

VisualWorks®

Distributed Smalltalk Application Developer's Guide

P46-0114-03

Copyright © 1997-2003 by Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Copyright © 1993-1995 Hewlett-Packard Company.

All Rights Reserved

Part Number: P46-0114-03

Software Release 7.1

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, and COM Connect are trademarks of Cincom Systems, Inc., its subsidiaries, or
successors. ENVY is a registered trademark of Object Technology International, Inc. All
other products or services mentioned herein are trademarks of their respective
companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation copyright © 1997-2003 by Cincom
Systems, Inc. All rights reserved. No part of it may be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without prior
written consent from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents

About This Book 15

Audience ...15
Conventions ..16

Typographic Conventions ...16
Special Symbols ...16
Mouse Buttons and Menus ..17

Getting Help ..17
Commercial Licensees ...18

Before Contacting Technical Support ..18
Contacting Technical Support ...18

Non-Commercial Licensees ...19
Additional Sources of Information ...19
Getting Help ..20

Commercial Licensees ...20
Before Contacting Technical Support ..20
Contacting Technical Support ...20

Non-Commercial Licensees ...21
Additional Sources of Information ...22

Chapter 1 Introducing Distributed Smalltalk 23

Distributed Objects ..23
What is CORBA? ...23
Why Distributed Smalltalk? ..24

How Distributed Smalltalk Works ..24
CORBA Components ..25

Object Request Broker (ORB) ..26
Interface Definition Language (IDL) Compiler ..27
Internet Inter-Orb Protocol (IIOP) ...27
Interface Repository (IR) ..27

CORBAservices ..27
Naming ...28
Basic Lifecycle ..28
Event Notification ...28
Distributed Smalltalk Application Developer’s Guide 3

Contents
Concurrency Control .. 28
Transaction .. 28

Implicit Interface Invocation (I3) .. 28
Development Tools ... 29

Chapter 2 Installing and Configuring DST 30

Installing Distributed Smalltalk .. 30
DST Directory Structure .. 30
Loading DST into the Image .. 30

Configuring Naming Services ... 31
Configuring the Naming Service Server Image ... 31
Configuring a Naming Service Client Image .. 32

Advanced Configurations .. 34
Types of Settings ... 34

Filename ... 34
Port Number ... 34

Sharing an Interface Repository .. 35
About the Master Interface Repository ... 35
Systems That Share a Master Interface Repository 35

Establishing a Shared Repository ... 36
Interface Version Control ... 36
Advanced Configuration Example ... 36

Chapter 3 A Distributed Smalltalk Example 38

Preparing the Example ... 38
Load the Example Parcel ... 38
Configuring Images to Support the Example ... 38

Running DSTSampleComputeService ... 39
Exploring DSTSampleComputeService ... 40

Class Methods: naming ... 40
createDefaultService .. 40
destroyDefaultService ... 41

Instance Methods: initialize-release ... 42
Instance Methods: computing .. 42

slowComputationWith:and: ... 42
Adding IDL Interfaces ... 42

Editing the Sample IDL .. 43
Generating IDL Code ... 44
Running DSTSampleComputeService with IDL .. 45
4 VisualWorks

Contents
Instance Methods: repository ...46
abstractClassID ...46
CORBAName ..46

IDL Definition: DSTRepository>>DSTSampleComputeService47

Chapter 4 System Architecture 48

Summary of Services ..48
Object Services and Policies ...49

Naming Service ..49
Event Notification Service ..49
Basic Lifecycle ..49
Concurrency Control Service ...50
Transaction Service ..50
Persistence ...50

Implementation of the CORBA Specification ..50
Components of the ORB ..50

Interface Definition Language (IDL) Compiler50
Interface Repository (IR) ...51
Static Invocation Interface (SII) ...51
Dynamic Invocation Interface (DII) ..51

CORBA Terminology ..51
Distributed Smalltalk’s ORB Implementation ...53

Interface Definition Language (IDL) Compiler ..54
Interface Repository (IR) ..54
Invocation Interface ..54

Sending Messages via Surrogates and Object References54
Implementing Surrogate Objects — DSTObjRef55
Object Identification ...56
Object Creation Using Factories and Factory Finders56
Marshalling and Unmarshalling ...57

Chapter 5 The DST Development Process 58

Choosing a Paradigm ..58
Issues in Distributed Computing ...59

Optimizing Distributed Resources ..59
Remote System Autonomy ...59
Shared Objects ..60
Interoperability Through Standards Compliance ..60

Creating Applications with Distributed Smalltalk ...60
Distributed Smalltalk Application Developer’s Guide 5

Contents
Chapter 6 Designing and Implementing 62

General Design ... 62
Sharing Objects ... 62
Creating and Destroying Objects ... 62
Referencing Remote Objects ... 63

Performance Considerations .. 63
Avoiding Traps .. 64

Chapter 7 Implicit Invocation Interface (I3) 65

How I3 Works ... 65
Required Methods .. 66
Instance Methods ... 67

passInstVars .. 68
Return Values ... 68
Passing Classes ... 68
I3 Instances and Garbage Collection .. 69
I3 Traps ... 69

Chapter 8 Defining IDL Interfaces 70

Overview ... 70
Comparing Smalltalk & IDL .. 71
Basic IDL Syntax .. 71

IDL Specification .. 72
Declaring Modules .. 72

Example ... 72
Getting Information About a Module .. 73

Declaring Interfaces .. 73
Example ... 74
Inheritance ... 74

Inheritance Syntax .. 74
Forward Declaration .. 75
Pass by Reference ... 76

Declaring Constants ... 76
Declaring Data Types ... 80

Using Declarators to Give a Name to a Type ... 80
typedef ... 81

Example .. 81
Simple Types ... 82

Base Data Types ... 82
Template Types .. 82
Strings .. 83
6 VisualWorks

Contents
Sequence ...83
Example ..84

Constructed Types ..85
Structures ..85
Enumerations ..86
Discriminated Unions ..88

Declaring Operations ..91
Example ..92

Raises Expressions ..93
Context Expressions ..94

Declaring Exceptions ..95
User-Defined Exceptions ...95

Example ..95
Standard Exceptions ..96

Declaring Attributes ...99
Example ..99

Inheritance ..100
IDL Preprocessing ...104

#include ..105
CORBAModule ..105
Names and Scopes ...105
IDL Traps ...108

Magnitude Mismatches ..109
Mismatched IDL Interfaces and Smalltalk Selectors109
Inheritance and Overriding Operations ..109
Passing Values and References: Interfaces and Structures109
SmalltalkTypes ...110
IDL void and Smalltalk nil ...110

Chapter 9 Mapping of IDL to Smalltalk 112

Overview ...112
Constraints on Smalltalk Mappings ...112
Default Mapping for IDL to Smalltalk ...113
Handling Return Values ..114

Memory Usage ...114
Limitations ..115

Mapping of IDL Elements to Smalltalk ..115
SmalltalkTypes ..116
Mapping for Interface ..117

CORBAName Method ..117
Getting Information About an Interface ..117
Distributed Smalltalk Application Developer’s Guide 7

Contents
Mapping for Objects .. 118
Invocation of Operations .. 118

Mapping for Attributes ... 119
Readonly Attributes for Security .. 119

Mapping for Constants .. 120
Getting More Information About a Constant .. 120

Mapping for Basic Data Types .. 121
Base Type Mapping ... 121

Mapping for Fixed Type ... 123
Mapping for the Any Type ... 123

CORBAType Method .. 124
Mapping for Enum .. 124
Mapping for Struct Types .. 125
Mapping for Union Types .. 126

Implicit Binding .. 126
Explicit Binding .. 127

Mapping for Sequence Types ... 127
Mapping for String Types .. 128
Mapping for Wide String Types ... 128
Mapping for Array Types ... 128
Mapping for Exception Types .. 129

Getting More Information on Exceptions ... 130
Mapping for Operations .. 130

Implicit Arguments to Operations ... 131
Argument-Passing Considerations .. 132

Unmapped Interfaces ... 132
Handling Exceptions ... 132

Exception Values ... 133
The CORBAExceptionValue Protocol .. 134

Pragmas ... 134
Mapping Pragmas to IDL Types ... 135

RepositoryIds .. 135
IDL Format ... 136
DCE Format ... 137
Local Format .. 137

Repositoryld Pragmas .. 137
ID Pragma .. 137
Prefix Pragma .. 138
Version Pragma ... 138

Interfaces and Version Control .. 138
Generating Repository IDs .. 139

Distributed Smalltalk Pragmas .. 140
Class Pragma .. 140
8 VisualWorks

Contents
Selector Pragma ..141
Access Pragma ..141

About IDL and DSTRepository ..141
Editing the Interface Repository ...142
IDL Mapping to Smalltalk ...142

Chapter 10 Working with Object Interfaces 144

Making a Class a Factory ..144
Adding an Interface to the Interface Repository ..145
Creating an IDL Module Using the IDL Generator ..148

Refining the Module ...150
Interface Repository Browser ..150

Opening the Browser ...150
IR Browser Icons ..151
IR Browser menus ..152

Action menu ..152
Edit menu ..152
View menu ...152

Importing IDL files ...153
Setup for Preprocessing ...153
Annotate the IDL with Pragmas Where Necessary154

Avoiding Interface Problems ..154
Keeping Interface Repositories Updated ..154
Edit Lock ..154

Chapter 11 Initialization Service 155

Programmatically Initializing, Starting, and Stopping the ORB155
Getting Remote ORB References ...157
Initial Object References ...157
Distributed Smalltalk Implementation ..158
ORB Utility Methods ..158

Chapter 12 Naming Service 160

What Constitutes a Name? ...161
Name Components ..161
Name Contexts and Naming Graphs ...161

Naming Service Operations ..162
Creating Names ...162
Binding and Unbinding ...163
Resolving and Listing Contexts ..163
Distributed Smalltalk Application Developer’s Guide 9

Contents
Syntax-Independent Kinds and Identifiers ... 164
Exceptions ... 164

Interfaces .. 165
Implementation ... 165

Chapter 13 Event Notification 166

Overview ... 166
Need for Event Notification in a Distributed System 166
Terminology .. 167

Event Channel .. 167
Multiple Event Channels .. 168
Event Channel Administration ... 168

Push and Pull Models ... 168
Push .. 168
Pull ... 169
Disconnect to Terminate Communications .. 169
Consumers and Suppliers ... 170
Proxies ... 170

Event Data .. 171
Using Events ... 171
Example Code for Events ... 172

Example: Connecting a Push Consumer to a Channel 172
Example: Connecting a Pull Consumer to an Event Channel 172
Example: Connecting a Push Supplier to a Channel 173
Example: Testing the Event Example .. 173

Using Typed Events .. 173
Example: Connecting to a Channel ... 174
Example: Implementing a Typed Push Connection 174

Typed Push Supplier and Interface ... 174
Corresponding Typed Push Consumer and Interface 175

Example: Implementing a Typed Pull Connection 176
Typed Pull Supplier and Interface ... 177
Corresponding Typed Pull Consumer and Interface 177

Example: Determining Quality of Service .. 178
Interfaces .. 179
Implementation ... 181

Chapter 14 Basic Lifecycle 182

Overview ... 182
Terminology ... 183

Lifecycle Operations ... 183
Create .. 183
10 VisualWorks

Contents
Copy and Deep Copy ...183
Move ...184
Destroy ...184
Throw Away ..184
Externalize and Internalize ...184

Creating Objects ...185
COS on Factories and Factory Finders ..185
Distributed Smalltalk’s Implementation ..185
Examples: With and Without the Factory Representative186

Example 1: Stringified Object Reference186
Example 2: Naming Service as Registry187
Using FactoryFinder Directly ...188
Using the Factory Representative—Option #1188
Using the Factory Representative—Option #2189

Example: Copying an Object ..189
Commentary ..190

Interfaces ..190
Implementation ..190

Chapter 15 Concurrency Control Service 191

Overview ...191
Terminology ..192
Lock Modes ..193
Lock Mode Compatibility ..194
Multiple Lock Semantics ...194
Locks and LockSets ...195

Interfaces ..196
Implementation ..196
Using Distributed Smalltalk Concurrency Service ...196

Using the Class DSTResourceManager ..197
Creating Locks ..197
Acquiring Locks ...197
Releasing Locks ..198
Destroying Locks ...198

Using Transactional Locksets ...199

Chapter 16 Transaction Service 200

Overview ...200
Distributed Smalltalk’s Implementation of Transactions ..201

Terminology ..204
Transactional Applications ...206

Transactional Client ..208
Distributed Smalltalk Application Developer’s Guide 11

Contents
Transactional Object .. 208
Recoverable Objects and Resource Objects ... 209
Transactional Server .. 209
Recoverable Server ... 210

Transaction Service Functionality ... 210
Transaction Models .. 210

Flat Transactions ... 210
Nested Transactions ... 210

Transaction Termination ... 211
Transaction Context ... 212

Service Architecture ... 212
Typical Usage .. 213
Transaction Context ... 214
Context Management .. 215

Interfaces .. 215
Use of Transaction Service Functionality for Interfaces 216

Implementation ... 217
Using the Distributed Smalltalk Transaction Service .. 217

Implementing a Recoverable Object .. 217
Example .. 217
Example .. 219

Creating a Transaction ... 219
Completing a Transaction .. 220

Example .. 221
Create a Transaction Example ... 222

Chapter 17 Debugging and Tuning 223

Overview ... 223
Debugging and Tuning Tools .. 223

Debugging ... 223
Message Logging .. 224
Local RPC Testing ... 224

Local RPC Testing .. 225
Remote Object Debugging ... 226

Using the Remote Object Debugger .. 226
Performance Tuning and Optimization .. 227

Network Performance .. 228
Symptoms ... 228
Possible Causes ... 228
Solutions ... 228

User Interface Organization ... 228
Symptoms ... 229
12 VisualWorks

Contents
Possible Causes ..229
Solutions ...229

Coding Style Hints ...229
Method Size ..229
Multiple Inheritance in DSTRepository ..229
Blocks ..229

Chapter 18 Creating a Deployment Image 230

Overview ...230
Design and Preparation ..230

Possible Runtime Configurations ...230
Providing a Desktop Icon ...231

Creating a Deployment ORB Image ..232
Candidate Classes for Removal ...232
Steps for Creating a Deployment Image ..234

Optimizing Runtime Applications ..235
Exception Handling ..235
Minimizing Footprint ...236

Chapter 19 Troubleshooting 237

Overview ...237
Marshalling and Unmarshalling Errors ..237

Symptoms ...237
Possible Causes ..238
Solutions ...238

Object Availability Exceptions ...238
Symptoms ...238
Possible Causes ..239
Solutions ...239

Synchronization Problems ..239
Symptoms ...239
Possible Causes ..239
Solutions ...240

Dangling References ...240
Symptoms ...240
Possible Causes ..240
Solutions ...240

Remote Access to Overridden Methods ...240
Symptoms ...240
Possible Causes ..240
Solutions ...241
Distributed Smalltalk Application Developer’s Guide 13

Contents
Interface Repository Accessing Errors ... 241
Symptoms ... 241
Possible Causes ... 241
Solutions ... 242

Interface Incompatibilities ... 242
Symptoms ... 242
Possible Causes ... 242
Solutions ... 242

Other Exceptions .. 243
Symptoms ... 243
Possible Causes ... 243
Solutions ... 243

Problems Running Multiple Images .. 244
Cannot Start an ORB .. 244
Cannot Determine Which Image You Are Using 244

Handling Server-side Transient Errors .. 244

Chapter A IDL Lexical Conventions 245

Overview ... 245
File Processing .. 245
Comparison With C++ Lexical Conventions .. 245
Character Set ... 245

Tokens .. 249
Comments .. 250
Identifiers .. 250
Keywords .. 251
Literals .. 252

Integer Literals ... 252
Character Literals .. 252
Floating-point Literals .. 253
String Literals ... 254

Chapter B IDL Grammar 255

IDL Grammar .. 255

 Appendix C Bibliography 264
CORBA Resources ... 264
Distributed Computing Resources .. 264

Index 266
14 VisualWorks

About This Book

This manual gives an overview of the Distributed Smalltalk development
process, and describes programming resources for building distributed
applications.

Audience
Distributed Smalltalk is a CORBA 2.1-compliant framework for
developing distributed applications, and supports several of the primary
CORBA Object Services (COS).

This book is written for experienced Smalltalk developers who are writing
their first Distributed Smalltalk application. Readers should have a good
understanding of VisualWorks; review the VisualWorks manuals for
more information. For additional help, a large number of books and
tutorials are available from commercial book sellers and on the world-
wide web. In addition, Cincom and some of its partners provide
VisualWorks training classes. This book does not assume any prior
knowledge of Distributed Smalltalk or of CORBA.

Be sure to read Chapters 1-4 to understand basic Distributed Smalltalk
concepts. After reading Chapter 4, decide whether to use the Implicit
Invocation Interface (I3) or IDL interfaces in your application and then
read the corresponding chapter.
Distributed Smalltalk Application Developer’s Guide 15

Chapter - About This Book
Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Special Symbols
This book uses the following symbols to designate certain items or
relationships:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File ! New Indicates the name of an item (New) on a menu
(File).

<Return> key
<Select> button
<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.
16 VisualWorks

Getting Help
Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or
combinations:

Note: This is a different arrangement from how VisualWorks used
the middle and right buttons prior to 5i.2.
If you want the old arrangement, toggle the Swap Middle and Right Button
checkbox on the UI Feel page of the Settings Tool.

Getting Help
There are many sources of technical help available to users of
supportweb@cincom.com. Cincom technical support options are
available to users who have purchased a commercial license. Public
support options are available to both commercial and non-commercial
license holders.

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>
Distributed Smalltalk Application Developer’s Guide 17

mailto:supportweb@cincom.com

Chapter - About This Book
Commercial Licensees
If, after reading the documentation, you find that you need additional
help, you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

• The version id, which indicates the version of the product you are
using. Choose Help ! About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help ! About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error
notifier window (or in the stack view of the spawned Debugger). Then
paste the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to
supportweb@cincom.com.

Web
In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com

Telephone
Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized reseller
of Cincom products to find out the telephone numbers and hours for
technical support.
18 VisualWorks

mailto:supportweb@cincom.com
mailto:supportweb@cincom.com
http://supportweb.cincom.com

Additional Sources of Information
Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:

• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu

with the SUBJECT of "subscribe" or "unsubscribe".

• An excellent Smalltalk archive is maintained by faculty and students
at UIUC, who are long-time Smalltalk users and leading lights in the
Smalltalk community, at:

http://st-www.cs.uiuc.edu/

• A Wiki (a user-editable web site) for discussing any and all things
VisualWorks related at:

http://wiki.cs.uiuc.edu/VisualWorks

• A variety of tutorials and other materials specifically on VisualWorks
at:

http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincom.com/smalltalk/documentation

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.
Distributed Smalltalk Application Developer’s Guide 19

mailto:vwnc-request@cs.uiuc.edu
http://st-www.cs.uiuc.edu/
http://wiki.cs.uiuc.edu/VisualWorks
http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
news:comp.lang.smalltalk
http://www.cincom.com/smalltalk/documentation

Chapter - About This Book
Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

Commercial Licensees
If, after reading the documentation, you find that you need additional
help, you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

• The version id, which indicates the version of the product you are
using. Choose Help ! About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help ! About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error
notifier window (or in the stack view of the spawned Debugger). Then
paste the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to
supportweb@cincom.com.

Web
In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com
20 VisualWorks

mailto:supportweb@cincom.com
mailto:supportweb@cincom.com
http://supportweb.cincom.com

Getting Help
Telephone
Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized reseller
of Cincom products to find out the telephone numbers and hours for
technical support.

Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:

• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu

with the SUBJECT of "subscribe" or "unsubscribe".

• An excellent Smalltalk archive is maintained by faculty and students
at UIUC, who are long-time Smalltalk users and leading lights in the
Smalltalk community, at:

http://st-www.cs.uiuc.edu/

• A Wiki (a user-editable web site) for discussing any and all things
VisualWorks related at:

http://wiki.cs.uiuc.edu/VisualWorks

• A variety of tutorials and other materials specifically on VisualWorks
at:

http://wiki.cs.uiuc.edu/VisualWorks.Tutorials+and+courses

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.
Distributed Smalltalk Application Developer’s Guide 21

mailto:vwnc-request@cs.uiuc.edu
http://st-www.cs.uiuc.edu/
http://wiki.cs.uiuc.edu/VisualWorks
http://wiki.cs.uiuc.edu/VisualWorks.Tutorials+and+courses
news:comp.lang.smalltalk

Chapter - About This Book
Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincom.com/smalltalk/documentation

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.
22 VisualWorks

http://www.cincom.com/smalltalk/documentation

1
Introducing Distributed Smalltalk

Distributed Smalltalk is an integrated set of frameworks providing an
advanced object-oriented environment for rapid development and
deployment of multi-user, enterprise-wide distributed applications.
Distributed Smalltalk provides a superior environment for rapid
prototyping, application development, and deployment of CORBA-
compliant applications.

Distributed Objects
Modern corporations have moved from the old mainframe paradigm, in
which all programs ran on one central computer, to decentralized
computing, in which many different computers cooperate to run
programs. In this distributed environment, it is no longer practical to
design each program as a stand-alone system; programs must be
designed to share and exchange data and services. Distributed object
systems can be both more robust and more powerful than either
conventional object-oriented systems or conventional client-server
systems.

Designs based on distributed objects offer all the power of object-
oriented design, and in addition allow widely separated applications to
collaborate. Distributed applications also facilitate load distribution among
clients and servers and provide increased reliability by facilitating
mirroring and replication.

What is CORBA?
In 1989, the Object Management Group (OMG) began to specify the
Common Object Request Broker Architecture (CORBA). This standard
defines common methods of communication between distributed objects
on disparate platforms. A revised CORBA standard, version 2.0, was
Distributed Smalltalk Application Developer’s Guide 23

Chapter 1 - Introducing Distributed Smalltalk
agreed to in late 1994. By 1996, there were many different CORBA
implementations on the market; such major software vendors as Oracle
and Netscape have announced support for CORBA interoperability. The
CORBA standard has continued to undergo revision and update since
then.

An application that is based on the CORBA infrastructure is well-
positioned to be integrated into today’s diverse computing environment.

Why Distributed Smalltalk?
Distributed Smalltalk allows you to develop applications that are
compliant with the CORBA 2.1 standard, while offering the superior
application-development facilities of VisualWorks. Distributed Smalltalk
hides some of the complexity of CORBA, while making its full power
available to developers.

Distributed Smalltalk is a complete implementation of CORBA 2.0, with
additions to comply to the 2.1 standard. Distributed Smalltalk’s CORBA
compliance provides the basis for object- and application-interoperability.
Distributed Smalltalk also offers the Implicit Invocation Interface (I3), an
extension to the CORBA facilities that provides a more natural Smalltalk
paradigm for developing distributed object systems.

How Distributed Smalltalk Works
An application written in Distributed Smalltalk is able to respond to
service requests from remote systems and to request services in its turn.
Remote entities that request services of an application need not be
written in Distributed Smalltalk, as long as they use an OMG-standard
Object Request Broker to make the requests.

The component objects that make up a Distributed Smalltalk application
are often themselves distributed across several systems. These
distributed objects can interact transparently, without regard to object
location or platform.

To a running application, remote message sends appear to be taking
place in the local image. What actually happens to implement a remote
send is more interesting.

Assume that an object, “Arthur”, running on Machine A, wants to make a
request of an object, “Bonita”, on Machine B (refer to the graphic
following the procedure).
24 VisualWorks

CORBA Components
1 Arthur obtains an object reference for Bonita.

2 Arthur sends a message to the object reference.

3 The Object Request Broker on machine A (ORB A) translates the
message and its arguments into a platform-neutral format (“marshalls
the message”) and transmits the message over the network to the
ORB on machine B (ORB B).

4 ORB B translates the platform-neutral message back into Smalltalk
(“unmarshalls the message”) and sends the message to Bonita for
processing.

5 Bonita processes the message and returns a value to ORB B.

6 ORB B marshalls the return value and transmits it over the network to
ORB A.

7 ORB A unmarshalls the return value and returns it to Arthur.
.

CORBA Components
CORBA 2.1 specifies core functions that are required of an Object
Request Broker in order to support interoperable distributed computing.
The CORBA specification requires the following core components, all of
which Distributed Smalltalk supplies:

Arthur

Object Ref.

Bonita

Machine A Machine B

apparent connection

actual connection

for Bonita

Network

Object Request Broker A

Network

Object Request Broker B
Distributed Smalltalk Application Developer’s Guide 25

Chapter 1 - Introducing Distributed Smalltalk
• Object Request Broker (ORB)

The ORB is the brain of a CORBA implementation. It facilitates the
transmission and interpretation of messages across diverse software
and hardware platforms.

• Interface Definition Language (IDL) Compiler

The Interface Definition Language is used to define objects’ public
interfaces in a language- and platform-independent fashion, so that
object services may be requested from any supported environment.

• Internet Inter-Orb Protocol (IIOP)

The Internet Inter-Orb Protocol is used to communicate between
ORBs. An object running on one ORB can make requests of objects
served by any other connected ORB, whether those objects were
written in Smalltalk, C, C++, Ada, or COBOL. Developers can build
distributed systems using multiple languages where appropriate.
Thus, a Smalltalk object may request services from or provide
services to a C++ object, an Ada object, or any object that supports
an IDL interface.

• Interface Repository (IR)

The Interface Repository is the registry of distributable object
interfaces for a given system. Any remotely accessible object has an
interface in the Interface Repository. Interface Repository interfaces
are described in IDL.

The CORBA standard also specifies optional object services
(CORBAservices) which may be provided by CORBA implementations.
DST implements support for some of these, as described below.

Object Request Broker (ORB)
The Object Request Broker (ORB) is the key to distribution support. By
providing an ORB on each system, Distributed Smalltalk makes the
location of any object transparent to clients requesting services from the
object.

When a message is sent to a local object, the activity is handled
normally. When a message is sent to a remote object, the remote object’s
local object reference (a proxy created automatically by the ORB)
intercepts the message, then uses the ORB to locate the remote object
and communicate with it. Results returned to the calling object appear
exactly the same, whether the message went to a local or remote object.

An ORB performs all of the following tasks:
26 VisualWorks

CORBAservices
• Marshalling and unmarshalling messages (translating objects to and
from byte streams for network transmission)

• Locating objects in other images or systems

• Routing messages between surrogates and the objects they
represent

While a request is active, both client and server ORBs exchange packet
information to track the course of the request and resolve any network or
transmission errors that might occur.

Interface Definition Language (IDL) Compiler
When distributed objects collaborate in an application, they interact by
sending messages to one another’s interfaces. These interfaces are
described in the Interface Definition Language; this makes the interface
descriptions language-independent. Because external clients have
access to an object’s services only through the object’s interface, the
implementation of the object is private. This privacy provides a variety of
benefits, including security, language independence, encapsulation, and
the freedom to modify the implementation of how a service is performed
without external repercussions. The IDL compiler translates interface
definitions into the objects used by the ORB and Interface Repository.

Internet Inter-Orb Protocol (IIOP)
The Internet Inter-Orb Protocol (IIOP) is the protocol used for
communication between ORBs. The IIOP is based on TCP/IP, and adds
some additional message exchanges to provide a backbone protocol.

Interface Repository (IR)
The Interface Repository stores all of the IDL interfaces for objects
available through an ORB.

CORBAservices
Object services extend the core ORB capabilities to support more
advanced object interaction. Distributed Smalltalk implements several of
OMG’s CORBAservices. These services extend CORBA to provide
protocols for common operations like creating, exporting, and destroying
objects (Lifecycle), locating objects (Naming), managing transactions,
and providing asynchronous event notification.

Distributed Smalltalk provides the following CORBAservices:
Distributed Smalltalk Application Developer’s Guide 27

Chapter 1 - Introducing Distributed Smalltalk
Naming
Assigns an object a unique user-visible name. Names are used to identify
and locate both local and remote objects.

Basic Lifecycle
Provides standard mechanisms for creating and initializing, deleting,
externalizing (preparing for transmission to remote systems), and
internalizing.

Event Notification
Allows objects to notify each other of an interesting occurrence using an
agreed protocol and set of objects.

Concurrency Control
Enables multiple clients to coordinate access to shared resources. This
service supports two modes of operation: transactional and non-
transactional. Concurrent use of a resource is regulated with locks. Each
lock is associated with a single resource and a single client. There are
several lock modes: read/write/update and intention-mode.

Transaction
Provides the infrastructure supporting the ACID (atomicity, consistency,
isolation, and durability) transaction properties for operations among
multiple objects. There is support for multiple transaction models. This
service also provides transaction wrappers for existing applications and
support for transaction monitors.

Implicit Interface Invocation (I3)
DST includes an implicit interface invocation mechanism that provides
Smalltalk-to-Smalltalk communication without the need for IDL. This is
useful especially for rapid prototype development between a DST server
and client. The interface is then easlity translatable into IDL for more
general deployment.
28 VisualWorks

Development Tools
Development Tools
Distributed Smalltalk extends VisualWorks with tools that support the
development and testing of distributed applications. These include a
distributed debugger, a remote browser, an automated IDL generator,
and other tools.
Distributed Smalltalk Application Developer’s Guide 29

2
Installing and Configuring DST

This chapter describes how to install Distributed Smalltalk into a
VisualWorks image, and how to configure DST images as Naming
Service servers and clients. This is the recommended configuration.

Installing Distributed Smalltalk
Distributed Smalltalk is provided as a collection of parcels with the
standard VisualWorks distribution. Installation of the DST parcels is
optional. Refer to the VisualWorks Installation Guide for instructions on
installing the Distributed Smalltalk components.

DST Directory Structure
The DST parcels are installed with VisualWorks in a separate
subdirectory, dst/.

Under this directory are two further subdirectories, icons/unselect.
This directory contains icon files required by DST, and so must be
present.

Loading DST into the Image
To use the Distributed Smalltalk components, you load them into the
VisualWorks image, typically using the Parcel Manager. The components
you load depends on which features of DST you intend to use. These
four commonly loaded components are listed in the Parcel Manager
Distributed Computing folder:

DST_COS_Services
DST with CORBA COS services.

DST_I3
DST with Implicit Invocation Interface (I3) support, only.
30 VisualWorks

Configuring Naming Services
DST_Tools_Development
DST_COS_Services plus all of the DST tools and GUI (presentation
semantics).

DST_Sample
DST_COS_Services and DST_I3, plus the examples mentioned in
the DST documentation.

Loading these components also loads their prerequisite parcels.

Configuring Naming Services
When dealing with multiple images on a single system or between
systems, it is necessary to configure the following settings. You only need
to do this configuration if you communicate with or connect to other
images (ORBs).

IIOP Transport
Internet Inter-ORB Protocol that enables objects and applications to
interoperate over a network with other OMG CORBA applications.

Naming Service
This service supports naming and locating local and remote objects.

Repository
A service used to share the interface repository on a remote system.

Note: NCS Transport and Security features of previous releases are
obsolete, but are available for a limited time in the obsolete/dst
directory.

Note: Windows 98 typically cannot run two DST orbs on the same
machine, so you will need to run the server on one and the client on
another.

Configuring the Naming Service Server Image
1 Create a new image:

a Start a Distributed Smalltalk image. This image should have
DST_Tools_Development loaded, since it needs the DST Tools.

b Save a copy of that image, to be configured as the Naming
Service server image.
Distributed Smalltalk Application Developer’s Guide 31

Chapter 2 - Installing and Configuring DST
In the main window, select File ! Save As. In the resulting dialog,
supply the name of the new image, such as “naming”.

2 If the DST main window is not open, execute the expression

DSTTool open.
3 Open the DST Settings tool (File ! Settings).

4 Set the IIOP Transport settings.

a From the Distributed Smalltalk main window, in the Transports
menu, make sure that IIOP Transport is turned on (checked).

b In the Settings notebook, select the IIOP Transport page.

c In the IIOP Port Number box, select Configured To. Leave the port
number unchanged.

d If you changed a setting, click Accept.

5 Set the Naming Service to Local.

a In the Settings notebook, select the Naming Service page.

b Click Local.

c If you changed the setting, click Accept.

6 Set the Repository to Local.

a In the Settings notebook, select the Repository page.

b Click Local.

c If you changed the setting, click Accept.

7 Save the configured image.

8 Click Start in the Distributed Smalltalk main window to start the
request broker.

Configuring a Naming Service Client Image
1 Create a new image:

a Start a Distributed Smalltalk image. This image should have
DST_Tools_Development loaded, since it needs the DST Tools.

b Save a copy of that image, to be configured as the Naming
Service client image.

In the main window, select File ! Save As. In the resulting dialog,
supply the name of the new image, such as “client01”.
32 VisualWorks

Configuring Naming Services
2 If the DST main window is not open, execute the expression

DSTTool open.
3 Open the DST Settings tool (File ! Settings).

4 Set the IIOP Transport settings:

a From the Distributed Smalltalk main window, in the Transports
menu, make sure that IIOP Transport is turned on.

b In the Settings notebook, select the IIOP Transport page.

c In the IIOP Port Number box, select Dynamically Allocated.

d If you changed the setting, click Accept.

5 Set the Naming Service settings:

a In the Settings notebook, select the Naming Service page.

b Click Hostname.

c Enter the hostname of the Naming Service server image
(localhost, the machine name, and the IP address, are all
acceptable entries).

d Check that the port shown is the port that the Naming Service
server image is configured to use for IIOP transport.

e Click Accept.

6 Set the Repository settings:

a In the Settings notebook, select the Repository page.

b Click Local.

c If you changed the setting, click Accept.

7 Save the configured image.

8 Click Start in the Distributed Smalltalk main window to start the
request broker.
Distributed Smalltalk Application Developer’s Guide 33

Chapter 2 - Installing and Configuring DST
Advanced Configurations
This section shows how to configure a set of Distributed Smalltalk images
so they can share the responsibility of providing locating, naming,
repository and security services. The standard configuration, in which all
such responsibilities are centralized in a single image, is described
above, in “Configuring Naming Services”. This section deals with more
selective arrangements.

The DST Settings are used to obtain one or more of the services from a
foreign image. First, this chapter explains the kinds of settings that are
involved, and limitations that apply to them. Next, the benefits of sharing
a master image’s interface repository are explored. Finally, this chapter
presents an example configuration involving three images that obtain
services from one another.

Types of Settings
Each ORB image in a network of ORBs needs to know which ORB
provides the Naming and Repository services and, if in use, the optional
Security service. The DST Settings are used to identify the provider of
each service, using either the provider’s hostname or the name of a file
containing an object reference to the provider. This section discusses
each of these ways of identifying a service provider.

In addition, communications between ORBs require the use of a port
number, which is also described in this section.

Filename
Some configuration pages in the DST Settings notebook provide a
Filename field. This field is expected to contain the name of a file. The file
is expected to contain an object reference to the ORB that supplies a
particular service.

To export an object reference to a file, make sure your ORB is running,
then execute the following:

ORBObject referenceToFile: 'filename' object: anObject
To get an object reference from a file, make sure your ORB is running,
then execute the following:

ORBObject referenceFromFile: 'filename'

Port Number
In the DST Settings, port numbers can be dynamically allocated by
Distributed Smalltalk, or you can specify them explicitly.
34 VisualWorks

Advanced Configurations
If you choose to let the system allocate a port number, it will change each
time the ORB is restarted.

If you choose to specify a port number, it must be an integer between
1024 and 65536. Port numbers between 1 and 1023 are reserved. The
port number can be reused in the Naming Service configuration.

Sharing an Interface Repository
In Distributed Smalltalk, each image contains an interface repository,
which provides an object interface for each distributed service that is
requested. Successful interaction among distributed objects requires that
the interface repositories in all participating systems be identical. When
they are not identical, errors will be reported and communication will be
interrupted.

The shared interface repository service helps you maintain identical
interface repositories on different systems. When you set up your
systems to use a shared repository, one of the connected systems holds
the master interface repository; other systems hold a subset of the
master interface repository, which they build on an as-needed basis.

About the Master Interface Repository
Generally, the master interface repository should be on a system that is:

• Available at all times

• Easily accessed on the local- or wide-area network (to optimize
communications overhead)

• Not stripped of the compiler and repository classes (classes in
categories CORBA-Compilers and CORBA-Repository)

Systems That Share a Master Interface Repository
Other systems, which share the master interface repository, each start
with a minimum set of interfaces in their local interface repositories (the
minimum required for basic communications). When another interface is
requested, it is loaded along with its superclass interfaces. These newly
loaded interfaces are cached locally and retained for the remainder of the
session. At the end of a session (when you stop the ORB), the interface
cache is cleared.

When you are preparing to deploy an application that will run on a system
with a shared interface repository, you can remove all classes in
categories CORBA-Repository and CORBA-Compilers.
Distributed Smalltalk Application Developer’s Guide 35

Chapter 2 - Installing and Configuring DST
Establishing a Shared Repository
By default, each image has its own (nonshared) interface repository. You
can change an image to use a shared interface repository by following
these steps:

1 If a session is running, stop it. In the Request Broker panel, click on
Stop.

2 Open a DST Settings window by selecting File ! Settings in the
Distributed Smalltalk main window.

3 In the Settings notebook, select the Repository page.

4 Supply either a Filename or a Hostname to identify the master interface
repository.

Interface Version Control
Distributed objects can only communicate correctly through compatible
interfaces. Each interface is identified by a RepositoryId. One of the fields
in the RepositoryId is the version number and this version number can be
modified by using the VERSION pragma. The default is version 1.0.

For more information on using version control, see “Version Pragma” in
Chapter 9, “Mapping of IDL to Smalltalk.”

Advanced Configuration Example
As an example of an advanced configuration, suppose you want to
connect three separate images as follows:

• Image 1 provides the user security database for all images.

• Image 2 provides the naming service for all images.

• Image 3 provides the repository for image 2.

In this case, you should configure the images as follows:

1 In Image 1:

a Configure the IIOP ports to known ports.

b Set the Naming Service, Repository and Security settings to Local. (The
Naming Service will be reset later.)

c Start the ORB.

2 In Image 2:

a Let the IIOP ports be dynamically allocated.
36 VisualWorks

Advanced Configurations
b Set the Naming Service to Local.

c For now, set the Repository to Local.

d Set Security to Image 1’s Hostname.

e Start the ORB.

3 In Image 1:

a Set the Naming Service to Image 2’s Hostname.

4 In Image 3:

a Let the IIOP ports be dynamically allocated.

b Set the Naming Service to Image 2’s Hostname.

c Set the Repository to Local.

d Set Security to Image 1’s Hostname.

e Start the ORB.

5 In Image 2:

a Set the Repository to Image 3’s Hostname.
Distributed Smalltalk Application Developer’s Guide 37

3
A Distributed Smalltalk Example

This chapter examines a simple DST application,
DSTSampleComputeService. DSTSampleComputeService is designed to
perform some expensive computation on a dedicated compute server
and return the results to the caller. The server provides a named service
that performs the computation, which a client applications can then
request.

The initial implementation uses the DST I3 mechanism, for simple
communication between two Smalltalk images. Later in the chapter, the
interface is converted to IDL, so the service can be accessed by non-
Smalltalk programs using CORBA services.

Preparing the Example

Load the Example Parcel
DSTSampleComputeService is installed separately from the development
tools. To load the example, load both the DST_Sample and the
DST_Tools_Development parcels using the Parcel Manager.

Configuring Images to Support the Example
Before you test the example, you must configure two Distributed
Smalltalk images: a server image that runs the Naming service, and a
client image requests the service from the server. This configuration is
described in Chapter 2, “Installing and Configuring DST” under
“Configuring Naming Services”.

After both images are configured, go to the Distributed Smalltalk window
in each image, select Transports:I3 to turn the Implicit Invocation Interface
on, and click Start.
38 VisualWorks

Running DSTSampleComputeService
Running DSTSampleComputeService
The DSTSampleComputeService example contains both server and client
functionality, for simplicity. In most applications, this functionality would
be factored into separate classes.

The server functionality responds to a request for its named service, also
called ‘DSTSampleComputeService’, performs a computation, and returns
the result to the request client.

To run the example, do the following:

1 Enable the I3 transport (check Transports ! I3) and click Start in the
DST main windows of both images.

2 In a workspace in the server image, evaluate (DoIt) the message:

DSTSampleComputeService createDefaultService.
This message creates an instance of the compute service and
registers it with the ORB and Naming service.

3 In a workspace in the client image, evaluate the following messages:

| namingService aName objRef |

namingService := ORBObject namingService.
aName := DSTName on:

(DSTName onString: 'DSTSampleComputeService').
objRef := namingService contextResolve: aName.
Transcript cr; show:

(objRef slowComputationWith: 5100000 and: 5200000) asString.
Note that this is a very slow computation, and may take several
minutes to return. The Transcript should show 5148001.

4 To disable the service, evaluate this message in a workspace in the
server image:

DSTSampleComputeService destroyDefaultService
Distributed Smalltalk Application Developer’s Guide 39

Chapter 3 - A Distributed Smalltalk Example
Exploring DSTSampleComputeService
DSTSampleComputeService is designed to run some expensive computation
on a dedicated compute server. It provides a service method,
slowComputationWith:and: which invokes another method to perform the
calculation, and returns the result. All other DSTSampleComputeService
methods are support methods necessary to providing a distributed
service or do the actual calculation.

Class Methods: naming
A crucial difference between developing applications in Distributed
Smalltalk and in local Smalltalk is in retrieving well-known instances. In
non-distributed Smalltalk, applications retrieve well-known instances from
some globally accessible location in the local image. In order to share
objects with other images, distributed applications must also retrieve
shared objects from other images. The most common way to do this is
through the CORBA Naming service.

DSTSampleComputeService manages its interactions with the Naming
service through the class messages defaultService and
destroyDefaultService in the naming protocol. DSTSampleComputeService
uses a class variable, DefaultService, to hold the unique instance of the
class. The class method createDefaultService returns the unique instance,
creating it if necessary; destroyDefaultService destroys the instance.

createDefaultService
This method returns the unique instance of the compute service, creating
it if necessary.

createDefaultService
"Return the service. If no instance exists, create one and, register it with
the naming service."

"DSTSampleComputeService createDefaultService"

DefaultService isNil
ifTrue: [DefaultService := DSTSampleComputeService new.

ORBObject namingService contextBind: self serviceName
to: DefaultService
].

^DefaultService
If the instance already exists, createDefaultService returns it; otherwise, it
creates the instance.
40 VisualWorks

Exploring DSTSampleComputeService
Before requesting services from the Naming service, createDefaultService
must get an object reference to the Naming service itself. The method
gets that reference from the class ORBObject. This class always holds
valid references to the Interface Repository, Naming service, factory
finder, and user security database.

After the instance exists, createDefaultService binds the instance to the
name DSTSampleComputeService. Binding an instance to a name
associates the name with the instance for the life of the image containing
the Naming service.

After the instance has been created and bound to a name in the Name
service server image (by sending the message DSTSampleComputeService
createDefaultService), other images can get an object reference for
DSTSampleComputeService by sending the contextResolve: message to the
Naming service.

| namingService aName objRef |
namingService := ORBObject namingService.
aName := DSTName on:

(DSTName onString: 'DSTSampleComputeService').
objRef := namingService contextResolve: aName.

destroyDefaultService
This message destroys the unique instance of the class.

destroyDefaultService
"Remove the singleton instance of the service from the class variable,
the naming service, and the lifecycle service."

"DSTSampleComputeService destroyDefaultService"

(DefaultService isNil)
ifFalse:
[ORBObject namingService contextUnBind: self serviceName.

DefaultService release.
DefaultService := nil

]
The instance is destroyed in three steps. First the method unbinds the
instance from the Naming service (destroys the association between the
name and the instance), then it releases the instance, and finally it resets
the instance variable to nil. An instance must be unbound before it is
released.
Distributed Smalltalk Application Developer’s Guide 41

Chapter 3 - A Distributed Smalltalk Example
Instance Methods: initialize-release
These are the standard instance creation and destruction methods.

initialize
"Register instance with lifecycle service"

DSTObjRef registerObject: self

release
"Remove reference to object from lifecycle service."

DSTObjRef unRegisterObject: self
Because instances of this class must interact with remote objects, each
instance should be registered with the ORB when it is created, and
unregistered when it is no longer useful.

Instance Methods: computing
There are several computation methods, providing alternate calculations.
At this point, we are only concerned with slowComputationWith:and:.

slowComputationWith:and:
The slowComputationWith:and: method invokes another method,
carmichaelNumber:, which actually performs the computation. Neither
method contains DST-specific code.

aPositiveInteger1 to: aPositiveInteger2 do:
[:n | (self carmichaelNumber: n) ifTrue: [^n]].

^0
Browse other calculation methods for implementations. These calculation
methods can be invoked directly, by replacing the Transcript display and
calculation line in the workspace with, for example:

5100000 to: 5200000 do: [:n | (objRef carmichaelNumber: n)
ifTrue: [Transcript cr; show: n]]

Adding IDL Interfaces
This section demonstrates how to convert an I3 application into an IDL-
interface application, by creating IDL interface definitions. Two
approaches are offered.

If you already understand IDL, you may prefer to write your own. In this
case, there is a sample IDL module provided, as well as required
methods that you can rename and use for the rest of the example.
42 VisualWorks

Adding IDL Interfaces
If you are new to CORBA and IDL, or prefer the convenience of a
generator, you can use the IDL Generator tool. We will generate only a
fragment of the full IDL provided in the sample module, but enough to see
how it works and complete the example. You may browse the sample IDL
for comparison with the generated IDL.

In this example, we will configure both the server and client images with
their own local IDL repositories. Although it is possible for VisualWorks
images to share a single repository, we will not use that feature here.

Editing the Sample IDL
A complete IDL module for the computational methods in
DSTSampleComputeService is provided, together with the CORBAName and
abstractID methods required to support service lookup. They are,
however, named differently than is required. Rather than use the IDL
Generator to produce these, you can simply rename the sample
definitions and proceed.

To use these definitions:

1 In the server image, browse the DSTRepository class,
DSTSampleComputeService0 method in the DEMO method category. Past
the comment lines, find the line:

module DSTSampleComputeService0 {
and remove the 0, so it is now:

module DSTSampleComputeService {
Accept the change. You now have a DSTSampleComputeService
method.

2 Also in the server image, browse the DSTSampleComputeService class
in the browser, and select the repository method category. Edit the
method selectors, changing:

CORBAName0 to CORBAName, and

abstractID0 to abstractID.

Accept the changes. You now have new methods matching the
required names.

3 In each client image, make the same change as in step 1, renaming
the module to DSTSampleComputeService.

The CORBAName and abstractID methods are not needed in the client
images, so you don’t need to do anything with them. You are now set to
proceed with “Running DSTSampleComputeService with IDL”.
Distributed Smalltalk Application Developer’s Guide 43

Chapter 3 - A Distributed Smalltalk Example
Generating IDL Code
To add IDL interfaces, use the Generate IDL tool. Do this in both the server
and the client images.

1 In the server image, select Tool s ! Generate IDL in the DST main
window.

2 In the Server Classes pane, find and select your server class,
DST.DSTSampleComputeService.

Enter a pattern, such as DST.DSTSample*, in the entry field to
simplify the search.

Selecting a client class is not useful in this example. Selecting a
client class and clicking Filter Methods with Client Classes would mark
(check) methods in the list that are sent by a client class. This is
useful when you know the application well, so know precisely which
methods will be invoked remotely, in which case it may simplify the
process. In our example, we only want to generate IDL for the
slowComputationWith:and: message. (Exercise for later: Select the
same class in the client classes list and see what is checked; then
compare with the sample IDL in DSTSampleComputeService0.)

3 In the Target Methods pane, select slowComputationWith:and:.
44 VisualWorks

Adding IDL Interfaces
4 In the Module name: field, enter a name for the module (e.g.,
DSTSampleComputeService).

5 Click the Generate IDL button.

When the IDL is generated, a class browser on DSTRepository
opens, with the newly generated IDL displayed.

6 In the browser, scroll down to:

SmalltalkObject slowComputationWithAnd (
in SmalltalkObject a,
in SmalltalkObject b);

Replace the first instance of “SmalltalkObject” with “unsigned long long”
and the other two instances with “unsigned long”:

unsigned long long slowComputationWithAnd (
in unsigned long a,
in unsigned long b);

Accept your changes.

7 (Server image only) In the IDL Generator, select Generate Glue.

This creates CORBAName and abstractID methods in
DSTSampleComputeService that specify the mapping between the IDL
interface and Smalltalk. See below, and Chapter 9, “Mapping of IDL
to Smalltalk” for more information.

This is necessary in the server image only, because these methods
are used by the ORB to locate the class and methods needed to
service the request from the client.

8 Close the IDL Generator.

Browse DSTSampleComputeService and find the two new methods,
CORBAName and abstractClassID, which are needed for IDL-interface
execution. These are instance methods rather than class methods
because it is sometimes useful for a class to have an abstractClassID
different from those of its instances.

Running DSTSampleComputeService with IDL
You test the example with IDL interfaces exactly as before:

1 Turn off I3 in both server and client images, by selecting
Transports ! I3.

2 In a workspace in the server image, send the message

DSTSampleComputeService defaultService
Distributed Smalltalk Application Developer’s Guide 45

Chapter 3 - A Distributed Smalltalk Example
This message creates an instance of the compute service and
registers it with the ORB and Naming service.

3 In a workspace in the local image, send the following messages:

| namingService aName objRef |

namingService := ORBObject namingService.
aName := DSTName on:

(DSTName onString: 'DSTSampleComputeService').
objRef := namingService contextResolve: aName.
Transcript cr; show:

(objRef slowComputationWith: 5100000 and: 5200000) asString.
This is the same workspace as we used for the I3 example. The
Transcript should show 5148001, though the processing may be slow
since this is a slow computation.

4 In a workspace in the server image, remove the service from the
ORB and naming services by sending the message

DSTSampleComputeService destroyDefaultService.

Instance Methods: repository
When browsing these methods, realize that they are generated, and so
are not yet assigned to either a parcel or a package. Browse by Category
or select Unparceled.

abstractClassID
The abstractClassID method returns a unique identifier for the class, for
example (the identifier in your image will be different from the one shown
here):

abstractClassId
"return the abstract class Id of the receiver"
^'7883b3d3-3fe7-0000-02c7-bec093000000' asUUID

This number is generated uniquely for each class. Never copy this
identifier from one class to another. Whenever you create a new class,
create a new abstractClassID by sending the ORBObject newId message and
copying the returned value into the new class’s abstractClassID method.

CORBAName
The CORBAName method provides the link between a Smalltalk class and
its IDL definition. When invoked, the method returns the symbol
corresponding to the IDL definition’s entry in the Interface Repository.
46 VisualWorks

Adding IDL Interfaces
CORBAName
"return the name of my CORBA interface in the repository"
^#'::DSTSampleComputeService::DSTSampleComputeServiceInterface'

IDL Definition: DSTRepository>>DSTSampleComputeService
To examine the IDL definition itself, browse the DSTRepository method
DSTSampleComputeService. This method, which is written in IDL rather than
Smalltalk, looks like this (with the lengthy comment omitted):

// DSTSampleComputeService
// This module defines the types and interfaces which form the

DSTSampleComputeService
// protocol or service.
//
module DSTSampleComputeService {

#pragma selector slowComputationWithAnd
slowComputationWith:and:

// This computation is not really slow enough to justify a remote
// message send.
unsigned long long slowComputationWithAnd (

in unsigned long a,
in unsigned long b);

};
};

Note: If you generated this method as described above, it should
look like the above (plus comment). If instead you renamed the
provided IDL method DSTSampleComputeService0, the code is
somewhat longer, providing more IDL interfaces.

IDL syntax is discussed in detail in “Defining IDL Interfaces”. For now,
examine the line that actually describes the method:

unsigned long long slowComputationWithAnd (
in unsigned long a,
in unsigned long b);

In particular, examine the datatypes that are assigned IDL datatypes to
the return value and the arguments of the slowComputationWith:and:
message. Getting the datatypes incorrect is a major issue in distributed
computer, so take care to select appropriate values, as described in
“Mapping for Basic Data Types”.
Distributed Smalltalk Application Developer’s Guide 47

4
System Architecture

Summary of Services
Distributed Smalltalk lets you develop and deliver distributed applications,
that is, applications built with objects that may be running at different
locations and on different systems. To do this, Distributed Smalltalk
provides a range of services, from example code and developer’s tools,
to a full implementation of industry standards for distributed object
systems.

Service layer Service provided

Developer
Services

Administrative interface, Conversation
monitoring, IDL interface generation,
Interface Repository browsing

Remote class browsing

Remote debugging
Simulated RPC testing

Object
Services and
Policies

Naming, Event notification

Lifecycle (basic and compound)
Concurrency & Transactions
Relationships (links, containment)

Properties and property sets

Distributed Smalltalk specific:

Application objects and
assistants Presentation/
Semantic split

Core Services
(CORBA)

Object Request Broker, with:
IDL compiler
Interface Repository

Static & Dynamic
invocation interfaces
48 VisualWorks

Object Services and Policies
Object Services and Policies
Distributed Smalltalk implements OMG’s CORBAservices Volumes 1 and
2 specification that extends CORBA to provide protocols for common
operations such as creating and destroying objects (lifecycle), locating
objects (naming), and asynchronous event notification.

Naming Service
A standard for assigning each object a unique user-visible name. Naming
policies set a standard for identifying and locating objects in both local
and remote images, and in non-Distributed Smalltalk systems. Distributed
Smalltalk provides a complete naming service based on the containment
model of object organization. Application developers can use this service
as implemented, or create their own naming services from Distributed
Smalltalk’s basic naming policy and interface support. (The naming
service is specified in OMG’s CORBAServices)

Event Notification Service
This service allows objects to notify each other of interesting occurrences
using agreed protocols. The Distributed Smalltalk implementation of
event notification provides decoupled, asynchronous communication
between objects. It allows graceful object interactions even when objects
are temporarily unavailable because the network or a remote system is
“down.” Developers can extend the event notification service to support
specific types or levels of service. (The event notification service is
specified in OMG’s CORBAservices)

Basic Lifecycle
Standard ways for objects to implement activities such as create and
initialize, delete, copy and move both simple and compound objects,
externalize, and internalize.

Communication
Support

RPC (NCS 1.5.1) conversations and packet transfer (Distributed Smalltalk to
Distributed Smalltalk communication only)
Internet Inter-ORB Protocol (IIOP) — CORBA 2.0 specifies this protocol that
enables objects and applications to interoperate over a network with other
OMG CORBA applications

Service layer Service provided
Distributed Smalltalk Application Developer’s Guide 49

Chapter 4 - System Architecture
Concurrency Control Service
This enables multiple distributed objects to coordinate access to shared
resources. There is support for two modes of operation: transactional and
non-transactional. Concurrent use of a resource is regulated with locks.
Each lock is associated with a single resource and a single client. There
are several lock modes: read/write/update and intention-mode. (The
concurreny control service is specified in CORBAservices)

Transaction Service
The Transaction Service defines interfaces that allow multiple, distributed
objects to cooperatively to provide transaction atomicity, consistency,
isolation, and durability (ACID properties). There is support for multiple
transaction models, including the flat and nested models. Also,
transaction wrappers are provided for existing applications and support
for transaction monitors. (The transaction service is specified in
CORBAservices).

Persistence
Distributed Smalltalk implements persistence within the Smalltalk image
and does not conform to the CORBAservices standard.

Implementation of the CORBA Specification
The Object Request Broker and the services it provides are at the core of
Distributed Smalltalk. The ORB and its components provide the services
that allow object systems, objects, and applications to interoperate.

Components of the ORB
CORBA 2.0 or the Object Management Group’s Common Object
Request Broker Architecture, is the industry-standard specification for an
ORB architecture. The CORBA specification describes the following core
services as part of an ORB:

Interface Definition Language (IDL) Compiler
OMG has defined the IDL language to be independent of other
programming languages. IDL is used for public interfaces, so that both
service providers and service requestors can be written in Smalltalk, C,
C++, or another language. See Chapter 5, “Defining IDL Interfaces”, and
Chapter 9, “Mapping of IDL to Smalltalk” for instructions on using IDL and
Smalltalk-to-IDL mappings.
50 VisualWorks

Implementation of the CORBA Specification
Interface Repository (IR)
The registry of distributable object interfaces for a given system. Any
object that remote objects can access has an interface in the Interface
Repository. IR interfaces are written in the OMG-defined IDL, thus
allowing language independence and interoperability for service
providers (servers) and requestors (clients).

Static Invocation Interface (SII)
The SII supports requests for specific operations on remote objects and
surrogate object creation. One of two invocation interfaces specified by
CORBA, the SII is a better choice for Smalltalk applications, since the
invocation of the static interface is dynamic in Smalltalk.

Dynamic Invocation Interface (DII)
The DII supports dynamic object request building and sending, thus
providing an alternative to the SII for languages that do not support
dynamic binding. The DII is included in Distributed Smalltalk for
completeness, but it is not recommended.

While Distributed Smalltalk supports DII as specified, it is not
recommended for use. Smalltalk supports dynamic binding, and thus DII
is redundant and inefficient. (For more information on DII, see the
implementation of the two classes that support dynamic invocation:
ORBNVList and ORBRequest.)

CORBA Terminology
The CORBA specification defines the following terms and concepts:

ORB
CORBA specifies an Object Request Broker (ORB) to serve as the
interface that isolates external service requestors (clients) from
internal service providers (objects).

Clients send service requests to an ORB. When the ORB receives a
request, the ORB translates it into the local implementation language
(for example, Smalltalk), then locates the object that will provide the
service, and forwards the request to the object. When the request is
complete, control and output values are returned to the client.

ORB

Client Object

ORB
Distributed Smalltalk Application Developer’s Guide 51

Chapter 4 - System Architecture
object
An encapsulated entity that provides one or more services that can
be requested by a client. Sometimes referred to as a server object or
a CORBA object.

Smalltalk objects are more numerous than CORBA objects. While
some of the Smalltalk objects are also CORBA objects, most provide
support services within an image and are not accessible to external
service requests from clients.

Objects in Distributed Smalltalk can function both as CORBA clients
and CORBA objects, that is, both as requesters and providers of
services.

client
An entity capable of requesting a service. A client need not be
implemented in an object-oriented language. A client requesting
services need not know where the object is located, nor how it is
implemented.

Within and between Distributed Smalltalk images, objects interact as
peers, without the implied hierarchy of clients and servers. Each
object requests and/or provides services as necessary.

request
The communication between a client and an object. A request
specifies: (1) an operation to be performed, (2) an object reference
identifying the object that will perform the service, and (3, optionally)
parameters that the object needs to perform the request.

interface
Defines which tasks (operations) a CORBA object can do and what
information it needs to do those tasks. An object’s interface is distinct
from its implementation. Interfaces are stored in the Interface
Repository, within the ORB.

IDL
Interface Definition Language. An implementation-neutral language
specified by OMG as part of the CORBA core services. In all
CORBA-compliant systems, interface definitions are written in IDL.
By sending messages written in IDL between systems, objects
implemented in different languages can communicate.
52 VisualWorks

Distributed Smalltalk’s ORB Implementation
object reference
Identifies the server object, acting as an intermediary between client
and object. An object reference identifies the same object each time
the reference is used in a request. A single object may be denoted by
multiple, distinct object references.

Distributed Smalltalk’s ORB Implementation
Distributed Smalltalk includes a complete implementation of CORBA 2.0
that includes Internet Inter-ORB Protocol (IIOP). This protocol enables
objects and applications to interoperate over a network with other OMG
CORBA applications. This section provides an overview of the OMG
CORBA implementation.

Distributed Smalltalk’s ORB extends VisualWorks to support
communication with objects that may be in the current local image, or in
another image running either locally or remotely. Access to remote

CLIENT
(service requestor)

Object Request Broker

SERVER
(service provider)

n Unmarshalls RPC
byte codes

n Checks IR for corre-
sponding interface

n Translates IDL to
Smalltalk

n Forwards message to
appropriate local
object

n Translates request from
implementation lan-
guage to IDL

n Determines which ORB
controls the object that
can provide the service

n Marshals the request
into byte codes for RPC
transmission

n Sends the message to
the other ORB

n Unmarshalls the
response

n Translates IDL to the
implementation lan-
guage

n Forwards the response
appropriately

n Translates the
response from
Smalltalk to IDL

n Marshals the message

n Forwards message to
appropriate ORB

Ob
je

ct
 R

eq
ue

st
 B

ro
ke

r
(possibly non-DST) (Distributed Smalltalk)

network

network
Distributed Smalltalk Application Developer’s Guide 53

Chapter 4 - System Architecture
objects is generally transparent to the Smalltalk programmer; however,
when defining an object that will be accessible remotely, the programmer
must define an IDL interface (including operations) for it.

Interface Definition Language (IDL) Compiler
In Distributed Smalltalk, class IDLCompiler implements the IDL
parser/compiler. IDL is a compiled language. (When you add or make
changes to interface definitions in the Interface Repository, it will
recompile.)

Note that the IDL compiler does not support ValueTypes.

Interface Repository (IR)
Class DSTRepository is the repository for CORBA object interfaces that
are available for access by remote clients in Distributed Smalltalk.
Interface definitions in DSTRepository specify the messages, or operations,
that can be sent between objects in different images, as well as
attributes, types, constants and exceptions. Before you can communicate
with objects outside the current local image, you must define interfaces
for these objects in the Interface Repository.

Of course, not all Smalltalk objects are CORBA objects, and only CORBA
objects need an interface.

DSTRepository modules contain IDL (the Interface Definition Language);
this is the only Distributed Smalltalk class where an application developer
needs to write in IDL. For information on working with interfaces and IDL
Syntax, see Chapter 10, “Working with Object Interfaces”.

Invocation Interface
As specified in CORBA, the invocation interface handles message
sending and object invocation. While both the Dynamic and Static
Invocation Interfaces are available in Distributed Smalltalk, it is more
efficient to use the Static Invocation Interface, since dynamic binding is
already provided by the Smalltalk language itself.

Sending Messages via Surrogates and Object References
In making a service request, a client need not know where a server object
is located in order to send it messages. If the server is on the same
system as the client (that is, local), the request is a normal Smalltalk
request. However, if the server is on a remote system, the ORB gets
involved to intercept and forward the message appropriately.
54 VisualWorks

Distributed Smalltalk’s ORB Implementation
When a client requests a service, Distributed Smalltalk either sends the
message directly to the object, if it is local, or to the object reference, if
the object is remote. (An object reference identifies the server object,
acting as an intermediary between client and object.) Object references
act as publicly available surrogates for remote objects.

Specifically, since the surrogate cannot implement the operation
(method) requested, it sends itself the message doesNotUnderstand:.
Distributed Smalltalk traps the doesNotUnderstand: message and uses
its own mechanisms (including the ORB and RPC) to locate and
communicate with the remote object.

Results returned to the client appear exactly the same, whether the
message went to a local or remote object. (The only difference a
programmer or end-user sees is that the performance of a remote object
request is, naturally, somewhat slower than that of a local request.)

Note: During remote execution, the local process thread is blocked
until the result values have been received and decoded into internal
Smalltalk representation. At that point, the local thread is resumed
and local execution continues.

Implementing Surrogate Objects — DSTObjRef
DSTObjRef and its subclasses are instantiated to create the surrogates for
remote objects. A direct subclass of Object, DSTObjRef provides the basic
mechanisms for transparent distribution using the ORB RPC mechanism.

• In a local object message invocation (“local” with respect to the client
system), message invocation is unaffected by these distribution
mechanisms.

If the server object is a remote object, then the client holds an object
reference that is an instance of DSTObjRef or one of its subclasses.
Since this instance has none of the methods which the client object is
expecting of the server, the local message send results in a
#doesNotUnderstand: call instead. The method #doesNotUnderstand: is

ORB

Client Objectapparent connection

actual connection

object reference

ORB
Distributed Smalltalk Application Developer’s Guide 55

Chapter 4 - System Architecture
overridden so that it actually starts the remote RPC operation (see
also #perform:on:, implemented in DSTObjRef, DSTObjRefWidened, and
DSTObjRefLocal). Smalltalk objects may be referenced directly, or also
via instances of DSTObjRef subclasses:

• Inactive — Local objects which normally exist within this image but
which are currently residing as passive data on a mass storage
device, such as an ODBMS, may be referenced by a suitable
DSTObjRefInactive instance.

• Local — Local objects may be referenced by a DSTObjRefLocal so that
messages sent to them will be processed by the ORB instead of the
normal method invocation.

• Remote — Objects which exist on remote systems are accessed
locally via an instance of a DSTObjRefRemote.

• Widened — Local objects may choose to allow a subset of their most
derived interface operations to be made available to clients by
returning a suitable DSTObjRefWidened instance as a result value
rather than self.

Object Identification
In Distributed Smalltalk, the CORBAName is the tie between an interface
and its corresponding implementation. That is, any object that has an
interface (that is, a CORBA object), must implement the CORBAName
method, which specifies the interface name. When the ORB receives an
incoming request, it locates the interface in the Interface Repository, and
the Smalltalk class by this CORBAName.

For information on writing and using CORBAName methods, see
Chapter 10, “Working with Object Interfaces.”

Object Creation Using Factories and Factory Finders
As in standard Smalltalk, classes function as what CORBA refers to as
factories, templates for creating object instances. The ORB uses its
factory finder to locate a class. That is, when a client requests a service
of an uninstantiated (non-existent) object, the ORB is able to instantiate
the object if its class has been registered with the factory finder.

To register with the factory finder, a class needs the method
abstractClassId, which returns a UUID (universally unique identifier) for the
class.

For information on writing and using abstractClassId methods, see
Chapter 10, “Working with Object Interfaces.”.
56 VisualWorks

Distributed Smalltalk’s ORB Implementation
Marshalling and Unmarshalling
The ORB is also responsible for converting Smalltalk objects into a byte
stream for transmission to a remote server, a process called marshalling.
(Unmarshalling creates a Smalltalk object from a marshalled byte
stream.)
Distributed Smalltalk Application Developer’s Guide 57

5
The DST Development Process

Choosing a Paradigm
DST offers two development paradigms: Implicit Invocation Interface (I3)
and IDL-interface.

• IDL-interface supports all the interfaces specified in the CORBA 2.1
Smalltalk mapping. In this paradigm, developers explicitly describe
the interfaces of distributed classes using the IDL language.

• I3 is an enhancement to IDL-interface that provides a more natural
Smalltalk development paradigm. I3 allows developers to create
distributed Smalltalk applications without having to define IDL
interfaces.

Each of the two development paradigms has its advantages. The
following table lists factors that might encourage you to choose one over
the other.

Comparison of I3 and IDL-Interface Development Paradigms

Design Goal I3 IDL-interface

Prototype quickly and easily x

Use natural Smalltalk development paradigm x

Interoperate with non-Smalltalk applications
or with other ORBs

x

Achieve maximum performance x

Define external interfaces explicitly x
58 VisualWorks

Issues in Distributed Computing
It is straightforward to take an application developed with I3 and create
explicit interfaces for all or part of it. This means that an application can
be developed under any of three paradigms: I3; IDL-interface; or
prototype in I3, then add IDL interfaces later.

Issues in Distributed Computing
The architecture and implementation of Distributed Smalltalk facilitates,
but does not dictate, distributed application design. To make your
applications robust and efficient, you should understand both basic
distribution concepts and how to use Distributed Smalltalk to your best
advantage. This section introduces some of the issues you should
consider while you are designing distributed applications.

Optimizing Distributed Resources
A distributed environment can provide a rich environment and a variety of
resources. However, network traffic can be a performance bottleneck,
unless your system optimizes communications, network traffic, and
processing resource sharing. While the most powerful workstations and
servers on a network should perform the most difficult processing,
transfering information across the network should also be kept to a
reasonable minimum.

Wise use of Distributed Smalltalk’s presentation/semantic split can help
you optimize both processor and network resources. For suggestions on
using the presentation/semantic split, see Chapter 6, “Designing and
Implementing.”

Remote System Autonomy
In a distributed computing environment, the local system cannot control
remote systems or the networks that connect them. This issue is critical
in a distributed object environment, where collaborating objects and
clients requesting object services can “live” in more than one image, and
on both local and remote systems.

Distributed Smalltalk provides graceful ways to handle situations when a
network or remote system becomes unexpectedly unavailable, including:

• Link policies allow various levels of existence guarantees between
objects that make up an application.

• Lifecycle policies allow correct creation, destruction, copying, and
moving of applications that contain objects existing in different
images.
Distributed Smalltalk Application Developer’s Guide 59

Chapter 5 - The DST Development Process
• Event notification policies allow delayed delivery of messages in case
of temporary network unavailability.

Shared Objects
A strength of distributed systems (and a challenge to software developers
and administrators) is that more than one user may have access to any
given object. Shared information is one of the most important advantages
of distributed computing.

Distributed Smalltalk’s fundamental architecture supports multiple
representations of shared objects, using the presentation/semantic split.
This way, different users can see different presentations, while the
underlying object and its information remain consistent for all users.

Interoperability Through Standards Compliance
Communication between objects on different systems, and written in
languages other than Smalltalk, is only possible if they support standard
interfaces and use the same network protocol.

Distributed Smalltalk implements OMG’s CORBA core and
CORBAservices, Internet Inter-ORB Protocol (IIOP) and other standards
including NCS RPC.

IIOP is the CORBA 2.0 protocol that specifies objects and applications to
interoperate over a network with other OMG CORBA applications.

In addition, Distributed Smalltalk’s Interface Definition Language (IDL)
implementation provides a language-neutral interface between objects
created in both Smalltalk and other programming languages.

Creating Applications with Distributed Smalltalk
As with any object-oriented software project, the process of designing
and implementing an Distributed Smalltalk application is iterative. You
are likely to revise and refine the initial design as the application needs
become clearer or change.

In general, the development processes for the I3 interface is simpler than
for the IDL-interface, since you do not have to create and register the
IDL.
60 VisualWorks

Creating Applications with Distributed Smalltalk
During each iteration, you follow these basic steps:

1 Design. Refer to Chapter 6, “Designing and Implementing.”

2 Implement objects. Use standard object-oriented design and analysis
tools to create the basic design. Then, use the structures that
Distributed Smalltalk provides to refine the design for making
effective distributed applications. Be sure the application runs
successfully in a local environment before distributing it.

3 Write IDL. Refer to Chapter 8, “Defining IDL Interfaces”. Write IDL
that will reside in the Interface Repository to support communication
between distributed objects.

4 Register interfaces. Refer to Chapter 10, “Working with Object
Interfaces.” When you create new distributable classes, you define
identifier methods that CORBA objects need to be registered with the
factory finder and the Interface Repository. Classes that can be
instantiated in response to remote client requests must be registered
with the local Factory Finder. The interfaces for all new and changed
objects that can respond to remote requests must be registered in
the Interface Repository.

5 Test, tune, and distribute. Refer to Chapter 17, “Debugging and
Tuning.” Use Distributed Smalltalk’s simulated remote testing tools to
verify the interfaces specified in the Interface Repository, track
messages, and tune performance. You can also use Distributed
Smalltalk’s remote debugger to identify and fix problems on remote
systems.

Once the application is tested and tuned, you can distribute it to other
systems that are running Distributed Smalltalk. Be sure to update the
Interface Repository for all images.

6 Create a runtime package (optional). Refer to Chapter 18, “Creating
a Deployment Image.” If you wish to distribute the application as a
runtime system, you can remove unneeded classes. This helps you
create applications that are protected and require minimal system
resources.

There are, of course, variations on this general procedure. In some
development models, the first step might be defining the IDL interfaces
and then doing the Smalltalk implementation.
Distributed Smalltalk Application Developer’s Guide 61

6
Designing and Implementing

The design of distributed systems is a complex topic, on which many
books have been written. This chapter highlights only some of the more
common issues that you should consider when designing Distributed
Smalltalk applications. See the Bibliography for some suggestions for
further reading.

General Design

Sharing Objects
Distributed objects, by their nature, are shared. Because distributed
objects can be accessed by multiple images running on different
processors, they are effectively executing in a multi-threaded
environment.

The effect of this is that you cannot send two messages in succession to
a remote object and assume that the object’s state when receiving the
second message is identical to the object’s state immediately after
processing the first message; another image may have sent intervening
messages to the object that changed its state. Use the Transaction and
Concurrency services to preserve object consistency.

Creating and Destroying Objects
Use the Lifecycle service, not the new: message, to create remote
objects.

If you create remote objects by sending instance-creation messages to
their classes, the objects will get garbage collected, because no objects
on the remote machines will hold references to them. Create and destroy
remote objects with the Lifecycle Service.
62 VisualWorks

Performance Considerations
Referencing Remote Objects
Remote object references can become invalid without warning. If a
machine goes down or there are network problems, a valid object
reference can become invalid between one message and the next. It is
the designer’s responsibility to trap unprocessed remote messages and
recover gracefully.

Object references are short-lived; they cannot outlive the process that
contains their ORB. You cannot assume that an object reference is valid
across image invocations. While the client image was not executing, the
remote object may have been deleted, moved, or modified. Applications
must retrieve their remote object references anew whenever they begin
executing.

Performance Considerations
Performance issues are very important in a distributed application, since
too much delay in a transaction can effectively cripple an application. The
following suggestions may help improve your application’s performance.

• Local information should be local; shared information should be
distributed.

This is a platitude, but it’s an important design consideration
nonetheless. Many of the objects in a Distributed Smalltalk
application will not have CORBA interfaces. There are performance
costs to making objects distributed, and designers should not incur
those costs unless they are necessary.

• Remote messages are costly.

Remote message sends are approximately a hundred times slower
than local message sends. The latency for remote messages is
measured in milliseconds; the latency for local messages is
measured in microseconds. Since the overhead for a remote
message is so high, you should design to make each remote
message give as much value as possible.

• The expense of remote messages increases with the size of the
objects being marshalled.

It is slower to transmit a 1000-element Dictionary than to transmit an
Integer. Where possible, design so that large objects are transmitted
rarely.
Distributed Smalltalk Application Developer’s Guide 63

Chapter 6 - Designing and Implementing
There is a conflict between the last two suggestions. You must trade the
two off against one another depending on your application’s goals and
constraints.

Avoiding Traps
There are some common traps in designing a distributed application. To
avoid these, follow these suggestions:

• Keep class definitions synchronized in local and remote images.

Any object that is passed by value (in attribute parameter) must have
identical instance variables, declared in the same order, in both
images. In general, be sure to propagate instance variable changes
to all images.

• Avoid passing blocks in remote messages. Blocks are not usually
meaningful outside their local context; in particular, they are not
meaningful to non-Distributed Smalltalk applications.
64 VisualWorks

7
Implicit Invocation Interface (I3)

The Implicit Invocation Interface (I3) provides a Smalltalk-to-Smalltalk
mechanism for developing Distributed Smalltalk applications. Instead of
explicitly specifying their distributed classes’ interfaces in IDL, developers
can turn on the I3 message transmission mechanism and allow I3 to
handle object marshalling and unmarshalling. I3 is useful for rapid
prototype development of a distributed application, as well as for
developing a purely Smalltalk distributed application.

This chapter discusses how to develop applications that take advantage
of I3.

How I3 Works
I3 is a mechanism for message transmission. When I3 is turned on,
remote messages that have IDL operation definitions are sent by the
normal mechanism; remote messages that have no IDL operation
definitions are sent by the I3 mechanism. When I3 is turned off, remote
messages that have no IDL operation definition fail.

Note: Remote messages sent by the I3 mechanism are
approximately 20% slower than remote messages sent by the IIOP
mechanism.

Whether a particular message is transported by I3 or through an IDL
interface is determined per-message, not per-class. Two ORBS that both
have I3 message transmission turned on can send and receive
messages that do not have IDL operation definitions, no matter what
class sends or receives the message. For convenience, this chapter
Distributed Smalltalk Application Developer’s Guide 65

Chapter 7 - Implicit Invocation Interface (I3)
refers to classes that have no IDL interface definition of their own as
interfaceless classes, and to messages that have no corresponding IDL
operation definition as interfaceless messages.

One of the functions of the operation definitions in an IDL interface is to
give the ORB information on how to marshall and unmarshall messages.
Since not all methods in an image with I3 enabled have operation
definitions, it is up to the class developer to provide marshalling hints.
These hints can be provided on a per-class or a per-instance basis, as
appropriate.

Required Methods
All classes whose instances may be passed or returned in remote
message sends without IDL operation definitions must understand the
instance method isPassedByValue.

This method determines how instances of the class are treated when
they are passed as arguments to a remote message. If an object’s
isPassedByValue method returns true, then instances of the class are
passed by value: the receiver gets local copies of the instances. (If the
receiver modifies the copies, the changes are not propagated to the
sender.) If an object’s isPassedByValue method returns false, then
instances of the class are passed by reference: the receiver gets remote
object references to the instance, and the receiver can both read and
modify the objects referred to by those references.

By default, objects are passed by reference. However, some base
classes are passed by value. The following table shows which base
Smalltalk classes are passed by value.
66 VisualWorks

Instance Methods
If you are creating an isPassedByValue method for a class, you need to
decide whether instances of the class are allowed to override the class’s
pass-by-value setting.

If instances are allowed to override the class’s setting, the isPassedByValue
method should look like the following:

isPassedByValue
^self isPassedByValueDefault: aBoolean

where you replace aBoolean by either true or false.

Note: No class should override the isPassedByValueDefault:
method.

If instances are not allowed to override the class’s setting, the
isPassedByValue method should look like:

isPassedByValue
^aBoolean

where you replace aBoolean by either true or false.

Instance Methods
To change the way in which an instance is passed, the developer sends
the passByValue or passByReference messages, as appropriate. If the
class’s isPassedByValue method does not invoke isPassedByValueDefault:,
the passByValue and passByReference messages are ignored.

Smalltalk Classes I3 Passes by Value

BOSSCompiledCodeHolder BOSSContents BOSSRegisteredObject Class (only class
name is passed)

Collection (except
SystemDictionary)

CompiledBlock DSTI3ObjRef Exception

Filename Geometric Magnitude Menu

Message Metaclass ReadStream RemoteString

Signal UndefinedObject UninterpretedBytes
Distributed Smalltalk Application Developer’s Guide 67

Chapter 7 - Implicit Invocation Interface (I3)
passInstVars
Developers can specify how each of an object’s instance variable should
be passed by overriding passInstVars. passInstVars returns an array
containing one entry for each of the object’s instance variables; the array
entries specify how the instance variables are passed. Each entry in the
array must be #true, #false, #ref, or #value.

If a class overrides the default passInstVars method, the passInstVars
settings takes precedence over the passing strategy for any individual
instance, which in turn takes precedence over the passing strategy for
the class.

Return Values
Marshalling of return values is controlled by the class definitions in the
image that is returning the value. Objects are returned by value if their
classes are passed by value, or if the returned instance has received the
passByValue message. All other objects are returned by reference. The
sender can determine whether a returned object is local (passed by
value) or remote (passed by reference) by sending the object the isLocal
or isRemote messages.

Passing Classes
By default, all classes are passed by value; the value passed is the
class’s name. The receiving ORB looks for a class with a matching name
and uses it.

Meaning of Entries in passInstVars Argument Array

Value Interpretation

#true Pass this instance variable as specified by its
class’s isPassedByValue method.

#false Pass nil instead of this instance variable.

#ref Pass this instance variable by reference.

#value Pass this instance variable by value.
68 VisualWorks

I3 Instances and Garbage Collection
Caution: It is the developer’s responsibility to keep classes
on all ORBs identical. DST will not detect incompatibilities
between classes on remote and local ORBs. If classes with
identical names have different instance variables or instance
variables in different orders, the application will not behave as
expected.

I3 Instances and Garbage Collection
In general, remote objects are garbage collected unless some object in
the same image holds a reference to them. There are two methods of
explicitly preventing remote objects from being garbage collected:
through the lifecycle service, and implicitly through I3.

• Since the Lifecycle service depends on the corbaName and
abstractClassID methods, you cannot conveniently use it with
interfaceless objects.

• When I3 is active, all objects passed by reference (or returned by
reference) through I3 messages are protected from garbage
collection for the life of the ORB on the image that passed or returned
the objects. If you stop an ORB, any objects that had no local
references will be subject to garbage collection, and object
references to those objects in remote images can become invalid.

I3 Traps
• Because I3 is a Distributed Smalltalk extension to CORBA,

messages that have no IDL operation definition cannot be sent from
or received by non-DST ORBs.

• If an application attempts to modify an object that was passed or
returned by value, the local copy of that object is modified; the
change does not propagate to the remote object. Developers be
consistent when handling objects passed by value.

• Developers should be careful not to destroy remote instances until
they have verified that no other image has object references to those
instances.
Distributed Smalltalk Application Developer’s Guide 69

8
Defining IDL Interfaces

Overview
The language-neutral Interface Definition Language (IDL) is a declarative
language used to describe interfaces that client objects call and object
implementations provide. All ORBs speak IDL as their common
language, and you use IDL to define the interfaces for an application’s
remotely-accessible objects. In these interfaces, you define the externally
visible functionality of each object (but you implement this functionality
elsewhere in VisualWorks Smalltalk). A critical part of an ORB’s activities
is the translation service (via a language binding) between the local
language (such as Smalltalk) and IDL.

The interface definition specifies the operations the object is prepared to
perform, the input and output parameters required, and any exceptions
that might be generated. The interface constitutes a contract with clients
of the object, who use the same interface definition to build and dispatch
invocations as the object implementation uses to receive and respond to
these requests.

Interfaces form the backbone of the IDL framework. A “good” set of
interfaces embodies a coherent structure that clearly defines how a
service, or set of services, can be used.

This chapter describes the basic IDL syntax. It provides an introduction to
coding in IDL, and describes how to declare:

• Modules

• Interfaces

• Constants

• Data types
70 VisualWorks

Comparing Smalltalk & IDL
• Operations

• Exceptions

• Attributes

It also provides information about:

• Inheritance

• IDL preprocessing

• Scopes

See “Mapping of IDL to Smalltalk” on page 112 for information about how
Smalltalk-to-IDL language binding is implemented in Distributed
Smalltalk, and how to use it.

Comparing Smalltalk & IDL
Smalltalk is a general-purpose programming language; IDL is an
interface definition language, which specifies interfaces but does not (and
cannot) specify implementation.

Smalltalk is a dynamically typed language, one in which the type of an
object is defined by the set of messages it can process. IDL is a statically
typed language, which specifies the type of each argument to a message
at IDL compilation time. As a result, IDL definitions can seem
unnecessarily restrictive to Smalltalk programmers.

Basic IDL Syntax
The IDL grammar is a subset of ANSI C++, with additional constructs to
support the operation invocation mechanism. IDL, which is a declarative
language, supports the C++ syntax for constant, type, and operation
declarations; it does not include any algorithmic structures or variables.

An IDL specification consists of one or more interfaces declared in one or
more IDL files. Interfaces are usually organized into modules, which
represent services such as “mail services” or “display services.”

By convention, a source file containing interface specifications written in
IDL has an .idl extension. For example, the file orb.idl contains IDL-type
definitions.

See “IDL Lexical Conventions” on page 245 for a description of IDL
lexical conventions.
Distributed Smalltalk Application Developer’s Guide 71

Chapter 8 - Defining IDL Interfaces
IDL Specification
An IDL specification consists of one or more type definitions, constant
definitions, exception definitions, or module definitions. The syntax is:

<specification> ::= <definition>+

<definition> ::= <type_dcl>‘‘;’’

| <const_dcl>‘‘;’’

| <except_dcl>‘‘;’’

| <interface> ‘‘;’’

| <module> ‘‘;’’

Refer to the following sections for further expansion of these definitions.

Declaring Modules
The module construct is used to scope IDL identifiers (see “Names and
Scopes” on page 105). You should limit each IDL file to either a single
module or a set of small modules that are related to each other.

A module declaration takes the form:

module identifier
{

module_definition;
[…]

};

Example
module CentralOffice {

interface Depot {
#pragma selector find_item_info

findItemInfo:barCode:quantity:itemInfo:
void find_item_info (

in AStore::AStoreId store_id,
in POS::Barcode item,
in long quantity,
out AStore::ItemInfo item_info)
raises (AStore::BarcodeNotFound);

};
};
72 VisualWorks

Declaring Interfaces
Note: A module frequently includes two or more related interfaces.
For example, when a single logical object is split between
presentation and semantic objects, the module would include
interfaces for both.

The identifier is a scoped name of a module.

The module_definition can include:

• Type declarations (see “Declaring Data Types” on page 80)

• Constant declarations (see “Declaring Constants” on page 76)

• Exception declarations (see “Declaring Exceptions” on page 95)

• Interface declarations (see “Declaring Interfaces” on page 73)

• Another module

Getting Information About a Module
To search a module registered in the ORB’s Interface Repository for the
module contents, use either of the following methods to access it:

ORBObject class >> lookupName:levels:limit:excludeInherited:
ORBObject class >> lookup:

You can also use the IR Browser.

Declaring Interfaces
An interface declaration, which provides the information needed to
develop clients that use the interface’s operations, takes the form:

interface identifier
{

[interface_definition;
[…;]]

};
The identifier, which defines a new legal type name representing a
reference to an object, can be used anywhere a type name is legal. For
example, it can be used as a parameter or return value of an operation,
or as a member of a struct or union. Since an identifier represents a
reference to an object, the meaning of a parameter or member that uses
that name is the same as a reference to the object supporting the
interface. Empty interfaces are legal in IDL.
Distributed Smalltalk Application Developer’s Guide 73

Chapter 8 - Defining IDL Interfaces
Example
interface Store {

readonly attribute AStoreId store_id;
readonly attribute float store_total;
readonly attribute float store_tax_total;
#pragma selector login login:
StoreAccess login (in POS::POSId id);
#pragma selector get_POS_totals getPOSTotals:
void get_POS_totals (out POSList POS_list);
#pragma selector update_store_totals updateStoreTotals:price:taxes:
void update_store_totals (in POS::POSId id, in float price,
 in float taxes);

};
The interface_definition can include:

• Type declarations (see “Declaring Data Types” on page 80)

• Constant declarations (see “Declaring Constants” on page 76)

• Exception declarations (see “Declaring Exceptions” on page 95)

• Operation declarations (see “Declaring Operations” on page 91)

• Attribute declarations (see “Declaring Attributes” on page 99)

Inheritance
An interface can be derived from one or more previously defined (base)
interfaces (see “Inheritance” on page 100). Both single and multiple
inheritance are allowed. An inherited interface declaration can be
identical to its parent, or it can extend or override inherited definitions.
(Overriding is allowed for all types, constants, and exceptions but not for
operations and attributes.)

Note: Name overloading is not allowed in IDL. Thus, multiple
inheritance should never lead to a situation where an interface
inherits from two interfaces (or interface components) of the same
name but differing definitions.

Inheritance Syntax
An interface is separated from its parent interfaces with a single colon.
Commas separate multiple parent interfaces. When an interface inherits
from an interface that is declared in another module, its declaration
should include both module and interface, separated by two colons.

Thus, for example:
74 VisualWorks

Declaring Interfaces
• The AudioMedia interface does not inherit from other interfaces:

interface AudioMedia {};
• The UserPres interface inherits from the ContainerPres and Message

interfaces, all of which are defined in the same module.

interface UserPres : ContainerPres, Message {};
• The TypedPushConsumer interface inherits from the PushConsumer

interface, which is defined in the CosEventComm module.

interface TypedPushConsumer :
CosEventComm::PushConsumer

Object
get_typed_consumer();

Forward Declaration
In addition, an interface declaration can declare the name of another
interface without defining it. This is called a “forward declaration” of an
interface. A forward declaration makes it possible for the definition of
interfaces to refer to each other.

The syntax for specifying a forward declaration is:

interface identifier;
Forward declarations are useful when two interfaces make reference to
each other, as in the following example:

interface WindowObject;
interface Notifier
{

void addWindow(in WindowObject win);
};

interface WindowObject
{

void addNotifier(in Notifier notifier);
};

In this example, Notifier contains an operation, addWindow(), that takes a
WindowObject as its argument, but the IDL compiler won’t know what a
WindowObject is unless it has been declared. In addition, WindowObject
itself contains an operation, addNotifier(), that refers to Notifier. Regardless
of whether WindowObject or Notifer is declared first, the IDL compiler
needs to know about the existence of the interface that has not yet been
defined.
Distributed Smalltalk Application Developer’s Guide 75

Chapter 8 - Defining IDL Interfaces
Note: You can specify multiple forward declarations of the same
name, but you cannot derive an interface from a forward-declared
interface (see “Inheritance” on page 100). Furthermore, to reduce the
possibility of creating circular dependencies on modules, the IDL
syntax does not support forward declaration of an interface from
another module.

Pass by Reference
It is very important to realize that interfaces are passed by reference;
otherwise it is passed by value. It is by carefully using base types,
constructed types, and typedefs, or structures of these, rather than
interface names, that you determine what will and will not be passed as a
copy or passed as an object reference.

Declaring Constants
Constants are identifiers that represent values of a given type. They can
be declared anywhere in an IDL file using const. A constant declaration
takes the form:

const constant_type identifier = constant_expression;
76 VisualWorks

Declaring Constants
The identifier is a name representing a constant.

The constant_expression is a sequence of operators and operands that
specifies a computation.

Valid constant_types

Data Type Description

long Integer from -231 to 231 - 1.

short Integer from -215 to 215 - 1.

unsigned long Integer from 0 to 232 - 1.

unsigned short Integer from 0 to 216 - 1.

char 8-bit character. See “IDL Grammar” on page 255 for
a complete list of the space, alphabetic, digit, and
graphic characters, as well as the meaning and value
of the null and formatting characters. The meaning of
all other characters is implementation-specific.

boolean Value of TRUE or FALSE.

float Floating point constants are coerced to double-
precision floating point numbers.

string Bounded or unbounded sequence of 8-bit quantities,
except null.

scoped_name Previously defined name of an integer type,
character type, boolean type, floating point type, or
string type.
Distributed Smalltalk Application Developer’s Guide 77

Chapter 8 - Defining IDL Interfaces

Operators that can be used in a constant_expression

Operatora Description

Unary
Operators
(+, -, ~)

Unary + and - operators are valid for either floating point
or integer expressions.
Unary ~ generates the bit-complement of the expression
to which it is applied. For the purposes of such
expressions, the values are 2’s complement numbers.
Thus, the complement of a long integer is generated as -
(value+1), and the complement of an unsigned long
integer is generated as (232 - 1)-value. It is valid for
integer expressions.

* Binary “multiplication” operator generates the product of
the operands. It is valid for either floating point or integer
expressions.

/ Binary “division” operator generates the quotient of the
operands. It is valid for either floating point or integer
expressions.

% Binary “remainder” operator generates the remainder
from the division of the first expression by the second. If
the second operand is 0, the result is undefined;
otherwise (a/b)*b+a%b is equal to a. If both operands are
non-negative, the remainder is non-negative; otherwise
the sign of the remainder is implementation-dependent. It
is valid for integer expressions.

+ Binary “addition” operator generates the sum of the
operands. It is valid for either floating point or integer
expressions.

- Binary “subtraction” operator generates the difference
between the operands. It is valid for either floating point or
integer expressions.

<< Binary “left shift” operator shifts the value of the left
operand left the number of bits specified in the right
operand, with 0 fill for the vacated bits; the right operand
must be in the range 0 - 31, inclusive. It is valid for integer
expressions.

>> Binary “right shift” operator shifts the value of the left
operand right the number of bits specified in the right
operand, with 0 fill for the vacated bits; the right operand
must be in the range 0 - 31, inclusive. It is valid for integer
expressions.

& Binary “and” operator generates the logical, bitwise AND
of the left and right operands. It is valid for integer
expressions.
78 VisualWorks

Declaring Constants
An integer constant_expression is evaluated as unsigned long unless it
contains a negated integer literal or the name of an integer constant with
a negative value; if it contains the name of an integer constant with a
negative value, the constant_expression is evaluated as signed long. The
computed value is coerced back to the specified constant_expression in
constant initializers. An error condition occurs if the computed value
exceeds the precision of the specified constant_expression, or if any
intermediate value exceeds the range of the evaluated-as type (long or
unsigned long).

Floating point literals are double, all floating point constants are coerced
to double, and floating point expressions are computed as doubles; the
computed double value is coerced back to the specified
constant_expression in constant initializers. An error condition occurs if
the coercion back to the specified constant_expression fails, or if any
intermediate values (when evaluating the expression) exceed the range
of double.

Note: It is not legal to mix type expressions. For example, you
cannot mix integer types with floating point types in a constant
declaration.

A constant_expression can contain a unary expression, which takes the
form:

unary_operator primary_expression;
The table above describes the unary operators that can be used. A
primary_expression is defined as a:

• Scoped name (see “Names and Scopes” on page 105)

• Literal (integer, string, character, floating point, or boolean)

• Constant_expression

^ Binary “exclusive or” operator generates the logical,
bitwise EXCLUSIVE-OR of the left and right operands. It
is valid for integer expressions.

| Binary “or” operator generates the logical, bitwise OR of
the left and right operands. It is valid for integer
expressions.

a. The operators are listed in order of precedence. Parentheses override operator prece-
dence.

Operators that can be used in a constant_expression (Continued)

Operatora Description
Distributed Smalltalk Application Developer’s Guide 79

Chapter 8 - Defining IDL Interfaces
If the primary_expression contains a constant_expression, the
constant_expression must be contained in a “()” combination.

Note: The operands in a constant_expression are literals or scoped
names that have been previously defined in constant declarations.

In the example:

const short MODIFY_PERMISSION = 0x01;
the constant declares that whenever the MODIFY_PERMISSION
identifier is specified, the short integer 0x01 is to be used.

One constant can be the base for a family of other constants. This allows
you to change the values of the entire family at once. In the example:

const long SIZE = 8;
const long wordsize = 4 * SIZE;
const long segments = 1024 / SIZE;

SIZE represents the size of the basic storage unit of a computer (byte),
and wordsize and segments change when the declaration of the constant
SIZE changes.

Declaring Data Types
IDL provides constructs for naming data types. Specifically, IDL uses the
typedef keyword, as well as constructed type declarations to IDL
defines a set of type specifiers to represent typed values. The type
specifiers are:

• Simple type specifiers

• Constructed type specifiers

Using Declarators to Give a Name to a Type
The declarator can be an:

• Identifier

• Array

An identifier is a type name.
80 VisualWorks

Declaring Data Types
An array can specify a fixed-size array (of one or more dimensions)
whose size is fixed at compile time. An array declarator contains an
identifier (as described above) and the size of each dimension; the
syntax is:

identifier[constant_expression][[[constant_expression]]…]

Note: Each constant_expression must result in a positive integer
constant.

Use a “[]” combination to specify the size of each dimension. For
example:

table[6][7]
defines table as a two-dimensional array whose dimensions are
6 elements by 7 elements.

When an array is passed as a parameter in an operation invocation, all
elements of the array are transmitted. However, because the
implementation of array indexes is language mapping-specific, passing
an array index as a parameter may yield incorrect results.

typedef
The typedef keyword can be used anywhere in an IDL file to declare new
data type names. The syntax for a using typedef to associate a name with
a data type is:

typedef type_specifier declarator[[,declarator]…];

Example
typedef long AStoreId;

The type_specifier can be a:

• Base data type (see “Base Data Types” on page 82)

• Template type (see “Template Types” on page 82)

• Constructed type (see “Constructed Types” on page 85)

• Scoped name (see “Names and Scopes” on page 105), which must
be the name of a type

Note: Scoped names must be defined before they can appear in a
typedef.
Distributed Smalltalk Application Developer’s Guide 81

Chapter 8 - Defining IDL Interfaces
Simple Types
Simple type specifiers can be:

• Base data types

• Template types (see “Template Types” on page 82)

• Scoped names (see “Names and Scopes” on page 105)

Base Data Types

Each data type is mapped to a base data type via the appropriate
language mapping (see “Mapping of IDL to Smalltalk” on page 112 for
information about the Smalltalk language mappings). For example, to
declare a long integer x, use the following IDL statement:

long x;

Template Types
IDL supports the following template types:

• String

• Sequence

Base data Types Supported by IDL

Data Type Description

float IEEE single-precision floating point number.

double IEEE double-precision floating point number.

long Any integer from -231 to 231 - 1.

short Any integer from -215 to 215 - 1.

unsigned long Any integer from 0 to 232 - 1.

unsigned short Any integer from 0 to 216 - 1.

boolean Value of TRUE or FALSE.

octet 8-bit quantity (no conversion).

char 8-bit character. See “IDL Grammar” on page 255 for
a complete list of the space, alphabetic, digit, and
graphic characters, as well as the meaning and
value of the null and formatting characters. The
meaning of all other characters is implementation-
specific.

any The any type permits the specification of values that
can express any IDL type.
82 VisualWorks

Declaring Data Types
Strings
A string can be any 8-bit quantity except null. It is similar to a sequence of
chars. Prior to passing a string as a function of an argument (or an
member in a struct or union), the length of the string must be set in a
language-mapping dependent manner.

A string identifier takes the form:

string [<constant_expression>]
The constant_expression, if specified, is a sequence of operators and
operands that specifies a computation. The table above lists the
operators that can be used in a constant_expression.

Note: The constant_expression must result in a positive integer
constant.

A string can be unbounded (that is, have no specified maximum size) or
can be bounded (that is, include the max_size, enclosed in a “< >”
combination, as the first parameter). For example:

string address;
string <16> name;

The first string, address, is unbounded (that is, no upper limit of characters
is specified). The second string, name, has a maximum length of 16
characters.

Note: Strings are defined as a separate data type because many
languages have special built-in functions or standard library functions
for string manipulation. This allows substantial optimization in the
handling of strings compared to what can be done with sequences of
general types.

Sequence
A sequence is a one-dimensional array with a maximum size (which is
fixed at compile time), and a length (which is determined at run time). It
can be unbounded (that is, have no specified maximum size) or bounded
(that is, include the max_size parameter).

A sequence type identifier takes the form:

sequence < simple_type_specifier[,constant_expression] >
Distributed Smalltalk Application Developer’s Guide 83

Chapter 8 - Defining IDL Interfaces
Example
typedef sequence<POSInfo> POSList;

The simple_type_specifier can be a:

• Base data type (see “Base Data Types” on page 82)

• Template type

• Scoped name (see “Names and Scopes” on page 105), which must
the name of a type

The optional constant_expression is a sequence of operators and
operands that specifies a computation. The table above lists the
operators that can be used in a constant_expression.

Note: The constant_expression must result in a positive integer
constant.

You must enclose the type name in a “< >” combination to specify the
type of data that belongs in the sequence and, optionally, the upper limit
of the number of elements. For example:

sequence < long > list;
sequence < float,20 > datapoints;

In this example, list is an unbounded sequence of long data types, and
datapoints is a sequence of up to 20 floating point data types.

Sequences of strings are useful for describing multi-line text fields. For
example:

sequence < string<80> > body;
declares body, which is made up of an indefinite (unbounded) number of
lines, each of which cannot exceed 80 characters.

Before an unbounded sequence can be passed as a function argument
(or as a field in a struct or union), the length and maximum size of the
sequence, as well as the address of a buffer to hold the sequence, must
be set in a language-mapping dependent manner. After receiving such a
sequence result from an operation invocation, the length of the returned
sequence, which can be obtained in a language-mapping dependent
manner, will have been set.

Before a bounded sequence can be passed as a function argument (or
as a field in a struct or union), the length of the sequence must be set in a
language-mapping dependent manner. After receiving such a sequence
84 VisualWorks

Constructed Types
result from an operation invocation, the length of the returned sequence,
which can be obtained in a language-mapping dependent manner, will
have been set.

Constructed Types
IDL supports the following constructed types:

• Structures

• Enumerations

• Discriminated unions

Structures
Declaring a structure with struct defines a new legal data type. The syntax
of a structure data type is:

struct struct_identifier
{

member +; //one or more members
};

The value of a struct is the value of all of its members.

For example:

struct POSInfo {
POS::POSId id;
Object store_access_reference;
float total_sales;
float total_taxes;

};
A struct_identifier is the type name of the structure.

Note: Structure types can also be named using a typedef declaration
(see “typedef” on page 81).

The syntax for a member is:

type_specifier declarator[[,declarator]…]

Note: Each member in the structure must have a unique name.
Distributed Smalltalk Application Developer’s Guide 85

Chapter 8 - Defining IDL Interfaces
The type_specifier can be a:

• Base data type (see “Base Data Types” on page 82)

• Template type (see “Template Types” on page 82)

• Constructed type

• Scoped name (see “Names and Scopes” on page 105)

In the example:

struct mystructure
{

long x,y;
double z;

};
mystructure is declared to be a structure data type containing three
members: x, y, and z.

By default mapping, a struct is mapped to a Smalltalk Dictionary, which is
answered by any operation with a structure as a return value type. When
a structure is specified as a parameter type, then under the default
mapping, an appropriate Dictionary must be explicitly constructed on the
Smalltalk side to serve as the parameter. For example, here is an
invocation of a has_middle_name operation that takes a single
personalName structure as an input parameter:

relevantObject hasMiddleName:
((Dictionary new)

at: #firstNameput: ‘Max’;
at: #middleNameput: ‘Karl’;
at: #surnameput: ‘Scheler’;
yourself).

A structure may be mapped to the instance of a named class by using the
class pragma.

Enumerations
An enumeration (enum) is an ordered set of identifiers, called
enumerators, that specify all of the legal values that a variable may have.
As such, an enumeration defines a new data type that takes one of that
set of specified values. The syntax of an enumeration data type is:

enum enum_identifier
{

enumerator[[,enumerator]…]
}

An enum_identifier is the type name of the enumerator.
86 VisualWorks

Constructed Types
For example:

enum colors_allowed
{

red,blue,white,green
};

declares that variables of the type colors_allowed can be assigned the
values red, blue, white, or green.

Note: Enumeration types can also be named using a typedef
declaration (see “typedef” on page 81).

Each enumerator in the enumeration must specify a unique name. The
maximum number of enumerators is 232; therefore, the enumerated
names must be mapped to a native data type capable of representing a
maximally-sized enumeration.

An identifier in an enumerator that is declared as a constant.

The order in which the enumerators are listed defines their relative order.
Enumerators can be compared, and a successor/predecessor function
defined on the type will reflect the ordering.

From within Smalltalk code, both enumerations and enumerators are
accessed via the CORBAConstants dictionary, an entity specified in the
Smalltalk Binding. For example, given the declaration

module Music {
enum WIND_INSTRUMENTS { oboe, recorder, clarinet, flute };
enum BRASS { trombone, french_horn, trumpet };

};
the windInstruments enumeration is accessed by

(CORBAConstants at: #’::music::WIND_INSTRUMENTS’).
This answers an instance of class Array that contains symbols. An
enumerator is accessed similarly. For example, the oboe enumerator is
accessed by

(CORBAConstants at: #’::Music::WIND_INSTRUMENTS::oboe’).
This does not answer an instance of Symbol, but rather an instance of
class DSTEnumerator.
Distributed Smalltalk Application Developer’s Guide 87

Chapter 8 - Defining IDL Interfaces
Discriminated Unions
IDL unions are a cross between C union and switch statements. IDL
unions must be discriminated; that is, the header must specify a typed tag
field that determines which union member is valid.

Discriminated unions are the preferred way of returning a value of one of
a limited number of data types. If an interface’s operation, for example, is
to return one of three kinds of values, use a union rather than the data
type any.

The syntax of a discriminated union data type is:

union union_identifier
(switch switch_type_specifier)
{

case constant_expression : element_specifier;
default : element_specifier;
…;

};
For example:

union cell_value
switch(enum cell_content {numeric, string, formula})
{

case numeric:numeric_valuenumber;
case string:stringvalue;
case formula:formula_valuethe_formula;

};
interface cell
{

attribute cell_value value;
…

};
declares a spreadsheet cell value that can be either a numeric, a string
constant, or a formula. The reasons for defining a spreadsheet_cell with
union (rather than any) in this example are that it:

• Describes the interface most accurately because it specifies all
allowed types.

• Makes the resulting code easier to work with because the potential
types of data that the caller must deal with are specified.

Discriminated union types can also be named using a typedef
declaration (see “typedef” on page 81). The default is optional.

A union_identifier is the type name of the union.
88 VisualWorks

Constructed Types
A switch_type_specifier specifies the type with which the cases
contstant_expression must be consistent.

The constant_expression is a sequence of operators and operands that
specifies a computation. The table above lists the operators that can be
used in a constant_expression.

The constant_expression must be consistent with the
switch_type_specifier. The syntax for a element_specifier is:

type_specifier declarator[[,declarator]…]
Class DSTUnion is the Smalltalk implementation of the CORBA union
protocol. DSTUnion has two instance variables, discriminator and value.
Instances of DSTUnion are usually created using the asCORBAUnion:
method, implemented in class Object. This may be sent to any object and
must have an appropriate discriminator value as its argument. Sample
IDL for using an explicit mapping is shown below:

#pragma class AccountNumber DSTUnion
union AccountNumber switch(boolean) {

case true: long l;
case false: string s;

};

Valid Switch_Type_Specifiers

Data Type Description

long Any integer from -231 to 231 - 1.

short Any integer from -215 to 215 - 1.

unsigned long Any integer from 0 to 232 - 1.

unsigned short Integer from 0 to 216 - 1.

char 8-bit character. See “IDL Grammar” on page 255 for
a complete list of the space, alphabetic, digit, and
graphic characters, as well as the meaning and
value of the null and formatting characters. The
meaning of all other characters is implementation-
specific.

boolean Value of TRUE or FALSE.

enum Any enumerator for the discriminator enum type.
The identifier for the enumeration is in the scope of
the union; it must be distinct from the member
declarators.

scoped_name Previously defined name of an integer type,
character type, boolean type, or enum type.
Distributed Smalltalk Application Developer’s Guide 89

Chapter 8 - Defining IDL Interfaces
This code explicitly maps a declared union to the DSTUnion
implemenatation class. The mention of DSTUnion in the class pragma
could be replaced by the name of any class that also supported the
CORBA union protocol: value, value:, discriminator, discriminator:, a class
side instance creation method named discriminator:value:, and the
semantics that goes with these messages.

Each element in the discriminated union must specify a unique name.

The type_specifier can be a:

• Base data type (see “Base Data Types” on page 82)

• Template type (see “Template Types” on page 82)

• Constructed type

• Scoped name (see “Names and Scopes” on page 105)

An identifier is a name of an element.

An array can specify a fixed-size array (of one or more dimensions)
whose size is fixed at compile time.

case declarations must match or be automatically castable to the defined
type of the discriminator.

The following table shows matching rules for consistency check between
case constant_expressions and switch_type_specifiers.

It is not necessary to list all possible values of the unions. The value of a
union is the value of the discriminator together with one of the following:

• If the discriminator value is listed explicitly in the case statement, the
value of the element associated with the case statement

Matching rules

Data Type Description

long Integer value in the value range of long.

short Integer value in the value range of short.

unsigned long Integer value in the value range of unsigned long.

unsigned short Integer value in the value range of unsigned short.

char char.

boolean Value of TRUE or FALSE.

enum Enumerator for the discriminator enum type.
90 VisualWorks

Declaring Operations
• If the default case label is specified, the value of the element
associated with the default case label

Note: default can appear no more than once.

• No additional value

Declaring Operations
An interface can have operations. Operation declarations define the set
of operations that a client can invoke on an object supporting the
interface. You declare operations within the interface definition.

Note: A derived interface (see “Inheritance” on page 100)
automatically supports any operations in the interface(s) it inherits
from, and can add its own operations. However, a derived interface
cannot re-declare any of the operations it inherits.

The syntax of an operation declaration is:

[oneway] operation_type_specifier identifier
([parameter_declaration[,parameter_declaration]…])

[raises (scoped_name[,scoped_name]…)]

[context (string_literal[[,string_literal]…])];
The oneway operation attribute is optional. When it is not specified and an
exception is raised, the operation is invoked no more than once. If,
however, an exception is not raised, the operation is invoked exactly
once. When it is specified, the operation is invoked no more than once,
which does not guarantee that the call will be delivered successfully.

Note: If the optional oneway operation attribute is specified, the
operation cannot contain any output parameters, and must specify a
void return type. In addition, a one-way operation cannot include a
raises expression; however, invocation of the operation may raise a
standard exception.
Distributed Smalltalk Application Developer’s Guide 91

Chapter 8 - Defining IDL Interfaces
Example
void find_price (

in POS::Barcode item,
in long quantity,
in long store_id,
out float item_price,
out float item_tax_price,
out ItemInfo item_info)
raises (BarcodeNotFound);

};
The operation_type_specifier can be a:

• Base data type (see “Base Data Types” on page 82)

• Template type (see “Template Types” on page 82)

• Scoped name (see “Names and Scopes” on page 105)

• void return type

The identifier is the type name of the operation. Identifiers are used at
runtime by both the static and dynamic interfaces. As a result, all
operations that might apply to a particular object must have unique
names. This requirement prohibits redefining an operation name in a
derived class, as well as inheriting two operations with the same name.

The syntax for a parameter_declaration is:

parameter_attribute simple_type_specifier declarator[[,declarator]…]
The parameter_attribute must specify:

• In (passed from client to server)

• Out (passed from server to client)

• Inout (passed in both directions)

Note: Implementations should not attempt to modify an in
parameter; the ability to do so is language-mapping specific, and the
effect is undefined. Also, you should avoid using the inout parameter
because some languages have difficulty managing the memory
associated with processing inout.

The simple_type_specifier can be a:

• Base data type (see “Base Data Types” on page 82)

• Template type (see “Template Types” on page 82)
92 VisualWorks

Declaring Operations
• Scoped name (see “Names and Scopes” on page 105)

Note: When an unbounded string or sequence (see “Template Types”
on page 82) is passed as an inout parameter, the returned value
cannot be longer than the input value.

An identifier is the type name of a parameter of the operation.

The following example defines an interface to a stack object that supports
pop() and push() operations for long integer elements and an is_empty()
operation:

interface Stack
{

long pop();
void push(in long n);
boolean is_empty();

};
In this example, pop() takes no argument but returns a long integer, and
push() makes use of an in parameter, indicating that the parameter is
passed from client to server.

Raises Expressions
You can declare an operation to raise user-defined exceptions (see
“User-Defined Exceptions” on page 95) as a result of an invocation of the
operation.

Note: Standard (CORBA predefined) exceptions cannot be listed in
raises expressions.

The syntax of an optional raises expressions is:

raises(scoped_name[[,scoped_name]…]);

Note: If the optional oneway operation attribute is specified, the
operation cannot include a raises expression; however, invocation of
the operation may raise a standard exception.

Each scoped_name specified in an optional raises expression must be a
previously defined exception.
Distributed Smalltalk Application Developer’s Guide 93

Chapter 8 - Defining IDL Interfaces
Note: An invocation can raise a standard exception even though
standard exceptions cannot be listed in raises expressions; that is, the
absence of raises expressions does not prevent an operation from
raising standard exceptions.

Context Expressions
You can also declare which elements of the client’s context can affect the
performance of a request by the object. The syntax of an optional context
expression is:

context(string_literal[[,string_literal]…]);
Each string_literal is an arbitrarily long sequence of alphabetic, digit,
period (.), underscore (_), and asterisk (*) characters.

Note: The first character of a string_literal must be an alphabetic
character. Furthermore, an asterisk can be used only as the last
character in the string.

The value associated with each string_literal in the client’s context is
provided to the object implementation when the request is delivered. The
object can use the information in this request context during request
resolution and performance.

Note: The absence of a context expression indicates that there is no
request context associated with requests for this operation.

In the following example, the values associated with create_request_op_id
are available for requests resolution and to the object implementation
when the request is delivered:

interface Stack
{ …

long pop()
context(create_request_op_id);

…
};
94 VisualWorks

Declaring Exceptions
Declaring Exceptions
Exceptions are alternate results that an operation can return when it
encounters an exceptional condition (usually an error).

Note: If an exception is raised, the out and normal return values are
not valid; instead, only the values of the raised exception’s members
are valid.

In addition to the standard exceptions specified by CORBA (see
“Standard Exceptions” on page 96), user-defined exceptions can be
declared anywhere in an IDL file.

User-Defined Exceptions
The syntax for declaring user-defined exceptions is:

exception exception_identifier
{

[[member;]
…]

};
An exception_identifier is the type name of an exception. When an
exception is returned as the outcome of a request, the value of the
exception identifier can be accessed to determine which exception was
raised.

If an exception is declared with members, you can access the values of
those members when an exception is raised. If no members are
specified, however, no additional information can be accessed.

Example
// The barcodeNotFound exception indicates that the
// input barcode does not match to any known item.
exception BarcodeNotFound {POS::Barcode item; };

The syntax for a member is:

type_specifier declarator[[,declarator]…]

Note: Each member in the exception structure must specify a unique
name.
Distributed Smalltalk Application Developer’s Guide 95

Chapter 8 - Defining IDL Interfaces
The type_specifier can be a:

• Base data type (see “Base Data Types” on page 82)

• Template type (see “Template Types” on page 82)

• Constructed type

• Scoped name (see “Names and Scopes” on page 105)

An identifier is the type name of a member.

The following Stack interface example includes two exception conditions:
underflow and overflow. The overflow exception is defined such that the
client code can examine the value of size_limit, which, in this
implementation, is defined to be the maximum stack size.

interface Stack
{

exception underflow {};
exception overflow
{

long size_limit;
};
readonly attribute long size;

long pop()
raises(underflow);

void push(in long n)
raises(overflow);

boolean is_empty();
};

Note: This example contains operations, raises operations, and
attributes (see “Declaring Operations” on page 91 and “Declaring
Attributes” on page 99).

Standard Exceptions
Standard exceptions can be returned as a result of any operation
invocation, regardless of the interface specification.

Note: Standard exceptions cannot be listed in raises expressions.

The CORBA specification keeps the set of standard exceptions to a
manageable size in order to reduce the complexity of handling them. This
constraint requires the definition of equivalence classes of exceptions
rather than enumerating many similar exceptions. For example, an
96 VisualWorks

Declaring Exceptions
operation invocation can fail at many different points due to the inability to
allocate dynamic memory. Rather than specify several different
exceptions corresponding to the different ways that memory allocation
failure causes the exception (during marshalling, unmarshalling, in the
client, in the object implementation, allocating network packets, and so
on), a single exception corresponding to dynamic memory allocation
failure is defined.

Each standard exception also includes a completion_status code which
takes one of the values YES, NO, or MAYBE. “Completion,” from the client’s
point of view, means exception-free execution of the requested operation
by the implementation. The values have the following meanings:

The standard exceptions are defined below:

YES The state of the object, including objects it acts on, are in
the same state as they would be if the operation
completed normally. An error was detected after the
operation’s termination. Implementations are discouraged
from returning this value. Requests that return this value
should not be retried.

NO The state of the object, including objects it acts on, are in a
state that is identical to its state prior to execution of the
operation. This may mean that the operation was never
started, that the operation was started but did not change
the object state, or that the implementation restored the
object to the state it had before the operation began.
Requests that return this value can be retried.

MAYBE The state of the object, including objects it acts on, is not
known. Implementations are discouraged from returning
this value.
Distributed Smalltalk Application Developer’s Guide 97

Chapter 8 - Defining IDL Interfaces
#define ex_body {unsigned long minor;
completion_status completed;}

enum completion_status {COMPLETED_YES, COMPLETED_NO,
COMPLETED_MAYBE};

enum exception_type {NO_EXCEPTION, USER_EXCEPTION,
SYSTEM_EXCEPTION};

exception UNKNOWN ex_body; // the unknown exception
exception BAD_PARAM ex_body; // an invalid parameter was

passed
exception NO_MEMORY ex_body; // dynamic memory allocation

 failure
exception IMP_LIMIT ex_body; // violated implementation limit
exception COMM_FAILURE ex_body; // communication failure
exception INV_OBJREF ex_body; // invalid object reference
exception NO_PERMISSION ex_body; // no permission for

attempted op.
exception INTERNAL ex_body; // ORB internal error
exception MARSHAL ex_body; // error marshalling param/result
exception INIITIALIZE ex_body; // ORB initialization failure
exception NO_IMPLEMENT ex_body; // operation implementation

unavailable
exception BAD_TYPECODE ex_body; // bad typecode
exception BAD_OPERATION ex_body; // invalid operation
exception NO_RESOURCES ex_body; // insufficient resources

for req.
exception NO_RESPONSE ex_body; // response to req. not

yet available
exception PERSIST_STORE ex_body; // persistent storage failure
exception BAD_INV_ORDER ex_body; // routine invocations

out of order
exception TRANSIENT ex body; // transient failure - reissue

request
exception FREE_MEM ex_body; // cannot free memory
exception INV_IDENT ex_body; // invalid identifier syntax
exception INV_FLAG ex_body; // invalid flag was specified
exception INTF_REPOS ex_body; // error accessing interface

repository
exception BAD_CONTEXT ex_body; // error processing context

object
exception OBJ_ADAPTER ex_body; // failure detected by object

adapter
exception DATA_CONVERSION ex_body; // data conversion error
98 VisualWorks

Declaring Attributes
Declaring Attributes
An interface can have attributes that are within the interface definition.

Note: A derived interface (see “Inheritance” on page 100)
automatically supports any attributes in the interface(s) it inherits
from, and can add its own attributes. However, a derived interface
cannot re-declare an attribute as a different type, but it can re-declare
it as readonly.

Declaring an attribute is logically equivalent to declaring a pair of
accessor functions —one to retrieve the value of the attribute and one to
set the value of the attribute.

Note: The actual accessor function names are language-mapping
specific. Only the attribute name is subject to IDL’s name scoping
rules. The accessor function names are guaranteed not to collide
with any legal operation names that can be specified in IDL.

The syntax of an attribute declaration is:

[readonly] attribute simple_type_specifier declarator[[,declarator]…];
The optional readonly keyword indicates that only the implementation can
set its value; that is, that there is only a single accessor function—the
retrieve value function. You can, for example, declare an operation in IDL
and the implementation of that operation would set the value of a
readonly attribute.

Example
readonly attribute AStoreId store_id;
readonly attribute float store_total;
readonly attribute float store_tax_total;

The simple_type_specifier can be a:

• Base data type (see “Base Data Types” on page 82)

• Template type (see “Template Types” on page 82)

• Scoped name (see “Names and Scopes” on page 105)

An identifier is the type name of the attribute.
Distributed Smalltalk Application Developer’s Guide 99

Chapter 8 - Defining IDL Interfaces
Declaring an attribute in IDL is similar to defining a pair of public methods
to get and set the value of a private data member. You can also define a
readonly attribute, which prevents the client from setting the attribute
value:

interface Stack
{

readonly attribute long size;

long pop();
void push(in long n);
boolean is_empty();

};
In this example, Stack includes a readonly attribute, size. Although the
client can determine the size of the stack from the attribute, it cannot set
it.

Declaring an attribute is different from declaring “get” or “set” operations
because attributes—unlike operations (see “Declaring Operations” on
page 91)—cannot “raise” user-defined exceptions (see “Declaring
Exceptions” on page 95).

Attribute operations return errors by means of standard exceptions (see
“Standard Exceptions” on page 96).

Note: Although attributes may appear to be a data item or member
(the value of which does not change), the implementation can be
written to recompute the value on each access. This can be the case
even if the readonly attribute is specified.

Inheritance
An interface can inherit from (that is, be derived from) one or more
interfaces. An inheritance specification, which declares that an interface
is derived from one or more interfaces, takes the following form:

interface identifier : scoped_name[,scoped_name[…]]
{

[interface_definition;
[…]]

};
The identifier (name) of an interface can be used as a type name (once
the interface has been declared). For example, it can be used as a
parameter or member that uses that name is the same as a reference to
100 VisualWorks

Inheritance
the object supporting the interface. Any object whose type is an interface
identifier is expected to support the operations in that interface. For
example, if a parameter of type interface Stack, it would be expected to
support the Stack operations, pop, push, and is_empty (see page 100 for
the stack interface definition).

Note: An interface that inherits elements from other interfaces is
called a derived interface; the interface from which elements are
inherited is called a base interface. Furthermore, an interface is
called a direct base interface if it is specified directly in the
inheritance specification; it is called an indirect base interface if it is,
in turn, a base interface of another direct base interfaces specified in
the inheritance specification.

Elements of a base interface can be referred to as if they were elements
of the derived interface. A derived interface can redefine inherited types,
constants, and exceptions, as well as declare operations and attributes.

Multiple inheritance means that an interface is derived from more than
one direct base interface. In these situations, the order of derivation (that
is, the order in which the base interfaces are specified) is not significant.
However, since multiple inheritance may cause ambiguity, you should
use the resolution operator (that is, ::) to explicitly identify the desired
element (see “Names and Scopes” on page 105).

An interface_definition, which can declare new elements, as well as
redefine elements in base interfaces, can include:

• Type declarations (see “Declaring Data Types” on page 80)

• Constant declarations (see “Declaring Constants” on page 76)

• Exception declarations (see “Declaring Exceptions” on page 95)

• Operation declarations (see “Declaring Operations” on page 91)

• Attribute declarations (see “Declaring Attributes” on page 99)

The rules for scoping these names are described in “Names and Scopes”
on page 105.

A base interface cannot be specified as a direct base interface of a
derived interface more than once; however, it can be an indirect base
interface any number of times. For example, the inheritance illustrated in
can be declared as follows:
Distributed Smalltalk Application Developer’s Guide 101

Chapter 8 - Defining IDL Interfaces
interface A {…};
interface B:A {…};
interface C:A {…};
interface D:B,C {…}

;

Illustration of Interfaces Inheritance

References to types, constants and exceptions are bound to an interface
when it is defined (that is, when it is replaced with the equivalent global
scoped name). This guarantees that the syntax and semantics of an
interface are not changed when the interface is a base class for a derived
class. Consider this example:

const long L=3;

interface A
{

void f(in float s[L]);// s has 3 floats
};

interface B
{

const long L=4;
};

interface C:B,A {};// what is f()’s signature?
In the example above, the early binding of types, constants, and
exceptions at interface definition guarantees that the signature of
operation f in interface C is:

void f(in float s[3]);
which is identical to that in interface A. This rule also prevents the
redefinition of a type, constant, or exception in a derived interface from
affecting the operations and attributes inherited from a base interface.

A

B C

D

102 VisualWorks

Inheritance
Interface inheritance causes all identifiers in the closure of the inheritance
tree to be imported into the current naming scope. A type name, constant
name, enumeration value name, or exception name from an enclosing
scope can be redefined in the current scope. An attempt to use an
ambiguous name without qualification will cause an IDL compilation error.

In addition to using the elements defined in the base interface(s), a
derived interface can declare new elements (for example, constants)
and/or redefine the elements defined in the base interface. A derived
interface that redefines any of the inherited type, constant, or exception
names must satisfy the scope rules described in “Names and Scopes” on
page 105.

Note: A derived interface cannot inherit from multiple interfaces (that
is, from either direct base or indirect base interfaces) that provide the
same operation or attribute name (see “Declaring Operations” on
page 91 and “Declaring Attributes” on page 99). An implementation
of an interface, however, can redefine the implementation of those
operations and attributes.

Note: The implementation of the operation can be redefined, not the
interface.

A derived interface has an “is a” relationship with its base interfaces (that
is, it is the same kind of whatever the base interface describes). For
example, a DroppableObject interface is a specific kind of Document
interface; therefore, the DroppableObject could inherit from the Document:

interface DroppableObject : Document
{

IDL statements describing DroppableObject
};

DroppableObject, in this example, inherits every element of the Document
interface. That is, if DroppableObject is declared as shown above, but
includes no IDL statements of its own, its interface is identical to that of
Document.

The body of the DroppableObject interface contains any needed definitions
that are not already defined in the Document interface. It also can include
redefinitions of type, constant, or exception names already defined in
Document.
Distributed Smalltalk Application Developer’s Guide 103

Chapter 8 - Defining IDL Interfaces
Multiple inheritance allows you to derive an interface from more than one
base interface. If the derived interface inherits from multiple interfaces,
the order in which the interfaces are inherited is not significant.

For example, assume there are three interfaces: Queue, Directory, and
Mailbox. The Queue interface stores a sequence of arbitrary type; a
Directory interface provides access to objects by name; and a Mailbox
interface behaves like a Queue and a Directory, as well as a Mailbox. Thus,
if a Mailbox inherits from both Queue and Directory, a browsing tool that
works on directories can work on mailboxes, and a mail filter can use the
Queue interface allowing various filters to be composed in a Mailbox:

interface Mailbox : Queue,Directory
{

IDL statements describing Mailbox
};

You can specify the base interfaces (in this example, Queue and Directory)
in any order since the order is not significant.

IDL Preprocessing
IDL preprocessing is based on ANSI C++ preprocessing and provides
macro substitution, conditional compilation, and source file inclusion. The
preprocessing facilities are used to include definitions from other IDL
specifications.

For a comprehensive discussion of C++ preprocessing, refer to the
“Preprocessing” chapter in The Annotated C++ Reference Manual.

Directives (that is, lines beginning with #) communicate with the
preprocessor. These lines, which may include white space before the #,
have a syntax that is independent of IDL. Except for the IDL-specific
pragmas, which are semantically constrained, they may appear
anywhere, and remain in effect until the end of the translation unit.
Furthermore, a preprocessing directive can continue on another line; to
continue a line, place a backslash (\) immediately before the new line at
the end of the line to be continued.

Note: A backslash (\) character cannot be the last character in a
source file.
104 VisualWorks

CORBAModule
#include
You can include definitions from other IDL specifications with #include. If
the #include appears in a global scope, text from any included file is
treated as if it appeared in the including file (that is, the types, constants,
modules, and interfaces are declared and available), although no
additional code is generated by the IDL compiler as a result of the
inclusion. It simply allows you to resolve external IDL references within
the IDL file.

Note: #include should be used only in global scopes because
including scopes modify the names of all included constructs.

CORBAModule
In order to prevent names defined within the CORBA specification from
clashing with names in programming languages and other software
systems, all names defined by CORBA are treated as if they were
defined within a module named CORBA. Within an IDL specification,
however, IDL keywords such as Object must not be preceded by a
CORBA:: prefix. Other interface names are not IDL keywords and so must
be referred to by their fully scoped names within an IDL specification.

Names and Scopes
An entire IDL file forms a naming scope. Each time you use one of the
following kinds of declarations, you form a nested scope:

• Module

• Interface

• Structure

• Union

• Operation

• Exception

The names of declarations reflect the naming scope in which they reside.
The names you use when declaring any of the following are scoped:

• Types

• Constants
Distributed Smalltalk Application Developer’s Guide 105

Chapter 8 - Defining IDL Interfaces
• Enumeration values

• Exceptions

• Interfaces

• Attributes

• Operations

The syntax of a scoped_name is:

[scoped_name][::]identifier
The optional scoped_name is the name of a scope. The identifier is an
element or member declared in the scope. It can be referenced explicitly
by using a scope resolution operator (that is, ::), as illustrated in the
following examples of valid references to scoped names:

A::except1
::except1
except1

Note: You cannot define an identifier more than once in a scope,
although you can redefine identifiers in nested scopes.

Since the IDL compiler is not case sensitive, respelling an identifier (in
terms of case) is considered to be reuse of the name in its scope. For
example, Test in the following sample, is a re-declaration of test and,
therefore, is not allowed:

interface check_segment
{

exception test {};
void Test();

// ILLEGAL: this is a re-declaration of test!
};

Type names defined in a scope are available for immediate use within
that scope. Specifically, although it is syntactically possible to generate
recursive type specifications in IDL, such recursion is semantically
constrained. The only permissible form of recursive type specification is
through the use of the sequence template type. For example, the
following is a valid form of recursive type specification

struct foo
{

long value;
sequence<foo> chain;

};
106 VisualWorks

Names and Scopes
An unqualified name can be used in a particular scope. However, once it
is used in a scope, it cannot be redefined in that scope; such redefinitions
cause compilation errors.

Note: An unqualified name used in a particular scope is resolved by
successively searching farther out in enclosing scopes. Thus, if you
use a name defined in an enclosing scope in the current scope, you
cannot redefine a version of that name in the current scope.

When a qualified name begins with the scope resolution operator (for
example, ::identifier), the resolution process starts at file scope. A
qualified name is resolved by first resolving the qualifier (scoped_name),
then locating the definition of the identifier within that scope.

Note: The identifier must be directly defined in the scope (or, in the
case of an interface, inherited into the scope). The identifier is not
searched for in enclosing scopes.

It is sometimes useful for interfaces to refer to exceptions, types, and
constants that are declared in other interfaces or modules. You make this
reference by using the scope resolution operator (that is, ::) as illustrated
in the following example. In this example, an operation in interface B
raises an exception declared in interface A:

interface A
{

exception general_error {};
…

};

interface B
{

void op1()
raises(A::general_error);

}:
Every IDL definition in a file has a global name within that file. The global
name is the concatenation of the current root, the current scope, the
scope resolution operator (that is, ::), and the local name for the
definition.

Inheritance produces shadow copies of inherited identifiers, but these are
semantically the same as the original definition. Therefore, as shown in
the following example, you can refer to the inherited except1 exception as
either A::except1 or B::except1:
Distributed Smalltalk Application Developer’s Guide 107

Chapter 8 - Defining IDL Interfaces
interface A
{

exception except1 {};
};

interface B : A {};

interface C
{

void op1()
raises(A::except1);

void op2()
raises(B::except1);

//op1() and op2() raise the same
//exception.

};
Ambiguity can occur in specifications due to the nested naming scopes.
For example, in:

interface A
{

typedef string<128> string_t;
};

interface B
{

typedef string<256> string_t;
};

interface C:A,B
{

attribute string_t Title;// AMBIGUOUS!!!
};

the attribute declaration in interface C is ambiguous because the IDL
compiler cannot determine which string_t is desired.

IDL Traps
These are some of the more common problems developers encounter
when defining IDL interfaces for Smalltalk classes. For a list of common
design issues in all distributed systems, see “Hints for Distributed Design”
on page 43.
108 VisualWorks

IDL Traps
Magnitude Mismatches
The standard IDL numeric quantities do not match the sizes of the
standard Smalltalk Magnitude subclasses. An IDL long
(-231 to 231-1) may be represented as a Smalltalk SmallInteger
(-229 to 229-1), LargeNegativeInteger, or LargePositiveInteger, depending on
its size and sign. Conversely, some valid LargePositiveIntegers cannot be
represented as IDL longs.

The marshalling engines, which translate objects from their Smalltalk
representation to transmission format and back again, do not check the
magnitudes of numbers when marshalling. If you define an IDL interface
to return a short value, then return the SmallInteger 2 raisedTo: 28, the
number that arrives at the receiver will not be interpreted as 228. It is the
developer’s responsibility to check magnitudes before transmitting them
in remote messages.

Mismatched IDL Interfaces and Smalltalk Selectors
When you change a message selector in Smalltalk, you must remember
to change the corresponding IDL definitions. If you change the type of an
argument, this will not cause Smalltalk errors, but may make the IDL
invalid, causing marshalling exception.

Inheritance and Overriding Operations
Unlike Smalltalk, IDL forbids interfaces to override operations defined in
their superclass. If the superclass definition specifies an operation, the
subclass must use that operation definition.

Passing Values and References: Interfaces and Structures
You use interfaces and structures in your operation definitions to control
whether an object is passed by value or by reference. Use the name of
an interface as a type in your operation declaration when you want to
pass an instance by reference. Use the name of a struct in your operation
declaration when you want to pass an instance by value. This works for
either the type of the return value or the type of one or more of the
parameters.

For example, building on the Person example above, you may have
these definitions:
Distributed Smalltalk Application Developer’s Guide 109

Chapter 8 - Defining IDL Interfaces
module PersonModule {

#pragma class PersonStruct Person
struct PersonStruct {

string name;
short age;

};
interface PersonInterface {

string name();
#pragma selector set_name name:
void set_name (in string s);

short age();
#pragma selector set_age age:
void set_age (in short s);

PersonStruct personCopyWithName (in string n);
PersonInterface personReferenceWithName (in string n);

};
};

In this case, the method personCopyWithName: will answer a local copy of
a Person (pass by value), but the method personReferenceWithName: will
answer a reference to a remote instance of Person (pass by reference).

SmalltalkTypes
It is important to look at what is in SmalltalkTypes in DSTRepository. There
you will find a series of typedefs that were useful to the developers of
DST. These typedefs arrange it so that instances of the following classes,
for example, are passed by value:

IDL void and Smalltalk nil
There is no Smalltalk equivalent of void, just as there is no IDL
equivalent of nil. Thus, it is important to to be aware of the following:

• A remote object, when sent an operation whose signature specifies a
void return value, will answer a local nil. The same object, sent the
same message locally, could answer self. (For consistency, you can
make the methods answer nil locally as well.)

Symbol ByteArray ByteString OrderedCollection

Set Bag Association Dictionary

Point Rectangle Date Time
110 VisualWorks

IDL Traps
• A remote object, sent an operation whose signature specifies a base
or defined type as a return value, will generate a marshalling error if
the remote object answers nil. (This is common if you fail to initialize
instance variables with an object of the appropriate kind.)

• A remote object, sent an operation whose signature specifies an
interface as a return value, may answer an object reference to a
remote nil.
Distributed Smalltalk Application Developer’s Guide 111

9
Mapping of IDL to Smalltalk

Overview
This chapter describes the mapping of OMG IDL constructs to Smalltalk
constructs. You must use IDL to define the interfaces for an application’s
remotely-accessible objects. In these interfaces, you define the
externally-visible functionality of each object (but you implement this
functionality elsewhere in VisualWorks Smalltalk).

A critical part of the ORB’s activities is the translation service (via a
language binding) between the local language (such as Smalltalk) and
IDL, the language-neutral Interface Definition Language that all ORBs
speak as their common language. This chapter describes the IDL
semantics, gives the syntax for IDL grammatical constructs and the
Smalltalk-to-IDL language binding implemented in Distributed Smalltalk,
and explains how to use it.

Constraints on Smalltalk Mappings
• Whenever possible, IDL types are mapped directly to existing,

portable Smalltalk classes.

• The Smalltalk mapping only describes the public (client) interface to
Smalltalk classes and objects supporting IDL. Individual IDL
compilers or CORBA implementations might define additional private
interfaces.

• The implementation of IDL interfaces is left unspecified.
Implementations may choose to:

• Map each IDL interface to a separate Smalltalk class
112 VisualWorks

Default Mapping for IDL to Smalltalk
• Provide one Smalltalk class to map all IDL interfaces

• Allow arbitrary Smalltalk classes to map IDL interfaces

• Because of the dynamic nature of Smalltalk, the mapping of the any
and union types is such that an explicit mapping is unnecessary.
Instead, the value of the any and union types can be passed
directly. In the case of the any type, the Smalltalk mapping will derive
a TypeCode which can be used to represent the value. In the case of
the union type, the Smalltalk mapping will derive a discriminator
which can be used to represent the value.

• The explicit passing of environment and context values on operations
is not required.

• Except in the case of object references, no memory management is
required for data parameters and return results from operations. All
such Smalltalk objects reside within Smalltalk memory, and so
garbage collection will reclaim their storage when they are no longer
used.

Default Mapping for IDL to Smalltalk
The use of underscore characters in IDL identifiers is not allowed in all
Smalltalk language implementations. Thus, a conversion algorithm is
required to convert names used in IDL to valid Smalltalk identifiers.

To convert an IDL identifier to a Smalltalk identifier, remove each
underscore and capitalize the following letter (if it exists). For example:

add_to_copy_map becomes addToCopyMap

describe_contents becomes describeContents

Smalltalk implementations generally require that class names and global
variables have an uppercase first letter, while other names have a
lowercase first letter.

One aspect of the language mapping can cause an IDL compiler to map
incorrectly to Smalltalk code resulting in name space collisions. Because
Smalltalk implementations generally only support a global name space,
and disallow underscore characters in identifiers, the mapping of
identifiers used in IDL to Smalltalk identifiers can result in a name
collision. As an example of name collision, consider the following IDL
declaration:
Distributed Smalltalk Application Developer’s Guide 113

Chapter 9 - Mapping of IDL to Smalltalk
interface Example {
void sample_op () ;
void sampleOp () ;

};
Both of these operations map to the Smalltalk selector sampleOp. In order
to prevent name collision problems, each implementation of the IDL
language binding must support an explicit naming mechanism, which can
be used to map an IDL identifier into an arbitrary Smalltalk identifier.
Distributed Smalltalk uses #pragma as the mechanism.

Handling Return Values
IDL and Smalltalk message syntaxes both allow zero or more input
parameters to be supplied in a request. For return values, Smalltalk
methods yield a single result object, whereas IDL allows an optional
result and zero or more out or inout parameters to be returned from an
invocation. In this binding, the non-void result of an operation is returned
as the result of the corresponding Smalltalk method, whereas out and
inout parameters are to be communicated back to the call via instances
of a class conforming to the CORBAParameter protocol, passed as explicit
parameters.

To create an object that supports the CORBAParameter protocol, the
message asCORBAParameter can be sent to any Smalltalk object. This will
return a Smalltalk object conforming to the CORBAParameter protocol,
whose value will be the object it was created from. The value of that
CORBAParameter object can be subsequently changed with the value:
message. asCORBAParameter is implemented in Object and returns a
ValueHolder, which latter is used to represent inout and out parameters
that are present in addition to the return value.

Memory Usage
One of the design goals is to make every Smalltalk object used in the
mapping a pure Smalltalk object: namely datatypes used in mappings do
not point to operating system defined memory. This design goal permits
the mapping and users of the mapping to ignore memory-management
issues, since Smalltalk handles this itself (via garbage collection).
Smalltalk objects which are used as object references may contain
pointers to operating system memory, and so must be freed in an explicit
manner.
114 VisualWorks

Mapping of IDL Elements to Smalltalk
Limitations
The proposed language mapping places limitations on the use of certain
types defined in IDL.

For the any and union types, specific integral and floating point types may
not be able to be specified as values. The implementation will map such
values into an appropriate type, but if the value can be represented by
multiple types, the one actually used cannot be determined. For example,
consider the union definition below:

union Foo switch (long) {
case 1: long x;
case 2: short y;

} ;
When a Smalltalk object corresponding to this union type has a value that
fits in both a long and a short, the Smalltalk mapping can derive
discriminator 1 or 2, and map the integral value into either a long or short
value (corresponding to the value of the discriminator determined).

This limitation can be overcome in some cases by a careful ordering of
the union types, and in all cases by use of DSTUnion, which allow explicit
specification of the value and the discriminator for parameters.

Mapping of IDL Elements to Smalltalk
The following overview provides a brief description of the mapping of IDL
elements to the Smalltalk language.

IDL Element Smalltalk Language

object references Smalltalk objects which represent CORBA
objects. The Smalltalk objects must respond to
all messages defined by the CORBA objects’
interface.

interfaces A set of messages that Smalltalk objects which
represent object references must respond to. The
set of messages corresponds to the attributes
and operations defined in the interface and
inherited interfaces.

operations Smalltalk messages.

attributes Smalltalk messages.

constants Smalltalk objects available in CORBAConstants
dictionary.
Distributed Smalltalk Application Developer’s Guide 115

Chapter 9 - Mapping of IDL to Smalltalk
SmalltalkTypes
A large number of special mappings used in DST are defined in the
SmalltalkTypes module in DSTRepository. It is helpful to become familiar
with these default mappings between IDL and Smalltalk types in DST.

Of particular interest are the *OrNil types, which handle many cases of
translating between IDL void and Smalltalk nil. Note that if you are not
going to use *OrNil unions in specifying return values, it is very important
that you carefully and fully initialize classes that will be accessed
remotely. Refer to “IDL void and Smalltalk nil” for details.

integral types Smalltalk objects which conform to the Integer
class.

floating point type Smalltalk objects which conform to the Float
class.

boolean type Smalltalk true or false objects.

enumeration types Smalltalk objects which conform to the
CORBAEnum protocol.

any type Smalltalk objects that can be mapped into an IDL
type.

structure types Smalltalk objects which conform to the Dictionary
class.

union types Smalltalk objects which map to the possible
value types of the IDL union, or which conform
to the CORBAUnion protocol.

sequence type Smalltalk objects which conform to the
OrderedCollection class.

string type Smalltalk objects which conform to the String
class.

array type Smalltalk objects which conform to the Array
class.

exception type Smalltalk objects which conform to the Dictionary
class.

IDL Element Smalltalk Language
116 VisualWorks

Mapping for Interface
Mapping for Interface
Each IDL interface defines the operations that object references with that
interface must support. In Smalltalk, each IDL interface defines the
methods that object references with that interface must respond to.

Implementations are free to map each IDL interface to a separate
Smalltalk class, map all IDL interfaces to a single Smalltalk class, or map
arbitrary Smalltalk classes to IDL interfaces.

CORBAName Method
In Distributed Smalltalk, the CORBAName is the tie between an interface
and its corresponding implementation. That is, any object that has an
interface (that is, a CORBA object), must implement the CORBAName,
which specifies the interface name. When the ORB receives an incoming
request, it locates the interface in the Interface Repository, and the
Smalltalk class by this CORBAName.

Thus, in the Smalltalk class Depot, repository>>CORBAName would map the
class Depot to the IDL interface Depot as follows:

CORBAName
^#'::CentralOffice::Depot'

The CORBAName method is usually implemented on the instance side of a
class definition and provides the link to the interface for instances of the
class, but it may also be implemented on the class side, in which case
the CORBAName method provides the link to the interface for the class.

Getting Information About an Interface
Object references to both local and remote objects supporting IDL
interfaces are via the normal Smalltalk object reference mechanism. To
obtain the interface associated with the object reference, invoke the
getInterface method; this returns the actual interface meta object which
models its type information.

In addition, and when the programmer knows she is dealing with a
surrogate object reference, the interface will return the local repository’s
meta object for that type. Access to local meta objects is considerably
faster, of course.
Distributed Smalltalk Application Developer’s Guide 117

Chapter 9 - Mapping of IDL to Smalltalk
Mapping for Objects
A CORBA object is represented in Smalltalk as a Smalltalk object called
an object reference. The object reference must respond to all messages
defined by that CORBA object’s interface.

An object reference can have a value which indicates that it does not
represent a CORBA object. This value is the standard Smalltalk value nil.

Invocation of Operations
IDL and Smalltalk message syntaxes both allow zero or more input
parameters to be supplied in a request. For return values, Smalltalk
methods yield a single result object, whereas IDL allows an optional
result and zero or more out or inout parameters to be returned from an
invocation. In this binding, the non-void result of an operation is returned
as the result of the corresponding Smalltalk method, whereas out and
inout parameters are to be communicated back to the caller via instances
of a class conforming to the CORBAParameter protocol, passed as explicit
parameters.

For example, the following operations:

boolean definesProperty(in string key);
void defines_property(

in string key,
out boolean is_defined);

are used as follows:

aBool := self definesProperty: aString.
self

definesProperty: aString
isDefined: (aBool := nil asCORBAParameter).

As another example, the operations:

boolean has_property_protection(
in string key,
out Protection pval);

ORBStatus create_request (in Context ctx,
in Identifier operation,
in NVList arg_list,
inout DynamicInvocation::NamedValue result,
out Request request,
in Flags reg_flags);
118 VisualWorks

Mapping for Attributes
would be invoked as:

aBool := self
hasPropertyProtection: aString
pval: (protection := nil asCORBAParameter).

aStatus := ORBObject
createRequest: aContext
operation: anldentifier
argList: anNVList
result: (result := aNamedValue asCORBAParameter)
request: (request := nil asCORBAParameter)
reqFlags: aFlags.

The return value of IDL operations that are specified with a void return
type is undefined.

Mapping for Attributes
IDL attribute declarations are a shorthand mechanism to define pairs of
simple accessing operations: one to get the value of the attribute and one
to set it. Such accessing methods are common in Smalltalk programs as
well, so attribute declarations are mapped to standard methods to get
and set the named attribute value, respectively.

For example:

attribute string title;
readonly attribute string my_name;

means that Smalltalk programmers can expect to use title and title:
methods to get and set the title attribute of the CORBA object, and the
myName method to retrieve the my_name attribute.

Although attributes provide a shorthand for setters and getters, the
syntax for attributes does not allow you to specify the exceptions that
might be returned, as does an ordinary operation declaration.

Readonly Attributes for Security
By default, attributes are read-write. However, you can declare read-only
attributes to keep clients from changing what they should not. For
example, the CompoundLifecycle::LinkRead module declares a variety of
attributes including these read-only attributes:

readonly attribute LinkSet head;
readonly attribute boolean is_existence_ensuring;

An IDL operation can set the value of a read-only attribute in its
implementation.
Distributed Smalltalk Application Developer’s Guide 119

Chapter 9 - Mapping of IDL to Smalltalk
Mapping for Constants
IDL allows constant expressions to be declared globally as well as in
interface and module definitions. IDL constant values are stored in a
dictionary named CORBAConstants under the fully qualified name of the
constant, not subject to the name conversion algorithm. The constants
are accessed by sending the at: message to the dictionary with an
instance of a String whose value is the fully qualified name.

For example, given the following IDL specification:

module ApplicationBasics {
const CopyDepth shallow_cpy = 4;

};
the ApplicationBasics::shallow_cpy constant can be accessed with the
following Smalltalk code:

value := CORBAConstants at: '::ApplicationBasics::shallow_cpy'.
After this call, the value variable will contain the integral value 4.

Here is another example where constant declarations map Smalltalk
names to IDL:

const LinkType containment_link = 1;
Tells the compiler to substitute link type 1 whenever the identifier
containment_link is used.

const LinkType reference_link = 3;
Substitute link type 3 when reference_link is used.

const LinkType designation_link = 5;
Substitute link type 5 when designation_link is used.

const LinkType weak_link = 7;
Substitute link type 7 when weak_link is used.

Getting More Information About a Constant
IDL constant values are stored in the global dictionary CORBAConstants
under the fully qualified name of the constant.
120 VisualWorks

Mapping for Basic Data Types
Mapping for Basic Data Types
Each of the parameters of an IDL operation definition has an associated
data type which must be declared in advance, since IDL is a statically-
typed definition language. This means that some operations that can be
implemented in Smalltalk cannot be declared in IDL at all. It is also
complicated by the fact that, all Smalltalk values are instances of a
Smalltalk class. In order to be able to construct valid calls on IDL
operations, however, a mapping must be devised. Fortunately, the
following type-to-class mapping works well enough and useful distributed
systems can be constructed.

Base Type Mapping
Since Smalltalk is not a typed language, various classes in the Magnitude
categories are used to map Smalltalk objects to IDL data types.

• Smalltalk Magnitude classes map directly onto the required IDL basic
datatypes, and the subclasses of this abstract class are concerned
with their representation in all situations.

• Boolean values TRUE and FALSE are used by the Smalltalk
programmer to represent IDL boolean types.

• Character values are used by the Smalltalk programmer to represent
IDL char types.

• Float and Double values are used by the Smalltalk programmer to
represent IDL float and double types.

• Integer values are used by the Smalltalk programmer to represent
IDL long and short integer types.

• Character and SmallInteger values may be used by the Smalltalk
programmer to represent IDL octet types.

The following basic datatypes are mapped into existing Smalltalk classes.
In the case of short, unsigned short, long, unsigned long, float, double, and
octet, the actual class used is left up to the implementation, for the
following reasons:

• There is no standard for Smalltalk that specifics integral and floating
point classes and the valid ranges of their instances.

• The classes themselves are rarely used in Smalltalk. Instances of the
classes are made available as constants included in code, or as the
result of computation.
Distributed Smalltalk Application Developer’s Guide 121

Chapter 9 - Mapping of IDL to Smalltalk
The basic datatypes are mapped as follows:

short
An IDL short integer falls in the range [-2l5, 2l5-l]. In Smalltalk, a short
is represented as an instance of an appropriate integral class.

long
An IDL long integer falls in the range [-231,231-l]. In Smalltalk, a long is
represented as an instance of an appropriate integral class.

long long
An IDL long long integer falls in the range [-263 ,263-1]. In Smalltalk, a
long long is represented as an instance of an appropriate integral
class.

unsigned short
An IDL unsigned short integer falls in the range [0,216-l]. In Smalltalk,
an unsigned short is represented as an instance of an appropriate
integral class.

unsigned long
An IDL unsigned long integer falls in the range [0,232-l]. In Smalltalk,
an unsigned long is represented as an instance of an appropriate
integral class.

unsigned long long
An IDL unsigned long long integer falls in the range [0,264-1]. In
Smalltalk, an unsigned long long is represented as an instance of an
appropriate integral class.

float
An IDL float type represents IEEE single-precision (32-bit) floating
point numbers. In Smalltalk, a float is represented as an instance of
an appropriate floating point class.

fixed
An IDL fixed is represented as an instance of an appropriate fractional
class with a fixed denominator (see “Mapping for Fixed Type”).

double
An IDL double type represents IEEE single-precision 64-bit) floating
point numbers. In Smalltalk, a double is represented as an instance of
an appropriate floating point class.

long double
An IDL long double conforms to the IEEE double extended (a
mantissa of at least 64 bits, a sign bit, and an exponent of at least 15
bits) floating point standard (ANSI/IEEE Std 754-1985). In Smalltalk,
a long double is represented as an instance of an appropriate floating
point class.
122 VisualWorks

Mapping for Fixed Type
char
An IDL char holds an 8-bit quantity mapping to the ISO Latin-1 8859.1
character set. In Smalltalk, a char is represented as an instance of
Character.

wchar
An IDL wchar defines a wide character from any character set. A wide
character is represented as an instance of the Character class.

boolean
An IDL boolean may hold one of two values: TRUE or FALSE. In
Smalltalk, a boolean is represented by the values true or false,
respectively.

octet
An IDL octet is an 8-bit quantity that undergoes no conversion during
transmission. In Smalltalk, an octet is represented as an instance of
an appropriate integral class with a value in the range [1,255].

Mapping for Fixed Type
An IDL fixed is represented as an instance of an appropriate fractional
class with a fixed denominator.

Smalltalk class FixedPoint is the only Smalltalk class with an explicit,
default mapping to the IDL fixed type.

Mapping for the Any Type
Due to the dynamic nature of Smalltalk, where the class of objects can be
determined at runtime, an explicit mapping of the any type to a particular
Smalltalk class is not required. Instead, wherever an any is required, the
user may pass any Smalltalk object which can be mapped into an IDL
type. For instance, if an IDL structure type is defined in an interface, a
Dictionary for that structure type will be mapped. Instances of this class
can be used wherever an any is expected, since that Smalltalk object can
be mapped to the IDL structure.

Likewise, when an any is returned as the result of an operation, the actual
Smalltalk object which represents the value of the any data structure will
be returned.

Any Smalltalk class may be mapped to an instance of an IDL type any in
an operation invocation parameter list. By default, type any output
parameters and results are returned as the value of the object.
Distributed Smalltalk Application Developer’s Guide 123

Chapter 9 - Mapping of IDL to Smalltalk
However, type any should not be used indiscriminately, because it has
additional overhead. The ORB has to marshal information about exactly
which type of object is coming across as an any in addition to the value
itself.

CORBAType Method
The CORBAType method specifies how an object is to be marshaled when
it is passed under the umbrella of type any. By default, we pass by
reference. If you want to pass an object by value when it is passed as an
any, you must override CORBAType.

The default implementation of CORBAType is in class Object. It returns a
meta object for the object’s interface, which marshals it as an object
reference, not an IDL data type. This object reference corresponds to the
CORBAName method associated with this object (a fully qualified interface
name). Browse implementors of CORBAType to see other
implementations.

As a rule, you should implement the CORBAType method in any class that
uses the CLASS pragma in its IDL interface definition. For example, see
the CosNaming module in DSTRepository, where pragmas are defined for
classes DSTNameComponent and DSTName.

Mapping for Enum
IDL enumerators are stored in a dictionary named CORBAConstants under
the fully qualified name of the enumerator, not subject to the name
conversion algorithm. The enumerators are accessed by sending the at:
message to the dictionary with an instance of a String whose value is the
fully qualified name.

These enumerator Smalltalk objects must support the aCORBAEnum
protocol, to allow enumerators of the same type to be compared. The
order in which the enumerators are named in the specification of an
enumeration defines the relative order of the enumerators. The protocol
must support the following instance methods:

< aCORBAEnum
Answers true if the receiver is less than aCORBAEnum, otherwise answers
false.

<= aCORBAEnum
124 VisualWorks

Mapping for Struct Types
Answers true if the receiver is less than or equal to aCORBAEnum,
otherwise answers false.

= aCORBAEnum
Answers true if the receiver is equal to aCORBAEnum, otherwise answers
false.

> aCORBAEnum
Answers true if the receiver is greater than aCORBAEnum, otherwise
answers false.

>= aCORBAEnum
Answers true if the receiver is greater than or equal to aCORBAEnum,
otherwise answers false.

For example, given the following IDL specification:

module Graphics {
enum ChartStyle

{lineChart, barChart, stackedBarChart, pieChart};
};

the Graphics::lineChart enumeration value can be accessed with the
following Smalltalk code:

value := CORBAConstants at: '::Graphics::lineChart'.
After this call, the value variable is assigned to a Smalltalk object that can
be compared with other enumeration values.

Mapping for Struct Types
An IDL struct is mapped to an instance of the Dictionary class. The key for
each IDL struct member is an instance of Symbol whose value is the name
of the element converted according to the algorithm given earlier.

For example, given the following IDL declaration:

struct Binding {
Name binding_name;
BindingType binding_type;

};
the binding_name element can be accessed as follows:

aBindingStruct at: #bindingName
and set as follows:

aBindingStruct at: #bindingName put: aName
Distributed Smalltalk Application Developer’s Guide 125

Chapter 9 - Mapping of IDL to Smalltalk
Mapping for Union Types
For IDL union types, two binding mechanisms are provided: an implicit
binding and an explicit binding. Although not required, implementations
may choose to provide both implicit and explicit mappings for other IDL
types, such as structs and sequences. In the explicit mapping, the IDL
type is mapped to a user-specified Smalltalk class. The implicit binding
takes maximum advantage of the dynamic nature of Smalltalk and is the
least intrusive binding for the Smalltalk programmer. The explicit binding
retains the value of the discriminator and provides greater control for the
programmer.

Although the particular mechanism for choosing implicit vs. explicit
binding semantics is implementation specific, all implementations must
provide both mechanisms. Binding semantics is expected to be
specifiable on a per-union declaration basis, for example using #pragmas.

Implicit Binding
Wherever a union is required, the user may pass any Smalltalk object
that can be mapped to an IDL type, and whose type matches one of the
types of the values in the union. Consider the following example:

structure S { long x; long y; };
union U switch (short) {

case 1: S s;
case 2: long 1;
default: char c;

};
In the example above, a Dictionary for structure S will be mapped.
Instances of Dictionary with runtime elements as defined in structure S,
integral numbers, or characters can be used wherever a union of type U
is expected. In this example, instances of these classes can be mapped
into one of the S, long, or char types, and an appropriate discriminator
value can be determined at runtime.

Likewise, when a union is returned as the result of an operation, the
actual Smalltalk object which represents the value of the union will be
returned.
126 VisualWorks

Mapping for Sequence Types
Explicit Binding
Use of the explicit binding will result in specific Smalltalk classes being
accepted and returned by the ORB. Each union object must conform to
the CORBAUnlon protocol. This protocol must support the following
instance methods:

discriminator
Answers the discriminator associated with the instance

discriminator: anObject
Sets the discriminator associated with the instance

value
Answers the value associated with the instance

value: anObject
Sets the value associated with the instance

To create an object that supports the CORBAUnlon protocol, the instance
method asCORBAUnlon: aDiscrlmlnator can be invoked by any Smalltalk
object. This method will return a Smalltalk object conforming to the
CORBAUnlon protocol, whose discriminator will be set to aDiscrimlnator and
whose value will be set to the receiver of the message.

Mapping for Sequence Types
Instances of the OrderedCollectlon class are used to represent IDL
elements with the sequence type.

A sequence is a one-dimensional array with two characteristics: a
subtype, and an optional maximum size. Use a “< >” combination to
specify the type of data that belongs in a sequence, and optionally, the
upper limit of elements.For example:
Distributed Smalltalk Application Developer’s Guide 127

Chapter 9 - Mapping of IDL to Smalltalk
Mapping for String Types
Instances of the Smalltalk String class are used to represent IDL elements
with the string type.

Strings
Smalltalk strings and their subclasses may be passed and will be
returned by IDL operations involving string arguments. A string can
be unbounded or can have a maximum size (specified via the “< >”
combination). For example:

Mapping for Wide String Types
An IDL wide string is represented as an instance of an appropriate
Smalltalk String class.

Mapping for Array Types
Instances of the Smalltalk array class are used to represent IDL elements
with the array type.

Example Comment

sequence<string> elements; The sequence elements’
members will be of type
string.

sequence <NameComponent> Name; The sequence Name’s
members will be of the type
NameComponent.

sequence<char , 2048 > Text Buffer; The sequence TextBuffer
will have a maximum
number of 2048 members
all of which will be
characters.

Example Comment

string username; The string username is unbounded.

string<25> ChartLabel; The string ChartLabel may be no
longer than 25 characters.
128 VisualWorks

Mapping for Exception Types
Mapping for Exception Types
Each defined exception type is mapped to an instance of Dictionary.

Exception handling is implemented using the VisualWorks Signal
exception handling mechanisms. Thus to raise an exception, the program
can simply invoke #error:.

Since IDL exceptions are allowed to have arbitrary structured values
returned with the exception, the programmer needs a way to specify this
information as well. Fortunately, Smalltalk is up to the task. Consider the
example Smalltalk fragment, which raises the BAD_INV_ORDER exception
(one of the standard exceptions defined in interface Object):

^ErrorSignal
raiseWith: (Array

with: #'BAD_INV_ORDER'
with: (Array
with: minor
with: #NO))

errorString: 'routine invocations out of order'
In order to allow the ORB to correctly return the error result structure to
the sender of the method, an array must be returned as the parameter of
the error. Here, the symbolic name of the event is provided in an array
along with the type-structure representation of the required error result
values. These values will be marshalled by the ORB to ensure that the
same exception can be raised in the context of the client of the remote
operation.

As with normal Signal exceptions, a handle:do: recovery block may be
used to catch and recover from these exceptions. The main difference is
that the ORB call context will have already unwound to the site of the
remote call before the exception is raised. This greatly limits the extent to
which recovery can be accomplished.

For example, the NamingContext interface in the CosNaming module
declares these exceptions:
Distributed Smalltalk Application Developer’s Guide 129

Chapter 9 - Mapping of IDL to Smalltalk
interface NamingContext {
…
enum NotFoundReason {missing_node, not_context, not_object};

exception NotFound {NotFoundReason why; Name rest_of_name; };
exception CannotProceed {NamingContext cxt; Name

rest_of_name; };
exception InvalidName {};
exception AlreadyBound {};
exception NotEmpty {};
…
};

For exceptions declared with empty braces, no additional information is
available to the client code when the exception is raised.

Exceptions can be declared anywhere within an IDL module. Exceptions
declared at the beginning of the module apply to the module as a whole;
exceptions declared within an interface apply to that interface only.

Note, however, that [1] you cannot specify what exceptions an operation
declared as an attribute might return, and [2] if you do not specify what
exceptions might be returned by an operation, you will, when an
exception is returned, get the UNKNOWN exception.

Getting More Information on Exceptions
The Object interface (in DSTRepository>>core IFs>>CORBA) declares all the
standard exceptions.

Each DSTexception meta object is also an instance of the ExceptionDef
interface in the Repository, and may be accessed accordingly.

IDL attribute names containing an underscore (_) character are
automatically converted to conventional Smalltalk using the capitalization
rule.

Mapping for Operations
IDL operations having zero parameters map directly to Smalltalk unary
messages, while IDL operations having one or more parameters
correspond to Smalltalk keyword messages. To determine the default
selector for such an operation, begin with the IDL operation identifier and
concatenate the parameter name of each parameter followed by a colon,
ignoring the first parameter. The selector name is subject to the identifier
conversion algorithm.
130 VisualWorks

Mapping for Operations
For example, the following IDL operations:

void add_to_copy_map(
in CORBA::ORBId id,
in LinkSet link_set);

void connect push_supplier(
in EventComm::PushSupplier push_supplier);

void add_to_delete_map(
in CORBA::ORBId id,
in LinkSet link_set);

become selectors:

addToCopyMap:linkSet:
connectPushSupplier:
addToDeleteMap:linkSet:

Implicit Arguments to Operations
Unlike the C mapping, where an object reference, environment, and
optional context must be passed as parameters to each operation, the
Smalltalk mapping does not require these parameters to be passed to
each operation.

The object reference is provided in the client code as the receiver of a
message. So although it is not a parameter on the operation, it is a
required part of the operation invocation.

This mapping defines the CORBAExceptionEvent protocol to convey
exception information in place of the environment used in the C mapping.
This protocol can either be mapped into native Smalltalk exceptions or
used in cases where native Smalltalk exception handling is unavailable.

A context expression can be associated with the current Smalltalk
process by sending the message corbaContext: to the current process,
along with a valid context parameter. The current context can be
retrieved by sending the corbaContext message to the current process.

The current process may be obtained by sending the message
activeProcess to the Smalltalk global variable named Processor.
Distributed Smalltalk Application Developer’s Guide 131

Chapter 9 - Mapping of IDL to Smalltalk
Argument-Passing Considerations
All parameters passed into and returned from the Smalltalk methods
used to invoke operations are allocated in memory maintained by the
Smalltalk virtual machine. Thus, explicit free() ing of the memory is not
required. The memory will be garbage-collected when it is no longer
referenced.

The only exception is object references. Since object references may
contain pointers to memory allocated by the operating system, it is
necessary for the user to explicitly free them when no longer needed.
This is accomplished by using the operation release of the
CORBA::Object interface.

Unmapped Interfaces
It is sometimes convenient or necessary to define an interface without
providing an implementation. For example, DST defines an interface,

interfaceNamingContextExt : NamingContext
in CosNaming, to support ORBs that are ahead of DST in CORBA
compliance. Browse this interface definition for an example.

Handling Exceptions
IDL allows each operation definition to include information about the
kinds of run-time errors which may be encountered. These are specified
in an exception definition which declares an optional error structure which
will be returned by the operation should an error be detected. Since
Smalltalk exception handling classes are not yet standardized between
existing implementations, a generalized mapping is provided.

In this binding, the IDL compiler creates exception objects and populates
the CORBAConstants dictionary. These exception objects are accessed
from the CORBAConstants dictionary by sending the at: message with an
instance of a String whose value is the fully qualified name. Each
exception object must conform to the CORBAExceptionEvent protocol. This
protocol must support the following instance methods:

corbaHandle: aHandlerBlock do: aBlock
Exceptions may be handled by sending an exception object the message
corbaHandh:do: with appropriate handler and scoping blocks as
parameters. The aBlock parameter is the Smalltalk block to evaluate. It is
132 VisualWorks

Handling Exceptions
passed no parameters. The aHandlerBlock parameter is a block to
evaluate when an exception occurs. It has one parameter: a Smalltalk
object which conforms to theCORBAExceptionValue protocol.

corbaRaise
Exceptions may be raised by sending an exception object the message
corbaRaise.

corbaRaiseWith: aDictionary
Exceptions may be raised by sending an exception object the message
corbaRaiseWith:. The parameter is expected to be an instance of the
Smalltalk Dictionary class, as described below.

For example, given the following IDL specification:

interface NamingContext {
...
exception NotEmpty {};
void destroy ()

raises (NotEmpty);
...

};
the NamingContext::NotEmpty exception can be raised as follows:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaRaise.

The exception can be handled as follows:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaHandle: [:ev I "error handling logic here"]
do: [aNamingContext destroy].

Exception Values
CORBA IDL allows values to be returned as part of the exception.
Exception values are constructed using instances of the Smalltalk
Dictionary class. The keys of the dictionary are the names of the elements
of the exception, the names of which are converted using the name
conversion algorithm. The following example, which illustrates how
exception values are used:
Distributed Smalltalk Application Developer’s Guide 133

Chapter 9 - Mapping of IDL to Smalltalk
interface NamingContext {
...
exception CannotProceed {

NamingContext cxt;
Name rest_of_name;

};
Object resolve (in Name n)

raises (CannotProceed);
...

};
would be raised as follows:

(CORBAConstants at: '::NamingContext::CannotProceed')
corbaRaiseWith: (Dictionary

with: (Association key: #cxt value: aNamingContext)
with: (Association key: #restOfName value: aName)).

The CORBAExceptionValue Protocol
When an exception is raised, the exception block is evaluated, passing it
one argument which conforms to the CORBAExceptlonValue protocol. This
protocol must support the following instance message:

corbaExceptionValue
It answers the Dictionary with which the exception was raised.

Given the NamingContext interface defined above, the following code
illustrates how exceptions are handled:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaHandle: [:ev I

cxt := ev corbaExceptionValue at: #cxt.
restOfName := ev corbaExceptionValue at: #restOfName]

do: [aNamingContext destroy].
In this example, the cxt and restOfName variables will be set to the
respective values from the exception structure, if the exception is raised.

Pragmas
Pragmas are implementation-dependent messages to the IDL compiler
that can be ignored by another compiler without harm. There are two
categories of pragmas:

• RepositoryId pragmas: ID. version. prefix

• Distributed Smalltalk specific pragmas: selector, class, and access.
134 VisualWorks

RepositoryIds
IDL-specific pragmas may appear anywhere in a specification.

Mapping Pragmas to IDL Types

RepositoryIds
RepositoryIds are globally unique values that can be used to establish the
identity of information in the repository. A RepositoryId is represented as a
string, allowing programs to store, copy, and compare them without
regard to the structure of the value. It does not matter what format is used
for any particular RepositoryId. However, conventions are used to manage
the name space created by these IDs. All repository objects will have
RepositoryIds (module, interface, attribute, operation, typedef, constant,
exception).

RepositoryIds may be associated with IDL definitions in a variety of ways:
Installation tools might generate them, they might be defined with
pragma’s in IDL source, or they might be supplied with the package to be
installed.

The format of the ID is a short format name followed by a colon (:)
followed by characters according to the format. The three formats are:

• IDL format derived from IDL names

If no Repositoryld is specified, the system will generate an IDL format
Repositoryld.

• DCE format

• Local format that is intended for short-term use, e.g., in a
development environment.

Pragma IDL Type

id module, interface, attribute, operation,
typedef, constant, exception

prefix anywhere (no restrictions)

version module, interface, attribute, operation,
typedef, constant, exception

selector operation

class struct, enum, union, typedef

access operation
Distributed Smalltalk Application Developer’s Guide 135

Chapter 9 - Mapping of IDL to Smalltalk
Note: IDL format is the recommended type. In general, it is preferred
to let the system allocate the RepositoryId.

IDL Format
The IDL format for RepositoryIds primarily utilizes IDL-scoped names to
distinguish between definitions. It also includes an optional unique prefix,
and major and minor version numbers.

IDL format RepositoryIDs consist of three components, separated by
colons (:).

The first component is the format name:

IDL

The second component is a list of identifiers, separated by slashes (/).
These identifiers are arbitrarily long sequences of alphabetic, digit,
underscore (_), hyphen (-), and period (.) characters. Typically, the first
identifier is a unique prefix, and the rest are the IDL Identifiers that make
up the scoped name of the definition.

The third component is made up of major and minor version numbers, in
decimal format, separated by a period (.). When two interfaces have
RepositoryIds differing only in minor version number, it can be assumed
that the definition with the higher version number is upwardly compatible
with (i.e. can be treated as derived from) the one with the lower minor
version number.

For example, the Repositoryld for the initial version of interface Printer
defined on module Office by an organization known as “ABCCo” might be:

IDL:ABCCo/Office/Printer:1.0
This format makes it convenient to generate and manage a set of IDs for
a collection of IDL definitions. The person creating the definitions sets a
prefix (“ABCCo”), and the IDL compiler or other tool can synthesize all
the needed IDs.

Because RepositoryIds may be used in many different computing
environments and ORBs, as well as over a long period of time, care must
be taken in choosing them. Prefixes that are known to be distinct for other
reasons (e.g., trademarked names, domain names, UUIDs, etc.) are
preferable to generic ones (e.g., Document).
136 VisualWorks

Repositoryld Pragmas
DCE Format
DCE format RepositoryIds start with the characters DCE: and are followed
by the printable form of the UUID, a colon, and a single digit decimal
minor version number, for example:

DCE:700dc518-0110-11ce-ac8f-0800090bSd3e:l

Local Format
Local format RepositoryIds start with the characters LOCAL: and are
followed by an arbitrary string. Local format IDs are not intended for use
outside a particular repository, and thus do not need to conform to any
particular convention. Local IDs that are just consecutive integers might
be used within a development environment to have a very cheap way to
manufacture the IDs while avoiding conflicts with well-known interfaces.

Note: DCE and Local formats are not recommended.

Repositoryld Pragmas
A mechanism is provided to include RepositoryIds with published IDL
specifications. A convention is specified for using #pragma directives to
annotate IDL specifications with these IDs. Whether an IDL compiler
uses these annotations directly, or some other tool is involved, is
implementation defined.

Three IDL pragmas are specified in order to support arbitrary Repositoryld
formats while supporting the IDL Repositoryld format with minimal
annotation. An IDL compiler must either interpret these annotations as
specified, or ignore them completely.

ID Pragma
An IDL pragma of the format:

#pragma ID <name> "<id>"
associates an arbitrary Repositoryld string with a specific IDL name. The
<name> can be a fully or partially scoped name or a simple identifier,
interpreted according to the usual IDL name lookup rules relative to the
scope within which the pragma is contained.

The use of an ID pragma is discouraged because the system will
generate it for you.
Distributed Smalltalk Application Developer’s Guide 137

Chapter 9 - Mapping of IDL to Smalltalk
Prefix Pragma
An IDL pragma of the format:

#pragma prefix "<string>"
sets the current prefix used in generating IDL format RepositoryIds. The
specified prefix applies to RepositoryIds generated after the pragma until
the end of the current scope is reached or another prefix pragma is
encountered.

Version Pragma
A VERSION pragma is optional for interface, module, attribute, constant,
exception, operation, and typedef declarations. An IDL pragma of the
format:

#pragma version <name> <major>.<minor>
provides the version specification used in generating an IDL format
Repositoryld for a specific IDL name. The <name> can be a fully or partially
scoped name or a simple identifier, interpreted according to the usual IDL
name lookup rules relative to the scope within which the pragma is
contained. The <major> and <minor> components are decimal unsigned
shorts. If no version pragma is supplied for a definition, version 1.0 is
assumed.

Interfaces and Version Control
When a remote object reference is received by a client and the client
wishes to send a message to that object, the client side ORB checks to
determine if the interface is contained in the local repository. If the local
repository contains the correct interface (identified by its RepositoryId)
compatibility is assumed and the operation continues normally. If the
local repository holds the correct interface, but the version fields of the
RepositoryIds mismatch, then an exception is raised.

If you are using a shared repository, such an exceptions suggests that a
new version of the interface should be brought into the repository.

A higher version of an interface must support all the operations of
previous versions. Only one version of an interface is accessible (and
stored) in the DSTRepository.

When you create a new version of an existing interface and assign (or
reassign) it a version number:

• Do not change existing operation signatures.
138 VisualWorks

Repositoryld Pragmas
• Only add new operations at the lexical end of the interface definition.
(That is, do not insert a new operation between existing operation
declarations.)

• If appropriate, add additional types for the new operations after the
lexical end of the previously existing interface.

Generating Repository IDs
If no ID pragma is specified, a definition is globally identified by an IDL
format Repositoryld.

The ID string is generated by starting with the string IDL:. Then, if any
prefix pragma applies, it is appended, followed by a slash (/). Next, the
components of the scoped name of the definition, relative to the scope in
which any prefix that applies was encountered, are appended, separated
by slashes. Finally, a colon (:) and the version specification are
appended.

For example, the following IDL:

module M1 1
typedef long T1;
typedef long T2;
#pragma ID T2 "DCE:d62207a2-011e-11ce-88b4-

0800090b5d3e:3"
};
#pragma prefix "P1"
module M2 {

module M3 {
#pragma prefix "P2"
typedef long T3;

};
typedef long T4;
#pragma version T4 2.4

};
specifies types with the following scoped names and RepositoryIds:
Distributed Smalltalk Application Developer’s Guide 139

Chapter 9 - Mapping of IDL to Smalltalk
For this scheme to provide reliable global identity, the prefixes used must
be unique. Two non-colliding options are suggested: Internet domain
names and DCE UUIDs.

Furthermore, in a distributed world, where different entities independently
evolve types, a convention must be followed to avoid the same
Repositoryld being used for two different types. Only the entity that created
the prefix has authority to create new IDs by simply incrementing the
version number. Other entities must use a new prefix, even if they are
only making a minor change to an existing type.

Prefix pragmas can be used to preserve the existing IDs when a module
or other container is renamed or moved.

module M4 {
#pragma prefix P1/M2
module M3 {

#pragma prefix P2
typedef long T3;

};
typedef long T4;
#pragma version T4 2.4

};
This IDL declares types with the same global identities as those declared
in module M2 above.

Distributed Smalltalk Pragmas
In a Distributed Smalltalk Interface Repository, the most commonly used
pragmas are class and selector.

Class Pragma
A class pragma is recommended for new data type declarations. It maps
the declared data type to a Smalltalk class.

#pragma class <idl type> <Smalltalk class>

Scope Name RepositoryId

::Ml::Tl IDL:Ml/Tl:1.0

::Ml::T2 DCE:d62207a2-O11e11ce-88b4-0800090b5d3e:3

::M2::M3::T3 IDL:P2/T3: 1.0

::M2::T4 IDL:Pl/M2/T4:2.4
140 VisualWorks

About IDL and DSTRepository
For example:

#pragma class NameComponent DSTNameComponent
struct NameComponent {Istring id; Istring kind; };

Selector Pragma
A selector pragma is recommended, but not required due to the default
mapping rules for each operation declaration. It maps the declared
operation to its Smalltalk implementation method.

#pragma selector <idl operation> <Smalltalk method>
For example:

#pragma selector rebind contextReBind:to:
void rebind (in Name n, in Object obj);

Access Pragma

An access pragma is optional for operation declarations; it is used to
check specified level(s) of access for authorized users to this operation.
Classes that inherit from ORBObject and DSTPresenter can specify access
control for any operation in their interfaces. To set access control for an
operation in an interface, include the following line at the beginning of an
operation definition (in the Interface Repository):

#pragma access <idl operation> nameOfAccessValue
For example:

#pragma access set admin
void set (in AccessList access,

in SymbolOrORBId user);
where the nameOfAccessValue is a string, such as read or admin (as
specified in AccessSymbols). To see examples of how the access pragma
is used, see class DSTRepository, module Security.

About IDL and DSTRepository
IDL is represented in the system in two ways:

• the text of the IDL is represented in the several methods of
DSTRepository, and

• the marshaling machinery produced from the text is present as a
privileged instance of class DSTmoduleRepository.
Distributed Smalltalk Application Developer’s Guide 141

Chapter 9 - Mapping of IDL to Smalltalk
With one exception, all the code you write in Distributed Smalltalk is
standard Smalltalk code. The exception is in the Interface Repository
(IR), which appears as class DSTRepository. Methods in this class are
written in IDL. IDL is used here because this is the public access registry
of objects available to all CORBA-compliant applications, regardless of
language.

The class DSTRepository is used as a container of IDL code. An instance
of DSTmoduleRepository is the marshalling engine that converts messages
sent to objRefs, and the return values from such calls, to and from the on-
the-wire encodings defined in the CORBA specification. All messages
that can be sent between images are registered here.

Editing the Interface Repository
You can edit the Interface Repository, DSTRepository, using any system
browser. Note that there is no attempt to prevent simultaneous editing by
multiple users.

To open a browser from the DST Tool, select Tools ! Browse Repository,
and then select Edit ! Definition. To get read-only access, select View !
as Text (or, as Picture).

IDL Mapping to Smalltalk
The DSTMetaObject class, in conjunction with its subclasses and the
immediate subclasses of ORBObject, implements the IDL mapping to the
Smalltalk programming language. These classes provide the Smalltalk
programmer with mechanisms for expressing the following IDL concepts:

Classes Concept

DSTtypeBase,
subclasses

All IDL basic datatypes

DSTtypeConstr,
DSTtypeTemplate

All IDL constructed datatypes

DSTconstant References to constants defined in IDL

DSTObjRef References to objects defined in IDL

DSToperation,
DSTparameter,
DSTsignature

Invocations of operations, including passing
parameters and receiving results

DSTexception Exceptions, including what happens when an
operation raises an exception and how the
exception parameters are accessed
142 VisualWorks

About IDL and DSTRepository
In addition to defining the language mapping from IDL to Smalltalk, these
meta objects are themselves remotely accessible and provide the
Interface Repository behavior which is defined for all CORBA
implementations.

DSTattribute Access to attributes

ORBObject Signatures for the operations defined by the
ORB, such as the dynamic invocation interface,
and the object adapters

Classes Concept
Distributed Smalltalk Application Developer’s Guide 143

10
Working with Object Interfaces

Before an application can run in a distributed environment, its object
interfaces must be available to remote calls via the ORB. To do this, you
must add hooks in both the Smalltalk class definitions and in the IDL
interface definitions, so when an interface is invoked it can be found.

Specifically, you need to:

• Identify classes as “factories,” which create instances of objects.

• Define interfaces, which specify what services an object can provide,
and register them in the Interface Repository.

This chapter explains how to make a class a factory and register it with
the interface repository. It also describes ways for working and
maintaining interfaces in the repository.

Making a Class a Factory
According to the CORBA specification, an object that can be instantiated
to create another object is a factory. Thus, all non-abstract Smalltalk
classes are potentially factories.

In order for a class to be identified as a factory, it must be registered with
the ORB as a factory. To do so, the class must define this instance
method:

abstractClassId
This method returns an abstract class identifier (a UUID) for the
class, which the ORB uses to locate the class, and in turn to
instantiate the desired object.

The method typically looks like this:
144 VisualWorks

Adding an Interface to the Interface Repository
abstractClassId

^'c815c088-4901-0000-02d8-2421ae000000' asUUID
The trick is that the UUID must be unique for this class in the image. To
generate a unique identifier for a class, evaluate the following in a
workspace, using PrintIt :

ORBObject newId
Then copy the resulting string into the method body, in place of the string
in the above example.

Note: DO NOT copy the UUID from the body of any existing
abstractClassId method. This number must be unique for this class in
the image.

With this method defined, the ORB recognizes and registers the class as
a factory when it initializes. An ORB initializes its factories registry when it
starts. You can also force initialization in these ways:

• In the DST Tool, choose Initialize ! Initialize Factories.

• Evaluate the expression:

ORBObject initializeFactories

Adding an Interface to the Interface Repository
The class DSTRepository is used as a container of IDL code. An instance
of DSTmoduleRepository is the marshalling engine that converts messages
sent to objRefs, and the return values from such calls, to and from the on-
the-wire encodings defined in the CORBA specification. All messages
that can be sent between images are registered here.

When a remote object (client) requests a service from a local object, the
local ORB’s Interface Repository is used to identify the local object, which
services it can perform, and which messages are sent to provide these
services. The association between an interface and its supporting class is
made with the CORBAName message, which supplies the interface name.
Distributed Smalltalk Application Developer’s Guide 145

Chapter 10 - Working with Object Interfaces
To add an interface to the repository, do the following:

1 Create the CORBAName method.

Every class that implements an interface registered in the Interface
Repository must implement the CORBAName instance method. This
identifies a specific module and interface in the Interface Repository.
Code for this method (usually in the message category repository)
looks something like this:

CORBAName
"Answer the name of the receiver's CORBA interface in the IDL
repository."

^#'::DSTSampleComputeService::DSTSampleComputeServiceInterface'
The two words in the CORBAName method code correspond to the
name of the module and the name of the interface as specified in
DSTRepository.

2 Generate an IDL interface definition.

Send the message asIDLDefinition to your interface class, to create a
first draft of the interfaces for a Smalltalk class:

yourClassName asIDLDefinition
The interface definition created will include an operation for every
method in the class, many of which will be inappropriate for
distributed access and can thus be removed. asIDLDefinition also
makes best guesses at return types and parameters, but you will
probably need to edit these as well.

Once generated, the definition is displayed in a text window.

This interface can also be generated using the IDL Generator tool.
Refer to “Creating an IDL Module Using the IDL Generator” below for
instructions.

Client: ObjectX performService

ORB

request service of ObjectX

ORB

Interface Repository
146 VisualWorks

Adding an Interface to the Interface Repository
3 Edit the definition, as required.

You need to:

• Verify that the interface name is correct, and corresponds to the
name you supplied in the CORBAName method for the class.

• Add parent interfaces, as needed.

• Delete operation definitions that correspond to messages that
should not be available to remote clients (including but not limited
to messages in private protocols).

• For the remaining operation definitions, edit the result types,
parameters, and operation names.

• Edit definitions for types, constants, attributes, exceptions (for the
module as a whole or for specific interfaces).

• Delete unnecessary pragmas. For example selector pragmas are
not needed for any unary messages, as the mapping between
the Smalltalk message and IDL operation is clear.

• Add access pragmas for access controlled operations.

4 Browse DSTRepository to add these interfaces to a new module.

• Copy the text from the workspace and paste it into the module
you are creating.

• Add module comment and name at the beginning of the module.

• Add a final ” };” at the end of the module.

• Verify that each interface ends properly with a brace and a
semicolon: “};” .

For specifics on IDL syntax and Smalltalk language bindings, see
Chapter 8, “Defining IDL Interfaces.”.
Distributed Smalltalk Application Developer’s Guide 147

Chapter 10 - Working with Object Interfaces
Creating an IDL Module Using the IDL Generator
The IDL Generator is used when you have a Smalltalk class and want to
generate the IDL interface for it. This is an alternative to using the
asIDLDefinition method described above. Note the difference between
server and client classes distinguishes between the requester of the
service (client) and the provider of the service (server).

To launch the IDL Generator you can choose the Distributed Smalltalk
main window’s menu option DST! IDL Generator or you can execute the
following:

DSTIDLTool open
Use the IDL Generator to specify the interface and its characteristics.

1 Choose the class(es) of the server object(s).

Click in the Servers list to choose one or more classes whose
interface(s) will appear in this module. (Related interfaces, such as a
presentation and semantic class, are usually included in the same
module.)

A check indicates that the class is marked for inclusion.

To limit the list of classes, in the box above the class list, specify a
pattern that will be used as a filter. For example, to see a list of
semantic objects, you would specify *SO. You can also specify that
metaclasses should be included in the list (by default they are not).

1

4

3

2

5

6, 7, 8

Servers

Clients

Methods

Arguments

Module

Generate

specifier

buttons
148 VisualWorks

Creating an IDL Module Using the IDL Generator
Note: Metaclasses refers to class side methods.

2 Choose the corresponding client(s).

Click in the Clients list to choose the class(es) of client objects that will
be able to make requests of the specified server’s interface. The
client classes you choose here help filter the list of methods included
in Step 3.

Again, you can limit the list of classes by specifying a filter pattern.
You can also specify that subclasses of the specified classes should
appear in the list.

3 Choose method(s) that will respond to client requests.

In the Methods list area, click the Filter Methods button to show check
marks for those methods that correspond to messages the selected
client(s) can send.

Click on any additional method names you wish to mark for inclusion
(indicated with a check mark). Or, click again to unmark a method
name.

The most recently clicked (checked) method name will be the
selected method. For the selected method, the corresponding IDL
operation will appear in the arguments list (step 4) below.

4 Specify argument types for the selected method.

In the Arguments list area, the small box at the top of the argument list
shows the return type for this operation (method). The larger box lists
any arguments for this operation, and their types. By default, all types
are shown as SmalltalkObject, which is a legal type but generally not
specific enough to be useful.

Use the <operate> mouse button to get a pop-up list of IDL types
(boolean, character, long, float, octet, any, string, sequence), or
choose other to provide a Smalltalk class name or other type.

5 Specify a module name.

Note that if you use an existing module name, when you compile the
module (in step 6, below), the new module will overwrite the existing
module. However, you can change the module name you specify
here before compiling, and thus avoid difficulties.
Distributed Smalltalk Application Developer’s Guide 149

Chapter 10 - Working with Object Interfaces
6 Click Generate IDL to generate the interface.

The IDL module will appear in the IR Browser. Review and edit the
module, then choose accept.

7 Click Generate Glue to generate the corresponding Smalltalk repository
methods.

This generates a repository protocol that includes the appropriate
abstractClassId and CORBAName methods for each of the server
classes in the module.

8 Click Verify IDL to perform a consistency check.

This checks consistency of types, operations, and interfaces between
Smalltalk and IDL. Any errors detected are printed in the System
Transcript (in the main Distributed Smalltalk main window).

Refining the Module
You can only use the IDL Generator to create modules that include
interfaces and their operations. If you wish to define other IDL elements
(types, attributes, constants, and exceptions), you must do so directly in
the module itself.

Edit the interface using a system browser on the image containing the
interface definitions. Browse DSTRepository and find the definition to edit.

Interface Repository Browser
The Repository Browser gives you a graphical and a textual view of the
interface repository. Editing the repository is done using the normal
system browsers.

Opening the Browser
Open the Repository Browser by selecting Tools ! Browse Repository in the
DST Tool.

From the Repository Browser, you can open further browsers on either
semantic or presentation interfaces. In the Repository Browser, select
Tester ! Open Interface, and then select either Semantic or Presentation. The
semantic is either local or remote, depending on whether the repository is
local or remote, and the presentation is local.
150 VisualWorks

Interface Repository Browser
IR Browser Icons
IR Browser icons, based on a metaphor of blueprints and construction
equipment, indicate the component displayed. (An interface is
represented as a blueprint, a module as a group of interfaces; parameter
types show if a nail can be hammered in, pulled out, or both; an operation
as a cement mixer; a result as a filled wheelbarrow.)

attribute
(read-only)

constant

expression exception

interface

parameter
(in)

module

operation

repository

result type

parameter
(out) parameter

(inout)

attribute
Distributed Smalltalk Application Developer’s Guide 151

Chapter 10 - Working with Object Interfaces
IR Browser menus

Action menu

Edit menu

View menu

Menu Option Description

Print Not yet implemented

Open Definer Opens an IR Browser on the meta object in
which this item is defined.

Open Repository Opens an IR Browser on the root
(DSTRepository).

Open Referent Provides a list of meta objects that reference
this item by name; double click in the list or
select an item and click OK to open a new IR
Browser window.

Close Closes this window.

Menu Option Description

Definition Opens a class browser where you can edit
the definition.

Menu Option Description

as Text Show this window of the IR Browser as read-
only IDL text.

as Picture Show this window of the IR Browser
graphically (default).
152 VisualWorks

Importing IDL files
Importing IDL files
Distributed Smalltalk provides a mechanism to import IDL files generated
outside of Distributed Smalltalk. These external IDL files can have
preprocessing directives. The important steps are listed below.

Setup for Preprocessing
Distributed Smalltalk does not include a preprocessor. You can use one
of the following approaches:

• Use an ANSI C++ preprocessor to preprocess the IDL file.

a Preprocess the IDL using the ANSI C++ preprocessor that is
available on your system.

b Import the IDL file into Distributed Smalltalk using the IDLCompiler
importIDLFile:category: class method.

The first argument is the name of the preprocessed IDL file. The
second argument is the name under which the contents of the
IDL file will appear in the IR browser.

• Use the VisualWorks DLL and C Connect preprocessor
(CPreprocessor)

You can use the C preprocessor that comes with DLL and C
Connect, included with VisualWorks. Even though this preprocessor
is not ANSI C++ compliant, it will work in most cases. Load the
DLLCC parcel, then do the following:

a Modify the IDLCompiler preprocess: class method to work with
CPreprocessor. As described in the method comment, change the
method to

^CPreprocessor preprocess: aStream
Other preprocess messages are defined in CPreprocessor that you
may need to use instead. Put whatever statement meets your
needs as the method body.

b Send an importIDLFile:category: to the IDLCompiler class.

This message sends the (modified) preprocess: message to the
input stream. The arguments are a FileName specifying the IDL
file, and a symbol specifying the DSTRepository method
category.
Distributed Smalltalk Application Developer’s Guide 153

Chapter 10 - Working with Object Interfaces
Annotate the IDL with Pragmas Where Necessary
Use a System Browser to add any necessary pragmas to the imported
IDL. See Chapter 8, “Defining IDL Interfaces” for details on pragmas.

Avoiding Interface Problems

Keeping Interface Repositories Updated
Each Distributed Smalltalk image contains its own interface repository,
unless you are using a shared repository. Changes you make to
interfaces in one image do not propagate automatically to others. When
interface repositories are not in sync with each other, you can get
communication failures.

One way to facilitate interface repository maintenance is with a shared
repository. To share a repository, open the DST Settings tool (File !
Settings) in the DST Tool. On the Repository page, select the Host radio
button and enter the host IP address or name. Do this in all images that
will be sharing this repository, except the one hosting the repository,
which will be configured to Local.

Edit Lock
It is possible to get the IR Browser in a state where there is an edit lock,
but no user is actually editing the repository. This can happen when an
exception is raised while editing the repository and instead of proceeding
from the error, terminate is chosen from the Error Handling dialog box;
thus by passing the cleaning up of the lock.

The following method is provided to clean-up this situation:

DSTRepository class>>dropEditLock.
It should be used with extreme caution because if the repository is locked
for legitimate reasons and another user is currently editing, the lock will
be removed and concurrent changes may be made to the same module
within the repository.
154 VisualWorks

11
Initialization Service

ORB initialization defines the way in which an application can initialize
itself in a CORBA environment. There are three aspects to ORB
initialization as specified by the OMG:

• ORB initialization

Initialize an application into the ORB and Object Adapter
environments. Return ORB and OA pseudo object references to the
application for use in future ORB and OA operations.

• Object Adaptor (OA) initialization

Obtain a reference to an object adaptor pseudo-object so that object
implementations have access to the ORB functionality.

• Obtaining initial object references

Obtain initial object references for an application.

Distributed Smalltalk does not implement the ORB and OA initialization
interfaces. These interfaces are not necessary because of the
combination of Smalltalk’s dynamic nature and Distributed Smalltalk’s
architecture. These interfaces are intended for support of objects
generated with static languages like C/C++.

Programmatically Initializing, Starting, and Stopping the ORB
The ORB can be initialized, started, and stopped using the DST Tool
panel. In many cases, however, it is desirable to do so programmatically,
either with a custom tool or without any tool at all.

To initialize an ORB, send an initializeORBAtHost:nodeId: message to the
ORBObject class:
Distributed Smalltalk Applicaiton Developer’s Guide 155

Chapter 11 - Initialization Service
ORBObject initializeORBAtHost: aHostName nodeId: aHostAddress
where aHostName is the host name and aHostAddress is the host IP
address, as defined for IPSocketAddress. Given a host name only, you can
get the address and initialize the ORB like this:

ORBObject
initializeORBAtHost: aHostName
nodeId: (IPSocketAddress hostAddressByName: aHostName).

To initialize the ORB on the local machine, simply evaluate:

|host|

host := SocketAccessor getHostname.
ORBObject initializeORBAtHost: host
nodeId: (IPSocketAddress

hostAddressByName: host).
ORBDaemon startUpCoordinator startRequestBroker

Once initialized, you can start the ORB.

Starting and stopping the ORB is managed by an instance of
ORBStartUpCoordinator that is held by ORBDaemon. To start or stop the
ORB, send one of these messages to the coordinator:

startRequestBroker
Starts the request broker.

shutDown: minutes
Shuts down the ORB in minutes, an integer value. To shutdown
immediately, specify 0.

You get the coordinator from the ORBDaemon by sending the
startUpCoordinator message, so you can start or stop the ORB as follows:

ORBDaemon startUpCoordinator startRequestBroker
or

ORBDaemon startUpCoordinator shutDown: 3
156 VisualWorks

Getting Remote ORB References
Getting Remote ORB References
Message sends to class OrbResolver are used to generate references to
remote ORBs. Several methods are provided.

Given the ORB hostname and port number, use:

OrbResolver
generateOrbProxy: hostname
transport: ORBDaemon configurationManager
configurationOf: #IIOP
port: portNumber

If you already have an ObjRef to an object on the remote ORB, you can
get a reference to the ORB using:

OrbResolver generateOrbProxyOnReference: aCoLocatedReference
Browse OrbResolver for other options, and search the system for senders
for examples.

Initial Object References
The initial object reference service logically is a simplified local version of
the naming service which an application can use to obtain a small defined
set of object references which are essential to the application’s operation.

Because only a small well defined set of objects are expected to be
available via the initial object reference mechanism the naming context is
flattened to a single level namespace. Only two operations are defined
for the initial object reference mechanism. The pseudo IDL for these
operations is:

module CORBA {
\interface ORB {

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;
exception InvalidName {};
ObjectIdList list_initial_services ();
Object resolve_initial_references (in ObjectId

identifier) raises (InvalidName) ;
};

};
Distributed Smalltalk Applicaiton Developer’s Guide 157

Chapter 11 - Initialization Service
In order to allow an application to determine which objects have
references available via the initial references mechanism the
list_initial_services operation is provided. It returns a sequence of strings.
Each string represents an object which is available through this
mechanism.

The resolve_initial_references operation returns the object reference
associated with its argument. Arguments can be any of the strings
returned by the list_initial_services operation.

Distributed Smalltalk Implementation
The list_initial_services operation is implemented by:

ORBObject class>>listInitialServices
When invoked it will return an IdentitySet of symbols representing objects
which have references available via the initial references mechanism.

ORBObject class>>resolveInitialReferences:
The argument to this method is one of the symbols returned by
listInitialServices. This method returns the object reference associated with
the argument.

Currently there are four objects whose references are available via the
initial references mechanism:

• InterfaceRepository

• NameService

• FactoryFinder

• UserSecurityDatabase

ORB Utility Methods
There are a variety of utility methods available in ORBObject for
retrieving information about the ORB or various

hostName
You often need to get the local host name, for example, in the
process of initializing an ORB. This is the easiest way to do it.
158 VisualWorks

ORB Utility Methods
namingService
This is the quickest way to get the naming service. It usually will be
either a DSTNameContext or a DSTObjRefRemote, depending on whether
the DST image has been configured to use a local or a remote
naming service.

factoryFinder
This is the quickest way to get the factory finder, which is a directory
used by the Lifecycle Service.

repository
This is the quickest way to get the interface repository. You will get
either a privileged instance of DSTmoduleRepository or a reference to a
one, depending on whether the image is configured to use a local or
a remote repository.

referenceToFile: aString object: anObject
This message returns what is known as a “stringified object
reference.” A reference, in the form of a hexadecimal string, to
anObject is written to the file name aString. Such files are a usual way
of providing clients, at startup, with initial references to an remote
object.

referenceFromFile: aString
This method produces an object reference from a stringified object
reference contained in the file aString.

explainIOR:
Provides a detailed description of an IOR. This is useful in debugging
when it is found that the object reference obtained from a stringified
object reference cannot be resolved.

Browse the class side of ORBObject for additional utility methods.
Distributed Smalltalk Applicaiton Developer’s Guide 159

12
Naming Service

The Naming Service is part of the Common Object Services specification
published by OMG. It specifies what CORBA object names should
consist of and how names can be set and accessed, so that local and
remote objects in any CORBA implementation can be correctly identified.
Clients can use the naming service to locate and identify objects in both
local and remote systems.

Distributed Smalltalk implements this service by providing a simple
mapping between the specified name structure, and a ation of this
includes support both for standard naming policies, You use the naming
service directly to obtain initial access to an object programmatically (see
“Initial Object References”).

Note that the ORB does not use the naming service, but identifies objects
by the unique identifiers or the objects themselves (if local) or of their
object references (if remote). The Naming Service is a service provided
for developers, so that they can make certain privileged objects publicly
available.
160 VisualWorks

What Constitutes a Name?
What Constitutes a Name?
A name is an ordered sequence of components that is bound to a specific
object. A name binding is a name-to-object association.

Name Components
Name components are the parts that make up a name. A name is
comprised of one or more components. A component is the name of
either the bound object or a naming context. There can be more than one
naming context in a compound name.

A simple name is a name with a single component (an object). Simple
names are guaranteed unique only within a context.

A compound name is made up of an ordered sequence of contexts and
the name of the bound object. In a compound name, each component
except the last is used to name a context; the last component names an
object. Compound names are guaranteed to be unique system-wide.

Name Contexts and Naming Graphs
A naming context is an object that contains a set of name bindings in
which each name is unique. A name binding is always defined relative to
a naming context. Different names can be bound to an object in the same
or different contexts at the same time. Since a name context is itself an
object, it may be bound to a name in another name context.

A naming graph is a directed graph with contexts (nodes) and labeled
edges. A naming graph is created by binding contexts in other contexts.
A naming graph is similar to a file system’s directory structure, with
contexts that are similar to directories, and objects similar to file names.
Distributed Smalltalk Application Developer’s Guide 161

Chapter 12 - Naming Service
Example of a Naming Graph

Naming Service Operations
The classes that implement the naming service are in the class category
COS-Naming. You can browse those classes and the following examples
to learn more about naming policies and services.

Creating Names
To create an instance of a name, class DSTName implements these class
methods:

• To create a new name given the name components, use on:
For example:

DSTName on: (Array with:
(DSTNameComponent id: 'simple' kind: 'text')).

or:

DSTName on: (Array
with: (DSTNameComponent id: 'example' kind: 'dir')
with: (DSTNameComponent id: 'myImage' kind: 'im')).

• To return a new name on a given name string, use onString: or
asDSTName. For example:

DSTName onString: 'simple' or 'simple' asDSTName

contextA contextB

objectB1

minehers

objectA1

myobject

contextBB

myobjectobjectA1 hers

newContext

object that is a
naming context

object reference
162 VisualWorks

Naming Service Operations
• To return a new compound name, use onStrings: or the shortcut
method asDSTName: For example:

DSTName onStrings: #('component1''component2' 'component3')
or

#('component1' 'component2' 'component3') asDSTName.

Binding and Unbinding
The naming policy establishes how to bind each object to a unique name
within a given context. A name binding is a name-to-object association.
Only one object can be bound to a particular name in a context.

Class DSTNameContext implements methods for the following binding
operations:

• You can bind both objects and other contexts to contexts
(bindNewContext:, contextBind:to:, contextBindContext:to:).

• If a context does not exist, you can create it, or create it and bind an
object to it (newContext, bindNewContext:).

• If an object or context is already bound, it can be rebound
(contextReBind:to:, contextReBindContext:to:)

• If rebinding is not strong enough, you can unbind or destroy a context
(contextUnBind, destroyContext).

For example:

| cxt |
cxt := DSTNameContext new.
cxt contextBind: ('foo' asDSTName) to: 7.
cxt contextReBind: ('foo' asDSTName) to: 8.
cxt contextBindContext:(DSTName onString:'aContext')

to: DSTNameContext new.
cxt contextBind: (DSTName onStrings: #('aContext' 'fee'))

to: #fum.
cxt contextUnBind: (DSTName onStrings:

#('aContext' 'fee')).

Resolving and Listing Contexts
A name can be resolved to determine which object it represents. A name
resolution uses a name to identify an object. Because names can have
multiple components, name resolution can traverse multiple contexts.

Class DSTNameContext implements these methods resolving names and
listing contexts:
Distributed Smalltalk Application Developer’s Guide 163

Chapter 12 - Naming Service
• To resolve a name, use contextResolve:.

• To return a given number of bindings contained in the specified
naming context, you can use listContext:. (Use with DSTBindingIterator
to iterate through the list.)

For example:

| cxt |
cxt := DSTNameContext new.
cxt contextBind: (DSTName onString: 'foo') to: 7.
cxt contextResolve: (DSTName onString: 'foo').
cxt bindNewContext: (DSTName on:

(Array with: (DSTNameComponent id: 'foo' kind: 'cxt'))).
cxt newContext.
cxt destroyContext.

Syntax-Independent Kinds and Identifiers
To avoid issues of differing name syntax, the naming service always
deals with names in their structural form, which consists of two attributes:
the identifier attribute and the kind attribute. Both the identifier attribute
and the kind attribute are represented as IDL strings.

The kind attribute adds descriptive information to names independent of
their syntax. For example, suffixes such as (for C language in Unix) “.c”
or “.o” would be replaced with “c_source” or “object_code”. Applications
like the C compiler depend on these syntactic conventions to make name
transformations such as from foo.c to foo.o. Such syntactic convention is
not explicit; software that does not depend on the syntactic conventions
for names does not have to be changed to adapt to new conventions.

An empty string indicates no kind. The naming service does not interpret,
assign or manage these values in any way. Higher levels of software may
make policies about the use and management of these values.

Exceptions
Class DSTNameContext implements these exceptions for the naming
service:

notFoundError:restOfName:
The name does not identify a binding.

cannotProceedError:nameComponent:
The implementation has given up for some reason. (For example,
when there is a network problem during a resolve operation that
involves several systems.) The client, however, may be able to
continue operation at the returned naming context.
164 VisualWorks

Interfaces
invalidNameError
The name is invalid.

alreadyBoundError
 A name binding using this name already exists.

notEmptyError
The context cannot be destroyed because it is not empty.

Interfaces
The CosNaming module in DSTRepository defines the NamingContext and
BindingIterator interfaces for object naming. Browse these interfaces for
details.

Implementation
Four classes interact to provide the primary support for the naming
service. Browse these classes for variables and methods. Their positions
in the class hierarchy are:

Object
DSTNameComponent
Collection

SequenceableCollection
OrderedCollection

DSTName
Model

ORBObject
DSTPersistentObject

DSTNameContext
DSTfactoryFinder
SessionContext

DSTDesktopSessionContext
Stream

PeekableStream
PositionableStream

InternalStream
ReadStream

DSTBindingIterator
Distributed Smalltalk Application Developer’s Guide 165

13
Event Notification

The event notification service enables objects to notify one another of
interesting occurrences using an agreed protocol and set of objects. As
designed, it provides optimal communication between objects in a
distributed computing environment.

Overview
The event notification service supports decoupled, asynchronous
communication between objects. Objects that generate events (event
suppliers) place the event information in an event channel. From the
event channel, event information is either pushed to event consumers
(objects that wish to receive the event information), or pulled by the event
consumers from the event channel at the consumer’s convenience.

There can be more than one event channel. Each event channel can
have one or more event suppliers and one or more event consumers.

Need for Event Notification in a Distributed System
In a distributed object system, objects that interact may “live” in various
images and machines, both local and remote. By decoupling
communication, the event channel provides support for object interaction
when objects are unavailable temporarily because the network or a
remote system is “down.”

The CORBA2.0 architecture specifies a synchronous notification
mechanism (RPC) between a single client and single server, both of
which must be available when the service request is made. The need for
asynchronous communication prompted OMG to include the event
service in the Common Object Services Specification.
166 VisualWorks

Event Channel
Terminology

Event Channel
An event channel stores event information, thus allowing objects to
communicate asynchronously. Although consumers and suppliers
communicate with the event channel using standard CORBA requests,
the event channel need not supply the event data to its consumer at the
same time it consumes the data from its supplier.

• An event channel can have any number of consumers and suppliers.

• Consumers and suppliers must register with the event channel in
order to participate in it.

• The event channel is a consumer of event information from its
suppliers, and a supplier of event information to its consumers.

event An occurrence within an object that may be of
interest to other objects. For example, when a model
object changes, it generates an event to inform its
view-controller pairs in both local and distributed
images.

event consumer An object that receives and processesevent data.

event supplier An object that produces event data for distribution to
consumers.

event channel An object that holds event information until
consumers are ready to receive it.

Consumer

Consumer

Supplier

Consumer

Consumer

Consumer

Event
ChannelSupplier
Distributed Smalltalk Application Developer’s Guide 167

Chapter 13 - Event Notification
Multiple Event Channels
Usually, each group of related objects and activities should have its own
event channel. Channels can be used to handle multiple sources and
sinks irrespective of their function. Typically you would organize it around
specifically related objects and activities.

However, the same channel can be allowed to handle both data changed
and data deleted event information.

Event Channel Administration
An event channel is built up incrementally. When an event channel is
created, there are no suppliers and no consumers associated with it.
Upon creation of the channel, the factory returns an object reference
supporting the EventChannel interface. The ConsumerAdmin and
SupplierAdmin interfaces allow consumers and suppliers to be added to
the event channel. (That is, the ConsumerAdmin and SupplierAdmin
interfaces provide client access to the services implemented in class
DSTEventChannel’s message categories Consumer Admin and Supplier
Admin.)

Push and Pull Models
The event notification service supports two models of communication:
push (the default) and pull. When adding a consumer or supplier to an
event channel, you specify it as either pull or push type.

Push
The push model is similar to an interrupt: when an event occurs, the
supplier initiates the notification of the event to the consumer
immediately.

For example, the push model would be the best choice for a disk (an
event supplier) that needs to notify a system administration tool (an event
consumer) immediately if the disk runs out of space. When the disk is full,
it pushes event information to announce the space problem; any
connected consumer, in this case the system administration tool, is
notified immediately of the event.

push

data flow
ConsumerSupplier
168 VisualWorks

Push and Pull Models
Pull
The pull model is similar to polling: a consumer initiates a request for
event data when it is convenient for the consumer to do so, regardless of
when (or if) the event occurs.

For example, the pull model would be a good choice for an event
notification relationship between a document (event consumer) that
needs to know about changes to an embedded table (event supplier). If
the document is closed when the table changes, notification of the
change can wait until the document is next opened or accessed. If a user
is editing the document, the editing process should probably not be
interrupted to update the table; this can also wait until there is a pause in
editing. That is, if you set up the document as a pull consumer, it can
request update information at its convenience (for example, at start up, or
when open but idle).

Disconnect to Terminate Communications
The disconnect operations allow either a consumer, supplier, or channel
to terminate communications by severing its ties with the supplier or
consumer. These operations are useful when an object should not be
interrupted with event information. The disconnect operations are:

DSTPullConsumer disconnectPullConsumer

DSTPullSupplier disconnectPullSupplier

DSTPushConsumer disconnectPushConsumer

DSTPushSupplier disconnectPushSupplier

pull

data flow
ConsumerSupplier
Distributed Smalltalk Application Developer’s Guide 169

Chapter 13 - Event Notification
Consumers and Suppliers

• Any of the event channel’s relationships with either suppliers or
consumers can use either the push or pull model.

• Any supplier or consumer can be disconnected from the event
channel (in order to avoid inconvenient event notification).

Proxies
Proxy consumers and suppliers (classes DSTProxyConsumer and
DSTProxySupplier) are system-level classes that are used to establish
communication with an event channel. Application programmers should
never work directly with proxy objects. As an example of push and pull,
consider the following diagram:

Event
Channel

Supplier

Supplier c
c

s
s
s

s
s

pull

push

pull

push

disconnect

Supplier

c
push

pull

push

push

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Supplier Consumer

Consumer

Event
Channel

proxies
170 VisualWorks

Event Data
Event Data
The push and pull operations of the consumer and supplier interfaces
communicate event data as type any. This allows generic services, such
as an event channel, to consume, store, and supply event data without
understanding the type of the event data.

Using type any for event data does not mean that the data is untyped.
Suppliers and consumers of event data need to agree on the type of the
event data. Consumers of the event data need to interpret the data
according to the agreed upon type.

However, using type any has a higher overhead and does not provide
type checking; you can use explicitly typed events if you want to lower
messaging overhead and check types (see “Using Typed Events”).

Using Events
If you wish to consume events from an EventChannel, you need to
implement an class which will handle messages from the consumer
(DSTPushConsumer or DSTPullConsumer). An instance of this class is held
by the consumer in an attribute named host. Upon receiving a disconnect
message, for instance, the consumer notify the host by sending the
message:

host removeConsumer: self.
A host to a DSTPushConsumer must also implement a method which will
get called when an event is received by the consumer. This method is
designated upon setup as the aspect. It should be noted that the Symbol
that is passed to the consumer is converted to a setter method.

You must also implement two messages for supplier hosts that wish to
participate as supplier to event channels. Upon receiving a disconnect
message, the supplier will notify the host by sending the message:

host removeSupplier: self.
A host to a DSTPullConsumer will additionally need to implement the
method supplierNeedsEvent. This message gets sent when the
pullConsumer has requested an event and no events are left in the queue
for the supplier.

This gives the host a chance to process any outstanding events before
the pull supplier responds to the pull consumer.
Distributed Smalltalk Application Developer’s Guide 171

Chapter 13 - Event Notification
Example Code for Events
The examples below require that an EventChannel be created, for
example:

anEventChannel := DSTEventChannel new asRemotable
and that the appropriate hosts are constructed as described in “Using
Events” above.

Example: Connecting a Push Consumer to a Channel
1 Create a new push consumer. For example:

consumer := DSTPushConsumer new.
2 Get a proxy supplier. For example:

proxySupplier := anEventChannel forConsumers
obtainPushSupplier.

3 Connect the consumer to the supplier. For example:

proxySupplier connectPushConsumer: consumer.
4 Initialize the consumer. For example:

consumer host: aHost supplier: proxySupplier aspect:
#displayEvent

Note: The host is expected to have implemented the displayEvent:
method.

Example: Connecting a Pull Consumer to an Event Channel
1 Create a new pull consumer. For example:

consumer := DSTPullConsumer new.
2 Get a proxy supplier. For example:

proxySupplier := anEventChannel forConsumers obtainPullSupplier.
3 Connect the consumer to the supplier. For example:

proxySupplier connectPullConsumer: consumer.
4 Initialize the consumer. For example:

consumer host: aHost supplier: proxySupplier.
172 VisualWorks

Using Typed Events
Example: Connecting a Push Supplier to a Channel
1 Create a new push supplier. For example:

supplier := DSTPushSupplier new.
2 Get a proxy consumer. For example:

proxyConsumer := anEventChannel forSuppliers
obtainPushConsumer.

3 Connect the supplier to the consumer. For example:

proxyConsumer connectPushSupplier: supplier.
4 Initialize the supplier. For example:

supplier host: s1_supplier consumer: proxyConsumer.

Example: Testing the Event Example
supplier processEvent: 'hello'.
supplier processEvent: 'hello again'.
Transcript cr; show: 'Pull Consumer tryPull event ! ', consumer

pullEventData ;cr.
Transcript cr; show: 'Pull Consumer pull event !', consumer

pullEventData ;cr.

Using Typed Events
The typed event service extends basic event notification, allowing you to
determine:

• Specific event types

By default, event channels pass data of type. However, it can be
more efficient if you type an event channel to pass only strings, or
tables, or a specific type of structure that you have defined, as
appropriate.

• Quality of service

By default, a push supplier sends event notification to a consumer
when the event channel receives the event data. If the consumer is
unavailable for the original notification, the event data is held in the
channel until another event occurs, at which time notification of both
events is sent together. The event channel will continue to attempt to
push the event data each time a new event occurs, until it is
successful or the channel is destroyed.
Distributed Smalltalk Application Developer’s Guide 173

Chapter 13 - Event Notification
Using the typed event service, you can specify the quality of service
for each channel or consumer-supplier pair. That is, you can set the
channel to retry at certain interval over a given time period, or you
can set it to retry once only, or not to retry at all.

Example: Connecting to a Channel
To connect to a channel, at a minimum, you must:

1 Create a new consumer. For example:

consumer := DSTPushConsumer new.
2 Get a supplier. For example:

supplier := anEventChannel forConsumers obtainPushSupplier.
3 Connect the consumer to the supplier. For example:

supplier connectPushConsumer: consumer.
4 Initialize the consumer. For example:

consumer
'host: self
supplier: supplier
aspect: #linkAdded

Example: Implementing a Typed Push Connection
If you wish to allow a supplier-to-consumer push connection that is typed,
you should implement both a typed push supplier and a typed push
consumer, as well as their corresponding interfaces.

Typed Push Supplier and Interface
If you want to create a push supplier that only generates event data of
type String or type Point (a structured type with two elements: x and y),
you can do this:

1 Subclass from DSTTypedPushSupplier.

2 Create the class repository methods abstractClassId and CORBAName.
174 VisualWorks

Using Typed Events
3 Create the private method pushToConsumer: anEvent, which might be
defined like this:

pushToConsumer: anEvent
"push the event to the consumer"
(anEvent isKindOf: String)

ifTrue: [^consumer pushString: anEvent].
(anEvent isKindOf: Point)

ifTrue: [^consumer pushPoint: anEvent].
consumer pushEventData: anEvent

4 Create an IDL interface which might look something like this:

// This interfacedefines thebehavior of my new typed push supplier.
//
interfaceTypedPushSupplierExample:CosEventComm::PushSupplier{};

Notice that the interface can be simple (no operations) but it must be
listed in the interface repository so that a typed event channel can
create one using the CORBAName as the key. Also, it must inherit from
an interface (such as PushSupplier) that defines or inherits the
appropriate behavior.

5 Set up a typed supplier (subtly different from setting up a non-typed
supplier):

"create a new event channel"
aTypedEventChannel := DSTTypedEventChannel new.

"create a new supplier"
supplier := MyTypedPushSupplier new.

"hook the supplier to the event channel"
supplierAdmin := aTypedEventChannel forSuppliers.
proxyConsumer := supplierAdmin obtain TypedPushConsumer:

MyTypedPushConsumer new CORBAName.
proxyConsumer connectPushSupplier: supplier.

"initialize the supplier"
supplier host: self

consumer: proxyConsumer getTypedConsumer.

Corresponding Typed Push Consumer and Interface
To implement a consumer that interacts with the supplier you just
created:

1 Subclass from DSTTypedPushConsumer.

2 Create the class repository methods abstractClassId and CORBAName.
Distributed Smalltalk Application Developer’s Guide 175

Chapter 13 - Event Notification
3 Create the host messages methods pushString: and pushPoint:, which
might be defined like this:

pushString: aString
"pass this event to the host"

self pushEventData: aString

pushPoint: aPoint
"pass this event to the host"
self pushEventData: aPoint

4 Create an IDL interface which might look something like this:

// This interface defines behavior of my new typed push consumer
//

interface TypedPushConsumerExample :
CosTypedEventComm::TypedPushConsumer

{

void pushString (in string str)
raises (Disconnected);

void pushPoint (in Point pt)
raises (Disconnected);

};
5 Set up a typed consumer:

"create a new consumer"
consumer := MyTypedPushConsumer new.

"hook the consumer to the event channel"
consumerAdmin := aTypedEventChannel forConsumers.
proxySupplier := consumerAdmin obtainTypedPushSupplier:

MyTypedPushSupplier new CORBAName.
proxySupplier connectPushConsumer: consumer.

"initialize the consumer"
consumer host: self

supplier: proxySupplier
aspect: #handleMyEvent.

Example: Implementing a Typed Pull Connection
This example shows how you might implement typed pull supplier and
consumer objects and their interfaces. Like the previous example, they
will pass objects of types String and Point.
176 VisualWorks

Using Typed Events
Typed Pull Supplier and Interface
1 Subclass from DSTypedPullSupplier.

2 Give the class repository methods abstractClassId and CORBAName.

3 Give it the private methods pullString and tryPullString, which might be
defined like this:

pullString
"return the next event that is a kind of String"
^self pullTypedEvent: String

tryPullString
"return the next event that is a kind of String, returning no data if
necessary"
^self tryPullTypedEvent: String

4 Create an IDL interface, which might look something like this:

// This interface defines the abstract behavior my typed pull
supplier example
//

interface TypedPullSupplierExample :
CosTypedEventComm::TypedPullSupplier {

string pullString ()
raises (Disconnected);

string tryPullString (out boolean has_event)
raises (Disconnected);

Point pullPoint ()
raises (Disconnected);

Point tryPullPoint (out boolean has_event)
raises (Disconnected);

};

Corresponding Typed Pull Consumer and Interface
1 Subclass from DSTPullConsumer.

2 Write the class repository methods abstractClassId and CORBAName.

3 Write the host messages methods pullTypedEvent: and tryPullTypedEvent:,
which might be defined like this:
Distributed Smalltalk Application Developer’s Guide 177

Chapter 13 - Event Notification
pullTypedEvent: aClass
"try to pull event data from the supplier"

connected
ifTrue:

[(aClass isKindOf: String)
ifTrue: [^supplier pullString].

(aClass isKindOf: Point)
ifTrue: [^supplier pullPoint].

^supplier pull]
ifFalse: [^self disconnectedError]

tryPullTypedEvent: aClass
"try to pull event data from the supplier"

connected
ifTrue:

[(aClass isKindOf: String)
ifTrue: [^supplier tryPullString].

(aClass isKindOf: Point)
ifTrue: [^supplier tryPullPoint].

^supplier tryPull]
ifFalse: [^self disconnectedError]

4 Create an IDL interface which might look something like this:

interface TypedPullConsumerExample :
 CosEventComm::PullConsumer {}

Example: Determining Quality of Service
If you want to change the quality of service from the default (retry at every
new event until successful), you can override the processEvent: method in
a subclass of DSTPushSupplier.

For example, you might write:
178 VisualWorks

Interfaces
processEvent: anAny
"process an event by sending it to the consumer. Discard the
 event if an error occurs"

| evt |
(self checkEvent: anAny)

ifFalse: [^nil].
events nextPut: anAny.
connected ifTrue: [[events isEmpty]

whileFalse:
[evt := events next.
self errorSignal handle: [:err | err signal == ORBObject

invObjrefSignal
ifTrue:

[(host asLocal isKindOf: DSTEventChannel)
ifTrue: [host removeSupplier: self].

self connected: false]
ifFalse: [Dialog onDebugNotify:

 'EventSupplier>>pushEvent
error: ' , err errorString]]

do: [self pushToConsumer: evt]]]

Interfaces
Four modules in DSTRepository define interfaces for the event notification
service: CosEventComm, CosTypedEventComm, CosEventChannelAdmin and
CosTypedEventChannelAdmin. Browse these interfaces for details.

The IDL hierarchy is as follows:
Distributed Smalltalk Application Developer’s Guide 179

Chapter 13 - Event Notification
PushConsumer
TypedPushConsumer
ProxyPushConsumer

TypedProxyPushConsumerProxyPushConsumer,
TypedPushConsumer
DSTProxyConsumer:TypedProxyPushConsumer,
ProxyPullConsumer

PushSupplier
TypedPushSupplier
ProxyPushSupplier

DSTProxySupplier : ProxyPushSupplier,
TypedProxyPullSupplier

PullConsumer
ProxyPullConsumer

DSTProxyConsumer : ProxyPullConsumer,
TypedProxyPushConsumer

PullSupplier
TypedPullSupplier
ProxyPullSupplier

TypedProxyPullSupplier : ProxyPullSupplier,
TypedPullSupplier

ConsumerAdmin
TypedConsumerAdmin

SupplierAdmin
TypedSupplierAdmin

EventChannel
TypedEventChannel

DSTEventChannel : TypedEventChannel,
TypedSupplierAdmin, TypedConsumerAdmin
180 VisualWorks

Implementation
Implementation
The following classes interact to support the event notification service.
Browse these classes for variables and methods. Their positions in the
class hierarchy are:

Object
Model

ORBObject
DSTProxyConsumer
DSTProxySupplier
DSTPersistentObject

DSTEventChannel
DSTTypedEventChannel
DSTPullConsumer

TypedPullConsumerExample
DSTPullSupplier

DSTTypedPullSupplier
TypedPullSupplierExample

DSTPushConsumer
DSTTypedPushConsumer
TypedPushConsumerExample

DSTPushSupplier
TypedPushSupplierExample

Note: Application developers should not use classes
DSTProxyConsumer and DSTProxySupplier directly. No variables and
messages appear here.
Distributed Smalltalk Application Developer’s Guide 181

14
Basic Lifecycle

Overview
OMG’s Common Object Services specification defines basic lifecycle
services for creating, deleting, copying and moving objects both locally
and remotely. While standard Smalltalk handles most basic lifecycle
implementation within a local image, Distributed Smalltalk adds lifecycle
interfaces to support distribution and interoperability.

Lifecycle services are an extension to the core services provided in an
ORB. Core services include activation, request delivery, principal
authentication, and method dispatch, as well as the creation and
destruction of object registration information. Any facilities required for
object population control and migration are part of the lifecycle services.
182 VisualWorks

Lifecycle Operations
Terminology

Lifecycle Operations

Create
An external client uses the local factory finder object to find the correct
abstract class, which then creates the new object. For an example of
using a factory finder to create an object, see “Examples: With and
Without the Factory Representative”.

Resource allocation during object creation includes one or more Object
Adapter object references, and persistent storage for the object’s
persistent state.

Copy and Deep Copy
Copy makes a copy of the initial object, its children (containees and
linked objects), their children and so forth. All non-containment links in
the copy continue to refer to the same objects as the corresponding links
in the original.

Deep copy is same as copy except that objects linked by non-
containment links may be copied along with their children. A link’s
deepCopyWith setting controls which referenced objects are copied, and

basic lifecycle Services that govern simple objects, such as create,
delete, and move.

factory object An object that creates objects in response to client
service requests. In Distributed Smalltalk, a factory is
any class that can be instantiated and has interfaces
registered for creating objects in the Interface
Repository. Any object that creates another object in
response to some request is technically a factory;
factory implementations are not special. The
polymorphic createObject: method is available in
ORBObject and DSTPresenter for Distributed
Smalltalk.Factory objects are registered during the
Initialize Factories phase of the ORB initialization. For
a class to be registered as a factory, it must have an
instance method abstractClassID (which returns the
appropriate UUID value for the class as a symbol).

factory finder An object at a specific location that helps clients
obtain references to factories of a particular class. A
factory registered with a factory finder represents an
implementation at an abstract location; thus, factory
finders permit clients to query a location for an
implementation.
Distributed Smalltalk Application Developer’s Guide 183

Chapter 14 - Basic Lifecycle
which continue to be shared between the original and the copied objects.
You set linked objects to be shared or copied when you create the links.
By default, they are shared.

Move
Moving an object means removing it from one container and putting it into
another. In essence, a copy of the object is made at the destination, the
original is removed, and the copy is renamed such that existing
references to the original continue to refer to the copy.

Note: If the new container is at a different location, a move also
relocates the object and any children.

Destroy
Destroy deletes an object and removes it from the system’s registry.
Nominally this also deletes the object’s descendants, if any. However, if
any of the components are referenced by reference links from outside the
compound object, the delete does not occur, or the protected objects are
moved to the orphanage so the delete can continue.

Throw Away
The throw away operation prepares an object for deletion by moving the
object to a wastebasket (or similar service). Since this is potentially the
last manual step before a subsequent automatic deletion, it prechecks for
any constraints that would prevent the deletion.

Externalize and Internalize
Moving or copying objects between locations requires the objects to be
externalized and subsequently internalized at the new location. In
Distributed Smalltalk, the marshall operation converts a Smalltalk object
into a byte stream for externalization (transmission to a remote server).
To internalize, the unmarshall operation creates a Smalltalk object from a
marshalled byte stream.
184 VisualWorks

Creating Objects
Creating Objects

COS on Factories and Factory Finders
COS specifies factories as the objects that create objects in response to
a client request. It further specifies factory finders as the objects that help
locate factories at a given location.

• Factory object—An object that creates an object(s) in response to a
client service request. In Distributed Smalltalk, a factory is any class
that can be instantiated and has interfaces registered for creating
objects in the Interface Repository.

When a client wishes to request a service of an object, the server
object must first be created. Thus the client makes a request to a
factory to create the server object.

• Factory finder—An object at a specific location that helps clients
obtain references to factories of a particular class. A factory
registered with a factory finder represents an implementation at an
abstract location; thus, factory finders permit clients to query a
location for an implementation.

In order for a client to create a remote object, the client must have an
object reference to the factory where the remote object will be
created. Clients can use the naming service to get such object
references.

Distributed Smalltalk’s Implementation
Any classes that inherit from ORBObject can be instantiated in response to
a remote client’s request. Factory objects are registered during the
Initialize Factories phase of the ORB initialization. For a class to be
registered as a factory, it must have an instance method abstractClassId
(which returns the appropriate UUID value for the class).

The interface FactoryRepresentative is an Distributed Smalltalk extension to
the COS specification that improves performance in remote object
creation. Most interfaces in the Interface Repository inherit from
FactoryRepresentative, which implements the IDL create_object operation
(mapped to the createObject: Smalltalk method). The create_object
operation can be used as a short cut to create an instance of a particular
class that is registered with the receiver. (If the create_object operation
fails, you can use a more explicit interaction with the factory finder
instead.) Examples of this follow next.
Distributed Smalltalk Application Developer’s Guide 185

Chapter 14 - Basic Lifecycle
The interfaces that inherit from the FactoryRepresentative interface can be
diagramed as follows:

Examples: With and Without the Factory Representative
The following examples show how to create an instance of ShapeSO on a
remote machine called worldly.

The purpose of these examples is to show how to minimize the number
of RPCs needed to create a remote object. However, in order to create a
remote object, one must have an initial object reference to the remote
image. Of the many ways to obtain this initial reference. Two examples
are show below.

Example 1: Stringified Object Reference
This example uses the CORBA standard objectToString method to
produce a “stringified” object reference which can be written to a file. This
file is made available to client systems which uses the CORBA standard
stringToObject method to read in the “stringified” object reference.

The following example code uses the DST convenience methods:

ORBObject class>>referenceToFile:
This stringifies the object reference and stores it to a file.

ORBObject class>>referenceFromFile:
This unstringifies the object reference and extracts it from a file.

On worldly execute:

FactoryRepresentative

PresentationApplicationAssistantRead Lifecycle

ApplicationBase

ApplicationSem

ApplicationAssistant
186 VisualWorks

Creating Objects
ORBObject
referenceToFile:'myffinder'
object: (ORBObject resolveInitialReferences: #FactoryFinder)

which creates a “stringified” reference to worldly’s factory finder and
stores it in the file myffinder.

The client executes:

|ff|
ff := ORBObject referenceFromFile: 'myffinder'

which returns an object reference to worldly’s factory finder.

Example 2: Naming Service as Registry
This approach uses the naming service to help locate an initial object
reference to worldly’s factory finder.

On worldly execute:

|ns|
ns := ORBObject resolveInitialReferences: #NameService.
ns contextBind: ('factoryFinder' asDSTName) to: (ORBObject

resolveInitialReferences: #FactoryFinder)
This associates worldly’s factory finder with the name ‘factoryFinder’ and
binds this association in the top level context of worldly’s naming service.

The client then configures its naming service to use worldly’s naming
service. An object reference to worldly’s factoryFinder is then obtained
by:

| ns ff |
ns := ORBObject resolveInitialReferences: #NameService.
ff := ns contextResolve: (DSTName onString: 'factoryFinder')

Since the client is configured to use worldly’s naming service the first line
returns a reference to worldly’s naming service. The second line extracts
object reference from the top level context of the naming service.

Note: All of the examples in this chapter will use the approach of
example 1 to obtain the factory finder object reference.
Distributed Smalltalk Application Developer’s Guide 187

Chapter 14 - Basic Lifecycle
Using FactoryFinder Directly
By using the FactoryFinder directly, it requires 3 RPCs to get the object
reference.

Using the Factory Representative—Option #1
By using the FactoryRepresentative interface, you can optimize
communications (saving 1 of the original 3 RPCs).

❶ ffinder := ORBObject referenceFromFile:
'myffinder'

Locate the factory finder for the
remote location where you will
create the object.

❷ shapeFactory := ffinder contextResolve:
‘ShapeSO’ asDSTName.

Query the factory finder for a
reference to a factory to create
the object.

❸ shapeFactory createObjectKey:
‘ShapeSO’ asDSTName
criteria: #().

Create the remote object that
will return an object reference.

❶ ffinder := ORBObject referenceFromFile:
'myffinder'

Locate the factory finder for the
remote location where you will
create the object.

factory finder?

ObjRef for factory finder

factory?

ObjRef for factory

newObject

ObjRef for new object

factory finder?

ObjRef for factory finder
188 VisualWorks

Creating Objects
Using the Factory Representative—Option #2
If you already have a reference to a factory representative, it takes one
RPC.

Note: Since most interfaces in Distributed Smalltalk inherit from
FactoryRepresentative, this shortcut can be used with almost any object
reference. In other words, most objects can be used to create other
objects at a given location.

Example: Copying an Object
The following example shows how to locate a factory finder on a machine
called worldly, create an instance of ShapeSO there, manipulate it, then
copy it.

❷ shapeObject := ffinder createObject:
ShapeSO getInstanceACL.

Create the object through a
request to the factory finder.

❶ | shapeObject |

shapeObject := aRemoteObjRef
createObject:

ShapeSO getInstanceACL.

This creates shape on the same
host as that of aRemoteObjRef
(a previously created remote
object).

createObject

ObjRef for new object

createObject

ObjRef for new object

| ffinder worldlyShape localShape|
ffinder := ORBObject referenceFromFile: 'myffinder'

worldlyShape := ffinder createObject: ShapeSO getInstanceACL.
worldlyShape setShape: #triangle by: nil.

worldlyShape inspect.

localShape := worldlyShape copyFactoryFinder:ORBObject factoryFinder
criteria: #()

localShape inspect.

❶
❷
❸
❹
❺

Distributed Smalltalk Application Developer’s Guide 189

Chapter 14 - Basic Lifecycle
Commentary
1 Get worldly’s factory finder.

2 Tell the factory finder to create an object.

3 Change the shape of the remote shape object.

4 Inspect the remote shape object.

5 Create (using the local factory finder) and inspect a local copy of the
remote object.

Interfaces
DSTRepository’s COSLifecycle module includes the basic factory and
lifecycle object interfaces. Browse these interfaces for details. The IDL
hierarchy is as follows:

FactoryRepensentative

FactoryFinder

LifecycleObject

GenericFactory

The SmalltalkTypes module includes interfaces that support externalization
and internalization.

StreamRead
Stream

Implementation
The class that is primarily responsible for basic lifecycle is
DSTFactoryFinder. Browse this class for variables and methods. Browse
these classes for variables and methods. Its position in the class
hierarchy is:

Object
Model

ORBObject
DSTPersistentObject

DSTNameContext
DSTfactoryFinder
190 VisualWorks

15
Concurrency Control Service

The concurrency control service defines how an object mediates
simultaneous access by one or more clients such that the consistency of
the object is not compromised when accessed by concurrently executing
processes. It is an implementation of the Object Management Group’s
Common Object Services Specification.

Overview
The concurrency control service interface can be used in two ways:

1 Acquiring locks on behalf of the current thread (that must be
executing outside the scope of a transaction).

2 Acquiring locks on behalf of a transaction, or

The principal difference between these transactional and non-
transactional modes of operation is that when operating in a transactional
mode, the transaction service drives the release of the locks as the
transaction commits or aborts. In non-transactional mode, the
responsibility for dropping locks at the appropriate time lies with the user
of the concurrency control service.

The basic notion is that the concurrency control service provides a
mechanism for a resource to be associated with a lock. In reality,
because of the lock semantics, this turns out to be a collection of locks, or
a lock set. The meaning of a resource is not defined by the concurrency
control service but by some object implementation which uses the
service. The concurrency control service coordinates concurrent use of a
resource using locks.
Distributed Smalltalk Application Developer’s Guide 191

Chapter 15 - Concurrency Control Service
Terminology

lock A lock represents the ability of a specific client to
access a specific resource in a particular way. Each
lock is associated with a single resource and a single
client. Coordination is achieved by preventing multiple
clients from simultaneously possessing locks for the
same resource if the activities of those clients might
conflict. To achieve coordination, a client must obtain
an appropriate lock before accessing a shared
resource.

lock set A collection of locks associated with a single
resource.

lock modes Lock modes correspond to different categories of
access.

lock granularity Typically, if an object is a resource, the object would
internally create and retain a lock set. However, the
mapping between objects and resources (and lock
sets) is up to the object implementation; the mapping
could be one to one, but it could also be one to many,
many to many, or many to one.

conflict
resolution

The service will grant a lock to a client only if no other
client holds a lock on the resource that would conflict
with the intended access to the resource. The
decision to grant a lock depends upon the modes of
the lock held or requested. For example, a read lock
conflicts with a write lock. If a write lock is held on a
resource by one client, a read lock will not be granted
to another client.

lock duration Typically, a transaction will retain all of its locks until
the transaction is completed (either committed or
aborted). This policy supports serializability of
transactional operations. Using the two phase commit
protocol, locks held by a transaction are dropped
when the transaction completes.

transaction
duration locking

This a special case of strict two-phase locking. In the
first phase (the growing phase), a transaction obtains
locks that are kept until the second phase (the
shrinking phase), at which point they are released. A
transaction must not release locks during the first
phase, and must not obtain new locks during the
second phase, otherwise concurrent computations
may be able to view intermediate results of the
transaction.
192 VisualWorks

Overview
Lock Modes
The concurrency control service defines five types of lock modes which
implement conventional multiple readers, one writer semantics.

• read (R)

Read locks conflict with write locks.

• write (W)

Write locks conflict with other write locks.

• upgrade (U)

An upgrade mode lock is a read lock that conflicts with itself. It is
useful for avoiding a common form of deadlock that occurs when two
or more clients attempt to read and then update the same resource. If
more than one client holds a read lock on the resource, a deadlock
will occur as soon as one of the clients requests a write lock on the
resource. If each client requests a single upgrade lock followed by a
write lock, this deadlock will not occur.

• intention read (IR)

• intention write (IW)

Both intention read and intention write support variable granularity
locking and are used to exploit the natural hierarchical relationship
between locks of different granularity. For example, consider the
hierarchical relationship inherent in a database: a database consists
of a collection of files, with each file holding multiple records. To
access a record, a coarse grain lock may be set on the database, but
at the cost of restricting other clients from accessing the database.
Clearly, this level of locking is unsuitable. However, only setting a
lock on the record is also inappropriate, because another client might
set a lock on the file holding the record and delete or modify the file.

Using variable granularity locking, a client first obtains intention locks
on the ancestor(s) of the required resource. To read a record in the
database, for example, the client obtains an intention read lock (IR)
on the database and the file (in this order) before obtaining the read
lock (R) on the record. Intention read locks (IR) conflict with write
locks (W), and intention write locks (IW) conflict with read (R) and
write (W) locks.

The granularity of the resources locked by an application determines
the concurrency within the application. Coarse granularity locks incur
low overhead (since there are fewer locks to manage) but reduce
Distributed Smalltalk Application Developer’s Guide 193

Chapter 15 - Concurrency Control Service
concurrency since conflicts are more likely to occur. Fine granularity
locks improve concurrency but result in a higher locking overhead
since more locks are requested. Selecting a suitable lock granularity
is a balance between the lock overhead and the degree of
concurrency required.

Lock Mode Compatibility

This table defines the compatibility between the various locking modes
(the symbol * is used to indicate when locks conflict). When a client
requests a lock on a resource that cannot be granted because another
client holds a lock on the resource in a conflicting mode, the client must
wait until the holding client releases its lock. The service enforces a
queueing policy such that all clients waiting for a new lock are serviced in
a first in, first out order. Subsequent requests are blocked by the first
request waiting to be granted the lock, unless the requesting client is a
transaction that is a member of the same transaction family as an existing
holder of the lock. For a description of transaction families, see
“Transaction Service”.

Multiple Lock Semantics
In this model, a client can hold multiple locks on the same resource
simultaneously and the locks can be of different modes. In addition, a
client can hold multiple locks of the same mode on the same resource;
effectively, a count is kept of the number of locks of a given mode that
have been granted to the client. When a client holds locks on a resource
in more than one mode, the other clients will not be granted a lock on the
resource unless the requested lock mode is compatible with all of the
modes of the existing locks. A user can hold a lock multiple times; it must
be released as many times as it was acquired in order to free the
resource.

Granted Mode Requested Mode

IR R U IW W

Intention Read (IR) *

Read (R) * *

Upgrade (U) * * *

Intention Write (IW) * * *

Write (W) * * * * *
194 VisualWorks

Overview
Locks and LockSets
Locks are implemented in the class Lock. Since multiple possession
semantics are supported, locks must maintain a count. Locks also hold
on to the context of the lock’s owner for validation of requests. In the
general case, is associated with a distributed thread of control (ORB
context), for Transactional Locks, it is the Transaction Context

Locksets are implemented in the Smalltalk Class LockSet. A Lockset is an
object that manages the locks on some resource. In general, a lockset is
associated with a single resource and may hold many locks. This object
provides methods to acquire and release locks.

The various lock modes are described as enumerations (browse
DSTTypeEnumerator) that have symbol values corresponding to the lock
modes defined in the service. The symbols and their corresponding lock
modes are, in descending order of precedence:

When a lock is requested, the request is validated according to the
compatibility rules defined in “Lock Mode Compatibility”. During validation
a check is made to insure that the requested lock mode does not conflict
with the strongest lock mode granted. If it does the lock request will be
not be granted at that time. For example, if a write lock is held, any
requests for a lock on that resource by a different owner will not be
granted.

The COS specification defines a LockSet coordinator interface, in order
to provide an administrative interface and avoid potential deadlocks, The
coordinator interface is implemented in the separate class
DSTLockSetCoordinator.

Symbol Lock Mode

#write Write

#intentionWrite Intention Write

#upgrade Upgrade

#read Read

#intentionRead Intention Read
Distributed Smalltalk Application Developer’s Guide 195

Chapter 15 - Concurrency Control Service
Interfaces
The CosConcurrencyControl module in DSTRepository defines interfaces for
concurrency. Browse these interfaces for details. The IDL hierarchy is as
follows:

LockSet
DSTCoordinatingLockSet: LockSet, LockCoordinator
DSTLockSet:LockSet, LifeCycleObject, FactoryRepresentative

TransactionalLockSet
DSTTransactionalLockSet:TransactionalLockSet,

FactoryRepresentative, LifeCycleObject,
LockSetFactory
LockCoordinator

Implementation
In Distributed Smalltalk, the classes for concurrency and it subclasses take
these positions in the class hierarchy. Browse these classes for variables
and methods. Their positions in the class hierarchy are:

Object
DSTLock
DSTLockCoordinator
Model

ORBObject
DSTPersistentObject

DSTLockSet
DSTTransactionalLockSet

DSTServiceContext
DSTConcurrencyContext

Using Distributed Smalltalk Concurrency Service
The concurrency service is a general service that may be used to
manage access on any distributed resource. In Distributed Smalltalk,
there are two examples of the use of the concurrency service. They are
as follows:

• DSTRecoverableObject (part of transaction service)

• DSTResourceManager
196 VisualWorks

Using Distributed Smalltalk Concurrency Service
Using the Class DSTResourceManager
Instances of this class manage resources that are shared by locks
between several owners. Lock ownership is implicitly defined on the
distributed thread of control. (This can be overwritten in
DSTResourceManager>>setContext).

The resources are identified by name, which is a string or symbol. The
resource owners have to agree on a name for each resource they want to
share. The class DSTResourceManager is used by DSTSemantic objects. It is
also used to synchronize access to the interface repository. This class
can be used directly, or as an example for using the concurrency service.
The following code example can be browsed under the category of
CORBA-CORE, in the class DSTResourceManager.

Creating Locks
The following method returns the lockset for the resource key, and
creates one if necessary. The factory creation method, create, must be
used to instantiate a lockset.

The hint is any user defined string that will be associated with the lock.

findOrCreateLockFor: key hint: aHint
^locksets at: key ifAbsent:
[hints at: key put: aHint.
locksets at: key put: DSTLockSet create]

Acquiring Locks
The following method acquires a lock on the named resource and gets
the LockSet for the named resource first. Locksets manage ownership
implicitly through the concurrency context which is propagated along the
thread of control in the ORB context. Therefore, we need to set the
context before attempting to acquire the lock.

In the following method, aLockModeEnum is an enumerator which identifies
the strength of the desired lock. Browse senders of this method using an
enumerator object. DSTLockSet has class side methods which return the
enumerators which correspond to the defined lock modes. For example,
DSTLockSet class > read will return the enumerator defined in the
CORBAConstants dictionary as:

::CosConcurrencyControl::lock_mode::read.
If the lock is granted and the granted level is the highest for the lockset,
then the hint is updated. This is because multiple holders are allowed for
a lockset and multiple levels of locks are allowed for each owner. The
Distributed Smalltalk Application Developer’s Guide 197

Chapter 15 - Concurrency Control Service
method returns a boolean that will be true if the lock was successful. The
hint is a value holder whose value will contain information about the
current owner of the highest, most recently granted lock.

This code example illustrates acquiring locks:

acquire: aResourceName mode: aLockModeEnum with: aHint

| key lock acquired |
DSTLockSet setContext.
key := aResourceName asSymbol.
lock := self findOrCreateLockFor: key hint: aHint value.
(acquired := lock tryLock: aLockModeEnum)

ifTrue: [lock granted == aLockModeEnum
ifTrue: [hints at: key put: aHint value]]

ifFalse: [aHint value: (self hintOf: key)].
^acquired

Releasing Locks
The following method deals with releasing locks:

release: aResourceName mode: aLockModeEnum
If the named resource (by string or symbol) is locked by the owner for the
specified mode, then the lock count in the lockset is decreased by 1 and
the resource is released when the lock count reaches 0. If the lock count
was decreased, then true is returned.

| key lockset |
key := aResourceName asSymbol.
lockset := locksets at: key ifAbsent: [^false].
Object errorSignal

handle: [:ex | ^false]
do:

[lockset unlock: aLockModeEnum.
^true]

Destroying Locks
Since the class DSTLockSet is a subclass of ORBObject and created using
factory methods, it must be explicitly destroyed. The following method
destroys the receiver and any locksets that it may hold.

destroy
locksets values do: [: lockset | lockset destroy].
super destroy.
198 VisualWorks

Using Distributed Smalltalk Concurrency Service
Using Transactional Locksets
A transactional lockset is a kind of lockset intended to be used within the
scope of a transaction. It is used by clients of the transaction service,
generally by DSTRecoverableObjects.

The only difference between locksets and transactional locksets is that
with a transactional lockset, the transaction context is used for validation.
Distributed Smalltalk Application Developer’s Guide 199

16
Transaction Service

The concept of transactions is an important programming paradigm for
simplifying the construction of reliable and available applications,
especially those that require concurrent access to shared data. The
transaction concept was first deployed in commercial operational
applications where it was used to protect data in centralized databases.
More recently, the transaction concept has been extended to the broader
context of distributed computation. Today it is widely accepted that
transactions are the key to constructing reliable distributed applications.

Overview
The transaction service supports transactions that have the following
ACID characteristics:

• Atomicity —This ensures that the set of computations is either
completely done or completely undone. A transaction whose work
completes is said to commit. A transaction whose work is completely
undone is said to rollback. A transaction may rollback due to system
failures (for example, processor failure or a deadlock), or because a=
programmer chose to execute an rollback call.

• Consistency —The effects of a transaction preserves invariant
properties. A transaction leaves the collection of objects in a
consistent state. There may be integrity rules that must be checked
before commit.

• Isolation —Transactions are allowed to execute concurrently, but the
results will be the same as if the transactions executed serially.
Isolation ensures that concurrently executing transactions cannot
observe inconsistencies. Programmers are therefore free to cause
200 VisualWorks

Distributed Smalltalk’s Implementation of Transactions
temporary inconsistencies during the execution of a transaction
knowing that their partial modifications will never be visible.

• Durability —If a transaction completes successfully, the results of its
operations will never be lost, except in the event of catastrophes.
Systems can be designed to reduce the risk of catastrophes.

A transaction can be terminated in two ways: the transaction is either
committed or rolled back. When a transaction is committed, all changes
made by the associated requests are made permanent. When a
transaction is rolled back, all changes made by the associated requests
are undone.

The transaction service defines interfaces that allow multiple, distributed
objects to cooperate to provide atomicity. These interfaces enable the
objects to either commit all changes together or to rollback all changes
together, even in the presence of (noncatastrophic) failure. No
requirements are placed on the objects other than those defined by the
transaction service interfaces.

Examples are OODBMS, and persistent objects. The value of a separate
transaction service is that it allows:

• Transactions to include multiple, separately defined, ACID objects.

• The possibility of transactions which include objects and resources
from the non-object world.

Distributed Smalltalk’s Implementation of Transactions
The Distributed Smalltalk implementation of the transaction service
provides:

• A transactional infrastructure for coordination among transactional
objects.

• Classes that implement transactional object and recoverable object
behavior.

• A framework for the class implementor to develop specific kinds of
transactional and recoverable objects based upon their persistence
requirements.

The infrastructure is implemented as a set of services that allow the
threads executing operations on objects within a transaction to work
together harmoniously to provide the ACID properties. This infrastructure
consists of:
Distributed Smalltalk Application Developer’s Guide 201

Chapter 16 - Transaction Service
• Operations for begin, commit, and rollback of a transaction.

• Operations for associating transactions with threads and
mechanisms for propagating transactions to other objects whose
behavior is affected by a transaction.

• Operations for objects with recoverable state to participate in
transaction completion.

• A protocol engine which implements the two-phase commit protocol
with presumed abort optimization to ensure that all participants within
a transaction commit or rollback together.

• An enhancement to CORBA to permit transaction context to be
passed between cooperating implementations of the Transaction
Service.

In addition to the transactional infrastructure, a class implementor needs
tools in order to develop objects that have the requisite atomicity,
durability, and isolation properties. The concurrency control service
augmented with the transaction service provides this support. The
transaction service support for the class implementor is a mechanism
that coordinates the use of concurrency and persistence by an object as
transactions are created, rolled back, and committed. For example, the
concurrency control service supports transactional locking which ensures
that locks acquired on objects during that transaction will be released at
transaction termination.

In Distributed Smalltalk, support for this mechanism is built into the class
DSTRecoverableObject. These objects hold transactional locksets that are
used during the two phase commit process. Subclasses of
DSTRecoverableObject need only implement the methods to save and
recover their persistent state according to the underlying persistent store
that is in place.

Two types of transactions are supported:

• Flat transactions—A flat transaction groups all operations within its
scope into a single transactional entity.

• Nested transactions—A nested transaction is a transaction
embedded within another transaction.

Nested transactions rollback independently from their parent
transaction and can be used within concurrently executing threads to
increase system performance while maintaining consistency (since
the nested transactions serialize with respect to each other). The
results of a nested transaction only become permanent when its top-
202 VisualWorks

Distributed Smalltalk’s Implementation of Transactions
level transaction is committed. Nested transactions are especially
valuable for encapsulating an object’s transactional behavior, and
enable transactions to become a general programming mechanism
for constructing reusable building blocks for reliable distributed
applications.

A client can make requests to multiple objects that may be located on
different nodes in the network within the scope of a transaction.

For compatibility with X/Open, implementations of the Object Transaction
Service may track the “spread” of the transaction so that all participants in
the transaction see the same outcome. Similarly, these OTS
implementations track the spread when the implementation of an object
in turns act as the client of other remotely-located objects.

Supporting these distributed transactions requires support from the ORB
so that the “transactional-context” is passed transparently with each
request.
Distributed Smalltalk Application Developer’s Guide 203

Chapter 16 - Transaction Service
Terminology

active The state of a transaction when processing is in
progress and completion of the transaction has not
yet commenced.

atomicity A transaction property that ensures that if work is
interrupted by failure, any partially completed
results will be undone. A transaction whose work
completes is said to commit. A transaction whose
work is completely undone is said to rollback
(abort).

begin An operation on the Transaction Service which
establishes the initial boundary of a transaction.

commit Commit has two definitions as follows:
• An operation in the Current and Terminator

interfaces that a program uses to request that the
current transaction terminate normally and that
the effects of that transaction be made
permanent.

• An operation in the Resource interface which
causes the effects of a transaction to be made
permanent.

committed The property of a transaction or a transactional
object, when it has successfully performed the
commit protocol.

completion The processing required (either by commit or
abort) to obtain the durable outcome of a
transaction.

coordinator A object involves Resource objects in a
transaction when they are registered. A coordinator
is responsible for driving the two-phase commit
protocol.

concurrency
control service

See “Concurrency Control Service” on page 191

direct context
management

An application manipulates the Control object and
the other objects associated with the transaction.

flat Transaction A transaction that has no subtransactions, and that
cannot have subtransactions.

indirect context
management

An application uses the Current pseudo object,
provided by the Transaction Service, to associate
the transaction context with the application thread
of control. See DSTTransactionalObject.

nested transaction A transaction that either has a subtransaction or is
a subtransaction on some other transaction.
204 VisualWorks

Distributed Smalltalk’s Implementation of Transactions
prepared The state that a transaction is in when phase one
of a two-phase commit has completed.

Propagation A function of the transaction service that allows the
Transaction context of a client to be associated
with a transactional operation on a server object.
The Transaction Service supports both implicit and
explicit propagation of transaction context.

recoverable object An object whose data is affected by committing or
rolling back a transaction. See
DSTRecoverableObject.

recoverable server An object that registers a Resource (not
necessarily itself) with a Transaction Coordinator to
participate in transaction completion.

recovery service An object service used by resource managers for
restoring the state of objects to a prior state of
consistency

resource An object in the transaction service that is
registered for involvement in two-phase commit. An
object that supports the Resource interface. See
DSTRecoverableObject.

rollback Rollback (also known as Abort) has two definition
as follows:
• An operation in the Current and Terminator

interfaces used to indicate that the current
transaction has terminated abnormally and its
effects should be discarded.

• An operation in the Resource interface which
causes all state changes in the transaction to be
undone.

thread The entity that is currently in control of the
processor.

TP (Transaction
Process) monitor

A system component that accepts input work
requests and associates resources with the
programs that act upon these requests to provide a
run-time environment for program execution.

transaction A collection of operations on the physical and
abstract application state.

transaction client An arbitrary program that can invoke operations of
many transactional objects in a single transaction.
Not necessarily the Transaction originator.

transaction context The transaction information associated with a
specific thread. See Propagation.

transaction
operation

An operation on an object that participates in the
propagation of the current transaction.
Distributed Smalltalk Application Developer’s Guide 205

Chapter 16 - Transaction Service
Transactional Applications
The transaction service provides transaction synchronization across the
elements of a distributed client/server application.

A transaction can involve multiple objects performing multiple requests.
The scope of a transaction is defined by a transaction context that is
shared by the participating objects. The transaction service places no
constraints on the number of objects involved, the topology of the
application or the way in which the application is distributed across a
network. In this scenario, the transaction context is transmitted implicitly
to the objects, without direct client intervention.

In a typical scenario, a client first begins a transaction (by issuing a
request to an object defined by the transaction service), which
establishes a transaction context associated with the client thread. The
client then issues requests. These requests are implicitly associated with
the client’s transaction; they share the client’s transaction context.
Eventually, the client decides to end the transaction (by issuing another
request). If there were no failures, the changes produced as a
consequence of the client’s requests would then be committed;
otherwise, the changes would be rolled back.

The transaction service also supports scenarios where the client directly
controls the propagation of the transaction context. For example, a client
can pass the transaction context to an object as an explicit parameter in a
request.

transaction
originator

An arbitrary program— typically, a transactional
client, but not necessarily an object — that begins
a transaction.

transaction object An object that offers at least one transactional
operation, thus requiring the ORB and the
transaction service to propagate a Transaction
Context, usually used to refer to an object, none of
whose operations are affected by being involved
within the scope of a transaction. See
DSTTransactionalObject.

transaction server A collection of one or more objects whose behavior
is affected by the transaction, but have no
recoverable states of their own.

two-phase commit A transaction manager protocol for ensuring that all
changes to recoverable resources occur atomically
and furthermore, the failure of any resource to
complete will cause all other resource to undo
changes.
206 VisualWorks

Transactional Applications
The transaction service does not require that all requests be performed
within the scope of a transaction. A request issued outside the scope of a
transaction has no associated transaction context. It is up to each object
to determine its behavior when invoked outside the scope of a
transaction; an object that requires a transaction context can raise a
standard exception.

This diagram show a simple application that includes these basic
elements: Transactional Client, Transactional Objects. Recoverable
Objects, and Transactional Servers. The discussion of these follows.

ResourceResource

Transactional

Transactional

begin or registers resource in

Transaction Service

Recoverable

Distributed
Client/Server Application

Client

Server Server

end
transaction

transaction completion
(may force rollback)

Participates
in transaction
completion

not involved in
transaction completion

(may force rollback)
Distributed Smalltalk Application Developer’s Guide 207

Chapter 16 - Transaction Service
Transactional Client
A transactional client is an arbitrary program that can invoke operations
of many transactional objects in a single transaction. The program that
begins a transaction is called the transaction originator. The originator
may be the same object as the client. In fact, often the transaction may
be implicitly originated by invoking an operation on a recoverable object.

Transactional Object
We use the term transactional object to refer to an object whose behavior
is affected by being involved within the scope of a transaction. A
transactional object typically contains or indirectly refers to persistent
data that can be modified by requests.

In Distributed Smalltalk this term refers to objects that implement the
Current pseudo object interface. See DSTTransactionalObject.

The transaction service does not require that all requests have
transactional behavior, even when issued within the scope of a
transaction. An object can choose to not support transactional behavior,
or to support transactional behavior for some requests but not others.

We use the term nontransactional object to refer to an object none of
whose operations are affected by being involved within the scope of a
transaction. If an object does not support transactional behavior for a
request, then the changes produced by the request might not survive a
failure and the changes will not be undone if the transaction associated
with the request is rolled back.

An object can also choose to support transactional behavior for some
requests but not others. This choice can be exercised by both the client
and the server of the request.

The transaction service permits an interface to have both transactional
and nontransactional implementations. No IDL extensions are introduced
to specify whether or not an operation has transactional behavior. When
objects use implicit context propagation transactional behavior can be a
quality of service that differs in different implementations.

Transactional objects are used to implement two types of application
servers:

1 Transactional Server

2 Recoverable Server
208 VisualWorks

Transactional Applications
Recoverable Objects and Resource Objects
To implement transactional behavior, an object must participate in certain
protocols defined by the transaction service. These protocols are used to
ensure that all participants in the transaction agree on the outcome
(commit or rollback), and to recover from failures.

To be more precise, an object is required to participate in these protocols
only if it directly manages data whose state is subject to change within a
transaction. An object whose data is affected by committing or rolling
back a transaction is called a recoverable object.

A recoverable object is by definition a transactional object. However, an
object can be transactional but not recoverable by implementing its state
using some other (recoverable) object. A client is concerned only that an
object is transactional; a client cannot tell whether a transactional object
is or is not a recoverable object.

A recoverable object must participate in the transaction service protocols.
It does so by registering an object that implements the Resource
interface. The transaction service drives the commit protocol by issuing
requests to the resources registered for a transaction.

A recoverable object typically involves itself in a transaction because it is
required to retain in stable storage certain information at critical times in
its processing. When a recoverable object restarts after a failure, it
participates in a recovery protocol based on the contents (or lack of
contents) of its stable storage.

A transaction can be used to coordinate non-durable activities which do
not require permanent changes to storage.

Transactional Server
A transactional server is a collection of one or more objects whose
behavior is affected by the transaction, but have no recoverable states of
their own. Instead, it implements transactional changes using other
recoverable objects. A transactional server does not participate in the
completion of the transaction, but it can force the transaction to be rolled
back.
Distributed Smalltalk Application Developer’s Guide 209

Chapter 16 - Transaction Service
Recoverable Server
A recoverable server is a collection of objects, at least one of which is
recoverable.

A recoverable server participates in the protocols by registering one or
more Resource objects with the transaction service. The transaction
service drives the commit protocol by issuing requests to the resources
registered for a transaction.

Transaction Service Functionality
The transaction service provides operations to:

• Control the scope and duration of a transaction

• Allow multiple objects to be involved in a single, atomic transaction

• Allow objects to associate changes in their internal state with a
transaction

• Coordinate the completion of transactions

Transaction Models
Two distributed transaction models are supported: flat transactions and
nested transactions.

Flat Transactions
The definition of the functionality provided, and the commitment protocols
used, is modelled on the X/OpenDTP transaction model definition.

A flat transaction is considered to be a top-level transaction (see the next
section) that cannot have a child transaction. In Distributed Smalltalk
there is nothing to restrict a top-level transaction from having child
transactions.

Nested Transactions
The transaction service also defines a nested transaction model. Nested
transactions provide for a finer granularity of recovery than flat
transactions. The effect of failures that require rollback can be limited so
that unaffected parts of the transaction need not rollback.

Nested transactions allow an application to create a transaction that is
embedded in an existing transaction. The existing transaction is called
the parent of the subtransaction; the subtransaction is called a child of
the parent transaction.
210 VisualWorks

Transaction Service Functionality
Multiple subtransactions can be embedded in the same parent
transaction. The children of one parent are called siblings.

Subtransactions can be embedded in other subtransactions to any level
of nesting. The ancestors of a transaction are the parent of the
subtransaction and (recursively) the parents of its ancestors. The
descendants of a transaction are the children of the transaction and
(recursively) the children of its descendants.

A top-level transaction is one with no parent. A top-level transaction and
all of its descendants are called a transaction family.

A subtransaction is similar to a top-level transaction in that the changes
made on behalf of a subtransaction are either committed in their entirety
or rolled back. However, when a subtransaction is committed, the
changes remain contingent upon commitment of all of the transaction’s
ancestors.

Subtransactions are strictly nested. A transaction cannot commit unless
all of its children have completed. When a transaction is rolled back, all of
its children are rolled back.

Objects that participate in transactions must support isolation of
transactions. The concept of isolation applies to subtransactions as well
as to top level transactions. When a transaction has multiple children, the
children appear to other transactions to execute serially, even if they are
performed concurrently.

Subtransactions can be used to isolate failures. If an operation performed
within a subtransaction fails, only the subtransaction is rolled back. The
parent transaction has the opportunity to correct or compensate for the
problem and complete its operation. Subtransactions can also be used to
perform suboperations of a transaction in parallel, without the risk of
inconsistent results.

Transaction Termination
A transaction is terminated by issuing a request to commit or rollback the
transaction. Typically, a transaction is terminated by the client that
originated the transaction — the transaction originator. Some
implementations of the transaction service may allow transactions to be
terminated by transaction service clients other than the one which
created the transaction.
Distributed Smalltalk Application Developer’s Guide 211

Chapter 16 - Transaction Service
Any participant in a transaction can force the transaction to be rolled back
(eventually). If a transaction is rolled back, all participants rollback their
changes. Typically, a participant may request the rollback of the current
transaction after encountering a failure.

Transaction Context
As part of the environment of each ORB-aware thread, the ORB
maintains a transaction context. The transaction context associated with
a thread is either nil (indicating that the thread has no associated
transaction) or it refers to a specific transaction. It is permitted for multiple
threads to be associated with the same transaction at the same time, in
the same execution environment or in multiple execution environments.

The transaction context is implicitly transmitted to transactional objects as
part of a transactional operation invocation. The transaction service also
allows programmers to pass a transaction context as an explicit
parameter of a request.

Service Architecture
The figure below illustrates the major components and interfaces defined
by the transaction service. The transaction originator is an arbitrary
program that begins a transaction.

transaction

(transmitted with request)

Transaction Service

recoverable
server

Factory

originator

Current
Control

Terminator

SubtransactAwareResource

Resource Current Control
Coordinator

RecoveryCoordinator
212 VisualWorks

Service Architecture
The transaction originator creates a transaction using a Factory
(DSTTransaction class>>create:); a Control is returned that provides access
to a Terminator and a Coordinator. The transaction originator uses the
Terminator to commit or rollback the transaction. The Coordinator is made
available to recoverable servers, either explicitly or implicitly (by implicitly
propagating a transaction context with a request). Control, Coordinator and
Terminator are IDL interfaces that are all implemented in the class
DSTTransaction.

A recoverable server registers a Resource with the Coordinator. The
Resource implements the two-phase commit protocol which is driven by
the transaction service. A recoverable server can also register a
specia1ized resource called a SubtransactionAwareResource to track the
completion of subtransactions. DSTRecoverableObject supports both the
Resource and SubtransactionAware interfaces.

To simplify coding, most applications use the Current pseudo object
interface, which provides access to an implicit per-thread transaction
context. DSTTransactionalObject implements the Current interface.
DSTRecoverableObject is a subclass of DSTTransactionalObject and inherits
from this implementation.

Typical Usage
A typical transaction originator uses the Current pseudo object to begin a
transaction, which becomes associated with the transaction originator’s
thread.

The transaction originator then issues requests. Some of these requests
involve transactional objects. When a request is issued to a transactional
object, the transaction context associated with the invoking thread is
automatically propagated to the thread executing the method of the target
object. No explicit operation parameter or context declaration is required
to transmit the transaction context. Propagation of the transaction context
can extend to multiple levels if a transactional object issues a request to a
transactional object.

| current |
current = DSTTransactionalObject new.
current begin
. . .

Using the pseudo object, the transactional object can unilaterally rollback
the transaction and can inquire about the current state of the transaction.
Using the pseudo object, the transactional object also can obtain a
Distributed Smalltalk Application Developer’s Guide 213

Chapter 16 - Transaction Service
Coordinator for the current transaction. Using the Coordinator, a
transactional object can determine the relationship between two
transactions, to implement isolation among multiple transactions.

By implementing the Current interface in DSTTransactionalObject, we allow
all Transactional and Recoverable objects an interface that allows
operations to be sent that effect the entire Transaction and not just the
particular Resource object. (DSTRecoverableObject is a subclass of
DSTTransactionalObject.)

Some transactional objects are also recoverable objects. A recoverable
object has persistent data that must be managed as part of the
transaction. A recoverable object uses the Coordinator to register a
Resource object as a participant in the transaction. The resource
represents the recoverable object’s participation in the transaction; each
resource is implicitly associated with a single transaction. The Coordinator
uses the resource to perform the two-phase commit protocol on the
recoverable object’s data.

After the computations involved in the transaction have been completed,
the transaction originator uses the pseudo object to request that the
changes be committed. The transaction service commits the transaction
using a two-phase commit protocol, wherein a series of requests are
issued to the registered resources.

Transaction Context
A transaction context can be associated with each ORB-aware thread.
The transaction context associated with a thread is either nil (indicating
that the thread has no associated transaction), or it refers to a specific
transaction. It is permitted for multiple threads to be associated with the
same transaction at the same time.

When a thread in an object server is used by an object adapter to
perform a request on a transactional object, the object adapter initializes
the transaction context associated with that thread by effectively copying
the transaction context of the thread that issued the request.

The transaction context is used to determine ownership of the resources
involved in a transaction. DSTTransactionalObjects use
DSTTransactionalLockSets to control access to resources, and the
transactional locksets use information in the transaction context to
determine ownership.
214 VisualWorks

Interfaces
Context Management
The transaction service supports management and propagation of
transaction context - using objects provided by service. Using this
approach, the transaction originator issues a request to a Factory to begin
a new top-level transaction. The factory returns a Control object specific to
the new transaction that allows an application to terminate the transaction
or to become a participant in the transaction (by registering a resource).
An application can propagate a transaction context by passing the Control
as an explicit request parameter.

The Control interface does not directly support management of the
transaction. Instead, it supports operations that return two other objects,
a Terminator and a Coordinator. The Terminator is used to commit or
rollback the transaction. The Coordinator is used to enable transactional
objects to participate in the transaction. These two objects can be
propagated independently, allowing finer granulatity control over
propagation.

In Distributed Smalltalk, the Control, Terminator and Coordinator interfaces
are all implemented in DSTTransaction. However, the implementation does
not preclude the use of external or specialized Coordinators and
Terminators. For this reason, it is strongly recommended that users of the
service acquire and use the Control, Coordinator and Terminator interfaces
as defined.

Interfaces
The CosTransactions module in DSTRepository’s defines interfaces for
transactions. Browse these interfaces for details. The IDL hierarchy is as
follows:

Factory
DSTTransactionFactory: Factory, ClassObject

Control
DSTControl

Terminator
Coordinator

DSTCoordinator
DSTTransaction: DSTCoordinator, DSTControl, Terminator
Distributed Smalltalk Application Developer’s Guide 215

Chapter 16 - Transaction Service
RecoveryCoordinator
DSTRecoveryCoordinator: RecoveryCoordinator,

LifeCycleObject, FactoryRepresentive
Resource

SubtransactionAwareResource
TransactionalObject

DSTTransactionalObject: TransactionalObject, LifeCycleObject,
 FactoryRepresentive
DSTRecoverableObject: DSTTransactionalObject,

SubtransactionAwareResource

Use of Transaction Service Functionality for Interfaces

Function Used by Context Management

Direct Indirecta

a. All indirect context management operations are on the Current pseudo-object interface.

Create a
transaction

Transaction
originator

Factory::create
Control::get_terminator
Control::get_coordinator

begin
set_timeout

Terminate a
transaction

Transaction
originator-implicit
All-explicit

Terminator::commit
Terminator::rollback

commit
rollback

Rollback a
transaction

Server Terminator::rollback_only rollback_only

Control
propagation of
transaction to a
server

Server Declaration of method parameter TransactionalObject
interface

Control by client of
transaction
propagation to a
server

All Request parameters get_control
suspend
resume

Become a
participant in a
transaction

Recoverable
Server

Coordinator::register_resource Not applicable

Miscellaneous All Coordinator::get_status
Coordinator::get_transaction_name
Coordinator::is_same_transaction
Coordinator::hash_transaction

get_status
get_transaction_name
Not applicable
Not applicable
216 VisualWorks

Implementation
Implementation
In Distributed Smalltalk, the classes for transactions take these positions
in the class hierarchy. Browse these classes for variables and methods.
Their positions in the class hierarchy are:

Object
Model

ORBObject
DSTPersistentObject

DSTTransactionalObject
DSTRecoverableObject

DSTSampleRecoverableObject
DSTRecoveryCoordinator

DSTTransaction
DSTServiceContext

DSTTransactionContext
DSTTransactionIdentifier
DSTTransactionIdentity

Using the Distributed Smalltalk Transaction Service
The classes that implement the transaction service are in the class
category COS-Transactions. You can browse those classes to learn more
about transaction policies and services.

Implementing a Recoverable Object
The Recoverable Object framework in Distributed Smalltalk is designed
to be extended for specific kinds of persistent objects, or objects which
are stored in particular kinds of data stores (DBMS).

As an implementor of a Recoverable Object, you will subclass from
DSTRecoverableObject and add behavior specific to that subclass.
DSTTransactionalObject and DSTRecoverableObject are both abstract classes.

Example
An example of a concrete Recoverable Object can be seen in the class
DSTSampleRecoverableObject. This object implements a simple persistence
mechanism based upon the externalization and internalization
mechanism in one of its parent classes, DSTPersistentObject. This example
shows the minimum work a subclass of DSTRecoverableObject needs to do
to participate as a Resource within a distributed transaction.
Distributed Smalltalk Application Developer’s Guide 217

Chapter 16 - Transaction Service
In this example, five methods are overwritten in the concrete class:

1 commitData

This message is sent by the recoverable object framework when an
object’s data should be committed.

2 prepareState

This message is sent by the recoverable object framework in the first
phase of a two phase commit.

3 rollbackState

This message is sent by the recoverable object framework when an
object’s state should be rolled back within a transaction.

The first three messages are sent during the two phase commit process.
In the first phase, the prepareState message will be sent. At this time an
object must prepare itself to either rollback or commit its state. It must
return either true or false.

4 commitSubtransaction:

This message is sent when a resource has been registered with a
subtransaction and the subtransaction has been committed.

5 rollbackSubtransaction

This message is sent when a resource has been registered with a
subtransaction and the subtransaction has been rolled back.

When the commitData or rollbackState message is sent, the object is
responsible for performing the appropriate action.

For specific data bases, this is the point where you will perform the actual
database commit or rollback operations.

You will also need to determine when the actual starting of the database
transaction should be performed.

One convenient method is to override the beginTransaction operation in
DSTTransactionalObject to perform the operation at this time.

In practice, many persistent stores do not implement a full two-phase
commit.

In this case, implementors of Recoverable Objects will need to override
additional operations to insure consistency.
218 VisualWorks

Using the Distributed Smalltalk Transaction Service
For example, you may be using a persistent store that only supports a
single database transaction per image. In this case you may want to
implement a scheme to maintain a single database transaction within a
set of logical distributed transactions.

Example
You may create a notion of a root transaction within your Recoverable
Object and when you begin a transaction, first check to see if you are
operating within a transaction. If not, create one, if so, create a
subtransaction within the current context:

beginTransaction
"Create a new transaction within the current thread. If
 I am in a transaction already, create this transaction
 as a subtransaction in order to operate within a single
 database transaction. Note: beginDatabaseTransaction will
 begin the actual transaction on the DBMS."

self transaction isNil
 ifTrue:

[self transaction: (DSTTransaction create: 0).
rootTransaction := self transaction.
self transaction getCoordinator registerResource: self.
self beginDatabaseTransaction]

 ifFalse: [self beginSubTransaction]

Creating a Transaction
Transactions may be created using either:

• The Current pseudo object interface (implemented on
DSTTransactionalObject)

• The explicit factory methods on DSTTransaction

If you use the Current interface, a transaction will be created on your
behalf. The Current interface is intended to be used by transactional
objects so that they do not need to directly manage the transaction.

A Recoverable Object may create a transaction by sending the
beginTransaction message to itself. This will both create the transaction
and register the object as a resource with the transaction. For example:

| resource |
resource := DSTSampleRecoverableObject new initialize.
resource beginTransaction.

In the above code fragment the method beginTransaction is the Smalltalk
implementation of the operation begin on the Current pseudo object.
Distributed Smalltalk Application Developer’s Guide 219

Chapter 16 - Transaction Service
This is equivalent to the following code fragment which explicitly creates
a transaction and registers a resource with it:

| resource control coord |
resource := DSTSampleRecoverableObject new initialize.
control := DSTTransaction create: 0.
coord := control getCoordinator.
coord registerResource: resource.

Creating a transaction will set the transaction context within the current
(distributed) thread of control. This context information is implicitly passed
along the thread of control until the transaction is terminated. Once
started the transaction must be terminated by either rolling back or
committing the transaction. At this point, the context information which is
implicitly passed along the thread of control will be destroyed.

Completing a Transaction
While a transaction is in effect, messages may be sent to a Recoverable
Object which effect the state of the object. During the first phase of the
two phase commit, an object will be sent the prepare message by the
transaction terminator. The Recoverable Object must reply with a vote
which tells the terminator whether the object can commit or should be
rolled back. The appropriate vote responses are defined as enumerations
and can be accessed via accessors on DSTTransaction class.

If an object votes to rollback during the prepare (first) phase, all objects
which are part of the transaction and have voted to commit will then be
asked to rollback during the second phase. If no objects vote to roll back
during the prepare phase, then all of the objects which voted to commit,
will be asked to commit.

An object will generally maintain its state in such a way that when asked
to prepare for a commit, its instance variable vote will be in an appropriate
state. For example, an object may have started an operation which could
leave it in an inconsistent state until completed. During that window, the
object may choose to set its vote to rollback. Upon successful completion
it may set its vote to commit.
220 VisualWorks

Using the Distributed Smalltalk Transaction Service
Example
A subclass of DSTRecoverableObject which implements a distributed cache
of inventory items may have an operation such as:

cacheAll
"Get all the inventory objects from the database and cache
them into local objects in my image."

lockset lock: self coordinator mode: lockset class read
self vote: DSTTransaction voteRollback.
itemCache := InventoryItem new allObjects.
self vote: DSTTransaction voteCommit.
lockset unlock: self coordinator mode: lockset class read.

In the above example, notice that the Recoverable Object uses an object
named lockset to manage concurrent access to its resources. Instances of
DSTRecoverableObject have their own Transactional Locksets which should
be used by the Recoverable Object when appropriate. For more
information on locksets, “Concurrency Control Service”.

If the transaction were to be prepared during the period when the cache
was being established, this object would vote to rollback and the
transaction would be rolled back.

Transactions may be completed in either one of two ways:

• By explicitly using the transaction terminator

• By invoking methods which map to the Current pseudo object
interface

A transaction may be rolled back by a Recoverable Object using the
Current pseudo object as follows:

| resource |
resource := DSTSampleRecoverableObject new initialize.
resource beginTransaction.
. . .
resource commitTransaction: false

This is equivalent to the following code fragment which explicitly creates
a transaction and registers a resource with it:
Distributed Smalltalk Application Developer’s Guide 221

Chapter 16 - Transaction Service
| resource control coord terminator |
resource := DSTSampleRecoverableObject new initialize.
control := DSTTransaction create: 0.
coord := control getCoordinator.
coord registerResource: resource.
. . .
terminator := control getTerminator.
terminator commit: false

Create a Transaction Example
This example can be browsed on the class side of
DSTSampleRecoverableObject and demonstrates the use a recoverable
object with indirect context.

Example: aFactory
"This example demonstrates the use of a recoverable object

with indirect context management (the Current pseudoObject)"
"Processor activeProcess orbContext transactionContext: nil."
"self example1: ORBObject factoryFinder"

| suspended resource |
resource := self create.
resource beginTransaction.
suspended := resource suspendTransaction.
DSTTransaction noTransactionSignal handle:

[:x | "This should raise an exception"]
do:

[resource commitTransaction: false.
self error: 'testCurrentInterfaceNear: suspend failed'; cr].

resource resumeTransaction: suspended.
Object errorSignal handle:

[:x | self error: 'example1: resume failed'; cr]
do: [resource commitTransaction: false].

resource beginTransaction.
resource vote: DSTTransaction voteCommit.
resource commitTransaction: false.
resource getTransactionStatus == DSTTransaction statusCommitted

ifFalse: [self error: 'example1: Failure, transaction status ' ,
resource getTransactionStatus printString; cr].

resource beginTransaction.
resource vote: DSTTransaction voteRollback.
resource rollbackTransaction.
^resource
222 VisualWorks

17
Debugging and Tuning

Overview
Debugging and tuning is somewhat more complicated for distributed
applications than for local applications. This chapter introduces the tools
provided with DST for debugging and performance tuning. It also
provides hints for optimizing performance.

The steps you should follow in troubleshooting and tuning are:

1 Get the application running in a local image.

2 Test in a simulated distributed environment (Local RPC).

3 Test in a distributed environment.

4 Optimize and tune for performance.

Debugging and Tuning Tools
The DST Tool is the primary user interface to Distributed Smalltalk, and
provides access to further tools that are useful to administrators and
developers for testing and maintenance. Specifically, it provides access
to monitoring and debugging facilities in DST.

Debugging
Checking the Debugging checkbox enables the error handler for remote
debugging. If an error is detected on an image with debugging enabled, a
notifier will allow you to open a local Smalltalk Debugger on that machine.
If debugging is enabled, and a remote error occurs, an exception handler
displays, with the stack already unwound to the context of the client that
sent the request.
Distributed Smalltalk Application Developer’s Guide 223

Chapter 17 - Debugging and Tuning
Message Logging
Clicking the Monitor button opens a window that displays remote RPC
activity.

The Active Conversations subview columns are:

• TYPE — RPC client or server.

• STATE — working, done, final, wait, or init.

• OPERATION — message sent.

• TARGET — target object’s abstractClassId.

• ACTIVITY — interface’s mostDerivedInterfaceID.

Local RPC Testing
Checking the Local Testing checkbox causes the local image to simulate a
distributed object environment by using the full IDL marshaling and
unmarshaling machinery.
224 VisualWorks

Local RPC Testing
Local RPC Testing
It is typical to use I3 for early prototyping of a distributed application,
before expressing the interfaces in IDL. Once you have translated the
interfaces, but before distributing the application, you should test them
locally. During this stage of development, you can debug an application
more easily using a single image with local objects simulating remote
objects. DST provides Local RPC Testing to do this.

Local Testing simulates remote execution by wrapping a local object in a
special proxy—an instance of DSTObjRefLocal—that invokes the lower-
level marshalling and unmarshalling machinery typical of a remote call.

To enable local testing, you do two things:

1 Check Local Testing on the DST Tool, and

2 Sending asRemotable to the objects under test.

Local Testing is object-specific; you must explicitly wrap one or more
objects implement the interface you intend to test in a proxy, by sending
them the message asRemotable. For example, to test the interface for the
operation quantity of an instance of Order, you would turn on Local Testing
and evaluate something like:

Order new asRemotable quantity.
The effect of asRemotable can be undone by sending a wrapped object the
message asLocal. If, during Local Testing, you want to ensure that an
object is local, you can send it the message mustBeLocal, which will raise
an exception if an object proves not to be local after an attempt to make it
so.

It is important to make all of the objects remoteable that need to be made
remoteable, in order to completely test your interface(s).

If you do not turn local testing OFF when testing a remote execution, you
may have local, simulated behavior where you intended none. If you do
not turn local RPC testing ON when testing a partially remote execution,
you may have true, distributed behavior where you intended local
simulation.

Occasionally, you may notice an initially surprising number of
DSTObjRefLocals. The principle cause is the creation of additional
DSTObjRefLocals by the Basic Lifecyle service. If Local Testing is turned
on, remote creation requests that utilize the Lifecycle Service will
generate DSTObjRefLocals in order to simulate remote creation.
Distributed Smalltalk Application Developer’s Guide 225

Chapter 17 - Debugging and Tuning
Remote Object Debugging
Once you have distributed your application among multiple machines,
you will sometimes need to debug and inspect a remote image itself. The
primary tools in Distributed Smalltalk to help you with this are:

• Remote Browser—a regular hierarchy browser that can look at or
edit both local and remote classes.

• Remote Debugger—a full debugger, showing stack, method code
and inspectors of receivers and their instance variables on all
systems involved in the distributed execution context.

Using the Remote Object Debugger
The Remote Object Debugger is a complete debugger on a distributed
process. You can use it to view the stack, step through message sends,
edit methods, and examine and change the values of variables.

To enable remote debugging, check the Debugging checkbox in the DST
tool.

Note: This is a powerful but dangerous tool. There is no locking
mechanism to prevent concurrent editing. Use the Remote Object
Debugger with caution, and only when you are sure that no other
users are editing this image, or strange behavior may result.

1 With Debugging turned on, when an error occurs during request
execution in that image, a notifier will appear, indicating that a remote
error has occurred.
226 VisualWorks

Performance Tuning and Optimization
Note: If Debugging is not turned on and a remote error occurs, an
exception handler will appear and the stack will already have been
unwound to the context of the (client) sender of the request.

2 Click Debug to open Remote Object Debugger:

Each line in the stack is prefaced by either “local” or the name of the
remote host, indicating the location of the error.

3 (Optional) Choose filter stack in the stack subview the pop-up menu,
the system filters out RPC communications and other low-level
support messages, leaving only application-relevant information.

Performance Tuning and Optimization
As with any Smalltalk development project, you can redesign and
optimize applications you write in Distributed Smalltalk.

• Tune the application to run well on slower or less reliable networks.

• Make the user interface more efficient and easy to use.

• Optimize for a greater number of users sharing objects.
Distributed Smalltalk Application Developer’s Guide 227

Chapter 17 - Debugging and Tuning
Network Performance
While the function and interaction with local and remote objects is the
same, performance may vary.

Symptoms
• Acceptable performance during local and Local RPC activity but

sluggish performance over the network.

Possible Causes
• Slow network.

• Non-optimized message-passing with remote objects.

• Non-optimized distribution of local and remote object responsibilities.

Solutions
• To help isolate whether the problem is with the network or the local

application, make sure that Local RPC testing is off, since Local RPC
testing will impact performance.

• Rethink the presentation/semantic split. In general, presentation
objects run locally, while semantic objects may run anywhere on the
network. Thus, behaviors and attributes that involve heavy user
interaction should be assigned to presentation objects, while less
volatile behaviors and attributes should be assigned to semantic
objects.

• Group messages to reduce overhead. The network performance cost
for any message is about the same regardless of its size. Thus, you
can refine your application to eliminate needless message sends,
and group small messages wherever possible.

• Improve hardware and network configurations or use faster transfer
media.

User Interface Organization
Distributed applications have the potential of providing users a large
quantity and variety of objects. One of the biggest challenges in creating
usable distributed applications is to provide an information structure and
interface that lets users find what they need easily and rapidly.

With Distributed Smalltalk, an interface to information can be structured
hierarchically, or as a network, or as a hybrid of the two. By building on
the range of options, you can tune accessing schemes to your users’
needs.
228 VisualWorks

Coding Style Hints
Symptoms
• Users spend too much time looking for objects, or they get frustrated

and give up.

• Usability testing shows that objects are duplicated unnecessarily
because users cannot find what they really want.

Possible Causes
• Excessively deep burying of objects in many levels of containers.

• Excessively shallow organization of objects, all at the top level.

• Objects organized into containers by some criteria other than projects
or related tasks, or by no criteria at all.

Solutions
• Use the appropriate mix of containers and links to simplify

information access. If the number of objects is small, organize them
into containers (such as folders and file cabinets), letting users
browse to find what they need. If the volume of information is large,
browsing becomes inefficient and time-consuming. Other policies,
such as hierarchical search, may be used in conjunction with the
containment model to let users locate information more quickly.

Coding Style Hints
As you develop applications using Distributed Smalltalk, you may wish to
consider the following coding hints and guidelines.

Method Size
Since all remote calls require a certain minimum network overhead, you
can reduce network traffic and optimize performance by grouping small
methods into larger single calls.

Multiple Inheritance in DSTRepository
DSTRepository supports multiple inheritance for interfaces. Therefore, for
corresponding Smalltalk classes, you may need to copy methods from
more than one part of the class inheritance structure to achieve the effect
of DSTRepository’s multiple inheritance.

Blocks
The use of blocks in a distributed environment is different from their use
in a local VisualWorks image. If you wish to pass blocks (by reference)
across the network, you should define a corresponding interface in
Distributed Smalltalk Application Developer’s Guide 229

18
Creating a Deployment Image

Overview
In Distributed Smalltalk, runtime application creation is an extension of
the VisualWorks runtime image-making process. This section assumes
you are familiar with the VisualWorks process described in the
VisualWorks Application Developer’s Guide.

Design and Preparation
Before using the Image Maker to create a runtime application, there are
several issues you may wish to resolve while you still have use of the full
Distributed Smalltalk development environment.

Possible Runtime Configurations
Depending on the expected use of a runtime application, you can choose
to create a single (ORB) runtime image, or multiple ORB runtime images.
In runtime, as in development, an ORB image must be running on each
system.

Each application is a separate ORB image. It is possible to configure a
single ORB image to handle the naming service, the shared repository
and security. This configured ORB runtime image can be reduced to an
absolute minimum, so that it can run as a daemon process.
230 VisualWorks

Design and Preparation
Runtime Request Broker Panel
Distributed Smalltalk provides a Request Broker panel that is used to
start and stop the ORB in an image. You may include this default control
panel in your application or runtime ORB image, or you may choose to
modify the control panel, or even eliminate it if the ORB will be started
programmatically.

If you want to start an ORB programmatically (without a control panel), do
the following:

1 If the system is not initialized, initialize the system by executing:

ORBObject initializeORBAtHost: aHostname nodeId: aHostAddress.
for information on the appropriate arguments for hostName and
hostAddress, see the class IPSocketAddress.

2 Start the request broker by executing:

ORBDaemon startUpCoordinator startRequestBroker.

Note: A session is an object that keeps the transient state of your
environment and lets you keep track of objects you are working on. It
is re-initialized at system initialization.

Providing a Desktop Icon
If you wish to use an icon other than the default desktop icon, you must
format, name and position it in ways that Distributed Smalltalk expects,
as follows:

• File format must be XPM, Common Desktop Environment format, or
Smalltalk store format (using Smalltalk’s internal screen capture
fromUser:).

Classes XPixmapCompiler and XPixmapDescription translate XPM
format to an internal Smalltalk image. See the class comments for
more information.

• File name must be the same as the application’s semantic object (for
example ShapeSO).

If the class name is longer than allowed, the corresponding icon
name must be truncated. (For example, some file systems have an 8-
character limit.)

• Path name of the icon file must either be the default or you must
make it explicit.
Distributed Smalltalk Application Developer’s Guide 231

Chapter 18 - Creating a Deployment Image
The icons provided with Distributed Smalltalk are in the
subdirectories /dst/icons/select or unselect.These icons are
loaded when an image is built, and are stored in DSTPresenter class
variables IconSMap and IconUMap (selected and unselected
versions).

To install an icon after the image is built, you must make its path
explicit. To do this, you can use the DSTPresenter class method
readIcon:path:.

Modifying File and Directory Path Names
If you develop on one platform and deliver on another, or if you deliver on
the same platform but in a different directory tree, you should modify
certain pathnames for your users. In addition to the standard
VisualWorks files (visual.sou which is not needed for deployment,
and the fonts directories), you may need to change the path names for
the Distributed Smalltalk icons and pixmaps files. An easy way to
make this change is to evaluate the following expression (substituting the
correct path):

ORBObject installDir: ’pathname’ asFilename

Creating a Deployment ORB Image

Candidate Classes for Removal

Category Candidate for Removal Comments

CORBA-Core DSTPresenter many dependencies in application presenta-
tions; remove with caution

CORBA-Contexts (none) removable if not using Request Broker
panel interfaces

CORBA-MetaObjects DSTMetaPO many dependencies in application presenta-
tions; remove with caution

CORBA-Protocols-Core (none)

CORBA-Protocols-NCS (none)

CORBA-Protocol-IIOP (none)
232 VisualWorks

Creating a Deployment ORB Image
CORBA-Compilers all classes in category remove IDLCompiler only if using shared
repository

CORBA-Repository DSTRepository (only class
in category)

remove DSTRepository class only if using
shared repository

Note: the shared repository must be speci-
fied before the Image Maker is run.

unused interfaces can be removed if using
local repository

CORBA-Tools all classes in category except
DSTClassFilter

CORBA-Debugging all classes in category

COS-Events all classes in category many dependencies on these classes in the
end-user environment; remove with caution

COS-Naming (none) do not remove!

COS-Lifecycle (none) do not remove!

COS-Concurrency (none)

COS-Transactions all classes in category provides transaction service

DST-ObjectServices all classes in category many dependencies on these classes in the
end-user environment; remove with caution

DST-AccessControl all classes in category except
DSTUserAcct,
DSTUserDB, DSTPrincipal

DST-UserInterface all classes in category

DST-Policy all classes in category many dependencies on these classes in the
end-user environment; remove with caution

DST-UserServices all classes in category

DST-Media all classes in category sample applications

DST-Collectors all classes in category sample applications

DST-Building all classes in category

DST-Containers all classes in category sample applications

Category Candidate for Removal Comments
Distributed Smalltalk Application Developer’s Guide 233

Chapter 18 - Creating a Deployment Image
Steps for Creating a Deployment Image
1 Stop the ORB

2 Save your image.

If you accidentally remove needed classes or have other problems
during the deployment process, you will be able to start again from
this saved image.

3 Open the Request Broker panel (or application).

• If you want the runtime application to have a Request Broker
panel, it should be open now (but not started).

• If your application will not use a Request Broker panel, open the
application.

4 Specify the shared interface repository, if appropriate.

If the deployment image will use a shared interface repository, you
must set this up before running the Image Maker. That is, once the
ORB is set to use a shared interface repository, you can safely
remove classes DSTRepository and IDLCompiler.

DST-Office all classes in category

DST-Mapped Containers all classes in category sample applications

DST-AgentServices all classes in category required in default user interface;
SessionContext may have other
dependencies; many dependencies on these
classes in the end-user environment —
remove with caution

DST-Order Processing all classes in category sample applications

DST-Browser all classes in category provide services to standard applications

DST-Tools all classes in category development tools, not needed after
deployment

DST-Testing all classes in category

DST-Integration all classes in category

DST-ORBLite-Examples all classes in category

Category Candidate for Removal Comments
234 VisualWorks

Optimizing Runtime Applications
You could also leave a settings window up (and not remove class
DSTSystemSettings) to allow shared repository configuration during
runtime. However, any image with DSTRepository removed must be a
shared repository.

5 Load and run the Image Maker, as described in the VisualWorks
User’s Guide. Keep in mind the following special situations:

• The agent (AgentPO and AgentSO) uses the Smalltalk compiler;
do not remove compiler classes if you wish to use the agent.

• Your application will need a way to initialize and start the ORB,
so either your application must do this, or you need to leave up
an ORBControlPanel. If you leave up a window, you must not
remove its associated class.

• Your application must already be configured before you run the
Image Maker, or you must leave up a DSTSystemSettings
window and not remove that class. Alternatively, your application
must take responsibility for setting up the appropriate
configuration.

• If DSTRepository is removed, the deployment image must use a
shared repository. (See Step 4 on page 234).

Optimizing Runtime Applications

Exception Handling
Your application should catch, handle, and recover from errors that are
associated with distributed systems, including: unreliable networks,
shared objects, remote systems that become unavailable, and so on. For
troubleshooting information, see Chapter . “Debugging and Tuning”
starting on page 223.

That is, be sure to:

• Provide graceful handling of exceptions.

• Complete testing before creating the deployment image, and save
the development image. (Debugging can be very difficult in a
deployment image because development tools are no longer
available.)

• Test the deployment image, to verify that no needed code was
removed.
Distributed Smalltalk Application Developer’s Guide 235

Chapter 18 - Creating a Deployment Image
• After deployment, you can use an Object Request Broker panel to
monitor activity and start or stop the ORB on a remote image.

Minimizing Footprint
Frequently, a final runtime application needs to run on a platform with
less memory and disk space, or a slower processor than your
development platform. Some ideas for making a compact runtime
application are:

• Remove all unnecessary classes during the image-making process.

• For the ORB image, remove all optional Distributed Smalltalk
classes.

• Use the runtime Request Broker panel, or no Request Broker panel
at all.

• Use a shared Interface Repository.
236 VisualWorks

19
Troubleshooting

Overview
The most common issues that arise during development and operation
are:

• Marshalling and unmarshalling errors

• Unavailable objects

• Synchronization errors

• Dangling references

• Interface access and editing errors

• Messages not understood

• Problems running multiple images

• Handling server-side transient errors

Marshalling and Unmarshalling Errors
Marshalling is the process of converting a Smalltalk message into a byte
stream for transmission to a remote server. Unmarshalling creates a
Smalltalk message from a marshalled byte stream. Marshalling and
unmarshalling errors occur when the Interface Repository does not know
how to deal with a given object.

Symptoms
• The application runs locally but not remotely.

• With Local RPC Testing turned on, or when running a distributed
application, a marshallError or unmarshallError error notifier appears.
Distributed Smalltalk Application Developer’s Guide 237

Chapter 19 - Troubleshooting
Possible Causes
• An object’s interface has not been registered with the Interface

Repository.

• The object’s interface has changed since it was registered
(repositories out of sync).

• A parameter or result value is inconsistent with the method’s
operation declaration.

• A legal Smalltalk construct may be illegal in IDL (IDL typing is more
constrained than Smalltalk allows).

Solutions
• Use the IR Browser to check the object’s interface.

• Edit the appropriate module in DSTRepository.

• Change the interface declaration in DSTRepository or change the
value in the Smalltalk code.

Object Availability Exceptions
Since remote objects live in images over which the local image has no
control, it is possible for remote objects to become unavailable. That is,
when a local object sends a message to a remote object’s surrogate, the
surrogate tries to pass the message to the remote object but gets no
response.

Symptoms
• The following exceptions are raised when a message is sent to an

unavailable object:

commFailureError Communication failure (the remote ORB is
probably down)

invObjrefError: Invalid object reference (most likely: the
object no longer exists in the remote image)

noPermissionError: No permission for attempted operation

noImplementError: Operation implementation unavailable

noResponseError: Response to request not yet available

transientError: Transient failure—reissue request
238 VisualWorks

Synchronization Problems
Possible Causes
• Sockets, network, or other communications services are busy or

unavailable.

• Remote image is closed or the system it runs on is unavailable (it
may be turned off, or off the network).

• Remote ORB is stopped.

• Remote garbage collect reclaimed the object.

Solutions
• Wait for other ORB to be started, or for its image to come back on

line.

• Strengthen the link. For a discussion of the different kinds of links,
see “Links” on page 79.

• If the problem is frequent, consider refining the application design to
make the remote object local.

• When a communications failure occurs, in a Developer’s system, you
can debug or proceed, however in a Runtime system there is no
option to debug. If you wish to let users attempt to retry after a
communication failure, you can set class DSTObjRef’s retrying flag to
true (by default, it is set to false).

• For transient errors, consider using the transient error handler (see
“Handling Server-side Transient Errors” below)

Synchronization Problems
Synchronization problems are most likely to occur when multiple users
share objects.

Symptoms
• Unreliable behavior.

• Non-deterministic errors.

Possible Causes
• Users’ changes to a shared object conflict.

• Stale images access shared objects.
Distributed Smalltalk Application Developer’s Guide 239

Chapter 19 - Troubleshooting
Solutions
• Use resource management to lock out multiple concurrent edits of

shared resources. (Resource management is implemented in class
DSTResourceManager and used by DSTSemantic.)

• Use semaphores to serialize critical parts of an application.

• Refine class DSTTraversal to provide tighter object locking and
transaction control.

• Use an external database’s object locking facilities.

Dangling References
Dangling references can occur when a method refers to an obsolete
interface in the Interface Repository.

Symptoms
• “Dangling references” notifier.

Possible Causes
• A thread of control or context holds a reference to an interface object

that has been removed from the Interface Repository. For example,
you have open instances of an application that rely on an interface
that you changed.

Solutions
• Close the offending application instances.

Remote Access to Overridden Methods
Objects that override methods in class Object cannot make these
methods remotely available since the surrogates inherit from Object.

Symptoms
• You expect a remote message response but get a local one.

Possible Causes
• Instances of DSTObjRef and its subclasses function as surrogates for

remote objects. Messages sent to instances of DSTObjRef that are not
implemented in DSTObjRef or its superclass Object are assumed to be
implemented in the remote object. However, if a method is defined
both in the local class Object and the remote object that the DSTObjRef
240 VisualWorks

Interface Repository Accessing Errors
instance refers to, by default, Object’s method will respond to the call;
this is probably not the behavior you intended.

Solutions
• Define a method in DSTObjRef’s message category override inheritance

that overrides class Object’s method of the same name. (See the
other methods defined here for examples of the method definition.)

For example, in order to have the message broadcast: aDSTObjRef call
the remote object’s broadcast: method, you must define broadcast: in
DSTObjRef’s override inheritance message category. Define it as:

broadcast: aSymbol
"pass this operation to the referenced object"

^self perform: #broadcast on: (Array with: aSymbol).

Interface Repository Accessing Errors
The Interface Repository Browser uses resource management to protect
against concurrent editing of the same interfaces and of interfaces that
are in use. Thus, the system can deny your attempts to edit interfaces.

(Since the System Browser does not protect against concurrent edits, it
can be dangerous place to edit an interface repository.)

Symptoms
• When using the Interface Repository Browser, if you choose Edit

menu: Definition, an error message appears and the view does not
change (that is, it remains a read-only iconic or text view).

Possible Causes
You are trying to edit:

• Fundamental interfaces that the IR Browser uses to present
information (for example, the PSSplit module),

• An interface repository that someone else is currently editing, or

• An interface repository that someone was browsing when their
system crashed (this problem does not occur when the ORB stops
normally).
Distributed Smalltalk Application Developer’s Guide 241

Chapter 19 - Troubleshooting
Solutions
• Use the View menu as text option to get read-only access.

• If locks should be released but were not because the system from
which the interface repository was being edited crashed, you must
reinitialize the repository. To do this, stop the ORB, then in the
Distributed Smalltalk main window, select DST!Initialize!Initialize
Repository.

Interface Incompatibilities
Objects in different images communicate via their interfaces which are
stored in each ORB’s interface repository. If the interfaces are not
identical (or of compatible versions), you may see a badOperationError: or
some other error.

Symptoms
• Errors (such as badOperationError:) occur during distributed execution

that do not occur during Local RPC testing.

Possible Causes
• Interface definitions in the participating interface repositories are out

of sync.

• Interface version numbers are out of sync. (The server interface’s
version number must be greater than or equal to the client’s version.)

• If you are using a shared interface repository, the interfaces in the
master repository may have changed since the local copy was
cached.

Solutions
• If you are using a shared repository, stop the ORB, then in

Distributed Smalltalk main window, select DST!Initialize!Initialize
Repository.

• If you are using interface versioning, be sure that you use it correctly.
242 VisualWorks

Other Exceptions
Other Exceptions
To support CORBA and object distribution, Distributed Smalltalk provides
mechanisms for remote objects to send messages via surrogates and to
access interfaces in the Interface Repository. As a result, there is an
extra layer of complexity in pinpointing an error when a message to a
distributed object is not understood.

Symptoms
• The following exceptions are raised when a message sent to a

remote object is not understood:

Possible Causes
• Interface Repositories in the communicating images are out of sync.

(The Interface Repository in each image is distinct; if you change one
you must also change the others.)

• The message sent is not defined for the remote object.

Solutions
• Use the debugger to navigate to the remote image, where you can

determine whether the message being sent is actually implemented.

badInvOrderError Routine invocations out of order

badOperationError: Invalid operation, or interfaces out of sync

badParamError: An invalid parameter was passed

badTypecodeError: Bad typecode

contextError: Error processing context object

dataConversionError: Data conversion error

intfReposError: Error accessing interface repository

invFlagError: Invalid flag was specified

invIdentError: Invalid identifier syntax

NotFound Object not found (part of IDL interface)

SemanticError (part of IDL interface)

UnknownID Unknown object UUID (part of IDL interface)
Distributed Smalltalk Application Developer’s Guide 243

Chapter 19 - Troubleshooting
Problems Running Multiple Images

Cannot Start an ORB
• If an ORB already running on a system, you cannot start another.

• If you cannot start the ORB because there is no Request Broker
panel, execute the statement DSTControlPanel open to reopen an
Request Broker panel.

Cannot Determine Which Image You Are Using
• Use the Office’s Action menu choice Open Building. Each office open

on the current system will be shown here. Or, open the Request
Broker panel’s Monitor to see active conversations; conversations
within an image are local, conversations between ORBs are
considered remote.

Handling Server-side Transient Errors
DST now has a customizable TransientErrorHandler for dealing with server
side transient errors. To customize the handler, review the method
comment of ORBDaemon class>>transientErrorHandler:.

Transients errors are usually raised when clients and servers are both
overloaded, by the client spawning requests and the server receiving
them. If the server is swamped with incoming requests, it spends all of its
time spawning processes to respond to them, and those spawned
processes never get a window in which to run. This can further entail that
the requests will time out on the client side. When the server gets time to
run its spawned, responding processes, and has return values to pass
back, the client is too busy doing other things to listen, and this produces
a transient error.

Transients are difficult to trap in user code, because they are generated
on the server side, in a spawned process, created to respond to a remote
request, initiated in another image. Because an unhandled transient will
try to open a notifier, a user producing a headless server wants to trap
them.

Before you decide to muffle notification of transients, using a handler
block that throws them away, you really should find out exactly why and
how the transients are occuring.
244 VisualWorks

A
IDL Lexical Conventions

Overview
This chapter presents the lexical conventions of IDL. It defines tokens in
an IDL specification and describes comments, identifiers, keywords, and
literals (integer, character, floating point, and string).

File Processing
An IDL specification logically consists of one or more files. A file is
conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro
substitution. Preprocessing is controlled by directives introduced by lines
having # as the first character other than white space. The result of
preprocessing is a sequence of tokens. Such a sequence of tokens (that
is, a file after preprocessing), is called a translation unit.

Comparison With C++ Lexical Conventions
IDL obeys the same lexical rules as C++, although new keywords are
introduced to support distribution concepts. It also provides full support
for standard C++ preprocessing features. The IDL specification is
expected to track relevant changes to C++ introduced by the ANSI
standardization effort.

Character Set
IDL uses the ISO Latin-1 (8859.1) character set. This character set is
divided into alphabetic characters (letters), digits, graphic characters, the
space (blank) character and formatting characters. The table below
shows the IDL alphabetic characters; upper- and lower-case
equivalencies are paired.
Distributed Smalltalk Application Developer’s Guide 245

Chapter A - IDL Lexical Conventions
Alphabetic Characters (Letter)

Char. Description Char. Description

Aa Upper/Lower-case A Àà Upper/Lower-case A with
grave accent

Bb Upper/Lower-case B Áá Upper/Lower-case A with
acute accent

Cc Upper/Lower-case C Ââ Upper/Lower-case A with
circumflex accent

Dd Upper/Lower-case D Ãã Upper/Lower-case A with
tilde

Ee Upper/Lower-case E Ää Upper/Lower-case A with
diaeresis

Ff Upper/Lower-case F Åå Upper/Lower-case A with
ring above

Gg Upper/Lower-case G Ææ Upper/Lower-case
dipthong A with E

Hh Upper/Lower-case H Çç Upper/Lower-case C with
cedilla

Ii Upper/Lower-case I Èè Upper/Lower-case E with
grave accent

Jj Upper/Lower-case J Éé Upper/Lower-case E with
acute accent

Kk Upper/Lower-case K Êê Upper/Lower-case E with
circumflex accent

Ll Upper/Lower-case L Ëë Upper/Lower-case E with
diaeresis

Mm Upper/Lower-case M Ìì Upper/Lower-case I with
grave accent

Nn Upper/Lower-case N Íí Upper/Lower-case I with
acute accent

Oo Upper/Lower-case O Îî Upper/Lower-case I with
circumflex accent

Pp Upper/Lower-case P Ïï Upper/Lower-case I with
diaeresis

Qq Upper/Lower-case Q †† Upper/Lower-case
Icelandic eth

Rr Upper/Lower-case R Ññ Upper/Lower-case N with
tilde
246 VisualWorks

Overview
†† denotes character unprintable in this document

Ss Upper/Lower-case S Òò Upper/Lower-case O with
grave accent

Tt Upper/Lower-case T Óó Upper/Lower-case O with
acute accent

Uu Upper/Lower-case U Ôô Upper/Lower-case O with
circumflex accent

Vv Upper/Lower-case V Õõ Upper/Lower-case O with
tilde

Ww Upper/Lower-case W Öö Upper/Lower-case O with
diaeresis

Xx Upper/Lower-case X Øø Upper/Lower-case O with
oblique stroke

Yy Upper/Lower-case Y Ùù Upper/Lower-case U with
grave accent

Zz Upper/Lower-case Z Úú Upper/Lower-case U with
acute accent

Ûû Upper/Lower-case U with
circumflex accent

Üü Upper/Lower-case U with
diaeresis

†† Upper/Lower-case Y with
acute accent

†† Upper/Lower-case
Icelandic thorn

 ß Lower-case German
sharp S

 ÿ Lower-case Y with
diaeresis

Alphabetic Characters (Letter) (Continued)

Char. Description Char. Description
Distributed Smalltalk Application Developer’s Guide 247

Chapter A - IDL Lexical Conventions
Decimal Digit Characters

0 1 2 3 4 5 6 7 8 9

Graphic Characters

Char. Description Char. Description

! exclamation point ¡ inverted exclamation mark

" double quote ¢ cent sign

number sign £ pound sign

$ dollar sign ¤ currency sign

% percent sign ¥ yen sign

& ampersand † broken bar

’ apostrophe § section/paragraph sign

(left parenthesis ¨ diaeresis

) right parenthesis © copyright sign

* asterisk ª feminine ordinal indicator

+ plus sign « left angle quotation mark

, comma ¬ not sign

- hyphen, minus sign † soft hyphen

. period, full stop ® registered trade mark sign

/ solidus ¯ macron

: colon ° ring above, degree sign

; semicolon ± plus-minus sign

< less-than sign 2 superscript two

= equals sign 3 superscript three

> greater-than sign ´ acute

? question mark m micro

@ commercial at ¶ pilcrow

[left square bracket • middle dot

\ reverse solidus ¸ cedilla

] right square bracket 1 superscript one
248 VisualWorks

Tokens
† denotes character unprintable in this document.

Tokens
There are five kinds of tokens: identifiers, keywords, literals, operators,
and other separators. Blanks, horizontal and vertical tabs, newlines,
formfeeds, and comments (collective, “white space”), as described below,
are ignored except as they serve to separate tokens. Some white space
is required to separate otherwise adjacent identifiers, keywords, and
constants.

If the input stream has been parsed into tokens up to a given character,
the next token is taken to be the longest string of characters that could
possibly constitute a token.

^ circumflex º masculine ordinal indicator

_ low line, underscore » right angle quotation mark

` grave † vulgar fraction 1/4

{ left curly bracket † vulgar fraction 1/2

| vertical line † vulgar fraction 3/4

} right curly bracket ¿ inverted question mark

~ tilde x multiplication sign

³ division sign

The Formatting Characters

Description Abbreviation ISO 646 Octal Value

alert BEL 007

backspace BS 010

horizontal tab HT 011

newline NL, LF 012

vertical tab VT 013

form feed FF 014

carriage return CR 015

Graphic Characters (Continued)

Char. Description Char. Description
Distributed Smalltalk Application Developer’s Guide 249

Chapter A - IDL Lexical Conventions
Comments
The characters /* start a comment, which terminates with the characters
*/. These comments do not nest. The characters // start a comment,
which terminates at the end of the line on which they occur. The
comment characters //, /*, and */ have no special meaning within a //
comment and are treated just like other characters. Similarly, the
comment characters // and /* have no special meaning within a /*
comment. Comments may contain alphabetic, digit, graphic, space,
horizontal tab, vertical tab, form feed, and newline characters.

Identifiers
An identifier is an arbitrarily long sequence of alphabetic, digit, and
underscore (“_”) characters. The first character must be an alphabetic
character. All characters are significant.

Identifiers that differ only in case collide and yield a compilation error. An
identifier for a definition must be spelled consistently (with respect to
case) throughout a specification.

When comparing two identifiers to see if they collide:

• Upper- and lower-case letters are treated as the same letter. Table
defines the equivalence mapping of upper- and lower-case letters.

• The comparison does not take into account equivalences between
digraphs and pairs of letters (e.g., “æ” and “ae” are not considered
equivalent) or equivalences between accented and non-accented
letters (e.g., “Á” and “A” are not considered equivalent).

• All characters are significant.

There is only one name space for IDL identifiers. Using the same
identifier for a constant and an interface, for example, produces a
compilation error.
250 VisualWorks

Keywords
Keywords
The identifiers listed in the following table are reserved for use as
keywords, and may not be used otherwise.

Keywords obey the rules for identifiers (see “Identifiers” on page 250) and
must be written exactly as shown in the above list. For example, “boolean”
is correct; “Boolean” produces a compilation error.

IDL specifications use the characters shown in the following table as
punctuation.

In addition, the tokens listed in the following table are used by the
preprocessor.

Reserved Keywords

any default interface readonly unsigned

attribute double long sequence union

boolean enum module short void

case exception octet string FALSE

char float oneway struct Object

const in out switch TRUE

context inout raises typedef

Punctuation Characters

; { } : , = + - () < > []

' " \ | ^ & * / % ~

Preprocessor Tokens

! || &&
Distributed Smalltalk Application Developer’s Guide 251

Chapter A - IDL Lexical Conventions
Literals
This section describes literals—integer, character, and floating point
constants and string literals.

Integer Literals
An integer literal consisting of a sequence of digits is taken to be decimal
(base ten) unless it begins with 0 (digit zero). A sequence of digits
starting with 0 is taken to be an octal integer (base eight). The digits 8
and 9 are not octal digits. A sequence of digits preceded by 0x or 0X is
taken to be a hexadecimal integer (base sixteen). The hexadecimal digits
include a or A through f or F with decimal values ten through fifteen,
respectively. For example, the number twelve can be written 12, 014, or
0XC.

Character Literals
A character literal is one or more characters enclosed in single quotes, as
in 'x'. Character literals have type char.

A character is an 8-bit quantity with a numerical value between 0 and 255
(decimal). The value of a space, alphabetic, digit or graphic character
literal is the numerical value of the character as defined in the ISO Latin-1
(8859.1) character set standard (see Table , “Alphabetic Characters
(Letter),” on page 246, Table , “Decimal Digit Characters,” on page 248,
and Table , “Graphic Characters,” on page 248). The value of a null is 0.
The value of a formatting character literal is the numerical value of the
character as defined in the ISO 646 standard (see Table , “IDL EBNF
Format,” on page 255). The meaning of all other characters is
implementation-dependent.

Non-graphic characters must be represented using escape sequences as
defined below in the following table. Note that escape sequences must be
used to represent single quote and backslash characters in character
literals.
252 VisualWorks

Literals
If the character following a backslash is not one of those specified, the
behavior is undefined. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three
octal digits that are taken to specify the value of the desired character.
The escape \xhh consists of the backslash followed by x followed by one
or two hexadecimal digits that are taken to specify the value of the
desired character. A sequence of octal or hexadecimal digits is
terminated by the first character that is not an octal digit or a hexadecimal
digit, respectively. The value of a character constant is implementation
dependent if it exceeds that of the largest char.

Floating-point Literals
A floating-point literal consists of an integer part, a decimal point, a
fraction part, an e or E, an optionally signed integer exponent, and an
optional type suffix. The integer and fraction parts both consist of a
sequence of decimal (base ten) digits. Either the integer part or the
fraction part (but not both) may be missing; either the decimal point or the
letter e (or E) and the exponent (but not both) may be missing.

Escape Sequences

Description Escape Sequence

newline \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

form feed \f

alert \a

backslash \\

question mark \?

single quote \'

double quote \"

octal number \ooo

hexadecimal number \xhh
Distributed Smalltalk Application Developer’s Guide 253

Chapter A - IDL Lexical Conventions
String Literals
A string literal is a sequence of characters (as defined in “Character
Literals,” earlier in this chapter) surrounded by double quotes, as in "…".

Adjacent string literals are concatenated. Characters in concatenated
strings are kept distinct. For example,

"\xA" "B"
contains the two characters '\xA' and 'B' after concatenation (and not the
single hexadecimal character '\xAB').

The size of a string literal is the number of character literals enclosed by
the quotes, after concatenation. The size of the literal is associated with
the literal. Within a string, the double quote character " must be preceded
by a \.

A string literal may not contain the character '\0'.
254 VisualWorks

B
IDL Grammar

IDL Grammar
The description of IDL grammar uses a syntax notation that is similar to
Extended Backus-Naur format (EBNF).

The following table lists the symbols used in this format and their
meanings.

IDL EBNF Format

Symbol Meaning

::= Is defined as

| Alternatively

<text> Non-terminal

‘‘text’’ Literal

* The preceding syntactic unit can be repeated zero or
more times

+ The preceding syntactic unit can be repeated one or
more times

{} The enclosed syntactic units are grouped as a single
syntactic unit

[] The enclosed syntactic unit is optional—it may occur
zero or one time
Distributed Smalltalk Application Developer’s Guide 255

Chapter B - IDL Grammar
The following is the IDL grammar:

(1) <specification> ::= <definition>+

(2) <definition> ::= <type_dcl>‘‘;’’

| <const_dcl>‘‘;’’

| <except_dcl>‘‘;’’

| <interface> ‘‘;’’

| <module> ‘‘;’’

(3) <module> ::= ‘‘module’’ <identifier> ‘‘(’’ <definition>+ ‘‘)’’

(4) <interface> ::= <interface_dcl>

| <forward_dcl>

(5) <interface_dcl> ::= <interface_header> ‘‘{’’ <interface_body~ ‘‘}’’

(6) <forward_dcl> ::= ‘‘interface’’ <identifier>

(7) <interface_header> ::= ‘‘interface’’ <identifier>

[<inheritance_spec>]

(8) <interface_body> ::= <export>

(9) <export> ::= <type_dcl>‘‘;’’

| <const_dcl> ‘‘;’’

| <except_dcl> ‘‘;’’

| <attr_dcl> ‘‘;’’

| <op_dcl> ‘‘;’’

(10) <inheritance_spec> ::= ‘‘:’’ <scoped_name> { ‘‘,’’ <scoped_name> }*
256 VisualWorks

IDL Grammar
(11) <scoped_name> ::= <identifier>

| ‘‘::’’ <identifier>

| <scoped_name> ‘‘::’’ <identifier>

(12) <const_dcl> ‘‘const’’ <const_type> <identifier>

 ‘‘=’’<const_exp>

(13) <const_type> ::= <integer_type>

| <char_type>

| <boolean_type>

| <floating_pt_type>

| <string_type>

| <scoped_name>

(14) <const_exp> ::= <or_expr>

(15) <or_expr> ::= <xor_expr>

<or_expr> ‘‘|’’ <xor_expr>

(16) <xor_expr> ::= <and_expr>

| <xor_expr> ‘‘^’’ <and_expr>

(17) <and_expr> ::= <shift_expr>

| <and_expr> ‘‘&’’ <shift_expr>

(18) <shift_expr> ::= <add_expr>

| <shift_expr> ‘‘>>’’ <add_expr>

| <shift_expr> ‘‘<<’’ <add_expr>
Distributed Smalltalk Application Developer’s Guide 257

Chapter B - IDL Grammar
(19) <add_expr> ::= <mult_expr>

| <add_expr> ‘‘+’’ <mult_expr>

| <add_expr> ‘‘-’’ <mult_expr>

(20) <mult_expr> ::= <unary_expr,

| <mult_expr> ‘‘*’’ <unary_expr>

| <mult_expr> ‘‘~’’ cunary_expr>

| <mult_expr> ‘‘%’’ cunary_expr>

(21) <unary_expr> ::= <unary_operator> cprimary_expr>

| <primary_expr>

(22) <unary_operator> ::= ‘‘-’’

::= ‘‘+’

::= ‘‘~’

(23) <primary_expr> ::= <scoped_name>

| <literal>

| ‘‘(’’ <const_exp> ‘‘)’’

(24) <literal> ::= <integer_literal>

| <string_literal>

| <character_literal>

| <floating_pt_literal>

| <boolean_literal>

(25) <boolean_literal> ::= ‘‘TRUE’’

| ‘‘FALSE’’
258 VisualWorks

IDL Grammar
(26) <positive_int_const> ::= <const_exp>

(27) <type_dcl> ::= ‘‘typedef’’ <type_declarator>

| <struct_type>

| <union_type>

| <enum_type>

(28) <type_declarator> ::= <type_spec> <declarators>

(29) <type_spec> ::= <simple_type_spec>

| <constr_type_spec>

(30) <simple_type_spec> ::= <base_type_spec>

| <template_type_spec>

| <scoped_name>

(31) <base_type_spec> ::= <floating_pt_type>

| <integer_type>

| <char_type>

| <boolean_type>

| <octet_type>

| <any_type>

(32) <template_type_spec> ::= <sequence_type>

| <string_type>
Distributed Smalltalk Application Developer’s Guide 259

Chapter B - IDL Grammar
 (33) <constr_type_spec> ::= <struct_type>

| <union_type>

| <enum_type>

(34) <declarators> ::= <declarator> { ‘‘,’’ <declarator>)*

(35) <declarator> ::= <simple_declarator>

| <complex_declarator>

(36) <simple_declarator> ::= <identifier>

(37) <complex_declarator> ::= <array_declarator>

(38) <floating_pt_type> ::= ‘‘float’’

| ‘‘double’’

(39) <integer_type> ::= <signed_int>

| <unsigned_int>

(40) <signed_int> ::= <signed_long_int>

| <signed_short_int>

(41) <signed_long_int> ::= ‘‘long’’

(42) <signed_short_int> ::= ‘‘short’’

(43) <unsigned_int> ::= <unsigned_long_int>

| <unsigned_short_int>
260 VisualWorks

IDL Grammar
(44) <unsigned_long_int> ::= ‘‘unsigned’’ ‘‘long’’

(45) <unsigned_short_int> ::= ‘‘unsigned’’ ‘‘short’’

(46) <char_type> ::= ‘‘char’’

(47) <boolean_type> ::= ‘‘boolean’’

(48) <octet_type> ::= ‘‘octet’’

(49) <any_type> ::= ‘‘any’’

(50) <struct_type> ::= ‘‘struct’’ <identifier> ‘‘{‘‘ <member_list> ‘‘}’’

(51) <member_list> ::= <member>+

(52) <member> ::= <type_spec> <declarators> ‘‘;’’

(53) <union_type> ::= ‘‘union’’ <identifier> ‘‘switch’’ ‘‘(‘’

 <switch_type_spec> ‘‘)’’

‘‘(‘’ <switch_body> ‘‘)’’

(54) <switch_type_spec> ::= <integer_type>

| <char_type>

| <boolean_type>

| <enum_type>

| <scoped_name>

(55) <switch_body> ::= <case>+
Distributed Smalltalk Application Developer’s Guide 261

Chapter B - IDL Grammar
(56) <case> ::= <case_label>+ <element_spec> ‘‘;’’

(57) <case_label> := ‘‘case’’ <const_exp> ‘‘;’’

| ‘‘default’’ ‘‘:’’

(58) <element_spec> ::= <type_spec> <declarator>

(59) <enum_type> ::= ‘‘enum’’ <identifier> ‘‘{‘’ <enumerator

 {‘‘,’’<enumerator>}*‘‘}’’

(60) <enumerator> ::= identifier

(61) <sequence_type> ::= ‘‘sequence’’ ‘‘<‘’ <simple_type_spec>‘‘,’’

 <positive_int_const> ‘‘>’’

| ‘‘sequence’’ ‘‘<’’ <simple_type_spec> ‘‘>’’

(62) <string_type> ::= ‘‘string’’ ‘‘<’’ <positive_int_const> ‘‘>’’

| ‘‘string’’

(63) <array_declarator> ::= <identifier> <fixed_array_size>+

(64) <fixed_array_size> ::= ‘‘[’’ <positive_int_const> ‘‘]’’

(65) <attr_dcl> ::= [‘‘readonly’’] ‘‘attribute’’

<param_type_spec> <simple_declarator>

 <declarators>{‘‘,’’ <simple_declarator>}*

(66) <except_dcl> ::= ‘‘exception’’ <identifier> ‘‘{’’ <member>*‘‘}’’
262 VisualWorks

IDL Grammar
(67) <op_dcl> ::= [<op_attribute> I <op_type_spec>

 <identifier> <parameter_dcls>

[<raises_expr>] [<context_expr>]

(68) <op_attribute> ::= ‘‘oneway’’

(69) <op_type_spec> ::= <simple_type_spec>

| ‘‘void’’

(70)<parameter_dcls> ::= ‘‘(’’ <param_dcl> { ‘‘,’’ <param_dcl>

| ‘‘(’’ ‘‘)’’

(71) <param_dcl> ::= <param_attribute> <simple_type_spec>

 <declarator>

(72) <param_attribute> ::= ‘‘in’’

| ‘‘out’’

| ‘‘inout’’

(73) <raises_expr> ::= ‘‘raises’’ ‘‘(’’ <scoped_name> { ‘‘,’’

<scoped name>}*‘‘)’’

(74) <context_expr> ::= ‘‘context’’ ‘‘(’’ <string_literal> { ‘‘,’’

 <string_literal>}* ‘‘)’’

(75) <param_type_spec> ::= <base_type_spec>

| <string_type>

| <scoped_name>
Distributed Smalltalk Application Developer’s Guide 263

C
Bibliography

CORBA Resources
Robert Orfali, Dan Harkey, and Jeri Edwards, The Essential Distributed Objects
Survival Guide
John Wiley and Sons, New York, 1996, ISBN 0-471-12993-3.

An overview of CORBA, written in a chatty non-technical style.

Jon Siegel, CORBA Fundamentals and Programming
John Wiley and Sons, New York, 1996, ISBN 0-471-12148-7.

An excellent guide to developing CORBA applications. Gives a
complete example in Smalltalk.

Distributed Computing Resources
Nancy A. Lynch, Distributed Algorithms
Morgan Kaufmann, San Francisco, 1996, ISBN 1-55860-348-4.

A survey of what is known about distributed algorithms, written for
computer scientists who are familiar with the analysis of algorithms.
Covers issues including consensus, communication, resource
allocation, and synchronization.

Sape Mullender (editor), Distributed Systems
ACM Press, New York, 1993, ISBN 0-201-62427-3.

An overview of the design and implementation of distributed systems,
aimed at graduate students in computer science.
264 VisualWorks

Distributed Computing Resources
M. Tamer Özsu, Umeshwar Dayal, and Patrick Valduriez,
Distributed Object Management
Morgan Kaufmann, San Mateo, 1994, ISBN 1-55860-256-9.

A collection of papers from the International Workshop on Distributed
Object Management. Addresses distributed database issues.
Distributed Smalltalk Application Developer’s Guide 265

Index
Symbols
- 78
#include 105
#pragma 105
* 78
+ 78
: 100
:: 101, 106, 107
<< 78
<Operate> button 17
<Select> button 17
<Window> button 17
>> 78
^ 79
| 79
⁄ 78
‰ 78
″ 78

A
abstractClassId 144
abstractClassID method

example 46
access control

for an IDL operation 141
Access pragma 141
ACID

Atomicity, Consistency, Isolation,
Durability 200

Action menu (IR Browser) 152
Open Repository 152

active 204
Alphabetic Character Set 245
ANSI C++ preprocessor 153
any 82

CORBAType 124
any type 116
any,CLASS Pragma 124
application

creating 59
creation process 60
initialization 155
preparing for deployment 230

application, runs locally but not remotely 237

Array
Multi-Dimensional 81
One-Dimensional 81, 83
Smalltalk Mapping 128

array type 116
as Picture (IR Browser View menu) 152
as Text (IR Browser View menu) 152
asCORBAParameter 114
asIDLDefinition message 146
Atomicity

ACID 200
attribute 99
Attributes 99

Declaring 99
Smalltalk Mapping 119

attributes 115
readonly 119

B
Basic Data Types 82

Smalltalk Mapping 121
begin 204
bind 163
binding

using naming service 41
blocks (good usage) 229
Boolean 121
boolean 77, 82
boolean type 116
buttons

mouse 17

C
channel (event) 167

administration 168
creation 168
multiple 168

char 77, 82
Character 121
Character Literals 252
Characters

Alphabetic 245
Punctuation 251

child transaction 210
CLASS pragma 124
266 VisualWorks

Index
Class pragma
Pragma

class 140
client 52
client request 52
Comments 250
commit 204
committed 204
Common Object Request Broker

Architecture (CORBA) 50
implemented in Distributed Smalltalk 53

communication failures 239
communication resources 59
completion 204
completion_status 97
concurrency 50

enumerations 195
interfaces 196
locks 195
LockSets 195

Configuration menu
Shared Repository 36

Consisteny
ACID 200

const 76
constant_expression 77
Constants

Declaring 76
Smalltalk Mapping 120

constants 115
Constructed Data Types 85, 86, 88
Constructed Types 85
consumer (event) 167
context 94
context Expression 94
context Expressions 94
context management 215
Control 213, 215
conventions

typographic 16
converting IDL names to Smalltalk identifiers

113
Coordinator 213, 215
coordinator 204
copy 183

deep 183
see also lifecycle 182

CORBA object 52
CORBAConstants 115, 120

Enum 124
CORBAName 56, 117, 145

how to implement 146

corbaName method
example 46

CORBAType 124
core IFs 255
COS

event notification 166
lifecycle 182
naming 160

COS-Naming 162
COS-Transactions 217
create 183
createDefaultService method 40
creating

an application 59, 60
creating names 162
Current 213

D
Data Types 82

Basic 82
Constructed 85

discriminated union 88
enum 86
struct 85

Declaring 80
Naming 81
Simple 82
Template 82

sequence 83
string 83

data types, IDL
base (char, octet, float, double, long

integer, short integer, boolean, any)
121

boolean 121
char (character) 121
double 121
float 121
integer 121
octet 121
sequence 127
string 128

debugging 237
distributed 226
remote 226

Debugging (Request Broker panel option)
223

Declaring Attributes 99
Declaring Constants 76
Declaring Data Types 80
Declaring Exceptiones 95
Declaring Interfaces 73
Distributed Smalltalk Application Developer’s Guide 267

Index
Declaring Modules 72
Declaring Operations 91

arguments 92
context 94
in Parameter Attribute 92
inout Parameter Attribute 92
oneway Attribute 91, 93
out Parameter Attribute 92
raises 93
void 91

deep copy 183
deepCopyWith 183
delete 182

see destroy 184
deployment

preparation 230
derived interface 101
descendants 211
designing distributed applications 62–64
destroy 184
development process

distributed applications 60
Distributed Smalltalk 58

Dictionary 129
struct 125

DII, see Dynamic Invocation Interface
direct base interface 101
direct context management 204
disconnect (event notification) 169
Discriminated Unions 88
distributed applications

designing 62–64
development process 60
performance 63
performance hints 63

distributed computing concepts 59
distributed objects

inherently shared 62
Distributed Smalltalk

development process 58
doesNotUnderstand: 55
Double 121
double 82
dropEditLock 154
DSTattribute 143
DSTconstant 142
DSTexception 130, 142
DSTfactoryFinder 190
DSTIDLTool open 148
DSTLockSetCoordinator 195
DSTmoduleRepository class 142, 145
DSTObjRef 55, 142

DSTObjRefLocal 56
DSTObjRefWidened 56
DSToperation 142
DSTparameter 142
DSTPullConsume 171
DSTPushConsumer 171
DSTRecoverableObject 202, 213
DSTRepository 54

IDL in 142
interface 117
multiple inheritance 229

DSTRepository class 142, 145
DSTSampleComputeService example 38–??
DSTSampleRecoverableObject 222
DSTTransaction 215
DSTTransaction class>>create

 213
DSTTransactionalLockSet 214
DSTTransactionalObject 208, 213, 214
DSTtypeBase 142
DSTtypeConstr 142
DSTTypeEnumerator) 195
DSTtypeTemplate 142
Durability

ACID 200
Dynamic Invocation Interface (DII) 51

E
edit lock 154
Edit menu

(IR Browser) 152
electronic mail 18, 20
enum 86
enumeration types 116
Enumerations 86
enumerations 195
errors

badInvOrderError: 243
badOperationError: 242, 243
badParamError: 243
badTypecodeError: 243
cannot start ORB 244
commFailureError: 238
contextError: 243
dataConversionError: 243
intfReposError: 243
invFlagError: 243
invIdentError: 243
invObjrefError: 238
marshalling and unmarshalling 237
noImplementError: 238
noPermissionError: 238
268 VisualWorks

Index
noResponseError: 238
NotFound 243
objects unavailable 238
remote image or ORB is stopped 239
SemanticError 243
socket busy 239
synchronization 239
transientError: 238
unknown image 244
UnknownID 243

Escape Sequences 252
event channel 167

administration 168
creation 168
multiple 168

event consumer 167
event notification 28, 166

connecting a pull consumer to an event
channel 172

connecting a push consumer to a
channel 172

connecting a push supplier to a channel
173

connecting to a channel 174
disconnect 169
implementation 181
implementing a typed pull connection

176
implementing a typed push connection

174
push and pull 168
quality of service 173, 178
testing the event example 173
typed events 173

event supplier 167
examples

abstractClassId method 46
corbaName method 46
DSTSampleComputeService 38–??

Exception
Smalltalk Mapping 129

exception 95
Exception handling 132
exception handling 223, 237

in runtime applications 235
exception type 116
Exceptions 95, 96

Declaring 95
Standard 96
User-defined 95

exceptions, IDL 129

explicit interface
advantages 58
defined 58

externalize 184

F
Factory 213, 215
factory 56, 144
factory finder 56, 183, 185
factory object 183, 185
Filename

shared repository setting 36
flat Transaction 204
flat transaction 210
flat transactions 202
Float 121
float 77, 82
floating point type 116
Floating-point Literals 253
fonts 16
Forward Declaration of Interfaces 75

G
Generate IDL tool

example of use 44

I
I3 65–69

advantages 58
defined 58

icons, IR Browser 151
ID pragma 137
identifier 73
Identifiers 250
IDL

Alphabetic Characters 245
Escape Sequences 252
exceptions 129
interface 117
mapped to Smalltalk 142
Preprocessing 104
Preprocessor 104
Punctuation Characters 251
traps 108

IDL (Interface Definition Language) 50
IDL identifiers

underscore characters 113
IDL Preprocessing 104

#include 105
#pragma 105

IDL Syntax
Basic Data Types 82
Constructed Data Types 85, 86, 88
Distributed Smalltalk Application Developer’s Guide 269

Index
Constructed Types 85
Declaring Attributes 99
Declaring Constants 76
Declaring Data Types 80
Declaring Exceptions 95
Declaring Interfaces 73
Declaring Modules 72
Declaring Operations 91
Derived Interfaces

Inheritance 100
Forward Declaration of Interfaces 75
Multi-Dimensional Array 81
One-Dimensional Array 81, 83
Simple Types 82
Template Data Types 83
Template Types 82
typedef 81

IDL to Smalltalk
mapping of identifiers 113

IDLCompiler class>>importIDLFile
category

method 153
Iimplementation

transactions 217
IIOP Transport 31
implementation

concurrency 196
event notification 181

implicit arguments
Operations 131

Implicit Invocation Interface (I3) 65–69
advantages 58
defined 58

importing IDL files 153
in 92
in Parameter Attribute 92
indirect base interface 101
indirect context management 204
Inheritance 100
inheritance (multiple), in DSTRepository 229
inheritance specification 100
initial object references 157
initialization

ORB, application 155
initializeFactories 145
inout 92
inout Parameter Attribute 92
Integer 121
Integer Literals 252
integral types 116
Interface

Declaring 73

Forward Declaration 75
Inherited Interface 100
Smalltalk Mapping 117

interface 52, 73, 100
derived 101
direct base 101
indirect base 101

Interface Repository 51, 142, 144
implemented in Distributed Smalltalk 54
interface 117
shared 35, 234
shared, how to enable 36

interface_definition 74
interfaces 115

concurrency 196
Lifecycle 190
version control 138

Internet Inter-ORB Protocol 31
interoperability 60
IR

see also DSTRepository
IR Browser

edit lock 154
icons 151
menus 152

IR Browser icons 151
IR, see Interface Repository

see DSTRepository
Isolation

ACID 200

K
Keywords 251

L
lifecycle 49, 182

copy 183
create 183
deep copy 183
destroy 184
externalize 184
move 184
relocating objects, see move 184
throw away 184

lifecycle service
using to create remote objects 62

list_initial_services operation 158
listInitialServices 158
Literals 252

Character 252
Floating Point 253
270 VisualWorks

Index
Integer 252
String 254

Local RPC Testing 225
option in Request Broker panel 224

Lock
class 195

locks 195
LockSet

class 195
LockSets 195
long 77, 82

M
Magnitude, mapped to IDL types 121
mail

electronic 18, 20
mapping of identifiers

IDL to Smalltalk 113
Mapping Pragmas to IDL Types 135
marshal 57
marshall, see externalize 184
marshallError 237
marshalling and unmarshalling errors 237
member 95
menus

Action (IR Browser) 152
Edit (IR Browser) 152
View (IR Browser) 152

Message Logging (option in Request Broker
panel) 224

method size, for performance 229
module 72
module_definition 73
mouse buttons 17

<Operate> button 17
<Select> button 17
<Window> button 17

move 182, 184
Multi-Dimensional Arrays 81
multiple event channels 168
Multiple inheritance 101
multiple lock semantics

concurrency
multiple lock semantics 194

multiple subtransactions 211

N
name

binding, unbinding, and rebinding 163
component 161
context 161

identifier attribute 164
kind attribute 164

name space collisions 113
naming 157

implementation 165, 190
initial object reference 157
interfaces 165
operations 162

naming context 161
naming graph 161
Naming scopes 105
naming service 49, 160

binding instances to names 41
DSTSampleComputeService example

40
unbinding instances 41

nested transaction 204
nested transactions 202
network

performance 228
traffic 59
unstable 59

newObject 183
notational conventions 16

O
Object Adapter Id

shared repository setting 36
object reference 53, 54, 115
object references

short lifespan 63
vulnerability to network failures 63

Object Request Broker, see ORB
object services

concurrency 50, 191
event notification 166
lifecycle 49, 182
naming 49
transactions 50, 200

objects
CORBA 52

objRef (object reference) 55
octet 82
One-Dimensional Array 81, 83
oneway 91, 93
Open Repository (Action menu) 152
Operation 91

Parameter Attribute 92
operation (IDL)

access control 141
defined in an interface 52

Operation Arguments 92
Distributed Smalltalk Application Developer’s Guide 271

Index
Operation Attribute 91, 93
Operations 130

Declaring 91
implicit arguments 131
Smalltalk Mapping 130

operations 115
optimizing 223, 227
ORB (Object Request Broker) 51

cannot start 244
components

ORBControlPanel. 235
ORBDaemon startUpCoordinator 231
ORBNVList 51
ORBObject 143
ORBObject initializeORBAtHost

 231
ORBRequest 51
OrderedCollectlon

sequence 127
out 92
out Parameter Attribute 92

P
paradigms

choosing 58
perform:on: 56
performance

distributed applications 63
method size 229
tuning 223, 227

performance hints 63
poor network performance 228
Pragma

access 141
ID 137
prefix 138
selector 141
version 138

Pragmas 134
Prefix pragma 138
prepared 205
Preprocessing 104
Preprocessing IDL 104
Preprocessor 104
Preprocessor Tokens 251
primary_expression 79
pull model (event notification) 168
Punctuation Characters 251

Q
quality of service, events 173

R
raises 93
raises Expression 93
readonly 99
recoverable object 205
recoverable objects 209
recoverable server 205, 210, 213
recovery service 205
registering factory objects 183, 185
relocating objects, see move 184
Remote Object Debugger 226
remote objects

creating 62
remote system control 59
remove, see destroy 184
Repository

Share Repository setting 36
repository, shared 35

how to enable 36
RepositoryId 36
Repositoryld Pragmas 137
request 52
Request Broker panel

debugging option 223
message logging option 224
runtime 231

Request Brokerl panel
Local RPC testing option 224

Reserved Keywords 251
resolve 163
resolve_initial_references operation 158
resolveInitialReferences 158
resource 205
resource object 209
resource sharing 59
rollback 205
RPC (Remote Procedure Call) 60
RPC testing 225
runtime applications

configuring images 230
creating 230
exception handling 235
Request Broker panel 231

S
scoped_name 77, 106
Scopes 105
selector 135
Selector pragma 141
Sequence

Smalltalk Mapping 127
272 VisualWorks

Index
sequence 83, 127
OrderedCollection 127

sequence type 116
serialize, see externalize/internalize 184
server object 52
share repository setting

Filename 36
shared interface repository 35, 234

how to enable 36
Shared Repository (Configuration menu) 36
shared repository setting

Object Adaptor Id 36
sharing objects 60
sharing resources 59
short 77, 82
siblings 211
SII, see Static Invocation Interface
Simple Data Types 82
simulated distribution 225
SmallInteger 121
Smalltalk Mapping 130

Array 128
Attributes 119
Basic Data Types 121
Constants 120
Exception 129
Interface 117
Sequence 127
String 128

Smalltalk, mapped to IDL 142
special symbols 16
Standard Exception 96
Standard Exceptions 96
Static Invocation Interface (SII) 51

implemented in Distributed Smalltalk 54
String

Smalltalk Mapping 128
string 77, 83
String Literals 254
string type 116
Strings 83, 128
strings 83
struct 85
structure types 116
Structures 85
style hints 229
SubtransactionAwareResource 213
subtransactions 211
supplier, event 167
support, technical

electronic mail 18, 20
World Wide Web 18, 20

surrogate object 54
symbols used in documentation 16

T
Table 1-2 83
technical support

electonic mail 18, 20
World Wide Web 18, 20

Template Data Types 83
Template Types 82
Terminator 213, 215
thread 205
throw away 184
Tokens 249

Identifers 250
Keywords 251
Literals 252
Preprocessor 251

tools
Generate IDL 44

TP (Transaction Process) monitor 205
transaction 205

completing a transaction 220
create a transaction 219, 222
implementing a recoverable object 217

transaction client 205
transaction context 205, 206, 212, 214
transaction family 211
transaction object 206
transaction operation 205
transaction originator 206, 213
transaction server 206
transaction service 50, 200

use of functionality for interfaces 216
transaction synchronization 206
transaction termination 211
transactional client 208
transactional object 208
transactional server 209
TransientErrorHandler 244
troubleshooting 223, 237
tuning 223, 227
two-phase commit 206
type any 171
typed events 173
typedef 81
typographic conventions 16

U
Unary Operators 78
unary_operator 79
unavailable object errors 238
Distributed Smalltalk Application Developer’s Guide 273

Index
unbind 163
unbinding

using naming service 41
underscore characters

IDL identifiers 113
union 88
union types 116
Unions 88
unmarshal

see also marshal
unmarshal, see marshal 237
unmarshallError 237
unsigned long 77, 82
unsigned short 77, 82
user interface

optimizing usability 228
User-defined Exceptions 95
users, multiple 60
UUID 56

V
ValueTypes 54
version control

interfaces 138
Version pragma 138
View menu

as Picture (IR Browser) 152
IR Browser 152

View menu (IR Browser)
as Text 152

void Return Type 91

W
wastebasket 184
well-known instances

retrieving 40
World Wide Web 18, 20

X
X/Open 203
274 VisualWorks

P46-0114-03

FAX
IT!

WE STRIVE FOR QUALITY

Reader Comment Sheet
Name:

Job title/function:

Company name:

Address:

Telephone number: () - Date: / /

How often do you use this product? # Daily # Weekly # Monthly # Less

How long have you been using this product? # Months # Years

Can you find the information you need? # Yes # No

 Please comment.

Is the information easy to understand? # Yes # No

 Please comment.

Is the information adequate to perform your task? # Yes # No

 Please comment.

General comment:

To respond, please fax to Larry Fasse at (513) 612-2000.

	Contents
	About This Book
	Audience
	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information
	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information

	Introducing Distributed Smalltalk
	Distributed Objects
	What is CORBA?
	Why Distributed Smalltalk?

	How Distributed Smalltalk Works
	CORBA Components
	Object Request Broker (ORB)
	Interface Definition Language (IDL) Compiler
	Internet Inter-Orb Protocol (IIOP)
	Interface Repository (IR)

	CORBAservices
	Naming
	Basic Lifecycle
	Event Notification
	Concurrency Control
	Transaction

	Implicit Interface Invocation (I3)
	Development Tools

	Installing and Configuring DST
	Installing Distributed Smalltalk
	DST Directory Structure
	Loading DST into the Image

	Configuring Naming Services
	Configuring the Naming Service Server Image
	Configuring a Naming Service Client Image

	Advanced Configurations
	Types of Settings
	Filename
	Port Number

	Sharing an Interface Repository
	About the Master Interface Repository
	Systems That Share a Master Interface Repository

	Establishing a Shared Repository
	Interface Version Control
	Advanced Configuration Example

	A Distributed Smalltalk Example
	Preparing the Example
	Load the Example Parcel
	Configuring Images to Support the Example

	Running DSTSampleComputeService
	Exploring DSTSampleComputeService
	Class Methods: naming
	createDefaultService
	destroyDefaultService

	Instance Methods: initialize-release
	Instance Methods: computing
	slowComputationWith:and:

	Adding IDL Interfaces
	Editing the Sample IDL
	Generating IDL Code
	Running DSTSampleComputeService with IDL
	Instance Methods: repository
	abstractClassID
	CORBAName

	IDL Definition: DSTRepository>>DSTSampleComputeService

	System Architecture
	Summary of Services
	Object Services and Policies
	Naming Service
	Event Notification Service
	Basic Lifecycle
	Concurrency Control Service
	Transaction Service
	Persistence

	Implementation of the CORBA Specification
	Components of the ORB
	Interface Definition Language (IDL) Compiler
	Interface Repository (IR)
	Static Invocation Interface (SII)
	Dynamic Invocation Interface (DII)

	CORBA Terminology

	Distributed Smalltalk’s ORB Implementation
	Interface Definition Language (IDL) Compiler
	Interface Repository (IR)
	Invocation Interface
	Sending Messages via Surrogates and Object References
	Implementing Surrogate Objects — DSTObjRef
	Object Identification
	Object Creation Using Factories and Factory Finders
	Marshalling and Unmarshalling

	The DST Development Process
	Choosing a Paradigm
	Issues in Distributed Computing
	Optimizing Distributed Resources
	Remote System Autonomy
	Shared Objects
	Interoperability Through Standards Compliance

	Creating Applications with Distributed Smalltalk

	Designing and Implementing
	General Design
	Sharing Objects
	Creating and Destroying Objects
	Referencing Remote Objects

	Performance Considerations
	Avoiding Traps

	Implicit Invocation Interface (I3)
	How I3 Works
	Required Methods
	Instance Methods
	passInstVars

	Return Values
	Passing Classes
	I3 Instances and Garbage Collection
	I3 Traps

	Defining IDL Interfaces
	Overview
	Comparing Smalltalk & IDL
	Basic IDL Syntax
	IDL Specification

	Declaring Modules
	Example
	Getting Information About a Module

	Declaring Interfaces
	Example
	Inheritance
	Inheritance Syntax

	Forward Declaration
	Pass by Reference

	Declaring Constants
	Declaring Data Types
	Using Declarators to Give a Name to a Type
	typedef
	Example

	Simple Types
	Base Data Types

	Template Types
	Strings
	Sequence
	Example

	Constructed Types
	Structures
	Enumerations
	Discriminated Unions

	Declaring Operations
	Example
	Raises Expressions
	Context Expressions

	Declaring Exceptions
	User-Defined Exceptions
	Example

	Standard Exceptions

	Declaring Attributes
	Example

	Inheritance
	IDL Preprocessing
	#include

	CORBAModule
	Names and Scopes
	IDL Traps
	Magnitude Mismatches
	Mismatched IDL Interfaces and Smalltalk Selectors
	Inheritance and Overriding Operations
	Passing Values and References: Interfaces and Structures
	SmalltalkTypes
	IDL void and Smalltalk nil

	Mapping of IDL to Smalltalk
	Overview
	Constraints on Smalltalk Mappings
	Default Mapping for IDL to Smalltalk
	Handling Return Values
	Memory Usage
	Limitations

	Mapping of IDL Elements to Smalltalk
	SmalltalkTypes
	Mapping for Interface
	CORBAName Method
	Getting Information About an Interface

	Mapping for Objects
	Invocation of Operations

	Mapping for Attributes
	Readonly Attributes for Security

	Mapping for Constants
	Getting More Information About a Constant

	Mapping for Basic Data Types
	Base Type Mapping

	Mapping for Fixed Type
	Mapping for the Any Type
	CORBAType Method

	Mapping for Enum
	Mapping for Struct Types
	Mapping for Union Types
	Implicit Binding
	Explicit Binding

	Mapping for Sequence Types
	Mapping for String Types
	Mapping for Wide String Types
	Mapping for Array Types
	Mapping for Exception Types
	Getting More Information on Exceptions

	Mapping for Operations
	Implicit Arguments to Operations
	Argument-Passing Considerations

	Unmapped Interfaces
	Handling Exceptions
	Exception Values
	The CORBAExceptionValue Protocol

	Pragmas
	Mapping Pragmas to IDL Types

	RepositoryIds
	IDL Format
	DCE Format
	Local Format

	Repositoryld Pragmas
	ID Pragma
	Prefix Pragma
	Version Pragma
	Interfaces and Version Control

	Generating Repository IDs

	Distributed Smalltalk Pragmas
	Class Pragma
	Selector Pragma
	Access Pragma

	About IDL and DSTRepository
	Editing the Interface Repository
	IDL Mapping to Smalltalk

	Working with Object Interfaces
	Making a Class a Factory
	Adding an Interface to the Interface Repository
	Creating an IDL Module Using the IDL Generator
	Refining the Module

	Interface Repository Browser
	Opening the Browser
	IR Browser Icons
	IR Browser menus
	Action menu
	Edit menu
	View menu

	Importing IDL files
	Setup for Preprocessing
	Annotate the IDL with Pragmas Where Necessary

	Avoiding Interface Problems
	Keeping Interface Repositories Updated
	Edit Lock

	Initialization Service
	Programmatically Initializing, Starting, and Stopping the ORB
	Getting Remote ORB References
	Initial Object References
	Distributed Smalltalk Implementation
	ORB Utility Methods

	Naming Service
	What Constitutes a Name?
	Name Components
	Name Contexts and Naming Graphs

	Naming Service Operations
	Creating Names
	Binding and Unbinding
	Resolving and Listing Contexts
	Syntax-Independent Kinds and Identifiers
	Exceptions

	Interfaces
	Implementation

	Event Notification
	Overview
	Need for Event Notification in a Distributed System
	Terminology

	Event Channel
	Multiple Event Channels
	Event Channel Administration

	Push and Pull Models
	Push
	Pull
	Disconnect to Terminate Communications
	Consumers and Suppliers
	Proxies

	Event Data
	Using Events
	Example Code for Events
	Example: Connecting a Push Consumer to a Channel
	Example: Connecting a Pull Consumer to an Event Channel
	Example: Connecting a Push Supplier to a Channel
	Example: Testing the Event Example

	Using Typed Events
	Example: Connecting to a Channel
	Example: Implementing a Typed Push Connection
	Typed Push Supplier and Interface
	Corresponding Typed Push Consumer and Interface

	Example: Implementing a Typed Pull Connection
	Typed Pull Supplier and Interface
	Corresponding Typed Pull Consumer and Interface

	Example: Determining Quality of Service

	Interfaces
	Implementation

	Basic Lifecycle
	Overview
	Terminology

	Lifecycle Operations
	Create
	Copy and Deep Copy
	Move
	Destroy
	Throw Away
	Externalize and Internalize

	Creating Objects
	COS on Factories and Factory Finders
	Distributed Smalltalk’s Implementation
	Examples: With and Without the Factory Representative
	Example 1: �Stringified Object Reference
	Example 2�: Naming Service as Registry
	Using FactoryFinder Directly
	Using the Factory Representative�—�Option #1
	Using the Factory Representative�—�Option #2

	Example: Copying an Object
	Commentary

	Interfaces
	Implementation

	Concurrency Control Service
	Overview
	Terminology
	Lock Modes
	Lock Mode Compatibility
	Multiple Lock Semantics
	Locks and LockSets

	Interfaces
	Implementation
	Using Distributed Smalltalk Concurrency Service
	Using the Class DSTResourceManager
	Creating Locks
	Acquiring Locks
	Releasing Locks
	Destroying Locks

	Using Transactional Locksets

	Transaction Service
	Overview
	Distributed Smalltalk’s Implementation of Transactions
	Terminology

	Transactional Applications
	Transactional Client
	Transactional Object
	Recoverable Objects and Resource Objects
	Transactional Server
	Recoverable Server

	Transaction Service Functionality
	Transaction Models
	Flat Transactions
	Nested Transactions

	Transaction Termination
	Transaction Context

	Service Architecture
	Typical Usage
	Transaction Context
	Context Management

	Interfaces
	Use of Transaction Service Functionality for Interfaces

	Implementation
	Using the Distributed Smalltalk Transaction Service
	Implementing a Recoverable Object
	Example
	Example

	Creating a Transaction
	Completing a Transaction
	Example

	Create a Transaction Example

	Debugging and Tuning
	Overview
	Debugging and Tuning Tools
	Debugging
	Message Logging
	Local RPC Testing

	Local RPC Testing
	Remote Object Debugging
	Using the Remote Object Debugger

	Performance Tuning and Optimization
	Network Performance
	Symptoms
	Possible Causes
	Solutions

	User Interface Organization
	Symptoms
	Possible Causes
	Solutions

	Coding Style Hints
	Method Size
	Multiple Inheritance in DSTRepository
	Blocks

	Creating a Deployment Image
	Overview
	Design and Preparation
	Possible Runtime Configurations
	Providing a Desktop Icon

	Creating a Deployment ORB Image
	Candidate Classes for Removal
	Steps for Creating a Deployment Image

	Optimizing Runtime Applications
	Exception Handling
	Minimizing Footprint

	Troubleshooting
	Overview
	Marshalling and Unmarshalling Errors
	Symptoms
	Possible Causes
	Solutions

	Object Availability Exceptions
	Symptoms
	Possible Causes
	Solutions

	Synchronization Problems
	Symptoms
	Possible Causes
	Solutions

	Dangling References
	Symptoms
	Possible Causes
	Solutions

	Remote Access to Overridden Methods
	Symptoms
	Possible Causes
	Solutions

	Interface Repository Accessing Errors
	Symptoms
	Possible Causes
	Solutions

	Interface Incompatibilities
	Symptoms
	Possible Causes
	Solutions

	Other Exceptions
	Symptoms
	Possible Causes
	Solutions

	Problems Running Multiple Images
	Cannot Start an ORB
	Cannot Determine Which Image You Are Using

	Handling Server-side Transient Errors

	IDL Lexical Conventions
	Overview
	File Processing
	Comparison With C++ Lexical Conventions
	Character Set

	Tokens
	Comments
	Identifiers
	Keywords
	Literals
	Integer Literals
	Character Literals
	Floating-point Literals
	String Literals

	IDL Grammar
	IDL Grammar

	Bibliography
	CORBA Resources
	Distributed Computing Resources

	Index

