are used only while developing an
application that makes use of the ExternalInterface functionality. The

End User

Statically-linked
and/or

Dynamically-linked
Object Engine

Smalltalk Application

ExternalInterface
Subclass

Source Files

.h .c...
or Third-party

libraries

Compiler

or

Linker

Shared Libraries

.dll .dll...

or

and/or
1-10 VisualWorks

User Interface Tools
second part is a collection of classes known as the run-time or support
classes. These classes are used while your application is running and
must be present in the base system.

User Interface Tools
DLL and C Connect provides two special development tools for
constructing interfaces to external code: the Finder and the Builder.
These tools are used specifically for automating the task of building and
integrating an ExternalInterface into your Smalltalk application, and are thus
designed as extensions to the standard VisualWorks development tool
set. These special tools are the following:

• The External Interface Finder is a special browser that enables you to
view a group of different ExternalInterface classes.

• The External Interface Builder is a more specialized tool that provides
you with greater control over the process of automatic interface
construction.

In this section, the Finder and the Builder tools will be described roughly
in the order in which they might be used in a typical project.

Accessing the Tools
To begin using the DLL and C Connect user interface tools, perform one
of the following:

• In the VisualWorks main window, choose Tools DLL and C Connect.

• Click the DLL and C Connect icon in the VisualWorks Launcher
window.

The External Interface Finder tool opens. You may now begin using the
tools to build or manipulate external interfaces.
DLL & C Connect User’s Guide 1-11

Tools and Techniques
External Interface Finder Tool

Finder Tool

The External Interface Finder enables you to navigate easily among a
group of ExternalInterface classes. Individual ExternalInterface classes are
listed hierarchically in the main view.

The buttons above the list views in the Finder enable you to Browse the
code for a selected interface, Regenerate the external methods, add a
New interface, and Remove an existing interface class. Note that double-
clicking on a class name in the list view has no effect.

Building an Example: StandardLibInterface
The following steps describe how you can build an example
ExternalInterface class which can be used to make calls on the standard C
library known as stdlib. This example presupposes that you have
access to a dynamic-link library (DLL) version of stdlib available on
your development workstation. Note that each platform will use different
conventions to identify this library (for example, on Windows, these
libraries are identified with the .dll extension).

Perform the following steps to create a new class, StandardLibInterface. In
this example, we will define the class and then add a method for calling
the standard C function abs(), which performs the absolute value
mathematical function.

1 Within the Finder tool, add a new ExternalInterface class by pressing
the New button.

2 In the interface definition dialog, enter the name of the new class
(StandardLibInterface) in the Name field and click OK.
1-12 VisualWorks

User Interface Tools
The new class and a list of categories appear in the Finder. The
external objects that are available are procedures, variables,
typedefs, structs, unions, enums, defines, and macros.

3 To add a new procedure, select the external category, procedures in the
column under Category, and press the New button.

A dialog box appears that prompts for the information required to
define a well-formed external declaration. The dialog box has
additional selection buttons depending on the external’s category.

4 In the procedure dialog box, enter abs (absolute value) as the name of
the procedure.

5 Choose the int menu option as the return type.

Instead of choosing one of the menu options, you may also enter a
return type that is not included as an option.

6 Select argument 1 under the list of argument types.

7 Choose the int menu option, to correspond to argument 1.

Additional arguments are defined by selecting the consecutive
arguments, and choosing their corresponding argument types. The
type you select for each argument will be stored as you move down
the list.

8 Click OK.

Clicking on OK & Browse adds the new procedure and brings up a browser
on the new method. You can add to or change the procedure declaration
from the browser.

You have now defined a method in the class StandardLibInterface that will
enable you to call the C function abs(). To complete the interface, you
must next add some additional information about the external C library
stdlib. To define external objects for the interface, you first select one of
the italicized external categories (include files, include directories, library
files, or library directories).

Testing the Example: StandardLibInterface
By following the steps in the previous section, you have constructed a
new class StandardLibInterface that contains methods for calling C
functions in the library stdlib. All that is needed now to actually make a
call to this library from Smalltalk is a reference from the interface class to
the library DLL.
DLL & C Connect User’s Guide 1-13

Tools and Techniques
The name and location of this library file varies depending upon the
platform that you are using. On Windows, the C library is one of the
MSVCRTnn.DLL files, while on Solaris the C library is
/usr/lib/libc.so. You can also make use of environment variables
to simplify the path specifier to the stdlib library DLL on your platform
(for details, see “Libraries and Environment Variables” on page 2-17). If
you are unsure how to locate the stdlib library DLL on your system,
consult the documentation for the C development environment supported
by your platform.

For example, assuming that the target platform is running Windows NT
4.0, we would set up the libraries for StandardLibInterface as follows:

1 Return to the External Interface Finder tool and select
StandardLibInterface in the list of interface classes (the left-most pane
in the view).

2 Select library files, under the Category list, and press the New button.

3 A dialog box appears. Enter the name of the library file (for example,
on Windows NT 4.0, enter msvcrt40.dll) and click OK.

4 Select the external category, library directories, and press the New
button.

5 Enter the directory path where the library file is located and click OK.
You can make use of an environment variable here to simplify the
path (for example, on NT platforms, the path of this directory is either
$(windir)\system or $(windir)\system32). You can specify
both, and the system will search for the library file.

The external interface class has now been associated with the specified
C library, and the library will be loaded and linked dynamically as soon as
you call the function. To test this, you may execute the following Smalltalk
expression in a workspace. Select the code and choose Print It from the
<Operate> menu to see the returned value. Execute it a second time to
see that it runs much faster after the linking step has been performed
once:

StandardLibInterface new abs: -10.
The result should be: 10.

Evaluating the previous expression may result in a notifier that indicates
the entry point for abs() could not be found. In this example, because abs()
resides in a dynamic-link library, the notifier may indicate that the library
could not be found or loaded. In either case, verify that the library name
and library paths specified in the ExternalInterface class definition are
1-14 VisualWorks

User Interface Tools
correct and that a correct version of the library actually resides in the
specified location. To troubleshoot any exceptions raised during the
external call, see “Resolving Exceptions” on page B-1.

The procedure for building an ExternalInterface described in this section
requires that you define the interface methods by hand. DLL and C
Connect also provides a more sophisticated mechanism, the External
Interface Builder tool, for automatically generating your interface class.

External Interface Builder Tool
To construct an ExternalInterface class from declarations in a C language
header file, DLL and C Connect provides a special tool for automatically
parsing the declarations in an interface file and then compiling the
corresponding methods for your ExternalInterface class. The Builder tool
provides a means to accomplish these two tasks (parsing and compiling).

Once the Builder has parsed all the header files that define a given C
interface, you may select only those declarations from the parsed set that
you wish to include in your interface class. Thus, by using the Builder tool,
you may parse a group of header files and then selectively construct an
interface class.

To open the Builder from the External Interface Finder, choose the
Class Builder menu item in the Finder. The External Interface Builder
tool opens on your screen.

Builder Tool

The Builder tool contains an input field to specify the header files to parse
and an input field indicating the directories that contain the named header
files (i.e., the paths to the header files). When you have entered the
name(s) and paths of the header file(s), the tool is ready to parse them.
DLL & C Connect User’s Guide 1-15

Tools and Techniques
Note that only the declarations you select will be compiled. The tool will
then automatically generate the selected methods in your interface class.

This tool is especially useful in situations where you are presented with a
large header file (for example, Motif’s Xm.h header file). This tool enables
you to parse the header file and extract only the declarations you require.
It is intelligent enough to automatically mark dependent types for
inclusion in your interface class.

Note that the Builder was written to parse ANSI format source code.

The buttons located on the bottom of the Builder tool enable you to Parse
header files, Add Methods to a class, Define a new class, Add new
external categories, and Remove external categories.

Continuing with our example from the previous section, we can now
automatically construct an interface to the standard C library stdlib.
You may include some or all of the functions from this library by first
parsing the header file stdlib.h. To parse this header file, perform the
following steps using the Builder Tool:

1 In the list of external protocols, select the category include files, and
press the Add button.

2 A dialog box appears. Enter the name of the include file (for this
example, stdlib.h) and click OK.

3 Select the external category, include directories, and press the Add
button.

4 Enter the directory path where the include file is located and click OK
(for example, on UNIX platforms, the path of this directory is usually
/usr/include, while on Windows machines it is usually
C:\MSDEV\include\). For additional details on path specifiers, see
“Libraries and Environment Variables” on page 2-17.

5 By defining the include files and include directories variables, you
have set up your ExternalInterface to automatically parse a C interface.
To actually perform the parsing operation, press the Parse Files button.

The files and directories are parsed top to bottom. If more than one
directory is listed, the parser looks at the first directory. If the header file is
found in the first directory, the file is parsed from that directory. If it is not
found, the parser proceeds to the next directory, until a match is found. In
this manner, you can define interfaces that can be parsed on platforms
with different path or name specifiers for the external libraries.
1-16 VisualWorks

User Interface Tools
Once the header file has been parsed, you can choose particular
methods simply by selecting them individually on the list of function
definitions. As you select them, a check mark will appear in the left
margin of the list view.

For example, suppose you want to add the methods atoi() and atof() to be
included in the StandardLibInterface class.

1 Select procedures, under the Category list.

2 Select int atoi(const char *) and double atof(const char *) under the
Procedures list. A check mark appears next to the selected methods.

You can select all the procedures in the header file by choosing the
Externals Select All menu option (located on the top of the parser
window). Conversely, you can also deselect all of the procedures
using the Externals menu.

3 For now, add only the selected methods atoi() and atof() to the
external class StandardLibInterface. Press the Add Methods button. The
default class name (StandardLibInterface) appears in the dialog box.
Click OK.

When you next open the Finder tool, it will display the added methods.
Note that if the Finder is already displayed, you may need to perform
View Update in the Finder.

Since the external library has already been specified (see “Testing the
Example: StandardLibInterface” on page 1-13), you may now test these
function calls. For example, to test the atoi(), execute the following code
fragment:

StandardLibInterface new atoi: '12.05'.
Since the C library function atoi() takes an ASCII string and returns a C int
type, the result is converted into the SmallInteger 12.

These simple examples demonstrate some of the principal aspects of
DLL and C Connect’s ExternalInterface class. In the next chapter, we will
look more closely at the protocol of this class, and how you can define
your own interface classes.
DLL & C Connect User’s Guide 1-17

Tools and Techniques

1-18 VisualWorks

2
Defining External Interfaces

This chapter explains how to define your own External Interface classes,
how to declare and call C functions, how C header files are parsed, and
how to access external variables defined in C libraries. It also explains in
more detail how to link your interface classes with the appropriate
external libraries, and how you can also call external code modules
written in languages other than C.

Defining Interfaces
Defining and using External Interfaces is a three-stage process:

1. Create an interface class with Smalltalk methods that parallels the
declarations in the external code’s C header files or from the external
code’s programming interface manual. Parsing C header files is
typically done automatically.

2. Register the C code modules.

3. In your Smalltalk application, invoke the C functions.

In the previous chapter, the External Interface Finder tool was used to
create a new interface class (the example StandardLibInterface).
Sometimes, however, it is easier or necessary to create a new
ExternalInterface class using the System Browser. For example, if no C
header file exists, this approach may be necessary.

To create a new interface class using the Browser, first select the name
space and class category in which you want to include the new interface.
In the example that follows, we shall assume the category name is
ExternalInterface-New. If a class in that category is already selected,
deselect it.
DLL & C Connect User’s Guide 2-1

Defining External Interfaces
Starting with the standard class definition template, remove and replace
the dummy names, as in the following finished example:

Smalltalk defineClass: #ExampleInterface
superclass: #{External.ExternalInterface}
indexedType: #none
private: false
instanceVariableNames: ''
classInstanceVariableNames: ''
imports: ''
category: 'ExternalInterface-New'

After you are finished, select Accept from the code view’s <Operate> menu
to display the class name. Notice that the class definition template has
changed. Several new elements now appear in the class creation
message of the code view:

Smalltalk defineClass: #ExampleInterface
superclass: #{External.ExternalInterface}
indexedType: #none
private: false
instanceVariableNames: ''
classInstanceVariableNames: ''
imports: '

private Smalltalk.ExampleInterfaceExternalDictionary.*
'

category: 'ExternalInterface-New'
attributes: #(

#(#includeFiles #())
#(#includeDirectories #())
#(#libraryFiles #())
#(#libraryDirectories #())
#(#beVirtual #false)
#(#optimizationLevel #debug))

The above example is a typical ExternalInterface subclass creation
message. The attributes: argument provides information specific to
external interface classes. When subclassing ExternalInterface with the
standard class creation template, these attributes are given the default
values shown above. The attributes are as follows:

includeFiles
The Array argument is a sequence of Strings, each being the file name
of a C language header file associated with the external interface, for
example: #('stdio.h'). The ExternalInterface class enables you to
automatically parse the listed header files and generate the
corresponding Smalltalk methods. The process of parsing header
files is explained in “Parsing C Header Files” on page 2-19.
2-2 VisualWorks

Defining Interfaces
includeDirectories
The Array argument is a sequence of Strings, each being the file
system directory name that is searched when attempting to locate
the include files listed in includeFiles. The directories are searched left
to right in the list, so ordering is important.

libraryFiles
The Array argument is a sequence of Strings, each being the filename
of a dynamically loadable library (DLL) associated with the interface.
Each platform has different naming conventions for libraries. For
details, see “Platform Specific Information” on page 8-1. Optionally,
each filename string can also be matched against the current
platform in order to create a cross-platform interface definition. For
details, see “Libraries and Environment Variables” on page 2-17.

libraryDirectories
The Array argument is a sequence of Strings, each being a directory
in the file system that will be searched when attempting to locate a
library file listed in libraryFiles. The directories are searched left to right
in the list, so ordering is important. Directory names can also include
environment variables. For details, see “Libraries and Environment
Variables” on page 2-17.

beVirtual
The argument is a Boolean value. A value of true indicates the new
interface class is a virtual class. A value of false indicates it is a
normal class. For more details, see “Virtual External Interfaces” on
page 2-12.

optimizationLevel
The argument is either the Symbol #debug or #full, which indicates the
level of optimization used when compiling each function method in
the interface. In #debug mode, function methods contain strict type-
checking wrapper code. This type-checking code helps in the
development and debugging of your interface class at the expense of
performance. With a #full optimization level, the type-checking
wrappers are removed from the function methods, resulting in a
significant decrease in function call overhead.

The rest of the ExampleInterface class definition behaves the same as the
standard subclass definition template. You can use the normal class
editing tools to add class comments, rename the class, delete the class,
move the class to a new category, or file the class in and out of the
system. Class ExampleInterface also provides protocol for changing these
attributes at run-time.
DLL & C Connect User’s Guide 2-3

Defining External Interfaces
Note that when you Accept the ExampleInterface class definition, a
namespace called ExampleInterfaceDictionary is created and a private
general import to its contents is added to the imports. Its purpose is to act
as a repository for special interface objects created during the
compilation of your C language interface objects. You need not be
concerned with the contents or format of this dictionary.

To look in more detail at a working interface class, use the Browser to
select the example class StandardLibInterface, which was described in the
previous chapter. The libraryFiles and libraryDirectories attributes of the
class specify the library (or libraries) used by this interface. Each platform
names these libraries differently. In addition, each platform has its own
mechanism for creating a dynamic-link library. In the example described
previously, the Windows library msvcrt40.dll was registered as the
library containing functions for stdlib (each platform uses different
library file extensions).

Using the System Browser, you can edit these library definitions. For
example, if you wanted to associate another DLL file with the interface,
you would simply change the libraryFiles and libraryDirectories attributes of
the class definition. Re-accepting the class definition using the code
view’s <Operate> menu recompiles the StandardLibInterface class,
registering the new library file(s) with the class.

You can also edit method definitions directly using the code view in the
System Browser. Function call method definitions are contained in the
category named procedures.

For example, you can add the atol() function prototype definition within
your interface class. As defined in stdlib, this function converts a C
string into a long integer. Make sure the StandardLibInterface class is
selected in the class view of your browser, and within the procedures
category, type the following method definition:

atol: aString
<C: long atol(const char *)>

When you are satisfied with the method definition, select Accept in the
code view’s <Operate> menu.

Since the stdlib dynamic-link library is already associated with the
example class StandardLibInterface, you can immediately execute the
following Smalltalk expression in a workspace. Select the code and
choose Print It from the <Operate> menu to see the returned value.

StandardLibInterface new atol: '98765432'
The result of this expression should be a LongInteger.
2-4 VisualWorks

Defining Interfaces
In most cases, you will be linking pre-existing C library and header files,
so the procedures you just followed can be abbreviated. Simply create an
interface class and then send messages to that class from your Smalltalk
application.

Defining External Methods
To define interface methods for C declarations, create a Smalltalk method
in the following form:

declarationName
"comment"
<C: declaration>
failure code

The syntax for Smalltalk external methods is as follows:

• Except for the identifier, a C: instead of a primitive: appears enclosed
in the angle brackets.

• The C declaration appears after the colon, and specifies one of the
following C declarations: typedefs, function prototypes, defines,
macros, and variables.

• failure code is a set of Smalltalk expressions for handling function call
or global variable access failure situations.

Declaring C Data Types
DLL and C Connect provides a type-matching facility that equates
standard C data types with equivalent Smalltalk classes. CType and its
subclasses represent C types such as integers, floating-point numbers,
pointers, arrays, structures, unions, enumerations, procedures, and voids.

All CType classes provide various instance-creation methods to create
instances of the CType objects, which represent the actual C types. For
example, the expression CIntegerType char returns an instance of
CIntegerType that represents the actual C char type. The expression
CIntegertype char pointerType returns a CPointerType object that represents
the C char * type. In general, you do not have to deal with these classes
directly.

The standard C data types are built into the product and conversions to
these types from Smalltalk objects are handled automatically. Each
custom data type that you define using a typedef expression in your C
code must have a corresponding accessing method in the C code’s
interface class. As with function declarations, a data type declaration
DLL & C Connect User’s Guide 2-5

Defining External Interfaces
consists of the C typedef statement prefaced by C: and enclosed in angle
brackets. For example, suppose the size_t type is declared in a C header
file as follows:

typedef int size_t;
The equivalent declarative method in the interface class is as follows:

size_t
<C: typedef int size_t>

DLL and C Connect constructs these methods automatically for all typedef
statements in the header files that are named in the includeFiles attribute
of the interface class definition. To further restrict the list of included
declarations, use the generateMethods: protocol in ExternalInterface class.

When you send the size_t message to your interface class, it answers an
instance of a CTypedefType, a subclass of the base abstract class CType
described previously. In general, you will only need the memory allocation
protocol that all CType objects understand. Use this protocol to allocate C
data objects of the given type.

Note: DLL and C Connect provides several strategies for managing
C data objects passed to external libraries. It is absolutely critical that
you choose the strategy that is appropriate for the allocation behavior
of both your application and the functions in the external library.
A complete discussion of the various C type objects and appropriate
memory allocation strategies appears in the chapter “Creating and
Accessing C Data” on page 3-1. For multi-threaded applications, also
see “Managing Data Objects with Multiple I/O Threads” on page 5-4.

In the following section, we’ll look more closely at how C functions are
called from Smalltalk methods.

Declaring enums
DLL and C Connect provides support for enumeration types.
Enumeration types are symbolic names with integer values. These are
defined in essentially the same way as data type declarations, with a
method that contains a pragma. For example, the months type might be
declared in a C header file as follows:

enum months{ Jan, Feb, Mar, Oct = 10};
The equivalent declarative method in the interface class is:

fewMonths
<C: enum months{ Jan, Feb, Mar, Oct = 10}>
2-6 VisualWorks

Defining Interfaces
This method returns a CEnumerationType object containing the symbolic
values. DLL and C Connect constructs these methods automatically for
all enum statements in the header files that are named in the includeFiles
attribute of the interface class definition.

For details on accessing enumeration types, see “Enumeration Types” on
page 3-13.

Declaring C Functions
For each C function that you use, create a Smalltalk method that takes
the appropriate number of arguments and defines the function prototype.
The function prototype is in the ANSI C prototype format. It is also
prefaced by C: and enclosed in angle-brackets, so the Smalltalk compiler
can recognize it as a C declaration. Returning to the StandardLibInterface
example, recall that the header file contained a prototype for the abs()
function. After defining the StandardLibInterface class, the following
Smalltalk method was also defined:

abs: arg
<C: int abs(int)>

The method, like the function, takes one integer argument. The following
example takes two string arguments (note: this function is defined in
string.h, not stdlib.h). It calls the C strcmp (string comparing)
function:

strcmp: s1 with: s2
<C: int strcmp(const char *s1, const char *s2)>

Looking at the two example methods given above, notice that argument
names in the declaration are included in the second example, but not in
the first, illustrating their optional nature. However, note that in any given
method you must either include all of the argument names or omit all of
them.

When arguments are passed, an ellipsis can be used in the declaration,
but all of the function’s arguments must be passed in an array. This holds
true even if you specify arguments before the ellipsis. For example,
consider this declaration of the printf function (C printing function):

printf: argArray
<C: void printf(const char *, ...)>

The argument to printf: must be a Smalltalk Array. The first element of the
array is a Smalltalk String object (or a char * C pointer object) and the
subsequent array elements are the arguments as expected by the printf()
function based on the string encoding of the first argument. Use this array
as the argument to printf:.
DLL & C Connect User’s Guide 2-7

Defining External Interfaces
As mentioned previously, declaration methods can be created
automatically after you specify one or more header files in the definition
of the interface class. You can also create them manually, using the
System Browser as you would for an ordinary Smalltalk method. You
might prefer that approach when no C header file exists, and you have no
other reason to create one. You might also want to rename the keywords
and arguments in the method selector to give them a Smalltalk flavor
rather than the parser’s C flavor. For example, the strcmp method might
be written as follows:

compare: string1 to: string2
<C: int strcmp(const char *string1, const char *string2)>

You can assign the result of a function into an instance variable within the
brackets, using an equal sign. For example, the following code shows
how to store the result of atol() in an instance variable named result:

atol: aString
<C: result = long atol(const char *)>

Any variable that exists within the scope of the method can be used as an
argument in a declaration; this includes instance or temporary variables.

Note: There is an important limitation with the scheme used by DLL
and C Connect to represent C types. In particular, if you plan to
define a number of different interface classes, using the Smalltalk
class hierarchy to distinguish between “abstract” and “concrete”
interface definitions, then you should read the discussion “Limitations
of CType Definitions” on page 3-31.

Calling C Functions
After you declare the necessary functions and link the library, your
interface class is ready to invoke external functions. To do so, create an
instance of the interface class and send it messages from its procedures
message category. These methods contain function-prototype
declarations as described in the previous section of this chapter. When
you generate an interface automatically by parsing a header file, the
parser places all procedure methods in the procedures category.

In the StandardLibInterface example described previously, the atol() function
was invoked by sending an atol: message to an instance of
StandardLibInterface:

StandardLibInterface new atol: '98765432'
2-8 VisualWorks

Defining Interfaces
C Function Failure
In a manner similar to Smalltalk primitive methods, failure code can follow
a method’s C procedure prototype declaration. The failure code, which
consists of Smalltalk expressions, is only invoked when the C function
fails to return a value. An example of a method with failure code is as
follows:

atol: aString
<C: long atol(const char *)>
^aString asNumber

In general, however, you will probably want to have error handling code
follow the C function call. Class ExternalInterface also provides a standard
error handling protocol which provides a framework for resolving C
function call failures. The cause of the function call failure is made
available to you for more sophisticated error handling. Thus, a more
typical example would look like this:

atol: aString
<C: long atol(const char *)>
^self externalAccessFailedWith: _errorCode

When the C function call fails, the cause of failure is stored in _errorCode,
which is a special temporary variable in the method containing the C
function prototype. This hidden temporary variable holds an instance of
the class SystemError which indicates the reason for the failure. By
convention, the method ExternalInterface>>externalAccessFailedWith: is
invoked to raise an externalAccessFailedSignal. In the code fragment shown
above, the signal will be raised with the SystemError object that contains
the exact cause of the failure.

The type of error is stored in the name field of the SystemError object, and
this field is usually tested by the error handler. There are a number of
standard errors that can occur during a C function call failure, and your
application must provide an exception handling mechanism to recover
from these errors. A more detailed discussion of C function call failures,
as well as a general discussion of exceptions, is located in the chapter
“Exception Handling” on page 6-1.

Declaring Defines, Macros and Pragmas
DLL and C Connect can parse and generate methods for #define
statements. Unfortunately, many #define statements in C are complex
expressions, or source code that requires both a run-time parser and
context in which to evaluate the #define.
DLL & C Connect User’s Guide 2-9

Defining External Interfaces
Note: DLL and C Connect imposes a run-time restriction that any
interface method representing a #define returns the value nil, unless
the #define represents a scalar or string object.

An example of a #define statement and its associated Smalltalk method is
as follows. The C define statement is:

#define ARRAY_SIZE 100
The corresponding Smalltalk method is:

ARRAY_SIZE
<C: #define ARRAY_SIZE 100
>

Note that a carriage return is embedded inside the angle brackets. This is
required because the #define statement is terminated by a newline. It is
important to note that the statement will not parse correctly without this
newline character.

This restriction in the parsing of #define statements will be removed in a
future release of DLL and C Connect.

Example expressions that are possible in the body of a #define, and that
are correctly parsed into a Smalltalk object are as follows.

For details on arithmetic operators supported by the last type of #define
expression listed above (#define EXPRESSION), see the Appendix “#define
Operators” on page A-1.

Define statements that accept arguments (macros) are only supported in
a development image (an image where the DLL and C Connect classes
are loaded). The evaluation of a macro will answer nil if it does not reduce
to a scalar or string value.

An example of a #define macro statement and its associated Smalltalk
method is shown below. The example macro computes the number of
bytes required to represent a multi-element data structure. Note that a

Example expressions

Example expression Evaluates to the class Whose value is

#define CHAR 'c' Number 98

#define MULTI_CHAR 'abcd' Number 0x61626364

#define STRING "aString" String 'aString'

#define EXPRESSION (1 << 3) Number 8
2-10 VisualWorks

Defining Interfaces
carriage return is embedded inside the angle brackets used in the
Smalltalk method. This is required because the #define statement is
terminated by a newline. The C define statement is:

#define NUM_BYTES(type, nElem) (sizeof(type) * nElem)
The corresponding Smalltalk method is:

NUM_BYTES: type with: nElem
<C: #define NUM_BYTES(type, nElem) (sizeof(type) * nElem)
>

The following code snippet is an example of evaluating the macro. The
first argument is the C long type and the second argument is the number
of elements. Note that the arguments are String objects. Evaluating the
expression on a platform whose long data type is 4 bytes will answer the
SmallInteger 20.

InterfaceClass new NUM_BYTES: 'long' with: '5'
Various compilers implement compiler-specific #pragma directives. The
parser correctly parses these pragma directives. However, they are not
used for any purpose and are discarded. For more information on
#pragma directives, consult your compiler’s reference manual.

Declaring Variables
In addition to function entry points, C libraries can export global variables.
To retrieve and set the value of a global variable, you must first define two
Smalltalk methods in your interface class. The first method takes no
arguments and is used to return the variable’s value. The second method
accepts one argument and is used to set the variable’s value. When you
generate methods using the automatic parsing mechanism to build your
ExternalInterface class, it always generates both accessing methods.

The C language type qualifier extern is optional, and it is simply discarded
by the parser. For additional details on the parsing of C header files, see
“Parsing C Header Files” on page 2-19.

The following example methods are used to set and retrieve the value of
a global variable, in this case globalVariable, that is defined in a library or
statically linked to the Object Engine.

globalVariable
<C: extern int globalVariable>

globalVariable: value
<C: extern int globalVariable>
DLL & C Connect User’s Guide 2-11

Defining External Interfaces
External Variable Failure
When attempting to access an external variable that is located in a linked
library (i.e., a static, global variable), DLL and C Connect may raise one
of the three following exceptions:

Cannot load library
This error may occur when your application first attempts to access
an external variable. The variable is accessed by loading the library
that your external interface class indicates contains the variable. If the
library could not be loaded for any reason, the signal
ExternalLibrary>>libraryNotLoadedSignal is raised.

Cannot find library
This error may occur when DLL and C Connect cannot find the library
specified in your interface’s class creation template. To indicate this
failure, the signal ExternalLibraryHolder>>libraryNotFoundSignal is raised.

Cannot find external object entry point
If DLL and C Connect successfully loaded the library associated with
your interface class, but subsequently could not find the external
variable within the library or as a statically linked object. The signal
ExternalMethod>>externalObjectNotFoundSignal is raised.

To catch these signals, you can write signal handlers in the callers of your
interface methods. For a more detailed discussion of these errors, see
“Exception Handling” on page 6-1.

Virtual External Interfaces
ExternalInterface classes contain a special attribute that can be helpful if
you want to link multiple versions of the same C function library to your
Smalltalk application. The virtual attribute controls the way that method
lookup is performed in a hierarchy of ExternalInterface classes.

A subclass inherits the includeDirectories, libraryFiles, and libraryDirectories
attributes of its parent interface class. Function look-up begins in the
receiver’s libraries and continues up the hierarchy. For example, you
could create OracleInterface and SybaseInterface as subclasses of
DatabaseInterface. Selected functions in the parent’s directories could then
be overridden by more specific functions in the subclass directories.
2-12 VisualWorks

Defining Interfaces
The following diagram illustrates this scheme:

Inheritance

A subclass does not inherit includeFiles, though the associated methods
are inherited by the normal method-inheritance mechanism. When an
inherited method is invoked, the function look-up order is affected by
whether the parent is virtual or not. With a nonvirtual parent, an inherited
method causes the function look-up to begin in the parent class’s
libraries. That is, in the libraries associated with the class that implements
the method. With a virtual parent, the function look-up begins in the
message receiver’s libraries. In effect, the subclass of a virtual parent can
substitute an alternate version of the parent’s libraries, and need not re-
implement the accessing methods.

An interface class can be made virtual in two ways:

• Send beVirtual: true to the class

• Recompile the interface class, specifying beVirtual: true in the class-
creation template

If you plan to define a number of different interface classes, using the
Smalltalk class hierarchy, then you should read the discussion
“Limitations of CType Definitions” on page 3-31.

External Interfaces and Snapshots
Smalltalk preserves the semantics of objects across a snapshot in most
cases. The means to do this are provided by the snapshot facility itself,
which preserves the state of the object memory. For objects whose
interpretation is completely contained in an image, this is sufficient.

ChildInterface

libraryB

beVirtual: false,
libraryA is searched

beVirtual: true,
libraryB is searched

methodA

client

ParentInterface
libraryA
methodA
DLL & C Connect User’s Guide 2-13

Defining External Interfaces
However, some types of objects are affected by the external environment
and must be given special treatment. In particular, references to external
libraries that were active when the snapshot was made will become
invalid. When a snapshot is made, all references to dynamically loaded
libraries are broken.

When an image is restarted, all external interfaces will, on demand,
reload libraries listed in the external interface’s libraryFiles attribute. If
there is a possibility that the image file will be moved to a new
environment, or if the library files might be moved, your application should
re-install the new location of the library files using the libraryFiles: and
libraryDirectories: messages available to the ExternalInterface class. This is
fully described in the section “Programmatic Search” on page 2-18.

The ExternalInterface class provides two mechanisms for coping with
snapshot returns:

• Class ExternalInterface sends a returnFromSnapshot message to each of
its subclasses, informing the class that the image is starting,
potentially on a new platform. Subclasses can override the default
behavior to perform platform-specific initialization.

• The class also detects the current platform.

When Smalltalk returns from a snapshot, it performs the following
sequence of events:

1. When the image first starts, the class ObjectMemory receives the
message returnFromSnapshot. That method performs some system
initialization and sends the change message earlySystemInstallation to
itself.

2. Any object that registered itself as a dependent of ObjectMemory is
notified of the earlySystemInstallation. ExternalInterface is one class that
is registered as a dependent of ObjectMemory. Note that if you use the
earlySystemInstallation notification, the window system will not have
been correctly installed, so notifiers will not work. Unhandled errors
may crash the system without warning.

3. ObjectMemory performs more installation, then sends a
returnFromSnapshot change message to itself. Any object that
registered itself as a dependent of ObjectMemory will be notified of the
returnFromSnapshot.

To provide a hook for its subclasses, ExternalInterface is registered as a
dependent of ObjectMemory. When ObjectMemory sends the
earlySystemInstallation change message, ExternalInterface performs its own
initialization, sending the installOn: message to each of its subclasses.
2-14 VisualWorks

Defining Interfaces
By default, installOn: flushes any cached information in external methods.
You may override installOn:, but be sure to use super installOn: as the first
line of your method. This ensures that external caches get flushed,
ensuring an easier migration to future implementations.

The argument to installOn: is a two-element array. The first element is a
Symbol that indicates the platform class your application is currently
running on (for example, #win32, #mac, #os2, or #unix). The second
argument is a string that describes details of the current platform. For
example, the argument to installOn: for a MS-Windows NT platform would
be #(#win32 'win32 V4.0 nt i386'). The second argument varies depending
on the current configuration of your machine.

The argument to installOn: is available anytime during the execution of
your application by sending the message currentPlatform to the class
ExternalInterface, or any of its subclasses.

A list of platforms and their currentPlatform array is shown in the following
table. Note that the second array argument is dynamically generated on
some platforms based on the current operating environment. Note that
these values may vary depending on the actual platform configuration.

Other initializations occur when the image is first started and are
discussed in the section “External Heap and Snapshots” on page 3-26.

Platform-specific currentPlatform arrays

Platform Example identification

MS-Windows 98 #(#win32 'win32 V4.10 95 i386')

MS-Windows 95 #(#win32 'win32 V3.10 win32s')

MS-Windows NT #(#win32 'win32 V4.0 nt i386')

MS-Windows 2000 #(#win32 'win32 V5.0 nt i386')

MS-Windows XP #(#win32 'win32 V5.1 nt i386')

OS/2 #(#os2 'os2 OS/2 V2.0')

MacOS 9.x #(#mac 'mac macOS V8.00 PowerMacintosh')

MacOS X #(#unix 'unix bsd apple Power MacOSX')

IBM RS/6000 #(#unix 'unix bsd ibm rs6000 aix')

Solaris 2.5 #(#unix 'unix sysV sun solaris')

HP 9000 Series 700 #(#unix 'unix sysv hp 700 hp-ux')
DLL & C Connect User’s Guide 2-15

Defining External Interfaces
Dynamic-Link Libraries
Depending upon whether you choose static or dynamic linking of C
modules, the strategies for loading the actual C code differs slightly. With
dynamic linking, you only need to arrange for the library files to be loaded
by DLL and C Connect. With static linking, the code is already linked into
the Object Engine executable, but you need to register the functions that
you call. Although it is recommended that you choose dynamic rather
than static linking, DLL and C Connect does support both approaches. To
register your statically linked files, use the special mechanism described
in the section “Static Linking” on page 8-4. The following discussion
explains how to arrange for DLL and C Connect to load dynamic-link
libraries.

Finding Entry Points
On a platform that supports dynamic-linking, a library is registered when
you compile the interface class (by accepting the class definition). The
library file is specified in your interface class by setting the file name in
the libraryFiles class template attribute.

DLL and C Connect uses a lazy approach to library loading and linking.
When an interface class needs to find an entry-point address for an
exported symbol, it looks for that unbound entry point in the interface’s
libraryFiles list. It scans the library list in the left-to-right order you specified
in the libraryFiles attribute. When it encounters a library that has been
loaded, it simply performs an entry-point look-up. If the library has not
been loaded, it first loads and links the library into memory, and then
performs a lookup of the entry-point. If the entry-point is not found in the
library, it continues the look-up with the next library in the list.

When the library list is exhausted, it is checked for entry-points statically
linked and registered with the running Object Engine. To statically link
and register an entry point, see the section “Static Linking” on page 8-4.
Because the look-up mechanism searches libraries before statically
linked code, a dynamically linked function overrides a statically linked
version.

If the search fails to find the entry-point in any library or the statically
linked code, the exception ExternalMethod externalObjectNotFoundSignal is
raised. Consult “External Interface Exceptions” on page 6-1 for a
comprehensive discussion of exceptions your interface code may raise.
2-16 VisualWorks

Dynamic-Link Libraries
Once the look-up is complete and the correct entry-point has been
identified, the function’s address is cached so that future calls on the
library routine will not require a complicated look-up. Thus, the speed of
subsequent calls will be faster than the first call.

Library Search Order
In the interface class-creation template, you can specify multiple
libraryFiles and libraryDirectories attributes. As the name suggests,
libraryDirectories are the directories in which the libraryFiles are located.

Your interface class searches for a library file in the directories listed
using a left-to-right search order. If the library file cannot be found in the
first library, the search continues with the next library in the list. If the end
of the list is reached and the library has not been found, an ExternalLibrary
libraryNotLoadedSignal is raised. See “External Interface Exceptions” on
page 6-1 for a comprehensive list of exceptions your interface code may
raise.

Libraries and Environment Variables
VisualWorks provides two useful conventions for identifying composite file
paths that may be used across a number of platforms. You can make use
of these conventions when designing your ExternalInterface classes for
different platforms.

The first convention enables you to specify attributes for libraryFiles or
libraryDirectories that include square brackets, such that the bracketed
string is taken to be a pattern which is matched against the current
platform ID. If it matches, then the library will be loaded. For example, if
libraryDirectories included the following names
[alpha_osf]dllcc.adux [solaris]dllcc.solaris
[win32*i386]dllcc.nt [win32*AXP]dllcc.ant, then the file
dllcc.solaris would only be searched for if the OSHandle's
currentPlatformId matched *solaris*. Note that underscore characters are
mapped to spaces, so dllcc.adux is searched if the platform ID
matches *alpha osf*. For additional details, examine the mapping
mechanism in ExternalLibraryHolder>>findFile:inDirectories:.

Note that when an interface uses this mechanism to optionally load
libraries based on the platform it must also provide an exception handler
for the libraryNotFoundSignal, which is raised when an attempt is made to
load a library that doesn't exist (for examples, see page 5-12, and the
DLLANDCTestInterface in the DLL and C Connect Test Suite parcel
DLLCCTestSuite.pcl.)
DLL & C Connect User’s Guide 2-17

Defining External Interfaces
The second useful convention enables you to use environment variables
that are expanded within both the libraryFiles and libraryDirectories
attributes. VisualWorks follows the UNIX convention; that is, an
environment variable is some alphanumeric string starting with a dollar
character ($) and enclosed in parentheses. Thus, under MS-Windows the
following directory name expands to the system32 subdirectory of the
current Windows directory: $(windir)\system32.

Using these two conventions together, you can set up the libraryFiles and
libraryDirectories attributes of your ExternalInterface classes as follows:

libraryFiles: '[unix]libc.so [win]msvcrt20.dll [win]msvcrt40.dll '

libraryDirectories: '[unix]/usr/shlib [unix]/usr/lib
[win]$(windir)\system [win]$(windir)\system32 '

This example would work across a number of different platforms. For
example, on platforms whose currentPlatformID matches *unix*, the library
libc.so will be searched for in /usr/shlib and /usr/lib. On
platforms whose currentPlatformID matches *win*, the libraries
msvcrt20.dll and msvcrt40.dll will be searched for in
%windir%\system and %windir%\system32.

When using environment variables, be aware that the Object Engine sets
these variables only once when you start a virtual image, and that any
subsequent changes made to the environment variables in the operating
system will not be reflected for mapping the path(s) of your library files.
This is a consequence of the way that most operating systems pass
environment variables to processes (in this case, the Object Engine).

Programmatic Search
The class definition template provides a fixed means for you to specify
the library files and their directories. However, there may be situations
where these lists are not known at compile-time, but can only be
determined at run-time. In these situations, you can use the following
ExternalInterface class protocol to define the library list and the library
directory list. Send these messages directly to your interface class.
2-18 VisualWorks

Parsing C Header Files
Parsing C Header Files
The StandardLibInterface example used a feature of DLL and C Connect
that enables you to parse C language header files and generate interface
methods that correspond to the declarations contained in those files. The
parser recognizes the following C language declarations:

• typedefs

• enumeration types and constants

• macros

• defines

• function prototypes

• variables

In addition, the parser recognizes the following standard preprocessing
directives:

• #if, #ifdef, #ifndef, #else, #elseif, #endif

• #define

• #pragma

• #line

• #error

Defining the library list and library directory list

Method name Purpose

libraryFiles: Reset my libraryFiles. The libraries are
unloaded immediately, so that a new search
for the affected libraries will occur the next
time they are invoked.

libraryDirectories: Reset the private part of the library path,
which is linked to the superclass’s library path.
To have this take effect immediately, this
method will unload the library and the
subclasses’ libraries, so that a new search for
the affected libraries will occur the next time
they are invoked.

unloadLibraries Unload the libraries without changing how
they are specified. The next time the libraries
are accessed, it will be relinked.
DLL & C Connect User’s Guide 2-19

Defining External Interfaces
• #include

• #assert

The parser evaluates all preprocessor directives. However, it effectively
ignores #pragma which contains compiler-specific directives. In addition,
the #line directive is simply ignored.

When you define an interface class and specify header file names in the
includeFiles class attribute, the class stores the header files that can be
subsequently parsed. You may then use the External Interface Builder to
parse the specified header files, and then to compile methods into your
interface class that correspond to the declarations contained in the
header files. For details about using the Builder tool, see the discussion
of the “External Interface Builder Tool” on page 1-15.

You can also control which declarations in the file are automatically
generated, by using a special pattern-matching string as the argument to
the class-side method generateMethods: in ExternalInterface class. For
example, if you only wanted to use the multiply() function in a large library,
you could avoid generating all the other methods by providing 'multiply' as
the argument to the generateMethods: keyword.

MyInterfaceClass generateMethods: 'multiply'.
Wildcarding is recognized in the pattern-matching string, and you can
include multiple patterns separated by spaces.

The following table summarizes the variations that you can use for the
argument to ExternalInterface class>>generateMethods:

You should be very careful about which header files you parse using this
technique. Many header files include other header files, which recursively
include yet more header files. It is very easy to specify a system header
file that eventually produces an interface class with hundreds or even
thousands of interface methods. Each interface method consists of

Wildcard variations

Argument Result

'' [empty string] (Re)generate none

' ' [space] Regenerate existing methods only

'add sub*' (Re)generate add and any externals beginning with
sub, in addition to existing methods

'*' (Re)generate methods for all externals declared in
the header files
2-20 VisualWorks

Parsing C Header Files
several bytes of information, potentially adding thousands of bytes of
method definitions to your VisualWorks image. Be very careful to create
and parse header files that contain the bare minimum of interface
declarations. Make sure you remove automatically generated method
declarations that are not required by your external interface class.

When you generate an interface by parsing a header file, the interface
class automatically defines the following selector protocol. You can create
your own protocol and move the methods to a more descriptive location if
you want to change the default naming.

To clarify this mechanism, we can return to the example class
StandardLibInterface, which was described earlier in this chapter. To parse
the C header file that describes this interface, the class generator needs
to search for and read the contents of the stdlib.h file. If you have not
specified a full path name to the file, or have not specified any directories
in the includeDirectories attribute, the system assumes the header file is
located in the current directory.

If a header file cannot be found, a dialog is displayed with an error
message indicating this fact. Click the OK button to proceed. You should
then check the includeFiles and includeDirectories attributes of the interface
class definition for invalid entries or check for the existence of the named
file to correct the error.

If, for example, you selected the abs() function prototype, an instance
method named abs: will be created automatically. When the DLL and C
Connect parser reads the file stdlib.h, it uses the function prototype to
create the abs: method. Your C code has now been registered. The abs()
function in the DLL will be linked the first time you invoke it.

The parser evaluates #define (defines and macros) statements that
evaluate to scalar values (numbers) and strings. No claims are made that
the parser correctly evaluates more complex C code expressions.

Selector protocol contents

Protocol Contents

macros All the macros in the header files. Macro is defined
as a #define that accepts arguments.

defines All the #define statements in the header files.

types All the typedef statements in the header files.

variables All the global variables in the header files.

procedures All the function prototypes in the header files
DLL & C Connect User’s Guide 2-21

Defining External Interfaces
For example, the following evaluates correctly because it evaluates to a
scalar:

#define CONSTANT ((long) sizeof(int) * 4) + ((short) 3 << 8)
The following evaluates correctly because it also evaluates to a scalar:

#define STRING "string"
However, the following #define statement contains code fragments, and
does not evaluate to a scalar:

#define MEMBER_ACCESS(a) ((a) -> foo)
2-22 VisualWorks

Parsing C Header Files
Pre-Defined Constants
The C declaration parser defines the following predefined macro names,
as specified by the ANSI C standard.

If your C compiler is nonstandard, then some or all of these declarations
may be missing. Your C compiler may also supply other predefined
macros for your use.

Currently, __DATE__ and __TIME__ work as specified in the ANSI C
standard. __STDC__ indicates where ANSI C (as opposed to K&R) is
being parsed. If you want your C code to be able to be compiled by both
an ANSI C or K&R C compiler, then your C code should contain versions
for both ANSI C and K&R C wherever the syntax differs.

The different versions can be marked with the following C pre-processor
code.

#if __STDC__ /* ANSI C code */
#else /* K&R code */
#endif

DLL and C Connect currently does not provide a mechanism to pre-
define constants prior to starting a header file parse. This is contrary to
most C pre-processors, where a compiler switch is available for such a
purpose.

However, you can take advantage of the header file parsing order when
defining your ExternalInterface subclass. Simply place all pre-defined
constants in a header file and list that header file first in the includeFiles
attribute of your class definition template. All the #define statements in that
file will be pre-processed before the remaining header files.

For example, suppose you have a header file designed for use on
multiple platforms and wish to create a pre-defined constant indicating on
which platform the header file is to be parsed. Assume your library is
called lib.dll and the library’s header file is called lib.h. You want to

ANSI C predefined macro names

__LINE__ Line number of the current source program line

__FILE__ Name of the current source file

__DATE__ Calendar date of the translation

__TIME__ Time of the translation

__STDC__ Set to 1 if the compiler is ANSI C
DLL & C Connect User’s Guide 2-23

Defining External Interfaces
parse the header file for the Win386 platform (this platform identifier is
completely arbitrary and is used only for example purposes). First create
a header file called win386.h that contains the following line (or any
other #define statements that you wish to declare):

#define PLATFORM platWin386
Your header file may then contain conditional compilation directives such
as the following:

#if PLATFORM == platWin386
.
.
.

#endif
To actually build this example interface to the Win386 platform, you would
use the following class creation template:

Smalltalk defineClass: #Win386
superclass: #{External.ExternalInterface}
indexedType: #none
private: false
instanceVariableNames: ''
classInstanceVariableNames: ''
imports: '

private Smalltalk.Win386ExternalDictionary.*
'

category: 'ExternalInterface-Examples'
attributes: #(

#(#includeFiles #('win386.h lib.h'))
#(#includeDirectories #())
#(#libraryFiles #(’lib.dll’))
#(#libraryDirectories #())
#(#beVirtual #false)
#(#optimizationLevel #full))

Again, notice that the pre-definition file, win386.h, appears before the
library header file.

Syntax Errors
On rare occasions you might attempt to parse a header file that contains
constructs not recognized by the C declaration parser. When the parser
encounters such an error, it displays a Syntax Error notifier window. The
window contains the pre-processed text of the entire header file contents.
This includes the top-level header file, and recursively any header files it
includes. Because you are viewing pre-processed source code, the
actual text does not look the same as the original source.
2-24 VisualWorks

Parsing C Header Files
Within the window a highlighted string, syntax error ->, marks the
suspected position of the syntax error. This highlighted text is not always
visible in the new window. You may need to scroll through the text to the
location of the syntax error marker. Although the parser attempts to be as
accurate as possible when indicating the location of the error, many times
it indicates only an approximate location. You should look several
characters or statements before the marker to locate the actual cause of
the error.

To proceed from a syntax error, and ignore the current error, you can
allow the parser to attempt a recovery by simply selecting proceed from
the <Operate> menu. Most of the time, however, this results in further
notifiers, because the parser is now in a confused state.

To proceed from a syntax error and halt parsing, select close from the
<Window> menu, or use the window’s close mechanism. Once the
window is closed, your interface class does not contain any method
declarations for the current parse. Edit the header file to fix the syntax
error and re-parse the file.

Due to the restrictions on the parsing of #define statements, it is possible
to encounter trouble with C definitions such as the following:

#define APIENTRY _System
[...]
typedef int (APIENTRY _PFN) ();
typedef _PFN *PFN;

This code will produce a syntax error during parsing. This limitation will
be eliminated in a future release of DLL and C Connect. Under the
current implementation, you can work around the limitation by creating a
“wrapper” header file which #defines the offending types to nothing. Since
the types are not handled by the DLL and C Connect parser, and are
therefore meaningless for Smalltalk, this approach is easier than editing
your header files. Including these “wrapper” header files will allow you to
parse the files without error.

For example, the previous example can be parsed correctly if it is
preceded by a file containing the following wrapper definitions:

#define _System
.
(define any other problematic types as well)
.
.

DLL & C Connect User’s Guide 2-25

Defining External Interfaces
When you simply want to see the definitions in a header file, or test to
verify that it parsed correctly, you can do so without having to create a
new subclass of ExternalInterface. A utility protocol provided by class
ExternalInterface parses one or more files and returns a dictionary
containing the names that are defined in the #include files. For example,
on a Windows NT platform you could inspect the following expression to
see the contents of stdlib.h:

ExternalInterface
parseIncludeFiles: 'stdlib.h'
includeDirectories: 'C:\MSDEV\include\'

When defining a new interface class, you should bear in mind that the
superior strategy is to use the External Interface Builder tool (for details
and a discussion of its use, see the section entitled “External Interface
Builder Tool” on page 1-15).

Interfacing with Other Languages
Instead of calling external code compiled with a C compiler, you might
want to call code compiled with a different language compiler. DLL and C
Connect can provide access to other languages, as long as the interface
to the external code conforms to a calling convention for supported C
functions. Be aware that interfaces to external code written in languages
other than C are not officially supported.

To access DLLs written in another language, you must use the standard
development tools to create an appropriate ExternalInterface and
associated accessing methods. You can use either the VisualWorks
programming tools, or the special tools that are part of DLL and C
Connect.

An example of this feature is to use DLL and C Connect to access
dynamic-link libraries built with a C++ compiler. Although calling C++
member functions or accessing C++ objects are not supported, it is
possible to write a C language wrapper to your C++ code.

To do so, you must wrap external library function prototypes within an
external C block. Each function declared in this block will conform to C
calling conventions. The body of the function can then call C++ member
functions and access C++ objects.
2-26 VisualWorks

Parsing C Header Files
For example, you can access C++ code using C wrappers in the following
manner:

extern "C" {
int wrapperFunction1(void);
long wrapperFunction2(long);

}

int
wrapperFunction1(void)
{

<<C++ code>>
}

long
wrapperFunction2(long aLong)
{

<<C++ code that uses the argument aLong>>
}

The above C++ example does not discuss the problems associated with
global variable constructor execution when dynamic-link libraries are
loaded. We leave this detail to the particular compiler implementation.

Other language bindings, for example COBOL, may be possible given a
C language wrapper layer.
DLL & C Connect User’s Guide 2-27

Defining External Interfaces

2-28 VisualWorks

3
Creating and Accessing C Data

A function in an existing C library sometimes requires an argument
having a custom data structure, such as a structure containing several
members. To create a suitable C data object for such a function, you must
be able to create an equivalent object in Smalltalk. In addition, C data
objects that survive across function calls or callbacks need to be
allocated in a special memory heap where they are protected from the
Smalltalk garbage collector.

This chapter describes:

• General strategies for sharing data objects between your Smalltalk
applications and C modules.

• The notion of an external heap, and its relation to the Smalltalk object
memory.

Memory Allocation in Smalltalk
Smalltalk provides fully automatic memory management that frees
developers from the traditional concerns of storage allocation imposed by
C. Since the two languages have very different underlying assumptions
about memory management, it is absolutely critical that you use the
correct strategy for passing parameter data between Smalltalk and C.

To choose the proper strategy for passing data objects between Smalltalk
and C, it is important to first look briefly at the way that the Smalltalk
Object Engine handles storage allocation.

At system startup time, Smalltalk allocates and controls the following
fixed-size memory spaces: CompiledCodeCache, StackSpace, NewSpace,
LargeSpace, PermSpace, and FixedSpace. Each of these spaces is used by
Smalltalk to hold program elements of a particular type. The default size
DLL & C Connect User’s Guide 3-1

Creating and Accessing C Data
of most of these spaces can be altered at system startup (see the
protocol for ObjectMemory class). For Smalltalk applications that pass data
to C functions, the most important of these spaces is FixedSpace. In
addition to the above fixed-size memory spaces, the system also
manages a variable-size space known as OldSpace.

The CompiledCodeCache contains methods whose byte codes have been
compiled directly into machine code for the current platform.

The StackSpace contains the stack of activation contexts created during
the execution of a Smalltalk process.

NewSpace is used to house newly created objects. It is composed of three
partitions: an object-creation space, which is called Eden, and two
survivor subspaces.

LargeSpace is used to hold the data of large byte objects (bitmaps, strings,
byte arrays, uninterpreted bytes, and so on). In this case, “large” means
byte objects greater than 1 kilobyte.

PermSpace is used to hold all semipermanent objects. Because they are
rarely ready to die, the objects held in PermSpace are exempt from being
collected by any reclamation facilities other than the global garbage
collector.

FixedSpace is used to hold semipermanent, non-pointer objects that are
passed as arguments to selected C function calls. This space is designed
specifically for use with DLL and C Connect. The object bodies held in
FixedSpace are never relocated, but they are still garbage collected.
Objects are promoted to FixedSpace automatically when they are passed
as arguments to a threaded call (these are discussed in the chapter
“Threaded Interconnect” on page 5-1).

OldSpace holds all objects that are not held in one of the fixed-size spaces
previously described. Although OldSpace can be thought of as a single
contiguous chunk of memory, it is implemented as a linked list of
segments which occupy the upper portion of the system heap.

Reclaiming Space
Smalltalk has automatic collection and compaction facilities for reclaiming
space occupied by objects that are no longer accessible from the system
roots. These facilities include: a generation scavenger, an incremental
garbage collector, a compacting garbage collector, a global garbage
3-2 VisualWorks

Allocating C Data Types
collector, and a data compactor. Smalltalk uses these collection and
compaction facilities to provide transparent object allocation, object
movement, and object reclamation.

The interaction between the memory management facility and your
Smalltalk program is typically transparent. Smalltalk takes care of
updating pointers when objects are moved in memory (for example,
during a scavenge or compaction).

However, this automatic memory management scheme does not mesh
easily with C code. An external C function can be passed references
(pointers) to objects, and it may expect to maintain these references long
after Smalltalk has had a chance to reclaim memory and potentially move
memory objects.

DLL and C Connect provides a means to reconcile all of the differences
between the automatic storage management employed by Smalltalk and
the manual allocation of C. However, it is critical that you choose the
correct strategy for allocating C data objects passed to external functions.

The following section provides a more detailed discussion of allocation
strategies. If your application is multi-threaded, also see “Managing Data
Objects with Multiple I/O Threads” on page 5-4.

Allocating C Data Types
In general, your application must ensure that all C data objects remain in
a fixed location for a predictable amount of time. Data objects passed to
external functions must not be referenced by the external library after
they have been deallocated by Smalltalk.

To safely share data objects with external libraries, DLL and C Connect
provides two general strategies for creating C data objects that will never
be moved by the Smalltalk memory management facilities.

1 The first strategy involves explicitly requesting that an object be
created in the external heap. This heap is a segment of memory not
controlled by the Smalltalk memory manager, and so objects
allocated there will never be relocated. You are responsible for
allocating and freeing objects located in this heap.

2 The second strategy involves creating objects in FixedSpace, a special
zone in the object memory that is not subject to compaction. Objects
allocated in FixedSpace (like those in the external heap) will never be
relocated. However, unlike objects in the external heap, those in
FixedSpace will be subject to automatic garbage collection.
DLL & C Connect User’s Guide 3-3

Creating and Accessing C Data
The advantages and tradeoffs between these two strategies are
discussed in a separate section on FixedSpace later in this chapter (see
“Allocating Objects in FixedSpace” on page 3-26). It is important to bear
in mind that regardless of which strategy you choose, both FixedSpace and
the external heap are limited resources, so you must be careful to
manage them accordingly.

The following diagram summarizes the structure of the Smalltalk
ObjectMemory in relation to the external heap:

Application memory structure

OldSpace (segment n)

OldSpace (segment 1)

PermSpace

LargeSpace

NewSpace

Compiled code cache

StackSpace

Object Engine

Memory allocated using

malloc
malloc:
gcMalloc
gcMalloc:

Application
garbage
collected

Global
Garbage
Collector

Incremental
garbage
collector

Generation
scavenger

Reclamation
policy in OE

No reclamation

Smalltalk Application Memory

Smalltalk Controlled Heap Application Controlled Heap

FixedSpace
3-4 VisualWorks

Allocating C Data Types
DLL and C Connect provides six methods that allocate C data types.
These methods are new, newInFixedSpace:, malloc, malloc:, gcMalloc, and
gcMalloc:. The first two methods, new and newInFixedSpace:, allocate data
in parts of the Smalltalk object memory, so it can be managed
automatically by the Smalltalk memory manager.

The remaining methods (malloc, malloc:, gcMalloc, and gcMalloc:) allocate
data in the external heap. Data allocated in the external heap will not be
moved by the Smalltalk memory manager. Thus, references to the
external heap can be passed to C functions that store the reference for
an indeterminate amount of time, or the references can be passed to
functions which invoke callbacks that allow the memory manager a
chance to relocate Smalltalk objects. Much like the data in the external
heap, objects allocated in FixedSpace will not be moved and can be safely
manipulated by C functions.

The following table is an overview of the C object allocation protocol that
you can send to the objects answered by the typedef methods in your
interface class.

C object allocation protocol

Method Description

new Allocates a C object in Smalltalk memory. This object will
be under the control of the Smalltalk memory manager,
and thus will be moved in memory, and its space
reclaimed when no Smalltalk object continues to
reference it.

newInFixedSpace: aSize Allocates a C object in Smalltalk memory. This object will
be under the control of the Smalltalk memory manager,
but it will never be moved in memory. Its space will be
reclaimed when no Smalltalk object continues to
reference it.

malloc Allocates a C object in the external heap. Enough
memory is allocated to contain one copy of the receiver.
This memory is not controlled by the Smalltalk memory
manager and it must be explicitly released by sending the
free message to the object answered by the malloc
method.

malloc: numCopies Allocates a C object in the external heap. Enough
memory to contain numCopies of the receiver is allocated.
A pointer to the first element is answered. This memory is
not controlled by the Smalltalk memory manager and
must be explicitly released by sending the free message
to the object answered by malloc:.
DLL & C Connect User’s Guide 3-5

Creating and Accessing C Data
Note: The MS-Windows 98/95 platform supports memory allocated
for both 32-bit linear pointers and 16-bit segmented pointers. The
memory allocation protocol has been expanded to support the direct
allocation of segmented pointers. This protocol is only valid on the
MS-Windows 98/95 platform. The protocol is malloc16, malloc16:,
gcMalloc16, and gcMalloc16:.

If the memory manager is unable to meet an external heap allocation
request to malloc, malloc:, gcMalloc or gcMalloc:, an exception will be raised
with the error #'C allocation failed'. The parameter field in the SystemError
object associated with the exception may contain the number of bytes
needed to satisfy the allocation request. Your code should include an
exception handler to catch these errors. For more details on the specifics
of error handling, you may refer to the section “Exception Handling” on
page 6-1.

The allocation strategy that you choose depends upon several factors.
For data that you would like to persist in the form of Smalltalk objects (for
example, across snapshots), it may be preferable to use FixedSpace.
Tradeoffs in this strategy include the requirement that pointers must be
updated after snapshots, and that only byte-field objects may be
allocated in FixedSpace. Objects allocated by calling newInFixedSpace: can
be more efficiently manipulated by both Smalltalk and C, but they also

gcMalloc Allocates a C object in the external heap. Enough
memory is allocated to contain one copy of the receiver.
This memory is not controlled by the Smalltalk memory
manager. The memory will be automatically released
when no Smalltalk object references the object answered
by this method. Do not send free to the object answered
by gcMalloc—this is handled automatically.

gcMalloc: numCopies Allocates a C object in the external heap. Enough
memory is allocated to contain numCopies of the receiver.
A pointer to the first element is answered. This memory is
not controlled by the Smalltalk memory manager. The
memory will be automatically released when no Smalltalk
object references the object answered by the method. Do
not send free to the object answered by gcMalloc:—this is
handled automatically.

free Release the memory allocated by the malloc and malloc:
methods. Do not send free to an object referencing
memory that was allocated by gcMalloc or gcMalloc:.

C object allocation protocol (Continued)

Method Description
3-6 VisualWorks

Allocating C Data Types
involve additional storage overhead. For data that you would like to
persist in the form of C data objects (e.g., across several C function calls),
the best approach may be to use malloc or gcMalloc.

Allocating space on the external heap for a C data object is performed
with a malloc message. This message is sent to an instance of subclass
CType, which represents the type of data to be allocated.

To illustrate the use of malloc, consider the following hypothetical example
class CustomerInterface, which will be used to instantiate a series of
Customer objects. The memory requirements of the instances are
described by class CustomerType, which is a subclass of CType. Assume
that these classes are generated during the automatic parsing of a C
interface specification. To allocate space on the external heap for the
CustomerType object, you would use the following expression:

pointer := CustomerInterface new CustomerType malloc.
You can also use the malloc: message to allocate multiple CustomerType
slots on the heap:

pointer := CustomerInterface new CustomerType malloc: 5.
The result is a CustomerType * pointer, which points to the first element of
an array for five CustomerType C data objects.

To deallocate the heap space associated with a pointer, send free to it, as
in the following example:

pointer := CustomerInterface new CustomerType malloc.
"pass the pointer to functions that use its datum."
pointer free.

You can also use a variant of malloc (gcMalloc or gcMalloc:) to allocate
garbage-collectable space on the heap. When the pointer to storage
allocated using gcMalloc is no longer referenced within Smalltalk, the
space on the heap is freed automatically. An example is:

| pointer |
pointer := CustomerInterface new CustomerType gcMalloc.
"Pass the pointer to functions that use its datum"

When the above code is completed, and the pointer variable no longer
exists, the CustomerType pointer object is no longer referenced by any
Smalltalk object, so it will be deallocated the next time the Smalltalk
garbage collector finalizes objects. Note that you do not need to be
concerned with the finalization process here. For more information on
finalization, consult the VisualWorks Application Developer’s Guide.
DLL & C Connect User’s Guide 3-7

Creating and Accessing C Data
C procedures that retain copies of pointer arguments can cause
referencing problems. If you use gcMalloc, gcMalloc:, or newInFixedSpace: to
allocate external memory subject to automatic garbage collection and
pass the associated CPointer to external code that maintains a copy of this
pointer, you must maintain a Smalltalk reference to that CPointer for as
long as the external copy of the pointer is valid. If the CPointer is dropped
and garbage collected, the block of referenced memory is freed, and may
be reallocated. When the external C code attempts to use its (now stale)
copy of the pointer, it may find garbage where you once had valid data.
This can be a very difficult problem to isolate, and is potentially fatal.
Therefore, take care that your CPointer objects are referenced for the
lifetime of their corresponding heap pointer.

Allocating Space on an External Heap
Of the two allocation strategies described at the beginning of this chapter,
the first strategy is used to allocate new C data objects on the external
heap. This allocation protocol is comprised of the methods malloc, malloc:,
gcMalloc, and gcMalloc:. A variant of this strategy involves those situations
where you may want to begin with a Smalltalk object and then move it
onto the external heap. This is typically done in cases where the C code
references the object indefinitely. To copy a selected set of Smalltalk
objects to the heap, use one of the following methods:

Note: The MS-Windows 98/95 platform supports memory allocated
for both 32-bit linear pointers and 16-bit segmented pointers. The
memory allocation protocol has been expanded to support the direct
allocation of segmented pointers. This protocol is only valid on the
MS-Windows 98/95 platform. The protocol is copyToHeap16 and
gcCopyToHeap16.

Copying Smalltalk objects to a heap

Method Description

copyToHeap Copies the receiver to the external heap and answers
a pointer to the heap location. This memory is not
controlled by the Smalltalk memory manager and
must be explicitly deallocated by sending the free
message to the answered object.

gcCopyToHeap Copy the receiver to the external heap and answer a
pointer to the heap location. This memory is
automatically deallocated when the Smalltalk object
answered by the message is no longer referenced.
3-8 VisualWorks

Allocating C Data Types
The heap copy protocol cannot copy an arbitrary Smalltalk object (or
object graph) to the heap. It is designed to copy scalar objects (numbers,
strings, and byte arrays). The classes whose instances can be copied
directly with this protocol are as follows: Integer, Double, Float, Character,
ByteArray, ByteEncodedString (and its subclasses), IntegerArray,
TwoByteString, UninterpretedBytes, and WordArray.

To copy an instance of a Smalltalk object to the heap, send it a
copyToHeap message, as follows:

pointer := anInteger copyToHeap.
Since external heap space that is allocated in this manner is not subject
to automatic storage management, your application must explicitly
deallocate this memory with a free message. An alternative approach is to
use the message gcCopyToHeap to return a pointer that is marked as
being collectible. When the Smalltalk pointer object is no longer
referenced, its associated heap space is freed automatically.

To copy a Smalltalk object to the heap and return a pointer that is subject
to garbage collection, use an expression such as the following:

pointer := anInteger gcCopyToHeap.
The following table indicates which type of C pointer is returned when
copying a Smalltalk object of a particular class. With respect to the
abstract class ByteEncodedString, it should be noted that the pointer
attribute also pertains to each of its subclasses, and not simply the
abstract class as the table might seem to suggest. (This includes
ByteString, MacString, OS2String, and ISO8859L1String.)

Pointer returned after a copy

Class Pointer

Integer long *

Double double *

Float float *

Character unsigned char * or unsigned short *

ByteEncodedString unsigned char *

TwoByteString unsigned short *

ByteArray unsigned char *

WordArray unsigned short *

UninterpretedBytes unsigned char *
DLL & C Connect User’s Guide 3-9

Creating and Accessing C Data
You must override the implementation of copyToHeap if you want to write
specialized code to copy instances of one of your application classes to
the heap. It is impossible to copy an arbitrary Smalltalk object to the heap,
as the object can be a complex graph with no direct C representation.

For example, suppose your application contains a class that references a
Smalltalk array of float objects. You determine that when this class is
copied to the heap, the application’s behavior that you defined requires
that the class creates a C float array containing the information in the
Smalltalk float array. To do this, you can use the following code fragment
to perform the copy. Assume that the class instance variable that
references the Smalltalk Array object is called floatArrayInstVar.

copyToHeap
| floatArrayPtr arraySize tempPtr |
arraySize := floatArrayInstVar size.
floatArrayPtr := CLimitedPrecisionRealType float malloc: arraySize.
tempPtr := floatArrayPtr copy.
1 to: arraySize do: [:i |

tempPtr contents: (floatArrayInstVar at: i).
tempPtr += 1].

^floatArrayPtr
Note the following about the above code fragment:

• The C float type object allocated enough storage in the external heap
to contain all the array’s Float data. It constructs a C float type
(CIntegerType float) and then calls malloc: with the correct size of the
array as a parameter.

• A temporary pointer was created by copying the heap float array
pointer (floatArrayPtr). This is required because the copy loop
destructively modifies the loop pointer using the += message. You
must maintain a pointer at the beginning of the array, so it can be
answered as the value of copyToHeap.
3-10 VisualWorks

Creating C Data
Creating C Data
All generic C data types are available for use by your Smalltalk code.
These data types are defined by special interface classes that are part of
DLL and C Connect. This includes scalar types (integer, float, character,
and enumerated), composite types (union, structure, and array), and pointer
types.

DLL and C Connect provides a class hierarchy that parallels C data
types. CDatum and its subclasses represent actual C data, such as string,
or the pointer represented by an address, such as 0x734521.

CDatum subclasses provide the means to represent more complex data
types, such as structures and arrays. When a C function has an argument
or return value of one of these data types, DLL and C Connect converts
between the C data and an instance of a subclass of CDatum. The
subclasses of CDatum also provide appropriate accessing methods so
that your application code can insert data into and extract data from the
CDatum.

Each CDatum contains an object to hold the actual data, plus an instance
of CType to represent the C type of the data.

For simplicity, you should avoid creating instances of CType and CDatum
objects by directly sending allocation messages to these classes.
Instead, create them as a side-effect of access methods defined in their
ExternalInterface subclass and the type instance creation messages (new,
newInFixedSpace:, malloc, malloc:, gcMalloc, and gcMalloc:.)

Scalar Data
Scalar value types are represented directly by ordinary Smalltalk objects:
Integer, Double, and Float. For example, a function that expects an integer
as an argument can be passed an instance of SmallInteger,
LargePositiveInteger, or LargeNegativeInteger. Conversion to and from the
correct integer class is handled automatically. A #'bad argument' exception
is raised when an incorrect value is passed, such as when a
LargePositiveInteger is passed to a function that expects a short integer (for
details on exceptions, see “Exception Handling” on page 6-1).
DLL & C Connect User’s Guide 3-11

Creating and Accessing C Data
The following table lists the corresponding scalar types:

Notice that SmallInteger, LargePositiveInteger, and LargeNegativeInteger are
used to represent [unsigned] int and [unsigned] long data types. Smalltalk
imposes a range limit on SmallIntegers, typically -229 to 229 - 1. Depending
on the platform’s default byte size for these types, the maximum or
minimum SmallInteger values can be exceeded. In this case Smalltalk
uses a LargePositiveInteger or LargeNegativeInteger representation. However,
not all LargePositiveInteger or LargeNegativeInteger objects can be used, only
those that fall into the default range of the platform’s byte size for
[unsigned] int and [unsigned] long types. If an out-of-range Smalltalk
number is used for a given C scalar type, your C function call will fail with
a #'bad argument' exception.

For float and double scalars, use both Smalltalk Float and Double objects.
Note, however, that every Float can be coerced into a Double, but not every
Double can be coerced into a Float. If you use a Double when a float is
expected, your C function call will fail with a #'bad argument' exception that
identifies the invalid argument (for details on exceptions, see “Exception
Handling” on page 6-1).

Correspondence between scalar C types and Smalltalk classes

C type Smalltalk object

unsigned char SmallInteger

char SmallInteger

unsigned short SmallInteger

short SmallInteger

unsigned int SmallInteger or LargePositiveInteger depending on a
particular platform’s int type size.

int SmallInteger, LargePositiveInteger or LargeNegativeInteger
depending on a particular platform’s int type size.

unsigned long SmallInteger or LargePositiveInteger

long SmallInteger, LargePositiveInteger or LargeNegativeInteger

float Float or Double

double Float or Double. If Float is used, it is promoted to
Double-precision.
3-12 VisualWorks

Creating C Data
A Smalltalk Character object does not undergo a conversion process. You
are responsible for converting the character object to and from an integer
value using the current platform’s encoding. You can convert the
character by performing the following:

anInteger := String defaultPlatformClass encode: aCharacter
aCharacter := String defaultPlatformClass decode: anInteger

Do not assume the asInteger message returns the correct Character
encoding.

Enumeration Types
DLL and C Connect represents enums (enumeration types) using
instances of CEnumerationType. For example, an interface class might
include the following declarative method:

fewMonths
<C: enum months{ Jan, Feb, Mar, Oct = 10}>

You can access members of this enum using an instance method e.g.:

getMonth
| anEnum |
anEnum := self new fewMonths.
anEnum memberNamed: #Feb.
anEnum memberNamed: #Oct.

The last two lines of the method return the small integers 1 and 10
respectively. If the enum definition included a typedef, i.e.:

fewMonths
<C: typedef enum {Jan, Feb, Mar, Oct = 10} months>

Then the getMonth method shown above would need to be changed:

getMonth
| anEnum |
anEnum := self new fewMonths.
anEnum type memberNamed: #Feb.
anEnum type memberNamed: #Oct

Note that you cannot change the value of the member outside its
definition (this is consistent with the semantics of enums in C). Also, you
cannot pass an enum object directly to a C function. Instead, you must
pass the members as Integers.

Composite Data
Your interface class can declare structures or unions using a typedef
method. For example, suppose you want to pass a structure containing
customer information to a function. The structure contains two members:
DLL & C Connect User’s Guide 3-13

Creating and Accessing C Data
the customer’s name and account number. The definition appears in a C
header file, and the typedef declaration in the header file resembles the
following:

typedef struct {
char *name;
int account;

} Customer;
When you use the External Interface Builder to parse the header file and
compile the interface class, a Smalltalk method named Customer is
automatically created in the interface class that parallels this declaration.
You can also manually create this method by simply adding the method to
your interface class. The resulting Smalltalk method would look like the
following:

Customer
<C: typedef struct {

char *name;
int account;

} Customer>
To create an empty instance of a customer structure, use the following
code fragment:

| interface customerType customerRecord |
interface := CustomerInterface new.
customerType := interface Customer.
customerRecord := customerType gcMalloc.

Notice the following about the above code fragment:

• The second line creates an instance of a hypothetical interface class,
the class that encapsulates the Customer interface and defines the
Customer typedef method.

• The third line asks the interface for the Customer type. The type is an
object that represents the C typedef declaration.

• The fourth line asks the type object to create a new instance of itself.
The gcMalloc message is used to allocate the object in the external
heap, so that it will be suitable to pass as a parameter to C code.
Note that once the code fragment is completed, the customerRecord
will no longer be referenced by any Smalltalk object, and will thus be
reclaimed during the next finalization.

The expressions for creating an instance of a customer structure can be
further condensed, as shown in the first expression below. The second
expression places an actual number into the account member, using a
memberAt:put: message, and retrieves the account field using memberAt:.
3-14 VisualWorks

Creating C Data
| customerRecord |
customerRecord := CustomerInterface new Customer new.
customerRecord

memberAt: #account
put: 346.

^customerRecord memberAt: #account
The above method simply returns the number 346, the account member.

There may be situations where you need to access a structure member
that is a structure itself. The process to access the structure member
depends on the method in which the structures were created. The
following strategy should be employed when the structure is allocated in
the external heap, using the CType protocol malloc, malloc:, gcMalloc, or
gcMalloc:. The example structure is:

subStruct
<C: typedef struct {

int A;
int B;

} subStruct>

baseStruct
<C: typedef struct {

char *name;
subStruct number;

} baseStruct>
Assume the following C function is defined:

printStruct: arg
<C: int printStruct(baseStruct *)>

Data can then enter into the structures with the following code fragment:

| aBaseStruct aSubStruct customer name |
customer := CustomerInterface new.
name := 'Cincom' copyToHeap.
aBaseStruct := customer baseStruct gcMalloc.
aBaseStruct memberAt: #name put: name.
aSubStruct := aBaseStruct refMemberAt: #number.
aSubStruct memberAt: #A put: 16.
aSubStruct memberAt: #B put: 20.
(customer printStruct: aBaseStruct) inspect
name free.

However, when the structure is allocated in Smalltalk memory using the
CType protocol new, use the following method. After aSubStruct is
populated with data, it should be placed into aBaseStruct:
DLL & C Connect User’s Guide 3-15

Creating and Accessing C Data
| aBaseStruct aSubStruct customer name |
customer := CustomerInterface new.
name := 'Cincom' copyToHeap.
aBaseStruct := customer baseStruct new.
aBaseStruct memberAt: #name put: name.
aSubStruct := customer subStruct new.
aSubStruct memberAt: #A put: 16.
aSubStruct memberAt: #B put: 20.
aBaseStruct memberAt: #number put: aSubStruct.
(customer printStruct: aBaseStruct gcCopyToHeap) inspect.
name free

Those accustomed to writing C code (as opposed to Smalltalk code)
might notice a design philosophy that differs slightly from the C
philosophy regarding composite member accessing. DLL and C Connect
implements a simple load/store/reference design for composite members.
All member access protocols either answer a copy of a member (load),
sets the value of a member (store), or answer a reference to a particular
member. This is contrary to the C language notion of an lvalue and rvalue
(consult a C language reference manual if you are not familiar with this
terminology), where the same C expression is used to both load and
store values into a member (or expression in general). Keep this in mind
when writing Smalltalk code that attempts to mimic existing C code.

In general, the Smalltalk composite accessing protocol answers a copy of
a member that is independent of the member’s type. The modification
protocol sets the value of a member only if the protocol’s argument is of
the same type as the member. This is true even if a structure member is
itself a more complicated type, such as another structure, union, or array.
For example, assume the following structure declaration:

struct {
<T1> member1;
<T2> member2;
<T3> member3;

}
The protocol memberAt: answers a copy of member1, member2 or member3
that is independent of the types T1, T2, or T3. Similarly, memberAt:put: fails
if the second argument is not an object type equal to T1, T2, or T3. If you
do not wish to receive a copy of a member (for example, you want to
modify the member in place) use the refMemberAt: message.

An exception to this rule is array member accessing. If a structure
contains a member that is an array of objects, accessing that member will
answer a pointer to the first element of the array (zero-based). For
example, assume the following structure definition:
3-16 VisualWorks

Creating C Data
PersonName
<C: typedef struct {

char firstName[10];
char lastName[40];

} PersonName>
Creating an instance of the structure and asking for the firstName member
will answer a char * pointer object to firstName[0].

| aPersonName firstNamePtr |
aPersonName := CustomerInterface new PersonName gcMalloc.
firstNamePtr := aPersonName memberAt: #firstName.
firstNamePtr contents: 97

Pointer Data
C pointers may be used in Smalltalk code. You can create an instance of
a C pointer object in one of three ways:

• Allocate space on the external heap

• Copy a Smalltalk or C object to the heap

• Receive a pointer as the result of a function call

Using the Customer structure from the previous example, assume the
following function declaration. This creates a new Customer object and
answers a pointer to that object:

Customer *CreateDefaultCustomer(void);
The following interface method corresponds to the above C procedure
declaration:

CreateDefaultCustomer
<C: Customer *CreateDefaultCustomer(void)>

The following expressions can be used to access the name member of
the Customer returned by CreateDefaultCustomer:

| customerPtr |
customerPtr := CustomerInterface new CreateDefaultCustomer.
customerPtr memberAt: #name.
customerPtr free.

Note: Use the Smalltalk value nil to represent NULL C pointers.
DLL & C Connect User’s Guide 3-17

Creating and Accessing C Data
Array Data
It is a well-known feature of the C language that the distinction between
array data and pointers is not very strong. Pointers can be used as if they
were declared as arrays. If these pointers are used to index array data,
bounds checking on the array object is typically not performed.

When using arrays and pointers, it is very important to remember that C
array accessing is 0-based as opposed to Smalltalk’s 1-based array
accessing.

An example array type declaration is as follows:

FloatArray
<C: typedef float FloatArray[10]>

To create an instance of this array of 10 floats in the external heap, use
the following code:

MyInterface new FloatArray malloc.
To access an element of the array, use the following code:

| aFloat floatArray |
floatArray := MyInterface new FloatArray malloc.
floatArray at: 3 put: 1.234.
aFloat := floatArray at: 3.
floatArray free
^aFloat

Multi-dimensional array protocol is not supported. To access an element
of a multi-dimensional array, you must calculate the location of the
element yourself. For example, assume the following 10x10 float matrix
declaration:

Matrix
<C: typedef float Matrix[10][10]>

You can access the float located in the third row and the fourth column by
using the following:

| aMatrix aFloat threeAtFourIndex |
aMatrix := MyInterface new Matrix malloc.
threeAtFourIndex := 3 * 10 + 4.
aMatrix at: threeAtFourIndex put: 1.234.
aFloat := aMatrix at: threeAtFourIndex.
aMatrix free.
^aFloat
3-18 VisualWorks

Creating C Data
It is also possible to obtain a pointer to a sub-element within a
multidimensional matrix by simply performing pointer arithmetic on the
array pointer. The refAt: method can be used to index a pointer into an
array.

| aMatrix aFloat aFloatPtr threeAtFourIndex |
aMatrix := MyInterface new Matrix malloc.
threeAtFourIndex := 3 * 10 + 4.
aFloatPtr := aMatrix refAt: threeAtFourIndex.
"Same as:"
"aFloatPtr := aMatrix + threeAtFourIndex."
aFloatPtr contents: 1.234.
aFloat := aMatrix at: threeAtFourIndex.
aMatrix free.

^aFloat
In the fourth line of this example code fragment, the refAt: message
returns a pointer that is threeAtFourIndex elements from the origin of
aMatrix. The argument to the refAt: method must be a zero-based index.

String Data
Smalltalk String objects are treated as a special case when passed as
function arguments typed as char *.

In the case of String arguments, a direct pointer to the Smalltalk String is
passed if the String can be properly NULL terminated. If not, Smalltalk
makes a NULL terminated copy of the string in Smalltalk’s object memory
and a pointer to the new copy is passed as the function’s argument. It
should be noted that objects allocated in FixedSpace are always created
with extra space for NULL termination, and thus it may be more efficient to
allocate String objects using newInFixedSpace:.

Because of Smalltalk’s ability to copy the String argument, do not assume
that strings can be destructively modified. If you wish to destructively
modify a string, first copy the string to the heap and then copy it back into
a Smalltalk String object after the function returns, or allocate the
character array directly in either FixedSpace or the external heap.

Care must be taken when passing String objects. Smalltalk implements
an assortment of string classes, and each class is used to represent a
different type of string. For example, ByteEncodedStrings all use character
arrays to represent strings where each character is mapped to a single
byte, and TwoByteStrings are used to represent character arrays where
each character is mapped to two bytes.
DLL & C Connect User’s Guide 3-19

Creating and Accessing C Data
Various platforms maintain different rules about which byte value maps to
which character object. To facilitate this mapping in a transparent way,
Smalltalk maintains subclasses of ByteEncodedString for various platform
character encodings. For example, instances of class ISO8859L1String are
used for MS-Windows.

Consistency is maintained by using the current platform’s string encoding
scheme when sending string object references to C. Every string object
undergoes an encoding process if it is not already a platform string. This
is true of function arguments. The encoding process may require
Smalltalk to make a local copy of the string (similar to the NULL
termination scheme described earlier), so do not assume that your C
code may destructively modify the string argument. This encoding
process will also degrade the performance of your function call, so you
should pass Smalltalk String objects with care. An alternative approach is
to use newInFixedSpace: to allocate String objects that will not need to be
NULL terminated by copying the entire string.

Casting
It is sometimes necessary to convert one C data type into another form.
The C programming language uses a special casting syntax to
accomplish this. For example, the following line of C code casts a pointer
into an unsigned long value:

unsigned long ulObject;
char *szString;

ulObject = (unsigned long) szString;
Using the facilities of DLL and C Connect, this same casting operation
would look like this:

| ulObject szString |
szString := 'daniel' gcCopyToHeap.
ulObject := CIntegerType unsignedLong cast: szString.

The first line of this example copies the Smalltalk String object to the
external heap. The object szString would be the instance of a CPointer. The
second line performs two functions. First, it asks the class CIntegerType for
the CType object that represents an unsigned long C type. Then, this type is
asked to cast the char * pointer represented by szString. The result is a
conversion of the string pointer value into a Smalltalk Integer object. It
should be noted that the special case of casting a pointer to an integer
scalar type can also be accomplished by sending the message
referentAddress to a CPointer object.
3-20 VisualWorks

External Heap Copying
External Heap Copying
It is sometimes helpful to perform a wholesale copy of data to and from
the external heap. Although the C data type protocol copies individual C
data types to and from the heap, there are times where you may need to
copy arrays of data, or large chunks of uninterpreted byte data where the
data size is only known at run-time.

The C pointer protocol that provides the protocol for bulk data copying is
implemented as follows:

Suppose you want to create an array of floating point numbers in order for
your C code to manipulate the array. After the C function completes
execution, you want to move the entire array back into a Smalltalk object,
so that you can further manipulate the data, and have the data stored
when you save your image.

The following code fragment shows how to allocate the array in the
external heap and copy it into a Smalltalk UninterpretedBytes object. It
answers two identical arrays. The first array is constructed by copying the
data to an UninterpretedBytes object; the second array copies the same
data but uses the pointer-access protocol to fetch each float data object.

Take some time to study the following example carefully. It contains many
of the product’s important programming features.

Copying protocol

Method Purpose

copyAt: offset
from: byteLikeObject
size: count
startingAt: startIndex

Writes count bytes to the receiver’s address +
offset from byteLikeObject starting at startIndex.
The argument byteLikeObject must indeed be a
byte-like object. startIndex must be a positive
Integer, and startIndex + the number of bytes
copied must be less than or equal to the size of
byteLikeObject.

copyAt: offset
to: byteLikeObject
size: count
startingAt: startIndex

Reads count bytes to the receiver’s address +
offset from byteLikeObject starting at startIndex.
The argument byteLikeObject must indeed be a
byte-like object. startIndex must be a positive
Integer, and startIndex + the number of bytes
copied must be less than or equal to the size of
byteLikeObject.
DLL & C Connect User’s Guide 3-21

Creating and Accessing C Data
| floatArrayPtr numberOfFloats floatByteSize floatBytes arrayByteSize
floatArray1 floatArray2 tempPtr |

numberOfFloats := 10.
floatByteSize := CLimitedPrecisionRealType float dataSize.
arrayByteSize := floatByteSize * numberOfFloats.
floatArrayPtr := CLimitedPrecisionRealType float malloc: numberOfFloats.
[tempPtr := floatArrayPtr copy.
"Fill in the array with some data."
1 to: numberOfFloats do: [:i | tempPtr contents: i. tempPtr += 1].
"Between the previous line and the next line, pass the floatArrayPtr to a C

routine that will fill in the Float data. For this example, we omit this step and
simply begin extracting the resulting float data."

floatBytes := UninterpretedBytes new: arrayByteSize.
floatArrayPtr

copyAt: 0
to: floatBytes
size: arrayByteSize
startingAt: 1.

floatArray1 := Array new: numberOfFloats.
1 to: numberOfFloats do: [:i |

floatArray1
at:i put: (floatBytes floatAt: i - 1 * floatByteSize + 1)].

floatArray2 := Array new: numberOfFloats.
tempPtr := floatArrayPtr copy.
1 to: numberOfFloats do: [:index |

floatArray2 at: index put: tempPtr contents. tempPtr += 1]
valueNowOrOnUnwindDo: [floatArrayPtr free].

^Array with: floatArray1 with: floatArray2

External Heap Alignment
DLL and C Connect is designed to provide seamless access to C
functions and data on a variety of hardware platforms running various C
compilers. Because of this, each platform and compiler combination
enforces certain restrictions on how C data objects must be placed in
memory. For example, some platforms do not permit byte addressing,
while others impose a performance penalty if data is accessed on a byte
boundary, as opposed to the machine’s word boundary.

In addition to hardware restrictions, a platform’s compiler may impose its
own restrictions on the organization of data in memory. This organization
is most evident with C structures and unions, where the compiler
implements a particular alignment algorithm. This alignment algorithm is
a mechanism the C compiler uses to position the data members within a
structure.
3-22 VisualWorks

External Heap Alignment
To ensure that DLL and C Connect works predictably with C libraries or
compilers that employ non-standard data alignment algorithms, the
product provides a means to define alternate alignment algorithms. This
mechanism is useful when the memory layout of C data objects must be
under the control of the programmer.

To support each platform and compiler combination, a flexible approach
is taken to structure and union layout, by implementing a layout algorithm
class called CStructureLayout. This class is responsible for implementing
various layout and aligning algorithms for C data structures.

CStructureLayout operates in the following way. Very early in the Smalltalk
application start-up sequence, the CStructureLayout class receives an
installOn: message. This message is sent by the ExternalInterface class in
response to ObjectMemory’s earlySystemInstallation change request (see
“External Interfaces and Snapshots” on page 2-13 for more details on the
earlySystemInstallation change request). CStructureLayout uses the
argument to installOn: to determine which platform your application is
running on and proceeds to realign all the structure and union objects in
the system to use the platform’s default alignment algorithm for the
current platform.

CStructureLayout implements the most common structure layout algorithm
for each platform. However, many compilers allow various layout
algorithms to be used by setting certain compile time switches. If you
need to implement your own layout algorithm, you can do so by
performing the following steps:

• Add a new class instance creation message for your new layout
algorithm to either the subclass CStructureLayout, or your own
subclass. CStructureLayout implements the layout algorithms using a
series of alignment blocks. You may consult CStructureLayout’s class
comment and the existing layout algorithm implementations for
details on how to implement your own layout algorithm.

• Alter the method CStructureLayout>>installOn: to recognize the platform
and install your new layout algorithm.

• During a response to ObjectMemory’s returnFromSnapshot change
request, after CStructureLayout has initialized itself, set the default
layout algorithm by sending defaultLayout: to CStructureLayout. The
argument is an instance of a CStructureLayout that implements your
layout algorithm. Then realign all the structures and unions in the
system by sending CCompositeType the realign message.
DLL & C Connect User’s Guide 3-23

Creating and Accessing C Data
Unfortunately, the returnFromSnapshot change request may arrive too late
in your application’s start-up sequence. This opens up the possibility that
you will use your interface class before it is properly initialized. Use either
CStructureLayout’s installOn: method, or the earlySystemInstallation change
request for this reason.

Existing libraries assume a particular structure layout algorithm. If you
implement your own layout algorithm, or change the default, you must
make sure that libraries used with this new layout are compatible.

Unexpected Data Alignment in C Structure Objects
To understand how alignment algorithms may be implemented, let’s
consider the following example.

On the MS-Windows platform, suppose that we have defined the
following structure in our ExternalInterface subclass:

<C: struct teststruct1 {
double d;
char * p;
}>

Ordinarily, we would expect that the compiler aligns the structure
elements as follows:

Since the second element in our structure is defined as a pointer, we
expect the size of this object to be determined by the size of platform’s
address-space (in this case, 32-bits). Although we expect that the whole
structure only occupies 12 bytes, the compiler adds an extra 4 byte space
for alignment (as shown in the lower layout). The pointer object p is still
located in the same byte location, but the overall size of the structure is
padded with four empty bytes.

A similar situation can be observed in the following struct definition:

<C: struct teststruct2 {
float f;
double d;
}>

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7Byte Number:

Expected Layout:

Actual Layout:

DOUBLE POINTER

DOUBLE POINTER
3-24 VisualWorks

External Heap Alignment
Again, the structure definition produces an unexpected layout, which may
be illustrated as follows:

In both of these cases, the compiler sets an alignment and size for the
structure elements in order to align them at eight-byte multiples (this is
called natural alignment, because a double is eight bytes in size). The
whole struct object is aligned at eight-byte multiples according to the
most-restrictive-member rule; in this case the most restrictive size is
double. Moreover, the byte size of the struct must be a multiple of eight
even if it contains members with data-sizes less than a machine word in
length (i.e., four bytes in the WIN32s environment).

Since the Microsoft WIN32s/NT environment aligns struct objects
containing eight-byte data on eight-byte boundaries, DLL and C Connect
normally uses this alignment algorithm for proper compatibility. However,
some third party libraries may not follow this alignment rule.

Changing the Alignment Algorithm
For compatibility with non-standard libraries, you can implement alternate
alignment algorithms. DLL and C Connect provides a special class
named CStructureLayout to implement this algorithm. By default, this class
provides a 32-bit packing algorithm, but by adding new methods, you can
support various layout algorithms.

Depending on the alignment you need, it may or may not be necessary to
implement a new layout method. Browse the class protocol for
CStructureLayout to see the standard implementation. provides methods
for to DOS layout, two-byte, and four-byte layouts.

You can change the default alignment by evaluating a Smalltalk
expression similar to the following (the receiver is a subclass of
ExternalInterface):

SubclassInstance teststruct1
typeDo: CStructureLayout twoByteLayout

Or, alternately:

SubclassInstance teststruct1
typeDo: CStructureLayout dosLayout

DOUBLE

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7Byte Number:

Expected Layout:

Actual Layout:

DOUBLEFLOAT

FLOAT
DLL & C Connect User’s Guide 3-25

Creating and Accessing C Data
Note that you must change the default alignment before you allocate a
pointer to a structure object. Alternately, you can realign all existing
structure and union objects by sending class CCompositeType the
message realign. Also, the alignment will only be applied to the structures
associated with the ExternalInterface subclass that receives the typeDo:
message. If you have multiple interface classes that need to use a
different alignment algorithm, you must send this message to each one
separately.

For discussions of platform-specific alignment issues, you may consult
“Platform Specific Information” on page 8-1.

External Heap and Snapshots
Smalltalk preserves the semantics of objects across a snapshot in most
cases. The procedures to perform this are provided by the snapshot
facility itself, which preserves the state of object memory. This is sufficient
for objects whose interpretation is completely contained in an image.

However, some types of objects are affected by the external environment
and must be given special treatment. In particular, pointers into the
external heap that were active when the snapshot was made will be
invalid.

For example, suppose you created an object located in the external heap
using the malloc message sent to a C data type. The C data pointer,
represented by an instance of the Smalltalk class CCompositePointer,
CProcedurePointer, or CPointer, remains in the image after a snapshot.
However, the pointer into the external heap becomes invalid when you
restart the image.

On image startup, the external interface machinery clears all your pointer
objects so that a subsequent reference will raise an exception rather than
dereference an invalid (i.e., nil) pointer (for details on exceptions, see
“Exception Handling” on page 6-1). In general, you should try to structure
your application to re-construct all external data after start-up.

Allocating Objects in FixedSpace
As an alternative to copying byte arrays or strings between Smalltalk and
C data objects, it is possible to allocate the objects in a special zone of
the object memory known as FixedSpace. Throughout their lifetime, objects
allocated in FixedSpace are managed by the Smalltalk memory manager
but they are not subject to relocation during compaction. When they are
3-26 VisualWorks

Allocating Objects in FixedSpace
no longer referenced by the system, they will be reclaimed by the
garbage collector. FixedSpace provides a storage mechanism that satisfies
the general storage semantics of both Smalltalk and C.

For efficiency reasons, only object bodies are located in FixedSpace, and
only non-pointer objects can have their bodies in FixedSpace. Further, all
object bodies in FixedSpace have at least two extra bytes allocated to
provide for null-termination of single and double-byte strings.

The Object Engine automatically ensures that the body of any byte-like
object that is passed as a pointer argument to a threaded call gets
promoted to FixedSpace (threaded calls are discussed in the chapter
“Threaded Interconnect” on page 5-1). This ensures that the garbage
collector does not move the object’s body during the _threaded call,
although the garbage collector might move the object’s header (and
hence need to change its object pointer). If you are allocating an object in
FixedSpace, for efficiency you might want to avoid promoting objects during
a call, hence DLL and C Connect provides protocol for instantiating byte-
like objects in FixedSpace (described below). By initially allocating the
object in FixedSpace, you can avoid the additional overhead incurred when
the object body is promoted.

Of the two general strategies for storage allocation that have been
described in this chapter, the best approach is often to allocate your
objects in FixedSpace using the message newInFixedSpace:. There are a
number of advantages to using this approach; first, the data object can be
more easily shared between Smalltalk and C, because a C function call
isn’t required to manipulate the object’s fields; second, unlike objects
allocated on the external heap using malloc, objects in FixedSpace are
automatically garbage-collected; and third, String objects allocated in
FixedSpace do not need to be copied to add NULL termination required by
C string functions. The decision to use FixedSpace instead of the external
heap should include a consideration of the life of the objects that will be
shared between Smalltalk and C. For allocating certain types of
persistent data, a better approach is to allocate space on the external
heap using malloc. In general, if long-term persistence of C data is an
issue, it may be better not to use FixedSpace.

The following protocols enable you to instantiate objects in FixedSpace,
promote mobile objects to FixedSpace, and to test whether or not objects
have been instantiated or promoted to FixedSpace:
DLL & C Connect User’s Guide 3-27

Creating and Accessing C Data
For example, to allocate a String object in FixedSpace that is appropriate to
your platform, evaluate the following Smalltalk expression:

| buffer |
buffer := String defaultPlatformClass newInFixedSpace: 64.

The String will be 64 characters long, and contain space for NULL
termination.

It is important to bear in mind that if you allocate an object in FixedSpace
and pass the associated CPointer to external code that maintains a copy
of this pointer, you must maintain a Smalltalk reference to that CPointer
object for as long as the external copy of the pointer is valid. If the
Smalltalk object in FixedSpace is deferenced, it will be reclaimed and the

FixedSpace allocation, conversion, and testing protocol

Method Description

Behavior>>
newInFixedSpace: anInteger

Answer with a new instance of the receiver,
a class, with the number of indexable
variables specified by the argument
anInteger. Arrange that the object’s data
resides at a fixed address throughout the
object’s lifetime. Such an object is suitable
for passing to foreign code, because it
does not move over time, and can be
effectively shared between Smalltalk and
foreign code.
Fail if the class is not bits-indexable, or if
the argument is not a positive Integer.

SequenceableCollection>>
asFixedArgument

Coerce the receiver to an object whose
data resides at a fixed address. If the
receiver already has fixed data, return the
receiver; otherwise return a copy of the
receiver which does have fixed data.

Object>>
isFixedArgument

Answer whether the receiver, when passed
as an argument through DLL and C
Connect, represents data at a fixed
address. This is true for objects created via
the newInFixedSpace: primitive. Fail if the
receiver is immediate, because it has no
data.

Object>>
hasFixedData

Answer whether the receiver’s data resides
at a fixed address. This is true for objects
created via the newInFixedSpace: primitive.
Fail if the receiver is immediate, because it
has no data.
3-28 VisualWorks

Representing C Types
pointer passed to the external function will become invalid. To avoid
serious corruption of the object memory, take care that your CPointers are
referenced for the lifetime of their corresponding heap pointer.

Because FixedSpace is not subject to compaction, it is possible that the
zone can suffer fragmentation that exhausts the available space. When
an allocation request in FixedSpace fails, the object memory will be notified
and attempt to grow the space. Severe fragmentation could possibly
result in repeated attempts to grow FixedSpace, eventually producing
behavior that resembles a storage leak. Any application that makes use
of FixedSpace for dynamic allocation should be tested for this potential
problem. Be aware that the object memory will coalesce FixedSpace when
resuming from a snapshot, so fragmentation problems are only an issue
when an image is running for long periods of time.

Since the size of FixedSpace is automatically adjusted by the object
memory, there is no public protocol for manually setting the allocation for
this zone.

Representing C Types
Two class hierarchies are fundamental to the operation of run-time C data
accessing in DLL and C Connect. The roots of these two hierarchies are
CDatum and CType. These classes interact in a tight fashion to provide a
mapping between Smalltalk data objects and C data objects. Every C
data object that cannot be represented directly by a Smalltalk class (such
as Character, Float, Double, or Integer) must be wrapped by an instance of a
CDatum. However, in order for a CDatum object to know anything about the
size or type of the object that it wraps, it must store a description of that
object type. It references an instance of CType for just this purpose. CType
and its subclasses represent the various C data types that your C
interface may be using. They include C structures, unions, type
definitions, enumerations, numeric scalars, and pointers.
DLL & C Connect User’s Guide 3-29

Creating and Accessing C Data
The following diagram illustrates the interaction between a CDatum
instance and its associated type:

Relationship between CDatum and its associated type

The actual C data object may be located either in the external heap, or in
the Smalltalk object memory. As we have already discussed, the
allocation protocol for C data objects enables you to choose where the
object will be located. Be aware that the manner of representing the C
datum will be slightly different in each case.

As an example of the former case (in which the C datum is located in the
Smalltalk object memory), suppose your ExternalInterface class declared
the following C structure type.

typedef struct {
float x;
float y;

} Point;
A method declaration would appear in your hypothetical interface class
called PointInterface.

Point
<C: typedef struct {

float x;
float y;

} Point>
You could create an instance of the Point structure using the following
expression:

PointInterface new Point new
Evaluating this expression answers an instance of a CComposite, a
subclass of CDatum, that encapsulates two objects:

• The bytes representing the two float objects contained in the Point
structure.

• The type of the object, which in this case is a CCompositeType.

CDatum
datum
type

Actual C data object

CType
3-30 VisualWorks

Representing C Types
To create an instance of the Point structure on the external heap, you
would use the following expression:

PointerInterface new Point malloc
This expression answers an instance of a CCompositePointer, a subclass of
CDatum, that encapsulates two objects:

• An integer value representing the pointer to the bytes in the external
heap which contain the two float objects.

• The type of the object, which in this case is a CCompositeType.

In general, instances of class CComposite are used to represent C data
objects held in the Smalltalk object memory, while instances of class
CCompositePointer are used to hold references to C data objects stored on
the external heap. Note that instances of CComposite can be used to hold
references to objects on the external heap, but it is the programmer’s
responsibility to explicitly deallocate these objects when they are no
longer in use.

Note: You do not need to create instances of CDatum objects
yourself. They are automatically created when allocating CType
instances, accessing structure or union members, or calling
functions.

Limitations of CType Definitions
Although DLL and C Connect provides a convenient means to define C
types using the standard VisualWorks tools, the present strategy used for
representing types suffers from a serious limitation. If you are trying to
use the Smalltalk inheritance hierarchy to define “abstract” and “concrete”
interface classes, you should understand the following limitation.

To clarify the nature of this limitation as well as its possible impact on the
design of your interface classes, we shall consider the following two
example type definition methods:

SomeInterface methodFor: 'types'

Long
<C: typedef long Long>

Size
<C: typedef struct {

Long cx;
Long cy;

} Size>
DLL & C Connect User’s Guide 3-31

Creating and Accessing C Data
Beginning with the observation that the value of the method Size depends
upon the method Long, we notice that these two methods represent not
merely type definitions, but also nodes in a graph of C type objects. In
effect, the references from one C type to its sub-types are the arcs in the
graph. Here in our example, this arc is the reference from type Size to type
Long.

The complication arises as a side-effect of the way that DLL and C
Connect represents these type-relations. When the type definition
methods are created, variables which refer to type nodes are stored in
each ExternalInterface’s type pool. For the example above, SomeInterface’s
SomeInterfaceDictionary would contain CTypedefType objects which
represent the binding between the name of the type (e.g., Long) and the
actual CType object for every type defined. In this case, the long would be
represented by a CIntegerType. The limitation in this scheme arises
because the semantics of a C type dictates that the reference from one C
type to its subtypes is direct and does not involve the use of variables (in
our example, the contents of the ExternalInterface’s type pool).

Because DLL and C Connect uses Smalltalk methods to represent C
typedefs, the semantics of the C typing scheme are not reproduced in an
entirely faithful manner. As we recall, Smalltalk methods are late-bound
via inheritance. This means that in a hierarchy of classes, subclasses
may override methods defined in their superclasses, and a message-
send will invoke these subclass methods instead of those overridden in
the superclass. Since the typedef methods used by DLL and C Connect
resemble normal Smalltalk methods, it is natural to assume that
subclasses may modify the type graph by overriding methods that define
C types in superclasses. But since the references between C types are
direct, they are not actually affected by the inheritance hierarchy. The
immediate consequence of this is that the effect of defining a typedef
method in a subclass is not as expected.

The problem is precisely that it is possible to override the root note of a
type graph in a subclass. For example, if there were no other typedefs that
referred to Size in an ExternalInterface hierarchy that includes SomeInterface,
then one of SomeInterface’s subclasses could override Size. This is
because the Size type refers to other types (e.g., Long), but no other types
refer to Size. However, one cannot override an interior or leaf node in the
hierarchy. So, for example, if in a subclass of SomeInterface we were to
override the Long method, then the Size type would not be affected. This is
because the Size type directly refers to the Long type object defined by the
Long method in SomeInterface. Reimplementing the method in a subclass
does not affect this type graph.
3-32 VisualWorks

Protocol for C Data Objects
To achieve the desired effect of redefining one type in a subclass, we
would have to redefine all the methods in the typing graph. In the given
example, this would mean redefining both Size and Long. The effect would
be to produce a new type graph independent of the one in SomeInterface,
in which the new Size type object directly refers to the new Long type.

The principle consequence of this design limitation is that you must
exercise caution when designing any interface that involves a hierarchy of
ExternalInterface classes that make use of typedefs. The Smalltalk
inheritance mechanism does not allow you to define a complex C type
graph by simply overriding selected definitions in your subclass. Note that
this limitation does not affect type graphs that you construct using the
External Interface Builder tool. You need to be aware of this limitation only
when you are using the Smalltalk class hierarchy to define interfaces via
inheritance.

Protocol for C Data Objects
Subclasses of CDatum support a set of messages that mimic C
expressions for common operations on C data and pointers. The tables
below list these messages, using cd to represent C data objects, cp to
represent C pointers and ct to represent C types:

C pointer protocol

C pointer expression Smalltalk expression

cd = *cp cd := cp contents

*cp = cd cp contents: cd

*cp1 = *cp2 cp1 contentsFrom: cp2

cp + offset cp + offset

cp1 - cp2 cp1 - cp2

cp += offset cp += offset

cp -= offset cp -= offset

++cp cp increment

cp += 1

--cp cp decrement

cp -= 1
DLL & C Connect User’s Guide 3-33

Creating and Accessing C Data
The table below outlines the mapping between C data types and their
corresponding CDatum objects:

C array protocol

C array expression Smalltalk expression

cd = cp [index] cd := cp at: index

cd := (cp + index) contents

cd = cp[index1][index2] cd := cp at: index1 * rowSize + index2

cp[index] = cd cp at: index put: cd

cp[index1][index2] = cd cp at: index1 * rowSize + index2 put: cd

cp1 = &(cp2[index]) cp1 := cp2 + index

cp1 := cp2 refAt: index

C structure protocol

C structure expression Smalltalk expression

cd = cp->member cd := cp memberAt: #member

cd2 = cd1.member cd2 := cd1 memberAt: #member

cp->member = cd cd memberAt: #member put: cd

cd1.member = cd2 cd1 memberAt: #member put: cd2

cp1 = &(cp2->member) cp1 := cp2 refMemberAt: #member

Memory allocation protocol

Memory allocation expression Smalltalk expression

cp = malloc(sizeof(cdType)) cp := cdType malloc.

cp = malloc(sizeof(cdType) * count) cp := cdType malloc: count

free(cp) cp free

C data mapping

C datum Smalltalk datum

<type> * CPointer

<struct> * CCompositePointer

<proc> * CProcedurePointer

<type>[<arraySize>] CArray
3-34 VisualWorks

Protocol for C Data Objects
<struct> CComposite

<union> CComposite

C data mapping (Continued)

C datum Smalltalk datum
DLL & C Connect User’s Guide 3-35

Creating and Accessing C Data

3-36 VisualWorks

4
Calling Smalltalk From C

Defining Callbacks
At times, the relationship between Smalltalk and C should be closer than
that provided by a simple call-and-return mechanism. For example, you
might want to use Smalltalk’s user-interaction facilities to prompt the user
for information without exiting from one C function and then calling
another to finish the job.

Callback process

As illustrated above, a C function that is invoked from within Smalltalk can
also invoke a Smalltalk operation. This temporary exit from C back into
Smalltalk is known as a callback. DLL and C Connect supports two
distinct callback mechanisms:

• An external callback is a Smalltalk block which can be passed to a C
function, in order to be invoked as if it were a C function itself.

• An external message-send is a message to a Smalltalk object that
can be sent from within a C function.

Smalltalk
Application

C function

ReturnCallbackInvoke Return
Function
DLL & C Connect User’s Guide 4-1

Calling Smalltalk From C
When considering either mechanism, it is important to remember that
callbacks give the Smalltalk memory manager an opportunity to relocate
objects. The rest of this chapter demonstrates not only how you can set
up callbacks, but also how to arrange for the memory manager to safely
update Smalltalk object pointers, which are referenced by the C code.

External Callbacks
In the first type of callback supported by DLL and C Connect, a Smalltalk
BlockClosure is passed to a C function as a function-pointer parameter. In
doing so, the closure can be treated as an ordinary function call. The
return value and arguments of the closure must be declared in a typedef
statement. The best way to generate the typedef object is to create a
typedef method in your interface class.

For example, suppose you have a set of network management functions
written in C that you want to invoke from within Smalltalk. One of these
functions, called nameNode(), normally calls another C function to prompt
the user for the name of a new node on the network. Because the
program is running from Smalltalk, substitute a Smalltalk block that
prompts the user with a Smalltalk dialog. The following example is a
mock-up version of the nameNode() function that is targeted for a UNIX
platform. On other platforms, the example may need to be modified (see
below):

#include <stdio.h>

typedef char *(*GetNameProc)(void);

int nameNode(GetNameProc getName)
{

char *name;

name = getName();
fprintf(stderr, "%s\n", name);
return 1;

}
Next, compile and link this code as a DLL, and then create an interface
class.
4-2 VisualWorks

External Callbacks
For the purpose of this example, suppose you are creating a new
interface class, called CallbackInterface, whose definition includes
nameNode.dll as its library file. You will need to create a type-
declaration method (for the block) and a function-calling method for
CallbackInterface, as follows:

GetNameProc
<C: typedef char *(*GetNameProc)(void)>

nameNode: aBlock
<C: short nameNode(GetNameProc aBlock)>

So far, you have created:

• A C function nameNode().

• A Smalltalk method (GetNameProc) that declares the function pointer
prototype indicating the return type and argument type (in this case,
none) of the block to be passed to the C function.

• A Smalltalk method (nameNode:) for invoking the C function and
passing a block as the parameter.

In the code that follows, notice that the block is enfolded in an instance of
CCallback. The effect of this code is to invoke the nameNode function, which
then gives control back to Smalltalk long enough to get the node name
from the user. The name is printed by the C function (as a placeholder for
the real work that a network management application would do with the
name).

| externalCallback testInterface returnStatus |
testInterface := CallbackInterface new.

"Create the prompting block in a callback object."
externalCallback := CCallback

do: [Dialog request: 'Enter a name for the node']
ofType: testInterface GetNameProc.

"Pass the block to the naming function."
returnStatus := testInterface nameNode: externalCallback.
^returnStatus

In the example given above, it was not necessary to guard against the
Smalltalk memory manager. The nameNode function does not hold onto
any Smalltalk object after the callback is complete. Suppose, however,
the nameNode function took two arguments, and the second parameter
DLL & C Connect User’s Guide 4-3

Calling Smalltalk From C
object was still in use after the callback. In that case, a different strategy
would be required: the second parameter object would need to be copied
to the external heap from within Smalltalk (as described in the section
“Allocating C Data Types” on page 3-3). By copying the object, it would
remain in the external heap untouched even if the Smalltalk garbage
collector decided to move things around during the callback. When using
this strategy, it is the responsibility of the caller to free the space on the
external heap.

An External Callback Example
We can demonstrate the external callback mechanism by using the
following simple example based upon a standard C library function.
Starting with StandardLibInterface, the example interface class described in
the preceding chapters (see “Building an Example: StandardLibInterface”
on page 1-12), we can now extend this class to make use of qsort(), a
sorting function in stdlib. Since the example class StandardLibInterface
already contains the appropriate links to the external library stdlib, we
need only add the new interface methods.

The C function qsort() uses the QuickSort algorithm to sort an array of
integers using a separate function that compares two consecutive
elements in the array. The C prototype definition for qsort() is as follows:

void qsort(void*, size_t, size_t, _compare_function)
The function takes four arguments: a pointer to the array to sort, the
length of the array, the width of the array, and a pointer to the actual
sorting function. This sorting function takes two arguments (representing
two adjacent elements in the sort array), and returns a result indicating
how the elements should be sorted. After repeatedly calling this function,
qsort() returns with no result, for the array of elements is sorted in place.

To extend class StandardLibInterface to facilitate calls to qsort(), several
new Smalltalk methods are required. The first method defines the
function prototype, and would look as follows (note that this method can
be generated automatically using the External Interface Builder tool):

qsort: arg1 numElements: arg2 ofSize: arg3 with: arg4
<C: void qsort(

void * ,
size_t,
size_t,
int (*)(const void * , const void *))>

^self externalAccessFailedWith: _errorCode
4-4 VisualWorks

External Callbacks
The second method we need to add to StandardLibInterface defines the
typedef for the comparison function called by qsort(). In our example, this
function will actually be a Smalltalk block closure. The sorting operation is
performed in C, while the criterion for the sorting operation is provided via
a block of Smalltalk code. The type definition for this comparison function
would be as follows:

compareFunction
<C: typedef int (*compareFunction)(const long*,const long*)>

This comparison function takes two long arguments and compares them,
returning a negative integer value if the first argument is less than the
second, zero if the two arguments match, and a positive value if the first
argument is greater than the second.

The interface class must also include a type definition method for the
other integer parameters to qsort(). This may be defined as follows:

size_t
<C: typedef unsigned int size_t>

To actually call the qsort() function, we define a last method called
sortExample to set up all the parameters and then make the call. The
following method will sort odd and even numbers into separate groups:

sortExample
"StandardLibInterface new sortExample"
| sorter type data |
"define the sorting function."
sorter := CCallback

do:
[:np :mp | | n m |
n := np contents. m := mp contents.
n even = m even

ifTrue: [n - m]
ifFalse: [n even ifTrue: [-1] ifFalse: [1]]]

ofType: self compareFunction.

"create an Array of consequtive numbers that will be sorted."
type := CIntegerType long.
data := UninterpretedBytes newInFixedSpace: type * 50.
0 to: 49 do: [:i | data longAt: i * 4 + 1 put: i].

"now, call the sorting function using the sortBlock."
self qsort: data

numElements: 50
ofSize: type dataSize
with: sorter.

^(0 to: 49) collect: [:i | data longAt: i * 4 + 1]
DLL & C Connect User’s Guide 4-5

Calling Smalltalk From C
At this point, the code for calling qsort() and the code for testing the call
are in place. To test this example, you may execute the following
Smalltalk expression in a workspace. Select the code and choose Print It
from the <Operate> menu to see the returned value:

StandardLibInterface new sortExample.
The result should be:

#(0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 1 3
5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49)

If you encounter an error while trying to execute this example, make sure
that all of the library DLLs are in place (for details, see “Testing the
Example: StandardLibInterface” on page 1-13).

Returning From a BlockClosure
It is very important that the return from a closure does not use an up-
arrow (^) return. Using an up-arrow return can potentially cause stack-
overflow problems. This is a limitation of the DLL and C Connect
implementation that will be corrected in a future release. The following is
an example of a potentially troublesome closure:

[:arg1 :arg2 |
arg1 doSomething

ifTrue: [^arg2 doTheWrongThing].
arg2 doSomethingElse.
^arg2 doTheLastThing]

The return value for the closure should simply be the last statement in the
closure. For example:

[:arg1 :arg2 | | t |
arg1 doSomething

ifTrue: [t := arg2 doTheWrongThing]
ifFalse:

[arg2 doSomethingElse.
t := arg2 doTheLastThing].

t]
If the closure uses an up-arrow return, the remainder of the calling C
function will not be executed and control will return directly to Smalltalk. A
side-effect of this is that the stack of the calling C function will not be cut
back. Repeated invocations of the closure will overflow the C-stack.
4-6 VisualWorks

External Messages
External Messages
The second type of callback supported by DLL and C Connect is known
as an external message-send. This type of callback involves sending a
message to a Smalltalk object from a C function. You may execute a
series of message-sends during a single function call. Since this
approach requires the ability to customize the C code, it is more intrusive
than the block-passing mechanism previously described. For example, it
cannot be used to provide a callback interface to “off-the-shelf” external
libraries.

However, for custom C code which requires a single message-send,
external message-sends may be the preferable approach in your
interface design. External message-sends are also the only way to pass
object pointers (_oop) back into Smalltalk from C code.

The Object Engine defines a set of five special message-sending
functions. The first C function is for unary messages, and the other four
are the one-, two-, three-, and multi-keyword messages. Each function
takes arguments that identify the receiver of the message, the message
selector, and the arguments (if any). The receiver, message selector and
arguments are Smalltalk objects, so in the function templates that follow,
an “o” (for object) is prefixed to each of the argument variable names.

Another argument to the message-sending function, called poKeep
(pointer to an _oop), is used to store pointers to objects that your C
function uses after the callback. It keeps them safe during memory
management operations that might occur during the callback. Note,
however, that this strategy is only effective for pointers that are held by
the first C function called via DLL and C Connect. If a calling function
anywhere in the C stack holds a pointer into Smalltalk memory, that
pointer could be invalidated during the callback. For this reason, only use
callbacks in functions that are invoked directly from Smalltalk, where the
poKeep mechanism can be used, rather than in a secondary function (i.e.,
a second function called by the first C function invoked directly from
Smalltalk).

The poKeep argument points to a single _oop object. This memory slot
pointed to by poKeep will be updated by DLL and C Connect if the
Smalltalk memory manager happens to move the location of the
referenced object. If you need to store multiple object pointers you should
construct a Smalltalk Array object using the oeAllocArray() function and use
a pointer to this Array _oop as the poKeep argument.
DLL & C Connect User’s Guide 4-7

Calling Smalltalk From C
The following code snippet is an example of storing several objects
during a callback operation. The example stores the receiver, selector,
and argument oops passed to the sendBack() function and extracts them
before invoking the next callback.

#include "userprim.h"

_oop
sendBack(_oop oReceiver, _oop oSelector, _oop oArgs)

{
oop oArray;
int i;

oArray = oeAllocArray(oReceiver, 3);
oeBasicAtPut(oArray, 1, oTheReceiver);
oeBasicAtPut(oArray, 2, oSelector);
oeBasicAtPut(oArray, 3, oArgs);
for (i=0; i < 10; i++) {

_oop oTheReceiver = oeBasicAt(oArray, 1);
_oop oTheSelector = oeBasicAt(oArray, 2);
_oop oTheArgs = oeBasicAt(oArray, 3);

oeSendMessageMany(
oTheReceiver,
oTheSelector,
oTheArgs,
&oArray,
(_oop) 0);

}
}

Each oeSendMessage...() function returns the value returned by the
message-send callback. The last argument of oeSendMessageMany() can
be used to detect a failed message-send. If the message-send fails (for
example, “message not understood”), or if any argument is invalid, the
function returns the value of the last argument. By following this
convention, you may test for a failure by comparing the result of the call to
oeSendMessageMany() with the value passed as the last argument (in this
example code fragment, zero is passed as a known value). In the code
fragment above, this test is not performed.

The _oop type is used for the function’s return value and each of its
arguments. This data type is defined in the userprim.h file, located in
the src subdirectory of the DLL and C Connect release, and must be
included in your C code.
4-8 VisualWorks

External Messages
For a complete description of the function prototypes for external
message-sends, see the chapter “Object Engine Access Functions” on
page 9-1. As a summary, the external message-send functions are
oeSendMessage0(), oeSendMessage1(), oeSendMessage2(), oeSendMessage3(),
and oeSendMessageMany(). An example of a one-keyword message-
sending function follows:

_oop
oeSendMessage1(

_oop oReceiver,
_oop oSelector,
_oop oArg1,
_oop *poKeep,
_oop oFailure);

The oSelector argument must be an instance of Symbol. For example, a
valid selector argument for oeSendMessage1 would be #add:. A parallel set
of functions enables you to specify the selector name as a null-terminated
sequence of characters. In effect, your C code can generate the selector
name immediately instead of being restricted to the selector that is
passed from Smalltalk. The differences between these functions which
allow a C-string message selector and the foregoing set are as follows:

• The method names have a C in its prefix, as in oeCSendMessage1.

• The oSelector argument type is char * instead of _oop.

For example, a unary message-sending function can be typically defined
as:

_oop
oeCSendMessage0(

_oop oReceiver,
 char *szSelector,
_oop *poKeep,
_oop oFailure);

For the sake of simplicity, this example merely demonstrates how to
arrange an external message-send callback. The example ignores useful
functionality on the C side, focusing instead on the required setup for
executing a Smalltalk message-send in a C function.

We can also create a generic C function that accepts a receiver, a
selector, and an array of arguments from Smalltalk. It then executes the
message-send (by calling back into Smalltalk). The function is called
sendBack, and it is defined as follows:
DLL & C Connect User’s Guide 4-9

Calling Smalltalk From C
#include "userprim.h"

_oop
sendBack(_oop oReceiver, _oop oSelector, _oop oArgs)
{

_oop oResult;

oResult = oeSendMessageMany(
oReceiver, oSelector, oArgs, (_oop) 0, (_oop) 0);

if (oResult == (_oop) 0) oeFail(0);
return oResult;

}
Notice that there is no need for the poKeep facility, so a placeholder is put
in that position. To test this example, compile and link sendBack.c as a
dynamic-link library, and define an interface class in Smalltalk that names
sendBack.dll (or whatever convention is used on your platform) as the
library file. On the instance side of the SendBackInterface class, create the
following function-invoking method:

sendTo: receiver selector: selector withArgs: argArray
<C: _oop sendBack(

_oop receiver,
_oop(Symbol) selector,
_oop(Array) argArray)>

Naming the type of object that is expected (Symbol and Array, in this case)
enforces type checking on the affected arguments.

To test this example, execute the following expression in a workspace.
Select the expression and choose Print It or Inspect to see the returned
value:

SendBackInterface new
sendTo: 'Hello'
selector: #,
withArgs: #('world!')
4-10 VisualWorks

Limitations of Callbacks
Limitations of Callbacks

Thunking
Associated with each instance of a CCallback object is an invisible object
called a thunk. A thunk is the mechanism that transitions the caller’s C
code to Smalltalk code. The CCallback and its associated thunk are freed
when the CCallback is no longer referenced from the system. Because of
this, your code must retain a reference to the CCallback object while the
callback is in progress. In addition, any reference to the callback thunk
that is maintained by your external code does not remain valid across
snapshots. Normally, you would make a new CCallback object after
restarting from a snapshot. If, for some reason, you wish to maintain a
CCallback object over a long period of time, you should be aware that it will
need to be reinitialized after each snapshot. You can manually reinitialize
the external reference by sending the CCallback instance the message
mapAddress.

The following diagram illustrates the thunk mechanism used to implement
callbacks:

Implementing callbacks

An exception that unwinds the stack past a callback terminates it without
the C code ever being aware of it. This also applies when a Smalltalk
process is terminated while it is within a callback. This can produce a
potential overflow condition on the C execution stack. This is a known
limitation that will be corrected in a future release of DLL and C Connect.

Thunk

Procedure
call/return

Strong reference
keeps Thunk alive

Smalltalk Application

ExternalCallback

BlockClosure

C Code

callbackProc();
DLL & C Connect User’s Guide 4-11

Calling Smalltalk From C
Ordering of Callbacks
The current callback implements a last-in-first-out ordering restriction on
all callbacks. That is, the last callback to make a transition from C into
Smalltalk must be the first callback to return. It is possible to have
application code make a callback where, while running within Smalltalk, a
Smalltalk process switch occurs. The new process makes a C call that
invokes a callback. If a process switch occurs back to the first process
and it attempts to return, it blocks until the later callback completes. This
last-in-first-out restriction introduces the possibility for deadlock.

This deadlock can be avoided by using the Threaded Interconnect
interface instead of using simple callbacks. Note, however, that the
Threaded Interconnect does not permit external message-sends from
threaded calls. For Smalltalk applications which use multiple threads of
control, the Threaded Interconnect is recommended instead of simple
callbacks (for details, see the chapter “Threaded Interconnect” on
page 5-1).

Valid Callback Locations
Another limitation on callbacks involves specifying the time when a
callback may be invoked. Whether you are using Object Engine access
functions OE{C}SendMessage{0, 1, 2, 3, Many} or CCallback, your callbacks
can only be invoked from C code that was entered using the C calling
machinery. Your C code should not invoke a callback from a user-
primitive, from a signal handler, or from an interrupt handler.

Object Pointers
CCallback cannot be used to send object pointers (_oop) back to Smalltalk.
Therefore, object pointers are invalid arguments for CCallback.
4-12 VisualWorks

5
Threaded Interconnect

Overview
This chapter explains how to use the DLL and C Connect Threaded API
(THAPI) mechanism. This mechanism enables a VisualWorks application
to make multiple concurrent, possibly blocking, calls to external code,
each on its own independent thread of control. The Threaded
Interconnect also allows VisualWorks to handle multiple concurrent
callbacks from external code running on any thread under the control of
the VisualWorks process.

The following discussion assumes that you have a general understanding
of the strategies for concurrent processing in VisualWorks. For a more
detailed discussion of Smalltalk processes, semaphores, signals, and
shared queues, you may consult the VisualWorks Application Developer’s
Guide.

This chapter describes:

• The execution model used by THAPI.

• How to specify threaded calls and callbacks.

• Efficient strategies for allocating storage when using THAPI.

• An example that demonstrates the features of THAPI.

• Performance considerations, and limitations of the current
implementation.

Viewed as a complete package, DLL and C Connect provides two basic
mechanisms for making calls to C functions, one synchronous, the other
asynchronous. The standard DLL and C Connect interface only allows
synchronous calls; that is, during a C function call, all Smalltalk
processes being executed by the Object Engine are blocked for the
DLL & C Connect User’s Guide 5-1

Threaded Interconnect
duration of the call. For Smalltalk applications that make use of DLL and
C Connect for heavy I/O operations, network streams, or concurrent
processing with multiple threads of control, the Threaded Interconnect
API is strongly recommended. For example, a middle-tier application
server in a three-tier architecture should ideally be implemented using
THAPI. By providing an asynchronous execution model, the DLL and C
Connect Threaded Interconnect interface can yield a significant
performance increase in the throughput of I/O processing.

Note that THAPI is not currently supported on the SGI IRIX platform.

Threads
To understand the asynchronous execution model employed by the DLL
and C Connect threaded interconnect, it is useful to first distinguish
between Smalltalk processes, OS processes, and threads.

On conventional operating-system platforms that provide their own
multiprocessing model, the Smalltalk Object Engine runs as a single OS
process with one thread of control. Since the memory overhead and
performance demands for each OS process can be considerable, these
are often referred to as heavyweight processes. Each OS process may
also contain several independent threads of control (sometimes referred
to as native threads).

As a “lightweight” alternative to OS processes, threads can yield
improved performance and dramatically reduce resource usage.
Smalltalk processes (STPs) are similarly lightweight in the sense that the
Object Engine uses the process scheduler to manage each STP
internally, multiplexing (sharing) the single thread of control between the
various STPs, as appropriate.

The Object Engine’s execution model is essentially equivalent to what is
provided by an OS thread manager. However, multiprocessing in
Smalltalk is invisible to other OS processes; from the point-of-view of the
host OS, the Object Engine and all Smalltalk processes appear to
combined as a single thread of control. This becomes an issue when the
heavyweight Object Engine process performs I/O operations. The
problem is that function calls routed through the standard DLL and C
Connect interface may be blocked by the host OS (while waiting for I/O to
complete), and this in turn can block the Object Engine from executing all
other Smalltalk processes.
5-2 VisualWorks

Threads
To eliminate this problem with blocking I/O, the Threaded Interconnect
API provides a means to execute multiple native-code threads within the
single OS process that runs the Object Engine. These threads are not
mapped to each Smalltalk process run by the Object Engine, but are
rather used only for I/O calls via the DLL and C Connect interface. From
the DLL and C Connect programmer’s point of view, the Object Engine
still runs as a single thread, with the threaded interconnect calls running
alongside it.

In this model, whenever a potentially blocking I/O call is to be made via
DLL and C Connect, a separate thread is handed the information
necessary to make the call, the call is executed, and is blocked by the OS
until it completes and the OS reschedules the thread. Meanwhile, the
Object Engine thread blocks the particular Smalltalk process that invoked
the operation, scheduling other runnable STPs. Once the I/O thread is
rescheduled by the OS, it passes back the result(s) of the call to the
Object Engine thread. The Object Engine thread is then free to resume
the STP that invoked the call. Once the I/O thread has passed its results
back, it can either terminate, or remain in a quiescent state, awaiting
subsequent requests for I/O operations.

The threaded execution model can be illustrated as follows:

Threaded Execution Model

User Thread

Object Engine Thread

Smalltalk Application Memory

Smalltalk Object Memory

Smalltalk Process

Smalltalk Process

User Thread
DLL & C Connect User’s Guide 5-3

Threaded Interconnect
Managing Data Objects with Multiple I/O Threads
As discussed in the chapter “Creating and Accessing C Data” on
page 3-1, special care must be taken to manage data objects that are
passed to foreign code functions. The Object Engine routinely invokes the
garbage collector to move objects within the heap. Although this can
happen at arbitrary times, it is not a problem for temporary data objects
being passed via synchronous calls. For the duration of a synchronous
call, the garbage collector is blocked, along with the rest of the Object
Engine, and hence no object relocation can occur.

However, moving objects within the heap is a problem if the call invokes
code that tries to remember the address of an object for subsequent
calls, or if the code invokes a callback. In either case, when the Object
Engine runs, the garbage collector might move the object, invalidating the
information retained by the foreign code.

The same situation arises when using the threaded interconnect. Since
the Object Engine is not blocked during a threaded call, the garbage
collector is free to move objects while the call is in progress. If the
garbage collector moves an object being used as an argument to a
threaded call, either invalid data will be passed to the foreign code, or the
foreign code will likely write to invalid addresses and corrupt the Smalltalk
heap.

It is the programmer’s responsibility to cope with foreign code that
depends on being passed fixed pointers by using one of the storage
allocation strategies provided by DLL and C Connect which enable
Smalltalk programmers to manipulate data on the C heap and reference
this data using instances of CPointer.

For these reasons, all reference parameters in threaded calls must refer
to data that does not move for the duration of the call. There are three
ways to achieve this:

• Use malloc to allocate storage on the C heap, and then explicitly free
the C data object later.

• Copy the object’s data to some fixed space at the start of the call, and
copy it back once the call completes.

• Relocate the object’s data to a fixed space, where it resides for at
least the duration of the call.

The second alternative does not preserve referential integrity; that is, if an
object is passed to more than one concurrent threaded call, or if Smalltalk
code accesses the object while the call is in progress, the participants
5-4 VisualWorks

Managing Data Objects with Multiple I/O Threads
see different copies of the data. This is a serious problem in applications
that need to share data (e.g. applications that share pools of I/O buffers
between I/O drivers and applications, as supported by some file systems
such as Windows NT). Further, the overhead of copying data to and from
some fixed space might be unacceptably high.

If the object might be passed concurrently to more than one threaded
call, the preferred strategy is to use the special storage area in the
Smalltalk heap called FixedSpace. The bodies (contents) of objects in
FixedSpace do not move, preserving referential integrity and allowing them
to be used freely as the arguments in threaded (and normal) calls.
Promotion of objects to FixedSpace is automatic, and occurs when a
mobile argument is passed as an argument to a threaded call. For a more
detailed discussion of FixedSpace, see “Allocating Objects in FixedSpace”
on page 3-26.

Threaded Interconnect Example
From the programmer’s perspective, the Threaded Interconnect is a
relatively small extension of the standard DLL and C Connect interface.

A good way to explain the threaded calling mechanism is through a
simple example that illustrates all features except callbacks. In this
example, a multithreaded “server” is constructed with a number of
Smalltalk processes waiting for “requests” on an I/O connection. For
simplicity, the requests within a single Smalltalk image are generated and
served.

In this example, a “request” is simply a character string, and a response
to a request is to display the string in the System Transcript. Requests
are written to a single pipe. (A pipe is an I/O channel represented by a
pair of file descriptors. A write of data via the write file descriptor makes
that data available for reads via the read file descriptor.) Each “server”
process is a loop that blocks, waiting for data to appear on the pipe before
writing this data to the transcript. Another process makes “requests” by
writing data to the pipe. To give the Smalltalk system something
computationally intensive to do while all this is going on, the data written
to the pipe is the result of running a simple benchmark.

Our example class is NonBlockingPipeInterface, since it waits for data on a
pipe without blocking the Object Engine. It is a subclass of
ExternalInterface, since it has a number of external methods. Two instance
variables, infd and outfd, are file descriptors for the pipe, while the
boolean flag running determines when each “server” process terminates.
DLL & C Connect User’s Guide 5-5

Threaded Interconnect
The source for this example can be found in the parcel
THAPIExample.pst that is included in the DLL and C Connect
subdirectory that accompanies the VisualWorks release.

Each “server” loops in the reader: method, reading data and then writing
the data to the Transcript.

reader: id
"Read from the pipe as long as running is true.
Print whatever is read from the pipe to the Transcript and
tag it with id."
| buffer count |
"Use a buffer on the C heap for the read call."
buffer := CIntegerType char gcMalloc: 1025.
[running] whileTrue: "Continue until running is false"
"Make a blocking read from pipe on its own thread."
[count := self read: infd with: buffer with: 1024.
"Use a mutex to serialize writing to Transcript"
TranscriptProtect critical:

[Transcript cr; print: id; tab."Print this reader's id tag."
"Check read result and complain if its in error."
(count > 1024 or: [count < 0])

ifTrue: [Transcript nextPutAll: 'READ RETURNED ';
print: count]

ifFalse:
["Null-terminate then copy data as a String."
buffer at: count put: 0.
Transcript nextPutAll: buffer copyCStringFromHeap].

Transcript endEntry]]
The read buffer is allocated on the C heap. The buffer is 1025 bytes long,
large enough for 1024 characters and a null-terminating byte. Smalltalk
objects can be moved by the garbage collector, which might run while a
threaded call is in progress. Consequently, Smalltalk object pointers
cannot be passed as arguments to _threaded calls. Later, this example is
refined to include the use of objects allocated in FixedSpace.

The Transcript is not thread safe, so access to multiple reader processes
attempting to write to the Transcript at the same time must be serialized.
A class variable, TranscriptProtect, is used to achieve this. This variable is
defined in a class initialization method.
5-6 VisualWorks

Managing Data Objects with Multiple I/O Threads
initialize
"Initialize the mutex for serializing writes to the Transcript
and a constant to open the pipe in binary mode."
TranscriptProtect := Semaphore forMutualExclusion.
"initialize a class variable for use with NT pipe mode argument."
O_BINARY := 16r8000 "from msdev\include\fcntl.h"

"self initialize"

Specifying Threaded External Methods
As for the threaded call itself, the message send that invokes the call is
indistinguishable from a normal DLL and C Connect call. The threaded-
ness is a property described in the external method specifying the call.
Threaded calls are specified by using the _threaded pseudo-qualifier in the
C pragma of your C function prototype definition. Note that the _threaded
keyword must follow the function’s return-type. The type of the buffer
argument is _oopref *, which passes a pointer to the buffer’s contents
without interpreting its contents. (Using a type such as char * causes the
contents of a ByteString or TwoByteString buffer to be checked to ensure
that the character set in the string agrees with the platform’s character
set, which is unnecessary in this example.)

Thus, to specify a threaded call in the example interface class, the
declarative method would be as follows:

read: fd with: buffer with: size
"Invoke the read system call on its own thread and hence avoid
blocking the Object Engine."
<C: long _threaded read(int fd, _oopref *buffer, unsigned long
size)>
^self externalAccessFailed

An invocation of the method causes the calling Smalltalk process to block
until the read call returns. Meanwhile, other runnable Smalltalk processes
can execute. To perform the call, the Object Engine provides a thread that
is available to make the call, passes all the information necessary to
make the call (the function and arguments) to the thread, and then blocks
the calling Smalltalk process until the thread returns a result. Once the
result is returned, the Object Engine passes the result back to the
process and allows it to continue.

On most operating systems, the thread making the call is given the next
higher priority to the Object Engine thread to ensure that it makes
progress, even if the Smalltalk system has other runnable processes for
the Object Engine to execute. On Linux and HPUX, the thread has the
same priority as the Object Engine.
DLL & C Connect User’s Guide 5-7

Threaded Interconnect
Since pipes have limited capacity, it is possible to block when writing to a
pipe. A write to a pipe might block until a sufficient number of reads have
been done to make space available for the write. Thus, to ensure that the
example’s computation is not interrupted by potentially blocking writes, a
separate process is used to perform the writes via threaded calls. The
write process reads results from the generator through an instance
variable, results, which holds an instance of SharedQueue. Class
SharedQueue provides a thread-safe way of communicating between
processes, somewhat analogous to a pipe. An object added to the queue
via nextPut: is available via next. If the queue is empty, the calling process
blocks in the next method until an object is added to the queue via
nextPut:.

The writer method is rather similar to the reader:

writer
"Loop writing strings from the results queue to the pipe."
| result buffer writeCount |
 "Use a buffer on the C heap for the read call."
buffer := CIntegerType char gcMalloc: 1024.

[true] whileTrue:
["Get the next result from the results shared queue.
This process waits until one is available. Convert the result
to a ByteArray since the buffer is of type char (an integer)."
result := results next asByteArray.
"Copy the string into the buffer."
buffer copyAt: 0 from: result size: results size startingAt: 1.
"Write the buffer's data to the pipe."
writeCount := self write: outfd with: buffer with: results size.

"Check the write operation succeeded."
writeCount ~= results size

ifTrue: [TranscriptProtect critical:
[Transcript
cr;
nextPutAll: 'WRITE RETURNED '; print:
writeCount;
nextPutAll: ' EXPECTED '; print: results size;
nextPut: $!; endEntry]]]

The writer does not test the boolean flag running, because it is explicitly
terminated.

The method for performing the write is also a threaded call:
5-8 VisualWorks

Managing Data Objects with Multiple I/O Threads
NonBlockingPipeInterface methods for procedures
write: fd with: buffer with: size

"Invoke the write system call on its own thread and hence
avoid blocking the Object Engine."
<C: long _threaded write(int fd, _oopref *buffer, unsigned long

size)>
^self externalAccessFailed

To implement the rest of the interface, we first need some interface
functions to open and close the pipe, and we need a benchmark to run.

close: fd
"Close the file descriptor fd"
<C: int close(int fd)>
^self externalAccessFailed

pipe: arg
"UNIX pipe creation function."
<C: int pipe(int [])>
^self externalAccessFailed

pipe: arg ofSize: size mode: textMode
"NT pipe creation function."
<C: int pipe(int arg[], unsigned int size, int textMode)>
^self externalAccessFailed

Integer methods for mathematical functions
nfib

"The nfib benchmark calculates a rough measure of activations
per second. This is a version of fibonacci in which 1 is added for
each activation. The result is therefore equal to the number of
activations required to calculate that result. To get the 'nfib'
figure of nfib activations per second choose a value which takes
nfib about 30 seconds to calculate. Then divide the result by the
time taken, yielding activations per second."

self < 2 ifTrue: [^1]
ifFalse: [^(self - 1) nfib + (self - 2) nfib + 1]

A separate method is used to open the pipe, because it must be opened
differently under UNIX and Windows. Also, a separate method is used to
terminate the example, because it might be run in the background and
need to be terminated from some other process.
DLL & C Connect User’s Guide 5-9

Threaded Interconnect
openPipes
"Create the pipe. Note that pipe in the MSVC run-time library
is different from the standard UNIX pipe."
| fds |
fds := CIntegerType int gcMalloc: 2.
(OSHandle currentOS == #win32

ifTrue: [self pipe: fds ofSize: 1024 mode: O_BINARY]
ifFalse: [self pipe: fds]) < 0

ifTrue: [self error: 'pipe open failed.'].
infd := fds at: 0.
outfd := fds at: 1

The terminate method is careful to do nothing if already terminated. On
process termination, any unwind blocks in the process are run. Hence, if
terminate is sent from another process, it gets sent again from the unwind
block in the readers: method when terminate kills the generator process.
The instance variable generator is used to refer to the process running the
benchmark, and the instance variable readers is used to refer to the
collection of readers.

terminate
"Terminate all the relevant processes and close the pipe."
running ifFalse: [^self]. "Do nothing if already terminated."
running := false.
generator == Processor activeProcess

ifFalse: [generator terminate].
"Write sufficient data to the pipe so that all readers get data,
and hence by checking running, stop."
readers size * 2 timesRepeat: [results nextPut: 'so long!'].
"Delay until the results have been written by the writer and then
kill the writer. Yield doesn't work if the process doing terminate
has a higher priority than the writer so use a delay."
[results isEmpty] whileFalse: [(Delay forMilliseconds: 20) wait].

writer terminate.
"Close the pipe"
self close: infd; close: outfd.

The readers: method serves as the main loop of the example. It opens the
pipe, creates a shared queue to communicate results to the writer,
spawns the readers and writer, and then loops, generating data. On
unwind, it calls terminate to shut down.
5-10 VisualWorks

Managing Data Objects with Multiple I/O Threads
readers: n
"Run the example with n reader processes."

results := SharedQueue new.
self openPipes.
"remember the generator process for terminate."
generator := Processor activeProcess.
"running is polled by other processes so they'll terminate
when we're done."
running := true.

"Fork a writer process to write data to the pipe. Its priority is
higher than the generator to ensure writes happen promptly."
writer := [self writer] forkAt: generator priority + 1.

"Fork n readers at a higher priority so that results get read
and displayed."
readers := (1 to: n)

collect: [:i | [Processor yield. self reader: i]
forkAt: generator priority + 1].

"Generate some data using the example benchmark."
[| i r t s nfibs |

s := String new writeStream.
i := 0.
[t := Time millisecondsToRun: [r := i nfib].
s reset.
nfibs := Number errorSignal

handle: [:ex | '??']
do: [(r * 1000.0 / t) rounded].

s nextPutAll: 'nfib '; print: i; nextPutAll: ' = '; print: r;
tab; tab;
nextPutAll: 'nfibs '; print: nfibs;
nextPutAll: ' ('; print: t / 1000.0; nextPutAll: ' seconds)'.

"Put datum in results shared queue for the writer to
consume."
results nextPut: s contents.

"Increase the value from which we compute nfib, limiting it
to one that takes 30 seconds or less to run."
i := t > 30000 ifTrue: [0] ifFalse: [i + 1]] repeat]

valueNowOrOnUnwindDo: [self terminate]
The underlying C functions for accessing the pipe are in a C library. On
Windows the C library is one of the MSVCRTnn.DLL DLLs, while on
Solaris the C library is /usr/lib/libc.so. You can use a single
DLL & C Connect User’s Guide 5-11

Threaded Interconnect
interface class for all these cases, provided the interface copes with the
libraryNotFoundSignal, which is raised when an attempt is made to open a
nonexistent library. For example, the libraryNotFoundSignal signal is raised
if the interface tries to open /usr/shlib/libc.so on a Windows
machine.

ExternalInterface supports a standard idiom for doing just this. The class
declaration should include the full set of library files and directories for all
systems, and on the class side of the interface you implement the
libraryFilesSearchSignals method to return the Signal or SignalCollection of the
signals to be ignored during library loading. Thus, you need the following
method to avoid raising a signal when using the interface’s procedures:

libraryFilesSearchSignals
"Answer a SignalCollection used to handle exceptions raised
when scanning for library files. The signals answered by this
method results in those signals being ignored by the library
search machinery. Clients should not answer signals they wish
to receive."

^ExternalLibraryHolder libraryNotFoundSignal
On Windows you also need to know where to look for the library
MSVCRTnn.DLL. Here you can make use of environment variables in the
list of library files and directories. (You can also use patterns to match
against OSHandle currentPlatformID. Browse
ExternalLibrary>>findFile:inDirectories: for a full description.) For a more
detailed discussion, see “Libraries and Environment Variables” on
page 2-17. In the following, $(windir) expands to the value of the
windir environment variable; for example, C:\WIN95.

The following class declaration loads the appropriate C library on
Windows 95 & 98, Windows NT 3.51 & 4.0, as well as Solaris and Digital
UNIX.

Smalltalk.Examples defineClass: #NonBlockingPipeInterface
superclass: #{External.ExternalInterface}
indexedType: #none
private: false
instanceVariableNames: 'infd outfd generator writer readers
5-12 VisualWorks

Managing Data Objects with Multiple I/O Threads
results running '
classInstanceVariableNames: ''
imports: '

private Examples.NonBlockingPipeInterfaceDictionary.*
'

category: 'ExternalInterface-THAPI Example'
attributes: #(

#(#includeFiles #())
#(#includeDirectories #())
#(#libraryFiles #('libc.so' 'libc.sl' 'msvcrt40.dll'))
#(#libraryDirectories #('[unix]/usr/shlib' '[unix]/usr/lib'

 '[win]$(windir)\system' '[win]$(windir)\system32'))
#(#beVirtual false)
#(#optimizationLevel #full))

To run the example, evaluate the following expression:

NonBlockingPipeInterface new readers: 10
The following Transcript output was taken from executing this example on
a 60MHz Pentium-class machine running Windows 95:

1 nfib 0 = 1 nfibs '??' (0.0 seconds)
2 nfib 1 = 1 nfibs '??' (0.0 seconds)
3 nfib 2 = 3 nfibs '??' (0.0 seconds)
4 nfib 3 = 5 nfibs '??' (0.0 seconds)
5 nfib 4 = 9 nfibs '??' (0.0 seconds)
6 nfib 5 = 15 nfibs '??' (0.0 seconds)
7 nfib 6 = 25 nfibs '??' (0.0 seconds)
8 nfib 7 = 41 nfibs '??' (0.0 seconds)
9 nfib 8 = 67 nfibs 67000 (0.001 seconds)
10 nfib 9 = 109 nfibs '??' (0.0 seconds)
1 nfib 10 = 177 nfibs '??' (0.0 seconds)
2 nfib 11 = 287 nfibs '??' (0.0 seconds)
3 nfib 12 = 465 nfibs 465000 (0.001 seconds)
4 nfib 13 = 753 nfibs '??' (0.0 seconds)
5 nfib 14 = 1219 nfibs 1219000 (0.001 seconds)
6 nfib 15 = 1973 nfibs '??' (0.0 seconds)
7 nfib 16 = 3193 nfibs '??' (0.0 seconds)
8 nfib 17 = 5167 nfibs 5167000 (0.001 seconds)
9 nfib 18 = 8361 nfibs 4180500 (0.002 seconds)
10 nfib 19 = 13529nfibs 3382250 (0.004 seconds)
[...]

This process runs until it is interrupted using Control-C, and when the
notifier is terminated, the processes stop running, indicating their
completion with the message “so long!” in the Transcript window.
DLL & C Connect User’s Guide 5-13

Threaded Interconnect
Callbacks
The Threaded Interconnect supports callbacks from arbitrary threads.
Callbacks are not restricted merely to threads used for threaded callouts.
However, the exact handling of callbacks does depend on which thread
makes the callback. Threaded callbacks do not require any new syntax.
The threaded-ness of a callback is determined by which kind of thread
calls back.

First, if a callback is made by the Object Engine thread, as happens when
a normal (not threaded) callout calls back, the callback is handled
synchronously. The last-in, first-out restriction on such callbacks is still
present. For a more detailed discussion of synchronous callbacks, see
“Calling Smalltalk From C” on page 4-1.

If a callback happens from a thread used to make a threaded callout, then
the callback runs in the same process that made the threaded callout.
Consequently, it runs at the same priority as the process that made the
callout. If the process makes a nested callout (i.e., if it performs a
threaded callout within a threaded callback), then the callout happens on
the same thread.

A callback from any other thread is termed a foreign callback, since the
thread is not in the Object Engine’s thread pool. Foreign callbacks run on
their own special process. A new Smalltalk process is created to run each
bottom-level foreign callback. The priority of this new process is
controlled by the ForeignCallbackPriority static in CCallback and by default is
Processor lowIOPriority - 5. No protocol is available to change this priority.

You can change the priority explicitly, using the following code fragment:

CCallback classPool
at: #ForeignCallbackPriority
put: Processor userInterruptPriority - 1

The best technique is to set the priority explicitly within the Smalltalk code
for the callback. You can find an example in the code for class CCallback.

Once a foreign callback occurs, the process created to service the
callback remains associated with that thread until the callback returns (or
the process terminates). Subsequent threaded callouts from this process
happen in the foreign thread. If one of these callouts were to call back,
then the callback would run on the same process. Hence, a foreign
callback process is created only for each bottom-level foreign callback.
5-14 VisualWorks

Additional Control over Threads
Since each threaded callback (foreign or otherwise) is running on its own
thread’s stack, there is no problem with the ordering of returns from
threaded callbacks. The LIFO restriction on normal callbacks results from
the fact that each callback shares the stack of the Smalltalk thread, so
each must return in LIFO order to ensure the stack can be cut-back
safely.

Additional Control over Threads

Managing Threads
Because the cost of thread creation can be high, the Threaded
Interconnect actually manages a pool of threads, rather than creating a
new thread for each threaded call. (For example, under Windows NT 4.0,
the overhead of creating a new thread for a call adds close to 1100
percent of the normal time duration for the call.)

Normally, THAPI manages the thread pool automatically, but there are at
least two circumstances under which the programmer may need to
manage the allocation of threads explicitly. THAPI provides a special
protocol for controlling thread allocation. These circumstances are as
follows.

First, to avoid certain types of deadlock in multithreaded applications, it
may be necessary to attach Smalltalk processes to specific threads. And
second, because some applications require that a native code API be
used by a specific thread, the interconnect also allows programmers to
ensure that a specific thread is used to make a call. The Threaded
Interconnect accomplishes this by maintaining a pool of active threads,
and, as much as possible, by using the same I/O thread to perform calls
on behalf of a specific Smalltalk process.

In this section, mechanisms are described for controlling the size of the
thread pool, and for reserving an I/O thread for the sole use of a specific
Smalltalk process.

Thread Limit and Low Tide
Under certain circumstances, it is possible to deadlock a multithreaded
application due to a condition known as thread starvation. To avoid this
condition, the programmer must exercise some control over the allocation
of threads in the pool. After considering the mechanisms for controlling
the number of threads that can be created, we shall illustrate their use by
extending the NonBlockingPipeInterface example.
DLL & C Connect User’s Guide 5-15

Threaded Interconnect
THAPI provides a hard limit on the maximum number of threads that can
be created and a low-tide limit on the number of quiescent threads. When
the Object Engine starts up, it initializes both the upper and lower thread
limits to 32.

A thread is created when a threaded call is made by a process with no
associated thread and no unassociated threads exist in the pool. For the
duration of the call, the thread is then associated with the calling process
and is used in any nested threaded calls. For example, if a callback
occurs during the call, the callback runs in the same process that made
the callout. Any threaded callouts made from this process while the
outermost threaded call is still in progress are made by the same thread.

Once the outermost threaded call returns, the thread is disassociated
from the calling process and is returned to the pool. The thread can then
be used to perform a call on behalf of any process. Thus, a burst of
concurrent threaded calls can result in the creation of a number of
threads which, when the calls return, end up unassociated in the pool.
The live thread low tide is used to control the size of the pool. If the total
number of threads maintained by Object Engine exceeds the low tide,
then unassociated threads in the pool are terminated until the low tide is
met.

For example, if we set the limit to 64 and the low tide to 32 and evaluated
NonBlockingPipeInterface new readers: 60, then the Object Engine creates 61
threads (60 concurrent read calls from readers and one concurrent write
call from the writer). As each call returns, the thread that made the call is
terminated, because the total number of threads is higher than the low
tide. However, once the example terminates and all calls return, the
Object Engine keeps 32 threads alive, ready for future use.

The following table describes the low-level methods which provide access
to the Object Engine settings for the thread limit and low tide value.
5-16 VisualWorks

Additional Control over Threads
Attaching Processes to Threads
If you try to run the NonBlockingPipeInterface example with more readers
than the live thread limit, the example deadlocks. As readers are forked,
they make threaded calls, resulting in threads being created. Once the
number of readers exceeds the thread limit, subsequently attempted read
calls will raise an externalAccessFailedSignal that indicates an “out of threads”
error. When the writer attempts its write call, it fails in the same way for
the same reason. Thus, to guarantee progress in the presence of
potential thread starvation, a thread must be reserved for exclusive use
by the writer. This is called attaching a process to a thread. Another
circumstance in which you need to attach a process to a given thread is
where a specific thread must be used to make certain calls (one example
is in Windows, where a specific thread must be used to make debugging
calls to inspect the state of a process being debugged).

The following table describes the methods that provide control over
thread attachment.

Protocol for managing Object Engine thread limits

Method Description

ProcessorScheduler>>
primGetThreadLevels

Return an array of seven elements: @1 is
the limit on the number of active threads
created by the OE. @2 is the low tide on
the number of active threads maintained
by the OE. The OE does not reduce the
number of inactive threads below this
level. @3 is the current number of active
threads. @4 is the current number of
inactive (but live) threads. @5 is the
number of foreign threads currently calling
in. @6 is the number of threads created by
the OE since start-up. @7 is the number of
threads killed by the OE since start-up.
Counts 1 through 4 are inclusive of the
Object Engine’s single Smalltalk thread.
Fail if the array cannot be created.

ProcessorScheduler>>
primSetThreadLimit: limit
lowTide: lowTide

Set the thread limit and low tide.
A less-than-zero value is ignored, allowing
each level to be set independently. Note
that these values must be at least 1
because there is one thread devoted to
Smalltalk.
DLL & C Connect User’s Guide 5-17

Threaded Interconnect
To illustrate these protocols for thread control, the NonBlockingPipeInterface
example will be extended to cope with thread starvation. To do this, we
must change the readers: method to reserve a thread for the writer, and
add a method called startReader: that will handle out-of-threads exceptions
in reader processes, as follows:

NonBlockingPipeInterface methods for public access
readers: n

"Run the example with n reader processes."

results := SharedQueue new.
self openPipes.
"remember the generator process for terminate."
generator := Processor activeProcess.
running := true.

"Fork a writer process to write data to the pipe. Its priority is
higher than the generator to ensure writes happen promptly.
It needs to reserve its own thread because there might be
more readers than available threads, and if the writer can't get
a thread because they have been used up by the readers the
example deadlocks, since the readers get no data unless some
is written."
writer := [self writer] forkAt: generator priority + 1.
writer attachToThread.

"Fork n readers at a higher priority so that results get read and
displayed."
readers := (1 to: n) collect:

[:i | [Processor yield. self startReader: i]
forkAt: generator priority + 1].

"Generate some data using the example benchmark."
[| i r t s nfibs |

s := String new writeStream.

Controlling the attachment of threads to Smalltalk processes

Method Description

Process>>attachToThread Reserve a native thread for the receiver
to make _threaded calls.

Process>>detachFromThread Release the native thread from its
attachment to the receiver.

Process>>isAttachedToThread Answer whether the receiver is attached
to a native thread.
5-18 VisualWorks

Additional Control over Threads
i := 0.
[t := Time millisecondsToRun: [r := i nfib].
s reset.
nfibs := Number errorSignal

handle: [:ex | '??']
do: [(r * 1000.0 / t) rounded].

s nextPutAll: 'nfib '; print: i; nextPutAll: ' = '; print: r;
tab; tab;
nextPutAll: 'nfibs '; print: nfibs;
nextPutAll: ' ('; print: t / 1000.0; nextPutAll: ' seconds)'.

"Put datum in results shared queue for the writer to consume."
results nextPut: s contents.

"Increase the value from which we compute nfib, limiting it
to one that takes 30 seconds or less to run."
i := t > 30000 ifTrue: [0] ifFalse: [i + 1]] repeat]

valueNowOrOnUnwindDo: [self terminate]
And here is a method that handles out-of-threads exceptions:

startReader: id
"Place an exception handler around the reader: method to catch
out-of-thread exceptions."

self externalAccessFailedSignal
handle:

[:ex |
ex name == #'out of threads'

ifTrue:
[TranscriptProtect critical:

[Transcript
cr; print: id;
nextPutAll: ' CANNOT PROCEED. OUT OF

THREADS';
endEntry].

Processor activeProcess terminate]
ifFalse: [ex reject]]

do: [self reader: id]
To test the new example, evaluate the following:

Processor primSetThreadLimit: 6 lowTide: 4.
NonBlockingPipeInterface new readers: 10

The limit is set to six threads. Inclusive of the Object Engine thread, this
leaves five threads for making threaded calls. One is reserved for the
writer thread. Thus, the last six readers fail due to the thread limit being
exceeded, and they terminate, leaving four threads to read the pipe.
DLL & C Connect User’s Guide 5-19

Threaded Interconnect
This thread limit is illustrated with the following excerpt from the System
Transcript as the example is evaluated:

5 CANNOT PROCEED. OUT OF THREADS
6 CANNOT PROCEED. OUT OF THREADS
7 CANNOT PROCEED. OUT OF THREADS
8 CANNOT PROCEED. OUT OF THREADS
9 CANNOT PROCEED. OUT OF THREADS
10 CANNOT PROCEED. OUT OF THREADS
1 nfib 0 = 1 nfibs 1000 (0.001 seconds)
2 nfib 1 = 1 nfibs '??' (0.0 seconds)
3 nfib 2 = 3 nfibs '??' (0.0 seconds)
4 nfib 3 = 5 nfibs 5000 (0.001 seconds)
1 nfib 4 = 9 nfibs '??' (0.0 seconds)
2 nfib 5 = 15 nfibs '??' (0.0 seconds)
3 nfib 6 = 25 nfibs '??' (0.0 seconds)
4 nfib 7 = 41 nfibs '??' (0.0 seconds)
1 nfib 8 = 67 nfibs '??' (0.0 seconds)
[...]

Once again, the process runs until it is interrupted using Control-C, and
when the notifier is terminated, the processes stop running, indicating
their completion with the message “so long!” in the Transcript window.

Threaded Calls and FixedSpace
As discussed in the chapter “Creating and Accessing C Data” on
page 3-1, special care must be taken when passing data objects as
parameters to threaded calls. Since the garbage collector moves both
object headers and object bodies when it collects, both oops (pointers to
headers) and body pointers used with external code may become invalid.
This imposes the restriction that you cannot pass object pointer
arguments through threaded calls. Further, you cannot use the external
message sending facilities (for details, see “External Messages” on
page 4-7) from within threaded calls, because these also depend on
object pointers.

The first strategy for allocating C data objects that can be shared with
Smalltalk methods involves using the external heap (accessed via CDatum
and its subclasses). However, using this strategy is often clumsy and can
be inefficient, because data might have to be copied from the C heap into
a Smalltalk object before it can be used.

To circumvent these problems, objects passed to threaded calls are
typically allocated in FixedSpace, a special zone in the Smalltalk object
memory (for a more extensive discussion of FixedSpace, see “Allocating
Objects in FixedSpace” on page 3-26). The Object Engine ensures
5-20 VisualWorks

Additional Control over Threads
automatically that the body of any byte-like object that is passed as a
pointer argument to a threaded call gets promoted to FixedSpace. This
ensures that the garbage collector does not move the object’s body
during the _threaded call, although the garbage collector might move the
object’s header (and hence need to change its object pointer).

Using FixedSpace, we can now simplify the NonBlockingPipeInterface
example by reimplementing the reader: method to use FixedSpace in a new
subclass, FSNBPI (for FixedSpaceNonBlockingPipeInterface).

FSNBPI methods for server
reader: id

| buffer count |
"Use a normal Smalltalk string, but allocate it in FixedSpace."
buffer := String defaultPlatformClass newInFixedSpace: 1024.

[running] whileTrue:
[count := self read: infd with: buffer with: buffer size.
TranscriptProtect critical:

[Transcript cr; print: id; tab.
(count > buffer size or: [count < 0])

ifTrue: [Transcript
nextPutAll: 'READ RETURNED ';
print: count]

ifFalse: [1 to: count
do: [:i | Transcript nextPut: (buffer at: i)]].

Transcript endEntry]]
The writer method must also be reimplemented, as follows:

writer
"Loop writing strings from the results queue to the pipe."
| result writeCount |
[true] whileTrue:

[result := results next.
writeCount := self write: outfd with: result with: result size.
writeCount ~= result size ifTrue:

[TranscriptProtect critical:
[Transcript

cr;
nextPutAll: 'WRITE RETURNED '; print: writeCount;
nextPutAll: ' EXPECTED '; print: result size;
nextPut: $!; endEntry]]]

Thus, the buffer in the above version of reader: is instantiated in
FixedSpace, while in the above version of writer each string gets promoted
to FixedSpace on each call of write:with:with:.
DLL & C Connect User’s Guide 5-21

Threaded Interconnect
Limitations

Thread-Safety of Foreign Code
Any code called through the Threaded Interconnect that might be in use
by more than one thread at the same time must be thread safe. For
example, if you are trying to use THAPI to provide asynchronous
database connectivity using the EXDI (External Database Interface), you
should first research whether the database vendor’s client libraries are
thread safe. Errors caused by using non-thread-safe code in a
multithreaded context can be both difficult to find and potentially
disastrous. In the best case, these kinds of problems might only crash the
system or provoke an exception. In the worst case, they could result in
data corruption. Further, the effects of these kinds of errors might show
up long after the errors themselves occur.

For example, if you wanted to use Oracle with their OCI client library via
THAPI, you must use version 7.3.2.2 or later. Prior to the Oracle 7.3.2.2
release, Oracle client libraries were not thread safe. Oracle 7.3.2.2 and
onward client libraries are supposed to be thread safe, but this has not
been fully tested in a VisualWorks or VisualWave environment. (Be
careful to verify thread safety, even with vendor sources. Vendors have
reported, for example, that while dbLib is not thread safe, CTLib is. But
engineers have reported that even CTLib is not thread safe.)

Use of Object Pointers and Message Sends
As explained earlier in the section “Threaded Calls and FixedSpace” on
page 5-20, you cannot pass object pointer arguments to threaded calls
nor send external messages from within threads. This is because the
garbage collector moves objects and hence updates oops at arbitrary
times relative to other threads.

Thread Priority
All threads created by the Threaded Interconnect run at the next highest
priority to the Object Engine thread. This is to ensure that they make
progress relative to the Object Engine. In cases where threads are to be
used to perform some blocking action, as in the example, this behavior is
appropriate. However, if threads are to be used to perform some lengthy
computation (i.e., they do not yield control to other threads), they prevent
the Object Engine from running unless the underlying machine is a
multiprocessor. It is possible to augment THAPI with control over thread
priorities, but the impact on performance (that of potentially changing the
priority of a thread on each call) outweighs the utility of priority control.
5-22 VisualWorks

Limitations
There is nothing to prevent you from changing the priority of a thread
within your own code, reached through a threaded call. Under UNIX, the
Threaded Interconnect relies on the implementation of POSIX threads.
On Windows, THAPI uses standard Windows threads.

For example, to change thread priority on Solaris, use code similar to the
following:

priority = pthread_getprio(pthread_self());
if (pthread_setprio(pthread_self(),priority + delta) <= 0)

errinfo = errno;
On Windows, use code such as the following:

priority = GetThreadPriority(GetCurrentThread());
if (!SetThreadPriority(GetCurrentThread(),priority + delta))

errinfo = GetLastError();
Be aware that you should reset the thread’s priority before returning,
because the Threaded Interconnect does not alter a thread’s priority,
once created. Remember that if the Object Engine is busy, lower priority
threads can be blocked indefinitely.

Maximum Number of Threads
The maximum number of threads active at any one time depends on the
underlying platform. Threads created by THAPI have a default stack size,
an operating system semaphore, and a small amount of memory for
argument marshalling. The example presented in this chapter has been
run with over a thousand readers/threads on Windows 95 and Windows
NT 4.0. An empirical test suggests that on a 40-Mbyte machine, the limit
seems to be 1600 threads on Windows 95, and it seems to be 1987
threads on Windows NT 4.0.
DLL & C Connect User’s Guide 5-23

Threaded Interconnect
Performance Considerations
Threaded calls are considerably slower than normal, synchronous DLL
and C Connect calls. For example, here are some times for making a
zero-argument call that returns immediately, using a normal DLL and C
Connect call, a threaded call, and a threaded call that involves creating a
thread. These times were measured on a 60 MHz Pentium COMPAQ
5/60M running Windows NT 4.0.

• Normal DLL and C Connect Call: 5 microseconds

• Threaded DLL and C Connect Call: 310 microseconds

• Threaded DLL and C Connect Call with thread creation: 3400
microseconds

These measurements suggest that a threaded call is approximately 60
times slower than a regular synchronous call, while a threaded call that
must create a new thread is almost 680 times slower. On Solaris and
Digital UNIX the ratios differ considerably, because the underlying
scheduler gives threads a more sluggish response. Note that although
these ratios may seem dramatic, the overall increase in I/O throughput
that can be gained by using threaded calls from a Smalltalk application
will offset the performance hit on each threaded call.

Another factor that can impact system performance involves the
scheduling of the Object Engine thread. The Object Engine sleeps if it
has no runnable process, and this is an activity that can be time
consuming. If a trivial threaded call is made, during which the Object
Engine goes to sleep, the call takes considerably longer, since the engine
must wake up before the call can return. On the above machine, if the
same trivial call is made when the engine sleeps (i.e., a call that does not
require that a new thread be created), the call takes approximately 2400
microseconds (roughly eight times slower than a regular threaded call).

Sleeping can be avoided by providing a background process, or by
keeping the system generally active. Thread creation can be avoided by
setting appropriate thread limits and low tides. Profiling shows that the
fundamental cost of a threaded call is due to the operating system
scheduling facilities required by the internal design of THAPI. For each
call, the following sequence of actions occurs to perform a threaded
callout:
5-24 VisualWorks

Known Problems
1. A signal from an operating system semaphore causes a thread
switch (from the Object Engine Thread to the User Thread) to allow
the thread to progress to make the call. The overhead involved in this
action is probably minor.

2. On Windows a wakeup message is sent, and on UNIX a software
signal is sent from the thread when it is ready to return results. The
overhead involved in this action is probably rather significant.

3. The thread waits on an operating system semaphore, because it is
now done, and this results in a thread switch back to the Object
Engine thread.

4. Finally, the Object Engine performs a wakeup in response to the
message or signal. The overhead involved in this action is probably
rather significant.

Known Problems

Process Termination
Terminating a process that is waiting for the results of a threaded call kills
the associated thread, unless the thread is foreign. This can create
problems, depending on the context. For example, the following version of
terminate (see below) works fine under Windows, but on Solaris it causes
the Object Engine to freeze (because of a bug in Solaris). On Solaris, if
any thread is in a read() call and some other thread closes the read side
of the pipe, the process freezes. Each reader thread might not be
terminated until reaching a termination point, so even though the Object
Engine has attempted to terminate the reader threads, they might not
terminate immediately, and if a thread remains in the read call when the
read side of the pipe is closed, the entire process freezes.

NonBlockingPipeInterface methods for initialize-release
terminate

"Terminate all the relevant processes and close the pipe."
running ifFalse: [^self].
running := false.
generator == Processor activeProcess

ifFalse: [generator terminate].
writer terminate.
readers do: [:ea | ea terminate].
self close: infd; close: outfd

In general, it is wise to avoid terminating processes that have threaded
calls in progress, unless absolutely necessary.
DLL & C Connect User’s Guide 5-25

Threaded Interconnect

5-26 VisualWorks

6
Exception Handling

The reliability of your application depends largely upon how well it
handles exceptions. DLL and C Connect performs extensive error
checking to ensure that Smalltalk applications can interact smoothly with
C modules. However, it is ultimately the application programmer’s
responsibility to provide methods to handle the various run-time
exceptions that may be raised when calling external C modules. To help
you build an effective exception-handling strategy into your application,
this chapter explains the DLL and C Connect exception mechanism in
detail.

External Interface Exceptions
Broadly speaking, exceptions may be raised under four circumstances:

• When a C function call in your ExternalInterface class returns with an
error.

• When the attempt to access a function or datum in an external library
fails.

• When the attempt to access a datum on the external heap fails.

• During macro evaluation.

C function call failures
Exceptions in this category can occur as a part of the normal
execution of your application. For example, a call to allocate a block
of storage on the external heap will raise an exception if there is
insufficient memory. Your application should attempt to recover
gracefully from exceptions of this variety, performing any cleanup or
recovery that may be necessary.
DLL & C Connect User’s Guide 6-1

Exception Handling
Library access exceptions
Exceptions that fall in this category tend to occur during system
installation or code development when all the requisite external
library files may not be properly in place. In this case, either the
external C code module cannot be loaded, or else functions or static
variables in the module have not been properly exported.

C datum exceptions
Exceptions that are raised when your application attempts to access
a datum on the external heap may be caused by illegal type
coercions (between Small- and LargeIntegers, for example), or by
attempts to de-reference invalidated pointers to the heap (for
example, after a snapshot).

C macro evaluation exceptions
The exception ExternalInterface>>errorSignal may be raised during C
macro evaluation. Since DLL and C Connect currently does not
support full macro evaluation, this signal indicates that you are trying
to parse a type of #define statement whose semantics are not
understood. Typically, this only occurs during the early stages of
development when you are first parsing C header files to build your
interface classes. For more details on working around these
exceptions, see “Syntax Errors” on page 2-24.

The first three types of exception may occur during the run-time execution
of your application, while the last one (macro evaluation) can only occur
when you are first developing your interface classes. For this reason, your
error handler need only treat the first three types of exception. In the
following sections, we will discuss these three types of ExternalInterface
exception in more detail.

C Function Failure
The first variety of exception you are likely to encounter arises during a C
function call. As a rule, the Object Engine’s calling mechanism does not
require C function calls that return with an error to raise exceptions, but
by convention methods in class ExternalInterface should send signals on
failure. As discussed in the section on C function calling (see “Calling C
Functions” on page 2-8), Smalltalk methods that contain function
prototype declarations can also contain failure code. The failure code
consists of Smalltalk expressions, and it is only invoked when the C
function fails to return a value. The code can be any sequence of
Smalltalk code, but by convention it follows a “standard” error handling
protocol provided by class ExternalInterface.
6-2 VisualWorks

External Interface Exceptions
This is illustrated in the following example method:

atol: aString
<C: long atol(const char *)>
^self externalAccessFailedWith: _errorCode

By default, the method ExternalInterface>>externalAccessFailedWith: raises an
externalAccessFailedSignal. In the code fragment shown above, the signal
will be raised with the SystemError object that contains the exact cause of
the failure.

The type of error is stored in the name and parameter fields of the
SystemError object. These fields can be tested by the error handler. The
following table lists all the possible named errors that may be returned to
the caller by this mechanism:

SystemError identifiers

Name Parameter Details

#'allocation failed' nil or number Some allocation attempt of a
Smalltalk object was made
before making the C function call,
and the object was needed to
hold the result of the call. The
allocation failed because of a
shortage of Smalltalk memory.
The number of bytes required for
allocation may be returned in
parameter.

#'bad argument' index An argument to the C function
call was invalid. The parameter is
the 1-relative index of the
offending argument.

#'bad handle' nil The handle of an ExternalMethod
was invalid. It should be an
integer representing the address
of a function.

#'C allocation failed' nil or number Some allocation attempt of C
memory was made before
making the C function call, and
the memory was needed to hold
the result of the call. The
allocation failed because of a
shortage of memory on the
external heap. The number of
bytes required for allocation may
be returned in parameter.
DLL & C Connect User’s Guide 6-3

Exception Handling
Notice that there are two different sorts of errors that might be returned
by C function calls: first, there are errors which are generated by the
Object Engine and do not depend upon specific features of the platform
in use; and second, there are errors that may contain some platform-
specific information. Your error handling code should treat both of these
types of error.

#'exception occurred' error code An exception occurred during an
external call. The parameter is a
platform-defined exception error
code. This is currently supported
only on Windows platforms
where the code is that returned
by _exception_code().

#'hresult error' error code The called function returned a
value less than zero. The
parameter is that negative value.
This is currently supported only
on Windows platforms using
COM connect.

#'io error' error code The called function returned an
error according to the
interpretation defined by one of
the platform-defined calling
conventions (discussed below).
The parameter is the
accompanying error code.

#'object engine internal
error'

— Some internal object engine error
occurred while trying to perform
the call.

#'out of threads' nil A process attempted to perform a
threaded external call, and a new
thread was required but none
could be allocated.

#'threaded api error' error code An internal error in the thread
management system occurred.
The error code identifies the
nature of the problem which you
should report to technical
support.

#'unsupported
operation'

nil An operation unsupported on the
current platform has been
attempted (e.g. calling a _wincall
error convention function call on
a non-Windows platform).

SystemError identifiers (Continued)

Name Parameter Details
6-4 VisualWorks

External Interface Exceptions
In the first group of errors (those that are not platform-specific), there is
one common error which has complicated semantics that your error
handling code should be aware of.

The error name #'bad argument' indicates that you passed an invalid
argument to the C function. The parameter of _errorCode is the integer N,
where N indicates which argument is invalid. N = 1 indicates the first
(leftmost) argument. For example, the atol() procedure is typed to accept
one character pointer argument and to return a long. If you passed a
Smalltalk OrderedCollection object as the argument, your failure code
would be invoked with _errorCode’s parameter set to 1. If N = -1, this
indicates that some sort of memory violation occurred, i.e., you are either
de-referencing a NULL or invalid pointer, or writing over some zone of
memory that you shouldn’t be. The types of the arguments may be
correct, but you should check the values of the arguments to make sure
they are valid.

If you receive an externalAccessFailedSignal when calling a C function which
uses the DLL and C Connect Object Engine Access interface (for details
on this interface, see the chapter “Object Engine Access Functions” on
page 9-1), you should refer to the Appendix section “Object Engine
Access Interface Exceptions” on page B-4.

The second group of errors (i.e., those that are platform-specific) includes
#'io error' and #'hresult error'. The semantics of these errors are described
in the following table:

SystemError identifiers

Name Platform Details of Error Convention

#'hresult error' Windows
Only

This is the COM Connect error
convention. If the called function
returned a value less than zero, the
parameter is set to that negative value.
Indicated by the _hresult or __hresult
initializer.

#'io error' Unix This is the UNIX error convention. If the
called function returns -1, then the
parameter is set to the value of errno
immediately after the called function
returned. Indicated by the _syscall or
__syscall initializer.
DLL & C Connect User’s Guide 6-5

Exception Handling
Additional platform-specific details about decoding #'io error' parameters
can be found in the section “Exception Error Codes” on page B-5.

Note that if you do not specify failure code in your Smalltalk interface
methods, the default is to answer the receiver. Obviously, this can
produce unpredictable results. You should strongly consider adding
failure code to any external method with which you need to detect failure
conditions. To simplify the implementation, the best way to code these
signal handlers is to write “wrapper methods” in your ExternalInterface
class.

#'io error' OS/2 This is the Windows API error
convention. If the called function returns
zero, then the parameter is set to is the
value returned by calling
WinGetLastError() immediately after the
called function returned. Indicated by the
_wincall or __wincall initializer.

#'io error' Windows This error may be returned by Windows,
according to either the _syscall or the
_wincall convention. If the called function
returns a negative value, then the
_syscall convention is being used and the
value of errno is negative. If the called
function returns a positive value, then the
_wincall convention is being used and the
error code value is positive. Regardless
of the convention being used, the
parameter is set to the error code. If the
_wincall convention is being used, the
value is set to the result of GetLastError(),
while if the _syscall convention is being
used, the value is set to the result of
errno().

SystemError identifiers (Continued)

Name Platform Details of Error Convention
6-6 VisualWorks

External Library Access Exceptions
External Library Access Exceptions
In addition to the ExternalInterface exceptions described in the preceding
section, there is a second category of errors that can be generated by the
DLL and C Connect calling mechanism. These errors may arise because
of difficulty accessing functions or static variables in external libraries.
Before calling a function or accessing an external variable, the system
must first locate and load the corresponding DLL file. If these library
file(s) cannot be located or loaded, DLL and C Connect will raise an
exception. Since these errors occur before functions or data can be
accessed, they tend to arise during development or customer system
installation. For details on locating and loading libraries, see “Dynamic-
Link Libraries” on page 2-16.

There are three signals that can be raised either upon the failure of a call
to a C function, or upon failure when accessing a datum contained in an
external library. One additional signal, libraryNotUnloadedSignal, may be
raised during the attempt to unload libraries from the run-time system.

The following table summarizes the significance of these four signals:

External Library Access Exceptions

Signal: Description:

libraryNotFoundSignal This exception indicates a failure during
the attempt to locate a library specified in
the ExternalInterface's class creation
template. The library could not be located
on the specified path.

libraryNotLoadedSignal This exception is raised for a failure
during the attempt to load the library that
your ExternalInterface class indicates
contains the target function or datum.
When you first attempt to access a
function or datum, the ExternalInterface
class must load the corresponding library
file.

libraryNotUnloadedSignal This indicates a failure during the attempt
to unload a library specified by the
libraryFiles attribute in your ExternalInterface
class.

externalObjectNotFoundSignal This exception indicates that the product
successfully loaded the library associated
with your interface class, but
subsequently could not find the external
object either within the library or as a
statically linked object. This exception
typically indicates a symbol-lookup failure
in the external module.
DLL & C Connect User’s Guide 6-7

Exception Handling
To catch these signals, you can write signal handlers in the callers of your
interface methods. To simplify the code, the best way to do implement
these signal handlers is to write wrapper methods in your ExternalInterface
class.

C Datum Access Exceptions
In addition to the exceptions raised upon failure of C function calls and
external library references, there is a third type of exception that can
occur when your application manipulates C data objects on the external
heap.

The following table summarizes the significance of these signals:

C Data Class Exceptions

Signal: Description:

illegalAssignmentSignal This exception indicates that the
argument to a method which
performs an assignment operation is
invalid with respect to the receiver’s
referent type.

memberNotFoundSignal This exception is raised if the
argument to memberAt: or
memberAt:put: does not represent a
valid member name for an instance
of class CCompoundType.

invalidNumberOfArgumentsSignal This exception indicates that the
wrong number of arguments were
passed to a C function.
6-8 VisualWorks

7
Packaging Considerations

Overview
This chapter explains how to prepare your C interface classes for delivery
in such a way that your deployed image does not rely on the development
tools that come with DLL and C Connect. This chapter also demonstrates
how to relink libraries on the customer’s machines.

General Considerations
After designing and building your external interfaces you will have a
collection of ExternalInterface subclasses. The source code embedded in
the methods of these classes contains special syntax that can only be
parsed by the C declaration parser. To avoid this dependency, you can
use parcels to unload and reload your interface classes. Because parcels
are provided in the base VisualWorks product, DLL and C Connect does
not need to be included with your distribution to run your application.

Note that in VisualWorks 3.0, the Binary Object Streaming Service
(BOSS) was supplanted with the parceling protocol. Although BOSS may
still be used to unload and reload your interface classes, it is strongly
recommended that you use parcels instead. For a more detailed
discussion of parcels, see the VisualWorks Application Developer’s
Guide.

A second consideration with packaging involves the C macro definitions
that are compiled into instances of the class CMacroDefinition. As a
component of DLL and C Connect, this class is not part of the base
VisualWorks image. However, DLL and C Connect provides protocol that
will convert each instance of a CMacroDefinition into the scalar Smalltalk
value it represents (Number or String).
DLL & C Connect User’s Guide 7-1

Packaging Considerations
A third consideration involves the option to compile external interface
function accessing methods in a fully optimized form. Compiling these
methods in an optimized form allows them to run much faster at the
expense of secure argument type checking.

Preparing Your Interface Classes
The procedure for distributing interface classes involves two steps:

1 Recompiling the Interfaces in optimized form.

2 Resolving references to class CMacroDefinition.

When you have completed your debugging cycle and wish to distribute
your interface classes, the first step is to recompile them in an optimized
form. This form takes less memory and allows the interfaces to run much
faster, at the expense of secure argument type checking. You can
accomplish this in one of two ways:

• Modify the external interface class definition template by changing
the argument to the optimizationLevel: keyword from #debug to #full,
and then accept the change. This will recompile every method in the
class using an optimized calling sequence.

• Send the message optimizationLevel: to your interface class with #full
as the argument. This will also recompile every method in the class
with an optimized calling sequence.

Note: After you have compiled your interface class in an optimized
form, you no longer have access to the ExternalProcedure objects that
are contained in the interface’s pool dictionary. These objects contain
type information that is no longer needed in a run-time environment.

The second step in preparing your interface class is to remove any
references to CMacroDefintions. Methods that contain C #define statements
compile into instances of CMacroDefinition. However, this class is not
available in a run-time environment. It is provided only as a development
time tool that enables you to dynamically evaluate a macro’s definition.
Once your interface class is ready for distribution, you can replace every
instance of a CMacroDefinition with its corresponding scalar value. To do
this, you send the message fillDefineCachesWithValues to each of your
interface classes.

To summarize, each interface class in your project should be sent the
following methods before packaging:
7-2 VisualWorks

Packaging Your Interface Classes
TheInterfaceClass optimizationLevel: #full.
TheInterfaceClass fillDefineCachesWithValues.

Packaging Your Interface Classes
Parcels are now the preferred means of packaging and exporting
External Interface classes. You may parcel out your External Interface
classes either using the External Interface Finder, or using a special
protocol provided by class ExternalInterface.

To parcel out the example class StandardLibInterface using the Finder tool,
perform the following steps:

1 Within the Finder tool, select class StandardLibInterface in the Class list.

2 Choose the Class Parcel Out As... menu option to select parcelling
options and actually write the parcel file.

Normally, you will use the default options selected in the dialog box.

The ExternalInterface class also provides a set of utility methods for
parceling itself (or, more likely, a subclass of itself) out. For example, the
following code fragment would create a parcel file named stdlib.pcl
containing the class definition and methods for the example interface
class StandardLibInterface:

| parcel |
parcel := Parcel name: 'stdlib.pcl'.
StandardLibInterface

parcelClasses: StandardLibInterface withAllSubclasses
toParcel: parcel.

parcel saveParcelDialogFor: nil
This code fragment will open a dialog box to prompt for parcelling
options. You should use the default options.

You can manage your parcel files using a Parcel Browser; for details, see
the VisualWorks Application Developer’s Guide.

Relinking C Libraries
The C libraries on which your application depends may be located in a
different location in the deployment environment. It is the responsibility of
your installation procedure to determine the proper pathnames. The
ExternalInterface class provides a utility protocol for re-establishing the
linkages, as in the following examples:
DLL & C Connect User’s Guide 7-3

Packaging Considerations
"When the stdlib library is named newStdLib in the user's environment..."
StandardLibInterface libraryFiles: 'newStdLib.dll'

"When the stdlib library is located in a different directory..."
StandardLibInterface libraryDirectories: 'c:\windows\system'

Each of the path-resetting messages shown above first unloads the
libraries so they will be relinked the next time they are invoked. You can
perform the unloading part of the operation separately:

StandardLibInterface unloadLibraries
You can also make use of environment variables to specify library paths
that will be valid across a number of different platforms. For details, see
“Libraries and Environment Variables” on page 2-17.
7-4 VisualWorks

8
Platform Specific Information

This chapter provides an overview of platform-specific development,
followed by discussions of two issues. The first issue concerns the
platform independent requirements for registering entry-points to code
modules that have been statically linked into the Object Engine. The
second issue concerns the specifics of developing applications for
particular platforms. The bulk of this chapter discusses the different
supported platforms, outlining the constraints imposed by the
idiosyncrasies of the various platforms. Each section details the platform
specific information for using DLL and C Connect with dynamic-link
libraries as well as statically linked Object Engines.

Platform-Specific Development
VisualWorks is distributed on a variety of platforms. Most of the files
contained in the distribution are platform independent. However, some of
the files are only relevant to a particular release platform of VisualWorks.
All platform dependent files are located in separate subdirectories in the
distribution directory tree. All other files are the same across platforms,
except for the line-end conventions used in text files.

A DLLCC test suite shared library files can be found in each appropriate
platform subdirectory provided with the product. You can use the test
libraries to verify that the product is operating correctly before you begin
using it with your applications. The test libraries can be complied and
linked with the contents of the dllcc/src directory makefiles that are
provided in each subdirectory. For example:

dllcc/platform_directory/makefile
DLL & C Connect User’s Guide 8-1

Platform Specific Information
Compiler Compatibility
The following table lists some of the compilers known to work with
VisualWorks 7.6. This is not a complete list and is intended only as a
guide to developers selecting a compiler to build external code
components. As a general rule, VisualWorks 7.x is usable with any ANSI
C compatible compiler conforming to the platform's language calling
conventions.

Unsafe Compiling
DLL and C Connect performs type checking on object-oriented pointers
(oops) automatically. However, such runtime checks may not be desirable
when performance is your primary concern.

For situations in which critical performance needs motivate you to bypass
the safety mechanism, you can compile your code defining the symbol
UNSAFE. Note that this will have no impact if your code does not handle
object pointers.

Caution: We do not recommend that you use UNSAFE in
ordinary practice.

Compatible Compilers (as of VisualWorks 7.6 release)

Platform / OS Version Compiler

HP-UX 11.11 HP92453-01 B.11.11.10 HP C Compiler

Linux 32-bit Minimum: kernel 2.4, glibc 2.2.3, gcc 2.96
(e.g. RedHat 7.2)

Linux 64-bit Minimum: kernel 2.4, glibc 2.3.2, gcc 3.2.3
(e.g. RedHat Enterprise Linux ES 3)

IBM AIX 5.2 C for AIX Version 6

MacOS 9.x MPW Toolset, version 3.5x

MacOS X OS X 10.4 or newer, Xcode gcc

MS-Windows
XP/Vista/2000/2003 server

MS 32-bit C/C++ Optimizing Compiler
Version 8.00 or later

SGI IRIX 6.5 MIPSpro Compiler version 7.41

Solaris 8, 9, or 10 Sun WorkShop 6 update 2 C 5.3
200/1/05/15
8-2 VisualWorks

Platform-Specific Development
Even in “safe” mode, your C functions should perform consistency checks
on passed arguments — at least checking for the correct class. When
you use the UNSAFE implementation, doing these checks is absolutely
essential. Test your C code very carefully before compiling UNSAFE and
linking the result to a working image.

Some platforms do not support “back-referencing” from a dynamic-link
library into the Object Engine. For this reason, these platforms cannot
compile code that uses the Object Access functions in UNSAFE mode —
they must use the safe, functional, version.

Caution: If you compile your C code with UNSAFE, problems
in your library can cause the Object Engine to fail, or even
corrupt the virtual image. Because hard-to-trace errors can be
introduced so easily in unsafe mode, trouble calls relating to
an Object Engine that is linked to unsafe code will not be
handled by Cincom technical support.

Incremental Loading of Dynamic-Link Libraries
Many platforms support incremental loading of dynamic-link libraries.
This can occasionally cause problems during execution if several libraries
contain interdependencies. For example, if a function in library Q is
dependent on a global variable in library P, the symbol lookup in P can fail
unless both Q and P are loaded. The failure will raise an
externalObjectNotFoundSignal or a libraryNotLoadedSignal exception. Worse, if
a function in library Q depends on a function in library P, on some
platforms execution can be halted due to the unresolved symbol.

The solution to this problem is to make sure that all libraries that contain
interdependencies are specified in the libraryFiles attribute of your
ExternalInterface class. This will effectively force them to be loaded
together. The libraryFiles: protocol provides a means for ensuring that a
group of libraries can be loaded together. It is important to note, however,
that the order in which you specify the libraries is important. If you use a
library R which in turn depends upon library Q which itself depends upon
a third library P, then the libraryFiles attribute of your ExternalInterface class
must have P specified before Q which must be specified before R.
DLL & C Connect User’s Guide 8-3

Platform Specific Information
Static Linking
DLL and C Connect provides access to external code (code outside the
domain of the Smalltalk object memory) either in the form of dynamic-link
libraries or libraries statically linked to the run-time system. This section
describes what needs to be done when building a statically linked Object
Engine to register the external entry-points that are referenced by your
ExternalInterface classes. VisualWorks in general favors interfaces
designed to use dynamically-linked modules.

For those who are familiar with building an Object Engine, the process of
creating a custom Object Engine with DLL and C Connect is similar. The
procedure relies on the use of a platform dependent makefile that is
described later in this section. The steps are as follows:

1 The Object Engine maintains a registry of external objects. You must
arrange for an entry to be created in this registry for each of your
externals. To do so, create an oeInitLinkRegistry() function that makes
an oeRegisterSymbolAndHandle() call for each exported symbol. The
following example shows how to register four functions from the
string.h library, as well as a global variable:

void oeInitLinkRegistry(void)
{

oeRegisterSymbolAndHandle("strcmp", strcmp);
oeRegisterSymbolAndHandle("strcpy", strcpy);
oeRegisterSymbolAndHandle("strlen", strlen);
oeRegisterSymbolAndHandle("strstr", strstr);
oeRegisterSymbolAndHandle("errno", errno);

}
The first argument to the registering function
oeRegisterSymbolAndHandle() is a string containing the name that is
invoked by the Smalltalk method; the second argument is the name
of the C function. By convention, these two are the same. For
example, the string comparing method that invokes the strcmp would
look like the following:

strcmp: string1 with: string2
<C: char *strcmp(const char *string1, const char *string2)>

2 A platform-specific makefile is provided in the make subdirectory. It
links a test file (cpoktst.c) that defines and installs a set of test
functions. Edit cpoktst.c (also found in the make directory), adding
code for your custom functions and, if you desire, remove the code
for the test functions. For those who are familiar with user-defined
8-4 VisualWorks

MacOS Classic
primitives, this file is analogous to validate.c. The makefile also
refers to validate.c—in that file, remove the test code, leaving the
following external entry point for user primitives (expected by the
Object Engine):

char *
oeInstall(void)
{
}

3 In the makefile, you may also need to identify the location of any
libraries that you use.

4 Run the makefile. By default, the custom Object Engine is named
VisualWorksUser, though you can edit the makefile to give the
target file a different name. The VisualWorksUser file is your new
Object Engine, to be substituted for the executable installed in your
system.

MacOS Classic
DLL and C Connect supports dynamic linking of 9.x shared libraries on
the PowerMac only. No support for the static linking of UserPrimitives and
no support for 68k libraries is provided. At present, DLL and C Connect
for MacOS only supports non-threaded C-Calls.

In addition, only CodeFragments (the normal form for a shared library)
can be dynamically linked to the object engine. The support for libraries
compatible with the MacOS SharedLibrary Manager has been dropped,
as its support has been discontinued by Apple.

Libraries that make use of structs should be compiled forcing the
compiler to align data structures on byte boundaries. For MPWs C-
Compiler 'MrC' you should use the option: -align byte.

Libraries can be created and tested using Apple's MPW Toolset, version
3.5x. MPW Toolset is a free product which can be downloaded from:

http://developer.apple.com/tools/mpw-tools/
For additional information about linking shared libraries, see the
makefiles in the subdirectories dllcc:vector-ppc and dllcc:pmac
in the standard release of VisualWorks.

Libraries created with Metrowerks CodeWarrior are not compatible with
VisualWorks as Codewarrior uses a different library format.
DLL & C Connect User’s Guide 8-5

Platform Specific Information
MacOS X
DLL and C Connect supports dynamic loading of MacOS X libraries at
runtime. Various types of dynamic libraries are available, each with
distinctive properties. Dynamic libraries may be individual files, or they
may be packaged within "bundles". Using DLL and C Connect, you may
access either type of library.

Dynamic Libraries
Shared libraries (files with the extension .dylib or .so) may be
dynamically loaded into OS X applications at runtime. The command to
load the library may be implicit or explicit. The implicit load occurs as a
consequence of ’statically’ linking an executable with the library. OS X
handles the loading of the library automatically at runtime, resolving all
symbol references.

DLL and C Connect may be used to explicitly load a .dylib library, but
there is no mechanism to unload it (because it will appear to have been
statically linked to the object engine). If you wish to both load and unload
libraries from a running executable, you must use bundles.

Bundles
MacOS X delivers applications, frameworks, and loadable libraries as
bundles. Bundles are essentially directories used to group executable
code and runtime resources into a single entity. From the user’s
perspective, the bundle appears to be a single unit. DLL and C Connect
provides support for handling two of the three varieties of OS X bundles:

Frameworks
Bundles with a .framework extension contain dynamic shared
libraries and associated resources (e.g. header files, images, and
even documentation). Typically, these are packaged Objective-C
class libraries (roughly corresponding to VisualWorks parcels).

Loadable Bundles
Entities with a .bundle extension are similar to frameworks and
applications,but they are designed to be explicitly loaded into a
running application (i.e., application plugins).

For additional details on OS X bundles, see:

http://developer.apple.com/documentation/MacOSX/Conceptual/
8-6 VisualWorks

MS-Windows
SystemOverview/Bundles/chapter_5_section_1.html

MS-Windows
VisualWorks DLL and C Connect runs within Microsoft’s Win32s
subsystem. This subsystem was designed and built to provide binary
portability between MS-Windows NT applications and MS-Windows
95/98 by providing an environment for applications that adhere to a flat
32-bit memory model. This model requires all dynamic-link libraries that
run under Win32s to use this 32-bit flat memory model.

Details about using 32-bit Dynamic-Link Libraries are discussed in the
following section on Windows XP. Access to 16-bit DLLs is no longer
supported.

When static-linking an Object Engine for a Windows platform, it is
necessary to define the CPU environment variable as follows:

CPU=i386

Object Engine Access Interface with MS-Windows
To access the Object Engine interface from a statically-linked DLL, you
should use the vwnt.exe rather than the visual.exe engine. The
visual.exe engine does not use the vwntoe.dll required for Object
Engine access, and .exe files do not export their symbols.

To access this interface, you will need to perform the following steps to
ensure that your project links correctly. If you are using the Microsoft
Visual C++ compiler, normally you would export the symbol
oeLoadInitialize() by adding the following line of code to your C/C++ file:

extern __dllspec(dllexport) oeLoadInitialize(void);
However, this does not work due to the nature of the dllexport attribute
and the fact that the oeLoadInitialize() function does not have a definition in
any of the dependent modules. What you must do is actually create a
.def file and add the symbol to oeLoadInitialize in its EXPORTS section,
making sure to insert the .def file into the project. For details, see the
Microsoft documentation for information on how the loading of exported
symbols from a .def file differs from the loading of symbols from a .cpp
file using the dllexport attribute.
DLL & C Connect User’s Guide 8-7

Platform Specific Information
MS-Windows XP and Vista

32-bit Dynamic-Link Libraries
DLL and C Connect supports the Microsoft Visual C/C++ compiler. Two
standard calling conventions are supported:

__cdecl
Arguments are pushed left to right. The caller pops arguments.

__stdcall
Arguments are pushed left to right. The callee pops arguments.

Callbacks can only use the __stdcall calling convention. You must be very
careful to tag your callback pointer types with the appropriate calling
convention or unpredictable results will occur (typically stack corruption
followed by a memory exception).

Consult the MS-Windows documentation for further information on how to
build dynamic-link libraries.

Dynamic-link libraries that use the Object Engine access protocol (for
further details, you may consult the chapter “Object Engine Access
Functions” on page 9-1) must export the symbol oeLoadInitialize. This
function is called when the library is first loaded into the address space of
the calling process to initialize local data used to implement the Object
Engine access protocol. This symbol should appear in the EXPORTS field
of your module definition (.DEF) file.

Structure Layout Issues under MS-Windows XP and Vista
When working with Windows XP and Vista include files, it is sometimes
necessary to accommodate unusual byte-packing algorithms used for
structure layout. Some include files, through the use of a #pragma
compiler/preprocessor directive, can modify the layout of structures.
Because VisualWorks ignores all compiler-specific #pragma directives,
this can lead to incorrect execution of your interface classes. A specific
example is the Windows XP header file commdlg.h, which defines the
following #pragma and structure declaration:
8-8 VisualWorks

MS-Windows
#ifndef RC_INVOKED
#pragma pack(1) /* Assume byte packing throughout */
#endif

typedef struct tagOFNA {
DWORD lStructSize;
HWND hwndOwner;
...
LPCSTR lpTemplateName;

} OPENFILENAMEA;
...

You can specify a a byte packing algorithm for this structure by realigning
the structure during image start-up. In your interface class's #installOn:
method, execute the following expression:

YourInterfaceInstance OPENFILENAMEA
typeDo: CStructureLayout dosLayout

You must perform this realignment for every structure that uses byte
packing versus the standard 32-bit packing algorithm. For a longer
discussion of alignment algorithms, see “External Heap Alignment” on
page 3-22.

Declaring the C Functions
When defining the interface for a DLL, it is important to know the calling
conventions used by the external function entry points in the DLL. This
information is usually available in the DLL’s interface manual or the C
language header files associated with the DLL.

Two calling conventions for Windows DLLs are supported. The __stdcall
is used to call Win32 API functions. The __cdecl convention is the default
calling convention for C and C++ programs. Refer to the Microsoft
documentation for more information about using these conventions.

An example of a method to call a Windows C function is as follows:

cProcedure
<C: long __cdecl cProcedure(long arg1)>

Ordinals
Procedure addresses within a DLL are obtained by using the symbolic
name of the entry point or by specifying the ordinal number associated
with the entry point. The ordinal number is an integral number unique to
the entry point. Ordinal numbers allow address look-up to be
DLL & C Connect User’s Guide 8-9

Platform Specific Information
accomplished much faster than using a symbolic name. Ordinal numbers
are assigned by the DLL designer, and they can be obtained by using the
exehdr application that is typically bundled with your compiler.

An ordinal number can be associated with a function. If you specify a
function’s ordinal number, that number is used during address look-up. If
not, the function’s name is used.

To associate an ordinal number with a function, send the message ordinal:
to the external procedure object that represents the function if your
interface is compiled in #debug mode. The external procedure object is
obtained from the pool dictionary associated with the interface class. You
can use the name of the function if your Smalltalk method has access to
the pool dictionary.

For example, given the following interface class method:

aFunction
<C: long aFunction(void)>

Assign the function an ordinal number using the following statement:

aFunction ordinal: anInteger.
Note that this mechanism will not work correctly if the interface is
compiled fully optimized. In this case, you must send the ordinal: message
to the ExternalMethod object that is created when a function prototype
method is compiled. In the above example, you would need to evaluate
the following:

| compiledMethod |
compiledMethod := SomeInterface compiledMethodAt: #aFunction.
compiledMethod ordinal: anInteger.

Declaring the C Data Types
When writing interface code that defines C data types for Windows DLLs,
observe the following conventions:

Default datatype sizes:
The default size for types varies among the platforms supported. Be
careful about defining portable C data types if you want your code to
be usable across platforms.

Structure order, alignment and padding:
The layout of structure members, their alignment within the structure,
and the padding between members is implementation dependent.
The default Windows structure alignment algorithm when running on
a Windows platform is used, which packs structure members on one
8-10 VisualWorks

MS-Windows
byte boundaries. You can modify the layout by adding a new default
layout to the CStructureLayout class. This, however, is not necessary
unless you are calling a DLL that uses a different structure layout.

Byte order within a word:
The 80x86 processor line stores words in memory with the most
significant byte last. Each byte is stored with the most significant bit
first. For portability, your code should not rely on any word byte
ordering.

Bit fields:
Bit field structure members are not supported.

Type specifiers:
The long double type specifier is also not supported. For the Microsoft
compilers it defines an 80-bit floating-point quantity.

Strings and string formats:
It is important to know the format of strings when you must pass
string pointers to the DLL. For more details, refer to the sub-section
“Strings” on page 8-11.

Pointer arithmetic:
All pointer arithmetic is performed on 32-bit pointers. Note that the
_huge type qualifier is not supported by DLL and C Connect.

Strings
Smalltalk String objects are specially treated. They can be passed as
function arguments typed as char *.

In the case of String arguments, a direct pointer to the Smalltalk string is
passed if the string can be properly NULL terminated. If not, Smalltalk
makes a NULL terminated copy of the string in its object memory and a
pointer to the new copy is passed as the function’s argument.

Since it is possible that Smalltalk copied the String argument, do not
assume that Strings can be destructively modified. If you wish to
destructively modify a string, you must first copy the string to the heap
and then copy it back into a Smalltalk string object after the function
returns.

Various languages implement strings in different ways. If you are calling a
C routine that accepts a language specific string as an argument of type
char *, you must make sure to pass a pointer object that implements the
particular string format. For example, Microsoft’s Pascal format stores
strings as a length byte followed by string data, or as a fixed length
sequence of chars. Microsoft’s BASIC format is to store strings as a four-
byte descriptor. The first two bytes store the string’s length while the
DLL & C Connect User’s Guide 8-11

Platform Specific Information
second two bytes are the offset of the string data relative to the current
data segment. Microsoft’s FORTRAN format is to store strings as a fixed-
length sequence of characters. As stated in the Microsoft documentation,
variable length FORTRAN strings cannot be used in mixed-language
programming because the hidden variable used for string length is not
accessible.

Callbacks
Only callbacks that conform to the __stdcall calling convention are
supported. An example of a legal C language type declaration of a
callback pointer is as follows:

typedef long (__stdcall *CallbackAddPtr)(long, long);
CallbackAddPtr is a function pointer type defining a function that accepts
two long arguments and returns a long.

The following is a small example of the declarations needed to define and
use a callback from a Windows DLL. The first step is to define the
callback pointer type that is used in the function declaration and is also
used in generating the CCallback object. This is performed by defining the
following type declaration in your interface class:

CallbackAddPtr
<C: typedef long (__stdcall *CallbackAddPtr)(long, long)>

The second step is to define the function entry point in the DLL. This is
accomplished by entering the following Smalltalk method into your
interface class:

add: functionPtr with: arg1 with: arg2
<C: long _cdecl add(CallbackAddPtr, arg1, arg2)>

Finally, define a method that creates the Smalltalk callback object and
invokes the DLL function as follows:

testCallback
| callback |
callback := CCallback do: [:arg1 :arg2 | arg1 + arg2]

ofType: self CallbackAddPtr.
^self add: callback with: 1 with: 2

An example implementation of the add() C function that is compiled into
the DLL is:
8-12 VisualWorks

MS-Windows
typedef long (__stdcall *CallbackAddPtr)(long, long);
long __cdecl
add(CallbackAddPtr callback, long arg1, long arg2)
{

return (*CallbackAddPtr)(arg1, arg2);
}

Library Search Paths
When DLL and C Connect needs to search for a C library to load, the
library names and paths specified in your library’s Smalltalk interface
class are used. However, if your interface class does not specify a
complete path to the library, the same searching mechanism is used as is
used by the Windows API LoadLibrary() function. This mechanism
searches for the library in the following locations:

1 The current directory.

2 The Windows directory (the directory that contains WIN.COM).

3 The Windows system directory (the directory containing system files
such as GDI.EXE).

4 The directory containing Smalltalk’s executable file.

5 The directories listed in your PATH environment variable.

6 The list of directories mapped in a network.

7 If the library is not found in any of these locations, Smalltalk raises an
exception (a notifier may or may not appear on your screen,
depending on the exceptions handlers that wrap the call). Note that
you can make use of environment variables to simplify the path
specified in your interface class (for details, see “Libraries and
Environment Variables” on page 2-17).

Defining the DLL Interface
This section describes the basics of writing and compiling your own
dynamic-link libraries. It is intended as an introduction to the concepts of
building a DLL from the C programmer’s viewpoint, rather than that of a
Smalltalk programmer. It is by no means a complete description of the
nuances and intricacies of writing DLLs. Rather, it describes the salient
features that you should consider when designing and writing a DLL.

There are four aspects to writing a DLL:

• The external API must be defined.

• The DLL definition file must be created.
DLL & C Connect User’s Guide 8-13

Platform Specific Information
• The API code must created and compiled.

• The DLL must be created.

The first step in creating your own DLL is to properly define the interface.
It is important that you plan the interface well, to provide a full set of
services and to minimize maintenance costs. Important points to
remember when defining the interface are:

• Declare all function entry points either __cdecl or __stdcall.

• Declare all function entry points _export if the function’s name does
not appear in the EXPORTS section of a module-definition file. For
more information on defining exports, consult Microsoft’s module-
definition file documentation.

• Be aware of the separate data and stack segments that exist when
your code enters DLL functions. You may need to declare DLL
function entry points with the _loadds type qualifier. The _loadds
qualifier causes the compiler to add entry and exit code to the
function. The entry code loads the DS register. Loading the DS
register adds some overhead, so limit this to only exported functions.
Note that you can use compiler memory model options to control
segment setup. See your compiler documentation for more details.

Creating the Definition File
The second step in creating your DLL is to create the module-definition
file. This section outlines only the minimum requirements for generating a
Windows DLL module-definition file. Consult your development
environment’s documentation on building module-definition files for more
detailed information.

The following entries should appear in the module-definition file:

• The LIBRARY statement. This statement identifies the file as a DLL.

• The DESCRIPTION statement (optional). This statement inserts text
into the DLL and is used to insert copyright strings and/or more fully
describe the purpose or version of the DLL.

• The EXETYPE statement. This statement indicates which operating
system the DLL was created for. Its value will be
WINDOWS [[version]].

• The EXPORTS statement. This statement defines the names of the
DLL’s exported functions. Note that some language compilers allow
exporting function names by using the _export type qualifier.
8-14 VisualWorks

MS-Windows
There are other module-definition statements that are relevant to building
DLLs. Some of the more useful statements are HEAPSIZE, CODE, DATA,
SEGMENTS, and IMPORTS. Refer to the appropriate manual for a detailed
description.

An example definition file that exports two functions appears below. The
first function, Cadd(), is a C style function. The second function,
PascalAdd(), is a Pascal style function. The next section declares the
actual functions.

LIBRARY TESTLIB
DESCRIPTION'Test Library Version 1.0'
EXETYPE WINDOWS
EXPORTS

Cadd = _Cadd
PascalAdd

Compiling the External Library Code
The third step in creating a DLL is to compile the DLL’s source code.
There are many compiler options for the various vendor’s compilers.
Consider the following four items during the compilation process.

Compile Without Linking
You can compile each source file into an object file incrementally
rather than all at once. This can be controlled by using the
development environment’s makefile facility. For the Microsoft
compilers, use the /c switch.

Large Memory Model with Separate Stack
You must make sure to specify the correct memory model for your
DLL code. A typical model is the large memory model. In addition to
the memory model, you must indicate segment setup. For DLLs,
because there is a separate stack and data segment, you should
specify if the SS and DS registers get loaded during function entry.
Refer to the specific compiler documentation for the appropriate
flags.

Specify Code for the Appropriate Processor
You must specify what type of machine code the compiler generates
(for ’86, ’286, ’386, ’486, or Pentium architectures). Refer to the
specific compiler documentation for the appropriate flags.

Packed structures
You must specify which structure packing layout will be used. It
defaults to using the packed structure layout algorithm. For the
Microsoft compiler, use the /Zp1 option.
DLL & C Connect User’s Guide 8-15

Platform Specific Information
For example, assume the hypothetical file SAMPLE.C contains three
functions. The following commands, based on the Microsoft C/C++ 7.0
compiler, will compile the file into a DLL. You need to substitute
equivalent commands for the compiler on your system.

#include <windows.h>
int CALLBACK
LibMain(

HINSTANCE hInstance,
WORD wDataSeg,
WORD cbHeap,
LPSTR ignore)

{
return 1;

}

long _cdecl
Cadd(long a, long b)
{

return a + b;
}

long _stdcall
PascalAdd(long a, long b)
{

return a + b;
}

To compile SAMPLE.C, execute the following command from a DOS
prompt. This assumes that you have correctly initialized your PATH and
LIB environment variables.

CL /c /ALw /G2 /Zp SAMPLE.C

This generates the file SAMPLE.OBJ, which is linked and converted into a
DLL. Remember that the compiler needs to be able to access the
WINDOWS.H file included by the sample program. This include file is
found in the developer’s kit. The next section describes the linking step.

Creating the DLL
Once you have compiled your DLL’s source code as described in the
previous section, you need to link the resulting object files and create the
final DLL. There are various ways of linking the resulting object files,
depending on the floating-point math requirements, and also depending
on whether any run-time libraries must be linked. Consult your
development environment’s documentation for further library
requirements.
8-16 VisualWorks

MS-Windows
In this example, there is one object file. To link the object file and create
the DLL, execute the following command:

LINK /NOD SAMPLE.OBJ, SAMPLE.DLL, NUL, LDLLCEW
LIBW, SAMPLE.DEF

This command creates the dynamic-link library SAMPLE.DLL. Note that
you need to link with two libraries. The first library, LDLLCEW.LIB is
bundled with the Microsoft compiler. The second library, LIBW.LIB, is
bundled with the Microsoft Software Development Kit (SDK). Consult the
documentation for the compiler and the SDK for more information on
these libraries.

A single link command option, /NOD, was specified. This option tells LINK
not to search default libraries named in the object files.

The last step is to run the Resource Compiler on the DLL. Execute the
following:

RC SAMPLE.DLL

This identifies a Windows version number with the DLL. You now have a
DLL that can be loaded and accessed by your interface class.

Creating a Makefile
For general guidelines, consult your development environment’s
documentation on how to create a makefile.
DLL & C Connect User’s Guide 8-17

Platform Specific Information

8-18 VisualWorks

9
Object Engine Access Functions

Overview
DLL and C Connect was designed to interface Smalltalk with software
written in C in a manner that makes C functions and data objects
accessible and modifiable by Smalltalk. This chapter describes the Object
Engine access functions, an analogous interface that provides a way for
software written in the C programming language to access data objects
and other functionality that reside in the Smalltalk Object Engine. These
access functions replace the previous version of the interface that was
termed the user-defined primitive interface.

From the Smalltalk programmer’s point of view, DLL and C Connect
provides two basic interfaces:

• A callout interface for calling C functions from Smalltalk.

• A callback interface for allowing called C functions to execute
Smalltalk code.

As discussed in the chapter “Calling Smalltalk From C” on page 4-1,
callbacks can be either (a) Smalltalk block closures that are called from a
C function, or (b) external message-sends on Smalltalk objects that are
performed via a set of C function calls. The functions that facilitate
external message-sends are actually part of a larger collection of C
functions known collectively as the “Object Engine Access Function”
interface. This interface allows C code that you call from Smalltalk more
flexible access to the Smalltalk object memory. With the exception of
external message-sends, the Smalltalk Object Engine will not run during
most of these access function calls.
DLL & C Connect User’s Guide 9-1

Object Engine Access Functions
Basic Capabilities
The Object Engine access function interface provides your code with a
variety of capabilities and routines, including:

• Accessing Smalltalk objects.

• Following field references.

• Converting representations between C and Smalltalk.

• Creating new objects.

• Returning an object to a C function via a callback or message send.

• Indicating to Smalltalk that a C function callout did not successfully
complete.

Predefined C Data Types
Seven C data types are predefined for the Object Engine Access
interface. They are used to convert between Smalltalk objects and
standard C data types according to the following table:

Any object can be passed to, or received from, a function typed as OEoop.

The ExternalInterface class defines a new C type specifier _oop. This
specifier indicates that a function argument or return value can accept an
arbitrary Smalltalk object. A reference to the Smalltalk object is passed to
the C function. To manipulate any object typed as _oop, use one of the

C data types

C type Converts to C equivalent Comment

OEoop Reference to a
Smalltalk object

OEbool true/false OETRUE/OEFALSE

OEbyte byte-type unsigned char

OEint SmallInteger long

OEfloat Float float

OEdouble Double double

OEchar Character char
9-2 VisualWorks

Failure Codes
special functions declared in the Object Engine access interface. The
type specifier _oop used in your Smalltalk interface methods is equivalent
to the C type OEoop.

Failure Codes
If an Object Engine access call succeeds, it returns a value to the caller.
In case of failure, a special constant is available to indicate the failure
condition. You may consult the individual function reference (see following
pages) for a description of its failure conditions. If a function indicates
failure, further information about the failure can be obtained by calling the
function OEgetErrorCode(). This function returns an OEerrorCodeID, as
defined in the file oeAPI.h (this file is located in the src subdirectory of
the DLL and C Connect release). The possible results of this function are
described in the following table:

Dynamic-Link Libraries
Dynamic-link libraries that use the Object Engine access protocol must
export the symbol oeLoadInitialize (for further details, consult the chapter
“Platform Specific Information” on page 8-1).

OEgetErrorCode results

Name Description

OEerrorNone No failure code available.

OEerrorCrange A C argument is out of range; either because
an index into a variable-length array is out of
bounds, or else a Smalltalk datum is too big to
be represented in C.

OEerrorNonOop Oop argument not an oop.

OEerrorWrongClass Oop argument incorrect type.

OEerrorObjectTooSmall Smalltalk datum too small.

OEerrorAllocationFailed Smalltalk object memory allocation failed.

OEerrorStoreFailure The function illegally attempted to place an
object reference into another object. This
indicates an overflow of the “Remembered
Table”; see the comments on class
ObjectMemory for details.
DLL & C Connect User’s Guide 9-3

Object Engine Access Functions
General Advice
• View OEoop objects as opaque objects, not actual object pointers

(OOPs). The most important role of these handles is to be passed as
object references to the Object Engine access interface.

• Your functions are capable of corrupting the Smalltalk object memory.
It is especially important to perform bounds checking.

• Many operating system calls, such as read(), can cause Smalltalk to
block until the call is completed. The end user may find it annoying if
this system call cannot be satisfied within a reasonably short amount
of time. As a rule, I/O operations should be performed using threaded
calls (for details see the chapter “Threaded Interconnect” on
page 5-1).

• There is no way to interrupt an Object Engine access or system call
from Smalltalk. Typing control-Y does not work until the C function
returns control to Smalltalk.

• The call stack above the current call frame does not conform to C
calling conventions.

• Because memory allocations can fail, perform all allocations before
provoking side effects in any data structure.

• An OEoop, Object Engine Access object pointer, is only valid during
the current call to your function. If you try to save it across function
calls you may cause function failure or a program crash because the
object may be relocated by the Smalltalk memory manager. If an
object is needed for more than one call, make it an instance variable
of the receiver, pass it in as an argument for each call, or use the
registry discussed in the section “Registering Long Lived Objects” on
page 9-5.

• The C programming language uses 0-based indexes, while Smalltalk
uses 1-based indexes.

• If a Smalltalk datum is too big to be represented in C, the Object
Engine access routine fails and returns the OEerrorCrange failure code.
9-4 VisualWorks

Registering Long Lived Objects
Registering Long Lived Objects
The Object Engine maintains a system registry of objects that must be
referenced by Object Engine code. This is needed because the Object
Engine relocates objects during memory management operations, so
direct references to object memory (OEoop and _oop are such references)
cannot persist across external calls to C functions.

To refer to objects over time, the Object Engine provides a facility to
register indirect references to objects. Note that this registry is distinct
from the object table that is used by the Smalltalk memory manager.
These indirect references are indices in a table that the Object Engine
memory manager keeps current.

Another important reason to use the registry is to reference an object that
was given to an external function in a prior call. For example, imagine you
have a function that was passed a Semaphore so it could be signalled later
(by using oeSignalSemaphore()). Your function can ask the registry for a
permanent slot (it returns a table index if there is enough room) and store
the semaphore into the registry at that slot using the function
oeRegisteredHandleAtPut(). You would then need to record the slot index in
a static variable in the external code. Later, to obtain the reference the
object, you can read the registry at the slot you recorded using the
function oeRegisteredHandleAt().

Registry slots are a finite resource, and cannot be recycled (while the
Object Engine is running), so use them sparingly. To reserve a registry
slot, call:

static oeInt slot;
slot = oeAllocRegistrySlot();

Any slots you allocate (and the references you store in them) are
discarded in a snapshot file. So you cannot use the registry to keep
objects from being garbage-collected across snapshots. To do that, use
the normal Smalltalk techniques (such as keeping the object in a class
variable) and re-register your slots when the snapshot restarts.

An object that has a reference in the registry, however, will not be
garbage-collected while the Object Engine is running—so it is important
to store nil in a registry slot when you are done with it. Failure to do this
can cause a space leak.
DLL & C Connect User’s Guide 9-5

Object Engine Access Functions
Restrictions
The Object Engine access functions cannot be called from 16-bit DLLs
compiled for MS-Windows. Libraries must be compiled for 32-bit
operation to use the Object Engine access interface.

Object Engine Access Overview
The following section lists the Object Engine access protocol. The first
column indicates the desired operation, the second column indicates the
appropriate function to use.

Class conversion

Operation Function

nil oeNil()

true oeTrue()

false oeFalse()

SmallInteger class oeSmallIntegerClass()

Character class oeCharacterClass()

Float class oeFloatClass()

Double class oeDoubleClass()

Point class oePointClass()

Array class oeArrayClass()

Semaphore class oeSemaphoreClass()

ByteString class oeByteStringClass()

LargePositiveIntegerClass oeLargePositiveIntegerClass()

LargeNegativeIntegerClass oeLargeNegativeIntegerClass()

ByteArray class oeByteArrayClass()

TwoByteString class oeTwoByteStringClass()

TwoByteSymbol class oeTwoByteSymbolClass()
9-6 VisualWorks

Object Engine Access Overview
C conversion

To convert the following: Use the function:

C string to a Smalltalk string oeCopyCtoOEstring()

C byte array to a Smalltalk byte object oeCopyCtoOEbytes()

C integer array to Smalltalk Array oeCopyCtoOEintArray()

C float array to a Smalltalk Array oeCopyCtoOEfloatArray()

C integer to Smalltalk Integer oeCtoOEint()

C double to a Smalltalk Double oeCtoOEdouble()

C float to a Smalltalk Float oeCtoOEfloat()

C boolean to a Smalltalk Boolean oeCtoOEbool()

C character to a Smalltalk Character oeCtoOEchar()

Smalltalk conversion

To convert the following: Use the function:

Smalltalk String to a C string oeCopyOEtoCstring()

Smalltalk Byte Array to a C byte array oeCopyOEtoCbytes()

Smalltalk Integer array to C integer array oeCopyOEtoCintArray()

Smalltalk Float array to C float array oeCopyOEtoCfloatArray()

Smalltalk Integer to C integer oeOEToCint()

Smalltalk Float to C float oeOEToCfloat()

Smalltalk Double to C double oeOEToCdouble()

Smalltalk Character to C character oeOEToCchar()

Smalltalk Boolean to C boolean oeOEToCbool()

Data type functions

To test for this in Smalltalk: Use this function:

Character oeIsCharacter()

String oeIsString()

Integer oeIsInteger()

Float oeIsFloat()

Double oeIsDouble()
DLL & C Connect User’s Guide 9-7

Object Engine Access Functions
Array of Integers oeIsArrayOfInteger()

Array of Floats oeIsArrayOfFloat()

Byte Array oeIsByteArray()

Byte-like oeIsByteLike()

Boolean oeIsBoolean()

Immediate oeIsImmediate()

Class check oeIsKindOf()

Valid Object oeCouldBeOop()

Allocation functions

To allocate this in Smalltalk: Use this function:

String oeAllocString()

Byte array oeAllocByteArray()

Array oeAllocArray()

Fixed-size object oeAllocFsObject()

Variable-size object oeAllocVsObject()

New empty slot in the System Registry oeAllocRegistrySlot()

Access functions

To access this: Use this function:

Indexed variable oeBasicAt()

Instance variable oeInstVarAt()

Indexed byte oeByteAt()

Indexed float oeFloatAt()

Indexed double oeDoubleAt()

Registry Handle to object oeRegisteredHandleAt()

Object’s instance variable size oeInstVarSize()

Object’s indexed variable size oeIndexVarSize()

Object’s data pointer oeOopDataPtr()

Data type functions (Continued)

To test for this in Smalltalk: Use this function:
9-8 VisualWorks

Object Engine Access Overview
Storage functions

To store into this: Use this function:

Indexed variable oeBasicAtPut()

Instance variable oeInstVarAtPut()

Indexed byte oeByteAtPut()

Indexed float oeFloatAtPut()

Registry Handle to object oeRegisteredHandleAtPut()

Send message functions

To send this: Use this function:

Unary message oeSendMessage0()

One-argument message oeSendMessage1()

Two-argument message oeSendMessage2()

Three-argument message oeSendMessage3()

Multi-argument message oeSendMessageMany()

Unary message with C string selector oeCSendMessage0()

One-argument message with C string
selector

oeCSendMessage1()

Two-argument message with C string
selector

oeCSendMessage2()

Three-argument message with C string
selector

oeCSendMessage3()

Multi-argument message with C string
selector

oeCSendMessageMany()

Computation functions

To perform long computations: Use this function:

At the start of the long computation oeStartLongComputation()

At the end of the long computation oeFinishLongCompuation()

Error condition function

To test this error condition: Use this function:

To retrieve the last error code oeGetErrorCode()

Function failure oeFail()
DLL & C Connect User’s Guide 9-9

Object Engine Access Functions
Object Engine Access Reference

oeAllocArray
oeAllocArray(

OEoop oeInitValue,
long numElements);

The oeAllocArray allocates an instance of an Array.

Parameters
oeInitValue: Identifies the object used to initialize each element of the new
array.

numElements: Identifies the number of object slots in the new string.

Return Value
Returns a new Array instance.

Comments
If the allocation fails, returns OEnonOop with the error code
OEerrorAllocationFailed. If the argument numElements is invalid, the error
code is OEerrorCrange. If the object oeInitValue is invalid, the error code is
OEerrorNonOop.

See Also
oeBasicAt, oeBasicAtPut, oeInstVarAt, oeInstVarAtPut

Initialization of statically linked code

To perform this action: Use this function:

To perform initialization of statically linked
code

oeInstall()

To define statically-linked entry points oeInitLinkRegistry()

Interrupt handling

To register an interrupt handler: Use this function:

To set up an interrupt handler oeInstallPollHandler()

To post an interrupt for the poll handler oePostInterrupt()
9-10 VisualWorks

Object Engine Access Reference
oeAllocByteArray
OEoop oeAllocByteArray(

OEbyte initByteValue,
long numElements);

The oeAllocByteArray allocates an instance of a ByteArray.

Parameters
initByteValue: Identifies the byte that should be used to initialize each
element of the new string.

numElements: Identifies the number of bytes in the new string.

Return Value
Returns a new ByteArray instance.

Comments
If the allocation fails, returns OEnonOop with the error code
OEerrorAllocationFailed. If the argument numElements is negative, the error
code is OEerrorCrange. If the object initByteValue is invalid, the error code is
OEerrorNonOop.

See Also
oeIsByteArray, oeCopyOEtoCbytes, oeCopyCtoOEbytes, oeBasicAt, oeBasicAtPut,
oeInstVarAt, oeInstVarAtPut, oeByteAt, oeByteAtPut

oeAllocFsObject
OEoop oeAllocFsObject(OEoop oeClass);
The oeAllocFsObject allocates an instance of a fixed-sized class. A fixed-
sized class is any class that cannot have a variable number of instance
variables.

Parameters
oeClass: Identifies the fixed-sized class to instantiate.

Return Value
Returns a new object instance.

Comments
If the allocation fails, returns OEnonOop with the error code
OEerrorAllocationFailed. If the argument oeClass does not represent a fixed-
sized class, the error code is OEerrorWrongClass. If the object oeClass is
invalid, the error code is OEerrorNonOop.
DLL & C Connect User’s Guide 9-11

Object Engine Access Functions
See Also
oeInstVarAt, oeInstVarAtPut, oeBasicAt

oeAllocRegistrySlot
OEint oeAllocRegistrySlot(void);
The oeAllocRegistrySlot function allocates a new empty slot in the system
registry.

Parameters
None

Return Value
Returns an identifier representing the allocated system registry slot.

Comments
Registry slots are a limited resource, and cannot be recycled (while the
Object Engine is running), so use them sparingly. To reserve a registry
slot, call:

static OEint slot;
slot = oeAllocRegistrySlot();

Any slots you allocate (and the references stored in them) are discarded
in a snapshot file. Do not use the registry to keep objects from being
garbage collected across snapshots. This can be done by using the
normal Smalltalk programming techniques (such as keeping the object in
a class variable) and re-register your slots when the snapshot starts up.

An object that has a reference in the registry, however, will not be
garbage collected while the Object Engine is running so it is a good idea
to store nil in a registry slot when you are finished with it.

If oeAllocRegistrySlot fails, it returns zero with the error code
OEallocationFailed, which indicates a registry slot could not be allocated.

See Also
oeRegisteredHandleAtPut, oeRegisteredHandleAt
9-12 VisualWorks

Object Engine Access Reference
oeAllocString
OEoop oeAllocString(

OEchar initCharValue,
long numElements);

The oeAllocString allocates an instance of a ByteString.

Parameters
initCharValue: Identifies the character that should be used to initialize
each element of the new string.

numElements: Identifies the number of characters in the new string.

Return Value
Returns a new ByteString instance.

Comments
If the allocation fails, returns OEnonOop with the error code
OEerrorAllocationFailed. If the argument numElements is negative, the error
code is OEerrorCrange.

See Also
oeIsString, oeCopyOEtoCstring, oeCopyCtoOEstring, oeBasicAt, oeBasicAtPut,
oeInstVarAt, oeInstVarAtPut, oeByteAt, oeByteAtPut

oeAllocVsObject
OEoop oeAllocVsObject(

OEoop oeClass,
OEint size);

The oeAllocVsObject allocates an instance of a variable-sized class. A
variable-sized class is any class that can have a variable number of
variables capable of being indexed.

Parameters
oeClass: Identifies the class to instantiate.

size: Indicates the number of elements to allocate in the new object.

Return Value
Returns a new object instance.
DLL & C Connect User’s Guide 9-13

Object Engine Access Functions
Comments
If the allocation fails, returns OEnonOop with the error code
OEerrorAllocationFailed. If the argument oeClass does not represent a
variable-sized class, the error code is OEerrorWrongClass. If the argument
size is negative, the error code is OEerrorCrange. If the object oeClass is
invalid, the error code is OEerrorNonOop.

See Also
oeInstVarAt, oeInstVarAtPut, oeBasicAt, oeBasicAtPut

oeBasicAt
OEoop oeBasicAt(

OEoop oeObject,
OEint index);

The oeBasicAt function returns an arbitrary element within a variable-sized
object.

Parameters
oeObject: Identifies the object to access.

index: Indicates the index of the object to retrieve.

Return Value
Returns the element in the index position of oeObject.

Comments
If oeBasicAt fails, returns OEnonOop. If the argument oeObject is not a
variable-sized object, the error code is OEerrorWrongClass. If the argument
index is invalid, the error code is OEerrorCrange. If index is larger than the
size of oeObject, the error code is OEerrorOOEerrorObjectTooSmall. If the
object oeObject is invalid, the error code is OEerrorNonOop.

See Also
oeAllocVsObject, oeInstVarAt, oeInstVarAtPut, oeBasicAtPut

oeBasicAtPut
OEoop oeBasicAtPut(

OEoop oeObject,
OEint index
OEoop oeOopToBePut);

The oeBasicAtPut function replaces an arbitrary element within a variable-
sized object.
9-14 VisualWorks

Object Engine Access Reference
Parameters
oeObject: Identifies the object whose element in the index position is
replaced.

oeOopToBePut: Identifies the object to placed into the index location in the
position in oeObject.

index: Indicates the index of the object to replace.

Return Value
None

Comments
If oeBasicAtPut fails, returns OEnonOop with the error code
OEerrorWrongClass if the argument oeObject is not a valid object. If the
argument index is less than one, the error code is OEerrorCrange. If index is
larger than the size of oeObject, the error code is OEerrorObjectTooSmall. If
oeObject or oeOopToBePut are invalid handles, the error code is
OEerrorNonOop.

See Also
oeAllocVsObject, oeInstVarAt, oeInstVarAtPut, oeBasicAtPut

oeByteAt
OEoop oeByteAt(

OEoop oeByteLikeObject,
OEint index,
OEbyte *lpByte);

The function retrieves a byte from a byte-like object.

Parameters
oeByteLikeObject: Identifies the object whose byte in the index position is
retrieved.

index: Indicates the index of the byte to retrieve.

lpByte: Pointer to the location where the fetched byte is to be placed.

Return Value
Returns the argument, oeByteLikeObject.
DLL & C Connect User’s Guide 9-15

Object Engine Access Functions
Comments
If oeByteAt fails, returns OEnonOop with the error code OEerrorWrongClass if
the argument oeByteLikeObject is not a valid byte-like object. If the
argument index is less than one, the error code is OEerrorCrange. If index is
larger than the size of oeByteLikeObject, the error code is
OEerrorObjectTooSmall. If the handle oeByteLikeObject is invalid, the error
code is OEerrorNonOop.

See Also
oeAllocFsObject, oeInstVarAt, UPinstVarAtPut, oeBasicAt, oeBasicAtPut

oeByteAtPut
OEoop oeByteAtPut(

OEoop oeByteLikeObject,
OEint index,
OEbyte oeUpByte);

The oeByteAtPut function modifies a byte within a byte-like object.

Parameters
oeByteLikeObject: Identifies the object whose byte in the index position is
replaced.

index: Indicates the index of the byte to retrieve.

oeUpByte: Indicates the byte to be placed at the index location of the
object represented by oeByteLikeObject.

Return Value
None

Comments
If oeByteAtPut fails, returns OEnonOop with the error code OEerrorWrongClass
if the argument oeByteLikeObject is not a valid byte-like object. If the
argument index is less than one, the error code is OEerrorCrange. If index is
larger than the size of oeByteLikeObject, the error code is
OEerrorObjectTooSmall. If the object oeByteLikeObject is invalid, the error
code is OEerrorNonOop.

See Also
oeAllocFsObject, oeInstVarAt, UPinstVarAtPut, oeBasicAt, oeBasicAtPut
9-16 VisualWorks

Object Engine Access Reference
oeClass
OEoop oeClass(OEoop oeObject);
The oeClass function returns the class of an object.

Parameters
oeObject: Identifies the object whose class will be retrieved.

Return Value
Returns a handle representing the class of the argument oeObject.

Comments
If oeClass fails, returns OEnonOop with the error code OEerrorNonOop if the
object oeObject is invalid.

See Also
oeAllocVsObject, oeAllocFsObject

oeClassType
OEclassID oeClassType(OEoop oeClass);
The oeClassType function returns an identifier indicating the class type of
the argument.

Parameters
oeClass: Identifies the class object whose class type will be returned.

Return Value
Returns an identifier representing the class type of the class object
represented by the handle oeClass.

Comments
The following indicates the possible return values:

typedef enum {
OEnotAClass = 0,
OEfixedSizeClass = 1,
OEvariableSizeClass = 2

} OEclassID;
Returns OEnotAClass if the object oeClass is a valid, or if oeClass is a valid
object but not a class.

See Also
oeClass, oeFail
DLL & C Connect User’s Guide 9-17

Object Engine Access Functions
oeCopyCtoOEbytes
OEoop oeCopyCtoOEbytes(

OEoop oeByteObject,
OEbyte *lpBytes,
OEint aCount,
OEint startingAt,
OEint *lpActualCount);

The oeCopyCtoOEbytes function copies an array of bytes into a Smalltalk
byte object.

Parameters
oeByteObject: Identifies the Smalltalk byte object that serves as the
destination of the copy action.

lpBytes: Points to the array of bytes that is copied into OEbyteObject.

aCount: Indicates the number of bytes to copy.

startingAt: Indicates the starting index within OEbyteObject that the copy
should take place. Note that the index is 1-based, not 0-based.

lpActualCount: Points to the location where the actual number of bytes
copied is placed.

Return Value
Returns the argument, oeByteObject.

Comments
If oeCopyCtoOEbytes fails, returns OEnonOop with the error code
OEerrorWrongClass if oeByteObject is not a valid object. If startingAt is out of
range the error code is OEerrorCrange. If the object oeByteObject is invalid,
the error code is OEerrorNonOop.

See Also
oeCopyOEtoCbytes, oeIsByteArray

oeCopyCtoOEfloatArray
OEoop oeCopyCtoOEfloatArray(

OEoop oeArray,
OEfloat *lpFloats,
OEint aCount,
OEint startingAt,
OEint *lpActualCount);

The oeCopyCtoOEfloatArray function copies an array of C floating-point
numbers into an Array object.
9-18 VisualWorks

Object Engine Access Reference
Parameters
oeArray: Identifies the Array object that serves as the destination of the
copy.

lpFloats: Points to the array of C floating-point numbers.

aCount: Indicates the number of floating-point numbers to copy.

startingAt: Indicates the starting index within oeArray that the copy should
take place. Note that the index is 1-based, not 0-based.

lpActualCount: Points to the location where the actual number of bytes
copied will be placed.

Return Value
Returns the argument, oeArray.

Comments
If oeCopyCtoOEfloatArray fails, it returns directly to the caller. The function
fails with the error code OEerrorWrongClass if oeArray is not a valid Array
object. If startingAt is out of range, the error code is OEerrorCrange. If the
object oeArray is invalid OEerrorNonOop.

See Also
oeCopyOEtoCfloatArray, oeIsArrayOfFloat

oeCopyCtoOEintArray
OEoop oeCopyCtoOEintArray(

OEoop oeArray,
OEint *lpInts,
OEint aCount,
OEint startingAt,
OEint *lpActualCount);

The oeCopyCtoOEintArray function copies an array of C integers into an
Array object.

Parameters
oeArray: Identifies the Array object that serves as the destination of the
copy action.

lpInts: Points to the array of C integers.

aCount: Indicates the number of integers to copy.

startingAt: Indicates the starting index within oeArray that the copy should
take place. The index is 1-based, not 0-based.
DLL & C Connect User’s Guide 9-19

Object Engine Access Functions
lpActualCount: Points to the integer where the actual number of bytes
copied should be placed.

Return Value
Returns the argument, oeArray.

Comments
If oeCopyCtoOEintArray fails, it returns OEnonOop with the error code
OEerrorWrongClass if the object oeArray is not valid. If startingAt is out of
range, the error code is OEerrorCrange. If oeArray is an invalid handle, the
error code is OEerrorNonOop. If any of the integers pointed to by lpInts are
out of range, the error code is OEerrorCrange.

Only integers in the range -229 to 229 - 1 are correctly converted.

See Also
oeCopyOEtoCintArray, oeIsArrayOfInteger

oeCopyCtoOEstring
OEoop oeCopyCtoOEstring(

OEoop oeString,
OEchar *lpszString,
OEint aCount,
OEint startingAt,
OEint *lpActualCount);

The oeCopyCtoOEstring function copies a C string (pointer to a null
terminated array of character elements) into a ByteString.

Parameters
oeString: Identifies the String object that serves as the destination of the
copy action.

lpszString: Points to the null-terminated string that is copied into oeString.

aCount: Indicates the number of characters to copy.

startingAt: Indicates the starting index within oeString that the copy should
take place. Note that the index is 1-based, not 0-based.

lpActualCount: Points to the integer where the actual number of bytes
copied is placed.

Return Value
Returns the argument, oeString.
9-20 VisualWorks

Object Engine Access Reference
Comments
If oeCopyCtoOEstring fails, returns OEnonOop with the error code
OEerrorWrongClass if oeString is not a valid ByteString object. If startingAt is
out of range, the error code is OEerrorCrange. If the object oeString is
invalid, the error code is OEerrorNonOop.

See Also
oeCopyOEtoCstring, oeIsString

oeCopyOEtoCbytes
OEoop oeCopyOEtoCbytes(

OEoop oeByteObject,
OEbyte *lpBytes,
OEint aCount,
OEint startingAt,
OEint *lpActualCount);

The oeCopyOEtoCbytes function copies a variable length byte object into a
C byte array.

Parameters
oeByteObject: Identifies the byte object that serves as the source of the
copy.

lpBytes: Points to the memory location where the bytes are placed.

aCount: Indicates the number of bytes to copy.

startingAt: Indicates the starting index within oeByteObject that the copy
should take place. Note that the index is 1-based, not 0-based.

lpActualCount: Points to the actual number of bytes copied.

Return Value
Returns the argument oeByteObject.

Comments
If oeCopyOEtoCbytes fails, returns OEnonOop with the error code
OEerrorWrongClass if oeByteObject is not a valid byte-like object. If startingAt
is out of range, the error code is OEerrorCrange. If the object oeByteObject is
invalid, the error code is OEerrorNonOop.

See Also
oeCopyCtoOEbytes, oeIsByteArray
DLL & C Connect User’s Guide 9-21

Object Engine Access Functions
oeCopyOEtoCfloatArray
OEoop oeCopyOEtoCfloatArray(

OEoop oeFloatArray,
OEfloat *lpFloats,
OEint aCount,
OEint startingAt,
OEint *lpActualCount);

The oeCopyOEtoCfloatArray function copies a Smalltalk array of floating-
point numbers into a C array of floating-point numbers.

Parameters
oeFloatArray: Identifies the Smalltalk float array object that serves as the
source of the copy action.

lpFloats: Points to the memory location where the floating point numbers
are placed.

aCount: Indicates the number of floats to copy.

startingAt: Indicates the starting index within oeFloatArray that the copy
should take place. Note that the index is 1-based, not 0-based.

lpActualCount: Points to the number indicating the actual number of bytes
copied.

Return Value
Returns the argument oeFloatArray.

Comments
If oeCopyOEtoCfloatArray fails, returns OEnonOop with the error code
OEerrorWrongClass if oeFloatArray is not a valid Array object. If startingAt is
out of range, the error code is OEerrorCrange. If the object oeFloatArray is
invalid, the error code is OEerrorNonOop. If any of the elements in
oeFloatArray are not Smalltalk Float objects, the error code is
OEerrorWrongClass.

See Also
oeCopyCtoOEfloatArray, oeIsFloatArray
9-22 VisualWorks

Object Engine Access Reference
oeCopyOEtoCintArray
OEoop oeCopyOEtoCintArray(

OEoop oeIntArray,
OEint *lpInts,
OEint aCount,
OEint startingAt,
OEint *lpActualCount);

The oeCopyOEtoCintArray function copies an array of SmallIntegers into a C
integer array.

Parameters
oeintArray: Identifies the SmallInteger array object that serves as the
source of the copy action.

lpInts: Points to the memory location where the integers are placed.

aCount: Indicates the number of integers to copy.

startingAt: Indicates the starting index within oeIntArray that the copy
should take place. Note that the index is 1-based, not 0-based.

lpActualCount: Points to the actual number of bytes copied.

Return Value
Returns the argument oeIntArray.

Comments
If oeCopyOEtoCintArray fails, returns OEnonOop with the error code
OEerrorWrongClass if oeIntArray is not a valid Array object. If startingAt is out
of range, the error code is OEerrorCrange. If the object oeIntArray is invalid,
the error code is OEerrorNonOop. If any of the elements in oeIntArray are
not SmallInteger objects, the error code is OEerrorWrongClass.

See Also
oeCopyCtoOEintArray, oeIsIntegerArray

oeCopyOEtoCstring
OEoop oeCopyOEtoCstring(

OEoop oeString,
OEchar *lpszString,
OEint aCount,
OEint startingAt,
OEint *lpAcutalCount);

The oeCopyOEtoCstring function copies a ByteString object into a C string.
DLL & C Connect User’s Guide 9-23

Object Engine Access Functions
Parameters
oeString: Identifies the ByteString object that serves as the source of the
copy action.

lpszString: Points to the memory location where the string is placed.

aCount: Indicates the number of characters to copy.

startingAt: Indicates the starting index within oeString that the copy should
take place. Note that the index is 1-based, not 0-based.

lpActualCount: Points to the integer indicating the actual number of bytes
copied.

Return Value
Returns the argument oeString.

Comments
If oeCopyOEtoCstring fails for any reason, returns OEnonOop with the error
code OEerrorWrongClass if oeString is not a valid ByteString object. If
startingAt is out of range, the error code is OEerrorCrange. If the object
oeString is invalid OEerrorNonOop.

Note that the resulting C string is not null-terminated.

See Also
oeCopyCtoOEstring, oeIsString

oeCSendMessage
OEoop oeCSendMessage0(

OEoop oeReceiver,
char *szSelector,
OEoop *poeKeep,
OEoop oeFailure);

OEoop oeCSendMessage1(
OEoop oeReceiver,
char *szSelector,
OEoop oeArg1,
OEoop *poeKeep,
OEoop oeFailure);
9-24 VisualWorks

Object Engine Access Reference
OEoop oeCSendMessage2(
OEoop oeReceiver,
char *szSelector,
OEoop oeArg1,
OEoop oeArg2,
OEoop *poeKeep,
OEoop oeFailure);

OEoop oeCSendMessage3(
OEoop oeReceiver,
char *szSelector,
OEoop oeArg1,
OEoop oeArg2,
OEoop oeArg3,
OEoop *poeKeep,
OEoop oeFailure);

OEoop oeCSendMessageMany(
OEoop oeReceiver,
char *szSelector,
OEoop oeArgArray,
OEoop *poeKeep,
OEoop oeFailure);

The oeCSendMessage function set is used to send unary, binary and
keyword messages to Smalltalk objects.

Parameters
oeReceiver: Receiver of the message.

szSelector: Pointer to a null-terminated array of characters representing
the message selector.

oeArg1: First argument for binary and keyword messages.

oeArg2: Second argument for keyword messages.

oeArg3: Third argument for keyword messages.

oeArgArray: Array of message arguments for keyword messages.

poeKeep: Pointer to a handle representing a Smalltalk object that should
stay valid after the message send completes.

oeFailure: Object handle representing the value that is returned if any
error occurs during the message send.

Return Value
After evaluating the Smalltalk message send, the function returns that
value.
DLL & C Connect User’s Guide 9-25

Object Engine Access Functions
Comments
The functions listed in this section are identical to the functions described
in OESendMessage, except that the message selector is represented by a
null-terminated sequence of characters rather than a Symbol object
handle. This function set permits your C code to manufacture the selector
name instead of being restricted to using a selector passed down from
Smalltalk. The differences between this function set and the
OESendMessage function set are:

• The method name has the letter C in its prefix, as in
oeCSendMessage0()

• The oeSelector argument type is char * instead of OEoop

Each function returns the value returned by the message-send. If the
message-send fails, or if an argument is invalid, the function returns
immediately to the calling C function.

See Also
oeSendMessage

oeCtoOEbool
OEoop oeCtoOEbool(OEbool oeBool);
The oeCtoOEbool function converts a C boolean into a Boolean object (true
or false.)

Parameters
oeBool: Identifies the C boolean to be converted.

Return Value
Returns the Boolean object (true or false) if the conversion succeeds,
otherwise the return value is OEnonOop.

See Also
oeCopyOEtoCbool, oeIsBoolean

oeCtoOEchar
OEoop oeCtoOEchar(OEchar oeChar);
The oeCtoOEchar function converts a C character into a Character object.

Parameters
oeChar: Identifies the C character value to be converted.
9-26 VisualWorks

Object Engine Access Reference
Return Value
Returns the Character object if the conversion succeeds, otherwise the
return value is OEnonOop.

Comments
Multi-byte characters are currently not supported.

See Also
oeCopyOEtoCchar, oeIsCharacter, oeIsImmediate

oeCtoOEdouble
OEoop oeCtoOEdouble(OEdouble oeDouble);
The oeCopyCtoOEdouble function converts a C double precision floating
point number into a Double object.

Parameters
oeDouble: Identifies the C double precision floating point number to be
converted.

Return Value
Returns the Double object.

Comments
If oeCopyCtoOEdouble fails, returns OEnonOop with the error code
OEerrorAllocationFailed if the double object could not be allocated.

See Also
oeCopyOEtoCdouble, oeIsDouble

oeCtoOEfloat
OEoop oeCtoOEfloat(upFlaot oeFloat);
The oeCopyCtoOEfloat function converts a C floating point number into a
Float object.

Parameters
oeFloat: Identifies the C floating-point number to be converted.

Return Value
Returns the Float object.
DLL & C Connect User’s Guide 9-27

Object Engine Access Functions
Comments
If oeCopyCtoOEfloat fails, returns OEnonOop with the error code
OEerrorAllocationFailed if the float object could not be allocated.

See Also
oeCopyOEtoCfloat, oeIsFloat

oeCtoOEint
OEoop oeCtoOEint(OEint oeInt);
The oeCopyCtoOEint function converts a C integer into a SmallInteger.

Parameters
oeInt: Identifies the C integer value to be converted.

Return Value
Returns the SmallInteger object.

Comments
The function oeCopyCtoOEint fails with the error code OEerrorCrange if the
argument oeInt is too large or small.

This function successfully converts integers in the range -229 to
229 - 1. This is because of the way Smalltalk represents SmallIntegers.

See Also
oeCopyOEtoCint, oeIsInteger

oeDoubleAt
OEoop oeDoubleAt(

OEoop oeArray,
OEint index,
OEdouble *lpDouble);

The oeDoubleAt function retrieves a Double object from an Array.

Parameters
oeArray: Identifies the array whose double element in the index position is
retrieved.

index: Indicates the index of the double in the argument oeArray.

lpDouble: Points to the location where the double object is placed.
9-28 VisualWorks

Object Engine Access Reference
Return Value
Returns the argument oeArray.

Comments
The double object retrieved from the array is converted into a C double
before the function returns.

If oeDoubleAt fails, it returns OEnonOop with the error code
OEerrorWrongClass if the argument oeArray is not an array. If the object
oeArray is not valid, the error code is OEerrorNonOop. If the object at the
index location is not a double, the error code is OEerrorWrongClass. If the
argument index is less than one, the error code is OEerrorCrange. If index is
larger than the size of oeArray, the error code is OEerrorObjectTooSmall.

See Also
oeIsDouble, oeOEToCdouble, oeCtoOEdouble

oeFail
void oeFail(OEint failCode);
The oeFail function forces a failure return directly to Smalltalk.

Parameters
failCode: Identifies the value that should be returned.

Return Value
None. The function does not return to the C caller; instead, control is
returned directly to Smalltalk.

Comments
If a C function call from a Smalltalk method fails, and if the invoking
method contains Smalltalk code after the <C: ...> statement, then the
Smalltalk failure code will be evaluated. Common causes for failure may
be the result of the type checking and type conversion routines.

For a complete listing of the error codes that will be posted by this
routine, see “Failure Codes” on page 9-3.

Once control is passed back to Smalltalk, an error is available in
_errorCode. This hidden temporary variable in the calling method will
contain a SystemError. The parameter field of this SystemError object is set
to the argument passed to oeFail(), if this function is called directly.
DLL & C Connect User’s Guide 9-29

Object Engine Access Functions
See Also
oeGetErrorCode

oeFloatAt
OEoop oeFloatAt(

OEoop oeArray,
OEint index,
OEfloat *lpFloat);

The oeFloatAt function retrieves a Float object from an Array.

Parameters
oeArray: Identifies the array whose float element in the index position is
retrieved.

index: Indicates the index of the float in the argument oeArray.

lpFloat: Points to the location where the float is to be placed.

Return Value
Returns the argument oeArray.

Comments
The float object retrieved from the array is converted into a C float before
the function returns.

If oeFloatAt fails, returns OEnonOop with the error code OEerrorWrongClass if
the argument oeArray is not an array. If the object oeArray is not valid, the
error code is OEerrorNonOop. If the object at the index location is not a
float, the error code is OEerrorWrongClass. If the argument index is less
than one, the error code is OEerrorCrange. If index is larger than the size of
oeArray, the error code is OEerrorObjectTooSmall.

See Also
oeIsArrayOfFloat, oeCopyOEtoCfloatArray, oeCopyCtoOEfloatArray, oeFloatAtPut

oeFloatAtPut
OEoop oeFloatAtPut(

OEoop oeArray,
OEint index,
OEfloat aFloat);

The oeFloatAtPut function places a C float in an Array.
9-30 VisualWorks

Object Engine Access Reference
Parameters
oeArray: Identifies the array whose float element in the index position is
modified.

index: Indicates the index in the argument oeArray to place the float.

aFloat: Indicates the float object to place into the index element of oeArray.

Return Value
Returns the argument oeArray.

Comments
The C float is first converted into a float object before being placed into
the array.

If oeFloatAtPut fails for any reason, this function returns OEnonOop. If the
float object could not be created when converting the C float object, the
error code is OEallocationFailed. If the argument oeArray is not an array, the
error code is OEerrorWrongClass. If the object oeArray is invalid, the error
code is OEerrorNonOop. If the argument index is less than one, the error
code is OEerrorCrange. If index is larger than the size of oeArray, the error
code is OEerrorObjectTooSmall.

See Also
oeIsArrayOfFloat, oeCopyOEtoCfloatArray, oeCopyCtoOEfloatArray, oeFloatAt

oeGetErrorCode
OEerrorCodeID oeGetErrorCode(void);
The oeGetErrorCode function returns the OEerrorCodeID after an Object
Engine function call failure.

Parameters
None

Return Value
Returns the enumerated value OEerrorCodeID; for details, you may consult
the file oeAPI.h (this file is located in the src subdirectory of the DLL
and C Connect release).

Comments
An Object Engine function call can fail for a number of different reasons,
but typically there is a problem with one of the arguments, or else an
allocation attempt failed.
DLL & C Connect User’s Guide 9-31

Object Engine Access Functions
See Also
oeFail

oeIndexVarSize
OEoop oeIndexVarSize(

OEoop oeObject,
OEint *lpIndexVarSize);

The oeIndexVarSize function returns the size of the variable portion of an
object.

Parameters
oeObject: Identifies the object whose variable portion size is retrieved.

lpIndexVarSize: Points to the integer where the object size is placed.

Return Value
Returns the size of the variable portion of oeObject in the number of
OEoops if oeObject represents a pointer object, or the number of bytes if
oeObject is a byte-like object.

Comments
oeIndexVarSize places the variable portion size of oeObject into
lpIndexVarSize. It is represented as the number of OEoops if oeObject is a
pointer object, or the number of bytes if oeObject is a byte-like object.

If oeIndexVarSize fails, returns OEnonOop. If anObject represents an illegal or
immediate object, the error code is OEerrorNonOop.

See Also
oeAllocVsObject

oeInitLinkRegistry
void oeInitLinkRegistry(void);
The oeInitLinkRegistry function is used to define statically linked entry
points in a custom Object Engine.

Parameters
None

Return Value
None
9-32 VisualWorks

Object Engine Access Reference
Comments
DLL and C Connect can access functions and data either dynamically or
statically linked to the Object Engine. When statically linked entry points
are used, you must define a mapping between the entry point name and
it actual address. Perform this with the function
oeRegisterSymbolAndHandle.

This function is the location where you should place your
oeRegisterSymbolAndHandle function calls.

Note: This function must be defined in your statically linked Object
Engine.

See the section “Static Linking” on page 8-4 for a description on building
statically linked Object Engines.

See Also
oeRegisterSymbolAndHandle

oeInstall
char *oeInstall(void);
The oeInstall function is called to initialize a custom Object Engine.

Parameters
None

Return Value
Returns a pointer to a null-terminated string that is used by the Object
Engine kernel when displaying the herald is returned.

Comments
oeInstall is called by the kernel of your custom Object Engine prior to
loading the image and running Smalltalk code. Place any customized
initialization code in this function.

Note: This function must be defined in your statically linked Object
Engine.

See Also
oeInitLinkRegistry, oeInstallPollHandler
DLL & C Connect User’s Guide 9-33

Object Engine Access Functions
oeInstallPollHandler
OEvoidFuncPtr oeInstallPollHandler(OEvoidFuncPtr pollHandler);
The oeInstallPollHandler function registers a handler that is called when the
function oePostInterrupt is invoked.

Parameters
pollHandler: Pointer to a function that is called when the function
oePostInterrupt is invoked.

Return Value
Returns a pointer to the previously installed poll handler. If there was no
previously installed poll handler, returns NULL.

Comments
In some situations, a Smalltalk application needs to respond to a
condition that can only be detected asynchronously (such as a UNIX
signal-handler, or a PC interrupt-handler). In such a case, it is not
possible to directly access object memory (e.g., to post a signal
condition), because the event might occur while the Object Engine is
performing an operation that involves relocating objects. You could create
a Smalltalk process that periodically calls a function to see whether that
event has occurred (by examining a C static variable, perhaps, or by
making an operating system call), but this constant polling can be
inefficient or inconvenient.

As an alternative, call the support routine oePostInterrupt() from your
asynchronous signal/interrupt-handler. This routine arranges to have a
poll-handler called soon thereafter before the next backward branch (in
any loop) or frame-building send (all sends build frames except those that
simply return a variable or call a primitive). This is the only Object Engine
support routine that you can call asynchronously.

The poll-handler must be registered previous to the interrupt, by inserting
a call to oeInstallPollHandler in your oeInstall or oeRegisterSymbolAndHandle
routine.

Your handler is only called once, no matter how many times
oePostInterrupt is invoked in the interim. Posting an interrupt simply sets a
flag, which is cleared only when your poll-handler is called.

The handler usually determines the event that occurred (again, by
examining a C static variable or by making an OS call) and possibly
signals a semaphore that was stored previously in the registry. The only
Object Engine support routines that a handler can safely call are:
9-34 VisualWorks

Object Engine Access Reference
• oeSignalSemaphore()

• oeRegisteredHandleAt()

• oeRegisteredHandleAtPut()

On UNIX platforms, the Object Engine requires unimpeded access to
certain signals. Specifically, your C functions should not establish signal
handlers for the following signals:

• SIGIO or SIGPOLL

• SIGALRM

• SIGVTALRM

• SIGCHLD

In addition, functions should not make system calls that generate the last
three signals listed above. Operations that generate SIGIO or SIGPOLL
do not cause problems.

See Also
oePostInterrupt

oeInstVarAt
OEoop oeInstVarAt(

OEoop oeObject,
OEint index);

The oeInstVarAt function returns the value of an object’s instance variable.

Parameters
oeObject: Identifies the object whose instance variable in the index
position is retrieved.

index: Indicates the index of the instance variable to retrieve.

Return Value
Returns the object located at the index instance variable location of object
indicated by oeObject. If an error occurs, the return value is OEnonOop.

Comments
If oeInstVarAt fails, returns OEnonOop. If the object oeObject is invalid, the
error code is OEerrorWrongClass. If the argument index less than one, the
error code is OEerrorCrange. If index is larger than the size of oeObject, the
error code is OEerrorObjectTooSmall.
DLL & C Connect User’s Guide 9-35

Object Engine Access Functions
See Also
oeAllocFsObject, oeInstVarAtPut, oeBasicAt, oeBasicAtPut

oeInstVarAtPut
OEoop oeInstVarAtPut(

OEoop oeObject,
OEint index,
OEoop oopToBePut);

The oeInstVarAtPut function replaces an object’s instance variable with
another object.

Parameters
oeObject: Identifies the object whose instance variable at the index
position is replaced.

index: Indicates the index of the instance variable to replace.

oopToBePut: Identifies the object that replaces the instance variable at the
index position of oeObject.

Return Value
Returns the argument oeObject.

Comments
If oeInstVarAtPut fails, returns OEnonOop. If the object oeObject is invalid,
the error code is OEerrorWrongClass. If the argument index is less than 1,
the error code is OEerrorCrange. If index is larger than the size of oeObject,
the error code is OEerrorObjectTooSmall.

See Also
oeAllocFsObject, oeInstVarAt, oeBasicAt, oeBasicAtPut

oeInstVarSize
OEoop oeInstVarSize(

OEoop oeObject,
OEint *lpInstVarSize);

The oeInstVarSize function returns the number of named instance
variables in an object.

Parameters
oeObject: Identifies the object whose named instances variable count is
retrieved.
9-36 VisualWorks

Object Engine Access Reference
lpInstVarSize: Points to the location where the instance variable size is
placed.

Return Value
Returns the argument oeObject.

Comments
If oeInstVarSize fails, returns OEnonOop with the error code OEerrorNonOop if
the object oeObject is invalid.

See Also
oeAllocFsObject

oeIsArrayOfFloat
OEbool oeIsArrayOfFloat(OEoop oeObject);
The oeIsArrayOfFloat function tests if an object is an Array containing only
Float objects.

Parameters
oeObject: Identifies the Smalltalk object to test.

Return Value
Returns OETRUE if the argument is a valid Array of Floats, otherwise it is
OEFALSE.

Comments
Returns OEFALSE if the object oeObject is invalid.

See Also
oeCopyCtoOEfloatArray, oeCopyOEtoCfloatArray

oeIsArrayOfInteger
OEbool oeIsArrayOfInteger(OEoop oeObject);
The oeIsArrayOfInteger function tests if an object is an Array containing only
SmallInteger objects.

Parameters
oeObject: Identifies the Smalltalk object to test.

Return Value
Returns OETRUE if the argument is a valid Array of SmallIntegers.
DLL & C Connect User’s Guide 9-37

Object Engine Access Functions
Comments
If oeIsArrayOfInteger fails, it returns OEFALSE. If the object oeObject is
invalid, the error code is OEerrorNonOop.

See Also
oeCopyCtoOEintArray, oeCopyOEtoCintArray

oeIsBoolean
OEbool oeIsBoolean(OEoop oeObject);
The oeIsBoolean function tests if an object is a Boolean object (true or false).

Parameters
oeObject: Identifies the Smalltalk object to test.

Return Value
The return value is OETRUE if the argument is a valid Boolean object,
otherwise it is OEFALSE.

Comments
Returns OEFALSE if the object oeObject is invalid.

See Also
oeCtoOEbool, oeOEToCbool

oeIsByteArray
OEbool oeIsByteArray(OEoop oeObject);
The oeIsByteArray function tests if an object is a ByteArray.

Parameters
oeObject: Identifies the Smalltalk object to test.

Return Value
Returns OETRUE if the argument is a valid ByteArray object, otherwise it is
OEFALSE.

Comments
Returns OEFALSE if the object oeObject is invalid.

See Also
oeCopyCtoOEbytes, oeCopyOEtoCbytes
9-38 VisualWorks

Object Engine Access Reference
oeIsByteLike
OEbool oeIsByteLike(OEoop oeObject);
The oeIsByteLike function tests if an object is byte-like. An object is
considered byte-like if it is not an immediate object, and it does not
contain object pointers.

Parameters
oeObject: Identifies the Smalltalk object to test.

Return Value
Returns OETRUE if the argument is a valid byte-like object, otherwise it is
OEFALSE.

Comments
Returns OEFALSE if the object oeObject is invalid.

See Also
oeCopyCtoOEbytes, oeCopyOEtoCbytes

oeIsCharacter
OEbool oeIsCharacter(OEoop oeObject);
The oeIsCharacter function tests if an object is a Character.

Parameters
oeObject: Identifies the Smalltalk object to test.

Return Value
Returns OETRUE if the argument is a valid Character object, otherwise it is
OEFALSE.

Comments
Returns OEFALSE if the object oeObject is invalid.

See Also
oeCtoOEchar, oeOEToCchar

oeIsDouble
OEbool oeIsDouble(OEoop oeObject);
The oeIsDouble function tests if an object is a Double.
DLL & C Connect User’s Guide 9-39

Object Engine Access Functions
Parameters
oeObject: Identifies the Smalltalk object to test.

Return Value
Returns OETRUE if the argument is a valid Double object, otherwise it is
OEFALSE.

Comments
Returns OEFALSE if the object oeObject is invalid.

See Also
oeCtoOEdouble, oeOEToCdouble

oeIsFloat
OEbool oeIsFloat(OEoop oeObject);
The oeIsFloat function tests if the argument is a Float object.

Parameters
oeObject: Identifies the Smalltalk object to test.

Return Value
Returns OETRUE if the argument is a valid Float object, otherwise it is
OEFALSE.

Comments
Returns OEFALSE if the object oeObject is invalid.

See Also
oeCtoOEfloat, oeOEToCfloat

oeIsImmediate
OEbool oeIsImmediate(OEoop oeObject);
The oeIsImmediate function tests if an object is an immediate Smalltalk
object.

Parameters
oeObject: Identifies the Smalltalk object to test.

Return Value
Returns OETRUE if the argument is a valid immediate Smalltalk object,
otherwise it is OEFALSE.
9-40 VisualWorks

Object Engine Access Reference
Comments
Returns OEFALSE if the object oeObject is invalid.

Immediate objects are objects that can be represented directly in the
object pointer, and therefore do not require a separate object header and
object data. Immediate objects save memory and processing time.
VisualWorks implements character and SmallInteger objects as immediate
objects.

See Also
oeIsCharacter, oeIsInteger

oeIsInteger
OEbool oeIsInteger(OEoop oeObject);
The oeIsInteger function tests if an object is a SmallInteger.

Parameters
oeObject: Identifies the Smalltalk object to test.

Return Value
Returns OETRUE if the argument is a valid SmallInteger object, otherwise it
is OEFALSE.

Comment
Returns OEFALSE if the object oeObject is invalid object.

See Also
oeCtoOEint, oeOEToCint

oeIsKindOf
OEbool oeIsKindOf(

OEoop oeObject,
OEoop oeClass);

The oeIsKindOf function tests if an object is an instance of a particular
Smalltalk class.

Parameters
oeObject: Identifies the Smalltalk object to test.

oeClass: Identifies the Smalltalk class object to test against oeObject.
DLL & C Connect User’s Guide 9-41

Object Engine Access Functions
Return Value
Returns OETRUE if oeObject is an instance of the Smalltalk class oeClass,
otherwise it is OEFALSE.

Comments
Returns OEFALSE if the objects oeObject or oeClass are invalid.

oeIsKindOf checks the class of oeObject to determine if it matches oeClass
or any of oeClass’s superclasses.

See Also
oeClass

oeIsString
OEbool oeIsString(OEoop oeObject);
The oeIsString function tests if an object is a ByteString.

Parameters
oeObject: Identifies the Smalltalk object to test.

Return Value
Returns OETRUE if the argument is a valid ByteString object, otherwise it is
OEFALSE.

Comments
Returns OEFALSE if the object oeObject is an invalid handle.

See Also
oeCtoOEstring, oeToCstring

oeNil
OEoop oeNil(void);
The oeNil returns a handle to the nil object.

Parameters
None

Return Value
Returns a handle to the nil object

See Also
oeReturnNil, oeIsImmediate
9-42 VisualWorks

Object Engine Access Reference
oePostInterrupt
void oePostInterrupt(void);
The oePostInterrupt function is called to arrange that if the user’s poll
handler is installed, that it will be called when the Object Engine next polls
for events.

Parameters
None

Return Value
None

Comments
This routine is typically used by code that associates a host OS signalling
mechanism with Smalltalk semaphores. When you need to set the flag for
signalling a semaphore, this routine can be used to arrange to have the
Object Engine poll-handler called. More specifically, the Object Engine
will call the handler before the next backward branch (in any loop) or a
frame-building send (all sends build frames except those that simply
return a variable or call a primitive). This is the only Object Engine
support routine that you can call asynchronously.

The poll-handler must be registered previous to the interrupt, by inserting
a call to oeInstallPollHandler in your oeInstall or oeRegisterSymbolAndHandle
routine. For additional details, see the discussion of oeInstallPollHandler.

See Also

oeInstallPollHandler

oeRegisteredHandleAt
OEoop oeRegisteredHandleAt(OEint registrySlot);
The oeRegisteredHandleAt function returns an object handle previously
stored in the System Registry.

Parameters
registrySlot: Identifies the slot in the System Registry (previously allocated
with a call to oeAllocRegistrySlot) whose value should be returned.

Return Value
Returns the object contained in the System Registry at the location
specified by the argument registrySlot. If the argument is an invalid slot,
the return value is OEnonOop.
DLL & C Connect User’s Guide 9-43

Object Engine Access Functions
Comments
The Object Engine maintains a System Registry of objects that must be
used when making direct references to the object memory over the span
of several function calls. This is needed because the Object Engine
relocates objects during memory management operations, so direct
references to object memory (such as OEoops) cannot normally persist
across function calls.

To refer to objects over time, the Object Engine provides a facility to
register indirect references to objects. These indirect references are
indices in a table that the Object Engine memory manager keeps current.

Another important reason to use the registry is for referencing an object
that was given to a function in a prior call. For example, imagine you have
a function that was passed a Semaphore so it could be signalled later (by
using OEsignalSemaphore). Your function can ask the registry for a
permanent slot (it returns a table index if there is enough room). The
function stores the Semaphore into the registry at that slot. You record
the slot index in a static variable in the C code. Later, to reference the
object, read the registry at the slot you recorded.

If registrySlot is an invalid System Registry slot number,
oeRegisteredHandleAt fails, and returns OEnonOop with the error code
OEerrorCrange.

See Also
oeAllocRegistrySlot, oeRegisteredHandleAtPut

oeRegisteredHandleAtPut
OEoop oeRegisteredHandleAtPut(

OEint registrySlot,
OEoop oeOopToPut);

The oeRegisteredHandleAtPut function places an object handle into a pre-
allocated slot in the System Registry.

Parameters
registrySlot: Identifies the slot in the System Registry (previously allocated
with a call to OEallocRegistrySlot) whose value should be modified.

oeOopToPut: Identifies the object handle to place into the System Registry
at the slot indicated by registrySlot.

Return Value
Returns the argument oeOopToPut if the store succeeds.
9-44 VisualWorks

Object Engine Access Reference
Comments
Use this function to store an object handle into the System Registry so
that it may be retrieved later using oeRegisteredHandleAt. This facility was
created to store object handles that are needed between function
invocations.

If oeRegisteredHandleAtPut fails, returns OEnonOop with the error code
OEerrorCrange if registrySlot is an invalid System Registry slot number.

See Also
oeAllocRegistrySlot, oeRegisteredHandleAt

oeRegisterSymbolAndHandle
void oeRegisterSymbolAndHandle(

char *lpszSymbol,
void *symbolHandle);

The oeRegisterSymbolAndHandle function associates a string with a
procedure or data entry point.

Parameters
lpszSymbol: Points to a null-terminated sequence of characters used
during handle look-up.

symbolHandle: Points to the object (function or data variable) associated
with the symbol lpszSymbol.

Return Value
None

Comments
Use this function to register statically linked Object Engine entry points
(either a function or data variable) that you access using DLL and C
Connect. Functions can be called and data can be accessed that is
statically linked into Smalltalk’s Object Engine. The approach to mapping
a symbolic name to a function entry-point or data variable address is
different for dynamically and statically linked entities, and hence the need
to manually register the entry points you have linked to the Object
Engine.

Consult the section “Static Linking” on page 8-4 for more details.

See Also
oeInitLinkRegistry
DLL & C Connect User’s Guide 9-45

Object Engine Access Functions
oeSendMessage
OEoop oeSendMessage0(

OEoop oeReceiver,
OEoop oeSelector,
OEoop *poeKeep,
OEoop oeFailure);

OEoop oeSendMessage1(
OEoop oeReceiver,
OEoop oeSelector,
OEoop oeArg1,
OEoop oeKeep,
OEoop oeFailure);

OEoop oeSendMessage2(
OEoop oeReceiver,
OEoop oeSelector,
OEoop oeArg1,
OEoop oeArg2,
OEoop *poeKeep,
OEoop oeFailure);

OEoop oeSendMessage3(
OEoop oeReceiver,
OEoop oeSelector,
OEoop oeArg1,
OEoop oeArg2,
OEoop oeArg3,
OEoop *poeKeep,
OEoop oeFailure);

OEoop oeSendMessageMany(
OEoop oeReceiver,
OEoop oeSelector,
OEoop oeArgArray,
OEoop *poeKeep,
OEoop oeFailure);

The oeSendMessage function set is used to send unary, binary and
keyword messages to Smalltalk objects.

Parameters
oeReceiver: Receiver of the message.

oeSelector: Message selector.

oeArg1: First argument for binary and keyword messages.

oeArg2: Second argument for keyword messages.

oeArg3: Third argument for keyword messages.
9-46 VisualWorks

Object Engine Access Reference
oeArgArray: Argument list for keyword messages.

poeKeep: Pointer to a handle representing an object that should maintain
valid after the message send completes.

oeFailure: Object handle representing the value that oeSendMessage0
should return if any error occurs during the message send.

Return Value
Returns the value of evaluating the Smalltalk message send.

Comments
The Object Engine defines a set of five special message-passing
functions. The first function is for unary message, and the other four are
for one-, two-, three-, and multi-keyword messages. Each function takes
arguments that identify the receiver of the message, the message
selector, and the arguments (if any). These objects are Smalltalk objects.

Each function takes an argument, poeKeep, that is used to store pointers
to objects that your function uses after the callback; it keeps them safe
during any memory management operations that might occur during the
callback. Note, however, that this strategy is only effective for pointers that
are held by the original function; if a calling function anywhere in the C
stack holds a pointer into Smalltalk memory, that pointer can be
invalidated during a callback. For this reason, only use callbacks in
functions that are invoked directly from Smalltalk, where the oeKeep
mechanism can be used, rather than in a secondary function (such as
one nested further down the C call chain).

Finally, an argument named oeFailure is used to store the object that is to
be returned if the message-send fails.

Each function returns the value returned by the message-send. If the
message-send fails, or if any argument is invalid, the function returns the
oeFailure argument.

The oeSelector argument must be an instance of Symbol. For example, a
valid selector argument for oeSendMessage1 would be #add:. A parallel set
of functions (see oeCSendMessage) enables you to specify the selector
name as a null-terminated sequence of characters in effect, your C code
can manufacture the selector name on the spot instead of being
restricted to the selector that is passed down from Smalltalk.

See Also
oeCSendMessage
DLL & C Connect User’s Guide 9-47

Object Engine Access Functions
oeSignalSemaphore
upBool oeSignalSemaphore(OEoop oeSemaphore);
The oeSignalSemaphore is used to signal a Semaphore object.

Parameters
oeSemaphore: Identifies the Semaphore object to be signalled.

Return Value
Returns OETRUE if the Semaphore was successfully signalled. If
oeSemaphore is an invalid Semaphore, or if the semaphore could not be
signalled, returns OEFALSE.

See Also
oeRegisteredHandleAt, oeRegisteredHandleAtPut

oeOEToCbool
OEoop oeOEToCbool(

OEoop oeBoolean,
OEbool *lpBool);

The oeOEToCbool function converts a Boolean (true or false) object into a C
boolean.

Parameters
oeBoolean: Identifies the Boolean object to convert.

lpBool: Points to the location where the C boolean is placed.

Return Value
Returns the argument oeBoolean.

Comments
If oeOEToCbool fails, returns OEnonOop. If oeBoolean does not represent a
valid handle, the error code is OEerrorNonOop. If oeBoolean is not a
boolean, the error code is OEerrorWrongClass.

See Also
oeCopyCtoOEbool, oeIsBoolean
9-48 VisualWorks

Object Engine Access Reference
oeOEToCchar
OEoop oeOEToCchar(

OEoop oeCharacter,
OEchar *lpChar);

The oeOEToCchar function converts a Smalltalk Character object into a C
character.

Parameters
oeCharacter: Identifies the Character object to convert.

lpChar: Points to the location where the converted C character is placed.

Return Value
Returns the argument oeCharacter.

Comments
If oeOEToCchar fails, returns OEnonOop. If oeCharacter does not represent a
valid handle, the error code is OEerrorNonOop. If oeCharacter is not a
character, the error code is OEerrorWrongClass.

See Also
oeCopyCtoOEchar, oeIsCharacter

oeOEToCdouble
OEoop oeOEToCdouble(

OEoop oeDouble,
OEdouble *lpDouble);

The oeOEToCdouble function converts a Double object into a C double.

Parameters
oeDouble: Identifies the Double object to convert.

lpDouble: Points to the location where the converted double is placed.

Return Value
Returns the argument oeDouble.

Comments
If oeOEToCdouble fails, it returns OEnonOop. If oeDouble does not represent
a valid handle, the error code is OEerrorNonOop. If oeDouble is not a
double, the error code is OEerrorWrongClass.
DLL & C Connect User’s Guide 9-49

Object Engine Access Functions
See Also
oeCopyCtoOEdouble, oeIsDouble

oeOEToCfloat
OEoop oeOEToCfloat(

OEoop oeFloat,
OEfloat *lpFloat);

The oeOEToCfloat function converts a Float object into a C float.

Parameters
oeFloat: Identifies the Float object to convert.

lpFloat: Points to the location where the converted float is placed.

Return Value
Returns the argument oeFloat.

Comments
If oeOEToCfloat fails, returns OEnonOop. If oeFloat does not represent a valid
handle, the error code is OEerrorNonOop. If oeFloat is not a float, the error
code is OEerrorWrongClass.

See Also
oeCopyCtoOEfloat, oeIsFloat

oeOEToCint
OEoop oeToCint(

OEoop oeInteger,
OEint *lpInt);

The oeOEToCint function converts a SmallInteger object into a C integer.

Parameters
oeInteger: Identifies the SmallInteger object to convert.

lpInt: Points to the location where the converted integer is placed.

Return Value
Returns the argument oeInteger.

Comments
If oeOEToCint fails, returns OEnonOop. If oeInteger does not represent a
valid handle, the error code is OEerrorNonOop. If oeInteger is not a
SmallInteger, the error code is OEerrorWrongClass.
9-50 VisualWorks

Unsafe Functions
See Also
oeCopyCtoOEint, oeIsInteger

Unsafe Functions
The standard Object Engine interface is very defensive about problems in
your C functions (and the Smalltalk code that calls them). Bounds-
checking is performed on indices, class-checking is performed during
coercion, and so on. However, such runtime checks have a negative
performance impact.

For situations in which critical performance needs motivate you to bypass
the safety mechanisms, you can compile your code using an unsafe
version of the Object Engine access protocol.

It is not recommended that you do this in ordinary practice.

Even in a safe mode, your functions should perform consistency checks
on passed arguments, at least checking for the correct class. When using
the unsafe implementation, performing these checks is absolutely
essential for correct operation of the system. Test your functions very
carefully before compiling in an unsafe mode and using the resulting
Object Engine on a useful image.

Caution: If you compile your functions for unsafe operation,
they will run somewhat faster, but problems in your functions
can crash the resulting Object Engine rather than fail. Worse
yet, some problems can silently corrupt the virtual image (VI)
without crashing. Finally, because hard-to-trace errors can be
introduced so easily in unsafe mode, an unsafe Object Engine
build and any VI’s derived therefrom are not handled by
Cincom technical support.

Specific Object Engine implementation details that are exposed by the
unsafe interface code do not represent a supported Object Engine
interface. They change from release to release, and contain hidden
dependencies and restrictions, which may render them useless outside
this context. In other words, avoid using the unsafe Object Engine
compilation option.
DLL & C Connect User’s Guide 9-51

Object Engine Access Functions

9-52 VisualWorks

DLL & C Connect User’s Guide A-1

A
#define Operators

The following table indicates the operators that can be used in a #define
expression. The operators are listed in descending order of precedence.
The operators that appear on the same line have equal precedence.

#define operators

Symbol Type of Operation Associativity

sizeof + - ~ ! Unary Right to left

* / % Multiplicative Left to right

+ - Additive Left to right

<< >> Bitwise shift Left to right

< > <= >= Relational Left to right

== != Equality Left to right

& Bitwise AND Left to right

^ Bitwise-exclusive OR Left to right

| Bitwise-inclusive OR Left to right

&& Logical-AND Left to right

|| Logical-OR Left to right

?: Conditional Right to left

#define Operators

A-2 VisualWorks

B
Resolving Exceptions

Many common and difficult to resolve exceptions are caused by problems
with external libraries. Some of these problems are unique to particular
platforms and may be raised because of problems resolving the link
between your External Interface classes and the shared library files. This
appendix explains some of the more common errors that you may
encounter and some strategies for resolving them.

Common ExternalInterface Exceptions
As we discussed earlier in this book, exceptions may be raised under four
different general circumstances (see “External Interface Exceptions” on
page 6-1). This appendix details the single most common variety of these
four classes of exceptions, namely those that are raised when calling
external libraries. A related issue—exceptions raised when using the
Object Engine Access interface (for details on this interface, see “Object
Engine Access Functions” on page 9-1)—ia also addressed later in this
appendix.

Problems that occur when accessing external libraries may raise one of
the three following exceptions:

• libraryNotFoundSignal

• libraryNotLoadedSignal

• externalObjectNotFoundSignal

The following sections of this appendix treat the possible causes of each
of these three exceptions.
DLL & C Connect User’s Guide B-1

Resolving Exceptions
ExternalLibraryHolder>>libraryNotFoundSignal
This exception may be raised when the library or libraries specified in the
libraryFiles attribute of your ExternalInterface class could not be located on
the search path. You should check the libraryFiles and libraryDirectories
attributes. If no path is specified, DLL and C Connect will look in the
current working directory for the library, i.e. the directory where
VisualWorks was started. If you make use of environment variables in
your path specifier, you should be aware that the variables are set by the
Object Engine once at startup time, and will not reflect any subsequent
changes made in the operating system. This is a consequence of the way
that most operating systems pass environment variables to processes.

ExternalLibrary>>libraryNotLoadedSignal
This exception is raised for a failure during the attempt to load the library
that your ExternalInterface class indicates contains the target function or
datum. If your exception handler does not catch this error, it will open a
notifier with the error: Unhandled Exception: 'Unable to load library.' To resolve
the cause of this exception, you can check for four common problems
(note that the last two are platform-specific):

• Correct library type

• Interdependency

• Incorrect permission

• Incorrect version

1 First, make sure that the library you are trying to load is a shared
library or a dynamically linked library and not a so-called “static”
library. On some platforms, you may encounter libraries that require
static linking (for example, on UNIX platforms this is indicated with the
.so filename extension). These libraries will require that you add
interface functions or re-link them as DLLs.

2 Libraries that depend on other libraries often cause problems. Make
sure you are specifying all the libraries on which the library you are
calling is dependent. You can do this by carefully setting all the
interdependent libraries in the libraryFiles attribute in the definition of
your ExternalInterface subclass. For details, see “Incremental Loading
of Dynamic-Link Libraries” on page 8-3.

On the MS-Windows platform, you can check to determine if this is
the cause of the libraryNotLoadedSignal by opening up the debugger,
and inspecting the errorCode object. If this SystemError object contains
B-2 VisualWorks

Common ExternalInterface Exceptions
a parameter of 87, 126, or 1157 (ERROR_MODULE_NOT_FOUND), this
strongly indicates a library interdependency problem.

3 A third common problem that results in the libraryNotLoadedSignal on
UNIX platforms is when the library doesn’t have execute permissions
set for you. Note that execute permissions are often stripped when
FTPing a library, so make sure this is not causing the exception.

4 Lastly, if you encounter the libraryNotLoadedSignal on the HP platform,
and the errorCode parameter is 12, then check if you are using HP-UX
9.x. You can determine this by executing uname -a from the shell
prompt. If you are running using 9.x, most likely the cause of the
exception is that the library you are trying to load was built on HP-UX
version 10.x. Between version 9.x and 10.x, HP changed the loading
mechanism. Hence when you try and load that library from a HP-UX
9.x system you will get the libraryNotLoadedSignal. Upgrading to HP-
UX 10.x should allow you to load the same library without errors.

ExternalMethod>>externalObjectNotFoundSignal
The externalObjectNotFoundSignal simply means that VisualWorks located
the DLL or shared library file, but was unable to find the desired function
inside the library. Note that 16-bit function calls are no longer supported
by Microsoft or VisualWorks, and the thunking DLLs are deprecated as of
release 7.6.

To resolve the cause of this exception, you can check for three common
problems:

• Failure to export the function

• Incorrect mapping of the C function prototype to the Smalltalk method
definition

1 This exception is often raised because of a failure to export the
function. This problem tends to occur on the MS-Windows platforms
because the DLLs must have their functions exported to make them
public (available to be called by a client).

One way to export a function is to specify it in the export section of
the .def file for the DLL. Older compilers also allow the use of
_export in the function declaration to export that function. You
should consult the documentation for your compiler to determine the
proper way to export a function for a DLL. For details, see “Object
Engine Access Interface with MS-Windows” on page 8-7.
DLL & C Connect User’s Guide B-3

Resolving Exceptions
Here is an example of using _export in a function declaration:

int _export foo(int) { return 1; }
2 The main types of C function “prototype mapping” errors are:

• Failure to customize a 16-bit function prototype to make it
available to a 32-bit client

• Using the wrong calling convention

You can check for these problems by performing the following steps:

If you build a DLL using the C calling convention then your Smalltalk
function definition will have to include the _cdecl type specifier, as
follows:

foo: arg1
<C: _cdecl foo(short arg1)>

You should ensure you are using the calling conventions used with
the 32-bit implementation of Windows API. In the case where you
have Win32s installed, there are 32-bit versions of the Windows API
calls, as well as the 16-bit versions. For example, kernel32.dll,
gdi32.dll, and user32.dll contain 32-bit implementations of
what you might find in kernel.dll, gdi.dll, and user.dll.

The difference here is that some 32-bit versions of the Window’s API
calls have special considerations. For example, if the function
accepts or returns a pointer that is going to hold some form of string
(such as LPTSR, LPCTSR, etc.), then the function that you are going to
call will have an ‘A’ appended to the end of it. For example, if you are
trying to call the 32-bit implementation of GetProfileString() then you
will need to call GetProfileStringA().

Consult your Microsoft SDK documentation for more information on
how to use these 32-bit API calls. Of special interest for
internationalization are those that end in ‘W’.

Object Engine Access Interface Exceptions
While attempting to call functions in the Object Engine Access interface,
you may encounter an externalObjectNotFoundSignal. This can occur when
you load a DLL that calls the Object Engine, and you in turn try to call one
of the functions in your DLL using your ExternalInterface class.

As mentioned in the chapter “Platform Specific Information” on page 8-1,
dynamic-link/shared libraries that use the Object Engine access protocol
must export the symbol oeLoadInitialize(). This function is called when the
B-4 VisualWorks

Exception Error Codes
library is first loaded into the address space of the calling process to
initialize local data used to implement the Object Engine protocol. For
details, see the platform-specific instructions for exporting symbols from
shared/dynamically linked libraries in “Platform Specific Information” on
page 8-1.

Exception Error Codes
If the name field in the SystemError object is either #'io error' or #'system
error' then the errors were likely passed back from one of the called C
functions. The following table summarizes some of the more common
error codes you may encounter while using DLL and C Connect on the
MS-Windows platform. These codes are platform-specific, and comprise
a subset of those found in the file winerror.h:

Common Error Codes (MS-Windows)

If the value of _errorCode is: The Error’s Significance is:

2 ERROR_FILE_NOT_FOUND

3 ERROR_PATH_NOT_FOUND

4 ERROR_TOO_MANY_OPEN_FILES

5 ERROR_ACCESS_DENIED

6 ERROR_INVALID_HANDLE

8 ERROR_NOT_ENOUGH_MEMORY

11 ERROR_BAD_FORMAT

12 ERROR_INVALID_ACCESS

13 ERROR_INVALID_DATA

15 ERROR_INVALID_DRIVE

18 ERROR_NO_MORE_FILES

33 ERROR_LOCK_VIOLATION

87 ERROR_INVALID_PARAMETER or
ERROR_MOD_NOT_FOUND

110 ERROR_OPEN_FAILED

123 ERROR_INVALID_NAME

126 ERROR_MOD_NOT_FOUND

182 ERROR_INVALID_ORDINAL
DLL & C Connect User’s Guide B-5

Resolving Exceptions
190 ERROR_INVALID_MODULETYPE

193 ERROR_BAD_EXE_FORMAT

1157 ERROR_MOD_NOT_FOUND

Common Error Codes (MS-Windows)

If the value of _errorCode is: The Error’s Significance is:
B-6 VisualWorks

C
Examples

Using appropriate libraries, DLL and C Connect can be used to make
calls directly from VisualWorks to APIs or external libraries in the host
operating system. To illustrate this use of the product, this appendix
presents two examples:

• How to use DLL and C Connect to allow VisualWorks to launch native
applications on MS-Windows platforms.

• How DLL and C Connect can be used to improve the performance of
vector arithmetic with an external library.

Launching Applications under Windows
VisualWorks provides a set of standard interfaces for calling APIs in a
host OS. Platform-specific functionality is generally provided by
subclasses of OSSystemSupport. For example, on MS-Windows platforms,
subclasses of Win32SystemSupport provide protocol which allows a
VisualWorks programmer to fork and terminate application processes in
the Windows environment. DLL and C Connect is used to provide access
to the functionality in Win32SystemSupport and its subclasses.

To illustrate the use of these interfaces to the host OS, this section
explains how to make simple calls to the MS-Windows API.

For example, with DLL and C Connect, a VisualWorks programmer can
call the MS-Windows API functions CreateProcessA() and
TerminateProcess() in order to launch and quit Windows
applications. Full documentation of this API (functions, parameters, and
return values) can be found in the “Windows SDK Programmer’s
Reference Volume 2: Functions.”
DLL & C Connect User’s Guide C-1

Examples
Following the architecture of DLL and C Connect, a subclass of
ExternalInterface must be used that identifies the appropriate library and
provides interface methods for the API functions.

The Win32SystemSupport Classes
VisualWorks uses the OSSystemSupport class hierarchy to provide a
general framework for calling APIs in the host OS, and for MS-Windows,
there are four specific subclasses which concretize the protocol:
Win32SystemSupport, Win32sSystemSupport, Win95SystemSupport, and
WinNTSystemSupport. For low-level API calls, you must use the class that
corresponds to your platform.

Since the concrete subclasses of Win32SystemSupport inherit their
behavior from their abstract superclass, these ExternalInterface classes
should each have their virtual attribute enabled. Accordingly, to prepare
the Win32SystemSupport classes for use, you must first set these attributes
as follows:

1 Open a Hierarchy Browser on class Win32SystemSupport.

2 Set the beVirtual: parameter true in Win32SystemSupport and all of its
subclasses. To do this, edit the definition text in the Browser template
and then select accept on the <Operate> menu. Repeat this for every
class below Win32SystemSupport.

For discussion of each parameter in these class definitions, see “Defining
External Interfaces” on page 2-1. For the present example, you will only
need to change the parameter to beVirtual: (note that these changes are
only necessary in the present release of VisualWorks).

Launching an Application Process
Once the virtual attributes have been set, you may test the example by
evaluating a Smalltalk expression like the following (the receiver should
be the class appropriate for the platform you are using, i.e.,
Win95SystemSupport or WinNTSystemSupport):

WinNTSystemSupport CreateProcess: nil arguments: 'notepad'
A Windows Notepad application should launch on your display. If you get
a notifier with the error “External Object not found”, there has been some
problem locating the external library. You should double check the
parameters to the libraryFiles, libraryDirectories, and beVirtual attributes in all
the Win32SystemSupport classes (for additional information on
troubleshooting problems with loading DLLs, see “Resolving Exceptions”
on page B-1). For the Windows API, it is normally unnecessary to specify
a path argument to the libraryDirectories attribute.
C-2 VisualWorks

Launching Applications under Windows
Launching and Terminating an Application Process
To launch and then terminate a Windows application, evaluate the
following Smalltalk code fragment:

| p |
p := WinNTSystemSupport

CreateProcess: nil arguments: 'notepad'.
(Delay forSeconds: 5) wait.
^WinNTSystemSupport TerminateProcess: p

Note that it is a common convention to use the actual C procedure name
as the first keyword of the Smalltalk interface method.

Portability of the API
Under Windows 3.x, the KERNEL32.DLL library does not actually exist as
a file in the Windows system directory. The string KERNEL32.DLL that is
passed as an argument to libraryFiles is a pseudo-Windows-DLL that is
handled specially by the OS library loading mechanism. In place of a DLL
file, KRNL3/486.exe (usually in the windows/system directory) provides
these functions. The same holds true for USER32.DLL (USER.EXE in
windows/system directory) and GDI32.DLL (GDI32.EXE in
windows/system directory). This pseudo-DLL arrangement is not used by
Windows NT and 95, which both provide the library file KERNEL32.DLL.

For full access to the OS API, it is necessary to specify all requisite
libraries. For Windows, USER32.DLL, GDI32.DLL, and KERNEL32.DLL
should all be specified together; and, for access to database functionality,
ADVAPI32.DLL should also be specified.

With Windows 3.x, it is also possible to use a 16-bit version of the API
that is in KERNEL.DLL (which resides in the same location). However, by
using the 32-bit version in the Win32s API (in KERNEL32.DLL), this
ExternalInterface subclass is portable across all versions of Windows: 3.x,
95, and NT.

If you want to use the 16-bit version of the DLL, you should use the
interface provided by class Win32sSystemSupport. Win32s is the Windows
subsystem that allows 32-bit code to operate under the older versions of
Windows; note that Win32s is not available under Windows NT. To call
16-bit DLLs, you should browse the class definition for
Win32sSystemSupport and edit the libraryFiles attribute to be the 16-bit
version of the library (KERNEL.DLL).

For additional details on the use of this interface to the host OS, you may
browse the protocol of classes in the OSSystemSupport hierarchy.
DLL & C Connect User’s Guide C-3

Examples
Vector Functions
This section provides a simple example to illustrate how DLL and C
Connect can be used to improve performance of computationally
intensive applications. In this example, a vector functions package is
implemented both as a Smalltalk class and as a C library. A common
protocol is provided for both implementations, but for complex vector
math the C library is used to increase performance.

The procedure for testing the example is as follows:

1 Build the library file using the native C development tools.

2 Load the parcel containing the vector math classes.

3 Configure the ExternalInterface class to call the external DLL.

For the purposes of this example, the commands used on MS-Windows
NT 4.0 are shown.

Building the C Library
Following the steps outlined above, you must first build the vector library
file on your platform. Complete source code for the library is provided in
the src subdirectory of the DLL and C Connect installation. You should
use the standard compiler for your platform; other compliers (i.e., gcc)
may work, but the example code might need to be modified for proper
compilation.

To simplify this step, a makefile has been provided in the vector
subdirectory of the DLL and C Connect release. Choose the makefile that
is appropriate for your platform, making a copy with the new name
makefile. Additionally, it may be necessary to edit the definitions in the
makefile so that the library can be generated without errors. To do this,
check the following definitions against your installation of DLL and C
Connect:

1 Open the makefile and ensure that the definition SRC refers to the
src subdirectory in the DLL and C Connect installation (e.g.,
SRC=..\src). All definitions are located at the beginning of the
makefile text.

2 Ensure that the definition BRLIB refers to the nt subdirectory of the
DLL and C Connect installation (e.g., BRLIB=..\nt). If you are
using a different platform, check that this definition is appropriate.
C-4 VisualWorks

Vector Functions
3 Since the vector examples must be compiled with the standard
release compiler for your platform, the definition MSDEV must point to
the correct volume and installation directory for the Microsoft C
Compiler (e.g., MSDEV=C:\MSDEV).

4 Save the edited makefile.

Next, use the makefile to generate the object file and the DLL. For
example, under MS-Windows NT, open a command prompt window from
the Start menu, connect to the directory dllcc\vector, and then issue
the following command to execute the makefile:

nmake makefile

During compilation, some warnings may be generated about functions in
vector.c, especially with regard to the conversion between double
and float types. You may safely ignore these warnings—the library
should still function properly.

Once the file vector.dll has been successfully generated, you can
test the vector functions library from Smalltalk.

Calling the Vector Functions Package
Next, you must load the predefined vector math classes parcel into your
VisualWorks image. To do this, open a File List window, and parcel in the
file named DLLCCVectorMathExample.pcl (this file is located in the
DLL and C Connect release directory). This parcel contains a small but
complete vector math package, which is organized as three classes
(Vector, VectorMathExternal, and VectorMathInternal). These classes should
appear in the class category called Numeric-Vectors.

Organization of the Vector Math Library
Vector objects (instances of class Vector) are manipulated by vector the
math functions, implemented either in Smalltalk or C. Class
VectorMathInternal provides a native Smalltalk implementation for vector
math, while class VectorMathExternal contains calls to the external C
functions. Note that VectorMathExternal is a subclass of ExternalInterface.
Both of these vector math classes provide the same public interface for
performing simple arithmetic operations, negation, rounding, cross
product, and dot product.
DLL & C Connect User’s Guide C-5

Examples
Description of Class Vector
Instances of class Vector are n-element vectors of floating-point numbers,
each stored as 4 bytes in the vector object. Elements in the vector are
indexed using the method floatAt:. Thus, in a homogeneous 4-element
vector, x is floatAt: 1, y floatAt: 5, z floatAt: 9, and an extra value (for
example, alpha) is floatAt: 13.

Class Vector includes one class variable VectorLibrary which references
the library that is used for mathematical operations.

Configuring Class VectorMathExternal
The class VectorMathExternal must be configured to reference the library
file vector.dll. All the standard names for this library (vector.dll
vector.sl vector.so) are already defined in this class, but you will
need to also define the libraryDirectories attribute so that the DLL can be
located. The simplest way to do this is to open a Browser on class
VectorMathExternal, and then define libraryDirectories as the path to the
DLL; for example:

#(#libraryDirectories #('C:\vw7\dllcc\vector '))

Testing the External Vector Math Library
Once the DLL has been built, the Smalltalk classes have been loaded
and configured, you are ready to test the installation. In class Vector, the
category named testing contains two methods which you may use to
check that the external vector library has been properly installed.

Open a Workspace window and try evaluating the following Smalltalk
expression (select print it from the <Operate> menu):

Vector test1
This method performs a number of vector operations, and compares the
results of the Smalltalk and C implementations. If the external vector
library has been compiled and loaded properly, the result of the method
should be an empty Dictionary object.

If the resulting Dictionary is not empty, the results returned by the internal
and external packages did not match. This normally indicates that the
external library was not loaded properly, and that the external calls failed.
If you encounter this error, you should check the definition for class
VectorMathExternal and make sure that the path stored in the
libraryDirectories attribute is correct. For additional information on
troubleshooting problems with DLLs, see “Resolving Exceptions” on
page B-1.
C-6 VisualWorks

Vector Functions
A second test method allows you to measure the performance of the
external library. Evaluate the following Smalltalk expression:

Vector test2
This method will return an Association, whose key contains the time (in
milliseconds) required to run a computational test for both the internal
and the external vector functions. The value of the association contains
the (negative) percentage increase of speed between the two vector
implementations.

To test the cross-product function, evaluate the following Smalltalk
expression in a Workspace:

1 , 2 , 3 crossProduct: 1 , 1 , 1
The result should be a vector: (-1.0, 2.0, -1.0).

By browsing class Vector, you can find a number of additional sample
methods in the protocol named examples.
DLL & C Connect User’s Guide C-7

Examples
C-8 VisualWorks

Index
Symbols
#define statement

declaring 2-9
operators A-1

#pragma directive 2-11
<Operate> button xii
<Select> button xii
<Window> button xii
_oop type 4-8
_threaded qualifier 5-7

A
allocation

in Smalltalk, overview 3-1
allocation strategies

external heap 5-20
general 3-3
using FixedSpace 3-26
using the external heap 3-8

array 3-18

B
beVirtual: message 2-13
block

returning from 4-6
using in a callback 4-2

buttons
mouse xii

C
C data objects

accessing 1-5
creating 3-11

C data types
array 3-18
composite 3-13
declaring 2-5
pointer 3-17
predefined for Object Engine Access 9-2
scalar 3-11
string 3-19

C declarations
placing into Smalltalk 1-3

C function
calling 2-8
declaring 2-7
failure 2-9, 6-2

C header files
listing definitions 2-26
parsing 2-19
parsing errors 2-24
predefined macros 2-23
protocol contents 2-21
wildcarding variations 2-20

C libraries
relinking 7-3

C pointers
representing NULL 3-17

C typedef statements 1-4
C types

representing 3-29
C++

interfacing with 2-26
callback

block argument 4-2
creating an ExternalCallback 4-3
defining 4-1
definition 4-1
example of 4-4
external 4-2
foreign 5-14
limitations 4-11
message-send 4-7
priority of 5-14
protecting pointers 4-7
reasons to use 4-1
return value 4-8
threaded 5-14
valid locations 4-12

CallbackInterface class 4-3
calling

C functions 2-8
casting data types 3-20
CDatum class

C-like protocol 3-11, 3-33
COBOL, interfacing with 2-27
CompiledCodeCache 3-2
conventions

typographic xi
copyToHeap message 3-8, 5-17
CStructureLayout class 3-23
CType class 2-5

limitations of 3-31
customer struct 3-14

D
deadlock 5-15
declaring

#define statements 2-9
variables 2-11

directives
#pragma 2-11

dynamic-link libraries 1-3, 2-16
32-bit 8-8
accessing Object Engine functions 9-3
benefits of 1-3
entry points 2-16
environment variables 2-17
incremental loading of 8-3
DLL & C Connect User’s Guide Index-1

library search order 2-17
programmitic search 2-18

E
enums, defining 2-6
environment variables 2-18

examples of use 5-12
errors

'bad argument' 6-5
'hresult error' 6-5
'io error' 6-5
during header file parsing 2-24

exceptions
’Unable to Load Library’ error B-2
C datum access 6-8
Error Codes for MS-Windows B-5
external library access 6-7
externalAccessFailedSignal 6-3
externalObjectNotFoundSignal 6-7
illegalAssignmentSignal 6-8
invalidNumberOfArgumentsSignal 6-8
libraryNotFoundSignal 6-7
libraryNotLoadedSignal 6-7, B-2
libraryNotUnloadedSignal 6-7
memberNotFoundSignal 6-8
Object Engine Access interface B-4
resolving B-1
resolving externalObjectNotFoundSignal B-3
resolving libraryNotFoundSignal B-2
resolving libraryNotLoadedSignal B-2

execution
asynchronous 5-2

external callback
definition 4-1
example of 4-4

external heap
alignment issues 3-22
allocation on 3-8
copying objects to 3-21

external interface
architecture 1-1
common exceptions B-1
exceptions 6-1
overview 1-1
packaging 7-2
saving as parcels 7-3
snapshots 2-13
virtual 2-12

external library code
compiling for MS-Windows 8-15

external message-send 4-7
definition 4-1

external variables
failure 2-12

ExternalCallback class 4-3
ExternalInterface class 1-2

architecture 1-1
constructing 1-7
overview 1-1

F
failure

during C function calls 2-9
during external variable accessing 2-12

FixedSpace 3-2
allocating objects in 3-26
using threaded calls with 5-20

FixedSpace, defined 3-3
fonts xi
foreign callbacks 5-14
free message 3-6
function 1-2

G
garbage collecting 3-2
gcCopyToHeap message 3-8, 5-17
gcMalloc message 3-6
gcMalloc: message 3-6
GetNameProc method 4-3
getting help xiii
H
header file definitions, listing 2-26
header files

parsing 2-19
heap

callback usage 4-3
external alignment 3-22
external copying 3-21
snapshots 3-26
table of pointer types 3-9

I
I/O

blocking 5-2
interfaces

defining 2-1
method generation 2-5
packaging 7-2

internationalization B-4

K
keep argument 4-7

L
LargeSpace 3-2
libraries

interdependencies 8-3
static B-2

libraryDirectories message 2-17
libraryDirectories: message 2-19
libraryFiles: message 2-16, 2-19
limitations

callback locations 4-12
callbacks 4-11
external callbacks and blocks 4-6
maximum number of threads 5-23
ordering of callbacks 4-12
passing object pointers to Smalltalk 4-12
process termination 5-25
process termination in callbacks 4-11
thread priority 5-22

long lived objects
registering 9-5

low tide marker for threads 5-15
lvalue (in C language) 3-16
Index-2 VisualWorks

M
malloc message 3-5
malloc: message 3-5
mapAddress message 4-11
memberAt:put: message 3-14
memory manager

and callbacks 4-3
messages

sending from C 4-7
methods

specifying as threaded 5-7
mouse buttons xii

<Operate> button xii
<Select> button xii
<Window> button xii

MS-Windows
platform specific issues 8-7

multiprocessing 5-2
avoiding deadlock 5-15

N
nameNode function 4-2
new message 3-5
newInFixedSpace message 3-5
NewSpace 3-2
notational conventions xi
NULL pointers 3-17

O
Object Engine

object table (OT) 9-5
system registry 9-5

Object Engine Access
overview 9-6

Object Engine Access Interface 9-10
exceptions B-4
using with MS-Windows 8-7

object pointers
in message sends 5-22

oeAllocArray function 9-10
oeAllocByteArray function 9-11
oeAllocFsObject function 9-11
oeAllocRegistrySlot function 9-12
oeAllocString function 9-13
oeAllocVsObject function 9-13
oeBasicAt function 9-14
oeBasicAtPut function 9-14
oeByteAt function 9-15
oeByteAtPut function 9-16
oeClass function 9-17
oeClassType function 9-17
oeCopyCtoOEbytes function 9-18
oeCopyCtoOEfloatArray function 9-18
oeCopyCtoOEintArray function 9-19
oeCopyCtoOEstring function 9-20
oeCopyOEtoCbytes function 9-21
oeCopyOEtoCfloatArray function 9-22
oeCopyOEtoCintArray function 9-23
oeCopyOEtoCstring function 9-23
oeCSendMessage 4-9, 9-24
oeCtoOEbool function 9-26
oeCtoOEchar function 9-26
oeCtoOEdouble function 9-27
oeCtoOEfloat function 9-27

oeCtoOEint function 9-28
oeDoubleAt function 9-28
oeFail function 9-29
oeFloatAt function 9-30
oeFloatAtPut function 9-30
oeGetErrorCode 9-31
oeIndexVarSize function 9-32
oeInitLinkRegistry function 9-32
oeInstall function 9-33, 9-43
oeInstallPollHandler function 9-34
oeInstVarAt function 9-35
oeInstVarAtPut function 9-36
oeInstVarSize function 9-36
oeIsArrayOfFloat function 9-37
oeIsArrayOfInteger function 9-37
oeIsBoolean function 9-38
oeIsByteArray function 9-38
oeIsByteLike function 9-39
oeIsCharacter function 9-39
oeIsDouble function 9-39
oeIsFloat function 9-40
oeIsImmediate function 9-40
oeIsInteger function 9-41
oeIsKindOf function 9-41
oeIsString function 9-42
oeNil function 9-42
oeOEToCbool function 9-48
oeOEToCchar function 9-49
oeOEToCdouble function 9-49
oeOEToCfloat function 9-50
oeOEToCint function 9-50
oeRegisteredHandleAt function 9-43
oeRegisteredHandleAtPut function 9-44
oeRegisterSymbolAndHandle function 9-45
oeSendMessage function 4-9, 9-46
oeSignalSemaphore function 9-48
OldSpace 3-2
other languages

interfacing with 2-26

P
PermSpace 3-2
pointers 3-17

NULL 3-17
protecting during callback 4-3, 4-7

process scheduler 5-2
process termination

during callbacks 4-11
problems 5-25

processes
attaching to threads 5-17
heavyweight 5-2
Smalltalk 5-2
termination problems 5-25

proxy objects 1-5

R
return value, from a callback 4-8
rvalue (in C language) 3-16

S
scalar data type 3-11
scalar values

converting from Smalltalk 3-11
DLL & C Connect User’s Guide Index-3

sendback.c function 4-10
SendBackInterface class 4-10
sending a message back to Smalltalk 4-7
signals

errorSignal 6-2
externalAccessFailedSignal 6-3
externalObjectNotFoundSignal B-3
illegalAssignmentSignal 6-8
invalidNumberOfArgumentsSignal 6-8
libraryFilesSearchSignals 5-12
libraryNotFoundSignal 5-12, B-2
libraryNotLoadedSignal B-2
libraryNotUnloadedSignal 6-7
memberNotFoundSignal 6-8
Object Engine Access Interface B-4

snapshots 3-26
and external interfaces 2-13

special symbols xi
stack unwinds

during callbacks 4-11
StackSpace 3-2
static linking 8-4
storage allocation

in Smalltalk 3-1
string

data type 3-19
in message - passing function 4-9

struct
member accessing 3-14

symbols used in documentation xi
system registry 9-5

T
technical support xiii
threaded methods

specifying 5-7
threads

additional control over 5-15
and use of FixedSpace 5-20
callback 5-14
example 5-5
limit 5-15
limitations 5-22
maximum number of 5-23
native 5-2
overview 5-2
performance considerations 5-24
priority of 5-22
safety of foreign code 5-22
starvation 5-15

thunk, used in a callback 4-11
type casting 3-20
typographic conventions xi
U
unloadLibraries message 2-19
unsafe compiling 8-2
userprim.h file 4-8

V
variables

declaring 2-11
vwntoe.dll 8-7

W
wrapper objects 1-5
Index-4 VisualWorks

	Contents
	About This Book
	Audience
	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information

	Tools and Techniques
	Installing DLL and C Connect
	External Interface Architecture
	Dynamic-Link Libraries
	Placing C Declarations into Smalltalk
	Accessing C Data Objects
	Constructing the External Interface

	User Interface Tools
	Accessing the Tools
	External Interface Finder Tool
	Building an Example: StandardLibInterface
	Testing the Example: StandardLibInterface
	External Interface Builder Tool

	Defining External Interfaces
	Defining Interfaces
	Defining External Methods
	Declaring C Data Types
	Declaring enums

	Declaring C Functions
	Calling C Functions
	C Function Failure

	Declaring Defines, Macros and Pragmas
	Declaring Variables
	External Variable Failure

	Virtual External Interfaces
	External Interfaces and Snapshots

	Dynamic-Link Libraries
	Finding Entry Points
	Library Search Order
	Libraries and Environment Variables
	Programmatic Search

	Parsing C Header Files
	Pre-Defined Constants
	Syntax Errors
	Interfacing with Other Languages

	Creating and Accessing C Data
	Memory Allocation in Smalltalk
	Reclaiming Space
	Allocating C Data Types
	Allocating Space on an External Heap

	Creating C Data
	Scalar Data
	Enumeration Types

	Composite Data
	Pointer Data
	Array Data
	String Data

	Casting
	External Heap Copying
	External Heap Alignment
	Unexpected Data Alignment in C Structure Objects
	Changing the Alignment Algorithm

	External Heap and Snapshots
	Allocating Objects in FixedSpace
	Representing C Types
	Limitations of CType Definitions

	Protocol for C Data Objects

	Calling Smalltalk From C
	Defining Callbacks
	External Callbacks
	An External Callback Example
	Returning From a BlockClosure

	External Messages
	Limitations of Callbacks
	Thunking
	Ordering of Callbacks
	Valid Callback Locations
	Object Pointers

	Threaded Interconnect
	Overview
	Threads
	Managing Data Objects with Multiple I/O Threads
	Threaded Interconnect Example
	Specifying Threaded External Methods

	Callbacks
	Additional Control over Threads
	Managing Threads
	Thread Limit and Low Tide
	Attaching Processes to Threads
	Threaded Calls and FixedSpace

	Limitations
	Thread-Safety of Foreign Code
	Use of Object Pointers and Message Sends
	Thread Priority
	Maximum Number of Threads

	Performance Considerations
	Known Problems
	Process Termination

	Exception Handling
	External Interface Exceptions
	C Function Failure

	External Library Access Exceptions
	C Datum Access Exceptions

	Packaging Considerations
	Overview
	General Considerations
	Preparing Your Interface Classes
	Packaging Your Interface Classes
	Relinking C Libraries

	Platform Specific Information
	Platform-Specific Development
	Compiler Compatibility
	Unsafe Compiling
	Incremental Loading of Dynamic-Link Libraries

	Static Linking
	MacOS Classic
	MacOS X
	Dynamic Libraries
	Bundles

	MS-Windows
	Object Engine Access Interface with MS-Windows
	MS-Windows XP and Vista
	32-bit Dynamic-Link Libraries
	Structure Layout Issues under MS-Windows XP and Vista

	Declaring the C Functions
	Ordinals
	Declaring the C Data Types
	Strings
	Callbacks
	Library Search Paths
	Defining the DLL Interface
	Creating the Definition File
	Compiling the External Library Code
	Creating the DLL
	Creating a Makefile

	Object Engine Access Functions
	Overview
	Basic Capabilities
	Predefined C Data Types
	Failure Codes
	Dynamic-Link Libraries
	General Advice
	Registering Long Lived Objects
	Restrictions
	Object Engine Access Overview
	Object Engine Access Reference
	oeAllocArray
	oeAllocByteArray
	oeAllocFsObject
	oeAllocRegistrySlot
	oeAllocString
	oeAllocVsObject
	oeBasicAt
	oeBasicAtPut
	oeByteAt
	oeByteAtPut
	oeClass
	oeClassType
	oeCopyCtoOEbytes
	oeCopyCtoOEfloatArray
	oeCopyCtoOEintArray
	oeCopyCtoOEstring
	oeCopyOEtoCbytes
	oeCopyOEtoCfloatArray
	oeCopyOEtoCintArray
	oeCopyOEtoCstring
	oeCSendMessage
	oeCtoOEbool
	oeCtoOEchar
	oeCtoOEdouble
	oeCtoOEfloat
	oeCtoOEint
	oeDoubleAt
	oeFail
	oeFloatAt
	oeFloatAtPut
	oeGetErrorCode
	oeIndexVarSize
	oeInitLinkRegistry
	oeInstall
	oeInstallPollHandler
	oeInstVarAt
	oeInstVarAtPut
	oeInstVarSize
	oeIsArrayOfFloat
	oeIsArrayOfInteger
	oeIsBoolean
	oeIsByteArray
	oeIsByteLike
	oeIsCharacter
	oeIsDouble
	oeIsFloat
	oeIsImmediate
	oeIsInteger
	oeIsKindOf
	oeIsString
	oeNil
	oePostInterrupt
	oeRegisteredHandleAt
	oeRegisteredHandleAtPut
	oeRegisterSymbolAndHandle
	oeSendMessage
	oeSignalSemaphore
	oeOEToCbool
	oeOEToCchar
	oeOEToCdouble
	oeOEToCfloat
	oeOEToCint

	Unsafe Functions

	#define Operators
	Resolving Exceptions
	Common ExternalInterface Exceptions
	ExternalLibraryHolder>>libraryNotFoundSignal
	ExternalLibrary>>libraryNotLoadedSignal
	ExternalMethod>>externalObjectNotFoundSignal

	Object Engine Access Interface Exceptions
	Exception Error Codes

	Examples
	Launching Applications under Windows
	The Win32SystemSupport Classes
	Launching an Application Process
	Launching and Terminating an Application Process

	Portability of the API

	Vector Functions
	Building the C Library
	Calling the Vector Functions Package
	Organization of the Vector Math Library
	Description of Class Vector
	Configuring Class VectorMathExternal
	Testing the External Vector Math Library

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

