
Cincom Smalltalk™

Database Application
Developer's Guide

P46-0128-07

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

© 1995–2009 Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0128-07

Software Release 7.7

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, the Cincom logo and Cincom Smalltalk logo are
registered trademarks of Cincom Systems, Inc. ParcPlace and VisualWorks are
trademarks of Cincom Systems, Inc., its subsidiaries, or successors and are registered in
the United States and other countries. ObjectLens, ObjectSupport, Cincom Smalltalk,
Database Connect, DLL & C Connect, COM Connect, and StORE are trademarks of
Cincom Systems, Inc., its subsidiaries, or successors. ENVY is a registered trademark of
Object Technology International, Inc. All other products or services mentioned herein are
trademarks of their respective companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation © 1995–2009 by Cincom Systems, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior written consent
from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

About This Book

The VisualWorks® Database Connect provides support for accessing
relational databases from within a VisualWorks application. A variety of
industry-standard database servers are supported, including Oracle,
Sybase, ODBC, and PostgreSQL. This guide describes the general
database access features for VisualWorks and the particular
implementations for specific vendors.

Audience
This guide presumes that you are familiar with relational database
systems (RDBMS) and the SQL query language.

Some chapters in this book also presuppose a general knowledge of
object-oriented concepts, Smalltalk, and the VisualWorks environment.

For an overview of Smalltalk, the VisualWorks development environment
and its application architecture, see the VisualWorks Application
Developer’s Guide.

Overview
The VisualWorks Database framework is divided into two parts:

• External Database Interface (EXDI)

• Object Lens

The EXDI provides a basic, lower-level API for database access,
connection and session control, SQL operations and simple object
mapping. To the EXDI, the Object Lens adds more elaborate object-
relational mapping features, including tools for building Smalltalk classes
from tables in an existing database.
Database Application Developer’s Guide iii

About This Book
If your application requires an API for basic database access, then you
may only need to use the EXDI. If, however, you require more elaborate
object-relational mapping, or you wish to use GUI tools to model tables in
an existing database, then you also need to use the Lens.

Accordingly, this guide begins with a discussion of the EXDI, and then
continues with a presentation of the Object Lens.

If you intend to primarily use the EXDI, we suggest beginning your review
of this guide with Configuring Database Support and EXDI Database
Interface. Specific discussions of Oracle, Sybase, and ODBC APIs follow.

For developers who wish to focus on the Object Lens and its tools, we
suggest briefly skimming the discussion of the EXDI, and then focusing
on Developing a Database Application and Building a Data Model.

Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.
iv VisualWorks

Conventions
Special Symbols
This book uses the following symbols to designate certain items or
relationships:

Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or
combinations:

Examples Description

File > New Indicates the name of an item (New) on a menu
(File).

<Return> key

<Select> button

<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button
Database Application Developer’s Guide v

About This Book
Note: This is a different arrangement from how VisualWorks used
the middle and right buttons prior to 5i.2.
If you want the old arrangement, toggle the Swap Middle and Right Button
checkbox on the UI Feel page of the Settings Tool.

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

• The version id, which indicates the version of the product you are
using. Choose Help > About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help > About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>

3-Button 2-Button 1-Button
vi VisualWorks

mailto:supportweb@cincom.com

Getting Help
Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to
supportweb@cincom.com.

Web
In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com
Telephone

Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.

Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:

• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu

with the SUBJECT of "subscribe" or "unsubscribe". You can then
address emails to vwnc@cs.uiuc.edu.

• A Wiki (a user-editable web site) for discussing any and all things
VisualWorks related at:

http://www.cincomsmalltalk.com/CincomSmalltalkWiki

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.
Database Application Developer’s Guide vii

mailto:supportweb@cincom.com
http://supportweb.cincom.com
mailto:vwnc-request@cs.uiuc.edu
mailto:vwnc@cs.uiuc.edu
http://www.cincomsmalltalk.com/CincomSmalltalkWiki
news:comp.lang.smalltalk

About This Book
Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincomsmalltalk.com/documentation/

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.

Online Help
VisualWorks includes an online help system.

To display the online documentation browser, open the Help pull-down
menu from the VisualWorks main menu bar and select one of the help
options.

News Groups
The Smalltalk community is actively present on the internet, and willing to
offer helpful advice. A common meeting place is the comp.lang.smalltalk
news group. Discussion of VisualWorks and solutions to programming
issues are common.

VisualWorks Wiki
A wiki server for VisualWorks is running and can be accessed at:

http://brain.cs.uiuc.edu:8080/VisualWorks.1
This is becoming an active place for exchanges of information about
VisualWorks. You can ask questions and, in most cases, get a reply in a
couple of days.

Commercial Publications
Smalltalk in general, and VisualWorks in particular, is supported by a
large library of documents published by major publishing houses. Check
your favorite technical bookstore or online book seller.
viii VisualWorks

http://brain.cs.uiuc.edu:8080/VisualWorks.1
http://www.cincomsmalltalk.com/documentation/

Contents
Chapter 1 Configuring Database Support 1-1

Loading Database Support ..1-1
Preparing a Database Connection ...1-2

Environment Strings ..1-2
Oracle Library Access on UNIX Platforms ..1-2
Setting the Database Login Defaults ...1-3
Setting the Object Lens Login Defaults ...1-3
Testing the Database Connection ...1-4
Troubleshooting Oracle Access ...1-5

Installing Examples and Data ...1-6
Loading the EXDI Workbook ...1-6
Setting Up the Example Lens Application ...1-7

Chapter 2 EXDI Database Interface 2-1

EXDI Framework ..2-1
Data Interchange ..2-2
Using Database Connections ...2-3

Securing Passwords ..2-4
Getting the Details Right ...2-4
Setting a Default Environment ...2-5
Default Connections ..2-5
External Authentication ...2-6
On the Importance of Disconnecting ...2-6

Using Sessions ..2-7
Variables in Queries ..2-8
Named Input Binding ...2-9

Binding NULL ...2-9
Getting Answers ...2-10

Handling Multiple Answer Sets ..2-12
Sending an Answer Message ..2-12

Waiting for the Server ...2-13
Did the Query Succeed? ..2-13
Database Application Developer’s Guide xi

How Many Rows were Affected? ... 2-13
Describing the Answer Set .. 2-13
Buffers and Adaptors ... 2-14
Processing an Answer Stream ... 2-14

Using Cursors and Scrollable Cursors .. 2-15
Using an Output Template .. 2-18

Skipping Slots in an Output Template .. 2-18
Using Column Names to Bind for Output 2-19
Reusing the Output Template .. 2-20

Setting a Block Factor to Improve Performance .. 2-20
Cancelling an Answer Set ... 2-20
Disconnecting the Session ... 2-21

Controlling Transactions .. 2-21
Coordinated Transactions ... 2-21

Releasing Resources .. 2-22
Tracing the Flow of Execution .. 2-22

Directing Trace Output .. 2-23
Setting the Trace Level ... 2-23
Disabling Tracing .. 2-23
Adding Your Own Trace Information ... 2-24

Error Handling ... 2-24
Exceptions and Error Information ... 2-25
Exception Handling ... 2-25
Choosing an Exception to Handle .. 2-26
Exceptions and Stored Procedures .. 2-27

OEM Encoding .. 2-27
Image Save and Restart Considerations ... 2-28

Reconnecting When an Image is Restarted ... 2-29

Chapter 3 Using the Database Connect for Oracle 3-1

Database Connect for Oracle Classes .. 3-1
OracleConnection .. 3-2

Class Protocols ... 3-2
environment mapping .. 3-2

Instance Protocols .. 3-3
accessing ... 3-3
transactions ... 3-3

OracleSession ... 3-3
Instance Protocols .. 3-4

accessing ... 3-4
data processing ... 3-4
prefetch .. 3-5
xii VisualWorks

testing ...3-5
OracleColumnDescription ..3-6

Instance Protocols ...3-6
accessing ...3-6

OracleError ...3-6
Instance Protocols ...3-6

accessing ...3-6
Data Conversion and Binding ...3-7

Binding NULL and Backward Compatibility ...3-8
Binding Numbers and Conversion ...3-8
Array Binding ...3-9

Using PL/SQL ..3-11
Preparing a PL/SQL Query ...3-11
Executing a PL/SQL Query ...3-12
Binding PL/SQL Variables ...3-12
Variable Type and Size ..3-13
Retrieving PL/SQL Variables ...3-14

Oracle Threaded API ...3-14
Configuring the Threaded API ...3-15
Using OracleThreadedConnection ..3-15
Connection Pooling ...3-15
Using THAPI with the Object Lens ..3-17

Calling Oracle Stored Procedures ..3-19
Statement Caching ...3-21
CLOB/BLOB support ..3-22

Adjustable Buffering for LOBs ...3-25

Chapter 4 Using the ODBC Connect 4-1

ODBC EXDI Classes ..4-1
ODBCConnection ...4-2

Transactions ..4-2
Instance Protocols ...4-3

accessing ...4-3
ODBCSession ..4-3

Instance Protocols ...4-4
catalog functions ..4-4
data processing ..4-6
testing ...4-6

ODBCColumnDescription ..4-6
ODBCError ...4-7
ODBCDataSource ..4-7

Instance Protocols ...4-7
Database Application Developer’s Guide xiii

accessing ... 4-7
Data Conversion and Binding .. 4-8

Restrictions on Binding ... 4-9
Unicode Support .. 4-9

Storing and Retrieving Unicode .. 4-10
Using Stored Procedures .. 4-11

Preparing a Stored Procedure Query ... 4-12
Executing a Query .. 4-12
Binding Variables for Stored Procedures .. 4-12
Retrieving Stored Procedure Variables ... 4-14

Large Objects .. 4-14
Support for Large Objects .. 4-14
Binding for Input .. 4-15
Binding for Output ... 4-15
Restrictions on Retrieving Large Objects ... 4-16

Support for Multiple Active Result Sets (MARS) .. 4-16

Chapter 5 Using the DB2 Connect 5-1

DB2 EXDI Classes .. 5-2
DB2Connection ... 5-2

Instance Protocols .. 5-3
blob functions ... 5-3
datalink functions ... 5-3

DB2Session ... 5-3
Transactions .. 5-3
Executing Queries .. 5-4
Instance Protocols .. 5-4

accessing ... 5-4
data processing ... 5-5
catalog functions .. 5-6

Data Conversion and Binding .. 5-7
Restrictions on Binding ... 5-8

Using Stored Procedures .. 5-9
Examples .. 5-10

Large Objects .. 5-12
Binding for Input .. 5-12
Fetch Multiple LOBs in One Execution ... 5-14
Using Locators .. 5-15

Large Object File References .. 5-15
Instance Protocols .. 5-16

instance creation .. 5-16
public protocol .. 5-16
xiv VisualWorks

file creation options ..5-16
Using LOB File References ...5-16

Using Data Links ..5-17
Instance Protocols ...5-17

accessing ...5-17
Threaded API ...5-18

Using the Threaded API ..5-19
Known Limitations ..5-19

Chapter 6 Using the Database Connect for Sybase CTLib 6-1

CTLib EXDI Classes ..6-1
CTLibConnection ...6-2

Class Protocols ...6-2
environment mapping ...6-2

Instance Protocols ...6-3
accessing ..6-3
control ..6-4

CTLibSession ...6-4
Instance Protocols ...6-4

accessing ...6-4
data processing ...6-5

Using Cursors and Scrollable Cursors ..6-5
CTLibColumnDescription ...6-6

Instance Protocols ...6-6
accessing ..6-6

CTLibError ..6-6
Instance Protocols ...6-6

accessing ..6-6
Data Conversion and Binding ...6-8
Exception Handling ..6-8
Calling Sybase Stored Procedures ..6-9
Sybase Threaded API ..6-10

Limitations ...6-11
Using CTLibThreadedConnection ...6-11
Example ..6-11

Chapter 7 Developing a Database Application 7-1

Overview ..7-1
VisualWorks Application Structure ...7-2
Components of a Database Application ...7-3

Entity Classes ...7-4
Database Application Class ..7-5
Database Application Developer’s Guide xv

Main Window .. 7-6
Data Model .. 7-6
Lens Session ... 7-7

Data Form Classes ... 7-7
Data Form Canvases ... 7-8
Queries .. 7-9

VisualWorks Database Tools ... 7-10
Data Modeler .. 7-10
Mapping Tool .. 7-10
Database Tables Viewer ... 7-10
Query Editor ... 7-10
Menu Query Editor ... 7-11
Ad Hoc SQL Tool .. 7-11
Canvas Composer .. 7-11
Tool Extensions .. 7-11

To the Palette ... 7-11
To the Canvas Tool .. 7-11

Lens Name Space Control .. 7-12
Name Space Options .. 7-12

Chapter 8 Building a Data Model 8-1

An Example Data Model .. 8-1
Create a New Data Model ... 8-3
Defining Database Entities .. 8-4

Define Entities from an Existing Table .. 8-4
Create Entities for a New Table .. 8-7

Creating Relations Between Entities ... 8-11
Create Relations Automatically ... 8-11
Create Relations Manually .. 8-13

Check and Save the Data Model .. 8-13

Chapter 9 Creating a Data Form 9-1

Generating a Data Form .. 9-1
Connecting a Data Form to an Application .. 9-6
Testing an Application .. 9-7
Replacing Input Fields with Other Widgets .. 9-7

Embedding a Data Form ... 9-10
Editing a Query ... 9-11
Removing the Fetch Button .. 9-12

Creating a Custom Data Form Template ... 9-12
Specifying an Aspect Path ... 9-13
xvi VisualWorks

Chapter 10 Lens Programmatic API 10-1

Connecting to a Database ..10-1
Using a Lens Session Connection from an Application10-1
Getting an Unconnected Session from a Data Model10-2

Performing a Query ..10-3
Sending a Query to a Lens Session ..10-4
Limiting the Number of Rows Fetched ..10-4
Processing on Individual Rows from a Lens Session10-5

Beginning and Ending Transactions ...10-6
Adding Objects to the Database ..10-7
Removing an Object from the Database ..10-8
Updating Objects in a Database ..10-10

Posting Changes for Multiple Objects ...10-11
Generating Sequence Numbers ...10-11

Using Database Generated Sequence Numbers10-11
Generating Sequence Numbers in Lens ...10-12

Reusing an Interface with a Different DBMS ..10-14
Basing a Data Form or Query on Multiple Tables ...10-15

Using Object Navigation ..10-15
Using a Database Join ..10-15

Responding to Transaction Events ...10-16
Accepting Edits Automatically at Commit Time ..10-17

Verifying Before Committing ..10-18
Disconnecting and Reconnecting ...10-18
Maintaining Collections ..10-19

Creating a Child Set Via Foreign-Key References10-19
Maintaining a Collection With a Query ..10-20

Chapter 11 Writing Queries 11-1

Editing a Query ..11-1
Query Syntax ...11-2

“From” Clause ...11-3
“Select” Clause ..11-3

Example 1 ..11-4
Example 2 ..11-4
Example 3 ..11-4
Example 4 ..11-4
Example 5 ..11-5

“Where” Clause ...11-5
Example 1 ..11-5
Example 2 ..11-5
Example 3 ..11-5
Database Application Developer’s Guide xvii

Example 4 .. 11-5
Example 5 .. 11-6
Example 6 .. 11-6
Example 7 .. 11-6
Example 8 .. 11-6

“Order By” Clause ... 11-7
“Group By” Clause .. 11-7

Alternate SQL .. 11-7
Editing Generated SQL ... 11-7
Programmatically Modifying SQL ... 11-8
Constants in the Object Lens .. 11-9
xviii VisualWorks

1

Configuring Database Support

VisualWorks Database support is provided in several parcels. This
chapter describes how to get the support properly installed in the
development image, how to load example code, and how to resolve
some common configuration issues.

VisualWorks provides EXDI support for Oracle, Sybase, ODBC,
MySQL, and DB2. A PostgresSQL EXDI is available as a contributed
component, though it is not supported by Cincom. The Object Lens
may be used only with Oracle, Sybase, and DB2.

Loading Database Support
Basic database support is contained in four parcels provided with the
standard VisualWorks release:

• Database.pcl

• Lens-Runtime.pcl (runtime functionality)

• Lens-Dev.pcl (full development functionality)

• LDM-Framework.pcl (used by the Store toolset)

Database-specific extensions (e.g. Oracle, PostgreSQL) are provided
as options during installation of VisualWorks. When installing by
hand, copy the parcels containing support for your database to either
the /parcels or /database subdirectory of the VisualWorks installation.

To load the database support parcels into your image, open the
Parcel Manager (select System > Parcel Manager in the Launcher
window), select the suggested Database extensions, and load the
EXDI and/or Lens parcels by double-clicking on the desired items in
the upper-right-hand list of the Parcel Manager.
Database Application Developer’s Guide 1-1

Configuring Database Support
Preparing a Database Connection
In general, setting up your database software to work with
VisualWorks should be straightforward. This section addresses a few
setup issues that can occur, and explains how to test your database
connection.

Environment Strings
The Database Connect requires that you enter a database
environment string. This can be any string that identifies the
database, according to conventions for the specific database and
platform.

Throughout this document we will assume your database is
configured such that an environment string in the following format is
recognized:

<host_name>_<dbSID>
For example:

ocelot_ORCL
would identify an Oracle database named ORCL on the system named
ocelot, as defined in the TNSNAMES.ORA configuration file.

If you do not know the environment string for your database, consult
your database administrator or the database administration
documentation.

Oracle Library Access on UNIX Platforms
Starting with VisualWorks 3.0, all database libraries are dynamically
bound to the object engine, using shared libraries.

To access these libraries, it is essential that the UNIX environment
variable LD_LIBRARY_PATH contains the path containing these
libraries. For example, enter this line in your script file:

• for Solaris: setenv LD_LIBRARY_PATH

• for HPUX: SHLIB_PATH

For details on setting the environment variable correctly, see
Troubleshooting Oracle Access.
1-2 VisualWorks

Preparing a Database Connection
Setting the Database Login Defaults
You can create database profiles with login and environment settings
as part of your VisualWorks image, which are available to all
VisualWorks tools and to the applications that you build. These
profiles are available in all database connection dialog boxes.

You can also create profiles from within any database connection
dialog (by editing the properties and then clicking on Save... to define
the profile’s name).

To set your database login information:

1 In the VisualWorks Launcher window, choose System > Settings.

2 In the Settings tool, select the Database - Profiles page by clicking
on its tab (listed under Tools).

3 On the profiles Settings page, click Add... to create a new profile.

4 Enter a Name for the database profile, the Interface to use (e.g.,
OracleConnection), the Environment (e.g. ocelot_ORCL), User Name,
and Password.

5 When finished, click OK.

6 Return to the Launcher window and save your VisualWorks
image by choosing File > Save Image As....

Any database profiles you have created are now a part of the
VisualWorks image, available to all database applications.

You can also export these profiles as an XML-format file, which can
be used to import your profiles into other images. To save all profiles
in a single XML file, select Database - Profiles in the tree of settings, and
then choose Save Page... from the <Operate> menu.

Setting the Object Lens Login Defaults
To use the Object Lens functionality, you need to set up a distinct
Lens profile. Skip this discussion if you only wish to use the EXDI
layer of the database connect.

The Object Lens requires a username and password for the Lens
tools (a developer login that has rights to create tables), and a
separate individual username for executing Lens applications.

To set the Lens connection profile:

1 In the VisualWorks Launcher window, choose System > Settings.
Database Application Developer’s Guide 1-3

Configuring Database Support
2 In the Settings tool, select the Database - Lens page by clicking on
its tab (listed under Tools).

3 Enter the Developer name, password, and environment that you use to
log in to your database. These are the defaults used by the
Database Development Tools.

4 Enter the default User name and Password for individuals using your
application to access databases. These are the defaults for user
applications, which appear in database access dialog boxes.

5 When finished, click OK.

6 Return to the Launcher window and save your VisualWorks
image by choosing File > Save Image As....

Testing the Database Connection
With the database support parcels loaded, follow these steps to test
your database connection:

1 In the VisualWorks Launcher window, choose Tools > Database >
Ad Hoc SQL to open the Ad Hoc SQL tool.

2 In the Ad Hoc SQL tool, click on the Connect button.

3 In the login dialog, select the desired connection profile, and click
Connect (you can also create a new connection profile from this
dialog; for details, see Setting the Database Login Defaults).

If the connection is successful, the Connect button in the Ad Hoc
SQL tool is disabled and the Disconnect button is enabled.

If the connection is not successful, verify that:

• The VisualWorks Database Connect product (e.g., Oracle,
Sybase, etc.) for your database management system has
been installed on your system and is available from your
image.
1-4 VisualWorks

Preparing a Database Connection
• Your database vendor’s client and server software and
networking have been installed and configured properly.

4 Click Disconnect and close the Ad Hoc SQL tool.

Troubleshooting Oracle Access
Sometimes it is difficult to properly configure Oracle client libraries,
because Oracle tends to change their file structure from release to
release. Also, you can install several different versions of the Oracle
client library on a single machine. This means that proper
configuration requires that the developer have a more detailed
understanding of the installation on a given platform.

The VisualWorks Oracle Connect relies solely upon the environment
variable to find the right library files to load. The folder which contains
OCI.DLL must be included in the environment variable (e.g., PATH on
Windows) so that VisualWorks can find the right OCI.DLL to load.

On machines that have multiple Oracle clients installed, the folder
containing the desired OCI.DLL should appear first (meaning before
other Oracle clients' folders) in the list of environment variables.
Oracle provides a tool called Home Selector that can help you to select
the desired version, or you can do it manually.

To set the path manually under Windows, modify the environment
variable so that the folder containing the OCI.DLL you want to use
appears the first in the environment string (including the full path).

1 For example, under Windows XP, open the System control panel
and select the Advanced tab.

2 On the Advanced tab, click the Environment Variables button.

3 In the Environment Variables dialog, select Path from the list of
System variables, and click Edit.

4 In the editing dialog, enter the appropriate value. Note that this
input field may contain a very long string of text. It is probably
best to just keyboard arrow keys to position and edit this.

5 If you have Oracle clients 8.1.7, 9.2 and 10 installed on your
machine and you want to use Oracle 9.2, you can modify the
environment string to make the folder conaining OCI.DLL in 9.2
installation appear before the folders for other Oracle clients.

6 Click OK to close the Environment Variables editor.
Database Application Developer’s Guide 1-5

Configuring Database Support
Installing Examples and Data
The VisualWorks Database Connect includes a Workbook of code
examples for exploring the EXDI, and a sample Lens application and
data. Both examples are provided as code parcels which can be
loaded into your development image.

The EXDI Workbook provides an interactive programmatic interface
to the EXDI. Using predefined code samples or your own additions,
this tool provides a simple way to learn about the connection and
session objects.

An example Lens application is referred to in this guide, and is
available for your inspection. It includes a simple GUI, and sample
data which can be installed into your database.

Loading the EXDI Workbook
The EXDI Workbook is a simple Workspace application that includes
a mechanism for connecting and disconnecting from a database, and
example code fragments you can use to exercise the EXDI.

To install and open the EXDI Workbook:

1 Load the Database-Examples parcel.

In the Launcher, select System > Load Parcels Named..., and enter
Database-Examples.

2 Ensure the required database support parcels have been loaded
(located in the database directory).

E.g. for Sybase database systems, load CTLibEXDI. For Oracle
databases, load OracleEXDI, and for other vendors, choose the
appropriate EXDI parcel.

3 In the Launcher window, select Database >
Database Examples Workbook from the Tools menu.

When prompted for a database, either select a connection profile
(for details, see Setting the Database Login Defaults), or enter
connection parameters and click Connect.

Once the connection has been established, the Workbook
window opens.

4 The Workbook includes two workspace variables: connection and
session, corresponding to the objects representing the current
1-6 VisualWorks

Installing Examples and Data
database connection. You can now interactively evaluate simple
code fragments to manipulate these objects.

For example, to query the status of the database connection,
highlight the code fragment:

connection isConnected
Then, select Inspect It from the <Operate> menu. An inspector
opens on the result of sending isConnected (it should be True).

5 When you are finished with the Workbook, you can close the
connection by evaluating connection disconnect, or by selecting
Disconnect from the Database menu.

The Workbook includes code to manipulate the connection object, to
CREATE and DROP a table, to INSERT data and SELECT rows. You
can edit the code samples or use any of the behavior of the
connection and session objects.

Setting Up the Example Lens Application
This Lens example is a simple library application for tracking books,
the people who borrow them, and the book-loan transactions.

The sample application and several database examples mentioned in
this guide assume the existence of sample database tables. You must
load these into a database before using the application. The tables
are:

• BookExample

• BorrowerExample

• BookloanExample

• AdminExample (for Sybase only)

To install and set up the sample application:

1 Load the Lens-Examples parcel.

In the Launcher window, select System > Load Parcels Named..., and
enter Lens-Examples.

2 Ensure the required database support parcels have been loaded
(located in the database directory).

E.g. for Sybase database systems, load CTLibEXDI. For Oracle
databases, load OracleEXDI, and for other vendors, choose the
appropriate EXDI parcel.
Database Application Developer’s Guide 1-7

Configuring Database Support
3 To set up your login and environment information, open the
Settings Manager (System > Settings), and on the Database - Lens
page, enter appropriate values for Developer name, password,
environment, and Apply these changes.

4 In a workspace evaluate:

Examples.Database1Example addSampleData.
When the action completes successfully, VisualWorks displays a
notifier saying the sample tables and data were installed. Click OK
to dismiss the message.

Database1Example is now ready for use.

You should now be able to use the example to add and remove
books.

To run the example application, execute the following code in a
Workspace:

Examples.Database1Example open.
When prompted, confirm or enter your database login information,
including the kind of database, your user name and password, and
the environment string, and click OK.

To remove the example tables and data from your image, evaluate:

Examples.Database1Example removeSampleData.
1-8 VisualWorks

2

EXDI Database Interface

The VisualWorks Database Connect is based upon an API for low-
level access known as the External Database Interface (EXDI). For
many applications, the EXDI is sufficient for interacting with a
database. Applications that require more sophisticated object-
relational mapping may use the Object Lens, which is described in
subsequent chapters.

The EXDI package provides a set of protocols supported by several
superclasses, but does not provide direct support for any particular
database. Database Connect extensions are provided for connectivity
to specific databases, such as Oracle and Sybase. These extensions
to the EXDI are described in the following chapters.

This chapter provides an overview of the EXDI framework, explains
the general rules for data interchange between Smalltalk and a
relational database, how to connect, disconnect, create sessions,
make queries, get results and handle errors. It also describes how
you can trace the flow of a transaction.

The examples in this chapter assume that you have installed and
configured a VisualWorks database connection according to the
instructions provided in Configuring Database Support and that the
necessary database vendor software has been installed and correctly
configured.

EXDI Framework
Interacting with a relational database involves the following activities:

• Establishing a connection to the database server

• Preparing and executing SQL queries
Database Application Developer’s Guide 2-1

EXDI Database Interface
• Obtaining the results of the queries

• Disconnecting from the server

The External Database Interface consists of a set of classes that
provide a uniform access protocol for performing these activities, as
well as the other activities necessary for building robust database
applications. The classes that make up the External Database
Interface are found in the Database package. Each of these classes is
listed in the tables below with a more detailed explanation to follow
later in this chapter.

Core External Database Interface Classes

In addition to these three core classes, the following classes provide
useful functionality.

External Database Interface Support Classes

Data Interchange
Before going further, it is important to understand how relational data
is transferred to and from the Smalltalk environment. Data in the
relational database environment is stored in tables, which consist of

Database Interface Class Description

ExternalDatabaseConnection Provides the protocol for establishing a
connection to a relational database
server, and for controlling the
transaction state of the connection.

ExternalDatabaseSession Provides the protocol for executing SQL
queries, and for obtaining their results.

ExternalDatabaseAnswerStream Provides the stream protocol for reading
the data that might result from a query.

Database Interface Class Description

ExternalDatabaseColumnDescription Holds the descriptions of the columns
of data retrieved by queries

ExternalDatabaseError Bundles the error information that may
result if something goes awry.

ExternalDatabaseFramework
ExternalDatabaseBuffer
ExternalDatabaseTransaction

Provide behind-the-scenes support for
the activities above, and are not
accessed directly.
2-2 VisualWorks

Using Database Connections
columns, each having a distinguished datatype (INT, VARCHAR, and
so on). When a row of data from a relational table is fetched into
Smalltalk, the relational data is transformed into an instance of a
Smalltalk class, according to the following table.

Relational Type Conversion

NULL values for relational type become the Smalltalk value nil on
input, and nil becomes NULL on output.

The row itself becomes either the Smalltalk class Array or an instance
of some user-defined class. The choice is under your control, and is
described later in this chapter.

If a particular DBMS supports additional datatypes, the mapping
between those datatypes and Smalltalk classes is explained in the
documentation for the corresponding VisualWorks database
connection. For example, VisualWorks CTLib Connect supports a
datatype called MONEY. See Using the Database Connect for
Sybase CTLib, for a description of how that datatype is mapped to a
Smalltalk class.

Using Database Connections
To establish a connection to a database, you create an instance of
ExternalDatabaseConnection (or one of its subclasses), supply it with
your database user name, password, and environment (connect)
string, then direct the instance to connect. In the following example
we connect to (and then disconnect from) an Oracle server.

| connection |
connection := OracleConnection new.
connection

username: 'scott';

Relational Type Smalltalk Class

CHAR, VARCHAR, LONG String

RAW, LONG RAW ByteArray

INT Integer

REAL Double

NUMBER FixedPoint

TIMESTAMP Timestamp
Database Application Developer’s Guide 2-3

EXDI Database Interface
password: 'tiger';
environment: 'ocelot_ORCL'.

connection connect.
connection disconnect.

The environment string format follows the conventions described in
the discussion of Environment Strings.

Securing Passwords
In the connection example above, references to the username,
password, and environment string are stored in instance variables of
the connection object, and will be stored in the image when it is
saved. For security reasons, you may wish to avoid having a
password stored in the image. A variant of the connect message
allows you to specify a password without having the session retain a
reference to it. The example below assumes that the class that
contains the code fragment responds to the message
askUserForPassword. The string it answers is used to make the
connection.

connection
username: 'scott';
environment: 'ocelot_ORCL'.

connection connect: self askUserForPassword.

Getting the Details Right
Environment strings (also called connect strings by some vendors)
can be tricky things to remember. As a convenience, class
ExternalDatabaseConnection keeps a registry of environment strings,
allowing them to be referenced by logical keys. This enables
applications to provide users with a menu of logical environment
names, instead of the less mnemonic environment strings.

ExternalDatabaseConnection supplies the following class-side messages
for manipulating the registry:

addLogical: aKey environment: anEnvironmentString

Add a new entry in the Dictionary, associating aKey as the logical
name for the environment and anEnvironmentString as the value
to use when connecting.

removeLogical: aKey

Remove an entry from the logical environment map.
2-4 VisualWorks

Using Database Connections
mapLogical: aKey

Answer the string to use for the environment in making a
connection.

environments

Return the Dictionary of all mappings from logical names to SQL-
environment strings.

For example, executing the following example establishes a logical
environment named 'test'.

OracleConnection
addLogical: 'test'
environment: ‘ocelot_ORCL’.

Thereafter, applications that specify 'test' as their environment will
actually get the longer Oracle connect string. Actually, any string that
an application provides as an environment is first checked against the
logical environment registry. If no match is found, the application’s
string is used unchanged.

Setting a Default Environment
ExternalDatabaseConnection also remembers a default key, enabling
applications to connect without specifying an environment. The
default key is set by sending ExternalDatabaseConnection the message
defaultEnvironment:, passing the default environment string as the
argument. The message defaultEnvironment answers with the current
default environment, which may be nil.

The following code sets 'test' to be the default logical environment,
enabling applications to connect without specifying an environment.

ExternalDatabaseConnection
defaultEnvironment: 'test'

Default Connections
In addition to hiding the details of the environment,
ExternalDatabaseConnection has the notion of a default connection,
enabling some applications to be coded without direct references to
the type of database to which they will be connected. As an abstract
class, ExternalDatabaseConnection does not create an instance of itself.
Database Application Developer’s Guide 2-5

EXDI Database Interface
Instead, it forwards the new message to the subclass whose name it
has remembered as the default. For example, to register
OracleConnection as the default class to use, execute:

ExternalDatabaseConnection
defaultConnection: #OracleConnection.

This feature, along with the environment registry explained above,
enables the connection example to be rewritten as:

| connection |
connection := ExternalDatabaseConnection new.
connection

username: 'scott';
password: 'tiger'.

connection connect.
connection disconnect.

The default is set initially by the ExternalDatabaseInstallation application
when the first database connection is installed.

External Authentication
Some databases (e.g. Oracle) allow so-called “external
authentication” in which the host OS authenticates the database
connection, instead of using a username and password provided via
the EXDI.

The VisualWorks EXDI performs external authentication, when both
username and password are empty strings. When one or both are
provided, users can still choose external authentication, by using the
authenticationMode: method.

On the Importance of Disconnecting
Establishing a connection to a database reserves resources on both
the client, VisualWorks, and the host, database server, side. To
ensure that resources are released in a timely fashion, it is important
to disconnect connections as soon as they are no longer needed, as
shown in the examples above.

VisualWorks provides a finalization-based mechanism for cleaning up
after a connection if it is “dropped” without first being disconnecting.
Since finalization is triggered by garbage collection, the eventual
cleanup could take place long after the connection has been
dropped. If your application or application environment is resource-
sensitive, we recommend proactively disconnecting the connections.
2-6 VisualWorks

Using Sessions
Using Sessions
Having established a connection to a database server, you can then
ask the connection for a query session, which reserves the “right” to
execute queries using the connection.

A session is a concrete subclass of ExternalDatabaseSession, and is
obtained from a connected connection by sending the message
getSession. The connection answers with a session. If the connection
is to a Sybase server (i.e., is a CTLibConnection), the session will be a
CTLibSession.

You can ask a session to prepare and execute SQL queries by
sending the messages prepare:, execute, and answer, in that order.
Depending on the DBMS, prepare: will either send the query to the
server or defer the send until the query is actually executed. This is
important to note, because errors can be detected (and signals
raised) at either prepare: or execute time.

To examine the results of the query execution, send an answer
message to the session. This is important to do even when the query
does not return an answer set (e.g., an INSERT or UPDATE query). If
an error occurred during query execution, it is reported via answer.
More on answer, and how it is used to retrieve data, later in this
chapter.

We can extend the connection example shown previously to execute
a simple query. Note the use of two single quotes around the name.
These are needed to embed a single-quote within a Smalltalk String.

| connection session |
(connection := ExternalDatabaseConnection new)

username: 'jones';
password: 'secret';
connect.

(session := connection getSession)
prepare: 'INSERT INTO phonelist VALUES(''Smith'', ''x1234'')';
execute;
answer.

connection disconnect.
Database Application Developer’s Guide 2-7

EXDI Database Interface
Variables in Queries
Repetitive inserts would be very inefficient if each insert required that
a query be prepared and executed. This overhead can by side-
stepped by preparing a single query, with query variables as
placeholders. This prepared query can then be repeatedly executed
with new values supplied for the placeholders.

Query variables (also called parameters) are placeholders for values
in a query. Some databases (e.g., Oracle) produce an execution plan
when a query is prepared. Preparing the plan can be expensive.
Using variables and binding values to them before each execution
can eliminate the overhead of preparing the query for subsequent
executions, which can be a substantial performance improvement for
some repetitive applications.

To execute a query containing one or more query variables, the
session must first be given an input template object, which will be
used to satisfy the variables in the query. The method by which
values are obtained from the input template depends on the form of
the query variable. If the input variable is a question mark, then the
input template must either have indexed variables or instance
variables. The first template variable will be used to satisfy the value
for the first query variable, the second template variable will be used
to satisfy the second query variable, and so on. Consider the
example:

session prepare: 'INSERT INTO phonelist (name, phone) VALUES(?, ?)'.
#(('Curly' 'x47') ('Moe' 'x29') ('Larry' 'x83'))

do:
[:phoneListEntry |
session

bindInput: phoneListEntry;
execute;
answer].

Here the input template is an Array with two elements. The first
element, the name, will be bound to the first query variable, and the
second element, the phone number, will be bound to the second.

A closely related form for query variables is a colon followed
immediately by a number. Again, the input template must contain
indexed or instance variables, and the number refers to the position
of the variable. The query above could be rewritten to use this form of
query variable as follows:

session prepare: 'INSET INTO phonelist (name, phone) VALUES(:1, :2)'.
2-8 VisualWorks

Using Sessions
Named Input Binding
The third form that a query variable can take is a colon followed by a
name. This form of binding is intended for use with objects which
have named accessor methods. For example, let’s assume that we
have a PhoneListEntry object that we want to persist in the database,
which is defined as the following class:

Smalltalk.Database defineClass: #PhoneListEntry
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: 'name phone'
classInstanceVariableNames: ''
imports: ''
category: 'Database-Examples'

Further, let’s say that PhoneListEntry includes the following accessor
methods:

name
Using named input binding, we can write a query like this:

session
prepare: 'INSERT INTO phonelist (name, phone) VALUES (:name,
:phone)'.newPhone := PhoneListEntry name: ‘Joe’ phone: ‘00’.
session bindInput: newPhone.

The name in a query variable represents a message to send to the
input template. The input template is expected to answer a value,
which will then be bound for the variable.

This form of binding is very powerful, but should be used with care. If
the input template does not respond to the message selector formed
from the bind variable name, a Message Not Understood notifier will
result. Also, there are many messages that all objects respond to that
would have unexpected effects if used as bind variables, such as halt.

Binding NULL
To bind a NULL value to a variable, use the “value” nil. This works in
general, but causes problems in a particular scenario with Oracle.
The query:

SELECT name, phone FROM phonelist WHERE name = ?
will not work as expected if the variable's value is nil. Oracle requires
that such queries be written as:

SELECT name, phone FROM phonelist WHERE name IS NULL
Database Application Developer’s Guide 2-9

EXDI Database Interface
Getting Answers
Once a database server has executed a query, it can be queried to
determine whether the query executed successfully. If all went well,
the server is also ready with an answer set, which is accessed by
way of an answer stream. Verifying that the query executed
successfully and obtaining an answer stream are both accomplished
by sending a session the message answer.

In responding to the answer message, the session first verifies that
the query has finished executing. If the database server has not yet
responded, the session will wait. If the server has completed
execution and has reported errors, the session will raise an
exception. See the discussion of Error Handling for information on the
exceptions that might be raised, and details on how to handle them.

If no error occurred, answer will respond in one of three ways. If the
query is not one that results in an answer set (that is, an INSERT or
UPDATE query), answer will respond with the symbol
#noAnswerStream. If the query resulted in an answer set (that is, a
SELECT query), answer will return an instance of
ExternalDatabaseAnswerStream, which is used to access the data in the
answer set, and is explained below.

The third possible response to answer is the symbol #noMoreAnswers.
When a database supports multiple SQL statements in one query, or
stored procedures that can execute multiple queries, you can send
answer repeatedly to get the results of each query. It will respond with
either #noAnswerStream or an answer stream for each, and will
eventually respond with the symbol #noMoreAnswers to signify that the
set of answers has been exhausted.

The following (complete) code sample illustrates the use of
#noAnswerStream and #noMoreAnswers:

| connection aSession |
connection := CTLibConnection new.
connection

username: 'myUsername';
password: 'myPassword';
environment: 'SybaseEnv'.

connection connect.
aSession := connection getSession.
aSession

prepare: 'CREATE TABLE phonelist (name varchar(50), phone
char(20))';
2-10 VisualWorks

Getting Answers
execute;
answer;
answer.

aSession
prepare: 'INSERT INTO phonelist VALUES(:1, :2)'.
#(('Curly' 'x47') ('Moe' 'x29') ('Larry' 'x83')) do:

[:phoneListEntry |
aSession

bindInput: phoneListEntry;
execute;
answer;
answer].

aSession
prepare: 'CREATE PROCEDURE get_some_phonenumbers

as
SELECT * FROM phonelist WHERE phone = ''x47''
SELECT * FROM phonelist WHERE phone = ''x83'' '.

aSession
execute;
answer;
answer.

aSession
prepare: 'EXEC get_some_phonenumbers';
bindOutput: PhoneListEntry new;
execute.

numbers := OrderedCollection new.
[| answer |

[(answer := session answer) == #noMoreAnswers]
whileFalse:

[answer == #noAnswerStream
ifFalse:

[numbers := numbers , (answer upToEnd)]]]
on: connection class externalDatabaseErrorSignal
do: [:ex | Dialog warn: ex parameter first dbmsErrorString].

aSession prepare: 'DROP PROCEDURE get_some_phonenumbers'.
aSession

execute;
answer;
answer.

aSession prepare: 'DROP TABLE phonelist'.
aSession

execute;
answer;
answer.

numbers inspect.
connection disconnect.
Database Application Developer’s Guide 2-11

EXDI Database Interface
Handling Multiple Answer Sets
If your application is intended to be portable and support ad hoc
queries, we recommend that you send answer repeatedly until you
receive #noMoreAnswers. This enables your code to work with servers
(e.g., Sybase) which can return multiple answer sets.

The following code fragment retrieves the answer sets that might
result from executing a Sybase stored procedure:

session
prepare: 'exec get_all_phonenumbers';
bindOutput: PhoneEntry new;
execute.

numbers := OrderedCollection new.
connection class externalDatabaseErrorSignal

handle: [:ex | Dialog warn: ex parameter first dbmsErrorString]
do:[| answer |

[(answer := session answer) == #noMoreAnswers]
whileFalse: [answer == #noAnswerStream
ifFalse: [numbers := numbers , (answer upToEnd)]]].

For more information on managing Sybase stored procedures, refer
to Using the Database Connect for Sybase CTLib.

Sending an Answer Message
When you send answer to a session, a number of things happen in
the background as the session prepares the resources needed to
process an answer set. Most of these steps are out of the direct view
of the application. However, an understanding of them may help
when you are debugging database applications.

To answer a query, the session performs the following steps:

1 Waits for the server to complete execution.

2 Verifies that the query executed without error.

3 Determines whether an answer set is available.

4 If the query returns an answer set, then the session performs the
following additional steps:

5 Obtains a description of the answer set.

6 Allocates buffers to hold rows from the answer set.

7 Prepares adaptors to help translate relational data to Smalltalk
objects.
2-12 VisualWorks

Getting Answers
Waiting for the Server
Some database servers, such as Sybase, support asynchronous
query execution, giving control back to the application after the server
has begun executing the query. To determine whether the server has
completed execution, a session sends itself the message isReady,
which returns a Boolean indicating that the server is ready with an
answer, until isReady returns true. If the target DBMS does not support
asynchronous execution (for example, Oracle), isReady will always
return true.

Queries to Oracle databases block the OE for the duration of the
query execution, unless run on an Oracle threaded connection. Refer
to Oracle Threaded API for more information.

Did the Query Succeed?
The session next verifies that the query executed without error. Errors
that the server reports are bundled into instances of
ExternalDatabaseError (or a Connection-specific subclass). A collection
of these errors is then passed as a parameter to an exception. See
Error Handling for more details.

How Many Rows were Affected?
Some queries, such as UPDATE or DELETE, do not return answer sets.
To determine how many rows the query affected, send the message
rowCount to the session, which will respond with an integer
representing the number of rows affected by the query. Because
database engines consider a query to have executed successfully
even if no rows where matched by a WHERE clause, testing the row
count is an easy way to determine whether an UPDATE or DELETE
query had the desired effect.

Database-specific restrictions on the availability of this information
are documented in the release notes for your Database Connect
product.

Describing the Answer Set
If the query has executed without error, the session determines
whether the query will return an answer set.

If the session returns an answer set, the session will obtain from the
server a description of the columns in the set. Sending the message
columnDescriptions to the session (after sending answer) will return an
Array of instances of ExternalDatabaseColumnDescription (or a
connection-specific subclass), which describes the columns in the
answer set.
Database Application Developer’s Guide 2-13

EXDI Database Interface
A column description includes: the name, length, type (expressed as
a Smalltalk class), precision, scale, and nullability of a column. A
column description will respond to the following accessing protocol
messages:

name "Answer the name of the column"
type "Answer the Smalltalk type that will hold data

 from the column"
length "Answer the length of the column"
scale "Answer the scale of the column, if known"
precision "Answer the precision of the column, if known"
nullable "Answer the nullability of the column, if known"

Connection-specific subclasses may make additional information
available. Note that the names returned for calculated columns may
be different depending on the target DBMS.

For example, the query:

SELECT COUNT(*) FROM phonelist
determines the number of rows in the phone list table. Oracle names
the resulting column "COUNT(*)", while Sybase does not provide a
name.

Buffers and Adaptors
Finally, the session uses the column descriptions to allocate buffers
to hold rows of data from the server, and adaptors to help create
Smalltalk objects from the columns of relational data that will be
fetched from the server into the buffers. This step is invisible to user
applications, but can be the source of several errors. For example, if
insufficient memory is available to allocate buffers, an unableToBind
exception will be raised. An invalidDescriptorCount exception will be
raised if the output template doesn’t match the column descriptions.

Care must be exercised when using EXDI methods such as
bindVariable:value: or bindVariable:value:type:size:, which require buffers
of adequate size to handle all possible return values for a given
column.

Processing an Answer Stream
After the session has completed the steps above, and assuming that
the query results in an answer set, the session creates an
ExternalDatabaseAnswerStream and returns it to the application.
ExternalDatabaseAnswerStream is a subclass of Stream, and is used to
access the answer set. There are a few restrictions. Answer streams
are not positionable, they cannot be flushed, and they cannot be
written.
2-14 VisualWorks

Getting Answers
Answer streams are created by the session; your application should
not attempt to create one for itself.

Answer streams respond to the messages atEnd, for testing whether
all rows of data from an answer set have been fetched, and next for
fetching the next row. Attempting to read past the end of the answer
stream results in an endOfStreamSignal.

In our example, all rows of the phone list could be fetched as follows:

numbers := OrderedCollection new.
answer := session answer.
[answer atEnd] whileFalse:

[| row |
row := answer next.
numbers add: row].

Sending upToEnd causes the answer stream to fetch the remaining
rows of the answer set and return them in an OrderedCollection. Using
upToEnd, the example above can be simplified as:

answer := session answer.
numbers := answer upToEnd.

While this works well for small answer sets, it can exhaust available
memory for large answer sets.

Unless the session has been told otherwise, data retrieved through
the answer set comes packaged as instances of the class Array.

Using Cursors and Scrollable Cursors
The VisualWorks EXDIs for Oracle, Sybase, and DB2 provide
support for cursors and scrollable cursors. A cursor represents a
movable position in the result set. When using a cursor, the results of
a query are held in a set of rows which may be fetched either in
sequence or via random access.

A cursor is used for sequential access, while a scrollable cursor is
used for random access. The scrollable cursor can fetch results
moving either forward or backward from a given position, and the
specified result may be indicated either via an absolute or relative
row offset.

When using cursors, the rows in the result set are numbered starting
with one. With a scrollable cursor, you can fetch the same rows
several times, you can fetch a specific row, or a specific row relative
to the current position.
Database Application Developer’s Guide 2-15

EXDI Database Interface
The cursor API is implemented in class ExternalDatabaseAnswerStream.
The following public methods are available in the accessing protocol:

moveTo: anInteger

Answer the row at cursor position anInteger, where anInteger
must be a positive integer.

skip: anInteger

Answer the row at current cursor position + anInteger, where
anInteger can be either a positive or a negative value.

next

Answer the next row from the answer stream.

previous

Answer the previous row from the answer stream.

Additionally, in class ExternalDatabaseSession, two methods are
provided for querying the state of a cursor:

scrollable

Answer a Boolean indicating whether the cursor is scrollable or
not.

scrollable: aBoolean

Set whether the cursor is scrollable or not.

Note that certain vendors may have specific requirements or
restrictions on the use of cursors. For example, Sybase requires that
the connection object be initialized with a special call before using
cursors (see Using Cursors and Scrollable Cursors for details).
Forward-only cursors can be used to delete and update rows, but the
block factor must be set to 1. If blockFactor: is used with a value
greater than 1, the cursor position can get out of sync.

The following two code examples illustrate the use of cursors and
scrollable cursors. First, to create a sample data set, use the
following:

aConnection connect.
aSession := aConnection getSession.
aSession prepare: 'CREATE TABLE TestScroll (id INT, A VARCHAR(20))'.
aSession execute.
aSession answer.
2-16 VisualWorks

Getting Answers
[aSession := aConnection getSession.
aSession prepare: 'INSERT INTO TestScroll(id, A) VALUES (?, ?)'.
array := Array new: 100.
1 to: array size

do: [:i|
aSession bindInput: (Array with: i with: i printString).
aSession execute.
aSession answer]]

ensure:
[aSession disconnect.
aConnection disconnect].

The cursor API may be used as follows:

aConnection connect.
[aSession := aConnection getSession.
aSession scrollable: true.
aSession prepare: 'SELECT * FROM TestScroll'.
aSession execute.
answer := aSession answer.
Transcript show: 'Using >>moveTo:'; cr.
1 to: 100 do:

[:i |
rec := answer moveTo: i.
Transcript show: 'pos = ', i printString , ', Data = ' , rec printString;

cr].
Transcript show: 'Using >>previous'; cr.
1 to: 99 do:

[:i |
Transcript show: 'pos = ', i printString , ', Data = ' , rec printString;

cr].
rec := answer previous].

Transcript show: 'Using >>skip:'; cr.
1 to: 95 by: 5 do:

[:i |
Transcript show: 'pos = ', i printString , ', Data = ' , rec printString;

cr].
rec := answer skip: 5].

Transcript show: 'Using >>moveTo:'; cr.
1 to: 100 by: 5 do:

[:i |
rec := answer moveTo: i.
Transcript show: 'pos = ', i printString , ', Data = ' , rec printString;

cr].
] ensure:

[aSession disconnect.
aConnection disconnect].
Database Application Developer’s Guide 2-17

EXDI Database Interface
Using an Output Template
Having rows of a table (or columns from a more complex query)
arrive packaged as instances of the class Array might suffice for some
applications. For more complex applications, it is preferable to have
the data appear as instances of some user-defined class. In our
example, we would want rows of data fetched from the phonelist table
to appear as instances of class PhoneListEntry.

To achieve this, ExternalDatabaseSession supports an output template
mechanism. If an output template is supplied to the session, it will be
used instead of the class Array when creating objects to represent
rows of data in the answer set. In our example, this would look like:

session
prepare: 'SELECT name, phone FROM phonelist';
bindOutput: PhoneListEntry new;
execute.

answer := session answer.
Rows of data from the table will now appear (by sending answer next)
as instances of PhoneListEntry.

Columns of data from a row of the answer set are loaded into the
output template's variables by position. Column 1 loads into the first
variable, column 2 loads into the second variable, and so on. The
output template can have either instance variables or indexed
variables. When both are present, the indexed variables are used.

Skipping Slots in an Output Template
To skip a variable in the bind template, place an instance of the class
Object in it. There must be exactly as many non-Object variables in
the output template as there are columns in the answer set. For
example, consider the scenario of having the additional instance
variable unused in an instance of PhoneListEntry. If this instance
variable is not fetched from the database, you could add the method

newForSelect
"Create a new instance of the receiver,
and initialize it to be fetched from the database."
^super new initializeForSelect

to the instance creation protocol on the class side of PhoneList-Entry,
and

initializeForSelect
"Initialize an instance of the receiver to be fetched from the
database."
unused := Object new.
2-18 VisualWorks

Getting Answers
to the initialize-release protocol on the instance side. This enables us
to safely rework the example above by writing

bindOutput: PhoneListEntry newForSelect;
to specify the output template.

Using Column Names to Bind for Output
As with input binding, a name-based alternative is provided for output
binding. Sending a session the message bindOutputNamed:, with the
output template as an argument, causes the session to create a set
of mutator messages to send to the output template to store values
fetched from the database. These mutator messages are formed by
appending colons to the column names. Our phone list example
could use named output binding if the class PhoneListEntry provided
the following instance-side accessing methods:

name: aName
"Set the phone entry’s name"
name := aName phoneNumber: aPhoneNumber.
"Set the phone entry’s phone number"
phone := aPhoneNumber

The same caveats apply to named output binding as apply to named
input binding. If the output template does not answer the message, a
Message Not Understood notifier will result. Be sure that the needed
method names do not override methods that are necessary for the
functioning of the object.

If you are connecting to an Oracle database, be aware that Oracle
answers column names in uppercase letters. In this situation you
should write methods with uppercase names. If you connect to both
Oracle and other databases, create methods with both uppercase
and lowercase names.

Another approach is to use a “column alias” to explicitly label the
column in the SQL query. Enclose the column alias in quotation
marks immediately following the column name in the query. For
example,

sess prepare: 'select id "id", str "str" from foo'.
forces Oracle to use the the lowercase “id” and “str” as the column
labels. These lowercase labels will be used by VisualWorks to
construct the mutator methods, id: and str:.
Database Application Developer’s Guide 2-19

EXDI Database Interface
Reusing the Output Template
By default, a new copy of the output template is used for each row of
data fetched. If your application processes the answer set one row at
a time, the overhead of creating a copy can be eliminated by
arranging to reuse the original output template. Sending
allocateForEachRow: false to the session tells it to reuse the template.
Output template reuse is temporarily disabled when sending upToEnd
to the answer stream.

Setting a Block Factor to Improve Performance
Some database managers allow client control over the number of
rows that will be physically transferred from the server to the client in
one logical fetch. Setting this blocking factor appropriately can greatly
improve the performance of many applications by trading buffer
space for time (network traffic).

If our phone list database resided on an Oracle server, the
performance of the example might be greatly improved by sending
the message blockFactor: to the session, as follows:

session
prepare: 'SELECT name, phone FROM phonelist';
bindOutput: PhoneListEntry new;
blockFactor: 100;
execute.

Since the phone list entries are small, asking for 100 rows at a time is
not unreasonable.

Note that the block factor does not affect the number of objects that
will be returned when you send the message next to the answer
stream. Objects are read from the stream one at a time.

If a database connection does not support user control over blocking
factors (as with Sybase), the value passed to blockFactor: is ignored,
and the value remains set at 1. Additional restrictions on the use of
blockFactor:, if any, are listed in the release notes for your Database
Connect product.

Cancelling an Answer Set
If your application finishes with an answer stream before reaching the
end of the stream (perhaps you only care about the first few rows of
data), it is good practice to send the message cancel to the session.
This tells the database server to release any resources that it has
2-20 VisualWorks

Controlling Transactions
allocated for the answer set. The answer set will be automatically
canceled the next time you prepare a query, or when the session is
disconnected, but a proactive approach is often preferable.

Disconnecting the Session
Establishing a session reserves resources on the client side, and
often on the server side. When you're done with a session, sending
the message disconnect to the session disconnects it and releases
any resources that it held. The connection is not affected. A
disconnected session will be automatically reconnected the next time
a query is prepared. If you expect your application to experience long
delays between queries, you might consider disconnecting sessions
where possible.

Sessions will automatically disconnect when their connection is
disconnected. Sessions are also protected by a finalization executor,
and will be disconnected, eventually, after all references to them are
dropped.

Controlling Transactions
By default, every SQL statement that you prepare and execute is
done within a separate database transaction. To execute several SQL
statements within a single transaction, send begin to the connection
before executing the statements, followed by commit after the
statements have executed. To cancel a transaction, send rollback to
the connection.

The connection keeps track of the transaction state. If an application
bypasses the connection by preparing and executing SQL statements
like COMMIT WORK or END TRANSACTION, the connection will
lose track of the transaction state. As a rule, stored procedures
should not change the transaction state, because the caller will be
unaware of the change. This might lead to later problems.

Coordinated Transactions
Several connections can participate in a single transaction by
appointing one connection as the coordinator. Before the connections
are connected (that is, sent connect or connect:), send the coordinating
connection the message transactionCoordinatorFor: once for each
participating connection, passing the connection as the argument.
Database Application Developer’s Guide 2-21

EXDI Database Interface
After the coordination has been established, sending begin to the
coordinator begins the coordinated transaction. Sending commit or
rollback to the coordinator causes the message to be broadcast to all
dependent connections.

If the database system supports two-phase commit, the coordination
assures the atomic behavior of the distributed transaction. If the
database does not support two-phase commit, a serial broadcast is
used.

Participants in a coordinated transaction must be supported by a
single-database connection. It is not possible, for example, to mix
Oracle and Sybase connections in a coordinated transaction.

Releasing Resources
If your application has relatively long delays between uses of the
database, you may want to release external resources during those
delays. To do so, send a pause message to any active connections.
This causes the connections to disconnect their sessions, if any, and
then disconnect themselves. Any pending transaction is rolled back.
Both the connections and their sessions remain intact, and can be
reconnected.

To revive a paused connection, send it resume. The connection will
then attempt to re-establish its connection to the database. If the
password was not stored in the connection, as discussed in Securing
Passwords, the proceedable exception requiredPasswordSignal will be
raised.

Sessions belonging to resumed connections will reconnect
themselves when they are prepared again.

Sending pause or resume to ExternalDatabaseConnection has the same
effect as sending pause or resume to all active connections.

Tracing the Flow of Execution
A tracing facility is built into the VisualWorks database framework,
and is used by database connections to log calls to the database
vendors’ interfaces. Enabling this facility can be quite useful if your
application’s use of the database malfunctions.
2-22 VisualWorks

Tracing the Flow of Execution
A trace entry consists of a time stamp, the name of the method that
requested the trace, and an optional information string. Database
connections use this string to record the parameters passed to the
database vendor’s interface routines, and the status or error codes
that the interfaces return. This information can be invaluable when
tracking down database problems.

Directing Trace Output
To direct tracing information to the System Transcript window,
execute the following expression in a workspace (or as part of your
application):

ExternalDatabaseConnection traceCollector: Transcript
To direct tracing into a file, execute the following:

ExternalDatabaseConnection traceCollector: 'trace.log' asFilename
writeStream

Setting the Trace Level
The framework supports the following of levels of tracing. The default
trace level is zero.

Trace Levels

The trace level is set by executing:

ExternalDatabaseConnection traceLevel: anInteger

Disabling Tracing
Setting the trace level to 0 disables tracing.

Trace Level Description

0 Disables tracing.

1 Limits the trace to information about connection and
query execution.

2 Adds additional information about parameter binding and
buffer setup.

3 Traces every call to the database.
Database Application Developer’s Guide 2-23

EXDI Database Interface
Adding Your Own Trace Information
To intermix application trace information into the trace stream, place
statements like

ExternalDatabaseConnection trace: aStringOrNil
in your application. An argument of nil is equivalent to an empty
string; only a time stamp and the name of the sending method will be
placed in the trace stream.

You can avoid hard-coding the literal name ExternalDatabaseConnection
by asking a connection for its class, and sending the trace message
to that object, as in:

connection class trace: ('Made it this far ' , count printString , ' times').
See the tracing protocol on the class side of
ExternalDatabaseConnection for additional information.

Error Handling
Error handling in the VisualWorks database framework is based on
Exception subclasses and exception handlers. This is a change from
the previous exception handling framework, which was based on
signals. The interface is such that no changes should be necessary
to old code to switch to the new framework.

For practical purposes, the set of errors that a database application
might encounter can be divided into two groups.

The first group are state errors, and these normally occur when an
application omits a required step or tries to perform an operation out
of order. For example, an application might attempt to answer a query
before executing it. If the application is coded correctly, these kind of
errors generally do not arise.

The second group are execution errors, and they occur when an
application performs a step in the correct order but for some reason
the step fails.

When either type of error is encountered, an exception is signaled
and any available error information is passed as a parameter of the
exception. The application is responsible for providing exception
handlers and recovery logic.
2-24 VisualWorks

Error Handling
Exceptions and Error Information
The database framework provides a family of exceptions, most of
which are subclasses of the common parent ExternalDatabaseException.

If an exception is the result of a database error, the connection code
that raises the exception first collects the available database error
information into instances of ExternalDatabaseError, and then passes
the information as a parameter of the signal. If the signal results from
a state error, the signal is sent without additional information.

An instance of ExternalDatabaseError, or a connection-specific
subclass, stores a database-specific error code, and, when available,
includes the string that describes the error. The error code is
retrieved by sending a database error the message dbmsErrorCode,
and to get the string the message dbmsErrorString is sent. See the
ExternalDatabaseError accessing protocol for additional information.

VisualWorks defines the following basic exceptions:

externalDatabaseErrorSignal

The most general external database error signal. This signal and
its descendents are not proceedable.

invalidTableNameSignal

A table named in a query does not match a table in the database.

missingBindVariableSignal

A binding was not provided for a query variable.

unableToCloseCursorSignal

Cannot close the table of query results created by the open
statement, ending access by the application program.

unableToOpenCursorSignal

Cannot open the table of query results for access by the
application program.

Exception Handling
The example below shows one way to provide an exception handler.
The handler is for the general-purpose database exception
externalDatabaseErrorSignal. If this exception, or one of its children, is
signaled from the statements in the do: block, the handle: block is
evaluated. In this example, the handle: block extracts the error string
Database Application Developer’s Guide 2-25

EXDI Database Interface
from the first database error in the collection that was passed as a
parameter to the exception handler, and uses this string in a warning
dialog.

[session
prepare: 'SELECT name, phone FROM fonelist';
execute.
answer := session answer]

on: connection class externalDatabaseErrorSignal
do: [:ex |

 "If the query fails, display the error string in an OK dialog"
 Dialog warn: ex parameter first dbmsErrorString].

In this example, the error is caused by the invalid table name in the
query. If the connection in this example is to an Oracle database, the
database error in the collection passed to the handler (that is, the
database error accessed by ex parameter first) will be an instance of
OracleError, and will hold as its dbmsErrorCode the number 942, and as
its dbmsErrorString the string 'ORA_00942: table or view does not exist'.

Choosing an Exception to Handle
With the wealth of exceptions that might be signaled, which ones
should an application provide handlers for? The answer, as with
many of life’s difficult questions, is “it depends.” For many
applications, it only matters if a query “works.” In this case, providing
a handler for externalDatabaseErrorSignal is usually sufficient. Other
applications might be more sensitive to specific types of errors, and
will want to provide more specific handlers.

Unfortunately, the use of exception-specific handlers is complicated
by the fact that the errors that the low-level database interface reports
may at first appear to be unrelated to the operation being performed.
For example, the connection to a remote database server can be
interrupted at any time, but the exception signaled will depend on the
database activity that the application was performing at the time the
problem was detected.

The recommended strategy is to provide a handler for as general a
signal as you feel comfortable with (for example,
externalDatabaseErrorSignal), and invest effort, if necessary, in
examining and responding to the database-specific errors that will be
passed to the handler. We recommend against providing a
completely general handler (for example, for Object errorSignal),
especially during development, as this will make nondatabase
problems more difficult to isolate.
2-26 VisualWorks

OEM Encoding
Exceptions and Stored Procedures
As a general rule, if your application makes use of stored procedures,
you should use exception handlers there as well. These allow a
graceful return to Smalltalk, which can then attempt to handle the
exception. For example, you might add a boolean success flag as the
last statement in the procedure, and if the return value is nil or false
(anything but true), assume that an exception was raised and that the
results are invalid.

OEM Encoding
The Oracle, ODBC, MySQL, and CTLib EXDIs include support for
OEM code pages. These are most often used under MS-DOS-like
operating systems. Examples include: 437 - The original IBM PC
code page; 737 - Greek; and 775 - Estonian, Lithuanian and Latvian.

Disabled by default, OEM encoding must be explicitly enabled via the
connection object.

For example, to use OEM encoding with an Oracle database:

| conn sess |
conn := OracleConnection new.
conn username: 'username';
 password: 'password';
 environment: 'env'.
conn connect.
"Drop the test table."
sess := conn getSession.
sess prepare: 'drop table test_umlauts';
 execute;
 answer.
"Create a test table."
sess prepare: 'create table test_umlauts (cid number, cname
varchar2(50))';
 execute;
 answer.

"Turn on OEM encoding."
conn turnOnOEMEncoding.

"Insert test data using OEM encoding."
sess prepare: 'insert into test_umlauts values(10, ''ä, ö, and ü'')';
 execute;
 answer.

Database Application Developer’s Guide 2-27

EXDI Database Interface
"Turn off OEM encoding."
conn turnOffOEMEncoding.

"Insert test data using normal encoding based upon NLS_LANG."
sess prepare: 'insert into test_umlauts values(11, ''ä, ö, and ü'')';
 execute;
 answer.

"Turn on OEM encoding."
conn turnOnOEMEncoding.

"Retrieve the test data, record with cid=10 will be displayed correctly."
sess prepare: 'select * from test_umlauts' ;
 execute.
ans := sess answer.
ans upToEnd.

"Turn off OEM encoding."
conn turnOffOEMEncoding.

"Retrieve the test data, record with cid=11 will be displayed correctly."
sess prepare: 'select * from test_umlauts' ;
 execute.
ans := sess answer.
ans upToEnd.

Image Save and Restart Considerations
When an image containing active database connections is exited, the
connections are first paused, and any partially completed transactions
are terminated via rollback.

To arrange for your application to perform some set of steps before
the transaction is terminated, your application model must first
register as a dependent of the class ExternalDatabaseConnection. For
example:

anExternalDatabaseConnection addDependent: self.
The application model then creates an update: (or update:with:)
method, and tests for the update: argument #aboutToQuit. For example:

update: anAspectSymbol with: aValue
anAspectSymbol == #aboutToQuit

ifTrue:["perform desired action."].
2-28 VisualWorks

Image Save and Restart Considerations
Reconnecting When an Image is Restarted
When an image is restarted, all references to external resources are
initialized, as if a pause message had been sent to the class
ExternalDatabaseConnection. To arrange for your application to take
further action, take the steps described above, testing for the update:
argument #returnFromSnapshot.

Your application can reconnect its connections by sending them
connect (or connect: with a password). This re-establishes the
connection to the database server (subject to the constraints
discussed in Releasing Resources). Any sessions will need to be re-
prepared by sending the sessions prepare: with the query to prepare,
though your application might as easily drop the old sessions and get
new ones.
Database Application Developer’s Guide 2-29

EXDI Database Interface
2-30 VisualWorks

3

Using the Database Connect for Oracle

This chapter describes the VisualWorks Database Connect for
Oracle External Database Interface (EXDI) features and
implementation, which includes the following:

• Database Connect for Oracle Classes

• Data Conversion and Binding

• Using PL/SQL

• Oracle Threaded API

• Calling Oracle Stored Procedures

• CLOB/BLOB support

Database Connect for Oracle Classes
The EXDI defines application-visible services and is composed of
abstract classes. Database Connect for Oracle is a set of concrete
classes that implement EXDI services by making calls to the Oracle
Call Interfaces (OCI) library. VisualWorks also extends services
available to the application to provide features unique to the Oracle
database system.

The EXDI organizes its services into classes for connections,
sessions, and answer streams. In addition, classes for column
descriptions and errors provide specific information that the
application may use. The public EXDI classes are:

• ExternalDatabaseConnection

• ExternalDatabaseSession
Database Application Developer’s Guide 3-1

Using the Database Connect for Oracle
• ExternalDatabaseAnswerStream

• ExternalDatabaseColumnDescription

• ExternalDatabaseError

As a convention, VisualWorks classes use Oracle in place of
ExternalDatabase in the class name — for example, OracleConnection
and OracleSession.

When an application is using the EXDI, the connection, session, and
answer stream objects maintain specific relationships. These
relationships are important to understand when writing applications.

The connection and session objects are generally used for multiple
activities. The answer stream is only used to process a single set of
rows returned from the server.

These relationships are shown in the following figure:

Relationships

OracleConnection
ExternalDatabaseConnection defines database connection services.
OracleConnection implements these services using the OCI and is
responsible for managing the OCI logon and host data areas. The
limit for active connections is determined by the Oracle configuration.

Class Protocols

environment mapping
Applications may define logical names for database connect strings
to be used when connecting to an Oracle server. This is similar to
using SQL*Net aliases, and reduces the impact on application code
as network resources evolve.
3-2 VisualWorks

OracleSession
The following adds a new entry in the logical environment map for the
database connect that associates a logical name with a database
connect string.

addLogical:environment:
Once this association is defined, the environment for an Oracle
connection may be specified using the logical name. For example:

OracleConnection addLogical: 'devel' environment: 'ocelot_t'.
where 'ocelot_t' is a SQL*Net alias defined in TNSNAMES.ORA.
(See SQL*Net Easy Configuration Tool or consult the Oracle
documentation.)

Instance Protocols

accessing
The environment method specifies the connect string which identifies
which Oracle server to connect to. The Oracle SQL*Net
documentation details how to construct a valid connect string.

The following requests the use of TCP/IP to talk to a database on the
ocelot node.

ocelot_t
Application developers are strongly encouraged to define and use
logical environment names. Thus, only system administrators need to
know the actual connect strings.

transactions
Oracle does not support two-phase commit coordination spanning
multiple connections. As a result, coordinated Oracle connections are
simulated using a broadcast commit. Applications that use
coordinated connections are responsible for their own recovery after
a failure that leaves partially committed transactions.

OracleSession
ExternalDatabaseSession defines execution of prepared SQL
statements. OracleSession implements these services using the OCI
and is responsible for managing the OCI cursor. The limit for active
sessions per connection is determined by the Oracle configuration
limit on cursors.
Database Application Developer’s Guide 3-3

Using the Database Connect for Oracle
Instance Protocols

accessing
The accessing protocol methods are:

blockFactor

Answers the current number of rows that are buffered in an
answer stream associated with this session.

blockFactor: aNumber

Sets the number of rows to buffer internally using the array
interface. This exchanges memory for reduced overhead in
fetching data, but is otherwise transparent.

maxLongBytes

Answers the number of bytes to allocate for receiving LONG or
LONG RAW data.

maxLongBytes: aNumber

Sets the maximum number of bytes to fetch for a LONG or LONG
RAW column. The default is 32767 bytes. The maximum setting is
limited by available memory. A large setting may use
considerable memory, especially when using large values for
blockFactor.

data processing
The data processing protocol methods are:

cancel

The processing initiated by sending the execute message to the
session cannot be interrupted. However, applications may use
cancel to inform the Oracle server that the application has no
further interest in results from the current query.

rowCount

Answers an Integer representing the number of rows inserted,
updated, deleted, or the cumulative number of rows fetched by
the previous query. Note that setting a #blockFactor: greater than
one will affect the granularity of the cumulative count, because
rows will be fetched in blocks.
3-4 VisualWorks

OracleSession
preparePLSQL: bindVariable: bindVariable:value:
bindVariable:value:type:size

These methods are described in Using PL/SQL.

prefetch
The prefecth protocol methods are:

setPrefetchRows: anInteger

With OCI 8 and later, it is possible to improve the speed of a
query by specifying a number of rows to prefetch.

For example:

aConnection := OracleConnection new.
aConnection

username:'scott'; password: 'tiger'; environment: 'myDB'.
aConnection connect.
aSession := aConnection getSession.
aSession

blockFactor: 2;
prepare: 'SELECT * FROM EMP WHERE SAL > ?';
bindInput: (Array with: 100);
setPrefetchRows: 2;
execute.

aSession answer upToEnd
do: [:each | Transcript show: each printString; cr].

aSession disconnect.
aConnection disconnect.
The best choice for the number of rows to prefetch depends on
numerous factors such as network speed and the amount of
client-side memory available. You should try different values to
find the optimal setting for a specific application.

testing
The testing protocol methods are:

isReady

The OCI does not provide a mechanism to determine if the
execution has been completed and the results are ready.
Therefore, isReady will always return true and then the application
will wait until the results are ready when sending the answer
message.
Database Application Developer’s Guide 3-5

Using the Database Connect for Oracle
OracleColumnDescription
ExternalDatabaseColumnDescription defines information used to describe
columns of tables or as a result of executing a SELECT statement. The
OracleColumnDescription class adds information specific to Oracle.

Instance Protocols

accessing
As with all variables defined for column descriptions, these may be nil
if the values are not defined in the context in which the column
description was created.

The oracleInternalType method answers an Integer representing the
Oracle internal type code for the column.

OracleError
ExternalDatabaseError defines information used in reporting errors to
the application. The OracleError class adds information specific to
Oracle. A collection containing instances of OracleError will be
provided as the parameter to exceptions raised by the database
connection in response to conditions reported by Oracle.

Instance Protocols

accessing
The accessing protocol methods are:

dbmsErrorCode

Answers the error code (a SmallInteger) from OCI.

dbmsErrorString

Answers a String describing the error code.

osErrorCode

Answers the operating system code value (a SmallInteger)
corresponding to an error received.

osErrorString

Always answers nil. The OCI does not provide this information.
3-6 VisualWorks

Data Conversion and Binding
Data Conversion and Binding
When receiving data from the database, all data returned by the OCI
is converted into instances of Smalltalk classes. These conversions
are summarized in the following table. Although abstract classes are
used to simplify the table, the object holding the data is always an
instance of a concrete class.

Conversion of Oracle datatypes to Smalltalk classes

When binding values for query variables, only instances of ByteArray,
Date, Time, Timestamp, Integer, Double, Float, FixedPoint, String, or Text
(or their subclasses) may be used in the input bind object.

For additional details on the conversion of types when binding
numbers, see Binding Numbers and Conversion.

When binding PL/SQL Values, the Oracle type TABLE OF is mapped to
Array.

When rebinding variables prior to re-executing a query, the Oracle
type of the variable must not change. That is, if the variable was first
bound with a numeric value, rebinding with a string value will cause
an error. Binding first with an Integer and then rebinding with a
FixedPoint value does not present a problem, since both are treated as
NUMBERs. Binding first when nil is an implicit first binding with a String
variable.

To bind a NULL value, use nil, which is treated as a NULL value of type
VARCHAR.

Oracle Datatype Smalltalk class

NUMBER FixedPoint, Float, Double,
Integer

CHAR, VARCHAR, VARCHAR2, LONG String

ROWID, CLOB String

RAW, LONG RAW, BLOB ByteArray

DATE, TIMESTAMP Timestamp
Database Application Developer’s Guide 3-7

Using the Database Connect for Oracle
Note that the EXDI allows binding a nil first to a variable, then a value,
or vice versa, but Oracle places a restriction on the binding of NULL in
queries. Conditional tests for a NULL value must be written as:

SELECT name FROM employee WHERE id IS NULL
Binding a nil (NULL) value to a query variable will not match fields
containing NULL values.

Binding NULL and Backward Compatibility
When using Oracle servers version 8.1.7 and lower, the following
caveat applies: when binding a nil as the first bind value, you must
use a different binding method since older Oracle servers don't allow
switching datatypes. For example, with servers running Oracle 9 and
higher, the following code may be used:

session bindVariable: #v1 value: nil.
For compatibility with Oracle 8.1.7 and lower, use the following
expanded form of the binding method:

session bindVariable: #v1 value: nil type: #Integer32 size: 0.

Binding Numbers and Conversion
When a NUMBER is retrieved from the server, it is converted into a
Smalltalk type according to the following rules:

• If a precision has been specified in the schema, the value will be
converted to either a Double or a Float, depending on the precision
specified in the schema.

• If no precision was specified and the value will fit into 32-bit
integer, it will be converted to an Integer (or SmallInteger, if the
value fits into 29 bits).

• Otherwise, the value will be converted to a FixedPoint.

To achieve optimal performance, we recommend that the same type
of Smalltalk numbers (e.g., SmallInteger) be bound to the same query
variable. However, in cases where different Smalltalk numbers (e.g.,
Integer and Double) have to be bound to the same query variable,
VisualWorks can process it appropriately, but performance may be
slightly impaired since buffer reallocation might be necessary.

The following example illustrates binding numbers:

| connection session typedData arraySize |
connection := OracleConnection new.
connection
3-8 VisualWorks

Data Conversion and Binding
environment: 'env';
username: 'name';
connect: 'pwd'.

session := connection getSession.
session prepare: 'CREATE TABLE testnumber (Col1 NUMBER(20,4))'.
session execute.
session answer.
session prepare: 'INSERT INTO testnumber values (?)'.
"Binding same kind of numbers."
typedData := #(0 123 456 789 921).
arraySize := typedData size.
1 to: arraySize do:

[:i |
session bindInput: (Array with: (typedData at: i)).
session execute.
session answer].

"Binding different kinds of numbers."
typedData := #(0 16r100000000 12.4 12.5d 12.6s).
arraySize := typedData size.
1 to: arraySize do:

[:i |
session bindInput: (Array with: (typedData at: i)).
session execute.
session answer].

session prepare: 'SELECT * FROM testnumber'.
session execute.
session answer upToEnd inspect.
session prepare: 'DROP TABLE testnumber'.
session execute.
session answer.
session disconnect .
connection disconnect.

Array Binding
When binding arrays of values, the size of the array must match the
size specified by the INSERT statement. Arrays may be bound either
by position or by name. To illustrate binding by name, we can used
class BindTest, an example contained in the Database-Examples parcel.

For example, to bind an Array by position:

| aConnection aSession |
aConnection := OracleConnection new.
aConnection username: 'name';

password: 'pwd';
environment: 'env'.

aConnection connect.
Database Application Developer’s Guide 3-9

Using the Database Connect for Oracle
aConnection begin.
aSession := aConnection getSession.
aSession prepare: 'CREATE TABLE testtb (cid number, cname

varchar2(50))'.
aSession execute.
aSession answer.
aSession prepare: 'INSERT INTO testtb (cid, cname) values (?, ?)'.
aSession bindInput: #((301 302 303) ('test301' 'test302' 'test303')).
aSession execute.
aSession answer.
aConnection commit.

To bind values by name:

| aConnection aSession bindItem |
aConnection := OracleConnection new.
aConnection username: 'name';

password: 'passw';
environment: 'env'.

aConnection connect.
aConnection begin.
aSession := aConnection getSession.
aSession prepare: 'insert into testtb values (:cid, :cname)'.
bindItem := BindTest

cid: #(39 40 41)
cname: #('try39' 'try40' 'try41').

aSession bindInput: bindItem.
aSession execute.
aSession answer.
aSession prepare: 'SELECT * FROM testtb'.
aSession execute.
aSession answer upToEnd inspect.
aSession prepare: 'DROP TABLE testtb'.
aSession execute.
aSession answer.
aConnection commit.

When multiple host variables are used in array binding, the sizes of
the binding arrays for different host variables are not required to be
the same, but the size of the longest array is used as the execution
iteration.While the sizes of the arrays used with bindInput: are not
absolutely required to be the same, for performance reasons it is
recommended that your application binds arrays of the same size
when using the same prepared SQL statement.
3-10 VisualWorks

Using PL/SQL
Using PL/SQL
To provide access to PL/SQL, and stored procedures in particular,
OracleSession provides methods under the data processing protocol.
These methods, which are explained in greater detail below, are:

preparePLSQL:

Prepare a query, in the form of an anonymous PL/SQL block. The
prepare block must be run before a bind block, as per Oracle
specifications.

bindVariable:value:

Set a binding for the PL/SQL variable named by the first
argument (a Symbol). The value must be an instance of a class
compatible with the legal types listed in Data Conversion and
Binding, or can be an Array containing such values.

bindVariable:value:type:size:

Set a binding for a PL/SQL variable, using a specific type and
field size. The value must be as described above. The type may
be one of the following symbols: #String, #ByteArray, #Char,
#Timestamp, #Float, #Double, #Integer32, #Integer, #FixedPoint,
#MLSLABEL. The symbol #Char gives Oracle blank-padded
comparison semantics. The symbol #Integer32 gives a 32-bit
integer encoding. The symbol #MLSLABEL is for use with Trusted
Oracle.

bindVariable:

Answers the current value (or Array of values) bound to the PL/
SQL variable named by the argument (a Symbol).

For details about PL/SQL, see Oracle’s PL/SQL User’s Guide and
Reference.

Preparing a PL/SQL Query
To prepare a PL/SQL query, send an OracleSession the message
#preparePLSQL:, passing the query as a String argument:

session := connection getSession.
session preparePLSQL: 'BEGIN package.proc(:arg) END;'.
Database Application Developer’s Guide 3-11

Using the Database Connect for Oracle
The PL/SQL query must be in the form of an anonymous PL/SQL
block. That is, it must be bracketed by a BEGIN/END pair, and the END
must be followed by a semicolon.

The query can span multiple lines. Line breaks in the query are
converted to white space before the query is prepared, unless the
line break is within a quoted string.

Bind variables in the query may be either named, as in the code
fragment above, or positional. See Binding PL/SQL Variables for
details on query variable binding.

Executing a PL/SQL Query
Once values have been bound for query variables, a prepared PL/
SQL query is executed just like a standard SQL query. Sending
execute to the OracleSession begins execution, and sending answer
retrieves the result of the query.

Unlike SQL SELECT statements, PL/SQL queries do not return
answer sets, so answer will either respond with #noAnswerStream, if the
query executed without error, or by raising an exception if an error
was encountered. Any exception is accompanied by a Collection of
instances of OracleError.

Binding PL/SQL Variables
In addition to preparing the query, the message preparePLSQL: directs
the session to use PL/SQL-style binding, which is distinct from the
style of binding described in the VisualWorks Application .

Values bound to PL/SQL queries can be either scalar values or
arrays of scalar values. The values must be drawn from the set of
types described under Data Conversion and Binding.

To bind a value (or Array of values) to a variable, send an
OracleSession the message bindVariable:value: with the name and value
as arguments. If the query uses named variables, the name must be
a Symbol. If the query uses positional binding, the name must be the
SmallInteger that corresponds to the variable’s position.

For example, the following code fragment invokes a stored procedure
that expects a DATE, a TABLE OF VARCHAR, and a NUMBER as
arguments.

session
preparePLSQL: 'BEGIN pkg.addstuff(:arg1, :arg2, :arg3) END;';
bindVariable: #arg1 value: Timestamp now;
3-12 VisualWorks

Using PL/SQL
bindVariable: #arg2 value: #('One' 'Two' 'Three' nil);
bindVariable: #arg3 value: 4;
execute;
answer.

NULL values are represented by nil.

To retrieve the return values from functions, you must bind a place-
holder of the correct type, as shown below:

session
bindVariable: 1 value: 0; "place holder for a NUMBER return value"
bindValue: 2 value: argValue;
preparePLSQL: 'BEGIN :1 := pkg.somefunction(:2) END;';
execute;
answer.

"retrieve the function return value"
returnValue := session bindVariable: #SymbolicParameterName.

The use of #bindVariable: to access return values is explained below.

Variable Type and Size
Binding values requires knowledge of the value’s type and size.
When using bindVariable:value:, the type and size are inferred. To
appreciate what this means, it helps to fully understand
bindVariable:value:type:size:.

When a value is bound using bindVariable:value:type:size:, the type
must be one of #String, #ByteArray, #Char, #Timestamp, #Float, #Double,
#Integer32, #Integer, #FixedPoint, or #MLSLABEL. For compatibility with
older VisualWorks applications, the type may also be a class name,
and may be one of String, ByteArray, Integer, Double, Float, or Timestamp.

The value must be a single value or an Array. If it is an Array, all
elements must be compatible with the specified type.

If the size is nil, a default size will be calculated based on the type
and value. If the type is #String or #ByteArray, the default size is large
enough to hold the value (or the longest value in the array). If the type
is #String or #ByteArray and the length is such that a LONG buffer is
required, one will be allocated and the size will be rounded up to the
next larger multiple of 4. For types of fixed length, the size is ignored.
For #MLSLABEL, the size defaults to 255 bytes.If size is not nil, it is the
application developer’s responsibility to create objects that are big
enough to hold the returned values in the arguments for
bindVariable:value: and bindVariable:value:type:size:.
Database Application Developer’s Guide 3-13

Using the Database Connect for Oracle
Because no explicit type and size information are available when
using bindVariable:value:, type is inferred using the value. If the value is
an Array, VisualWorks will try to find the most appropriate buffer type
to allocate based upon the values in the Array, if such a buffer type
can't be found, an InconsistentDataTypesInArrayBinding exception will be
thrown. The value used to infer the type must be an instance of (or
subclass of) ByteArray, Date, Double, FixedPoint, Float, Integer,
SmallInteger, String, Text, Time, or Timestamp. Given the value and
inferred type, the size is inferred as described previously.

The following two code fragments are equivalent:

session bindVariable: #notes value: 'Hello, World!'.
session bindVariable: #notes value: 'Hello, World!' type: #String size: 12.

When a parameter of Oracle type INTEGER is required, bind the value
by specifying a type of Integer and a size of nil (to accept the default
size), as in:

session bindVariable: #count value: 3 type: #Integer size: nil.
If you know that the integer values will always fit into a 32-bit buffer,
you can use #Integer32.

Retrieving PL/SQL Variables
After a query has executed, values for function results and OUT (or IN
OUT) parameters can be retrieved by sending the session the
message bindVariable: with the name (or integer position) of the
variable as an argument. bindVariable: will answer with either a single
value or an Array of values, depending on whether the value is a
scalar or a TABLE.

Oracle Threaded API
VisualWorks supports a Threaded API (THAPI) for non-blocking
(asynchronous) calls to the Oracle database server.

The regular, non-threaded OracleConnection “blocks” the virtual
machine while it communicates with the Oracle server. When a query
is sent from VisualWorks, it is actually passed to the Oracle client
library. This library contains executable code which in turn sends the
query on to the Oracle server, and then waits for an answer.

This design is problematic in that the virtual machine is blocked as
long as it has passed control into the client library. Since the virtual
machine itself is a single process (an OS-level, or so-called
3-14 VisualWorks

Oracle Threaded API
heavyweight process), 100% of computing resources are lost while
the entire process waits on the call to the library, which in turn waits
for results from the server.

With OracleThreadedConnection, the virtual machine provides a native
thread to call the client library. During the call, the thread waits on the
Oracle server, while the virtual machine performs its other tasks.
When the client library call is completed, the thread returns, waiting
for some other assignment. At this point, the retrieved data is in
memory and ready for the EXDI session which initiated the query.

Note that there are thread-aware methods at both the EXDI and the
Lens level. Since the level of complexity is generally increased when
using a thread, care must be exercised when using THAPI.

Configuring the Threaded API
Use of THAPI requires that the library paths be set on UNIX
platforms:

Solaris: The LD_LIBRARY_PATH environment variable must be set
to point to where the client libraries reside.

HP-UX: The SHLIB_PATH environment variable must be set to point
to where the client libraries reside.

Using OracleThreadedConnection
For Ad Hoc SQL queries, simply select the OracleThreaded connection
type from the Database Connect pull down menu. To use Oracle with
THAPI at the EXDI level, modify your existing EXDI code as follows:

1 Replace references to OracleConnection with references to
OracleThreadedConnection.

2 Replace references to OracleSession with references to
OracleThreadedSession.

Connection Pooling
The Oracle EXDI provides support for connection pooling. This
feature is beneficial only in multi-threaded mode, and works with the
Oracle THAPI, described previously.

Support for connection pooling is included in the OracleThapiEXDI
package, though to use this functionality you need Oracle 9.0 or later
client libraries.
Database Application Developer’s Guide 3-15

Using the Database Connect for Oracle
The following example illustrates the use of connection pooling in a
multithreaded environment:

pool := OracleConnectionPool new.
pool username: 'username';

password: 'password';
environment: 'env'.

pool create.
aBlock := [:tableName || conn sess ansStrm |

conn := pool getConnection.
conn username: 'scott'; password: 'tiger'.
conn connect.
sess := conn getSession.
sess prepare: 'select * from ', tableName.
sess execute.
ansStrm := sess answer.
ansStrm upToEnd.
sess disconnect.
conn disconnect].

b1 := aBlock newProcessWithArguments: #('emp').
b2 := aBlock newProcessWithArguments: #('bonus').
b3 := aBlock newProcessWithArguments: #('dept').
b1 priority: 30.
b2 priority: 30.
b3 priority: 30.
b1 resume.
b2 resume.
b3 resume.
" Wait until all of the work is done before the connection pool is
destroyed."
(Delay forSeconds: 30) wait.
pool destroy.

In this example, three processes are created, their priorities are
assigned level 30, and then they are all started, roughly
simultaneously.

A Delay is used to wait while the work is done, before the pool object
is destroyed. Alternatively, a mutex and semaphore may be employed
to avoid using the Delay. For an illustration, see: OracleConnectionPool
class>>example1.

By default, the minimum number of connections in the connection
pool is 1, while the maximum number is 5, and the next increment for
connections to be opened is 1.
3-16 VisualWorks

Oracle Threaded API
To change these defaults, use the following code:

pool := OracleConnectionPool new.
pool connMin: 2; "minimum number of connections is 2."

connIncr: 2; "the next increment for connections to be opened is 2."
connMax: 10. "maximum number is 10."

pool username: 'username';
password: 'password';
environment: 'env'.

pool create.

Using THAPI with the Object Lens
To use Oracle with THAPI in a Lens session, edit the Lens
DataModel properties, and set the SQL Dialect to OracleThreaded.
Use this setting for any new Lens DataModel classes too.

The Lens is not thread-safe throughout. As a rule, allow one instance
of OracleConnection per forked process with the EXDI. For Lens, allow
one instance of LensSession per forked process.

The following example uses a single BlockClosure to retrieve data from
three different tables. Multiple sessions are used, each with a single
connection. When run, three identical processes are created, each
ready to manipulate a different table.

sem := Semaphore forMutualExclusion.
aBlock := [:tableName || conn sess ansStrm |
 conn := OracleThreadedConnection new.
 connusername: 'name';

password: 'passw';
environment: 'env'.

 conn connect.
 sess := conn getSession.
 sess prepare: 'select * from ', tableName.
 sess execute.
 ansStrm := sess answer.
 (ansStrm == #noMoreAnswers) ifFalse: [
 [ansStrm atEnd] whileFalse: [|row|
 row := ansStrm next.
 sem critical:
 [Transcript show: tableName,': '.
 Transcript show: row printString; cr]]].
 conn disconnect].
 b1 := aBlock newProcessWithArguments: #('foo').
 b2 := aBlock newProcessWithArguments: #('test1').
 b3 := aBlock newProcessWithArguments: #('table3').
 b1 priority: 30.
Database Application Developer’s Guide 3-17

Using the Database Connect for Oracle
 b2 priority: 30.
 b3 priority: 30.
 b1 resume.
 b2 resume.
 b3 resume.

In this code example, note that the threaded connection EXDI class
(OracleThreadedConnection) is used, as well as a mutualExclusion
semaphore for writing to the Transcript. The semaphore prevents a
“forked UI processes” disaster from occurring, since the Transcript
needs to be protected from multi-threaded message overlaps. The
three processes are created, their priorities are all assigned level 30,
and then they are all started, roughly simultaneously.

Note that this example presupposes that three tables foo, test1, and
table3, already exist. Any existing non-empty tables may be used by
substituting their names.

The next example demonstrates the use of multiple sessions on a
single connection:

sem := Semaphore forMutualExclusion.
conn := OracleThreadedConnection new.
conn username: 'name';

password: 'passw';
environment: 'env'.

conn connect.
aBlock := [:tableName || sess ansStrm |

sess := conn getSession.
sess prepare: 'select * from ', tableName.
sess execute.
ansStrm := sess answer.
(ansStrm == #noMoreAnswers) ifFalse: [

[ansStrm atEnd] whileFalse: [|row|
row := ansStrm next.
sem critical:
[Transcript show: tableName,': '.
Transcript show: row printString; cr]]]].

b1 := aBlock newProcessWithArguments: #('foo').
b2 := aBlock newProcessWithArguments: #('test1').
b3 := aBlock newProcessWithArguments: #('table3').
b1 attachToThread.
b2 attachToThread.
b3 attachToThread.
b1 priority: 30.
b2 priority: 30.
b3 priority: 30.
b1 resume.
3-18 VisualWorks

Calling Oracle Stored Procedures
b2 resume.
b3 resume.
b1 detachFromThread.
b2 detachFromThread.
b3 detachFromThread.

Again, note class OracleThreadedConnection is used, as well as a
mutualExclusion semaphore for writing to the Transcript. Three
processes are created, their priorities are all assigned level 30, and
then they are all started, roughly simultaneously.

The effect of sending #detachFromThread is to release the native
thread from its attachment to the BlockClosure.

Calling Oracle Stored Procedures
The EXDI enables you to call Oracle stored procedures. Doing so,
you may need to assign calling parameters, and you can retrieve
return parameters. Oracle stored procedures can be quite intricate
and error prone. While VisualWorks fully supports invoking stored
procedures, it includes no specific facilities for trouble-shooting or
debugging errors resulting from them. When creating stored
procedures, use a tool such as SQL*Plus, which provides error
checking feedback.

After establishing the connection, the query is set up in the argument
of a preparePLSQL: message. To avoid errors, the query is defined to
accept an array size argument (ArraySize). This integer value is
passed as the first argument when the procedure is invoked, and tells
the procedure how many records to return. Set this value large
enough to return the entire table.

The other arguments are assigned to bind variables corresponding to
variables in the stored procedure. Once set up, the procedure is
executed by sending the execute and answer messages to the session.

The arrays returned by an Oracle stored procedure should be filled
entirely on return, otherwise an error occurs. For this reason, the
second loop in the procedure pads any unfilled array elements with
blanks.

The example retrieves arrays from the PL/SQL stored procedure.

"Call the stored procedure from VisualWorks"
| aConnection aSession idNo arr2 arr3 arr1 |
ExternalDatabaseConnection

defaultConnection: #OracleConnection.
Database Application Developer’s Guide 3-19

Using the Database Connect for Oracle
ExternalDatabaseConnection traceCollector: Transcript.
ExternalDatabaseConnection traceLevel: 5.
aConnection := ExternalDatabaseConnection new.
aConnection username: 'name';

password: 'pw';
environment: 'env'.

aSession := aConnection connect getSession.
idNo := 1.
arr1 := Array new: 10 withAll: 0.
arr2 := Array new: 10 withAll: (String new: 20).
arr3 := Array new: 10 withAll: (String new: 20).

aSession preparePLSQL: 'BEGIN multi_pkg.multi_col_select
(10, :id, :col1, :col2, :col3); END;'.

aSession bindVariable: #id value: idNo.
aSession bindVariable: #col1 value: arr1.
aSession bindVariable: #col2 value: arr2.
aSession bindVariable: #col3 value: arr3.
aSession execute; answer.
(aSession bindVariable: #col1) inspect.
(aSession bindVariable: #col2) inspect.
(aSession bindVariable: #col3) inspect.
aConnection disconnect.

The example above assumes the existence of a table and stored
procedure, which can be created using these SQL statements:

/* Create the table here */
CREATE TABLE employee (id INT, ssn VARCHAR(20),

fullname VARCHAR(20));
/* Add some data to the table, add as many rows as desired */
INSERT INTO employee (id, ssn, fullname)

VALUES (1, '000-00-0001', 'John Jones');
/* Create the package here */
CREATE PACKAGE multi_pkg AS

TYPE IdTableType IS TABLE OF employee.id%TYPE
INDEX BY BINARY_INTEGER;

TYPE SsnTableType IS TABLE OF employee.ssn%TYPE
INDEX BY BINARY_INTEGER;

TYPE FullnameTableType IS TABLE OF
employee.fullname%TYPE INDEX BY BINARY_INTEGER;

PROCEDURE multi_col_select
(ArraySize INT,

IDValue INT,
IdCol OUT IdTableType,
SsnCol OUT SsnTableType,
FullnameCol OUT FullnameTableType);

END multi_pkg;
/* Create the package body here */
3-20 VisualWorks

Statement Caching
CREATE OR REPLACE PACKAGE BODY multi_pkg ASPROCEDURE
multi_col_select

(ArraySize INT,
IDValue INT,
IdCol OUT IdTableType,
SsnCol OUT SsnTableType,
FullnameCol OUT FullnameTableType)

AS
i INT;
CURSOR col_sel IS
SELECT id, ssn, fullname FROM employee

WHERE id = IDValue;
BEGIN

i := 1;
OPEN col_sel;
LOOP

EXIT WHEN i > ArraySize;
FETCH col_sel INTO IdCol(i), SsnCol(i), FullNameCol(i);
EXIT WHEN col_sel%NOTFOUND;
i := i + 1;

END LOOP;
/* Pad the remainder of the arrays with blanks */
LOOP

EXIT WHEN i > ArraySize;
IdCol(i) := -1;
SsnCol(i) := '';
FullNameCol(i) := '';
i := i + 1;

END LOOP;
CLOSE col_sel;

END multi_col_select;
END multi_pkg;

Statement Caching
The OracleEXDI supports statement caching. This feature is useful
for improved performance when you execute the same SQL
statement multiple times. When statement caching is enabled, an
existing prepared statement handle will be reused.

By default, statement caching is disabled. This feature was added in
Oracle 9.0.0 and later. The VisualWorks EXDI for Oracle is
compatible with both pre-9.0.0 versions and later.
Database Application Developer’s Guide 3-21

Using the Database Connect for Oracle
To enable and use statement caching:

| conn sess |
conn := OracleConnection new.
“Check to see whether statement caching is supported by the installed
Oracle client.”
conn supportStatementCaching

ifFalse: [self error: 'Does not support caching.'].
“Enable statement caching.”
conn useStatementCaching: true.
conn environment: 'oracleDB';

username: 'username';
connect: 'password'.

“Set the size of the statement cache.
conn setStatementCacheSize: 30.
sess := conn getSession.
 1 to: 20 do: [:i|

sess prepare: 'INSERT INTO testtb VALUES(?, ''test'')'.
sess bindInput: (Array with: i).
sess execute.
ansStrm := sess answer].

CLOB/BLOB support
Large Objects (LOBs) demand huge amounts of storage space and
efficient mechanisms to access them. Video, images, voice-
recordings, graphics, intelligent documents, and database snapshots
are all stored as LOBs. Most DBMS have some type of support for
LOBs.

LOB (Large Object) support is provided by the Oracle EXDI. Both
CLOB (Character LOB) and BLOB (Binary LOB) data is supported.

LOB columns are not differentiated from LONGs and others when
doing binding. Accordingly, any limitations of different Oracle versions
on binding LOBs apply.

When retrieving LOBs, you can choose whether to get values or LOB
proxies. The default size when getting values is 4000 bytes (you can
change this by sending defaultDisplayLobSize: to an instance of
OracleSession).

Getting proxies returns a LOB proxy, which contains the LOB locator
and necessary methods to do LOB writes and reads. Using LOB
proxies is the recommended way to deal with large LOBs.
3-22 VisualWorks

CLOB/BLOB support
The following sample demonstrates binding:

| aConnection aSession clob blob clobLength blobLength |
aConnection := OracleConnection new.
aConnection username: 'name';

password: 'passw';
environment: 'env'.

aConnection connect.
aSession := aConnection getSession.
aSession prepare: 'CREATE TABLE TestLob (A CLOB, B BLOB, C
INTEGER)'.
aSession execute.
aSession answer.
aConnection begin.
aSession prepare: 'INSERT INTO TestLob (a, b, c) VALUES (?, ?, ?)'.
clobLength := 1048576. "1M"
blobLength := 1048576. "1M"
clob := String new: clobLength withAll: $a.
blob := ByteArray new: blobLength withAll: 1.
aSession bindInput: (Array with: clob with: blob with: 1).
aSession execute.
aSession answer.
aConnection commit.

The following sample demonstrates LOB writing:

| aConnection aSession clobProxy blobProxy clob blob clobLength
blobLength ansStrm res |

aConnection := OracleConnection new.
aConnection username: 'name';

password: 'passw';
environment: 'env'.

aConnection connect.
aConnection begin.
aSession := aConnection getSession.
aSession prepare: 'SELECT a, b FROM TestLob WHERE c = 1

FOR UPDATE'.
aSession answerLobAsProxy.
aSession execute.
ansStrm := aSession answer.
res := ansStrm upToEnd.
clobLength := 1048576.
blobLength := 1048576.
clob := String new: clobLength withAll: $e.
blob := ByteArray new: blobLength withAll: 0.
clobProxy := (res at: 1) at: 1.
clobProxy writeFrom: 1 with: clob asByteArray.
blobProxy := (res at: 1) at: 2.
Database Application Developer’s Guide 3-23

Using the Database Connect for Oracle
blobProxy writeFrom: 1 with: blob.
aConnection commit.

The following sample extends the above examples specifically for
Oracle 8 users, showing how to avoid restrictions against multiple
LONGs on a single INSERT, insert empty LOBs, and update values
later:

"CREATE TABLE TestLob (A CLOB, B BLOB, C INTEGER)"
| aConnection aSession |
aConnection := OracleConnection new.
aConnection username: 'name';

password: 'passw';
environment: 'env'.

aConnection connect.
aConnection begin.
aSession := aConnection getSession.
aSession prepare: 'INSERT INTO TestLob (a, b, c)

VALUES (EMPTY_CLOB(), EMPTY_BLOB(), ?)'.
aSession bindInput: (Array with: 1).
aSession execute.
aSession answer.
aConnection commit.

The following example shows how to retrieve a LOB value:

| aConnection aSession clob blob ansStrm clobLength blobLength
clobValue blobValue |
aConnection := OracleConnection new.
aConnection username: 'name';

password: 'passw';
environment: 'env'.

aConnection connect.
aSession := aConnection getSession.
aSession answerLobAsProxy.
aSession prepare: 'SELECT * FROM TestLob WHERE c=1'.
aSession execute.
ansStrm := aSession answer upToEnd.
clob := (ansStrm at: 1) at: 1.
clobLength := clob getLobLength.
clobValue := clob readAll.
blob := (ansStrm at: 1) at: 2.
blobLength := blob getLobLength.
blobValue := blob readAll.
3-24 VisualWorks

CLOB/BLOB support
Note that the method OracleLobProxy>>readAll returns an object whose
is the smaller of the actual LOB size and the value of
defaultDisplayLobSize. If you want to get the complete LOB values, you
can set defaultDisplayLobSize to be bigger than all of the LOB sizes by
using method OracleSession>>defaultDisplayLobSize:.

Adjustable Buffering for LOBs
When reading/writing LOBs, the size of the buffer can be set from an
instance of OracleSession. You can adjust the buffer size based upon
the lengths of LOB you are handling.

For example:

| conn sess |
conn := OracleConnection new.
conn username: 'userid';

password: 'pwd';
environment: 'OracleDB'.

conn connect.
conn begin.
sess := conn getSession.
"Better set this, otherwise the returned LOBs will have the default size:
4000 bytes."
sess defaultDisplayLobSize: 1130729.
"Use the default lobBufferSize 32768."
sess answerLobAsValue.
sess prepare: 'select * from testlob'.
sess execute.
ansStrm := sess answer upToEnd.
"Increase the buffer size, it will improve performance for Large LOBs."
sess lobBufferSize: 524288.

sess prepare: 'select * from testlob'.
sess execute.
ansStrm := sess answer upToEnd.
sess disconnect.

conn rollback.
Database Application Developer’s Guide 3-25

Using the Database Connect for Oracle
3-26 VisualWorks

4

Using the ODBC Connect

This chapter describes the ODBC Connect features including:

• ODBC EXDI Classes

• Data Conversion and Binding

• Unicode Support

• Using Stored Procedures

• Large Objects

ODBC EXDI Classes
The EXDI defines application-visible services and is composed of
abstract classes. ODBC Connect extends the EXDI by providing a
layer of concrete ODBC classes. The ODBC Connect classes
implement ODBC services by making private library calls to an
ODBC Driver Manager Call Level Interface (CLI).

The public ODBC classes are:

• ODBCConnection

• ODBCTransaction

• ODBCSession

• ODBCColumnDescription

• ODBCError

• ODBCDataSource

• ODBCDataType
Database Application Developer’s Guide 4-1

Using the ODBC Connect
When an application is using the ODBC Connect, the connection,
session, and answer stream objects maintain specific relationships.
Understanding these relationships is important when developing
applications.

The connection and session objects are generally used for multiple
activities. The answer stream is only used to process a single set of
rows returned from the server.

These relationships are shown in the following figure:

ODBCConnection
The connection class implements its services using the ODBC Call
Level Interface (CLI) and is responsible for managing both
environment and connection handles, and transactions. The limit for
active connections is driver specific.

Transactions
A transaction reprsents a single unit of work. Applications can
explicitly control the start and finish of database transactions using
the #begin, #commit, and #rollback messages. If the application does
not use explicit control, each statement executed is automatically
committed as soon as it completes. For a SELECT statement, the
implicit commit occurs after the last row is fetched. Sending the
#cancel message to an ODBC Session also ends the transaction.

In some situations on Microsoft Windows, cursors are deleted or
closed whenever a transaction finishes. This affects all of the ODBC
Session instances that are executing using the same ODBC
Connection. The practical consequence of this is that no more rows
can be obtained using existing answer streams. Each ODBC Session
is left in a prepared state and the application can send #execute
(without first sending #prepare:) to re-execute the already prepared
SQL statement.
4-2 VisualWorks

ODBCSession
ODBC does not support two-phase commit coordination spanning
multiple connections. As a result, coordinated ODBC connections are
simulated using a broadcast commit. Applications that use
coordinated connections are responsible for their own recovery after
a failure that leaves partially committed transactions.

Instance Protocols

accessing
The accessing protocol methods are:

environment: aString

Generally, the environment specifies a server name as a String,
but the ODBC EXDI also allows the use of a DSN (Data Source
Name).

On Windows, System and User DSNs are stored in the registry.

In VisualWorks, if a complete connect string is provided as
environment, there is no need to create a client DSN, no need to
provide user name and password either.

For example:

connection := Database.ODBCConnection new.
connection environment: 'DRIVER={SQL
Server};Database=dbname;UID=username;PWD=password;SERVER=ser
vername;'.connection connect.

For additional details, see the discussion of ODBCDataSource.

ODBCSession
The session class manages the preparing, binding, and executing
SQL statements using the ODBC CLI. It is responsible for managing
the state-ment handles, bind buffers, cursors, and catalog function
results. The limit for active (connected, prepared, or executing)
sessions per connection is ODBC driver specific.

In general, once a connection is established, a session object is
created and used to perform transactions, as follows:

| connection session result answer |
connection := Database.ODBCConnection new.
connection

username: 'myUsername'; password: 'myPassword';
environment: 'myDSN'.
Database Application Developer’s Guide 4-3

Using the ODBC Connect
connection connect.
session := connection getSession.
session

prepare: 'CREATE TABLE testtable (cid int, cname varchar(50))';
execute;
answer;
answer.

session prepare: 'INSERT INTO testtable VALUES(:1, :2)'.
#((1 'Curly') (2 'Moe') (3 'Larry')) do:

[:item |
session

bindInput: item;
execute;
answer;
answer].

session
prepare: 'SELECT * FROM testtable';
execute.

answer := session answer.
result := OrderedCollection new add: answer upToEnd.
session answer.
session prepare: 'DROP TABLE testtable';

execute;
answer;
answer.

result inspect.
connection disconnect.

Instance Protocols

catalog functions
Sending any of the messages in this category is equivalent to
preparing and executing a query using the receiver. After the
message completes, the table information is obtained as an answer
stream in the normal way (e.g., by sending the message answer and
then fetching the rows from the answer stream). Each row is an Array
with one element for each column.

Each message in this category calls a correspondingly named ODBC
function (if supported on the current platform), the arguments are
directly passed to the function and take their defini-tions from the
function definition. For additional details on the arguments or specific
elements in the answer set, refer to the ODBC documentation.

The catalog functions are:
4-4 VisualWorks

ODBCSession
getSQLColumns:tableOwner:tableName:columnName:

Calls the ODBC function SQLColumns to obtain a list of names of
tables stored in the current data source.

The columns of the answer set are defined as: TABLE_QUALIFIER,
TABLE_OWNER, TABLE_NAME, COLUMN_NAME, DATA_TYPE,
TYPE_NAME, PRECISION, LENGTH, SCALE, RADIX, NULLABLE, and
REMARKS.

getSQLSpecialColumns:tableQualifier:tableOwner:tableName:scope:
nullable:

Calls the ODBC function SQLSpecialCol-umns to obtain information
about the columns that uniquely identify a row and the columns
that are automatically updated in the table.

The columns of the answer set are as: SCOPE, COLUMN_NAME,
DATA_TYPE, PRECISION, LENGTH, SCALE, and PSEUDO_COLUMN.

The arguments for tableQualifier:, tableOwner:, and tableName: are
directly passed to the function and take their definitions from the
function definition. The argument for getSQLSpecialColumns: must
be either #SQL_BEST_ROWID or #SQL_ROWVER. The argument for
scope: must be one of #SQL_SCOPE_CURROW,
#SQL_SCOPE_TRANSACTION, or #SQL_SCOPE_SESSION. The
argument for nullable: must be either #SQL_NO_NULLS or
#SQL_NULLABLE.

getSQLStatistics:tableOwner:tableName:unique:accuracy:

Calls the ODBC function SQLStatistics to obtain a list of statistics
about a single table and the indexes associated with the table.

The columns of the answer set are defined as: TABLE_QUALIFIER,
TABLE_OWNER, TABLE_NAME, NON_UNIQUE, INDEX_QUALIFIER,
INDEX_NAME, and TYPE.

The arguments for getSQLStatistics:, tableOwner:, and tableName: are
directly passed to the function and take their definitions from the
function definition. The argument for unique: must be either
#SQL_INDEX_UNIQUE or #SQL_INDEX_ALL. The argument for accuracy:
must be either #SQL_ENSURE or #SQL_QUICK.
Database Application Developer’s Guide 4-5

Using the ODBC Connect
getSQLTables:tableOwner:tableName:tableType:

Calls the ODBC function SQLTables to obtain a list of names of
tables stored in the current data source. The columns of the
answer set are defined as: TABLE_QUALIFIER, TABLE_OWNER,
TABLE_NAME, TABLE_TYPE, and REMARKS.

data processing
The data processing protocol methods are:

cancel

The processing initiated by sending the execute message to the
session cannot be interrupted. However, applications may use
cancel to inform ODBC that the application has no further interest
in results from the current query.

executeDirect: aString

Execute the prepared SQL statement without a prior external
prepare step. Note that your application must bind values before
sending this message, wherever binding is needed.

rowCount

Answers an Integer representing the number of rows inserted,
updated, or deleted by the previous query.

testing
The ODBC CLI does not provide a mechanism for asynchronous
query execution. Therefore, isReady will always answer true.

ODBCColumnDescription
The ODBCColumnDescription class defines information used to
describe columns of tables or as a result of executing a SELECT
statement.

fSqlType

Answers an Integer representing the ODBC CLI internal type
code for the column. If the value is not known, a nil will be
answered. Refer to the MS-SQLServer ODBC CLI Programmer’s
Manual for a list of the values which may return.
4-6 VisualWorks

ODBCError
ODBCError
The ODBCError class defines information used in reporting errors to
the application. The error class adds information specific to
ODBCConnect. A collection containing instances of ODBCError will be
provided as the parameter to exceptions raised by ODBCConnect in
response to conditions reported by the ODBC CLI.

dbmsErrorCode

Answers the error code field (a SmallInteger) returned by the
server. If the error condition was generated by the ODBC CLI, the
value will be -99999. Refer to ODBC documentation for more
information about reported errors.

dbmsErrorString

Answers a String describing the error code.

sqlState

Answers a 5 character string which is the SQLSTATE of the error
being reported.

osErrorCode

Always answers nil. The ODBC CLI does not provide this
information.

osErrorString

Always answers nil. The ODBC CLI does not provide this
information.

ODBCDataSource
The ODBCDataSource class defines information used in representing
Data Source Names (DSN) within VisualWorks. Instances of this
class each represent a single DSN and store the DSN name and
description strings. Sending dataSources to an ODBCConnection
instance returns a list of ODBCDataSource instances. The list contains
all DSNs registered with the client.

Instance Protocols

accessing
The accessing protocol methods are:
Database Application Developer’s Guide 4-7

Using the ODBC Connect
name

Answers the string that represents the name of the receiver.

description

Answers the string that represents the receivers description
string.

Data Conversion and Binding
When receiving data from the database, all data returned by the
ODBC CLI is converted into instances of Smalltalk classes. These
conversions are summarized in the following table. Although abstract
class names may be used to simplify the table, the object holding the
data is always an instance of a concrete class. The ODBC type
names used in the following table are representa-tive of the ODBC
SQL type mapping.

Conversion of ODBC datatypes to Smalltalk classes

When binding values for query variables, only instances of ByteArray,
Date, Time, Timestamp, Integer, Double, Float, Fixed-Point, String, Boolean,
and Streams on String or ByteArray may be used as the input bind
object.

ODBC Datatype Smalltalk class

INTEGER, SMALLINT, TINYINT Integer

BIT Boolean

DOUBLE PRECISION, FLOAT Double

REAL, SMALLFLOAT Float

DECIMAL, NUMERIC, MONEY FixedPoint

CHAR, VARCHAR, NVARCHAR String

BINARY, VARBINARY ByteArray

LONG VARCHAR ReadWriteStream on: String

LONG VARBINARY ReadWriteStream on: ByteArray

TIME Time

DATE Date

TIMESTAMP Timestamp
4-8 VisualWorks

Unicode Support
To bind a NULL value, use nil, which is treated as a NULL value of
type VARCHAR.

Restrictions on Binding
When rebinding variables prior to re-executing a query, the ODBC
type and maximum length of the variable must not change. That is, if
the variable was first bound with an Integer value, rebinding with a
String value will cause an error. String and ByteArray bind input values
may grow or shrink as long as they still fit into the space originally
allocated for the buffer. To increase the chance that the buffer will be
suitable for larger values, the allocated size should be twice size of
the original value or greater. If the initial bind value for a variable is nil,
the bind value is considered to be a String with external size of one.

ODBC Connect places restrictions on the binding of NULL in queries.
Conditional tests for a NULL value must be performed.

Unicode Support
The VisualWorks ODBC Connect provides support for Unicode. Your
entire database can be set to use Unicode columns, or particluar
columns can hold Unicode. For String data, though, you should
generally not attempt to mix regular String columns with those in
Unicode.

Unicode data may be stored in columns of type NCHAR, NVARCHAR
and NTEXT on SQL Server, or UNICHAR and UNIVARCHAR on
Sybase (other vendors may use different names).

In order to use UTF-8, the national character set for the database
must be specified as UTF-8 on the database server. You may need to
use the DBA tools to change this setting. The exact encoding used
also varies depending upon the database vendor. For example, SQL
Server represents Unicode columns using UCS-2 encoding (UTF-
16), while on Oracle, it can be either UTF-16 or UTF-8.

We recommend that you always try to use the latest ODBC drivers
from the database vendor, since earlier versions sometimes have
difficulties dealing with Unicode. For example, the ODBC driver for
Oracle 9.2 does not provide functional Unicode support, while the
Oracle 10 version does.

Also, note that some data conversion behavior is vendor-specifc.
Database Application Developer’s Guide 4-9

Using the ODBC Connect
Storing and Retrieving Unicode
To make use of Unicode, your application needs to explicitly tell the
database session that you are binding a Unicode string. When
retrieving a Unicode value from the database, the EXDI automatically
detects any Unicode columns and sets the correct encoding.

In practice, the changes to your application code for Unicode support
are fairly minimal. First, you need to specify the desired encoding (the
default is #’UCS-2’). This can be done at the connection or session
level. Next, you need to tell the session object to use Unicode. When
inserting a String object, the EXDI will handle its conversion into
Unicode.

Note that if the session specifies Unicode, all strings are converted to
their Unicode representation before being inserted into columns. For
non-Unicode columns, ODBC translates the Unicode values back into
the expected encoding.

On retrieval, “National” column types furnish their strings in Unicode,
and their data converted to a VisualWorks String, based on the
encoding format specified by the session. It is best to ensure that the
encoding used to INSERT matches the encoding used to SELECT.
Also, it is important that the current Locale object can represent the
retrieved string, i.e., that it can embrace all the characters retrieved.

To specify Unicode in a database session, use the following code:

aSession unicodeEncoding: #'UCS-2'.
aSession unicode: true.
aSession prepare: 'INSERT ...

Since the default encoding is #’UCS-2’, you may omit the use of
unicodeEncoding:. This method may be used to specify UTF-8.

Again, you should not attempt to mix regular string columns with
those in Unicode. After evaluating aSession unicode: true, all binding
strings are considered Unicode and encoded accordingly.

To retrieve Unicode data from the database, no special code is
required in your application. Unicode columns are detected
automatically and encoded appropriately.

The following example demonstrates how to store and retrieve
Unicode values from a database:

| aConnection aSession answer result |
aConnection := ODBCConnection new.
aConnection
4-10 VisualWorks

Using Stored Procedures
username: 'username';
password: 'password';
environment: 'connectionString'.

aConnection connect.
aSession := aConnection getSession.
aSession prepare: 'CREATE table test_unicode(id int, nc nchar(100), nvc
nvarchar(200), nt ntext)'.
aSession execute.
answer := aSession answer.
aSession := aConnection getSession.
aSession unicode: true.
aSession prepare: 'INSERT into test_unicode values (1, ?, ?, ?)'.
aSession bindInput: # ('String1' 'String2' 'String3').
aSession execute.
answer := aSession answer.
aSession := aConnection getSession.
aSession prepare: 'SELECT * from test_unicode'.
aSession execute.
answer := aSession answer.
result := answer upToEnd.
result inspect.
aSession := aConnection getSession.
aSession prepare: 'DROP table test_unicode'.
aSession execute.
answer := aSession answer.

Using Stored Procedures
To provide access to stored procedures, ODBCSession provides
methods under the data processing protocol. These methods, which
are explained in more detail below, are:

preparePROC: aString

Prepare a query which calls a stored procedure. A stored
procedure can return multiple row sets and have input, output
and return parameters.

bindVariableAt:

Answer the value of a stored procedure variable at the specified
position.
Database Application Developer’s Guide 4-11

Using the ODBC Connect
bindVariable:at:

Bind a value to a (one-relative) parameter position in the query.
Reuse an existing buffer only if it is big enough. E.g., an existing
buffer can be too small if it holds a #String, but the new value is a
#LargeString.

Preparing a Stored Procedure Query
To prepare a query using a stored procedure, send an ODBCSession
the message #preparePROC:, passing the query as a String argument:

session := connection getSession.
session preparePROC: '{ ? = call myProc(?, ?)}'.

Bind variables in the query are positional. See Binding Variables for
Stored Procedures for details on query variable binding.

Executing a Query
Once values have been bound for query variables, a prepared query
is executed just like a standard SQL query. Sending execute to the
ODBCSession begins execution, and sending answer retrieves the
result of the query.

Note that when using stored procedures, the return codes and output
parameters are sent in the last packet from the server and are not
available before the result sets are exhausted.

Alternatively, you may use #executeDirect:, as follows:

connection connect.
session := connection getSession.
session executeDirect: ' sp_databases'.
answer := session answer.
result := answer upToEnd.
answer := session answer.
connection disconnect.
result inspect.

Binding Variables for Stored Procedures
In addition to preparing the query, the message preparePROC: directs
the session to use stored procedure binding, which is distinct from
the style of binding described in the VisualWorks Application
Developer’s Guide.

Values bound to stored procedure queries can be either scalar values
or arrays of scalar values. The values must be drawn from the set of
types described under Data Conversion and Binding.
4-12 VisualWorks

Using Stored Procedures
To bind a value to a variable, send an ODBCSession the message
bindVariable:at: with the value and position as arguments. The position
is the (one-relative) SmallInteger that indicates the variable’s position.

For example, the following code fragment creates and then invokes a
stored procedure.

| connection sess |
connection := ODBCConnection new.
connection

username: 'sa';
environment:'jazzbo';
connect: ''.

sess := connection getSession.
sess prepare:

'CREATE PROCEDURE demo2
@x VARCHAR(30),
@y VARCHAR(30) OUTPUT

AS
 select @y = SUBSTRING(@x, 1, 3)
 return CHARINDEX(''Z'', @x)'.

sess execute.
[sess answer == #noMoreAnswers] whileFalse.
sess disconnect.
"Now invoke demo2 in a new session"
sess := connection getSession.
sess preparePLSQL: '{ ? = call demo2(?, ?)}'.
sess bindVariable: 0 at: 1.
sess bindValue: 'ABCXYZ' at: 2.
sess bindVariable: '00000000' at: 3.
sess execute.
answer := sess answer.
[answer = #noMoreAnswers] whileFalse:

[(answer isKindOf: ExternalDatabaseAnswerStream)
ifTrue:[Transcript show: (answer upToEnd printString); cr]
ifFalse: [Transcript show: answer printString; cr].

answer := sess answer].
Transcript

show: 'Return Value = ', (sess bindVariableAt: 1) printString; cr.
Transcript

show: 'OUTPUT param, y = ', (sess bindVariableAt: 3) printString; cr.
sess disconnect.
connection disconnect.
Database Application Developer’s Guide 4-13

Using the ODBC Connect
When the fragment shown above is evaluated, the following should
appear in the Transcript:

#noAnswerStream
Return Value = 6
OUTPUT param, y = 'ABC'
--- end Transcript ---

The use of #bindVariableAt: to access return values is explained below.

Retrieving Stored Procedure Variables
After a query has executed, values for function results and OUT (or IN
OUT) parameters can be retrieved by sending the session the
message bindVariableAt: with the integer position of the variable as an
argument. bindVariableAt: will answer with either a single value or an
Array of values, depending on whether the value is a scalar or a
TABLE.

Large Objects
Large Objects (LOBS) demand huge amounts of storage space and
efficient mechanisms to access them. Video, images, voice-
recordings, graphics, intelligent documents, and database snapshots
are all stored as LOBs. Most DBMS have some type of support for
LOBs.

Support for Large Objects
ODBC CLI defines two datatypes to support large objects:
LONG_VARBINARY and LONG_VARCHAR. ODBC Connect maps
these types as ReadWriteStream on a Smalltalk ByteArray and a
ReadWriteStream on a String.Databases such as MS-SQLServer do
not store LONG_VARCHAR (TEXT) or LONG_VARBINARY (IMAGE)
values in the rows of which they are a part. Instead a pointer to a
separate chain of pages for TEXT/IMAGE data is stored in the row.
They are allocated in whole disk pages; therefore, short items will
effectively waste space. See the MS-SQLServer Online Dynamic
Server Administrator’s Guide or MS ODBC 3.0 SDK for information
about how to allocate lob space.
4-14 VisualWorks

Large Objects
Binding for Input
When binding for input, the Smalltalk conversion type for
LONG_VARCHAR and LONG_VARBINARY must first be wrapped in
a ReadWriteStream and then submitted as a normal bind parameter to
an ODBCSession. The driver will then create an appropriately typed
buffer for sending data to the server.

For example, once a connection has been established:

"Create the table"
aSession := aConnection getSession.
aSession prepare: 'CREATE TABLE testClob(tx text)'.
aSession execute.
ansStrm := aSession answer.
ansStrm := aSession answer.
rs := ReadWriteStream with: (String new: 909601 withAll: $a).
list := OrderedCollection with: rs.
"Insert a large object"
aSession prepare: 'insert into testClob values(?)'.
aSession bindInput: list.
aSession execute.
ansStrm := aSession answer.
ansStrm := aSession answer.
"Retrieve the large object"
aSession prepare: 'SELECT * FROM testClob'.
aSession execute.
ansStrm := aSession answer.
result := ansStrm upToEnd.
ansStrm := aSession answer.
"Drop the table"aSession prepare: 'DROP TABLE testClob'.
aSession execute;

answer;
answer.

result inspect.

Note: To bind NULL to a database column typed as
LONG_VARCHAR or LONG_VARBINARY, the application
developer simply specifies nil as a bind parameter. No parameter
wrapping is needed.

Binding for Output
The ODBC connection automatically creates appropriately typed
buffers for result columns that are of type LONG_VARCHAR or
LONG_VARBINARY. The application developer does not need to do
anything special.
Database Application Developer’s Guide 4-15

Using the ODBC Connect
Restrictions on Retrieving Large Objects
ODBC Connect will attempt to read all available data from long result
columns up to ODBCSession>>defaultMaxLongData. The read size for
long data is controllable through ODBCSession>>defaultMaxLongData:
maxReadBytes.

Note: The maximum read size for long data is platform-specific.

Support for Multiple Active Result Sets (MARS)
When using older SQL Server ODBC drivers, sharing a connection
among multiple sessions has long been an issue. Attempting to do
this causes problems for multi-thread applications.

The native SQL client provided with SQL Server 2005 provides a way
to get around it: MARS (Multiple Active Result Sets).

MARS is available for use if you set a connection attribute
SQL_COPT_SS_MARS_ENABLED to be SQL_MARS_ENABLED_YES. Note
that attribute must be set before connecting to a data source.

With a multi-threaded (multi-session) application that shares the
same connection, the EXDI supports MARS through interleaving.
With multiple connections and a single session on each connection,
MARS is supported via parallel execution.
4-16 VisualWorks

5

Using the DB2 Connect

The DB2/UDB Connect provides access to IBM UDB databases
version 6.x or later, on MS-Windows and Linux platforms. It includes
EXDI layer support, including a threaded API, as well as support for
the Object Lens and Store, the VisualWorks scource code
management system.

This database connect makes direct calls to the CLI library, it
supports block fetching, the use of arrays to input multiple parameter
values (block insert/update), multiple answer sets, LOB locators and
file references. Stored procedures are supported, with all types of
parameters, including answering result sets.

The DB2 connect is available under the ParcPlace Public License,
and has been tested on Windows NT 4.0 (SP6), Windows 2000
(SP2), and DB2 UDB v6.1 for Linux (SP1) on Red Hat Linux 6.1.

For a more general discussion of the VisualWorks EXDI framework,
see EXDI Database Interface.

This chapter describes the DB2 Connect features including:

• DB2 EXDI Classes

• Data Conversion and Binding

• Using Stored Procedures

• Large Objects

• Using Data Links

• Threaded API
Database Application Developer’s Guide 5-1

Using the DB2 Connect
DB2 EXDI Classes
The EXDI defines application-visible services and is composed of
abstract classes. The DB2 connect extends the EXDI by providing a
layer of concrete DB2 classes. The DB2 connect classes implement
services by making private library calls to the DB2 Call Level
Interface (CLI).

The public DB2 classes are:

• DB2Connection

• DB2Session

• DB2LOBLocator

• DB2DataLink

When an application is using the DB2 connect, the connection,
session, and answer stream objects maintain specific relationships.
Understanding these relationships is important when developing
applications.

The connection and session objects are generally used for multiple
activities. The answer stream is only used to process a single set of
rows returned from the server.

These relationships are shown in the following figure:

DB2Connection
The connection class implements its services using the Call Level
Interface (CLI) and is responsible for managing both environment and
connection handles, and transactions. The limit for active connections
is driver specific.

For a more detailed discussion of the database connection class, see
Using Database Connections.
5-2 VisualWorks

DB2Session
Instance Protocols

blob functions
The BLOB functions protocol methods are:

getLOBLength: aLocator

Retrieve the length of a LOB value associated with aLocator.

getLOBPosition: aLocator search: aStringOrLocator from: aPosition

Retrieve the position of aStringOrLocator in a LOB value
associated with aLocator.

getLOBSubString: aLocator from: aPosition length: aLength asLocator:
aBoolean

Retrieve the substring of a LOB value associated with aLocator.

See the discussion of DB2LOBLocator and DB2LOBFileReference,
below, for additional LOB functionality.

datalink functions
The datalink functions protocol methods are:

getDLAttribute: attributeName for: aDataLink

Answer the value of an attributeName associated with aDataLink.

See the discussion Using Data Links, for additional DATALINK
functionality.

DB2Session
The session class manages the preparation, binding, and execution
of SQL statements using the DB2 CLI. It is responsible for managing
the state-ment handles, bind buffers, cursors, and catalog function
results. The limit for active (connected, prepared, or executing)
sessions per connection is driver specific.

Transactions
A transaction reprsents a single unit of work. Applications can
explicitly control the start and finish of database transactions using
the #begin, #commit, and #rollback messages. If the application does
not use explicit control, each statement executed is automatically
Database Application Developer’s Guide 5-3

Using the DB2 Connect
committed as soon as it completes. For a SELECT statement, the
implicit commit occurs after the last row is fetched. Sending the
#cancel message to a DB2 session also ends the transaction.

DB2 does not support two-phase commit coordination spanning
multiple connections. Applications that use coordinated connections
are responsible for their own recovery after a failure that leaves
partially committed transactions. This limitation may be removed in
the future.

Executing Queries
You ask a session object to prepare and execute SQL queries by
sending the messages prepare:, execute, and answer, in that order.

To examine the results of the query execution, send an answer
message to the session. This is important to do even when the query
does not return an answer set (e.g., an INSERT or UPDATE query). If
an error occurred during query execution, it is reported to the
application at answer time.

For an extended discussion of queries, see Using Sessions.

Instance Protocols

accessing
The accessing protocol methods are:

blockFactor

Answer the current number of rows that are buffered in an
answer stream associated with this session.

blockFactor: aNumber

Set the number of rows that are buffered internally.
5-4 VisualWorks

DB2Session
Caution: The DB2 UDB version 7.1 FP1 client contains a bug in
the retrieval of blocked fetch LOB locators and LOB values. Don‘t
set blockFactor: to be greater than 1 for queries with LOB fields. To
avoid these problems, you can use a version 7.1 DB2 server with
version 6.1 client libraries. Version 7.1 FP2 resolves the problem
with blockFactor, but introduces another issue: calls to
SQLMoreResults() with a parameterized query and an array of
input parameter values cause a crash. However, stored
procedure calls are OK. Fixpak 3 (also known as DB2/UDB 7.2)
resolves these issues.

data processing
The data processing protocol methods are:

rowCount

Answers an Integer representing the number of rows inserted,
updated, deleted, or the cumulative number of rows fetched by
the previous query.

cursorName

Answer the cursor name associated with receiver.

answerLOBAsLocators answerLOBAsValues answerLOBAsFileRef:

Set the session to answer LOB values be answered: as locators,
values, or as file references.

bindInputArrayByColumns: anArray

Bind the parameter array with an array of values in the
corresponding position.

For example, this code fragment inserts three rows into a table:

session
prepare: ’insert into table2 values(?, ?)’;
bindInputArrayByColumns:

#(#(101 102 103)
#(’Red’ ’red’ ’roses’));

execute;
answer.

bindInputArray: anArray

Bind the parameter array with an array of values.
Database Application Developer’s Guide 5-5

Using the DB2 Connect
For example, the following code fragment inserts 3 rows into a
table:

session
prepare: ’insert into table2 values(?, ?)’;
bindInputArray:

#(#(110 ’Velvet’)
#(111 ’Green’)
#(112 ’Brick’));

execute;
answer.

Or, with domain objects:

entries := Array
with: (MyObject id: 110 name: ’Velvet’)
with: (MyObject id: 111 name: ’Green’)
with: (MyObject id: 113 name: ’Brick’).

session
prepare: ’insert into table2 values(?, ?)’;
bindInputArray: entries;
execute;
answer.

catalog functions
Sending any of the messages in this category is equivalent to
preparing and executing a query using the receiver. After the
message completes, the table information is obtained as an answer
stream in the normal way (e.g., by sending the message answer and
then fetching the rows from the answer stream). Each row is an Array
with one element for each column.

Each message in this category calls a correspondingly named CLI
function, the arguments are directly passed to the function and take
their defini-tions from the function definition. For additional details on
the arguments or specific elements in the answer set, refer to the
DB2 reference documentation.

The catalog functions are:

getSQLPrimaryKeys: tableQualifier tableOwner: tableOwner tableName:
tableName

Calls the DB2 function SQLPrimaryKeys() to obtain a list of column
names that comprise the primary key for a table.
5-6 VisualWorks

Data Conversion and Binding
The columns of the answer set are defined in the DB2
documentation as: TABLE_CAT, TABLE_SCHEM, TABLE_NAME,
COLUMN_NAME, ORDINAL_POSITION, PK_NAME.

getSQLForeignKeys: tableQualifier tableOwner: tableOwner tableName:
tableName fkQualifier: fkTableQualifier fkOwner: fkTableOwner
fkTableName: fkTableName

Calls the DB2 function SQLForeignKeys() to obtain information
about foreign keys for the specified table.

The columns of the answer set are defined in the DB2
documentation as: PKTABLE_CAT, PKTABLE_SCHEM,
PKTABLE_NAME, PKCOLUMN_NAME, FKTABLE_CAT,
FKTABLE_SCHEM, FKTABLE_NAME, FKCOLUMN_NAME,
ORDINAL_POSITION, UPDATE_RULE, DELETE_RULE, FK_NAME,
PK_NAME, DEFERRABILITY.

Data Conversion and Binding
When receiving data from the database, all data returned by the CLI
is converted into instances of Smalltalk classes. These conversions
are summarized in the following table. Although abstract class names
may be used to simplify the table, the object holding the data is
always an instance of a concrete class. The DB2 type names used in
the following table are representa-tive of the DB2 SQL type mapping.

Conversion of DB2 datatypes to Smalltalk classes

DB2 Datatype Smalltalk class

INTEGER, SMALLINT Integer

BITINTEGER Boolean

DOUBLE, FLOAT Double

REAL Float

DECIMAL FixedPoint

CHAR, VARCHAR, LONG VARCHAR String

VARCHAR FOR BIT DATA ByteArray

BLOB ByteArray, ReadWriteStream on:
ByteArray, DB2BLOBLocator,
DB2LOBFileReference
Database Application Developer’s Guide 5-7

Using the DB2 Connect
When binding values for query variables, only instances of ByteArray,
Date, Time, Timestamp, Integer, Double, Float, Fixed-Point, String, Boolean,
DB2DataLink, DB2LOBLocator, DB2LOBFileReference and Streams on
String or ByteArray may be used as the input bind object.

To bind a NULL value, use nil, which is treated as a NULL value of
type VARCHAR.

When a BLOB or CLOB is retrieved from the server, it is converted into
a Smalltalk type according to the following rules:

• By default, or if you send answerLOBAsValues to the session
object, the BLOB/CLOB is returned as a String or ByteArray.

• If you send answerLOBAsLocators to the session object, it is
returned as an instance of DB2LOBLocator or one of its
subclasses,

• If you send answerLOBAsFileRef: with an instance of
DB2LOBFileReference to the session object, the LOB value will be
saved to file (see the description of class DB2LOBFileReference,
above), and the result is the symbol #FileRef.

Restrictions on Binding
Compared with the ODBC EXDI, the restrictions on binding are more
relaxed. When re-binding variables prior to re-executing a query, the
DB2 type and maximum length of the variable can change. For
example, if the variable was first bound with an Integer value,
rebinding with a String value is acceptable. Instances of String and
ByteArray bound as input values may grow or shrink as long as they
still fit into the column field.

The general limitations of DB2 with respect to datatypes remain.

CLOB String, ReadWriteStream on: String,
DB2CLOBLocator,
DB2LOBFileReference

TIME Time

DATE Date

TIMESTAMP Timestamp

DATALINK DB2DataLink

DB2 Datatype Smalltalk class
5-8 VisualWorks

Using Stored Procedures
The ability to re-bind input values may be illustrated using the
following code example:

session
prepare: ’create table testRebind (testField varchar(50))’;
execute; answer.

session
prepare: ’insert into testRebind values(?)’;
bindInput: #(’String’);
execute; answer;
bindInput: #(123);
execute; answer;
bindInput: (Array with: Time now);
execute; answer.

Using Stored Procedures
The DB2 EXDI supports positional binding of variables, but when
calling stored procedures, it uses the variable name to bind values.

To provide access to stored procedures, class DB2Session provides
the following methods:

prepareCall: aString

Prepare a query using a CALL statement.

bindVariable: aSymbol

Answer the current value bound to the named parameter (a
Symbol).

bindVariable: aSymbol value: aValue

Set the value of a named parameter.

bindVariable: aSymbol value: aValue kind: aSymbol

Set the value of a named parameter with parameter type (kind):
#in, #out, #inout.

deferCursorClosing

Set cursor to defer cursor close while all result sets are being
retrieved.

immediateCursorClosing

Set default cursor closing behavior.
Database Application Developer’s Guide 5-9

Using the DB2 Connect
closeCursor

Close database cursor.

Examples
The following examples illustrate the creation and use of a stored
procedure:

"Get a session."
session := connection getSession.
"Create a test table."
session prepare: 'CREATE TABLE TestTable(cid INT, cname
VARCHAR(50))'.
session execute.
session answer.
"Create an insert procedure."
session prepare: 'CREATE PROCEDURE TEST_PROC_1(IN inInt INT, IN
inChar VARCHAR(50))
LANGUAGE SQL
BEGIN

INSERT INTO TestTable VALUES (inInt, inChar);
END'.
session execute.
session answer.
"Invoke the procedure."
expression := 'CALL TEST_PROC_1(:inCid, :inCname)'.
session prepareCall: expression;
"input parameter"
bindVariable: #inCid value: 1 kind: #in;
bindVariable: #inCname value: 'test1' kind: #in;
execute.
"Make sure the test data is in the test table."
session prepare: 'SELECT * FROM TestTable'.
session execute.
"Print the result set to the Transcript."
[(ans := session answer) == #noMoreAnswers]
whileFalse: [Transcript cr;
show: 'Test data: ';
show: (ans upToEnd) printString].
"Create a procedure with IN and OUT parameters."
session prepare: 'CREATE PROCEDURE TEST_PROC_2(IN inInt INT,
OUT outChar VARCHAR(50))
LANGUAGE SQL
BEGIN

SELECT cname INTO outChar FROM TestTable WHERE cid=inInt;
END'.
session execute.
5-10 VisualWorks

Using Stored Procedures
session answer.
"Invoke the procedure."
expression := 'CALL TEST_PROC_2(:inCid, :outCname)'.
session prepareCall: expression;
"input parameter"
bindVariable: #inCid value: 1 kind: #in;
"output parameter"
bindVariable: #outCname value: 'test1' kind: #out;
execute.
"Print the result set to the Transcript."
[(ans := session answer) == #noMoreAnswers]
whileFalse: [Transcript cr;
show: 'Output parameter: ';
show: (session bindVariable: #outCname) printString].
"Create a procedure with INOUT parameters."
session prepare: 'CREATE PROCEDURE TEST_PROC_3(INOUT
inoutValue INT)
LANGUAGE SQL
BEGIN
 DECLARE v_cid INT DEFAULT 0;

SELECT cid INTO v_cid FROM TestTable WHERE cid=inoutValue;
SET inoutValue = v_cid + 100;

END'.
session execute.
session answer.
"Invoke the procedure."
expression := 'CALL TEST_PROC_3(:inoutCid)'.
session prepareCall: expression;
"input/output parameter"
bindVariable: #inoutCid value: 1 kind: #inout;
execute.
"Print the result set to the Transcript."
[(ans := session answer) == #noMoreAnswers]
whileFalse: [Transcript cr;
show: 'Output parameter: ';
show: (session bindVariable: #inoutCid) printString].
"Disconnect the session and the connection."
session disconnect.
connection disconnect.

The following example illustrates the use of a stored procedure:

expression := 'CALL TWO_RESULT_SETS(:inSalary, :outRc)'.
session := connection getSession.
session

prepareCall: expression;
"defer cursor closing for procedures, answering multiple answer sets"
deferCursorClosing;
Database Application Developer’s Guide 5-11

Using the DB2 Connect
blockFactor: 30;
"input parameter"
bindVariable: #inSalary value: 14000.0d kind: #in;
"output parameter"
bindVariable: #outRc value: 0 kind: #out;
execute.

"Check errors"
(error := session bindVariable: #outRc) == 0

ifTrue: [Transcript cr;
show: expression, ' completed successfully']

ifFalse: [Transcript cr;
show: expression, ' failed with SQLCODE = ', error printString].

"Get result -- multiple answer sets"
[(a := session answer) == #noMoreAnswers]

whileFalse: [Transcript cr;
show: ’Result set: ’;
show: (a upToEnd) printString].

Large Objects
Large Objects (LOBs) demand huge amounts of storage space and
efficient mechanisms to access them. Video, images, voice-
recordings, graphics, intelligent documents, and database snapshots
are all stored as LOBs. Most DBMS have some type of support for
LOBs.

Binding for Input
When binding for input, the Smalltalk conversion type for CLOB and
BLOB objects must first be wrapped in a ReadWriteStream and then
submitted as a normal bind parameter to a DB2Session. The database
connect will then create an appropriately-typed buffer for sending
data to the server. Also, LOB locators returned from the query can be
used as parameters.

The following sample illustrates LOB binding:

| connection session clob blob clobLength blobLength |
connection := DB2Connection new environment: 'env';

username: 'username';
password: 'pwd';
connect.

session := connection getSession.
session prepare: 'CREATE TABLE TestLob (a CLOB(32k), b BLOB(32k), c
INT)'.session execute.
session answer.
5-12 VisualWorks

Large Objects
connection begin.
session := connection getSession.
session prepare: 'INSERT INTO TestLob (a, b, c) VALUES (?, ?, ?)'.
clobLength := 30720. "30k"
blobLength := 30720. "30k"
clob := String new: clobLength withAll: $a.
blob := ByteArray new: blobLength withAll: 1.
session

bindInput:
(Array with: clob readStream with: blob readStream with: 1).

session execute.
session answer.
connection commit.

The following example shows how to retrieve LOB values:

 connection begin.

"Retrieve 4000 bytes of data."
session := connection getSession.
session answerLOBAsValues.
session prepare: 'select * from TestLob'.
session execute.
ans := session answer.
res := ans upToEnd.
clob := (res at: 1) at: 1.
clob size.

blob := (res at: 1) at: 2.
blob size.

"Retrieve the values of the whole LOBs."
session1 := connection getSession.
session1 maxLongData: 32000.
session1 answerLOBAsValues.
session1 prepare: 'select * from TestLob'.
session1 execute.
ans := session1 answer.
res := ans upToEnd.
clob := (res at: 1) at: 1.
clob size.

blob := (res at: 1) at: 2.
blob size.

connection rollback.
Database Application Developer’s Guide 5-13

Using the DB2 Connect
Fetch Multiple LOBs in One Execution
To retrieve several LOB files at once, assume that we have a folder
called Test, which contains text file called File-1.txt and a binary file
called MyApp.exe, to be saved using LOBs.

In the example code shown below, these two files are inserted into
the LOB columns of a DB2 table, and then retrieved to the same
folder using different file names.

aSession := aConnection getSession.

"Create a test table."
aSession prepare: 'CREATE TABLE TestLOBFileRef (a CLOB(32k), b
BLOB(1M), c INT)'.
aSession execute.
aSession answer.

"Inserting the files into the test table."
aConnection begin.
aSession prepare:'INSERT INTO TestLOBFileRef (a, b, c) VALUES (?, ?,
?)'.
clobFileRef := DB2LOBFileReference forCLOB: 'C:\Test\File-1.txt'.
blobFileRef := DB2LOBFileReference forBLOB: 'C:\Test\MyApp.exe'.
aSession bindInput: (Array with: clobFileRef with: blobFileRef with: 1).
aSession execute.
aSession answer.
aConnection commit.

"Retrieve the LOB files to the same folder using different file names."
aConnection begin.
clobFileRef := (DB2LOBFileReference for: 'C:\Test\File-1-Output.txt')
overwriteFile.
blobFileRef := (DB2LOBFileReference for: 'C:\Test\MyApp-Output.exe')
overwriteFile.
aSession := aConnection getSession.
answer := aSession prepare: 'select a, b from TestLOBFileRef where c=1';
answerLOBAsFileRef: (Array with: clobFileRef with: blobFileRef);
execute;
answer.
answer upToEnd.
aConnection rollback.

By comparing the files, you will find that the retrieved files are
identical to the ones we inserted.
5-14 VisualWorks

Large Object File References
Using Locators
Use a LOB locator when your application needs to select or
manipulate a large object, but does not wish to transfer the entire
object from the database server to VisualWorks.

LOB locators are represented using instances of class
DB2LOBLocator. A DB2LOBLocator object is a compact token that may
be used to reference a large object stored in the database. When
running a query, the DB2 connect does not place the referenced
large object in the result set, but merely updates the LOB locator
object.

If desired, your application can also request the entire large object
associated with the locator token.

In fact, a LOB locator is not a value stored in a database column. It is
a reference that is valid only for the duration of a single transaction. It
is the application developer’s responsibility to ensure that a locator
object is not used beyond the duration of a transaction.

The following code sample illustrates the use of a LOB locator:

connection begin.
answerStream := querySession

prepare: 'select blobField from table';
answerLOBAsLocators; "answer locators instead values"
execute;
answer.

insertSession
prepare: ’insert into table2 values(?)’.

answerStream upToEnd
do: [:row |

insertSession bindInput: (row first);
execute;
answer].

connection commit.
For additional example code illustrating the use of LOB locators, see
the tests in the DB2EXDITest parcel, located in the extra subdirectory.

Large Object File References
Instances of class DB2LOBFileReference represent DB2 LOB file
references.

For some examples of use, see the tests in the DB2EXDITest parcel,
located in the extra subdirectory.
Database Application Developer’s Guide 5-15

Using the DB2 Connect
Instance Protocols

instance creation
The instance creation methods are:

for: aFilenameforBLOB: aFilenameforCLOB: aFilename

Answer a new instance for the specified filename.

public protocol
The public protocol methods include:

appendToFile overwriteFile createFile

File write operations are as stated.

file creation options
The file creation options protocol methods include:

compute: aBlock

Specify a one-argument block, whose argument is the old file
name, and whose result is a new file name.

Using LOB File References
The following examples demonstrate the insertion and retrieval of a
LOB file reference. In these examples, local files are used. These
should be located in the VisualWorks home directory (e.g., /image).

To insert the contents of a file:

| aConnection aSession lobFileRef file fStream |
aConnection := DB2Connection new environment: 'env';

username: 'username';
password: 'pwd';
connect.

aSession := aConnection getSession.
aSession prepare: 'CREATE TABLE TestLOBFileRef (a CLOB(32k), c INT)'.
aSession execute.
aSession answer.
aConnection begin.
aSession prepare: 'INSERT INTO TestLOBFileRef (a, c) VALUES (?, ?)'.
file := 'LOBFileReference.test' asFilename.
fStream := file writeStream.
fStream

nextPutAll: Collection comment;
close.
5-16 VisualWorks

Using Data Links
lobFileRef := DB2LOBFileReference forCLOB: file asString.
aSession bindInput: (Array with: lobFileRef with: 1).
aSession execute.
aSession answer.
aConnection commit.

To retrieve a LOB file reference:

aConnection begin.
fileRef := (DB2LOBFileReference for: 'testLobFileRefOutputFile.test')
overwriteFile. aSession := aConnection getSession.
answer := session prepare: 'select a from TestLOBFileRef where c=1';

 answerLOBAsFileRef: fileRef;
execute;
answer.

answer upToEnd.
aConnection rollback.

Using Data Links
DB2 supports the DATALINK SQL datatype, which is used to
reference an object stored external to the database. This datatype
can be used like any other, to define table columns.

Instances of class DB2DataLink represent a DATALINK objects.

Instance Protocols

accessing
The accessing protocol methods include:

scheme

Answer the scheme of a DATALINK containing an URL.

For example, in a DATALINK containing:

http://www.myCompany.com/docs/gizmo.pdf
The method scheme will return:

http

server

Answer the server name of a DATALINK containing an URL.

For example, in a DATALINK containing:

http://www.myCompany.com/docs/gizmo.pdf
Database Application Developer’s Guide 5-17

Using the DB2 Connect
The method server will return:

www.myCompany.com

comment

Answer a string that contains the comment for this DATALINK.

path

Answer the path and file name of a DATALINK containing an
URL, including a file access token, if allowed.

pathOnly

Answer only the path and file name of a DATALINK containing an
URL. A file access token is never included.

For example, in a DATALINK containing:

http://www.myCompany.com/docs/gizmo.pdf
The method server will return:

/docs/gizmo.pdf

complete

Answer the data location attribute of a DATALINK containing an
URL.

For more information on the use of DATALINKs, refer to the DB2
reference documentation.

Threaded API
VisualWorks supports a Threaded API (THAPI) for DB2. This enables
your application to make calls to the database without blocking the
object engine (i.e., asynchronous calls).

While DB2 provides a thread-safe interface through the CLI, note that
its internal implementation involves a connection-specific semaphore.
Thus, at any moment only one thread can invoke a CLI function that
takes an environment handle as input, and all other functions using
the same connection will be serialized. Internally, then, the CLI will
block any other threads using the same connection. One exception is
#cancel, which will interrupt a statement that is currently running on
another thread.

To provide multi-threaded behavior, each thread must be mapped to
a single connection.
5-18 VisualWorks

Known Limitations
Using the Threaded API
To use DB2 with THAPI at the EXDI level, modify your existing EXDI
code as follows:

1 Replace references to DB2Connection with references to
DB2ThreadedConnection.

2 Replace references to OracleSession with references to
DB2ThreadedSession.

For example code illustrating the use of the threaded API, see the
tests in the DB2EXDITest parcel, located in the extra subdirectory.

Known Limitations
The following are known limitations in the DB2 database connect,
specifically in its support for the Object Lens:

Known issues:

• Automatic creation and modification of database tables from the
Lens is currently not supported. You must first create all the
tables in your database and then use the Data Modeler to map
these tables to Smalltalk classes.

• Automatic altering of tables from the Lens is currently not
supported.

• Mapping of CLOB and BLOB objects is limited only to LOB
locators.
Database Application Developer’s Guide 5-19

Using the DB2 Connect
5-20 VisualWorks

6

Using the Database Connect for Sybase
CTLib

This chapter describes the Database Connect for Sybase CTLib
External Database Interface (EXDI) features and implementation,
which includes the following:

• CTLib EXDI Classes

• Data Conversion and Binding

• Calling Sybase Stored Procedures

• Sybase Threaded API

CTLib EXDI Classes
The EXDI defines application-visible services and is composed of
abstract classes. The Database Connect for Sybase CTLib is a set of
concrete classes that implement EXDI services by making calls to the
Sybase CTLib. Database Connect for Sybase CTLib also extends
services available to the application to provide features unique to the
Sybase database system.

The EXDI organizes its services into classes for connections,
sessions, and answer streams. In addition, classes for column
descriptions and errors provide specific information that the
application may use. The public EXDI classes are:

• ExternalDatabaseConnection

• ExternalDatabaseSession

• ExternalDatabaseAnswerStream
Database Application Developer’s Guide 6-1

Using the Database Connect for Sybase CTLib
• ExternalDatabaseColumnDescription

• ExternalDatabaseError

As a convention, Database Connect for Sybase CTLib classes use
CTLib in place of ExternalDatabase in the class name — for example,
CTLibConnection and CTLibSession.

When an application is using the EXDI, the connection, session, and
answer stream objects maintain specific relationships. These
relationships are important to understand when writing applications.

The connection and session objects are generally used for multiple
activities. The answer stream is only used to process a single set of
rows returned from the server.

These relationships are shown in the following figure.

Relationships

CTLibConnection
ExternalDatabaseConnection defines database connection services. -
CTLibConnection implements these services using the CTLib and is
responsible for managing the CS_CONNECTION control block. The
limit for active connections is determined by the system and the
database resources.

Class Protocols

environment mapping
Applications may define logical names for Sybase CTLib server
names to be used when connecting. This reduces the impact on
application code as network resources evolve.
6-2 VisualWorks

CTLibConnection
addLogical:environment:

Adds a new entry in the logical environment map for the
Database Connect for Sybase CTLib that associates a logical
name with a connect string. Once this association is defined, the
environment for a CTLibConnection may be specified using the
logical name.

For example:

CTLibConnection addLogical: 'devel' environment: 'DSQUERY'.

Instance Protocols

accessing
The following public methods are included in the accessing protocol:

environment: aString

When using the Database Connect for Sybase CTLib, the
environment specifies a server name, which must be a name
defined in the interfaces file.

On Windows, the [SQLSERVER] section of the win.ini file defines
the available servers. In addition to the entries in the win.ini file,
servers accessible via named pipes may be referenced via the
server’s node name.

Application developers are strongly encouraged to define and
use logical environment names (see addLogical:environment:
above). Thus, only system administrators need to know the
actual server names.

appName

Answers the value for application name set by the application.
Answers nil if never set.

appName: aString

Specifies the value for application name set by the application.
While the application name is entirely optional, if provided, it is
passed to the CTLib ct_con_props function before the connection
is sent the connect message.

hostName

Answers the value for host name set by the application (or nil if
never set).
Database Application Developer’s Guide 6-3

Using the Database Connect for Sybase CTLib
hostName: aString

Specifies the value for host name set by the application. While
the host name is entirely optional, if provided, it is passed to the
CTLib ct_con_props function before the connection is sent the
connect message.

control
The following public methods are included in the control protocol:

setInterfaceFile: aString

Specify the name and location of an interface file to be used
when connections are established. An argument of nil instructs
CTLib to use its default interfaces file.

setLoginTimeout: aNumber

Sets the login timeout to the number of seconds given by the
argument. Setting the timeout to zero disables timeout. CTLib’s
default timeout is 60 seconds.

CTLibSession
ExternalDatabaseSession defines execution of prepared SQL
statements and stored procedures. CTLibSession implements these
services using the CTLib. CTLibSession is where the majority of the
features unique to the Sybase product become available to the
application developer.

A new CTLibSession corresponds to the allocation of a new
CS_COMMAND structure. There can be more than one session per
connection, but since the server does not accept a second command
when there are results pending from the previous command, the
same limitations would apply to the sessions. For example, it is not
possible to fetch data in two sessions simultaneously within the same
connection.

CTLibSession provides support for the output of COMPUTE rows and
returns parameters from stored procedures in the same way as
regular rows.

Instance Protocols

accessing
The following public methods are included in the accessing protocol:
6-4 VisualWorks

CTLibSession
returnStatus

Answers the return status from the stored procedure just
executed. If the last result obtained from the CTLib was not from
a stored procedure, answers nil.

textLimit

Answer the current value for the text limit.

textLimit: aNumber

Set both the CS_TEXTLIMIT property and CS_TEXTSIZE option
of the CTLib and server. The value must be greater than 0. The
default size is 32768.

blockFactor

Answers the current number of rows that will be buffered in an
answer stream associated with this session.

blockFactor: aNumber

Sets the number of rows to buffer internally using the array
interface. This exchanges memory for reduced overhead in
fetching data, but is otherwise transparent.

data processing
The following public methods are included in the data processing
protocol:

cancel

The processing initiated by sending the execute message to the
session may be interrupted by sending cancel. However, the
server may not stop processing immediately. After cancel
completes, the session may prepare: and execute a new command
batch. (See also SybaseAnswerStream>>close).

rowCount

Answers the number of rows affected by the most recently
executed query.

Using Cursors and Scrollable Cursors
The VisualWorks EXDI for CTLib supports the use of cursors and
scrollable cursors. Note that only Sybase CTLib verion 15 and later
support scrollable cursors. Also, with Sybase only, your application
must initialize the connection object before using a cursor, because
Database Application Developer’s Guide 6-5

Using the Database Connect for Sybase CTLib
the Sybase sever needs explicit version information in order to
prepare the client library. To initialize Sybase for use of cursors,
evaluate:

aConnection setBehaviorToVersion15
This must be sent before #connect in your application code.

Additionally, if you only want to use forward-only cursors, set the
instance variable useCursor in the session to be true. E.g.:

aSession useCursor: true.
Scrollable cursors in Sybase are read-only. To use scrollable cursors,
set the instance variable scrollable in the session to be true. E.g.:

aSession scrollable: true.
The requirements described in this section only apply to the Sybase
implementation of cursors. For a general discussion of cursors, see:
Using Cursors and Scrollable Cursors.

CTLibColumnDescription
ExternalDatabaseColumnDescription defines information used to describe
columns of tables or as a result of executing a SELECT statement.
The CTLibColumnDescription class adds information specific to Sybase.

Instance Protocols

accessing
As with all variables defined for column descriptions, these may be nil
if the values are not defined in the context in which the column
description was created.

CTLibError
ExternalDatabaseError defines information used in reporting errors to
the application. The CTLibError class adds information specific to
Sybase. A collection containing instances of CTLibError will be
provided as the parameter to exceptions raised by Database Connect
for Sybase CTLib in response to conditions reported by Sybase.

Instance Protocols

accessing
The following public methods are included in the accessing protocol:
6-6 VisualWorks

CTLibError
dbmsErrorCode

Answers the code value assigned to an error received from the
ct_callback callback function.

dbmsErrorString

Answers the string describing an error received from the
ct_callback callback function.

line

Answers the nesting level of the command batch or stored
procedure that generated the message received from the
ct_callback callback function.

msgno

Answers the code value assigned to a message received from
the ct_callback callback function.

msgstate

Answers the message state assigned to a message received
from the ct_callback callback function. This number may be of help
to Sybase Technical Support.

msgtext

Answers the string describing a message received from the
ct_callback callback function.

osErrorCode

Answers the operating system code value corresponding to an
error received from the ct_callback callback function.

osErrorString

Answers the string describing the operating system error
received from the ct_callback callback function.

procname

Answers the name of the stored procedure that generated the
message received from the ct_callback callback function.

severity

Answers the severity level of an error or message received from
the ct_callback callback functions.
Database Application Developer’s Guide 6-7

Using the Database Connect for Sybase CTLib
srvname

Answers the name of the server that generated the message
received from the ct_callback callback function.

Data Conversion and Binding
When receiving data from the database, all data returned by the
CTLib is converted into instances of Smalltalk classes. These
conversions are summarized in the table below. Abstract classes are
used to simplify the table, and the object holding the data is always
an instance of a concrete class.

Conversion of Sybase datatypes to Smalltalk classes

CTLib does not directly support input parameter binding. It is still
possible to use the bindInput: feature on CtLibSession. However, the
input parameters are expanded inline in a copy of the query text
before the query is submitted to CTLib (via the ct_command function).

Query variables can be specified using any of the notations
supported by the EXDI (i.e., ?, :name, or :position).

To bind a NULL value, use nil.

Exception Handling
Database Connect for Sybase CTLib adds the following exception to
the set defined in the EXDI.

Sybase Datatype Smalltalk class

INT, SMALLINT, TINYINT Integer

REAL Float

FLOAT Double

MONEY, SMALLMONEY FixedPoint

CHAR, VARCHAR, TEXT String

BINARY, VARBINARY, IMAGE ByteArray

BIT Boolean

DATETIME, SMALLDATETIME Timestamp

DECIMAL, NUMERIC FixedPoint
6-8 VisualWorks

Calling Sybase Stored Procedures
unableToOpenInterfaceFileSignal

The file named by the argument to setInterfaceFile: could not be
opened.

Calling Sybase Stored Procedures
You can call a Sybase (CTLib) stored procedure. Doing so, you may
need to assign calling parameters, and you can retrieve return
parameters. Sybase stored procedures can be quite intricate and
error prone. While VisualWorks fully supports invoking stored
procedures, it includes no specific facilities for trouble-shooting or
debugging errors resulting from them.

Stored procedures can have more than one statement, and so they
can return more than one answer stream. To avoid losing data, you
need to call answer until you get the #noMoreAnswers symbol as the
result. For example, a non-select query may generate a
#noAnswerStream, but be followed by a select statement which will
have an answer stream. If you stop too early you will lose data.

To illustrate, a stored procedure may first be defined by evaluating the
following expression:

| connection mySession |
connection := CTLibConnection new.
connection username: 'name';

environment: 'env';
password: 'password';
connect.

"create a stored procedure"
mySession := connection prepare:
'create procedure ck_2 @custName VARCHAR(20), @y int, @outVar int
output
as
select @outVar = @y * @y
select @custName
select * from BorrowerExample where name = @custName'.
mySession execute.
[mySession answer == #noMoreAnswers] whileFalse.

Next, we can invoke this stored procedure using the following
expression:

| connection session answer aList |
connection := CTLibConnection new.
connection

username: 'psmith';
Database Application Developer’s Guide 6-9

Using the Database Connect for Sybase CTLib
environment: 'OCELOT100';
password: 'psmithpsmith';
connect.

 session := connection prepare: 'declare @tmp int exec ck_2 :1, :2,
@outVar = @tmp output'.
session bindInput: #('Susan Chinn' 10).
session bindOutput: nil.
session execute.
aList := OrderedCollection new.
 [(answer := session answer) == #noMoreAnswers]

whileFalse:
[answer == #noAnswerStream

ifFalse:
[answer do: [:each | aList addLast: each]]].

session notNil ifTrue: [session disconnect].
connection notNil ifTrue: [connection disconnect].
Transcript show: aList printString; cr.

A stored procedure may have both input fields and output fields. The
output variable must be declared as a temporary variable, and
declared as output when you call the stored procedure.

In this example, when we invoke the stored procedure, the return
parameter is declared by 'declare @tmp int', and then assigned to
@outVar, which is the name of the output variable in the stored
procedure itself. The temporary variable tmp can be any name.

The prepare: message argument also specifies the name of the stored
procedure (ck_2 in the example) and the input variables, which may
be declared and assigned or bound by an object. Here, the input
variables are bound using positional binding, and specified via the
bindInput: message.

Finally, we send answer to the session until the result #noMoreAnswers
is returned.

Sybase Threaded API
VisualWorks supports a Threaded API (THAPI) for CTLib. This
enables your application to make calls to the Sybase database
without blocking the object engine.

The issues surrounding the use of blocking vs. non-blocking APIs
may be found in the discussion of the Oracle Threaded API.
6-10 VisualWorks

Sybase Threaded API
Limitations
Currently, the Sybase threaded client library allows multiple sessions
per connection, but only one session may run on a connection at any
time.

If your application needs multiple sessions, you must either use
Semaphores to control the order of running the sessions, or multiple
connections (this is illustrated in the second code sample, below). If
your application needs to have multiple result sets open at one time,
you must maintain multiple connections, one per active session.

Developers seeking to write portable applications should be aware
that this limitation does not exist for Oracle libraries, and that code
written for an Oracle server that uses multiple concurrent sessions
might not be portable for use with Sybase clients.

Using CTLibThreadedConnection
For Ad Hoc SQL queries, simply select the SYBASE-CTLib Threaded
connection type from the Database Connect pull down menu.

To use Sybase with THAPI at EXDI level, replace your existing EXDI
code as follows:

1 Replace references to CTLibConnection with references to
CTLibThreadedConnection.

2 Replace references to CTLibSession with references to
CTLibThreadedSession.

Example
The examples below illustrate the use of CTLibThreadedConnection.
The first example uses the same BlockClosure to retrieve data from
from three different tables. There are multiple sessions, each with a
single connection.

Note that a mutualExclusion semaphore is used for writing to the
Transcript. This prevents a “forked UI processes” conflict, since the
Transcript needs to be protected from multi-threaded message
overlaps.

When run, three identical processes are created, each ready to work
with a different table. The priorities are all assigned to level 30, and
then they are all started, roughly simultaneously.
Database Application Developer’s Guide 6-11

Using the Database Connect for Sybase CTLib
This example assumes that the three tables systypes, sysusers, and
sysroles, already exist. Any existing non-empty tables may be used by
substituting their names.

| aBlock b1 b2 b3 sem |
sem := Semaphore forMutualExclusion.
aBlock := [:tableName :id |

| conn sess ansStrm |
conn := CTLibThreadedConnection new.
conn

username: 'user';
password: 'password';
environment: 'env'.

conn connect.
sess := conn getSession.
sess prepare: 'select * from ', tableName.
sess execute.
ansStrm := sess answer.
[ansStrm == #noMoreAnswers] whileFalse:

[(ansStrm == #noAnswerStream) ifFalse: [
[ansStrm atEnd]

whileFalse:
[| row |
row := ansStrm next.
sem critical:

[Transcript show: tableName, id, ': '.
 Transcript show: row printString; cr]].

ansStrm := sess answer]].
conn disconnect].

b1 := aBlock newProcessWithArguments: #('systypes' 'Connection 1').
b2 := aBlock newProcessWithArguments: #('sysusers' 'Connection 2').
b3 := aBlock newProcessWithArguments: #('sysroles' 'Connection 3').
b1 priority: 30.
b2 priority: 30.
b3 priority: 30.
b1 resume.
b2 resume.
b3 resume.

The second example illustrates the use of one connection with
multiple sessions, using an access Semaphore to control the order of
running each session:

| connection accessSemaphore sem bBlock b1 b2 b3 |
connection := CTLibThreadedConnection new.
connection

username: 'user';
password: 'password';
6-12 VisualWorks

Sybase Threaded API
environment: 'env'.
connection connect.
accessSemaphore := Semaphore new.
sem:= Semaphore forMutualExclusion.
bBlock :=

[:tableName :id |
| sess ansStrm |
sess := connection getSession.
accessSemaphore wait.
sess prepare: 'select * from ' , tableName.
sess execute.
ansStrm := sess answer.
[ansStrm == #noMoreAnswers] whileFalse:

[(ansStrm == #noAnswerStream) ifFalse: [
[ansStrm atEnd]

whileFalse:
[| row |
row := ansStrm next.
sem critical:

[Transcript show: tableName, ' ', id, ': '.
 Transcript show: row printString; cr]]].
ansStrm := sess answer].

sess disconnect.
accessSemaphore signal].

b1 := bBlock newProcessWithArguments: #('systypes' 'session 1').
b2 := bBlock newProcessWithArguments: #('sysusers' 'session 2').
b3 := bBlock newProcessWithArguments: #('sysroles' 'session 3').
b1 priority: 30.
b2 priority: 30.
b3 priority: 30.
b1 resume.
b2 resume.
b3 resume.
accessSemaphore signal.
Database Application Developer’s Guide 6-13

Using the Database Connect for Sybase CTLib
6-14 VisualWorks

7

Developing a Database Application

This chapter discusses the architecture of a VisualWorks database
application, its components, and gives an overview of the various
tools available for building application components and database
modelling:

• VisualWorks Application Structure

• Components of a Database Application

• VisualWorks Database Tools

• Lens Name Space Control

Overview
The VisualWorks database application framework provides support
for external access to a variety of common RDBMS. The framework
consists of these four elements:

• External database interface classes (EXDI)

• Database-specific (e.g., Oracle and Sybase) connection
extensions to the EXDI, providing concrete classes

• Lens runtime interface

• Lens data forms and tools

The EXDI provides the lowest level of database access support in
VisualWorks, giving you the most direct and detailed control of a
database session. It enables execution of SQL statements in
database sessions, binding of parameters, and the like.
Database Application Developer’s Guide 7-1

Developing a Database Application
For a more general discussion of the VisualWorks EXDI framework,
see EXDI Database Interface.

The following sections of this chapter introduce the organization and
structure of a VisualWorks database application.

The Lens provides higher-level facilities that simplify the task of
database access. The Lens Data Modeler provides a mechanism for
mapping table rows and columns to Smalltalk objects, as well as
tools for creating and managing the mappings. It provides a runtime
environment for handling object persistence in an object-oriented
fashion, largely hiding the relational SQL activity underneath.

For a step-by-step guide to the use of the Lens Data Modeler, see
Building a Data Model.

The Lens runtime environment supports object containers, object
identity, database proxies, and a sophisticated query capability. The
Lens also provides UI designer features that simplify the task of
creating a user interface to your database-accessing application.

VisualWorks Application Structure
A VisualWorks application generally consists of the user interface
(UI) and the information model. The UI handles input and output,
usually in a graphical manner employing windows and widgets. The
information model handles data storage and processing, and is
generally divided into one or more domain models and application
models.

Domain models represent the state and behavior of objects in the
application’s domain, the aspect of a business that the application is
designed to automate.

Application models provide a layer of information and services
between the user interface and domain models. In effect, the
application model controls or coordinates the interaction between the
UI and the domain model.

VisualWorks database applications have this same structure, except
that at least one of its domain models represents the information in
the database, external to VisualWorks.

In a database application, domain models represent the data, but
they do not know how to access the database itself. A separate layer
handles the details of database access. Separating the domain
model from the particular database clarifies the application by
7-2 VisualWorks

Components of a Database Application
distinguishing how the data is used from the way it is stored. Also,
since the data handling is generalized, the same data model can be
retargeted to different databases by simply changing the database
access layer.

Applications typically access the database using mechanisms
provided by the Object Lens. The Object Lens is a set of classes and
tools that simplify database access and help the developer map
tables in the relational database to objects in the Smalltalk domain
model.

Components of a Database Application
A database application that you create with VisualWorks consists of:

• Many entity classes, which serve as domain models for the
application. An entity class instance models a row of the
database table, with instance variables modeling the columns.
Database Application Developer’s Guide 7-3

Developing a Database Application
• A single database application class, which serves as the
database application for the application.

• One or more data form classes, which serve as general-purpose
application models.

Entity Classes
An entity class is the Smalltalk representation of a database table.
Each instance of an entity class represents a row in the
corresponding database table. Columns in a database table are
represented by instance variables in the corresponding entity class.

For example, a database may represent a customer as having a
customer number, a name, and a category, maybe indicating the
amount of business they do. Each row of the table would be
represented by an instance of class Customer, which has three
instance variables: custNumber, custName, and custCategory.

Entity classes only need to contain instance variables for those
columns that are of interest to the application that you are building;
columns that are not of interest do not need to be represented. Entity
classes may also have instance variables that do not map to columns
in a database table.

Foreign key references are expressed as direct object references.
That is, the instance variables of one entity are defined to be of a
“type” that is another entity. For example, a foreign key reference from
7-4 VisualWorks

Components of a Database Application
a table of employees to a table of job titles is expressed as an
instance variable in the employees entity that is an instance of a job
title entity.

Any class can serve as an entity class, provided that:

• The class provides an instance variable that acts as a unique
identifier (primary key) for instances of the class. (While it is not
generally considered good database modeling practice, primary
keys composed of concatenated columns are supported.)

• The class contains an accessor and mutator method of the form
name and name: for each instance variable that is mapped to a
column in the database.

Database Application Class
The database application class holds resources that are used by all
other classes in the application. In particular the database application
class contains:

• The specification for the application’s main window

• The specification for the data model, which provides the
instructions for mapping tables in a specific database to entity
classes.
Database Application Developer’s Guide 7-5

Developing a Database Application
• A lens session, which provides the connection to the database
and uses the data model to manage consistency between the
information in the database and the application.

A database application class is a subclass of LensMainApplication
which is a subclass of ApplicationModel. You can create a database
application class when you install a data model, just as you do for an
Application Model when installing a canvas.

You may also choose Tools > Database > New Database Application ... to
create it by hand.

Main Window
The main window (sometimes called the Application Launcher) is the
root window of the application. The main window begins the chain of
interaction between windows and dialog boxes of the application.

When you create a database application class, VisualWorks creates
an initial window specification called windowSpec. This window
specification contains basic controls for managing database
connections and transactions. Using simple menu picks under the
Database menu, you can login and logout from a database, and
commit or rollback transactions.

You can enhance this window by adding actions that control your
application or open other windows.

Data Model
The data model is the heart of a database application. An
application’s data model defines the mapping between the object
model and the database schema. The data model specifies which
entity classes are included in the application and how those entity
classes are mapped to database tables. It also specifies the
relationships between classes and thus tables. Relationships may be
1:1 or 1:MANY. MANY:MANY relationships may be modeled as
two1:MANY relationships with an intersection table and object in
between.
7-6 VisualWorks

Components of a Database Application
The data model is not merely a graphical or logical representation of
the mapping between database tables and entity classes; it
completely specifies that mapping. Queries to the database are
based on information stored in the data model. Furthermore, the lens
session uses the data model at runtime to determine how to map the
information in database tables into Smalltalk objects. For this reason,
if a database schema changes, any data models built from that
schema must be updated.

A database application uses one data model. In the simplest case,
that data model is stored as a method called dataModelSpec in the
database application class that uses it. A database application class,
however, does not need to contain the data model that it uses. You
can set the dataModelDesignator of a database application class to use
a data model that is in another class. For example, you may choose
to place all of your data models in a single database application class
and reference those data models from other database application
classes.

Lens Session
At runtime, the mapping between rows of database tables and
Smalltalk objects is done by the lens session. The lens session is
created in the context of the application’s data model. It uses the
properties in the data model to determine which database
management system to use and how to map tables from that system
to Smalltalk objects. In this way, the lens session acts as a layer or
buffer between the relational database and the objects. The objects
themselves are not dependent on the database. This makes it easy
to port a database application to different databases.

The lens session for a database application class is stored in the
session variable of the class.

Data Form Classes
Data forms are the basic building blocks of database applications.
Data forms present information from the database to application
users and enable that information to be edited. Data forms are
specialized application models that support viewing and manipulating
rows of a database table through the lens session.

A data form class contains:

• One or more window specifications (canvases)

• One or more query specifications
Database Application Developer’s Guide 7-7

Developing a Database Application
• Smalltalk methods to suit the particular set of utilities in a
particular data model. These methods customize the inherited
implementation to suit a particular application.

Data form classes focus on displaying and manipulating the
instances of a single entity class. They are not, however, limited to a
single entity. Data forms also can manipulate “rows” that are made up
of instances of more than one entity. For example, they can show the
results of a join across database tables.

Data forms are subclasses of LensDataManager, which is a subclass of
ApplicationModel.

Data Form Canvases
Data form canvases display information from the database. Data form
canvases usually have controls that allow application users to
navigate through the rows in a table and to create, view, update, and
delete rows.

Data form canvases are similar to other canvases in that they are
stored as window specification methods and can be edited using
VisualWorks’ painting tools. Data form canvases differ from other
canvases in that the widgets on them must include special validation
and notification methods that ensure proper interaction with the lens
session and with other data forms.

When you create a data form class, VisualWorks generates an initial
canvas for it. The canvas is based on the template data form that you
specify. Templates supplied with VisualWorks provide widgets with
the validation and notification methods required. They also provide
controls that enable the application user to:

• Execute a query associated with the data form

• Navigate through a set of objects (rows)

• Create and delete objects and edit the different variables

You can modify the initial canvas to suit your application’s needs. You
can also create your own templates. For details see Creating a
Custom Data Form Template.

A data form may contain one or more canvases, all of which are
intended to display objects of the data form’s associated entity class.
These canvases can display different attributes of the entity or display
them in different ways.
7-8 VisualWorks

Components of a Database Application
Data form canvases can be linked together or combined to created
entire application interfaces:

• A linked data form is one which is displayed in a separate window
when the application user clicks on a button in another data form.
The linked data form widget is a special-purpose action button
with additional properties that describe how the data form is to
behave.

• An embedded data form is one which is displayed embedded
inside another data form. An embedded data form widget is a
special-purpose subcanvas with additional properties.

Linked and embedded data forms are arranged in a parent/child
hierarchy, with the application’s main window being the topmost node.
During operation, various events are communicated through this
hierarchy. The events that are communicated include window closing,
logging in and out of the database, and committing and rolling back
transactions. This allows for easy development of master/detail
drilldown applications as well as more complex applications.

Queries
A query specifies the rows of a table that will be loaded for viewing
and editing in the data form. The query also specifies the order in
which the rows will be presented within an application data set.

Queries exist in the context of a specific data model. Thus, data
forms exist in the context of a specific data model. If the data model
on which a data form is based is changed, then the data form may
also need to be changed. In particular, the data form will need to be
changed if the instance variables that it manipulates are changed.

When you create a data form class, VisualWorks generates a default
query for it. The default query is stored as a method called ownQuery
and retrieves all of the rows from the table that is mapped to the data
form’s entity or entities. It retrieves only the columns for which
instance variables are mapped in the data model. If the data form
manipulates more than one entity, the query uses the relationship
between those entities when retrieving information from the
database.

Queries can be combined to narrow down the data set to the desired
granularity. For example, the contents of the embedded and linked
data forms are typically determined by combining the ownQuery of the
embedded or linked data form with a restricting query that is defined
Database Application Developer’s Guide 7-9

Developing a Database Application
in the parent data form. Putting the restricting query in the parent
makes the child data form more reusable. Different parents can use
the child data form in different ways, with different restricting queries.

VisualWorks Database Tools
VisualWorks includes both tools and tool extensions to help you
create applications that access relational databases. The database
tools are introduced briefly here, and their use is explained in more
detail as they are used in the following chapters.

Data Modeler
The Data Modeler is the central tool for creating and editing data
models. Using the Data Modeler, you define the entity classes and
their instance variables, and set data model properties.

The Data Modeler provides access to other database tools.

Mapping Tool
The Mapping Tool enables you to define the associations between
the entity classes and database tables, and between instance
variables and columns. From the Mapping Tool you can also create or
alter tables in the database. (You cannot remove tables using the
Mapping Tool. To remove a table you would use the Ad Hoc SQL Tool
and issue a DROP TABLE SQL command.)

Database Tables Viewer
The Database Tables window displays a list of the tables in the
database and their columns. This tool enables you to select tables in
the database, and automatically model the tables and their relations
in the data model.

Query Editor
The Query Editor is a form-based dialog that helps you create and
edit the queries that retrieve information from the database. A Query
Assistant module provides further assistance in selecting query
elements.
7-10 VisualWorks

VisualWorks Database Tools
Menu Query Editor
The Menu Query Editor enables you to edit the queries used to
retrieve information from the database and use that information to
define the choices on a menu.

Ad Hoc SQL Tool
The Ad Hoc SQL tool enables you to write SQL statements and send
them directly to the database. This tool is accessed from the
VisualWorks main window, and is useful for testing queries and
performing certain database operations from VisualWorks.

Canvas Composer
The Canvas Composer sets properties that specify how the initial
canvases for data forms are generated.

Tool Extensions
VisualWorks’ painting tools contain several features that are
specifically designed for database applications.

To the Palette
The Palette includes two widgets for connecting data forms together
as part of a larger application:

• Linked Data Form is a special action button that, when users click it,
displays another data form in a separate window.

• Embedded Data Form is a special subcanvas that displays another
data form in the current window.

To the Canvas Tool
The Canvas Tool includes several commands that are especially
useful when creating database applications:

• Tools > Reusable Data Form Components displays a window with
widgets that are predefined for use in data forms, including
buttons for navigating and editing data. These widgets can be
copied into your data forms.

• Special > Define Menu as Query displays the Menu Query Editor,
which enables you to define queries that retrieve information from
the database and use that information as choices on a menu.
The Define Menu as Query command is available when you have a
menu button selected on the canvas.
Database Application Developer’s Guide 7-11

Developing a Database Application
• Special > Create Child Data Form creates another data form to be the
child of the selected linked or embedded data form widget and
displays the child’s canvas so that you can edit it.

• Special > Paint Child Data Form displays the canvas for the data form
that is attached to the selected linked or embedded data form
widget.

• Special > Browse Child Data Form displays a class browser with the
Smalltalk code for the data form that is attached to the selected
linked or embedded data form widget.

Lens Name Space Control
With the release of VisualWorks 5i, the addition of name spaces
provides new flexibility and with it complexity to Lens modeling tasks.

When new classes are being created or existing classes selected, the
system must know both the simple name (e.g., Customer) and name
space (e.g., Lens) of the class. This class could then be referred to by
its fully qualified name Lens.Customer.

To make using the Lens as simple as possible, the Name Space
Control Tool was created. You can open the tool using
LensNamespaceControl open or by menu option in Data Modeling Tool.
Two lists are presented, Selected and Available, with arrows to move
items back and forth between the lists.

The selected list will always contain at least the Smalltalk and Lens
name spaces. What is in this list will control the behavior of all all
Lens tools where a menu pick of name spaces is required. The
choices are controlled and, for user convenience, the menu always
defaults to the last user selection. Two selection memories are
supported; one for modeling activity and another separate memory
for application creation.

Name Space Options

Note: Compatibility with versions prior to 5i is supported (i.e., an
old Data Model can be loaded); however, once saved, it will be in
a new form which cannot then be used in previous versions.

1 You can do all your modeling in the Smalltalk name space.

2 You can model and develop in the Smalltalk and/or Lens name
space.
7-12 VisualWorks

Lens Name Space Control
3 You can add your own name spaces. To use a new name space:

• It must be defined with imports to Smalltalk.*, Database.*, and
Lens.*.

• The Lens Name Space Control must be used to move the
new name space to the Selected List.
Database Application Developer’s Guide 7-13

Developing a Database Application
7-14 VisualWorks

8

Building a Data Model

The data model is the heart of a database application. A data model
stores information about the associations between database tables
and VisualWorks classes. A database application has one data
model, but may represent data from several tables.

Initially, you create a new, empty data model, and then you populate it
with entity classes. There are two primary ways of creating entities for
the data model. You can:

• Generate the entities from existing tables in the database.

• Create new entities and then generate tables from them.

The VisualWorks Object Lens provides a suite of tools that simplify
the process of building a data model. In this chapter, we’ll introduce
the three most useful tools: the Database Tables browser, the Data
Modeler tool, and the Mapping tool.

An Example Data Model
A Lens data model uses Smalltalk classes as entities, where each
entity class represents either a database table or the class (type) of
an element in a table row (the values in a column). Entity class
names should follow the Smalltalk convention of beginning with an
upper-case letter.

Each instance variable in an entity class represents a table column,
and each should be named following the Smalltalk convention of
beginning with a lower-case letter.
Database Application Developer’s Guide 8-1

Building a Data Model
The discussion of the Lens tools in this chapter shows how to create
a simple data model that is expressed using three classes: Customer,
Employee, and Job.

For reference purposes, the example data model is included with the
VisualWorks distribution in the form of a parcel named Lens-Example2.
You may load this parcel and browse the completed classes, but do
not load it if you intend to create the example entity classes from
scratch.

In this data model, class Customer is defined as follows:

Smalltalk defineClass: #Customer
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: 'customerId zipCode areaCode phoneNumber

creditLimit comments salespersonId'
imports: ''
category: 'Lens-Examples'

The VisualWorks Lens provides a way to associate SQL datatypes
with the instance variables in an entity class. In this example data
model, the instance variables of class Customer are typed as follows:

Class Employee is defined as follows:

Smalltalk defineClass: #Employee
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: 'employeeId lastName firstName middleInitial

hireDate salary commission jobId
managerId'

Name Type

customerId SerialNumber

zipCode String

areaCode String

phoneNumber String

creditLimit FixedPoint

comments String

salespersonId Employee
8-2 VisualWorks

Create a New Data Model
imports: ''
category: 'Lens-Examples'

These types are associated with the instance variables of Employee:

Finally, class Job is defined as:

Smalltalk defineClass: #Job
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: 'jobId function'
imports: ''
category: 'Lens-Examples'

These types are associated with the instance variables of Job:

Create a New Data Model
Before you define the mapping between a database table and the
domain model, you must create the empty data model. This is true
whether you are creating a data model from an existing table, or will
create the table from the data model.

Name Type

employeeId SerialNumber

lastName String

firstName String

middleInitial String

hireDate Date

salary FixedPoint

commission String

jobId Job

managerId Employee

Name Type

jobId SerialNumber

function String
Database Application Developer’s Guide 8-3

Building a Data Model
To create a new, empty data model:

1 Open the Data Modeler, by selecting Tools > Database > Data Modeler
in the VisualWorks main window.

2 In the Data Modeler, select Model > New... .

3 Enter the data model property information requested, and click
OK.

VisualWorks prompts you for information about the database
associated with the new data model. This information becomes
the default information whenever the application accesses the
database.

The initial values for data model properties come from your
database settings in your VisualWorks image. To change these
settings, choose Model > Properties... in the Data Modeler.

Environment string formats vary between databases, and often
use mappings. Refer to Environment Strings for more
information.

Defining Database Entities

Define Entities from an Existing Table
If you are creating an application for an existing database table,
VisualWorks can define data model entities from the table columns.
8-4 VisualWorks

Defining Database Entities
1 Open the Database Tables browser by choosing View > Database
Tables in the Data Modeler.

If prompted, log in to the database.

2 Enter the name of the table to use, or a pattern for matching, and
click Fetch.

Depending on your configuration, VisualWorks may prompt you
to establish a database connection.

The Database Tables browser lists all matching database tables.

3 Select the table you want to model, and click Create.

VisualWorks prompts you to select the name space from a list
(initially Smalltalk and Lens) in which the named class will exist.
You can add your own name space to contain your entity classes.
The rule is that the name space must import both Smalltalk.* and
Lens.*. (See Lens Name Space Control for more details.)

4 Select the class category in which to create the entities. Enter a
category name and click OK.

Depending on how your database is set up, VisualWorks may
prompt you for the primary key for the selected table. If so,
specify a field.
Database Application Developer’s Guide 8-5

Building a Data Model
VisualWorks creates an new entity class with instance variables
for the data model and updates the Data Modeler to graphically
show that entity.

The graphic is initially collapsed. Click on the arrow next to the
class name to expand the graph, or choose Entity > Show
References.

Instance variables are named to correspond to the columns in
the database table, using Smalltalk naming conventions.

To view the mappings explicitly, select the entity and choose View
> Mappings. The mappings are shown, together with additional
information, in the Mapping tool.

Select an instance variable to view the details (Type) of that
variable and the column to which it corresponds (shown in the
upper part of the Mapping Tool).

Variables preceded by an equal sign (=) compose the primary
key in the database. Note that the primary key cannot be nil, so
Not Nil and Not Null are selected for the variable and column.
8-6 VisualWorks

Defining Database Entities
5 To add entity classes to the data model for additional tables,
repeat steps 3 and 4, above.

6 When you are finished creating entity classes, install the data
model specification, by selecting Model > Install in the Data
Modeler tool.

Create Entities for a New Table
If you are creating an application for which there is no existing table,
you can define your entity classes first and allow VisualWorks to
create the table for you. Before you start, ensure that you have
adequate database rights to modify an existing table, or create a new
one.

To illustrate, we shall use the Lens Data Modeler and Mapping tools
to define class Customer from the example data model (for details,
see An Example Data Model).

To define this entity class and use it to create a table:

1 Open the Data Modeler, and select Model > New... to create a new
data model.

As necessary, specify the user name, password, and
environment, and click OK.

2 To create a new entity class, choose Entity > Add..., enter a class
name (e.g. Customer), select a name space, and click OK.

The new class appears in the Data Modeler, and the Lens may
open a Mapping tool automatically.

3 To open the Mapping tool yourself, select the class Customer as it
appears in the Data Modeler tool and choose View > Mappings.

Use the Mapping tool to define instance variables in the entity
class Customer. Each instance variable represents a table
column.

4 To define an entity instance variable, select the table entity class
containing it (e.g., Customer), choose Variable > Add..., enter an
instance variable name (e.g., customerId), and click OK.

This adds an instance variable to the table entity class. Note that
entity instance variable names should follow the Smalltalk
convention of beginning with a lower-case letter.
Database Application Developer’s Guide 8-7

Building a Data Model
In this example, the instance variable customerId is used to hold a
primary key, and is thus referred to as a key variable.Each Lens
entity class must have one key variable.

Use the drop-down menu to select the variable’s Type. For the
purposes of this example, select SerialNumber as the type, and
click Not Nil.

5 Repeat the previous step to create all the instance variables you
will need.

For the example class Customer, add the following instance
variables (these in addition to customerId, already defined in the
previous step):

The example data model uses the variable salespersonId to refer
to an Employee, but this class has not yet been defined in the
VisualWorks image. Thus, as a placeholder, you must define it as
an Integer. Later, we shall change this to an Employee.

Note: As a rule, when defining variables that reference other
classes that have not yet been defined in the development image,
you should use the Integer type.

6 As noted above, the variable customerId is intended for use as the
table’s primary key. To indicate this in the data model, use the
cursor to select the customerId inst var, and choose
Select Single Column Key from the Entity menu.

Name Type

zipCode String

areaCode String

phoneNumber String

creditLimit FixedPoint

comments String

salespersonId Integer
8-8 VisualWorks

Defining Database Entities
The Mapping tool now displays the customerId variable with an =
sign preceding its name, to indicate that this single column is the
table's primary key. When finished, click OK.

Alternately, you may specify a primary key using the Key Editor.
Select Entity > Edit Key... to open the Key Editor dialog, and then
use the arrow buttons to select at least one variable as a key.

The Key Editor enables you to create a primary key that is
composed of several columns strung together. If you choose to
do this, each variable should be a String type so that all can be
appended together without error. When appended, they must
form a unique value, suitable for use as a primary key.To control
complexity, we discourage composite primary keys, and
recommend using a single instance variable as the key.

7 To create the table definition, select the entity class in the
Mapping tool (e.g., Customer), then select Entity > Specify Table.

The Mapping tool creates a default table and column mapping
based on the entity classes and variables. The column definitions
Database Application Developer’s Guide 8-9

Building a Data Model
appear in the right side of the Mapping tool window. At this point,
any VARCHAR fields can be modified to establish their proper
length.

To rename a column, choose Variable > Rename Column.

To rename the table, choose Table > Rename.... Also set the column
type, if necessary.

8 Now, create the table in the database by choosing
Check With Database from the Table menu of the Mapping tool.

The Mapping tool compares the data model with the database
and, because the table doesn’t exist, prompts you to confirm that
you want to create it. Confirm creation. The tool then creates the
table and reports that the specification and the database match.

9 To continue building the example data model, repeat steps 2
through 8 for class Employee. For details on the instance variables
and their assigned types, see An Example Data Model.

10 Repeat steps 2 through 8 for class Job.

11 Once all three entity classes have been defined, they should
appear in the Data Modeler tool. If not, select View > Update.

The foreign key references won't appear yet because we initially
defined their columns using Integer types as placeholders. To
specify that these are actually references to other entities (not
just integers), we must change the types.
8-10 VisualWorks

Creating Relations Between Entities
12 To specify the correct foreign key for an entity class (e.g.,
Customer), select it in the Data Modeler and choose Mappings
from the View menu.

13 Select the variable that should be a foreign key, and change its
type from Integer to the desired entity class.

For example, in in class Customer, select the salespersonId variable
and change its type to Employee.

14 To propagate this change to the database, select
Check With Database from the Table menu of the Mapping tool.

15 Repeat steps 12 through 14 for the jobId and managerId variables
in class Employee. The former should be type Job and the latter
type Employee.

16 To make all the links visible, select Infer All Foreign Key References
from the Model menu, in the Data Modeler tool.

Creating Relations Between Entities
When you first create entity classes in the Data Modeler, there are no
relationships defined between the classes. The tables in the
relational database, however, are related, by foreign key references
to each other.

In most situations, when you create entity classes from database
tables, the Data Modeler can read foreign key information from the
database and set up foreign key references for you. In some cases,
however, it cannot, and the foreign keys must be created explicitly.

Create Relations Automatically
To read foreign key references from the database:

1 In the Data Modeler, choose Model > Infer All Foreign Key References.
Database Application Developer’s Guide 8-11

Building a Data Model
For each foreign key reference between the entities, the Data
Modeler displays a confirming dialog box:

The dialog provides alternative namings for the foreign key
variable, and you can edit a name to your own specification. In
general, you will probably accept the indicated option. You may
also Skip the reference, and so not define the foreign key.

2 Select or enter the foreign key name, and click Accept Reference to
accept the relationship.

3 Repeat step 2 for each foreign key reference.

4 To view the relations graphically, expand the entities in the data
model:
8-12 VisualWorks

Check and Save the Data Model
Create Relations Manually
If the Data Modeler cannot read foreign key information, or if you
have other reasons for wanting to specify the relations yourself, you
can define the foreign keys in the data model manually.

1 In the Data Modeler, select an entity, then select View > Mappings.

2 Select a instance variable to be the foreign key and select the
type for the key.

For foreign key references, the type should match the name of
the entity class to which the variable refers. For instance, the
managerId variable may refer to the Employee entity class, and so
is assigned Employee as its type.

3 In the Data Modeler, update the display by choosing View > Update.

Expand the entity to graphically represent the relations.

4 Repeat step 2 to set up each foreign key reference.

Check and Save the Data Model
When you make any change to the data model, you must make sure
that it still corresponds to the database and then save it.

1 In the Data Modeler, choose Model > Check With Database.

If the Data Modeler reports any discrepancies, you are presented
with dialogs to select how to reconcile the differences, by
updating either the data model or the database table. If you do
not, when your application attempts to connect to the database
for the first time, an error will occur.

2 Install the data model specification by choosing Model > Install.

VisualWorks prompts you for the name of the database
application class and for a name for the data model specification.
Provide the requested information and click OK.

For a new data model specification, you are also prompted for
the name space, which can be any name space, and the
superclass, which must be LensMainApplication.

VisualWorks updates the Data Modeler display to show the
application class and specification name.

3 Close the Data Modeler.
Database Application Developer’s Guide 8-13

Building a Data Model
8-14 VisualWorks

9

Creating a Data Form

Data Forms are UI elements generated by the Lens toolset. A Data
Form provides a simple way to create a basic database application,
with a form as the user interface. You may use the data form as
generated, or enhance it with additional widgets and design features.

Even if you create your own GUI without using a generated data
form, generating the form initially sets up elements for the Object
Lens database interface that you can access from your application.

This chapter explores the following topics:

• Generating a Data Form

• Connecting a Data Form to an Application

• Testing an Application

• Replacing Input Fields with Other Widgets

• Creating a Custom Data Form Template

• Specifying an Aspect Path

Generating a Data Form
The first step in building any data form is to generate an initial
framework for the data form using the VisualWorks toolset. To
generate a data form, you create a new data form class, including the
base query, and specify the initial window specification (or canvas) for
the data form.

1 In the VisualWorks Launcher window, choose Tools > Database >
New Data Form....
Database Application Developer’s Guide 9-1

Creating a Data Form
2 In the New Class dialog, enter the information requested to define
the new data form class.

The information fields in this dialog are:

Name Space: Select the name space that contains your application.

Name: Enter a name for your data form class. The name must be
unique in the selected name space. Using the name of an
existing form, expecting an overwrite, won't work. If you wish to
overwrite an existing form with the same name, use the System
Browser to remove or rename the pre-existing class.

Superclass: The data form class must be a subclass of
LensDataManager or one of its subclasses.

Category: Enter an appropriate category name, which may be new
or already exist.

Data Model: If the desired data model class and specification are
not displayed, click the Browse button and locate them.

Entities: Add and select the entity class classes whose instances
will be used in this data form. The entities specified serve as the
domain model for this data form.click on the Browse button to
select a data model, which populates the Add drop down menu.
9-2 VisualWorks

Generating a Data Form
To illustrate, we can create a data form for class Employee in the
Lens-Examples2 package. To do this, enter EmployeeInfo as the
class name, cleck on Browse... and select
LensExampleApplication as the data model class. Then, click on
the Add drop down menu and select Employee.

3 Once all input fields have been set as desired, click OK.

VisualWorks generates the data form class and other methods,
and then displays a dialog box form of the Canvas Composer:

4 In the Generate Canvas dialog, specify the canvas characteristics,
then click OK.

The information fields you can set are:

Canvas: The selector for data form’s resource method.

Template: Select a predefined canvas template to provide the
layout for the new canvas. You can create your own templates, as
described in Specifying an Aspect Path. The standard templates
are:

• Multiple Row Editor enables creating, deleting, and changing
multiple rows. It also includes controls for navigating among
the rows in the table.

• Multiple Row Viewer includes navigation controls but does not
include edit controls.
Database Application Developer’s Guide 9-3

Creating a Data Form
• Row Editor includes controls for creating, deleting, and
changing a single row. It does not include controls for
navigating among the rows in the table.

• Row Viewer includes only a control for retrieving information
from the database; it does not include edit or navigation
controls.

• Tabular Editor generates a data form with a dataset widget
which enables users to view and edit a set of rows. It
includes controls for creating, deleting, and changing rows.
Navigation is done through the dataset.

• Tabular Viewer generates a data form with a dataset widget
which enables users to view a set of rows from a database
table. The tabular viewer does not allow editing. Navigation is
done through the dataset.

Edit Policy determines when application users can edit information
in the data form.

• If Touched allows editing at all times.

• When Told allows editing only after users formally begin editing
by clicking an Edit button or similar operation.

• Never makes the data form unavailable for editing.

The graph at the bottom of the dialog box enables you to select
the instance variables to be added to the data form.

For the purposes of this example, select the check box next to
employee and click OK.

When you have competed this dialog and clicked OK,
VisualWorks displays the generated canvas for the new data
form.
9-4 VisualWorks

Generating a Data Form
5 (Optional) Edit and install the data form canvas.

The generated canvas has already been installed as a resource
method in the class that represents the data form (in this
example, class EmployeeInfo), and the supporting Smalltalk code
has been generated. You may, however, edit the canvas further
using the standard VisualWorks canvas painting features. If you
do so, install the canvas again to save your changes.If you want
to browse your newly created classes, they are likely to be found
in the package (none) in the browser, since they haven't been
formally assigned to any particular package yet.

6 Test the data form

To see your data form work, click the Open button in the Canvas
Tool, or select Open from the Edit menu. VisualWorks launches the
application.

A Temporary Launcher stands in for a database application class,
and provides login, commit, rollback, and logout database
controls. It also provides a lens session, which manages
interactions between the form and the database.

To retrieve database data, click the Fetch button.

Depending on the template you used, you can now browse and
edit the data.If you are using a data form with a tabular view, note
that selecting a column (a DataSet widget) is accomplished by
Database Application Developer’s Guide 9-5

Creating a Data Form
holding the <ALT> key while pressing the <Select> button on the
mouse. For details on working with DataSets, see the GUI
Developer’s Guide.

If you make changes, you can save them in the running
application by clicking Accept. The lens session keeps track of the
changes and enter them into the database when the transaction
is committed. You can save your change to the database (and
end the transaction) by clicking Commit.

When you are done testing the data form, select Database > Exit in
the launcher. You may also want to close the canvas and painting
tools.

Connecting a Data Form to an Application
Once your data form is built, you must connect it to your application.
To connect data forms to main application windows or to other data
forms, VisualWorks provides two special widgets:

• A linked data form widget is a special-purpose action button that
when clicked displays another data form in a separate window.

• An embedded data form widget is a special-purpose subcanvas
that displays another data form in the same window as a parent
data form.

The linked and embedded data form widgets support properties to
set up methods in the parent data form that control the child data
form.

1 Open your application main window spec in the canvas.

You can use the VisualWorks Resource Finder to select your
application and its main canvas spec (usually windowSpec), and
click Edit. The canvas opens on the application main window.

2 Add linked or embedded data form widget to your canvas, and
open the Properties Tool on the widget.

3 On the Basic page of the Properties Tool:

• In the Class field, enter the class name of the data form to
open when the user clicks this data form button.

• In the Label field, enter the button label.

4 Click Generate Properties.
9-6 VisualWorks

Testing an Application
VisualWorks fills in the rest of the basic properties based on
information in the data form.

5 Apply the changes.

6 Click Define... to generate instance variables and accessor
methods for the data form widget.

A dialog prompts you to verify that you want to define the widget’s
model. Click OK.

7 Install the canvas to save your changes.

Testing an Application
To test your application, click the Open button in the Canvas Tool. Your
application starts and displays its new main window, with the data
form button you just defined.

Click the button to open the data form. Verify that the data form still
works correctly. When you are satisfied that your application works
correctly, return to the main application window and choose Database >
Exit.

Replacing Input Fields with Other Widgets
The standard data forms use input fields. In some cases, other
VisualWorks widgets, such as menu buttons, are more useful.

To replace an input field with another widget:

1 Open the data form specification in the canvas.
Database Application Developer’s Guide 9-7

Creating a Data Form
2 In the Canvas Tool, choose Tools > Reusable Data Form Components.

There are two groups of fields, one for data forms with edit
policies set to If Touched (above) and one for data forms with edit
policies set to When Told (below). Use the group that matches
the edit policy that you set in the New Class dialog box when you
first created the data form.

3 In the appropriate group, select the widget to use for data entry
and display.

4 Close the Reusable Data Form Components window.

5 In the canvas, paste (edit > paste) one widget near each of the
input fields you are replacing.

6 Open the Properties Tool on one of the input fields you are
replacing, and another Properties Tool on the widget replacing it.

7 Copy the contents of the input field’s Aspect field to the new
widget’s Aspect field.

The Aspect field uses a scripting language to specify the aspect
path. For more information about aspect paths, see Specifying an
Aspect Path.

8 For a Menu Button widget, enter a method selector that returns
the menu contents (in the Menu field).
9-8 VisualWorks

Replacing Input Fields with Other Widgets
9 Apply your changes.

10 Delete the old input field.

11 For a Menu Button, select the new widget and choose Special >
Define Menu as Query.

Use the Menu Query Editor to write queries that retrieve a set of
objects that are to be available from a menu. Menu queries also
specify which of the instance variables to display as labels on the
menu.

The fields are:

Message Pattern: The selector for the query. Enter the query
selector or, if the menu for the selector is already defined,
VisualWorks generates the query message pattern for you. This
field, if blank, will be generated automatically, in step 12.

From: The name of the entity class to query for the menu values.
Enter the entity class name, or click the radio button next to From
and select the entity class in the graph space below (selecting is
the recommended technique).

Labels: The instance variables of the entity class (i.e., From) from
which to obtain the menu labels. Click the Labels radio button, and
select the variable in the graph space below.

12 Choose Query > Generate Menu Accessor....
Database Application Developer’s Guide 9-9

Creating a Data Form
When prompted to confirm the accessor name, verify that it
matches the name you entered for the Menu property of the menu
button, and click OK.

To summarize, the entity type provided by the widget will be that
of the entity class selected in the From field. Basically, the entity
class you select via From provides the key, and the item specified
via Labels is a descriptive text element of that entity. In the entity's
database table, typical columns might be ID and DESCRIPTION.

VisualWorks generates an accessor method that returns the
menu for the button. It also generates a message pattern to be
used for the menu’s query method and inserts it in the Message
Pattern field of the Menu Query Editor.the menu only works
correctly after the first data fetch, at which point selecting a menu
item switches the data form into edit mode and the button can
show the selected item.

13 Choose Query > Install....

When prompted to confirm that you want to install the query, click
OK. Close the Menu Query Editor and return to the canvas for
EmpInfoDF.

14 Install... the canvas to save your changes.

Embedding a Data Form
In some situations it is preferable to include the data form in another
window rather than to open a new window. To embed a data form:

1 Open the window specification in the canvas, and arrange
widgets to make room for the data form.

2 Add an Embedded Data Form widget to the canvas and resize it.

3 In the Properties tool, specify the data form Class, and click
Generate Properties.

Based on the properties of the data form you specify,
VisualWorks supplies the rest of the basic properties.

4 Apply your changes and install the canvas.

5 Click Define... to generate the widget’s model. Click OK to confirm
generating the methods.

6 If there is a circular foreign key reference in a table, VisualWorks
prompts you to choose how to define the restricting query for the
9-10 VisualWorks

Replacing Input Fields with Other Widgets
embedded form. Select an option and click OK, or click Cancel to
create an alternative query.

If you click Cancel, VisualWorks creates a query that does not
restrict the query of the child data form. You can edit the query
using the query editor.

Editing a Query
If the generated queries provided by VisualWorks are not suitable,
you can edit them using the Query Editor.

1 In the Resource Finder, select your data form definition and the
query to edit, and click Edit.

Initially the Where clause does not specify any rows, so the query
returns the full table with no restriction. The Where clause must
begin with the variable in the child data form that matches the
parent data form.

2 Expand the graph and select a variable to add it to the Where
clause.

You can type the clause directly into the Where field, but because
the query syntax is neither Smalltalk code nor an SQL statement,
it’s generally best to use the tools in the Query Editor and Query
Assistant to create queries.

3 Click the Query Assistant button, and select an operator to insert
into the Where clause.
Database Application Developer’s Guide 9-11

Creating a Data Form
4 In the graph, find and select the target variable in the parent data
form, to add it to the query.

The Where clause must end with the variable in the parent data
form to be checked against the child data form.

For more information about the Query Editor, see Writing
Queries.

5 Choose Query > Install.... VisualWorks displays a dialog box
confirming that you want to install the query as
empListViewerDFQuery.

6 Click OK.

Removing the Fetch Button
Because we are going to use this as part of another data form, we
don’t need the Fetch button. To remove it, select it using the mouse
and press <Delete>.

Creating a Custom Data Form Template
While the predefined set of templates suffices for many common
applications, custom templates enable you to control the appearance
and extend or restrict the behavior of default data forms.

Template canvases can be stored in either the LensDataManager class
or a subclass. For any particular subclass of LensDataManager, the
Canvas Composer lists all templates that are available from that
subclass and its superclasses.

The actions protocol of LensDataManager supports a variety of common
data-form activities, such as advancing to the next row of data and
accepting edits. By creating a custom subclass of LensDataManager,
you can add to this set of generic actions. Your custom templates can
then include action buttons for invoking these new actions. Then,
when creating a new data form, you can name your custom class as
the superclass rather than LensDataManager.

To create a custom template:

1 Create a canvas that contains the desired input fields, action
buttons, menu buttons, and so on.

2 For each data widget (usually input fields or dataset columns),
set the Aspect property to #row * | trigger.
9-12 VisualWorks

Specifying an Aspect Path
The #row keyword indicates that the value of the field is to be
derived from the current row of data. The asterisk is a wildcard
that is replaced by the appropriate variable accessor in the
generated form. The vertical bar indicates that the edited version
of the value is to be buffered until it is explicitly accepted. trigger is
the name of a variable that holds a value model used by the
accept method to cause the model’s value to be replaced with the
buffered value.

3 For each label widget, set the Label property to an asterisk when
you want the table and column name to appear as the default
label.

4 For each widget of any type, include an asterisk in the ID property
to cause the table name and column name to be placed there in
the generated ID.

For example, an input field’s ID in a template is typically #*Field,
which causes each generated ID to be assembled from the table
name, column name, and the word Field.

5 To repeat a group of widgets throughout the available space in
the form (as in the existing multipleRowEditorTemplate), group the
widgets using the arrange > group command.

The resulting composite must have an ID property of #cellContents.
The spacing between groups of widgets is controlled by a region
widget that is placed behind the grouped widgets. This region
must have an ID property of #cellBounds.

6 Install the completed canvas on the LensDataManager class, or a
subclass, with the canvas name ending with “Template”.

The portion of the canvas name that precedes the word Template
is broken into separate words and used to identify the template in
the Canvas Composer’s Template menu.

Specifying an Aspect Path
When VisualWorks generates a data form, it automatically fills in the
Aspect property for each widget in the data form with an aspect path.
Each aspect path identifies a column within the row object being
displayed in the data form.
Database Application Developer’s Guide 9-13

Creating a Data Form
The aspect path also causes the interface builder to create an
appropriate aspect adaptor, to connect the widget to its part of the
row. The path may also cause the builder to create an input buffer
behind the widgets, by combining the aspect adaptor with a
BufferedValueHolder.

The generated aspect paths are usually sufficient. You only need to
enter an aspect path if you are adding a widget that was not
generated as part of the initial canvas or if you are changing the
information displayed by a widget.

To specify an aspect path:

1 The first symbol in an aspect path is called the head, which is the
name of the accessor method that returns the value model
holding the domain object being adapted. The builder uses this
value model as the subject channel. For widgets on data forms,
the head is usually #row, which corresponds to a method that
returns a value model that contains a row object.

2 For widgets on data forms, follow the head with an at sign (@)
and the name of an entity in the data form’s row. For example,
#row @ empinfo specifies the empinfo entity in the row. Usually this
name is the same as the name of the kind of entity used for that
part of the row, but it is just an tag. The @ construct must appear
in aspect paths for data forms even if the row of the data form
has only a single component.

3 The remaining elements (up to but not including a vertical bar, if
one exists) are the path. For the path, enter a series of aspects,
each of which identifies the accessor and mutator messages to
be used for retrieving and storing information at that step in the
path. For example, #customer name would cause the #name
message to be sent to the value of the customer model when the
widget needs a value to display. If the widget were used to
change the value, the message #name: would be sent to the value
of the customer model, along with the new name.

4 If you include a number in an aspect path, the messages #at: and
#at:put: are used, and the number that was in the path is used as
the index argument. For example, a path of #descriptors 2 causes
the second element of the value of the descriptors model to be
adapted. The value of descriptors might be, for example, an
Array. Using a numeric element in an aspect path of course
assumes that the value of the model is stable in the sense that
9-14 VisualWorks

Specifying an Aspect Path
the targeted information is always at a constant offset into the
collection.

A path may be arbitrarily long, with each aspect being used to
access or edit the result of the preceding step.

5 The final aspect in the path determines the kind of aspect
adaptor created by the builder:

• If the aspect is a symbol, an instance of AspectAdaptor is
created.

• If the aspect is a number, an instance of IndexedAdaptor is
created.

6 To store the edited information being displayed in a buffer until an
explicit action inserts the information into the domain model, add
a vertical bar and an additional name after the path.

The final name is the message to be sent to the application
model to retrieve the value model to be used as the trigger
channel controlling the BufferedValueHolder that will be created by
the builder. Automatically generated data forms all use a single
trigger channel named #trigger.
Database Application Developer’s Guide 9-15

Creating a Data Form
9-16 VisualWorks

10

Lens Programmatic API

The Lens API enables you to use Lens facilities to access a database
independently of data forms. These techniques make use of the
session object that is available from the Object Lens.

Connecting to a Database
Connecting to a database using the Lens involves establishing a
session, initializing it with a username and password, and then
asking the session to connect to the database.

A generated database application automatically prompts for the
username and password and then connects a lens session, the first
time database access is required by the application.

When you want to provide a custom dialog for getting the login
parameters, or to avoid presenting a dialog altogether, redefine the
#databaseLogin method that is inherited from LensApplicationModel.

Using a Lens Session Connection from an Application
Sometimes the user interface for a generated database application is
not needed, but the automatic connection facilities are still useful. For
example, an application may need to perform one of the queries
defined for the generated application, but doesn’t need the entire
interface. In this situation, you can use the application’s default
session-connecting mechanism without having to open the
application.

1 Get or create an instance of the application.

2 To get a lens session from the application, send a session
message to the application instance.
Database Application Developer’s Guide 10-1

Lens Programmatic API
The application prompts for the username and password, as
usual, and returns a connected lens session.

3 When you are finished using the lens session, you can
disconnect it by sending a #disconnect message to the session.
Do not disconnect if you obtained the session from a running
application, since that would disconnect the application as well.

| app session query rows |
 "Create the application and get a connected session."
 app := Database1Example new.
 session := app session.
 session isNil ifTrue: [^nil].
 "Use the session to perform a query."
 query := app bookLoanMgr overdueBooksQuery.
 query session: session.
 rows := query values.
 "Disconnect the session, if appropriate."
 session disconnect.
 ^rows

Getting an Unconnected Session from a Data Model
You can obtain an unconnected lens session from a data model. This
is useful, for example, if you need to initialize the session’s username
and password someway other than with the default mechanism, and
then connect it.

If you do not set the username and password explicitly, a connection
will be attempted using the defaults from the data model. Only after
the defaults fail will the user be prompted for a username and
password. This causes a delay while the default connection is
attempted. To prevent the delay, detect the need for the username
and password in the application.

1 Get the default data model, by sending a dataModel message to
the application class.

To get a different data model, send dataModelAt: with the data
model specification’s name as the argument.

2 Send getSession to the data model to get an unconnected lens
session.

3 Set the lens session’s username and password to the desired
values.

4 Connect the lens session to the database, by sending a connect
message or to the session.
10-2 VisualWorks

Performing a Query
If the password is not stored with the session, send connect: with
the password string instead.

If the username or password is not recognized, the user will be
prompted for new login information.

5 When you are finished with the lens session, disconnect it if
appropriate.

| dataModel session query rows usr pwd |
 "Get the data model and an unconnected session."
 dataModel := Database1Example dataModel.
 session := dataModel getSession.
 session isNil ifTrue: [^nil].
 "Set the username and password."
 usr := Dialog request: 'Enter username'.
 pwd := Dialog request: 'Enter password'.
 session username: usr.
 session password: pwd.
 "Connect to the database and test for success."
 session connect.
 session isDisconnected ifTrue: [^nil].
 "Here, we use the session to perform a query."
 query := BookLoanMgrExample new overdueBooksQuery.
 query session: session.
 rows := query values.
 "Disconnect the session."
 session disconnect.
 ^rows

Performing a Query
A base query (called ownQuery) is designed implicitly for a data form
when the data form is created. This query is performed when rows
are fetched into the data form. In many applications, creating a data
form is the only technique required for designing and performing a
query.

Frequently, a custom query or special control is required, as
described in the following sections.
Database Application Developer’s Guide 10-3

Lens Programmatic API
Sending a Query to a Lens Session
When a data form is not needed, when a non-generated interface is
being used, or when a customized query is needed, a query can be
explicitly created and stored using the Query Editor. In the example,
which involves selected columns from two tables, the row objects are
arrays containing the selected values.

1 Create an instance of the application that supplies the data
model.

2 Send a session message to the application to get a lens session.

3 Get the query by creating an instance of the child data form
(bookLoanMgr) in which the query was installed and sending it the
query message (overdueBooksQuery).

4 Give the lens session to the query (via session:).

5 Perform the query (via values), getting a collection of arrays (in
this case) or other row objects.

6 Disconnect the lens session, if appropriate.

| app session query rows |
 "Create the application and get its session."
 app := Database1Example new.
 session := app session.
 "Get the query and give the session to it."
 query := app bookLoanMgr overdueBooksQuery.
 query session: session.
 "Get a collection of row objects from the query."
 rows := query values.
 "Disconnect the session, if appropriate."
 session disconnect.
 ^rows

Limiting the Number of Rows Fetched
By default, SQL queries fetch all rows satisfying the query. If the
query returns a larger number of rows, you may need to restrict the
number of rows fetched. There are several options.

For applications using the Lens, you can check the Fetch On Demand
option for the query in the Query Editor. This causes rows to be
fetched six at a time. The next six rows are fetched only when
accessed.
10-4 VisualWorks

Performing a Query
You can also create a Create(*) query, that returns the number of rows
that would be fetched by the query. If the number is too big, your
application can prompt the user whether to fetch all the rows or to
refine the query.

To fetch and examine rows one at a time, use an answer stream, as
described in the next section, Processing on Individual Rows from a
Lens Session.

Another approach is write the query with the proper qualifications.
Since this is not supported by the Query Editor, you have to create
the query manually. Refer to Alternate SQL for more information.

Processing on Individual Rows from a Lens Session
The values message retrieves all rows satisfying the query, creating
an entity instance for each row. For some purposes, it is better to
process records in sequence, using a data stream. To do this, send
an answer message to the session instead. You can then cycle
through the rows by sending a next message to the stream.

The example shows how to access each row of data separately, and
how to process the returned rows when the query does not provide
full objects. The example is a method within the Database1Example
application, so it uses the lens session that is already available from
the application, which is assumed to be open.

1 Send an answer message to a query to get a QueryStream.

2 Create a loop to process the stream, incrementing through the
stream by sending a next message to the stream.

The next row object (in this case, an array of selected column
values) is returned.

3 After all desired rows have been processed, close the answer
stream by sending a close message to it.

reportOverdueBooks
"Create and display a report of all overdue books.
This method demonstrates how to execute a query
and process the returned rows one by one."
| query answerStream report nextRow name address title

datedue penaltyPerDay daysOverdue fine fineString |
"Initialize the report stream."
report := '' writeStream.
report nextPutAll: 'Overdue books as of ', Date today printString.
report cr; cr.
"Get the query."
Database Application Developer’s Guide 10-5

Lens Programmatic API
query := self overdueBooksQuery.
"Give the query the current session."
query session: self session.
"Execute the query and get the answer stream."
answerStream := query answer.
"Process each row of the answer stream."
[answerStream atEnd] whileFalse: [

nextRow := answerStream next.
"Unload the row array into temporary variables."
name := nextRow at: 1.
address := nextRow at: 2.
title := nextRow at: 3.
datedue := nextRow at: 4.
"Compute the overdue penalty based on the due date."
penaltyPerDay := 0.10s.
daysOverdue := Date today subtractDate: datedue asDate.
fine := daysOverdue * penaltyPerDay.
"Format the penalty amount as US dollars."
fineString := PrintConverter

print: fine
formattedBy: '$###.##'.
"Add an item to the report stream."

report nextPutAll: title; cr;
tab; nextPutAll: name; cr;
tab; nextPutAll: address; cr;
tab; print: daysOverdue; nextPutAll: ' days overdue, ';
nextPutAll: fineString; nextPutAll: ' penalty'; cr; cr].

"Close the answer stream."
answerStream close.
"Display the report."
report close.
Dialog warn: report contents

for: Dialog defaultParentWindow.

Beginning and Ending Transactions
When you are using an interface that was generated by VisualWorks’
database tools, database operations are accumulated in a single
transaction until the Commit command is used. When you add,
remove, or update objects programmatically, each such operation is a
separate transaction by default. However, that policy is subject to
change, so it’s a good idea to begin and end transactions explicitly.

The most important reason for beginning and ending transactions
explicitly is when one database operation must be reversed if a
related operation fails. In that situation, both operations must occur
10-6 VisualWorks

Adding Objects to the Database
inside the same transaction. After all of the operations in a
transaction have succeeded, the database changes are finalized by
sending a commit message to the lens session. If any of the
operations fails, the entire transaction can be reversed by sending
rollback to the session.

• To begin a transaction, send begin to the lens session.

• To end a transaction by making its effects permanent in the
database, send commit to the lens session.

• To end a transaction by removing its effects from the database,
send rollback to the lens session.

Adding Objects to the Database
For most applications, a data form can be used to add rows to a
table. When a direct, programmatic means of adding a row is
needed, the lens session can be asked to add an object.

To add an object, send an add: message to the lens session. The
argument is the object to be added. It’s wise to perform this step
inside an error-trapping block (handle:do:).

The object that is added can be any type of object that exists in the
data model of the application that provides the lens session. The
data model is consulted to identify the table in which the object
belongs.

Objects that are held by reference variables in the object are also
added, called a “cascading add.” When a referenced object holds the
original object, the cascade is interrupted, so circular references are
broken automatically.

Applications that access a lens session directly in this way can
intercept database errors that obstruct the transaction. In the
example, the most general of database signals is used, to catch any
type of database-related error. The ExternalDatabaseConnection class
also provides several specialized signals.

In a similar way, a collection of objects can be added by sending
addAll: to the lens session instead of add:, with the collection as the
argument.

| app session newBook |
app := Database1Example new.
session := app session.
Database Application Developer’s Guide 10-7

Lens Programmatic API
session isNil ifTrue: [^nil].
"Create the object to be added."
newBook := Bookexample new.
newBook

bookid: '2-3456-789-0';
title: 'Moby Dick';
author: 'Herman Melville'.

"Begin a transaction."
session begin.
"Add the object and detect any database error."
ExternalDatabaseConnection externalDatabaseErrorSignal

handle: [:ex |
session rollback.
^Dialog warn: '

The book could not be added.
This usually happens because the
book was added previously.
'

for: Dialog defaultParentWindow.]
do: [

session add: newBook.
session commit].

session disconnect.

Removing an Object from the Database
For most applications, a data form can be used to remove rows from
a table. When a direct, programmatic means of removing a row is
needed, a lens session can be asked to remove an object, as shown
in the basic steps. The object that is removed can be any type of
object that exists in the data model of the application that provides
the lens session—the data model will be consulted to identify the
table in which the object is to be found.

To remove an object, send a remove:ifAbsent: message to a connected
lens session. The first argument is the object to be removed, which
must be obtained from the database (creating an object with the
same primary key values is not sufficient). The second argument is a
zero-argument block that contains the actions to be performed when
the object is not found. It's wise to perform this step inside an error-
trapping block (handle:do:).

Applications that access a lens session directly in this way can
intercept database errors that obstruct the transaction. In the
example, the most general of database signals is used, to catch any
type of database-related error. The ExternalDatabaseConnection class
10-8 VisualWorks

Removing an Object from the Database
also provides several specialized signals. The most common error,
caused when the object is not in the table, can be handled via the
block that is the second argument of the remove:ifAbsent: message.
Often, this block is left empty, indicating that no special action is
needed when the object is not found.

When the object to be removed is referenced by another object that
has not yet been removed from the database, the removal fails. The
rowIsReferencedErrorSignal supplied by the ExternalDatabaseConnection
class can be used to detect that condition and react appropriately.

| app session query rows book |
app := Database1Example new.
session := app session.
session isNil ifTrue: [^nil].
"Fetch a sample object to be removed."
query := app bookMgr ownQuery.
query session: session.
rows := query values.
rows isEmpty ifTrue: [^Dialog

warn: 'There are no books.
Please use a Database1Example
to add one, then try removing again.'

for: Dialog defaultParentWindow].
book := rows first.
"Remove the object and detect any database error."
session begin.
ExternalDatabaseConnection externalDatabaseErrorSignal

handle: [:ex |
session rollback.
^Dialog warn: '

The book could not be removed.
This usually happens because the
table could not be accessed.
']

do: [
session

remove: book
ifAbsent: [Dialog warn: 'The book does not exist.'].

session commit].
session disconnect.
Database Application Developer’s Guide 10-9

Lens Programmatic API
Updating Objects in a Database
When an object in a database is modified, it is marked as being dirty.
Updating the corresponding row in the database is known as posting
the changes. In a generated interface, changes are posted to the
database when the Accept button is clicked and are made permanent
when the Commit command is used.

To update a row programmatically, modify the entity and send a
postUpdates message to it. It’s wise to perform this step inside an
error-trapping block (handle:do:).

Updating the primary key of a row in a database is equivalent to
removing and then re-adding the row, so references from other
objects in the database can disrupt the update. See the preceding
sections relating to adding and removing objects from the database
for further discussion of this point.

| app session book |
app := Database1Example new.
session := app session.
session isNil ifTrue: [^nil].
"Create the object to be added."
book := Bookexample new.
book

bookid: '4-5678-901-2';
title: 'Grapes of Wrath';
author: 'John Steinbeck'.

"Add the object, to ensure it exists for the update stage."
session begin.
ExternalDatabaseConnection externalDatabaseErrorSignal

handle: [:ex |
session rollback.
^Dialog

warn: '
The book could not be added,
and not because it already exists.
This usually happens because the
table could not be accessed.'

for: Dialog defaultParentWindow]
do: [

"If the row already exists, ignore the error."
LensSession objectNotUniquelyIdentifiedSignal

handle: [:ex | ex return]
do: [

session add: book.
10-10 VisualWorks

Generating Sequence Numbers
session commit]].
"Modify the object (not the key field)."
book title: 'East of Eden'.
"Update the object and detect any database error."
session begin.
ExternalDatabaseConnection externalDatabaseErrorSignal

handle: [:ex |
session rollback.
^Dialog warn: '

The book could not be updated.
This usually happens because the
table could not be accessed.
']

do: [
book postUpdates.
session commit].

session disconnect.

Posting Changes for Multiple Objects
When a lens session is committed, or when a query is executed,
changes are posted for any dirtied object that is held by that session.
Thus, sending commit to a session is a way of posting changes for
more than one object at a time and avoids having to send postUpdates
to each individual object.

In the previous example, instead of sending postUpdates to the dirtied
object, just send a commit message to the lens session.

Generating Sequence Numbers
A database application frequently relies on sequential numbers, for
customer account numbers, product serial numbers, and other
situations requiring a unique identifier.

Some databases provide a sequence-number service and will
automatically supply the next number in the sequence on demand.
Others do not, but you can generate sequence numbers in a lens
session.

Using Database Generated Sequence Numbers
Oracle provides a service for generating sequence numbers. To use
this feature in your application:
Database Application Developer’s Guide 10-11

Lens Programmatic API
1 In the Data Modeler’s Mapping Tool, assign a datatype of
SerialNumber to the variable for the sequence number. Ensure the
associated column in the table is numeric.

2 Choose Table > Check with Database to verify consistency and to
notify the database manager that sequence numbers need to be
generated for the column.

3 In any data form that displays the serial number, set the field or
column to Read Only, on the Details page of the Properties Tool.

4 (Optional) In the data manager class for any data form that
creates the serial number, create a private method named
endCreating.

This method must invoke the inherited endCreating method, then
get the dataset widget and refresh the cell containing the serial
number.

endCreating
"In addition to the inherited actions, refresh
the cell in the DatasetView that contains the
newly generated (but not yet displayed) serial number."
| datasetView rowNum colNum |
"Be sure to invoke the inherited implementation first."
super endCreating.
"Get the dataset widget."
datasetView := (self builder componentAt: #rows) widget.
"Get the row and column of the new serial number.
In this case, the serial number is the second column,
because the first column is used for the row marker."
colNum := 2.
rowNum := self rows selectionIndex.
"Refresh the cell in the widget."
datasetView invalidateCellIndex: colNum @ rowNum.
"Give the newly created borrower to the parent window."
self parent borrower: self row value.

If you omit this step, the new serial number is not displayed until
the data form is refreshed or the row is refetched. To refresh all of
the displayed information displayed, send the message self
refreshDisplay. To refetch the currently selected row and update
the display, send the message self refreshRow.

Generating Sequence Numbers in Lens
Sybase databases do not have a service for generating sequence
numbers. To generate a sequence in a Lens session:
10-12 VisualWorks

Generating Sequence Numbers
1 Create a table that includes a column for the sequence number.

The same table can include multiple sequences if, as in the
example, each row in the table is keyed on the name of the table
for which the sequence number is intended.

2 Use the Query Editor to generate a query for finding the admin
object for the desired table.

By using the table name as a parameter in the query, the same
query can be used to look up the sequence number for any table.

3 In the database application class, redefine the databaseLogin
method, which initializes the lens session.

This method should invoke the inherited implementation. Then it
gets the lens session, and installs the sequence number by
sending a serialNumberGeneratorBlock: message to the session.
The block takes one argument, an array containing the database
application class name (a symbol), the variable name (string), the
qualified table name (string) and the column name (string). The
block is responsible for reading the sequence number from the
admin table, incrementing the value in the table, and returning
the original value.

Ideally, to prevent locking the admin table longer than necessary,
a second lens session or even a separate data model would be
used to manage the admin table. In the example, for simplicity,
we update the admin table in the main lens session.

databaseLogin
"In addition to the inherited action, equip the
session with a block for generating serial numbers
for the library card identifier."
"Be sure to invoke the inherited method first."
super databaseLogin.
"Test to make sure the session was initialized successfully."
session isNil ifTrue: [^session].
"Set the session's block for generating serial numbers."
session

serialNumberGeneratorBlock: [:argsArray |
| table adminQuery nextNum answerStream admin |
"Get the tablename -- other args are not needed here."
table := argsArray at: 3.
"Get the query for finding the appropriate admin object."
adminQuery := self adminForTable: table.
"Perform the query and get the answer stream, if any."
adminQuery session: session.
Database Application Developer’s Guide 10-13

Lens Programmatic API
answerStream := adminQuery answer.
answerStream atEnd

"Get the next number, then increment the table's copy."
ifFalse: [
admin := answerStream next.
answerStream close.
nextNum := admin nextnumber.
admin nextnumber: nextNum + 1.
admin postUpdates]
"If no rows were returned, advise the user."
ifTrue: [
nextNum := 0.
Dialog warn: '

A sequence number for this
borrower's library card could not be generated.
The Adminexample table needs a row with
tablename = ' , table

for: Dialog defaultParentWindow].
"The block returns the number to be assigned."
nextNum].

^session

Reusing an Interface with a Different DBMS
After you have generated an application for use with one database
manager (such as Oracle7), you can reuse the same interface with a
different database manager (such as Oracle6 or Sybase).

1 Create similar data models and underlying tables for each of the
target database managers.

2 In the database application class, redefine the inherited
dataModelAt: aDesignator method.

Begin by invoking the inherited implementation. The method
must return a two-element array containing the name of the class
on which the desired data model is stored and the name of the
desired data model’s specification method.

The example prompts the user to choose the database when the
application is started, which determines which data model
specification to use. A similar approach could be used to choose the
database silently, based on an environment variable or similar
setting.
10-14 VisualWorks

Basing a Data Form or Query on Multiple Tables
The interface need not be modified, except where you have
customized it to rely on DBMS-specific features such as sequence-
number generation.

dataModelAt: aDesignator
"Give the user a choice between Oracle7 or Sybase."

| selector dsg |
selector := Dialog

choose: 'Which database?'
labels: (Array with: 'Oracle7' with: 'Sybase')
values: #(#dataModelSpec #sybaseDMSpec)
default: #dataModelSpec.

dsg := Array
with: #Database1Example
with: selector.

^super dataModelAt: dsg

Basing a Data Form or Query on Multiple Tables
There are two ways to assemble data from multiple tables for a data
form or a query: by navigating objects within the data model, and
using a database join.

Using object navigation, when creating a data form or a query, you
add only one entity, relying on its data-model connections to the other
tables. In the second approach, you add each entity separately and
arrange for the join to occur in the database by setting the where
clause of the query.

In general, the object-navigation approach is preferable when the set
of referenced objects is much smaller than the number of rows that
will be retrieved; otherwise, the database-join approach is more
economical.

Using Object Navigation
In the Canvas Composer (for a data form) or the Query Editor (for a
query), add only the entity that has the other entities in its variables.
In the example of employees and departments, add only the
employees entity.

Using a Database Join
1 In the Canvas Composer or Query Editor, add each entity

separately. In the example of employees and workstations, add
both the employees entity and the workstations entity.
Database Application Developer’s Guide 10-15

Lens Programmatic API
2 Use the Default Join supplied by the Query Assistant to create a
Where clause that joins the entities via the references in the data
model.

Responding to Transaction Events
Sometimes an application needs to intervene before a database
transaction is begun, committed, or rolled back. The lens session
provides for such intervention, by sending an update:with:from:
message to its dependents before and after each type of transaction
event.

The first argument to the update:with:from message is one of the
following:

#preBegin
The application can redefine update:with:from: to test for one or more
of those symbols and respond appropriately.

An application that is a subclass of LensMainApplication automatically
enrolls itself as a dependent of its lens session. Applications based
on other classes will need to create this dependency explicitly.

There is an additional event mechanism that is used to inform the
data forms within an application of certain important events, including
logging in to or out of the database, closing one of the application’s
windows, and committing or rolling back a transaction. These events
are distributed by sending messages directly to the application and
its data forms according to the parent-child hierarchy of the
application, rather than by distributing update notifications to
dependents. These events include:

#requestForCommit
#requestForRollback
#localRequestForWindowClose
#requestForLogout
#noticeOfLogin
#noticeOfCommit
#noticeOfRollback
#noticeOfLogout
#noticeOfWindowClose
#confirmationOfLogin
#confirmationOfCommit
#confirmationOfRollback
#confirmationOfLogout
10-16 VisualWorks

Accepting Edits Automatically at Commit Time
For the request events, each recipient is expected to return either true
or false. The aggregate value of the broadcast request will be true if all
of the recipients return true, and false otherwise. The event for window
close is named localRequestForWindowClose because
ApplicationStandardSystemControllers already send the message
requestForWindowClose to their models. The notice events are sent
before the fact of the actual event; the confirmation events are sent
afterwards. Except for the window close events, which are limited to
the application and/or data forms inside the window being closed, the
events are distributed to all nodes of the hierarchy, including the
application itself.

These events already play important roles in the functioning of
LensMainApplication and LensDataManager, so subclasses of these
classes should be careful about overriding the definitions of these
methods. Unless you intend to completely replace the current event
service, be sure that your method sends the event message to super.

Accepting Edits Automatically at Commit Time
In a generated application, when a persistent object has been added,
removed, or changed by your lens session, other users of the
database are prevented from changing that data. This is known as
locking the data. However, during the period while a persistent object
is still being edited (before the edits are accepted), you can choose to
lock the data or not. This locking policy (Lock on Accept or Lock on Edit) is
set when you create the database application class and can be
overridden for an embedded or linked data form using the Connection
properties.

To maintain data integrity, a Lock on Edit policy is preferred because it
keeps one user from undoing another user’s changes unknowingly.
However, when it is more important to minimize the chances of a user
locking the data during a protracted edit (or while going out to lunch),
a Lock on Accept policy is preferable. This choice is complicated by the
fact that some database managers lock not only the affected rows in
the database, but entire pages of unaffected neighboring data. When
that is the case, a Lock on Accept policy is even more attractive.

A lock can only be released when the enclosing transaction is ended,
either via commit or rollback. There is no way to selectively unlock an
object once it has been locked.

An object can be explicitly locked by sending a lock message to it.
Database Application Developer’s Guide 10-17

Lens Programmatic API
If some of the edits have not yet been accepted when the ObjectLens
is committed, the user is warned via a dialog that offers the choice of
discarding the edits or cancelling the commit. This prevents long-lived
locks from occurring accidentally as a result of the user neglecting to
accept one or more edits. This also helps to guarantee that related
changes are made at the same time. Your application can intervene
to automatically accept any unaccepted edits at commit time.

Verifying Before Committing
A generated data form can redefine the noticeOfCommit method to
prompt the user for permission to accept the edits. A noticeOfCommit
message is sent to each data form by a generated application before
the Commit command is executed, for just this purpose.

1 In the class on which you installed the data form that is to accept-
on-commit, create a noticeOfCommit method.

2 In the method, test whether an edit is in progress by sending an
isEditing message to the data form (self).

3 (Optional) If an edit is in progress, prompt the user for permission
to accept the edits.

4 If permission is granted, accept the edits by sending accept to the
data form (self).

noticeOfCommit
"This message is sent when the session's transaction
is about to be committed. Here, we use it as an opportunity
to prompt the user for permission to accept any pending
edits so they will be included in the commit."
| confirmed |
self isEditing

ifTrue: [
confirmed := Dialog

confirm: 'Book-loan edits are in progress -- OK to
Accept?'

initialAnswer: true.
confirmed ifTrue: [self accept]].

Disconnecting and Reconnecting
When a VisualWorks image is saved, every lens session must end
any active transactions. The lens session gives its dependent
application an opportunity to make the decision whether to commit or
10-18 VisualWorks

Maintaining Collections
rollback the transaction. It does so by sending an update:with:from:
message to its dependents (by default, the database application is
the only dependent), with #terminateTransaction as the first argument.

An application that is not a subclass of LensMainApplication should
arrange to receive the update:with:from: message by making itself a
dependent of the lens session, by sending addDependent:.

When a VisualWorks image is restarted, an update:with:from:
message with #install as its first argument is sent to dependents of
the session. The application typically resumes the lens session (via
resume or resume:, depending on whether the password is stored in
the session).

Maintaining Collections
In many situations, a one-to-many relationship exists, such as one
customer having many orders. It is often convenient to store the
customer’s orders as a collection held by the customer object. There
are two ways to accomplish this.

Creating a Child Set Via Foreign-Key References
The first method relies on a preliminary implementation of lens
automation that takes advantage of foreign-key references in the
database. These foreign-key references are reflected as a collection
automatically.

The customer-orders example arranges for the lens to maintain a
collection of orders in an unmapped instance variable of the
customer, using what is called a child set. If the customer key of an
order object is changed, the order is removed from the old customer’s
child set of orders and added to the new customer’s child set
automatically.

It is important to note that because the collection of orders is a simple
IdentitySet, sending messages to it directly to add or remove items
has no effect on the lens or the state of your data. Also, while the
collection does not map to a single row in the database, it is a
persistent object and can be converted to a proxy by the ObjectLens,
as when a transaction is rolled back. For that reason, your application
should be careful when making direct references to the child set,
because an active ObjectLens session is needed to refetch its
contents.
Database Application Developer’s Guide 10-19

Lens Programmatic API
1 Evaluate the following in a workspace to add a check box to the
Mapping Tool for specifying that the selected variable is to hold a
collection:

LensEditor enableChildSets
If any of your data models use this feature, be sure to file
evaluate this expression in any image in which you will be
working with those data models.

2 In the Data Modeler, select the entity that represents an element
in the collection (e.g., the Order entity, as noted above).

3 In the Mapping Tool, set the type of the foreign-key variable
(customer) to be the containing entity (Customer).

4 In the Data Modeler, select the containing entity (Customer).

5 In the Mapping Tool, add a variable for holding the collection
(orders) and set its type to the contained entity (Order).

6 Turn on the Collection check box for the orders variable.

Maintaining a Collection With a Query
The second method uses a query to fetch the customer’s orders. This
approach places more responsibility on the application, because
additions and removals are not made automatically. This approach
has the advantage of flexibility. For example, the query could be
constructed such that only orders after a given date are collected
from the database, and the orders could be sorted by the query.

1 Use the Query Editor to create a query that retrieves the
contained objects (orders). The query can use parameters for
customizing it dynamically. Store the query on the containing
class (Customer).

2 In the containing class (Customer), create an accessing method
for the collection (orders). This method is responsible for
performing the query and, if desired, storing the result in an
instance variable as a cache.

orders
"If the cache is empty, retrieve the collection from the database."
orders isNil

ifTrue: [orders :=
self ordersQuery session: self session) values].

^orders
10-20 VisualWorks

11

Writing Queries

Queries for use by the Object Lens are created and edited using the
Query Editor. The editor simplifies the task of writing queries by
presenting the syntactical elements in a dialog.

Editing a Query
To open the Query Editor, choose View > Query Editor in the Data
Modeler.

You edit a query by selecting options and completing fields, as
described in Query Syntax.
Database Application Developer’s Guide 11-1

Writing Queries
As an additional help in completing the fields, the Query Editor
includes the Query Assistant. To open the assistant, click the Query
Assistant button.

The Query Assistant’s buttons and menu items are activated and
deactivated according to which field is currently selected in the Query
Editor. Only legitimate entries for that field are enabled. When you
select an item, it is inserted at the current cursor position in the editor.

While the assistant only shows legitimate entries for a field, you are
still responsible for selecting items to form a legitimate query. The
assistant does not guarantee a correct query.

Query Syntax
The Query Editor enables you to specify the query in terms of the
following parts:

• From specifies the objects from which the result set is taken. This
is usually one entity, but it may be more.

• Select specifies the results expected from the query: full objects,
single columns, or combinations of them.

• Where specifies which objects (rows in the database) are
selected.
11-2 VisualWorks

Query Syntax
• Order By specifies the ordering criteria by which the results are
sorted.

• Group By specifies the way the results are grouped for computing
functions, provided Select contains aggregate functions.

• Distinct specifies whether or not the result should contain
duplicate results.

• Lock Result specifies whether or not the objects fetched by the
query should be locked. Locking is performed by using the
underlying database mechanisms.

• Unique specifies that only one row is expected to return.

• Fetch On Demand instructs the resulting collection to lazily fetch
accessed rows from the database.

The following sections provide detailed explanations for the From,
Select, Where, Order By, and Group By fields of the Query Editor.

“From” Clause
The From field is not directly editable. To add entities, select from the
list that appears in the lower right-hand side of the editor. This list
appears only when the radio button on the left side of the From field is
selected. To remove entities, click the eraser button in the upper right-
hand side of the Query Editor. Clicking the eraser button removes all
entities.

An entity can appear in the list more than once. In this case, they will
be numbered consecutively. This is useful when performing queries
that join a table with itself.

A data form’s ownQuery and any restricting queries have the From field
disabled. VisualWorks database application framework requires the
queries to remain consistent with the definitions of the data forms.
This consistency is enforced by the Query Editor.

“Select” Clause
The result from a query is a collection of objects. Each object in the
collection may be one of three types:

• A mapped object

• A value from an instance variable of a mapped object, or a result
of applied functions

• An array containing elements from the above two types
Database Application Developer’s Guide 11-3

Writing Queries
If the Full Objects field is checked, then the result collection is formed
from objects that are instances of the entities found in the From
expression. If only one entity is found in the From field, then the result
is a collection of objects from that entity. If more than one entity is
found, then the result will be a collection of arrays. Each array
contains mapped objects of the given entities in the same order as
the entities are found in the From field.

If Full Objects is not checked, then an expression can be entered. The
examples included in this section describe the expressions that can
be used.

Example 1
The result from the following Select value is a collection of objects
from the Tm2order entity:

Select: tm2order

Example 2
The result from the following Select value is a collection of arrays.
Each array is composed of two objects: Tm2order and Tm2customer.
Note that it is up to the Where clause to determine how the pairs are
constructed. In this example, if an empty Where clause was used the
result would be all the possible pairs between the tm2orders and
tm2customers (the cartesian product), which is probably not the
desired result.

Select: tm2order, tm2customer

Example 3
The result of the following Select value is a collection of arrays. Each
array is composed of three values: two strings and a number. The
strings are the first and last name of a customer, while the number is
the total from an order. Again, the Where clause is responsible for
making sure that the total corresponds to an order. The order belongs
to the customer that appears in the same array in the result
collection.

Select: tm2customer first, tm2customer last, tm2order total

Example 4
The result of the following Select value is a collection of the order
totals to the power of 2.

Select: tm2order total power: 2
11-4 VisualWorks

Query Syntax
Example 5
The result of the following Select value is a collection with the sum of
the group order totals. The grouping is determined by the Group By
expression.

Select: tm2order total Sum

“Where” Clause
Where is the most important of the expressions in the Query Editor.
Expressions must be valid Smalltalk syntax expressions that result in
true, false, or a Boolean expression involving mapped entities.

The expressions are evaluated in the context of the class and method
where they are installed. Therefore, instance variables of the class
can be used as well as parameters to the method itself. To specify
parameters to the method, edit the Message Pattern field to include
them.

Example 1
The following example has the same effect as leaving the Where
clause empty. All the objects specified by the From and Select clauses
will be returned.

Where: true

Example 2
The following example results in an empty collection.

Where: false

Example 3
In the following example, the result is all the orders whose total is
larger than 100.

Where: tm2order total > 100

Example 4
For this example, a message pattern is used as follows:

ordersHigherThan: limit.
The result includes all the orders with a total higher than the given
limit. If the limit is nil, then all the orders are returned.

Where: limit isNil
ifTrue: [true]
ifFalse: [tm2order total > limit]
Database Application Developer’s Guide 11-5

Writing Queries
Example 5
In the following example, customerTemplate is an instance variable of
the class where the query is installed and is used as a template. The
query returns all the objects that match the template. A template for
an entity is a non-persistent instance of the corresponding class. This
object will be compared, field by field, with the objects in the
database. Only those matching the fields will be retrieved. To indicate
fields that are not interesting for the comparison, the value in the
template should be: Object new. Numeric, Timestamp, and similar fields
are compared using exact matching. String fields may contain
wildcards.

Where: tm2customer isLike: customerTemplate
For example, the following template extracts all the customers whose
name start with ‘A’:

| dontCare |
dontCare := Object new.
customerTemplate := Tm2customer new.
customerTemplate first: dontCare;

id: dontCare;
address: dontCare;
"etc"
last: 'A*'.

Example 6
If you wanted to extract all of the customers that live in a certain area
code, use the following:

customerTemplate zip: 94086.

Example 7
Assuming From: tm2order tm2customer, the following expression
fetches all the pairs of tm2order and tm2customer where the order
belongs to the customer.

Where: tm2order customer = tm2customer

Example 8
In the following expression, assume myCustomer is an instance
variable of the class where the query is installed. When the query is
performed, the value of myCustomer must be an instance of
tm2customer that is mapped to the database. The query will return all
the orders for a given customer.

Where: tm2order customer = myCustomer
11-6 VisualWorks

Alternate SQL
“Order By” Clause
Order By is built in a similar way as the Answer part is. More than one
sorting criterion can be used.

Order By: tm2order customer cid, tm2order total descending
The above example results in a collection sorted by the customer id.
Each customer will be ordered by the descending value of totals.

“Group By” Clause
Group By is built similarly to the Order By expressions.

Alternate SQL
In some situations it is necessary to override the SQL code that is
generated by the ObjectLens. These situations include performance
tuning and complex queries.

You can explicitly provide the SQL for a lens query to execute, by
either editing the method defining the query operation or by setting
the query object's alternateSQL property programmatically.

Editing Generated SQL
1 Define a query that selects the desired table columns and install

it.

The lens mechanism will map the answer set returned by the
alternate SQL statement to the same number and type of
columns as the lens query is constructed to expect.

For example, if an Order entity contains four variables
corresponding to four columns in the database, and the Order
entity is selected in the lens query for mapping to full objects,
then the alternate SQL statement must also return four columns
of the same type and in the same sequence.

2 Manually edit the lens query method.

Editing should be delayed until the final phase of application
delivery, because it will be overwritten any time it is edited and
installed using the query editor.
Database Application Developer’s Guide 11-7

Writing Queries
Programmatically Modifying SQL
Programmatic modification must occur after an instance of the lens
query is created but before its execution by methods such as
performQuery or performQueryWithParent. This applies to cases where
bindVariables are to be replaced with constants before the SQL string
is sent to the database server.

The custom SQL code must comply with the following conventions
when mapping objects defined in the data modeler:

• It must return column values for all variables mapped in the data
modeler for this entity or table.

• The columns must be returned in the order these variables
appear in the data model. Any variation from this order will
generate severe errors.

One way of avoiding errors in this process is to enable database
tracing and copy the generated column names from the transcript to
the method editor. To enable tracing, send the message toggleTracing
to the ExternalDatabaseConnection class.

Custom SQL code may be either a valid SQL SELECT statement or
the name of a Sybase (CTLib) stored SQL procedure. Oracle stored
procedures are not supported by the ObjectLens, but may be invoked
using the Oracle EXDI.

Following is an example of an ownQuery that has been edited
manually. The alternateSQL: statement defines the alternate SQL
code. This line must be inserted exactly as shown, with custom code
defined in the string.

ownQuery
"This method was generated by UIDefiner. Any edits made
here will be lost if the class is regenerated anew."
"QueryEditor new openOnClass: self andSelector: #ownQuery"
<resource: #query>
| _qo |
_qo := LensQuery new.
_qo description: 'ownQuery'.
_qo arrayContainerNames: #((#order #Order)).
_qo mode: #own.
_qo alternateSQL: 'Select Order.Number, Order.Amount,

Order.Date, Order.Product from Order where
Order.Amount > 1000'.

^_qo
11-8 VisualWorks

Alternate SQL
The next example shows how a lens query can be changed
programmatically when it is being created. It provides two methods
for dataform classes:

• buildSQL, which is used to generate the SQL string

• an altered version of the above ownQuery, which now uses
buildSQL while generating the query operation.

Notice how the contents of the aspect likeVar, which is assumed to
have been entered into the user interface and is of type string, is put
into another string with the help of the printString message.

buildSQL
"Generate the desired SQL string based on values in
some of the variables."
^'Select table.column1, table.column2, table.column3
from user.table where table.column1 like ' ,
self likeVar value printString ownQuery
"This method was generated by UIDefiner. Any edits made
here will be lost if the class is regenerated anew."
"QueryEditor new openOnClass: self andSelector: #ownQuery"

<resource: #query>
| _qo |
_qo := LensQuery new.
_qo description: 'ownQuery'.
_qo arrayContainerNames: #((#order #Order)).
_qo mode: #own.
_qo alternateSQL: self buildSQL.

 ^_qo

Constants in the Object Lens
Queries in the ObjectLens always assume bind variables when they
encounter constants. This architecture allows for the reuse of queries
once they have been prepared for execution.

Unfortunately, queries prepared this way do not take advantage of the
Oracle optimizer, and there may be significant differences in terms of
the code path that Oracle servers execute. For this reason, you may
want to generate SQL strings that contain constants.

Performance gains per query execution may be on the order of
several minutes for larger databases.
Database Application Developer’s Guide 11-9

Writing Queries
11-10 VisualWorks

Index
A
action buttons, removing 9-12
Ad Hoc SQL tool 1-4, 7-11
adding

objects to database 10-7
Adminexample 1-7
answer set 2-10

cancelling 2-20
describing 2-13
handling multiple 2-12
using an output template 2-18

answer stream 2-14
application models 7-2
ApplicationModel 7-6, 7-8
aspect paths 9-8, 9-14

B
base query (of data forms) 10-3
begin transaction 10-7
Bookexample 1-7
Bookloanexample 1-7
Borrowerexample 1-7
Browse Child Data Form (Canvas Tool

command) 7-12
buffers and adaptors 2-14

C
Canvas Composer tool 7-11, 9-3
Canvas Tool 9-5, 9-7, 9-8

commands
Browse Child Data Form 7-12
Create Child Data Form 7-12
Define Menu as Query 7-11
Paint Child Data Form 7-12
Reusable Data Form Components

7-11
canvases 7-7, 9-3

predefined
tabular viewer 9-4

cellBounds 9-13
cellContents 9-13
changing

data models 8-13
child data forms 7-9
class

mapping to relational datatype 2-3
close (message) 10-5
collections 10-19
commit (message) 10-11
commit transaction 10-7
confirmationOfCommit 10-16
confirmationOfLogin 10-16
confirmationOfLogout 10-16
confirmationOfRollback 10-16
connect string 2-4
connecting

data forms to applications 9-6
to a database 10-1

connection coordinator 2-21
Create Child Data Form (Canvas Tool

command) 7-12
creating

canvases 9-3

D
data

for database example 1-7
from multiple tables 10-15
storage and processing 7-2

Data Form, defined 9-1
data forms

base query 10-3
canvases 7-8
classes 7-4, 7-7
connecting to applications 9-6
embedded 7-9
linked 7-9
parents and children 7-9
using data from multiple tables 10-15
widgets for 9-6

data integrity 10-17
Data Modeler tool 7-10, 8-5, 8-11, 8-13
data models 7-6

changing 8-13
choosing at runtime 10-14
installing 8-13
saving 8-13

database
accessing 2-1
connecting to 2-2, 2-3
Database Application Developer’s Guide Index-1

controlling transactions 2-21–2-22
default connection 2-5
disconnecting from 2-6
interaction with Smalltalk 2-2
mapping datatype to Smalltalk class 2-3
reconnecting a restarted image 2-29
relational datatypes 2-3
saving connected image 2-28
types of errors 2-24

database application classes 7-4
database applications 7-2

data form connections 9-6
reusing with a different DBMS 10-14
starting 9-7

database extensions to VisualWorks 7-11
database joins 7-8, 10-15
database login defaults, setting 1-3
database profiles, setting 1-3
Database Tables tool 7-10
database transactions 10-6

responding to 10-16
database

See also transaction
databases

adding objects 10-7
connecting to 10-1
locking 10-17
removing objects 10-8
sequential numbers 10-11

dataModelDesignator 7-7, 10-14
dataModelSpec 7-7
DataSet widgets, using 9-5
defaults, setting database login 1-3
Define Menu as Query (Canvas Tool

command) 7-11
direct object references 7-4
dirty objects 10-10
domain models 7-2
DSN (Data Source Name), using 4-3

E
Embedded Data Form (Palette action button)

7-11
embedded data form widget 7-9, 9-6, 9-10
embedded data forms 7-9
endCreating 10-12
entity classes 7-3
environment string 2-4
environment, setting default 2-5
error handling, database signals for 10-7
events in database transactions 10-16
exception

handling 2-24–2-26
execution

error 2-24
tracing the flow 2-22

External Database Interface
classes, defined 2-2

ExternalDatabaseAnswerStream 10-5
ExternalDatabaseFramework 10-7

F
foreign key references 7-4, 8-11

G
generating sequential numbers 10-11

H
handle:do: 10-7

I
I/O 7-2
image

restarting and reconnecting to database
2-29

saving when connected to database
2-28

information models 7-2
inserting rows in database 10-7
install aspect 10-19
installing data models 8-13
instance variables 7-4
integrity of data 10-17
interfaces, reusing with different DBMS

10-14
isEditing 10-18

J
joined query or data form 10-15
joins 7-8

K
key references, foreign 7-4

L
lens sessions 7-6, 7-7

disconnecting from and reconnecting to
10-18

LensDataManager 7-8
LensMainApplication 7-6
Linked Data Form (Palette action button)

7-11
linked data form widget 7-9, 9-6
localRequestForWindowClose 10-16
Lock on Accept 10-17
Lock on Edit 10-17
Index-2 VisualWorks

lock, database 10-17
login defaults, database 1-3

M
main windows 7-6
Mapping Tool 7-10
Menu Query Editor tool 7-11
models

application 7-2
domain 7-2

N
name (accessor method) 7-5
name: (mutator method) 7-5
named input binding 2-9
next (message) 10-5
noticeOfCommit 10-16, 10-18
noticeOfLogin 10-16
noticeOfLogout 10-16
noticeOfRollback 10-16
noticeOfWindowClose 10-16
numbers, sequential 10-11

O
object references, direct 7-4
ObjectLens 7-3
output template 2-18

defined 2-18
reusing 2-20
skipping a variable 2-18

overdueBooksQuery 10-4
ownQuery method 7-9

P
Paint Child Data Form (Canvas Tool

commands) 7-12
parameter 2-8

binding NULL 2-9
binding to a name 2-9
defined 2-8

parent data forms 7-9
password, database 10-1
password, securing 2-4
paths, in aspect properties 9-14
performance tuning 2-20
performing a query 10-3
placeholder. See parameter
preBegin 10-16

Q
queries 7-9

performing 10-3
restricting 7-9

query
allocating adaptors 2-14
allocating buffers 2-14
asynchronous execution 2-13
cancelling answer set 2-20
checking execution status 2-13
describing an answer set 2-13
executing 2-8
getting an answer 2-10, 2-12
handling multiple answer sets 2-12
parameters 2-8
processing an answer stream 2-14
raising an exception 2-10
testing row count 2-13
using an output template 2-18
viewing results 2-7

Query Editor tool 7-10, 10-4
query variable. See parameter

R
removing

action buttons 9-12
objects from database 10-8

requestForCommit 10-16
requestForLogout 10-16
requestForRollback 10-16
Resource Finder tool 9-11
resource, releasing 2-22
resources 7-5
restricting queries 7-9
resume 10-19
Reusable Data Form Components (Canvas

Tool command) 7-11
reusing your interfaces 10-14
rollback transaction 10-7
root windows 7-6

S
sample data for database example 1-7
saving data models 8-13
sequential numbers, generating 10-11
Serial number datatype 10-12
session

defined 2-7
disconnecting 2-21, 2-22
reconnecting 2-22

session (variable) 7-7
session

See also query
setting database login defaults 1-3
signals for database errors 10-7
specifications
Database Application Developer’s Guide Index-3

data model 7-5
main window 7-5
query 7-7
window 7-7

SQL
Ad Hoc SQL tool 1-4, 7-11
executing 2-2, 2-7, 2-21
stored procedures 6-9

starting
database applications 9-7

state error 2-24

T
tabular viewer (template) 9-4
templates 7-8
Temporary Launcher 9-5
terminateTransaction 10-19
TNSNAMES.ORA 1-2
tools 7-10

Ad Hoc SQL 1-4, 7-11
Canvas Composer 7-11, 9-3
Canvas Tool 9-5, 9-7, 9-8
Data Modeler 7-10, 8-5, 8-11, 8-13
Database Tables 7-10
Mapping Tool 7-10
Menu Query Editor 7-11
Query Editor 7-10, 10-4
Resource Finder 9-11

tracing 2-22
adding information 2-24
defined 2-22
disabling 2-23
setting trace level 2-23
specifying output location 2-23

tracing protocol 2-24
transaction

controlling 2-21–2-22
coordinated 2-21

transaction events 10-16
transactions, database 10-6
tutorial application

setting up
setting database login defaults 1-3

testing 9-7

U
update:with:from: 10-16
user interfaces 7-2
user-interface objects 7-2
username, database 10-1

V
values 10-4

variables, instance 7-4

W
widgets

embedded data form 9-6, 9-10
linked data form 9-6

window specifications
initial 7-6

windows
main 7-6
root 7-6

windowSpec 7-6
Index-4 VisualWorks

