
Cincom Smalltalk™

GUI Developer's Guide

P46-0136-07

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

Copyright © 1993–2009 by Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0136-07

Software Release 7.7

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, and COM Connect are trademarks of Cincom Systems, Inc., its subsidiaries, or
successors. ENVY is a registered trademark of Object Technology International, Inc. All
other products or services mentioned herein are trademarks of their respective
companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation copyright © 1993–2009 by Cincom
Systems, Inc. All rights reserved. No part of it may be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without prior
written consent from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents
About This Book xv

Audience ... xv
Conventions .. xv

Typographic Conventions ... xv
Special Symbols ...xvi
Mouse Buttons and Menus ..xvi

Getting Help ...xvii
Commercial Licensees ..xvii

Before Contacting Technical Support ...xvii
Contacting Technical Support ..xvii

Non-Commercial Licensees ... xviii
Additional Sources of Information ...xix

Online Help ..xix
VisualWorks FAQ ...xix
News Groups ...xix
Commercial Publications .. xx
Examples ... xx

Chapter 1 Building an Application’s GUI 1-1

Separating Domain and Application Models ..1-1
GUI Development ...1-2
Loading the UI Painter ..1-2
Creating a Graphical User Interface ...1-2

“Painting” a Window ..1-3
Setting Properties ...1-4
Installing the Canvas ...1-6
Reopening a Canvas ...1-7
Defining Value Models ..1-8
Testing the User Interface ...1-9
GUI Developer’s Guide iii

Formatting a Canvas ... 1-9
Setting the Window Size ... 1-10
Setting the Window Opening Position ... 1-10
Adding Scrollbars to a Window ... 1-11
Adding a Menu Bar ... 1-11
Adding Fly-by Help ... 1-12
Setting the UI Colors ... 1-12
Sizing a Widget ... 1-14
Making a Widget’s Size Fixed ... 1-15
Making a Widget’s Size Relative ... 1-15
Applying Explicit Boundaries to an Unbounded Widget 1-16

Positioning a Widget .. 1-16
Making a Widget’s Origin Fixed .. 1-17

Giving an Unbounded Widget a Fixed Position 1-17
Making a Widget’s Origin Relative .. 1-18

Giving an Unbounded Widget a Relative Position 1-18
Grouping Widgets .. 1-19

Making a Group of Widgets .. 1-19
Editing Widgets in Groups .. 1-20

Aligning Widgets .. 1-20
Distributing Widgets ... 1-21
Changing a Widget’s Font .. 1-21

Named Fonts .. 1-22
Changing the Tabbing Order .. 1-23
Opening and Closing Windows .. 1-24

Opening the Main Window .. 1-24
Opening a Secondary Window ... 1-25
Setting the Window Size at Opening .. 1-26
Setting the Startup Location of a Window .. 1-26

Closing Application Windows ... 1-26
Hiding a Window ... 1-27
Performing Final Actions .. 1-27

Chapter 2 The VisualWorks GUI Environment 2-1

UI Painter .. 2-2
The Canvas ... 2-3
The Palette .. 2-3
GUI Painter Tool .. 2-4

Chapter 3 Controlling the GUI Programmatically 3-1

Application Startup and Shutdown .. 3-1
Launching an Application ... 3-2
iv VisualWorks

Prebuild Intervention ...3-2
Postbuild Intervention ..3-3
Postopen Intervention ...3-3
Application Cleanup ..3-3

Windows ...3-4
Creating a Window ..3-4
Class Hierarchy ...3-5
Window Components ..3-5

Controller ..3-6
Component ...3-6
Event Sensor ..3-6
Manager ...3-6

Window Processes ..3-6
Yielding to Other Processes ..3-7
Accessing Window Components ...3-8

Accessor Methods ..3-9
Accessing a Window ...3-10

Getting an Application Window ..3-10
Getting the Active Window ...3-10
Getting the Window at a Location ..3-11
Closing a Window ...3-11

Setting Window Properties ..3-11
Changing the Window Size ...3-12
Determining a Window’s Dimensions ...3-12
Changing a Window’s Label ...3-12
Adding and Removing Scroll Bars ...3-12

Controlling Window Displays ...3-13
Refreshing a Window’s Display ..3-13
Expanding and Collapsing a Window ...3-13

Assigning a Window Icon ..3-14
Creating an Icon ...3-14
Registering an Icon ..3-14
Installing an Icon ..3-15

Slave and Master Windows ..3-15
Make Windows Equal Partners ..3-16
Choosing the Events That Are Sent ...3-16
Choosing the Events That Are Received3-16

Window Events ..3-17
Registering Window Events ..3-22
Adding an Event to the UI Event Queue ..3-23

Controlling Widgets ..3-25
Accessing a Widget ..3-25
Accessing the Widget’s Wrapper ..3-25
GUI Developer’s Guide v

Setting Widget Properties ... 3-26
Changing a Widget’s Size ... 3-26
Changing a Widget’s Font .. 3-27
Hiding a Widget ... 3-27
Disabling a Widget ... 3-28
Changing a Widget’s Colors ... 3-29

Adding and Removing Dependencies .. 3-29
Adding a Dependency ... 3-30
Removing a Dependency by Retracting the Interest 3-30
Bypassing All Dependencies ... 3-31

Validation Properties ... 3-31
Notification Properties .. 3-32
Giving a Widget Keyboard Focus ... 3-33

Chapter 4 Adapting Domain Models to Widgets 4-1

Value Models ... 4-1
Choosing a Value Model ... 4-2

Configuring a ValueHolder ... 4-3
Configuring an AspectAdaptor ... 4-5

Configuring an AspectAdaptor with a Subject .. 4-5
Configuring an AspectAdaptor with a Subject Channel 4-6
Adapting Unconventional Accessors .. 4-8
Adapting a Changing Domain ... 4-9

Configuring a PluggableAdaptor .. 4-10
Configuring Accessor Blocks .. 4-11
Configuring the Update Block ... 4-12

Synchronizing Updates (BufferedValueHolder) ... 4-13
Adding a BufferedValueHolder ... 4-13
Discarding the Buffered Values .. 4-15

Adapting Collections ... 4-15
Adapting to a SelectionInList .. 4-16
Adapting a Indexable Collection .. 4-17
Adapting Collections of Collections .. 4-18

Defining Adaptors in the UI Painter ... 4-20
Aspect Path with Aspect Selectors ... 4-20
Aspect Path with Index Selectors ... 4-22
Aspect Path with Input Buffering ... 4-22

Configuring Dependencies Using Events .. 4-23
Registering an Interest in a Widget Event .. 4-23
Update Notifications using Events .. 4-24
vi VisualWorks

Chapter 5 Custom Views 5-1

Creating a View Class ...5-1
Connecting a View to a Domain Model ..5-2
Defining What a View Displays ..5-3
Updating a View When Its Model Changes ..5-4
Connecting a View to a Controller ..5-5

Creating a Controller Class ...5-5
Connect the Controller to the Model ...5-7
Connect the Controller to the View ..5-7
Connecting a Composite View to a Controller ...5-8

Redisplaying All or Part of a View ..5-8
Redisplaying a View ..5-9

Integrating a View into an Interface ..5-9

Chapter 6 Dialogs 6-1

SimpleDialog ..6-1
Core Structures ...6-2
Simple Dialog Construction ...6-2

Standard Dialogs ..6-3
Warning Dialog ..6-3
Confirmation Dialog ...6-3
Multiple-Choice Dialog ..6-4
Text Response Dialog ...6-5

File Dialogs ..6-6
Open File Dialog ...6-6
Handling File Existence Condiitons ...6-7

Password Dialog ..6-8
Creating a Custom Dialog ..6-9

Providing a Temporary Model for the Dialog ...6-9
Visually Linking a Dialog to a Master Window ..6-10

Chapter 7 Menus 7-1

Creating a Menu ...7-1
Creating a Menu using the Menu Editor ..7-2
Creating a Menu Programmatically ...7-3

Adding Menus to the User Interface ...7-5
Adding a Menu Bar to a Window ...7-5
Adding a Menu Button ...7-6
Adding a Popup Menu to a Widget ..7-6
Adding a Menu Bar or Pop-Up Menu of Values ...7-6

Accessing Menus Programmatically ..7-7
GUI Developer’s Guide vii

Modifying a Menu Dynamically .. 7-9
Disabling a Menu Item .. 7-9
Hiding a Menu Item ... 7-9
Adding an Item to a Menu ... 7-10
Removing an Item from a Menu ... 7-10
Substituting a Different Menu ... 7-11

Displaying an Icon in a Menu ... 7-12
Adding an Icon to a Menu ... 7-12
Displaying an On/Off Indicator .. 7-13
Adding a Group with a Single Indicator .. 7-14

Toolbars ... 7-15
Creating a Tool Bar Image .. 7-15
Adding a Toolbar ... 7-17
Modifying a Toolbar Dynamically .. 7-18

Disabling a Toolbar Button ... 7-18
Hiding a Toolbar Button ... 7-18
Changing a Toolbar Button Image ... 7-19
Displaying an On/Off Indication ... 7-20

Adding a Group of Buttons with a Single Selection 7-21
Extending Menus and Toolbars ... 7-21

Pragma Parameters .. 7-22
Menu Pragma Forms .. 7-24

Minimal Menu Pragma ... 7-26
Menu Label as a UserMessage ... 7-26
Including a Shortcut Key .. 7-27
Add Enablement and Selection Indicators 7-28
Adding an Icon ... 7-29
Adding Fly-by Help .. 7-29
Submenu pragmas .. 7-30
Computed Submenu Pragma .. 7-31

Adding Items to an Application's Menu or Tool Bar 7-31
Setting the Menu Item Position ... 7-32
Adding Items to the Launcher ... 7-33
Adding Items to a Browser .. 7-33

Menu and Toolbar Events .. 7-34
Popup Menu Events .. 7-35
Toolbar Events .. 7-35

Chapter 8 Drag and Drop 8-1

Drag and Drop Framework Classes ... 8-1
Adding a Drop Source ... 8-2

Dragging Multiple Selections .. 8-5
viii VisualWorks

Adding a Drop Target ...8-5
Providing Visual Feedback During a Drag ...8-6

Drop Target Messages ..8-6
Pointer Shapes ..8-7
Changing Color During a Drag ..8-7
Changing a Button Label During a Drag ...8-9
Tracking a Targeted List Item ..8-11

Responding to a Drop ..8-13
Adding a Drop Response ..8-13
Adding Target Emphasis ...8-14

Examining the Drag Context ..8-17
Responding to Modifier Keys ..8-17

Chapter 9 Configuring Widgets 9-1

Action Buttons ..9-1
Default Button ..9-2
Action Button Events ...9-2

Charts ..9-3
Loading the Chart Widget ...9-4
Adding a Chart ..9-4
Charting Multiple Data Series ...9-4
Adding Labels ...9-6
Chart Properties ..9-6

Basic ..9-6
Options ...9-7
Data Series ..9-7
Legend ...9-8
Item - Axis ..9-8
Item - Scale ..9-9
Data - Axis ..9-9
Data - Scale ...9-10

Chart Types ...9-11
Bar Chart ..9-11
Stacked Bar ..9-12
Layer ..9-12
Band ...9-13
Pareto ...9-13
Picture ..9-14
Line ..9-15
Stacked Line ...9-16
Step ..9-16
GUI Developer’s Guide ix

X-Y Chart ... 9-17
Pie Chart .. 9-17

Check Boxes .. 9-18
Checkbox Events .. 9-19

Click Map ... 9-20
Adding a Click Map ... 9-20
Defining the Hot Region Mappings ... 9-21
Using Custom Views and Controllers ... 9-22
Click Widget Events .. 9-22

Combo Box .. 9-23
Adding a ComboBox to a Canvas ... 9-23
Listing Arbitrary Objects ... 9-24
Combo Box Events ... 9-25

Datasets ... 9-27
Setting up a Dataset ... 9-27
Editing Column Properties ... 9-29

Changing Column Widths .. 9-29
Changing the Column Order .. 9-30
Disabling Column Scrolling .. 9-30
Moving the Selection to Another Column 9-30
Scrolling Dataset Columns .. 9-31
Formatting Column Labels .. 9-31

Adding a Row ... 9-32
Adding a Row Marker .. 9-32
Adding Row Numbering ... 9-32

Providing Initial Data ... 9-32
Dataset Properties .. 9-33

Traversal Page ... 9-33
Dataset Events ... 9-34

Divider ... 9-37
Group Box .. 9-38

Adding a Group Box ... 9-38
Making a Group Box Mnemonic ... 9-38
Group Box Events ... 9-38

Input Fields .. 9-39
Creating an Input Field ... 9-39
Restricting Input Type ... 9-40
Formatting Displayed Data ... 9-41

Creating a Custom Format .. 9-41
Validating Input ... 9-41

Validating a Whole Entry .. 9-42
Validating Individual Characters .. 9-43
x VisualWorks

Modifying a Field’s Pop-Up Menu ..9-44
Adding a Command ...9-44
Overriding a Default Command ..9-45
Disabling a Field’s Menu ..9-45

Connecting two Fields ...9-46
Controlling the Insertion Point ...9-46

Highlighting a Portion of a Field ...9-46
Positioning the Insertion Point ..9-47

Input Field Events ..9-47
Labels ...9-48

Creating a Textual Label ..9-49
Creating a Graphic Label ..9-49
Making a Label Mnemonic ..9-50
Supplying the Label at Run Time ..9-50
Building a Registry of Labels ...9-51
Label Events ...9-52

Lists ..9-52
Adding a List ...9-52
Changing the List of Elements ..9-53
Enabling Multiple Selections ...9-54
Getting a Selection Contents ..9-55
Setting a Selection ...9-56
Connecting Two Lists ..9-56
List Events ...9-57

Menu Button ...9-59
Adding a Menu Button ...9-59
Adding a Menu Button with a Menu of Commands9-60
Menu Button Events ..9-60

Notebook ..9-62
Creating a Notebook ...9-62
Setting the Starting Page ..9-64
Getting the Selected Tab ...9-64
Adding Secondary Tabs (Minor Keys) ...9-65
Connecting Minor Tabs to Major Tabs ...9-66
Changing the Page Layout (Subcanvas) ...9-67
Notebook Events ...9-68

Percent Done Bar ...9-70
Basic Properties ..9-70

Aspect ..9-70
Orientation ..9-70
Starting Point ..9-71

Adding a Percent Done Bar ...9-71
Percent Done Bar Events ..9-71
GUI Developer’s Guide xi

Radio Buttons .. 9-71
Radio Button Events ... 9-72

Region ... 9-73
Adding a Region ... 9-73
Region Events .. 9-74

Resizing Splitter ... 9-74
Adding a Resizing Splitter ... 9-74
Setting Widget Positioning .. 9-75
Resizing Splitter Events .. 9-78

Sliders .. 9-78
Adding a Slider ... 9-78
Connecting a Slider to a Field ... 9-79

Connect Slider to Numeric Field .. 9-79
Connect Slider to a Non-numeric Field .. 9-79

Making a Slider Read-Only ... 9-80
Changing the Slider Range .. 9-81
Making a Slider Two-Dimensional ... 9-82
Slider Events ... 9-83

Spin Buttons .. 9-83
Adding a Spin Button .. 9-85
Spin Button Events ... 9-85

Subcanvases ... 9-88
Inheriting a Subcanvas ... 9-88

Changing the Value of an Inherited Widget 9-89
Nesting One Application in Another .. 9-90

Setting a Value in an Embedded Widget 9-91
Reusing an Interface Only ... 9-91
Changing Interfaces at Run Time .. 9-92
Accessing an Embedded Widget ... 9-93
Subcanvas Events .. 9-94

Tab Control .. 9-95
Compatibility with Notebook .. 9-95
Adding a Tab Control .. 9-95
Defining Initial Labels .. 9-97
Placing an Icon on a Tab .. 9-97
Tab Control Events ... 9-97

Tables .. 9-99
TableInterface ... 9-99
Adding a Table .. 9-100
Controlling Column Widths ... 9-101
Connecting a Table to an Input Field .. 9-101
Labeling Columns and Rows .. 9-102
Table Events ... 9-103
xii VisualWorks

Text Editors ..9-105
Adding a Text Editor ..9-105
Retrieving and Modifying Selected Text ..9-106
Highlighting Text ...9-107
Aligning Text ..9-107
Text Editor Events ...9-108

View Holder ..9-110
Adding a View Holder ..9-110
View Holder Events ...9-110

Index Index-1
GUI Developer’s Guide xiii

xiv VisualWorks

About This Book

This document is designed to help both new and experienced developers
create application programs effectively using the VisualWorks®
application frameworks, tools, and facilities.

Audience

This guide assumes that you have at least a beginning familiarity with
object-oriented programming. The description of VisualWorks begins at
an elementary level, with an overview of the system tools and facilities,
and a description of Smalltalk syntax, but does not attempt to be a
tutorial.

For additional help, a large number of books and tutorials are available
from commercial book sellers and on the world-wide web. In addition,
Cincom and some of its partners provide VisualWorks training classes.

Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.
GUI Developer’s Guide xv

About This Book
Special Symbols
This book uses the following symbols to designate certain items or
relationships:

Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File " New Indicates the name of an item (New) on a menu
(File).

<Return> key
<Select> button

<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

Example Description
xvi VisualWorks

Getting Help
These buttons correspond to the following mouse buttons or
combinations:

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

• The version id, which indicates the version of the product you are
using. Choose Help " About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help " About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>
GUI Developer’s Guide xvii

mailto:supportweb@cincom.com

About This Book
Electronic Mail
To get technical assistance on VisualWorks products, send email to
supportweb@cincom.com.

Web
In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com
Telephone

Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.

Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:

• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu

with the SUBJECT of "subscribe" or "unsubscribe". You can then
address emails to vwnc@cs.uiuc.edu.

• A Wiki (a user-editable web site) for discussing any and all things
VisualWorks related at:

http://www.cincomsmalltalk.com/CincomSmalltalkWiki

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.
xviii VisualWorks

mailto:supportweb@cincom.com
http://supportweb.cincom.com
mailto:vwnc-request@cs.uiuc.edu
mailto:vwnc@cs.uiuc.edu
http://www.cincomsmalltalk.com/CincomSmalltalkWiki
news:comp.lang.smalltalk

Additional Sources of Information
Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincomsmalltalk.com/documentation/

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.

Online Help
VisualWorks includes an online help system. To display the online
documentation browser, open the Help pull-down menu from the
VisualWorks main menu bar and select one of the help options.

VisualWorks FAQ
An accumulating set of answers to frequently asked questions about
VisualWorks is being compiled in the VisualWorks FAQ, which
accompanies this release and is available from the Cincom Smalltalk
documentation site.

News Groups
The Smalltalk community is actively present on the internet, and willing to
offer helpful advice. A common meeting place is the comp.lang.smalltalk
news group. Discussion of VisualWorks and solutions to programming
issues are common.

Commercial Publications
Smalltalk in general, and VisualWorks in particular, is supported by a
large library of documents published by major publishing houses. Check
your favorite technical bookstore or online book seller.

Examples
There are a number of examples in parcels, installed in the examples
subdirectory, under the VisualWorks install directory. These are referred
to frequently in this document, and provide additional help in
understanding GUI development in VisualWorks.
GUI Developer’s Guide xix

http://www.cincomsmalltalk.com/documentation/

About This Book
xx VisualWorks

1

Building an Application’s GUI

This chapter provides an overview of how to build a graphical user
interface (GUI) and link it to the domain model(s) of a VisualWorks
application.

Separating Domain and Application Models
The main guiding principle in developing a VisualWorks application is
to clearly and cleanly separate the domain model from the
application, or GUI, model.

The domain model is one or more objects that represents entities in
the application’s domain. These may represent, for example,
business objects such as customers, inventories, and processes. In a
simple application, the entire domain might be represented by a
single class, but usually will involve several.

The application model, on the other hand, represents the
presentation of the domain to the user, and so includes the GUI and
its support mechanisms. This maintains one or more windows and
their widgets, and any logic needed for presenting data from the
domain.

In general, the domain model should remain free of user-interface
code. Any instance variables or methods that are necessary purely to
support the mechanics of the user interface belong in the application
model. This separation of responsibilities makes it easier to reuse
your domain models with other interfaces.

While the split between domain and application models is not always
completely clear, the distinction often helps when deciding where to
locate variables and methods.
GUI Developer’s Guide 1-1

Building an Application’s GUI
A complete GUI application consists of its application and domain
models. In this chapter we address how to build the GUI. Connecting
the two models, while maintaining their separation, involves using
value models, and is discussed in Adapting Domain Models to
Widgets.

GUI Development
While there must be a domain model to complete the linking, a great
deal of preliminary work can be begun by working on the GUI, so it is
not necessary to develop the domain model before building the GUI.
A fairly common development approach in object-oriented
programming is to develop, or at least prototype, the GUI before
completing the domain model.

The VisualWorks Painter tool both creates the UI specification and
the application model, so this stage goes a long way to beginning
application development.

In this chapter, we begin with an overview of the basic operations of
building the GUI using the UI Painter tool. From there we move to a
more complete description of building an application view for a
domain. Finally, several approaches to and options for building the
adaptors that connect the GUI and domain are described.

Loading the UI Painter
The UI Painter is a loadable component in VisualWorks. Before you
can begin painting a canvas, you need to load it.

Load the UIPainter parcel using the Parcel Manager, System > Parcel
Manager, then select and load the UIPainter parcel, on the Essentials
page.

Creating a Graphical User Interface
To create the visual portion of a graphical user interface, you specify
the contents and layout of each window in your application. These
windows include the application’s main window, secondary windows,
and dialog boxes.
1-2 VisualWorks

Creating a Graphical User Interface
Part of the procedure generates stub methods and value holders to
link up with the domain model. Later, you program application-
specific behavior for each of the windows you specified. And, as an
alternative mechanism for linking the domain and application models,
you can use the Trigger-Event system, as described in Configuring
Dependencies Using Events.

“Painting” a Window
You create windows by creating a visual specification using the UI
Painter. The painter tool provides a canvas, on which you arrange
widgets, a palette containing widgets, and a canvas tool, which gives
quick access to a number of common UI layout commands.

To open the Painter, click on the New Canvas button, or select Painter >
New Canvas, in the Visual Launcher.

The UI Painter opens with three windows: the GUI Painter Tool (left),
the widget Palette (top right), and the canvas (bottom right).

The canvas is a work area in which you add and arrange visual
components until it looks like the window you want in your
application. If your application uses several windows, you create a
separate canvas for each window in the application. One window will
be the main window, and the rest will be sub-windows.
GUI Developer’s Guide 1-3

Building an Application’s GUI
You paint the blank canvas by placing and arranging widgets on it. To
place a widget, click on a widget in the palette, then move the mouse
to the canvas and click once. A representation of the widget is
displayed at the cursor. Move it where you want the widget, then click
again to drop the widget.

If you want to place several of the same widget on the canvas, select
the Sticky Select button before selecting the widget. Every time you
drop one widget, you can drop another, until you select another
widget or reselect the single-place button.

Setting Properties
Every window and widget has an associated collection of properties,
grouped into several pages. A few properties are common to all
windows and widgets, but most vary from object to object.

Properties define a variety of visual attributes, such as font, color,
borders, and so on. For some widgets, such as input fields,
properties also indicate the nature of the data to be displayed and
how that data is to be referenced by the application.

Properties are initially set using the properties pages in the GUI
Painter Tool while you are constructing the GUI.
1-4 VisualWorks

Creating a Graphical User Interface
Most of the properties available for setting are self-explanatory. If you
want to change some characteristic of a window or widget, look in the
property pages, and you’ll usually find the property setting you need.
Many of the properties are described in other sections of this manual,
either in discussions of general features or of the individual widgets
(refer to Configuring Widgets).

A few fields need some initial explanation:

String

A string for the widget label. The label may be supplied
programmatically or by a graphic in many cases, which you
indicate by marking a check box for the option, and the string
field is grayed-out.

Message

The name of the class method in the application model providing
the label, if the label is provided by the application (Supplied by
Application checkbox). The label can be either a string or by a
graphic (Label is Image checkbox).

Aspect

The name of the property in the application model that
represents the value model for the widget. An instance variable
and stub accessor method for the aspect are created when you
select Define for this widget. The value model is typically a
ValueHolder, if the widget reflects a property within the application
model, or an AspectAdaptor, if the widget reflects a property in a
separate domain model. An Aspect Path may also be specified in
this field.

ID

An identifier for the widget. A default identifier is provided for
each widget, so you can easily identify it in the list of widgets.
This identifier is used to access this widget programmatically, and
to register event handlers with the widget. You may change the
default name to something more descriptive or keep the default
name.

Catalog and Lookup Key

These fields specify a message catalog and lookup key into the
catalog. This fields are displayed for widgets that take a label,
such as the label, action button, and radio button, and for the Fly-
GUI Developer’s Guide 1-5

Building an Application’s GUI
by Help for widgets. The fields are activated when the Show UI for
internationalization option is activated on the Tools page of the
Settings Tool. For additional information about message catalogs
and their use, refer to the VisualWorks Internationalization Guide.

Installing the Canvas
At any time in the painting process, you can save the canvas by
installing it in an application model. Installing the canvas creates an
interface specification. The specification is stored as a class method
in the application model.

To install a canvas, either click the Install button in the GUI Painter
Tool, or select Install... in the <Operate> menu for the canvas. The
Install dialog allows you to enter the necessary information.

For a new canvas, you need to enter a class name in the Install on
Class field. This can be a new class name or the name of an existing
class. For a new class, you will be asked for the appropriate
superclass in a subsequent dialog.

You must also either enter or select a method selector (message
name) for the specification. The default is windowSpec, which is the
standard name for the main window specification. If you are defining
a secondary window, you should pick another name. Click OK to save
the specification.
1-6 VisualWorks

http://www.cincomsmalltalk.com/documentation/current/InternationalGuide.pdf

Creating a Graphical User Interface
If you specify a class that does not already exist, you are asked to
select a superclass and a name space for it. For an application, you
typically select ApplicationModel as the superclass. The name space
is typically either one created for your application or Smalltalk.

The ApplicationModel superclass provides support functions for GUI-
oriented applications, so it is usually the right choice for an
application. SimpleDialog provides support features for dialogs. On the
other hand, if the class must be a subclass of some other class,
select Other and enter its name.

The Category field sets the category for the new class. You can use an
existing category or a new category name that better identifies your
work.

If you have Store installed, after closing this dialog you will be
prompted for a package. Select a package or “none” and continue.

Reopening a Canvas
When you save the canvas, its specification is added to the resources
for the application. After you’ve closed the canvas, you can open it
again for editing using the Resource Browser (Painter > Resource Finder
menu item in the Visual Launcher). In the Resource Browser, select
the class name containing the canvas, then select the specification
GUI Developer’s Guide 1-7

Building an Application’s GUI
for the canvas and click Edit. You can browse the specification
method, and evaluate the code in its method comment, to open the
specification in its editor.

To save any changes you make to a canvas, you must reinstall it.

Defining Value Models
Once a canvas is installed, you can define instance variables and
stub accessor methods for the aspects and actions you identify for
each widget. For most widgets, the names of these variables and
methods are specified in the Aspect property. The Action Button
widget has only a method (no instance variable), and its name is
specified in the Action property field. Some widgets do not use
variables or methods at all, and so do not have a corresponding
property.

To use the Trigger-Event mechanism, do not specify the Aspect or
Action. These are handled differently, as described below in
Configuring Dependencies Using Events. You must specify an ID to
use Trigger-Events.

Once you have entered aspect names for one or more widgets, select
the widgets, either individually, multiply, or by selelcting the canvas
itself to define all. Then click the Define button in the GUI Painter Tool,
or select Define in the <Operate> menu for the canvas. A confirmation
dialog listing the names of aspects and actions for the selected
widgets is displayed.

In the list, each item that will be defined is marked with a check mark.
To remove the check mark, and so skip that method, click on the
item.
1-8 VisualWorks

Formatting a Canvas
Unchecking an item is important in subsequent define operations,
because redefining will overwrite any custom changes you make to
the method.

The Add Initialization checkbox determines whether the stub method
will include initialization code. Without initialization, the instance
variable for the aspect is simply returned. With initialization, the
method includes lazy initialization code, testing for a value and, if not
set, assigns an initial value. The type of value assigned depends on
the widget.

Once the stub methods are generated, you can edit them to provide
the specific processing your application needs. For example, to
connect the UI to its domain model, you must redefine some aspect
methods to use aspect adaptors. Refer to Adapting Domain Models
to Widgets for more information.

Testing the User Interface
When you have installed the window’s canvas in an application
model, you have a minimal application that can be started. At this
point, the widgets in the window exhibit generic behavior, because
you’ve not added any specific behavior to exhibit or data to display.
You can, however, see how the interface will look under running
conditions.

To start the application, with the canvas open, click the Open button in
the Canvas Tool, or select Open in the canvas <Operate> menu. Move
the new window outline to a location on the screen and click.

You can also use this method for starting the application later, as you
add specific behavior to the application.

Formatting a Canvas
The following sections describe operations for formatting and
arranging widgets, to adjust how the window will appear in the
application. Most of the operations are performed in the canvas while
assembling the GUI.

Some formatting can be set or changed programmatically, while the
application is running. Instructions are provided for doing this along
with the canvas instructions. For general instructions on accessing
widgets from a running application using the widget’s ID, see
Controlling the GUI Programmatically.
GUI Developer’s Guide 1-9

Building an Application’s GUI
Setting the Window Size
While editing a canvas, you change the size of the window by
dragging the corners of the canvas to any desired size. Generally you
select a size and proportion that accommodates any widgets you use
in the GUI. As you design the canvas, you will likely change the size.

Once you have finished laying out the GUI, you need to ensure that
the window opens at the size you designed. To do this, select the Main
Window item in the GUI Painter Tool’s widget list, and go to the Position/
Size page.

At the bottom of are three sets of height and width dimensions. The
Specified dimensions give the default opening size. To set this to the
dimensions that you have sized the canvas, simply click the Specified
button, and the current dimensions are filled in. You may enter other
dimensions if you prefer.

It is also frequently useful to constrain a window to a certain size, so
that a user cannot change its size to larger or smaller than certain
dimensions. This is useful when the interface becomes unusable
outside of a range of values. These dimensions are provided by the
Minimum and Maximum dimensions. You can enter precise dimensions,
but it is easier to resize the canvas to the smallest usable size and
click the Minimum button. Similarly, resize the canvas to the largest
desireable size, and click the Maximum button.

If you allow the window to be resized, you will also want to decide
how widgets are sized. Refer to Sizing a Widget for directions on
controlling widget sizes.

Setting the Window Opening Position
In the GUI Painter Tool for a canvas, you can specify how the window
will be placed when the application is opened. Go to the Position/Size
page, and select an opening option for your application window.

In the top group, the options are:

System Default: Opens the window as specified as the default in the
Settings Tool, which is either user placement or automatic placement.

User Placement: Opens the window by user placement, regardless
of the default.

Advanced: Activates further options (below).

If you select Advanced, the further options are:
1-10 VisualWorks

Formatting a Canvas
System Default: Opens the window as specified as the default in the
Settings Tool.

Screen Center: Opens the window centered on the screen.

Mouse Center: Opens the window centered on the mouse.

Last/Saved Position: If Auto is checked, the window will open where
it was last closed. If Auto is unchecked, the window will open each
time in the same location.

Cascade: Each time the window opens below and to the right of
where it last opened. This is useful especially if several copies of the
window can open in succession.

Specified Position: Opens with the top left corner at the specified
screen coordinate.

After selecting the option, Apply the change and Install the canvas.

Adding Scrollbars to a Window
Scrollbars on a window allow a GUI to contain widgets that might not
always be displayed, depending on window size. If this is a possibility,
you can add horizontal and/or vertical scrollbars to your window.

1 In the window’s canvas, make sure no widget is selected, or
select the Main Window item in the widgets list.

2 On the Details properties page, turn on the desired scroll bars.

3 Apply the properties and install the canvas.

Adding a Menu Bar
To add a menu to a window, you create the menu using the Menu
Editor and enable the menu in the canvas.

1 In the canvas for the window, make sure no widget is selected, or
select the Main Window item in the widgets list.

2 On the Basics properties page, turn on the Enable switch for the
Menu Bar property.

3 In the Menu field, enter the name of the menu-creation method,
defined for the menu in the Menu Editor.

4 Install the canvas.
GUI Developer’s Guide 1-11

Building an Application’s GUI
You can use the Menu Editor to create the menu either before or after
enabling the canvas. Each first-level entry in the menu appears in the
menu bar, but only if it has a submenu.

Adding Fly-by Help
The Fly-by Help page allows you to specify the String that displays
when the curser pauses over a widget.

The Default field simply takes a String value, which is used unless a
Catalog and Lookup key are specified and found. Message catalogs are
part of the internationalization features, and are described in the
Internationalization Guide.

If you check Supplied by Application, the Message field becomes active.
Enter the method selector for the class method that returns the help
text.

Setting the UI Colors
Setting colors for a window and for widgets within the window use the
same property dialog, and in fact work together.

Caution: The color selections represented above are among the
absolute worst in GUI design. Such color choices will evoke at
least disgust, and possibly violent illness, in your users. DO NOT
use such colors in your application.
1-12 VisualWorks

http://www.cincomsmalltalk.com/documentation/current/InternationalGuide.pdf

Formatting a Canvas
Windows and widgets have four color zones:

• Foreground

• Background

• Selection foreground

• Selection background

On the Color properties page, you can apply a color to any of these
zones.

By default, each zone is set to none, which means that the window or
widget inherits its colors. A window inherits the platform window
manager’s colors, and widgets inherit from either a containing widget
or the window. Unless you specifically want to highlight some feature
of the GUI, you should leave all color selections at their default.

When you do select colors, be sensitive to good taste (unlike the
above example). Also, be aware that some forms of color blindness
make certain combinations useless. For example, many people
cannot distinguish between red and green, so a red foreground on a
green background ought to be avoided.

To change a color:

1 In a canvas, select the window or widget whose color you want to
set.

2 On the Color properties page, select the desired color from the
color chart.

3 Click on the color zone on the Color page.

To revert to none, click on the zone a second time with the same
color selected.

4 Apply the properties and install the canvas.
GUI Developer’s Guide 1-13

Building an Application’s GUI
Sizing a Widget

In the canvas, you can set a widget’s size by dragging its selection
handles, stretching or shrinking the widget’s dimensions.

You can make the widgets in a multiple selection all equal in height,
width, or both, using the Arrange > Equalize... command in the GUI
Painter Tool menu. There are also buttons on the Palette for doing
these operations.

Widgets appear in their painted size when the window is opened.
When the window size is fixed, nothing more normally needs to be
done. However, when the window’s size is variable, you may want to
arrange for the widget to adjust its size in relation to that of the
window. You can use the Layout > Relative command on the Canvas
Tool to arrange for automatic resizing in both the vertical and the
horizontal dimensions.

For more complicated situations, or for more precise control, you can
set properties on the Position properties page, as described in the
following sections.

There are three layout schemes for widgets, which provide different
ways to specify the widget’s size relative to a point:

Bounded - This layout sets the widget position by specifying the left,
top, right, and bottom location, each as an offset from a proportional
position within the window. The widget’s size may vary as the window
is resized.

Unbounded - This layout is available only for Action Buttons,
Checkboxes, Radio Buttons, and Labels, which are naturally variable
in size based on the size of their label. When set to unbounded, the
widget is positioned by setting the widget’s origin (top left corner),
and its position relative to the origin. Size is determined by the label
size.
1-14 VisualWorks

Formatting a Canvas
Origin + Width and Height - This layout sets the widget’s origin (top
left corner), and its size as a fixed height and width.

Making a Widget’s Size Fixed
To make a widget’s size constant, use the Origin + Width and Height
layouts. (You can use Bounded layout, but it is more difficult.) Set the
widget’s origin the Left (X) and Top (Y) property settings, and then set
its height and width in pixels. A fixed size is commonly used for
buttons and labels.

1 In a canvas, select the widget whose size is to be fixed.

2 On the Position properties page, click the Origin + Width and Height
layout button.

3 Set the left (X) proportion and offset, and the top proportion and
offset.

4 Set the Height and Width sizes in pixels.

5 Apply the properties and install the canvas.

Making a Widget’s Size Relative
You can cause a widget to expand or shrink in concert with the
window by setting its Right Proportion to be different from the Left
Proportion, or by setting the Bottom Proportion to be different from
the Top Proportion. This is especially useful for widgets that can use
additional space, such as text editors, lists, and tables. Input fields
are often made relative in the horizontal dimension only.

Online example: Size1Example

1 In a canvas, select the widget whose size is to be relative.

2 On the Position properties page, set the Right Proportion to a
value that is larger than the Left Proportion. (A right proportion of
0.5 keeps the right edge anchored at the window’s midline while
the left edge is anchored to the window’s left edge.)

3 Set the Right Offset to the distance you want between the
widget’s right edge and the imaginary line identified by the Right
Proportion.

4 Set the Bottom Proportion to a value that is larger than the Top
Proportion.
GUI Developer’s Guide 1-15

Building an Application’s GUI
5 Set the Bottom Offset to the distance between the widget’s
bottom edge and the imaginary line representing the Bottom
Proportion.

6 Apply the properties and install the canvas.

Applying Explicit Boundaries to an Unbounded Widget
Four widgets are naturally variable in size: labels, action buttons,
radio buttons, and check boxes. These widgets change in size to
accommodate their textual labels, which expand and shrink on
different platforms because of font differences. Unlike most widgets,
which have four boundaries, the variable-size widgets are said to be
unbounded.

Sometimes it is preferable to convert an unbounded widget so it is
bounded like other widgets. As shown in Size2Example, the advantage
is that you can make a series of buttons have equal dimensions, for
example. There is a slight hazard in converting an unbounded widget,
however; on a different platform, a font change in the widget’s label
may cause the label to expand beyond the widget’s unyielding
boundaries.

Online example: Size2Example

1 In a canvas, select an unbounded widget such as a label.

2 In the Canvas Tool, select Layout > Be Bounded.

Alternatively, select the Bounded button on the Position page.

3 Apply the properties, if necessary, and install the canvas.

To reverse the operation, select Layout > Be Unbounded.

Positioning a Widget
The basic way to set a widget’s position is by dragging it to the
desired position in the canvas. This determines the widget’s initial
position relative to the window’s upper left corner.

In the GUI Painter Tool, use the commands on the Grid menu to turn
on/off and configure the grid on the canvas. When turned on, widgets
snap to position relative to the grid, which simplfies the task of
aligning widgets.
1-16 VisualWorks

Positioning a Widget
Widgets appear in their painted position when the window is opened.
When the window size is fixed, nothing more normally needs to be
done. However, when the window’s size is variable, you may need to
arrange for the widget to adjust its position relative to the size of the
window. You can use the Layout > Relative command on the GUI
Painter Tool to arrange for automatic repositioning in both the vertical
and the horizontal dimensions.

For more precise control, several options are provided on the Position
properties page.

Making a Widget’s Origin Fixed
Making a widget fixed is useful when the window’s size is fixed. When
the window’s size is variable, this approach works best for a button or
other fixed-size widget that is located along the left or top edges of
the window.

Online example: Size1Example (start it and then resize the window to
see the effect)

1 In a canvas, select the widget whose position is to be fixed.

2 On the Position properties page, set the Left and Top Proportions to 0.
These proportions control whether a widget moves relative to the
window size. Setting these properties to 0 causes the widget’s
origin to remain fixed in place.

3 Set the Left Offset to the desired distance between the window’s
left edge and the widget’s left edge (in the example, 50 pixels).

4 Set the Top Offset to the desired distance between the window’s
top edge and the widget’s top edge (50).

5 Apply the properties and install the canvas.

Giving an Unbounded Widget a Fixed Position
An unbounded widget has no left, right, top, and bottom sides
because its boundaries are not fixed. However, it does have a
reference point that can be positioned in either a fixed or relative
location in the window. By default, the reference point is the origin of
the widget (the top-left corner).

1 In a canvas, select an unbounded widget such as a label.

2 On the Position properties page, set all of the proportions to 0.
GUI Developer’s Guide 1-17

Building an Application’s GUI
3 Set the X and Y off sets to the coordinates of the widget’s top-left
corner relative to the top-left corner of the window.

4 Apply the properties and install the canvas.

Making a Widget’s Origin Relative
A relative origin causes the widget to move farther away from the left
and top edges of the window when the window grows and closer
when the window shrinks. This is useful for keeping an object
centered in the window and for shifting one widget that is placed
below or to the right of another widget that expands and shrinks in
size.

You can also make the origin relative in only one dimension. In the
example, the origin shifts horizontally as the window is resized, but it
maintains a stable offset from the window’s top edge.

Online example: Size1Example

1 In a canvas, select the widget whose position is to be relative.

2 On the Position properties page, set the Left Proportion to the
fraction of the window’s width from which the Left Offset is to be
measured. (In the example, a left proportion of 0.5 causes the
widget to remain anchored at the window’s midline.)

3 Set the Left Offset to the distance you want between the widget’s
left edge and the imaginary line identified by the Left Proportion (50
pixels).

4 Set the Top Proportion to the fraction of the window’s height from
which the Top Offset is to be measured. (In the example, a top
proportion of 0 anchors the widget’s top edge at the top edge of
the window, which is the same as keeping the origin fixed in the
vertical dimension.)

5 Set the Top Offset to the distance you want between the widget’s
top edge and the imaginary line identified by the Top Proportion (50
pixels).

6 Apply the properties and install the canvas.

Giving an Unbounded Widget a Relative Position
Online example: Size2Example

1 In a canvas, select an unbounded widget (in the example, select
one of the unbounded buttons on the left to examine its
properties).
1-18 VisualWorks

Grouping Widgets
2 In the Position properties page, set the X Proportion to the fraction
of the widget’s width at which the reference point is to be
positioned (0.5).

3 Set the Y Proportion to the fraction of the widget’s height at which
the reference point is to be positioned (0).

4 Set the X Proportion to the fraction of the window’s width at which
the widget’s reference point is to be anchored. (In the example,
an X Proportion of 0.25 keeps the widget’s reference point
anchored one-fourth of the way across the window.)

5 Set the X Offset to the distance you want between the widget’s
reference point and the imaginary line identified by the X
proportion (0).

6 Set the Y Offset to the fraction of the window’s height at which the
widget’s reference point is to be anchored. (In the example, a Y
proportion of 0 keeps the widget’s reference point a fixed distance
from the window’s top edge.)

7 Apply the properties and install the canvas.

Grouping Widgets
Windows frequently have clusters of widgets that work closely
together. Such clusters are usefully dealt with, for formatting
purposes, as a single object. For this purpose, the widgets can be
formed into a group.

Once grouped, the whole group can be moved on the canvas,
retaining its arrangement.

Making a Group of Widgets
To make a group out of several widgets:

1 Select the widgets to be grouped, by selecting one widget and
then hold down the <Shift> key while selecting additional
widgets.

2 Select Arrange > Group either in the <Operate> menu or in the GUI
Painter Tool.
GUI Developer’s Guide 1-19

Building an Application’s GUI
In the widgets list in the GUI Painter Tool, notice that a new pseudo-
widget, Composite1 (or some higher increment if there are already
composites) is added to the list. The component widgets are listed
under it and indented. The list can be collapsed or expanded as
desired, to hide or show the component widgets.

To ungroup a group of widgets, select Arrange > Ungroup.

Editing Widgets in Groups
You can edit an individual widget within a group, without ungrouping.
To do so, in the hierarchical widget list in the GUI Painter Tool, select
the desired widget within the group. Then, edit its properties as usual.

Aligning Widgets

When painting a canvas, you frequently need to make several
widgets align along a vertical or horizontal line to give a neat, regular
appearance. For precise control you can use the Align dialog, shown
above and described below. There are also a set of alignment
buttons on the Palette, giving quick access to the alignment functions.
You can also use the Position properties page to precisely position
widgets, but would usually choose to do so only due to scaling
consideration

1 In a canvas, select the widgets to be aligned.

2 In the GUI Painter Tool or the Canvas <Operate> menu, select
the Arrange > Align command.

3 In the Align dialog, select on horizontal line when aligning side-by-
side widgets. When aligning widgets in a column, select on vertical
line.

4 In the Align dialog, select first selection when the widgets are to be
aligned with the first widget that was selected. Select merged box
1-20 VisualWorks

Distributing Widgets
to align the widgets on a line halfway between the two most
extreme positions within the group of widgets.

5 In the Align dialog, select the edges, or the centers, to be
aligned.

6 Install the canvas.

Distributing Widgets

When painting a canvas, you frequently need to make the spaces
between several widgets equal. For precise control you can use the
Distribute dialog, shown above. You can also use the distribution
buttons on the Palette.

1 In a canvas, select the widgets to be spaced.

2 In the GUI Painter Tool or Canvas <Operate> menu, select the
Arrange > Distribute command.

3 In the Distribute dialog, select left to right for widgets that are to be
spaced in a horizontal row. Select top to bottom for columnar
distribution.

4 In the Distribute dialog, select the type of spacing. For constant
spacing between edges, you must specify the number of pixels to
place between each pair of widgets.

5 Install the canvas.

Changing a Widget’s Font
When a widget’s default font is not suitable, you can use the Font
menu in the widget’s properties to choose an alternative font. The
built-in fonts are:
GUI Developer’s Guide 1-21

Building an Application’s GUI
• System, for a font that matches the current platform’s system font,
when available. The font varies depending on platform and Look
policy. (Defined in the Look Policy classes.)

• Default, for the default font for the widget. The font varies with the
Look Policy and the widget.

• Pixel, Small, Medium, Large and Fixed defined in TextAttributes.

• Standard, Small, Medium, Large and Fixed defined in
VariableSizeTextAttributes.

The drop-down lists under Pixel and Standard also list any Named
Fonts you have defined.

Named Fonts
VisualWorks does not automatically add all fonts on your system to
the fonts list. However, you can selectively add these fonts and
assign them a name for use by name. Once defined, a named font is
added to the fonts list in the GUI Painter and other utilities.

Open the Named Fonts tool from the GUI Painter Tool, either by
clicking the Define Named Fonts button or selecting Edit > Define Named
Fonts.

To add a named font:

1 Click Add New Named Font, and enter a descriptive name in the
prompter.
1-22 VisualWorks

Changing the Tabbing Order
2 With the new name selected, assign attributes to it by selecting
the font (as known to the system) in the drop-down list, size,
color, and other characteristics.

3 Click Assign To Named Font, and Close the tool.

The named font can now be assigned to a text widget or field by
selecting it on the Details page.

The named font definitions are saved in the image the next time you
save it. You may also either file out the definitions using Edit > Named
Fonts > File Out... in the GUI Painter Tool.

More importantly, you can install the named fonts into your
application by selecting Edit > Named Fonts > Install In Application... in the
GUI Painter Tool. This option adds a definedNamedFonts instance
method to your application model. Note that this option is only
available when the current application has already been installed.

Changing the Tabbing Order
When an application is running, users can use the <Tab> key to shift
the keyboard focus from one widget to the next in a window, without
having to move the mouse.

The <Tab> key moves focus to each widget on the tab chain. You add
a widget to the tab chain by turning on its Can Tab property on the
Details property page. Passive widgets such as labels and dividers do
not have a Can Tab property, so they cannot be put on the tab chain.

In a text editor widget, you should either turn off the Can Tab property
in a text editor or set the Tab Requires Control Key option, if you want the
editor to interpret the <Tab> key as a literal character to be entered
into the text. Otherwise, <Tab> will advance to the next widget. With
Can Tab inactive, the user cannot tab out of the text editor. With Tab
Requires Control Key set, <Ctrl>+<Tab> tabs out of the text editor.

The order in which the <Tab> key advances the focus is the order in
which the widgets are listed in the GUI Painter Tool widget list, with
the widget at the top of the list being the first in the tab chain. To
change the tab order, select a widget and then click one of the
ordering buttons:
GUI Developer’s Guide 1-23

Building an Application’s GUI
Tab order (first to last) is in reverse of the widget Z-order (front to
back). So the front most widget is last in the tab chain.

For composite parts, arrange the tabbing order within the group.
Then, move the group to the appropriate position.

Opening and Closing Windows
The usual way of opening an interface window for an application is to
ask an application model to open one of its interface specifications.
An application is frequently started by opening its main window in this
way.

Opening the Main Window
When the application’s main window spec name is #windowSpec, you
can just send open to the application model:

Editor1Example open
If the main window’s spec is named other than #windowSpec, send
openWithSpec: to the application class.

Editor1Example openWithSpec: #windowSpec
These expressions can either be incorporated into an application to
open the window at an appropriate time, or evaluated in a workspace
to launch the application.

Bring to Front (last tab position)

Bring Forward (backward one tab position)

Send Backward (forward one tab position)

Send to Back (first tab position)
1-24 VisualWorks

Opening and Closing Windows
Opening a Secondary Window
When the same application model serves one or more secondary
canvases in addition to the main canvas, you can open a secondary
canvas. A “secondary” canvas implies that the application has
reached the proper state, that the instance variables required by the
interface have been initialized.

This example creates a new UIBuilder the first time it is invoked, and
it stores that builder in an instance variable. When your application
needs to access widgets on the secondary canvas later, storing this
second builder assures you will have a means of accessing the
widgets.

1 In a method in the application model, create a new UIBuilder.

2 Tell the builder which object will supply its menus, aspects, and
other resources by sending it a source: message. The argument is
typically the application model itself. (Alternatively, you can send
a series of aspectAt:put: messages to install the resources
directly.)

3 Create the spec object and add the spec to the builder.

4 Open the window.

openFinder
"Open the Search window. If already open, raise to top."
| bldr |
(self finderBuilder notNil and: [self finderBuilder window isOpen])

ifTrue: [self finderBuilder window raise]
ifFalse: [

self finderBuilder: (bldr := UIBuilder new).
bldr source: self.
bldr add: (self class

interfaceSpecFor: #finderSpec).
bldr window

application: self;
beSlave.

self adjustSearchScope.
self searchStatus value: 0.
(bldr componentAt: #searchStatus) widget

setMarkerLength: 5.
bldr openAt: (self

originFor: bldr window
nextTo: #findButton)].

(self wrapperAt: #listView) takeKeyboardFocus.
GUI Developer’s Guide 1-25

Building an Application’s GUI
Setting the Window Size at Opening
Rather than specify the opening size of a window in the canvas, you
can specify the size when opening.

1 Build an interface up to the point of opening the window, by
sending the allButOpenInterface: to an instance of the application
model.

2 Get the window from the interface builder.

3 Ask the window to open with a specified size (extent), by sending
the window an openWithExtent: message.

| bldr win |
bldr := Editor2Example new allButOpenInterface: #windowSpec.
win := bldr window.
win openWithExtent: 500@220.

Setting the Startup Location of a Window
1 Build the interface up to the point of opening the window.

2 Get the window from the interface builder.

3 Ask the window to open itself within a specified rectangle, using
screen coordinates, in pixels.

| bldr win |
bldr := Editor2Example new

allButOpenInterface: #windowSpec.
win := bldr window.
win openIn: (50@50 extent: win minimumSize).

Closing Application Windows
The platform window manager provides the user with a means of
closing a window, such as clicking on a close icon. Often it is
desirable for an application to provide a close method in its interface,
such as an Exit option on a menu or a Quit button. An application
might also close a window as a side effect of some conclusive user
action, such as clicking the window manager’s close icon.

The techniques shown here notify the window’s model, so it can take
precautions such as confirming the action.

When an application model is running one or more windows, you can
close it (or all of them at once, if there is more than one) by sending
closeRequest to the application.
1-26 VisualWorks

Opening and Closing Windows
Ask the application model to close its associated windows.

| editor |
editor := Editor2Example new.
editor openInterface: #windowSpec.
(Delay forSeconds: 1) wait.
editor closeRequest.

Hiding a Window
A window is a relatively expensive object, because it holds a visual
component that is often bulky and because it allocates a display
surface using the window manager. When your application needs to
open and close a window repeatedly, it is not necessary to
reconstruct it each time. Instead, you can unmap it, which hides the
window without disassembling it. Then you can simply map it to
redisplay it.

| win |
win := (Editor2Example open) window.
win display.
(Delay forSeconds: 1) wait.
win unmap.
(Delay forSeconds: 1) wait.
win map.

All windows also respond to an isMapped message, and keep their
mapped state as a Boolean in their mapped instance variable.

Performing Final Actions
When an application window has been asked to close, it first sends a
changeRequest message to its application model. If the model answers
false, the window won’t close; if it answers true, the window proceeds
to close itself. Thus, the model has a chance to verify that no damage
will be done if the window is closed.

For example, as shown below, the Image Editor (UIMaskEditor) uses a
changeRequest method to confirm the user’s intent to abandon any
unsaved changes in the image.

Implement a changeRequest method in your application model, which
answers true when the window can close and false otherwise.
GUI Developer’s Guide 1-27

Building an Application’s GUI
changeRequest
^super changeRequest

ifFalse: [false]
ifTrue: [(self modified or:

[self magnifiedBitView controller updateRequest not])
ifTrue:

[Dialog confirm: 'The image has been altered, but not installed.
Do you wish to discard the changes?']

ifFalse: [true]]
Notice also in the example that the inherited version of changeRequest
is first invoked to preserve any precautions that a parent class may
have implemented.
1-28 VisualWorks

2

The VisualWorks GUI Environment

The Graphical User Interface (GUI) building framework is what puts
the “Visual” in VisualWorks. Building a GUI is done by visually
selecting, placing, and arranging widgets on a “canvas.” We call the
process “painting,” and the tool you use is the UI Painter. The
resulting canvas specifies the application window.

Once you have designed the GUI, you connect it to your application’s
model, so that input to the GUI is passed on to the model, and so that
relevant changes in the model are displayed in the GUI. This
connecting function is handled by a subclass of ApplicationModel
specific to your application. This model is generated by the UI
Painter, including stub methods for many essential aspects of the
model, according to attributes you specify for the GUI elements.

In this document we address the more mechanical aspects of
building and controlling a GUI in VisualWorks. For a lower-level
description of how the application framework works in connection
with the rest of your application, refer to the “Application Framework”
chapter in the Application Developer’s Guide.
GUI Developer’s Guide 2-1

AppDevGuide.pdf

The VisualWorks GUI Environment
UI Painter
The “Visual” in VisualWorks emphasizes the graphical approach to
Graphical User Interface (GUI) design and development. This is
provided by the UI Painter.

The UIPainter is initially unloaded from the base image in the
commercial version, but is preloaded in the non-commercial version.
To load it, open the Parcel Manager, and load the UIPainter parcel on
the Essentials page.

The Painter tool is in three parts:

• Canvas (lower right) - represents a single window, on which you
place widgets, the graphical components of the GUI.

• Palette (top right) - presents a collection of widgets that are
commonly used in a GUI, and some widget arrangement buttons.

• GUI Painter Tool (left) - provides a collection of menu commands
and buttons for performing formatting and other operations on the
canvas, a hierarchical view of the widgets on the current canvas,
and the properties of the selected widget.
2-2 VisualWorks

The Canvas
The Canvas
The Canvas, which starts out blank, is where you place and arrange
widgets to “paint” your GUI.

The canvas can be resized to define the size of the resulting window,
and settings allow you to specify its initial size when it opens in the
application, and to constrain its maximum and minimum sizes.

The widgets you place on the canvas have a number of properties
that define their appearance and interaction with your application’s
data model. Positioning properties determine how the widgets scale
or distribute when the window is resized.

Once you have painted a GUI, you “install” it in your application. This
writes the canvas definition spec into an interface specification. The
specification is used by the application to open the window. You can
also edit the specification later by reopening it in the UI Painter.

The Canvas <Operate> menu provides configuration commands that
are also available in other parts of the UI Painter, notably those on
the GUI Painter Tool.

The Palette
The Palette has one button for each type of widget. Widgets are the
elements that you can include in a GUI, including simple elements
like labels and buttons, and more complex elements like hierarchical
lists and tables.

To add a component to your canvas, such as an input field, you
simply click on the Input Field icon in the Palette to select it, and then
click in the canvas to place the widget. You can then drag the widget
around to arrange its position relative to other widgets.

To add several copies of the same widget use the “sticky” widget
picker. Then, each time you click on the canvas you drop another
copy of that widget, without having to return to the canvas each time.
To return to single widget painting, select the “not sticky” picker.

The Palette also has several buttons for doing some basic widget
organizing, such as aligning and distributing widgets. These
operations are also available on the GUI Painter Tool menus, and in
the Canvas <Operate> menu.
GUI Developer’s Guide 2-3

The VisualWorks GUI Environment
GUI Painter Tool
The GUI Painter Tool is “control central” for configuring a canvas and
its widgets.

While you may have several canvases open at any given time, there
is only one GUI Painter Tool, which is focused on the currently
selected canvas. To operate on another canvas, select it to update
the GUI Painter Tool.

The GUI Painter Tool has menus and buttons for configuring the
canvas and its widgets. These are described throughout this
document as the relevant task is discussed.

On the left is a hierarchical Tree View, the components in the current
canvas. The canvas itself is included at the top of the list, as Main
Window. Below it, indented to show inclusion, are any widgets you
have placed on the canvas. Each widget has a default name, which
you may rename to make more descriptive and useful. Composite
parts, which are groups of widgets, are further indented under the
composite.

You can select a widget to configure by either clicking on the widget
in the canvas or in the widget list in the GUI Painter Tool. The widget
list is particularly useful in complex canvases, where a hidden widget
may be overlaid with another widget. It also simplifies selecting a
nested widget for configuration.

The widget list also shows the tab order between widgets for which
tabbing is enabled. Tab order is set from top to bottom. Moving a
widget in the list adjusts its place in the tabbing sequence.

The largest section of the GUI Painter tool is the collection of
properties pages. The specific pages and their contents vary from
widget to widget, but every widget has Basics, Details, Color, and
Position/Size pages. Additional pages are added as required by the
currently selected widget.

Common properties are described under Setting Widget Properties.
2-4 VisualWorks

3

Controlling the GUI Programmatically

An application frequently needs to exert control over the appearance
and behavior of its user interface during runtime. This requires
exerting programmatic control over the GUI. There are also times
when control needs to be exerted at specific times during application
startup and shutdown. Controlling the GUI requires accessing both
the application window and the widgets it contains.

This chapter covers these issues.

Application Startup and Shutdown
The process of assembling and opening the application window
proceeds by stages. The application model (ApplicationModel
subclass):

1 Creates an instance of UIBuilder;

2 Sends itself preBuildWith: with the builder as argument;

3 Passes the UI specs to the builder and ask it to construct the UI
objects;

4 Sends itself postBuildWith:, with the builder as argument;

5 Opens the fully assembled interface window;

6 Sends itself postOpenWith:, with the builder as argument.

The preBuildWith:, postBuildWith: and postOpenWith: messages each
provide a way for the application model to intervene in the process to
perform additional configuration.
GUI Developer’s Guide 3-1

Controlling the GUI Programmatically
Launching an Application
As described in the previous chapter, you typically open an
application by sending an open or openWithSpec: message to the
application model class. This creates an instance of the application
model and opens the main window. To open using the default
windowSpec specification, send an open message:

MyApp open
To specify an alternate specification, send an openWith: message:

MyApp openWithSpec: #myWindowSpec
The application model class creates a new instance of itself to run
the interface.

As an alternative to defining a postBuildWith: message (described
below), you can launch the application by sending the model class an
allButOpenInterface: with the window specification as argument. This
creates the builder which then builds the window, but does not open
it. You can then make any adjustments to the UI as needed, and then
open the window by sending finallyOpen to the application model.

If you want to use an existing application model instance, you can
send open or openInterface: to that instance. This is useful when you
want to reuse an instance rather than create a new one, or when you
want to initialize the application specially.

Prebuild Intervention
After an instance of UIBuilder has been created, but before it has been
given a window spec and built the UI, the application model sends
itself a preBuildWith: message. The argument is the newly created
UIBuilder.

Few applications need to intervene at this stage. Those that do,
typically take the opportunity to load the builder with custom bindings
that can only be determined at runtime, or must be set before building
the UI. For example, if you need to assign a specific UILookPolicy, do
so in this method:

preBuildWith: aBuilder
aBuilder policy: MotifLookPolicy new

There are a few other examples in this document. Browse UIBuilder
for appropriate messages.
3-2 VisualWorks

Application Startup and Shutdown
Postbuild Intervention
Next, the UIBuilder creates a window according to the window
specification. Before the builder opens the window, however, the
application model sends itself a postBuildWith: message, with the
builder as argument. The application model can use the builder to
access the window and any widgets within the window that were
given an ID property.

Applications commonly use postBuildWith: to hide or disable widgets,
menu items, and toolbar items as needed by the runtime conditions:

postBuildWith: aBuilder
"Disable the trip meter, making it read-only."
(self wrapperAt: #tripRange) disable.

It is also the common place to register event interests for widgets:

postBuildWith: aBuilder
self widget: #nextButton when: #clicked send: #nextRandom to: self.
self widget: #resetButton when: #clicked send: #resetSequence to: self

Several other examples are provided in this document.

Postopen Intervention
Finally, the builder opens the fully-assembled interface. At this stage,
the application model is sent a postOpenWith: message, again with the
builder as argument. As with postBuildWith:, the application can use
the builder to access the window and its widgets. This time, however,
those objects have been mapped to the screen, which makes a
difference for some kinds of configuration.

For example, the FileBrowser model that drives the File List interface
uses postOpenWith: to insert the default path in the window’s title
bar—something it could not do until after the window had been
opened.

Application Cleanup
An application model often needs to take certain actions when the
application is closed. For example, a word-processing application
might need to ask the user whether edits that have been made to the
currently displayed text should be saved or discarded.

Another common cleanup action is to break circular dependencies
that would otherwise prevent the application from being garbage
collected. For example, if application A holds application B, and vice
GUI Developer’s Guide 3-3

Controlling the GUI Programmatically
versa, for the purpose of interapplication communications, neither
would be removed from memory even after both of their windows
were closed.

If the application user exits from the application by using a menu or
other widget in the interface, the application model performs the exit
procedure and can insert any required safeguards. But if the user
exits by closing the main window, a special mechanism is needed to
notify the application model.

The application model is held by the application window. When the
window is about to be closed, its controller asks for permission from
the application model, by sending a requestForWindowClose. The
application model can redefine this method to perform any cleanup
actions and then return true to grant permission or false to prevent the
window from closing.

Additional cleanup can be performed using the finalization
mechanism described in the Application Developer’s Guide.

Windows
An application GUI consists of a window and the widgets it contains,
as well as all the code to make the GUI interact with the application
model. The standard GUI is presented as one or more windows
containing individual widgets, such as input fields, buttons, text
displays, and so on. Accordingly, a window is a container for its
widgets.

A window is a display surface on which a set of widgets display their
contents.

Creating a Window
In VisualWorks, windows are typically created using the UIPainter, as
described in Building an Application’s GUI. The WindowSpec produced
by the painter is used by a UIBuilder to build the window.

Windows come in three types:

• Normal windows, having full decorations (type #normal)

• Dialog windows, having a border but (depending on the window
manager) typically fewer border widgets (type #dialog)

• Pop-up windows, having no decorations (type #popUp)
3-4 VisualWorks

AppDevGuide.pdf

Windows
GUIs built as subclasses of ApplicationModel are typically normal
windows, and subclasses of SimpleDialog of dialog windows. Pop-up
windows are built manually.

A window can be created and opened programmatically by sending a
variant of the openNewIn: message to the window class. The
argument is a rectangle. For example, to create a popup window, use
the openNewIn:withType: message:

ApplicationWindow openNewIn: (20@20 extent: 100@100)
withType: #popUp

Class Hierarchy
The crucial window class hierarchy is:

Object
GraphicsMedium

DisplaySurface
Window

ScheduledWindow
ApplicationWindow

The window class used for an application is typically an instance of
ApplicationWindow, and is the default for GUIs build by the UIBuilder
from a window spec. The parent class, ScheduledWindow, is used in
applications that predate the VisualWorks canvas-painting tools.
ScheduledWindow provides much of the state and behavior upon which
ApplicationWindow relies.

Still farther back in the ancestor chain is Window, which is now an
abstract class, and lacks a controller to enable a user to control the
window, and it does not respond to events. However, it does provide
important foundational methods for ApplicationWindow.

An ApplicationWindow can be created without a component, but the
resulting window does not reopen when opening a saved image. If
you need to have this window stay between image transitions, simply
give it a single component:

myWindow component: ComposingComposite new

Window Components
Windows are complex objects, with many constituent objects held in
instance variables that specify the look and behavior of the window.
Several of these are worth specially noting, in order to understand
how to control the windows. The following objects are for
GUI Developer’s Guide 3-5

Controlling the GUI Programmatically
ApplicationWindows, and are necessary for understanding the basic
VisualWorks windowing architecture. Other objects are described in
later sections.

Controller
An application window’s controller, which is usually an instance of
ApplicationStandardSystemController, provides event forwarding for
closing the window to its application. The close and closeNoTerminate
messages handle this notification.

Component
A window also has a component, which can be a single visual
component such as a ComposedText but is usually a CompositePart that
holds a hierarchy of widgets.

Event Sensor
A window has an event sensor for providing information to widget
controllers about mouse activity, and a keyboardProcessor for providing
information about keyboard activity.

Manager
A window has a windowManager, an instance of WindowManager, which
holds an event queue. The WindowManger manages itself and the
window or windows under its control.

The WindowManager class replaces the job the ControlManager class
used to do (pre-7.1). Each window used to have its own event queue,
and the single ControlManager instance, the global ScheduledControllers,
centrally managed then all by telling each window when to process its
next event.

Window Processes
Prior to 7.1, each window stored a queue of events sent to it, and
processing of events was directed by a single instance of
ControlManager, named ScheduledControllers. Accordingly, there was
only a single UI process, the one run by ScheduledControllers. To allow
for multiple UI processes, this mechanism was changed in 7.1.

Each window now has a WindowManager that holds an event queue,
representing a single UI process. Each WindowManager can manage
the events for one or more windows. Usually, only closely related
windows, such as windows in master/slave relation, or windows and
dialogs they raise, share a manager. Note that a dialog blocks only
the those windows sharing its window manager.
3-6 VisualWorks

Windows
For example, if you open a System Browser from the Transcript, both
windows will have their own managers. However, if you then open, for
example, a senders browser from the System Browser, the two
browsers will share a manager. To verify this, press <Control>-Y to
open the process monitor and explore the processes by debugging
processes before and after opening the new window, and look for the
windows in each process. Processes with more than one window are
sharing a WindowManager.

Whether a window is created with a new WindowManager or using an
existing WindowManager is determined by the windowing
environment’s WindowManagerUsagePolicy. The policy can be set to
either

• MakeNewWindowManagerUsagePolicy, or

• UseParentWindowManagerUsagePolicy.

The default policy is UseParentWindowManagerUsagePolicy.

To set the policy for a window, which will govern the manager for all
windows subsequently spawned by that window, include the following
in its postOpenWith: method:

postOpenWith: aBuilder
...
self mainWindow windowManager activeControllerProcess

environmentAt: #WindowManagerUsagePolicy
put: MakeNewWindowManagerUsagePolicy new.

...
You can also set the policy for an individual new window, by setting
the policy, opening the window, and then resetting the policy.

Yielding to Other Processes
When a window manager processes an event, it yields to all other
managers, giving them an opportunity to process events. In some
circumstances, an UI process can be active and unyielding, not
processing an event, and so prevent events in other processes from
being handled. For example,

10 timesRepeat: [ScheduledControllers restore]
when run in one process prevents all other UI processes from
processing their events until the last iteration is completed. In this
situation, you may need to specifically provide an opportunity for
other processes to process.
GUI Developer’s Guide 3-7

Controlling the GUI Programmatically
Inserting Processor yield into the block will ensure that at least one
event for each WindowManager will be processed:

10 timesRepeat: [
Processor yield.
ScheduledControllers restore]

To ensure that all events in the queues for all WindowManagers are
processed, you can send

<someWindow> windowManager processOutstandingEvents.
in the block, where <someWindow> is a known window.

If you do not have a window to which you can send the above
message, you can send:

Processor activeProcess windowManager ifNotNil:
[:value | value processOutstandingEvents].

This does not ensure that the WindowManagers will all process their
events, because it is not certain that the active process is a UI
process, in which no UI events are processed. Nonetheless, this can
be useful.

Finally, you can force this all to happen in a specific UI process by
enclosing the whole thing in a block and sending a uiEventFor:
message:

[...] uiEventFor: <aWindow>
You can also prevent other UI processes from processing any events
prior to executing your code, by enclosing your code in a block and
sending a uiEventNowFor: message:

[...] uiEventNowFor: <aWindow>
Refer to Adding an Event to the UI Event Queue for more on these
two messages and maintaining an event queue.

Accessing Window Components
When an ApplicationModel or subclass instance opens an interface
specification, it creates an interface builder, which in turn creates the
specified window and its contents. To access windows and their
components, the usual approach has been through this builder
object. The application would send a self builder message, together
with a specific message to access the desired component, for
example:

self builder window
3-8 VisualWorks

Windows
or

self builder componentAt: aWidgetID
This protocol has been replaced by a new, preferred protocol that
allows you to access these objects without first getting the builder.
Specifically, these should now be written:

self mainWindow
and

self wrapperAt: aWidgetID
The new protocol is preferred because in future releases the builder
will be removed, to be replaced by a new GUI building framework.
The old access approach will then be no longer valid.

While the implementation of the of this new protocol still accesses the
builder, future implementations will not. The new protocol will be
preserved in future releases, though the implementation will change.

Accessor Methods
The following methods allow easy lookup of widgets and widget
components without having to go through the application’s builder
object. We suggest using these messgage instead of the self builder
messages commonly used in VisualWorks applications.

wrapperAt: aSymbol

Answer the value of the named component at aSymbol. Typically
gets a SpecWrapper or nil. In the case of a toolbar, it gets the
actual ToolBar instance. This method is the ApplicationModel direct
replacement for messages of the form:

self builder componentAt: aSymbol.

controllerAt: aSymbol

Answers the controller for the component associated with
aSymbol. The answer may be nil or a Controller. In the case of a
toolbar, it will be nil. This method is the ApplicationModel direct
replacement for messages of the form:

(self builder componentAt: aSymbol) controller.
GUI Developer’s Guide 3-9

Controlling the GUI Programmatically
widgetAt: aSymbol

Answer the widget associated with aSymbol. Typically answers a
kind of VisualPart, which may be nil. This method is the
ApplicationModel direct replacement for messages of the form:

(self builder componentAt: aSymbol) widget

mainWindow

Answer the main window associated with this ApplicationModel
instances. Typically answers a ApplicationWindow. May be nil if the
window is not created yet. This method is the ApplicationModel
direct replacement for messages of the form:

self builder window

windowMenuBar

Answers the instance of MenuBar associated with the main
window. May be nil if the window is not mapped and opened, or if
there is no menu bar associated with the main window.

Accessing a Window

Getting an Application Window
Your application code can manipulate the window programmatically
by obtaining the window from the application model and then sending
it messages. To get the main window, send a mainWindow message to
the application instance. For example, to get an application’s window
and change its label, do:

| app win |
app := Editor2Example new.
app open.
win := app mainWindow.
win label: 'Editor'.

Getting the Active Window
Class Window keeps track of the currently active VisualWorks window
in the CurrentWindow shared variable. Its controller is the active
controller. You can ask the active controller for its associated window.
3-10 VisualWorks

Windows
To access a window, ask the active controller for its associated
window, which is the topComponent associated with the controller’s
view.

| win |
win := Window activeController view topComponent.
win moveTo: 20@20.

Getting the Window at a Location
When your application performs an operation on a window that is
pointed to by the user (using the mouse), you can access the window
as shown here. Drag-and-drop operations, in particular, rely on this
technique.

To get a window by its location:

1 Get the cursor location in screen coordinates by sending a
globalCursorPoint message to the window controller’s sensor.

2 Get the window at the cursor point by sending a windowAt:
message to the default Screen. The argument is the cursor
location. (In the example, the window’s component flashes so you
can verify that the correct window was accessed.)

| sensor pt window |
sensor := Window activeController sensor.
Cursor bull showWhile: [sensor waitButton].
pt := sensor globalCursorPoint.
window := Screen default windowAt: pt.
window component flash.

Closing a Window
An application will frequently have a button to close the application.
To do so, simply get the window and send it a close message. For
example, the might invoke this method:

exit
self mainWindow close

If there are more windows involved, you will have to ensure that they
are all closed.

Setting Window Properties
Once you have a window, you can set a variety of properties for that
window, overriding any properties set for the window when you
created it. This provides for a great deal of programmatic control over
windows.
GUI Developer’s Guide 3-11

Controlling the GUI Programmatically
The following sections describe how to set several properties. For
other property setting options, browse the Window class and its
subclasses.

Changing the Window Size
You can set a window size by giving it a new display box, using
screen coordinates. You can also constrain the window size, as
shown here.

| win |
win := (Editor2Example new) open; mainWindow.
win displayBox: (100@100 extent: 400@220).

Determining a Window’s Dimensions
Several messages are available for determining the dimensions and
constraints on a window. This example shows a few. For more,
browse the Window class and its subclasses.

| win min max box origin width height |
win := (Editor2Example new) open; mainWindow.
min := win minimumSize.
max := win maximumSize.
box := win displayBox.
origin := box origin.
width := box width.
height := box height.

Changing a Window’s Label
You can modify an open window’s label by sending a label: message
to the window, with the new label as argument.

| win |
win := (Editor2Example new) open; mainWindow.
win label: 'Editor'.

Adding and Removing Scroll Bars
Programmatically adding and removing scrollbars requires that
scrollbars be initially activated, which is set in the Properties Tool for
the window. Then, to remove scroll bars, send a noVerticalScrollBar or
noHorizontalScrollBar message to the window’s BorderDecorator. To add
scrollbars, send a useVerticalScrollBar or useHorizontalScrollBar
message:

| win |
win := ApplicationWindow new.
win component: (BorderDecorator

on: Object comment asComposedText).
3-12 VisualWorks

Windows
win open.
win component

noVerticalScrollBar;
noHorizontalScrollBar.

win display.
Cursor wait showWhile: [

(Delay forSeconds: 2) wait].
win component

useVerticalScrollBar;
useHorizontalScrollBar.

Controlling Window Displays
A variety of operations can be performed on windows by their
application, such as refreshing or collapsing (minimizing). For
additional control operations, browse Window and its subclasses.

Refreshing a Window’s Display
Under normal conditions, a window redisplays its contents whenever
those contents change or whenever an overlapping window is moved.
Sometimes you need to redisplay a window programmatically, as
when you want to display an intermediate state of the window before
a drawing operation has been completed.

To refresh a window, send it a display message:

| win |
win := (Editor2Example new) open; mainWindow.
5 timesRepeat: [

(Delay forMilliseconds: 400) wait.
win display].

Expanding and Collapsing a Window
Window managers typically provide a means of collapsing (iconifying)
a window and expanding it back to its normal state. You can also
control that behavior programmatically.

To collapse a window, send a collapse message to the window. To
expand the window, send an expand message to the window.

| win |
win := (Editor2Example new) open; mainWindow.
win display.
(Delay forSeconds: 1) wait.
win collapse.
(Delay forSeconds: 1) wait.
win expand.
GUI Developer’s Guide 3-13

Controlling the GUI Programmatically
Assigning a Window Icon
For window managers that support iconified windows, VisualWorks
provides a default icon to represent a collapsed window. You can
assign a different icon to better represent the window. The icon must
be an image (refer to “Graphical Images” in the Application
Developer’s Guide).

Creating an Icon
An icon is an instance of Icon, and consists of an image (figure) and a
mask (shape), both of which are instances of CachedImage. The icon
may also be registered in the Icon class IconConstants dictionary.

To create an icon with a mask, send a figure:shape: message to an
instance of Icon, specifying the image and mask:

| myIcon |
myIcon := Icon new

figure: VisualLauncher CGHelp24
shape: VisualLauncher CGHelp24Mask.

myIcon cleanFigure.
(The mask does not exist in the example, but can be created easily
using the Image Editor.)

If either the image or mask is an instance of Image, not CachedImage,
send asCachedImage to the image when assigning it to figure or shape.

The cleanFigure message is needed for color icons, to clean up some
odd behavior on Windows systems, and may not be required in all
cases.

Registering an Icon
Icons that are reused frequently can be registered with the Icon class,
which stores icons in a dictionary.

To register an icon, send constantNamed:put: to the Icon class, with a
symbol for its name and the icon as arguments:

| myIcon |
myIcon := Icon new

figure: VisualLauncher CGHelp24
shape: VisualLauncher CGHelp24Mask.

myIcon cleanFigure.
Icon constantNamed: #HelpIcon put: myIcon

To later retrieve the icon, send constantNamed: to the Icon class:
3-14 VisualWorks

AppDevGuide.pdf
AppDevGuide.pdf

Windows
| win |
win := ScheduledWindow new.
win icon: (Icon constantNamed: #HelpIcon).
win open

Installing an Icon
Instances of ScheduledWindow and its subclasses store an icon in their
icon instance variable. To set an icon for a window, send an icon:
message to the window with the icon to use:

| win |
win := ScheduledWindow new.
win icon: (Icon constantNamed: #HelpIcon).
win open

Windows other than instances of ScheduledWindow or its subclasses
do not hold onto the icon, and must ensure that the icon persists as
long as the window does. Registering the icon is sufficient.

Slave and Master Windows
In a multiwindow application, it is often helpful to close all secondary
windows automatically when the user closes the main window. In this
situation, the main window is called the master window and the
secondary windows are called slave windows.

To define master and slave windows:

1 Tell the master window which application model to inform of its
events.

2 Tell the master window to be a master.

3 Tell the slave window which application model will relay events
from the master window.

4 Tell the slave window to be a slave.

| masterWin slaveWin |
masterWin := (Editor1Example new) openInterface; mainWindow.
masterWin

label: 'Master';
application: app;
beMaster.

slaveWin := (Editor2Example new) open; mainWindow.
slaveWin

label: 'Slave';
application: app;
beSlave.
GUI Developer’s Guide 3-15

Controlling the GUI Programmatically
Make Windows Equal Partners
When you want to be able to close all of your application’s windows
by closing any one of them, make them partners instead of master
and slaves.

Tell the windows to be partners.

| win1 win2|
win1 := (Editor1Example new) openInterface; mainWindow.
win1

label: 'Partner 1';
application: app;
bePartner.

win2 := (Editor2Example new) open; mainWindow.
win2

label: 'Partner 2';
application: app;
bePartner.

Choosing the Events That Are Sent
By default, master and partner windows broadcast the following
events: #close, #collapse, and #expand. You can remove any of those
events, and you can add any of the following: #bounds, #enter, #exit,
#hibernate, #reopen, and #release.

Tell the master or partner window which events to broadcast.

| masterWin slaveWin |
masterWin := (Editor1Example new) openInterface; mainWindow.
masterWin

label: 'Master';
application: app;
beMaster;
sendWindowEvents: #(#close #collapse

#expand #hibernate #reopen).
slaveWin := (Editor2Example open) window.
slaveWin

label: 'Slave';
application: app;
beSlave.

Choosing the Events That Are Received
By default, slave and partner windows mimic the following events:
#close, #collapse, and #expand. Controlling the events that are received
lets each slave be selective according to its needs.
3-16 VisualWorks

Windows
Tell the slave or partner window which events to receive.

| masterWin slaveWin |
masterWin := (Editor1Example new) openInterface; mainWindow.
masterWin

label: 'Master';
application: app;
beMaster.

slaveWin := (Editor2Example new) open; mainWindow.
slaveWin

label: 'Slave';
application: app;
beSlave;
receiveWindowEvents: #(#close).

Window Events
Unlike widgets, windows and dialogs trigger many events that are
directly related to platform operating system window events. Because
of this, not all events are triggered on all platforms. Therefore, you
must test your windows on all target platforms to ensure that the
events you are registering occur when and how you expect.

Windows and dialogs also trigger events that originate within
VisualWorks, rather than coming in from the operating system. These
events are available to all Windows, without regard to the underlying
operating system.

Platform based events are marked with the parenthetical (Platform) in
their description. VisualWorks based events are marked with
(VisualWorks) in their description.

An ApplicationModel can access the window or dialog by sending the
mainWindow message to itself. Then, the application can register an
interest in the events below by sending when:send:to: messages.

#activate

(Platform) When the underlying platform sends an activate
notification event to a VisualWorks window, the window triggers
the #activate event. On some platforms, only the enter event is
sent.

#bounds

(Platform) When the underlying platform changes the size of the
VisualWorks window and sends the bounds notification event,
the window triggers the #bounds event.
GUI Developer’s Guide 3-17

Controlling the GUI Programmatically
#clicked

(VisualWorks) Previously, a window did not know when it was
clicked on. With this new event, any window which is clicked on
with the <Select> mouse button, in any area where there is not
another widget that handles the event, will cause the window to
trigger the #click event. This event is not triggered in the Menubar
or Toolbar areas. Labels and ViewHolders are examples of
widgets that do not handle mouse clicking, and for these, the
underlying window will trigger the #clicked event.

#close

(Platform) When the underlying platform sends a close
notification event to a VisualWorks window, the window triggers
the #close event.

#closing

(VisualWorks) When a window is in the process of closing, but
before the window is closed and loses focus, the window sends
the #closing event.

#collapse

(Platform) When the underlying platform sends a collapse
notification event to a VisualWorks window, the window triggers
the #collapse event.

#deactivate

(Platform) When the underlying platform sends a deactivate
notification event to a VisualWorks window, the window triggers
the #deactivate event. On some platforms, only the exit event is
sent.

#destroy

(Platform) When the underlying platform sends a destroy
notification event to a VisualWorks window, the window triggers
the #destroy event.

#doubleClicked

(VisualWorks) As with the #clicked event, any window which is
double clicked with the <Operate> mouse button on any area
where there is not another widget that handles the event, will
cause the window to trigger the #doubleClicked event. This event is
not triggered in the Menubar or Toolbar areas. Labels and
3-18 VisualWorks

Windows
ViewHolders are examples of widgets that do not handle mouse
clicking, and for these, the underlying window will trigger the
#doubleClicked event.

#enter

(Platform) When the underlying platform sends an enter
notification event to a VisualWorks window, the window triggers
the #enter event.

#exit

(Platform) When the underlying platform sends an exit
notification event to a VisualWorks window, the window triggers
the #exit event.

#expand

(Platform) When the underlying platform sends an expand
notification event to a VisualWorks window, the window triggers
the #expand event.

#expose

(Platform) When the underlying platform sends an expose
notification event to a VisualWorks window, the window triggers
the #expose event.

#gettingFocus

(VisualWorks) This event is triggered whenever a window that
does not have focus, is given top visual focus, either by clicking in
the window, clicking on one of the windows visual accessories
(such as the title bar or a border), or by using an operating
system feature to bring the window to top focus.

#losingFocus

(VisualWorks) This event is triggered whenever a window that
has top focus is asked to no longer be the main window focus.
This may happen by clicking in or on any another window
(without regard to if it is a VisualWorks window), or by using an
operating system feature to bring another window to top focus. In
the case of VisualWorks Dialog windows, the Dialog window will
not loose focus to VisualWorks windows until it is closed, and
therefore will not trigger the #losingFocus event until that
VisualWorks Dialog is closed.
GUI Developer’s Guide 3-19

Controlling the GUI Programmatically
#mapped

(VisualWorks) This is the second VisualWorks event that all
window trigger. It occurs just after the initial display surface is
visually brought to life. This also is triggered when a window
which has been programmatically unmapped, is remapped.

#menuBarCreated

(VisualWorks) At the time an ApplicationModel receives the
#postBuildWith: message, no menu bar has been created. This
makes it hard to register to a menu bar's events in the
postBuildWith: method. The developer has two choices, either
register to a menu bar's events in the postOpenWith: message, or
register with the window's #menuBarCreated event and do menu
bar event registration at that time. Once a menu bar is created, it
can be access by the new windowMenuBar method of the
ApplicationModel.

#middleClicked

(VisualWorks) As with the #clicked event, any window which is
clicked with the <Window> mouse button on any area where
there is not another widget that handles the event, will cause the
window to trigger the #middleClicked event. This event is not
triggered in the Menubar or Toolbar areas. Labels and
ViewHolders are examples of widgets that do not handle mouse
clicking, and for these, the underlying window will trigger the
#middleClicked event. Windows and Dialogs are the only visual
objects in VisualWorks that trigger this event.

#mouseEnter

(VisualWorks) This event is triggered when the mouse is moved,
but not dragged, into the bounds of a window.

#mouseExit

(VisualWorks) This event is triggered when the mouse is moved,
but not dragged, out of the bounds of a window.

#move

(Platform) After a window is moved, the underlying platform
sends a move notification event to a VisualWorks window, the
window in response triggers the #move event.
3-20 VisualWorks

Windows
#opening

(VisualWorks) This is the very first VisualWorks event that all
window trigger. It occurs before the window is mapped and
before it gets focus.

#resize

(Platform) When the underlying platform sends a resize
notification event to a VisualWorks window, the window triggers
the #resize event.

#rightClicked

(VisualWorks) As with the #clicked event, any window which is
clicked with the <Operate> mouse button on any area where
there is not another widget that handles the event, will cause the
window to trigger the #rightClicked event. This event is not
triggered in the Menubar or Toolbar areas. Labels and
ViewHolders are examples of widgets that do not handle mouse
clicking, and for these, the underlying window will trigger the
#clicked event.

#scrollDown

(VisualWorks) If a window has vertical scroll bars, and the
window view is made to scroll down, the window triggers the
#scrollDown event.

#scrollLeft

(VisualWorks) If a window has horizontal scroll bars, and the
window view is made to scroll to the left, the window triggers the
#scrollLeft event.

#scrollRight

(VisualWorks) If a window has horizontal scroll bars, and the
window view is made to scroll to the right, the window triggers the
#scrollRight event.

#scrollUp

(VisualWorks) If a window has vertical scroll bars, and the
window view is made to scroll up, the window triggers the
#scrollUp event.
GUI Developer’s Guide 3-21

Controlling the GUI Programmatically
#toolBarCreated

(VisualWorks) As with the menu bar, at the time an
ApplicationModel receives the postBuildWith: message, no tool bar
has been created. This makes it hard to register to a tool bar's
events in the postBuildWith: method. The developer has two
choices, either register to a menu bar's events in the
postOpenWith: message, or register with the window's
#menuBarCreated event and do menu bar event registration at that
time. Once the tool bar is created, it can be accessed by the
widgetAt: method using the ID of the tool bar as defined in the
window properties page of the UIPainter tool.

#unknownEvent

(Platform) There are many raw events that come into a
VisualWorks window from the underlying operating system. Any
operating system event that arrives at a VisualWorks window that
VisualWorks does not otherwise handle, is always sent to the
main window as an UnknownEvent. There are many ways of
trapping these otherwise unhandled events in the GUI
framework. This event is triggerd as a notification of when one of
these events arrives. It is important to note that the format of the
underlying raw operating system event is different for each
platform, and that it is thus up to the developer to deal with any
cross platform issues. Additionally, these events come in fast and
furious.

#unmapped

(VisualWorks) This event is triggered whenever a window is
programmatically unmapped. This event does not occur during
the sequence of closing a window.

Registering Window Events
As for events in general, an application registers an interest in a
window event by sending a variant of the when:send:do: message. The
interest is usually registered in the application’s postOpenWith:
message, and sends the message to its main window. For example,
to register an interest in the #mouseEnter event, include a line like
the following in the application model postOpenWith: method:

self mainWindow when: #mouseEnter send: #notify to: self.
3-22 VisualWorks

Windows
Adding an Event to the UI Event Queue
DeferrableAction is an event class that allows one process to add an
event to the event queue of a UI process. This mechanism is
provided to allow a non-UI process to add an event to a UI process,
and to allow communication between UI processes. DeferrableAction
encapsulates a message send that can be put on a window
manager's event queue to be executed.

DeferrableAction has a rich API which allows you to create complex
actions that can be executed in the UI process. The class side has
two instance creation methods, which are similar to the message
signatures used in the Trigger Event system:

send: selectorSymbol to: anObject

Creates a DeferrableAction to send a selectorSymbol unary
message to anObject when invoked.

send: selectorSymbol to: anObject with: aCollection

Creates a DeferrableAction to send a selectorSymbol keyword
message to anObject when invoked, with aCollection of
parameters for the message.

An instance of DeferrableAction allows you to specify the window
(using window:, which is inherited from Event) for which you want to
have the action taken. If a window is not specified when the action is
invoked, it makes a best guess attempt to find the current window.
Since this guess can be mistaken, it is preferred to specify the
window.

To invoke an instance of DeferrableAction send one of these
messages:

activate

Puts the action on the queue of the window without waiting for a
response.

waitForResult

Puts the action on the queue of the window, and waits for the
result of the message.

Four class side methods allow you to create, specify the window, and
invoke the action, all in a single message:
GUI Developer’s Guide 3-23

Controlling the GUI Programmatically
send: selectorSymbol to: anObject for: aWindowsend: selectorSymbol
to: anObject with: aCollection for: aWindowsendNow: selectorSymbol
to: anObject for: aWindowsendNow: selectorSymbol to: anObject
with: aCollection for: aWindow

The meaning of these messages is clear from the preceding
discussion.

Four methods are provided to allow you to put a BlockClosure in a UI
event queue.

uiEvent

Puts the block in the event queue of the current window, at which
it makes a best guess, without waiting for a response.

uiEventFor: aWindow

Puts the block in the event queue of aWindow, without waiting for
a response.

uiEventNow

Puts the block in the event queue of the current window, at which
it makes a best guess, then waits for a response, but without
blocking the window.

uiEventNowFor: aWindow

Puts the block in the event queue of aWindow, then waits for a
response, but without blocking the window.

uiEvent and uiEventFor: put the receiver block into the event queue and
do not wait for an answer. uiEventNow and uiEventNowFor: put the
receiver block into the event queue, and then, without blocking the
window, separately wait for the result of the block being evaluated.

Because uiEvent and uiEventNow can only take a best guess at which
is the current window, uiEventFor: and uiEventNowFor: are the preferred
messages.
3-24 VisualWorks

Controlling Widgets
Controlling Widgets
It is often useful for an application to be able to access the widgets in
its windows. Depending on the purpose of the access, a widget may
be accessed directly or through its wrapper. In either case, the widget
is identified by its ID, which is set in the Properties Tool in the
Canvas.

Accessing a Widget
In a System Browser, edit a method in the application model (in this
example, alignCenter) so that it sends a widgetAt: message to the
application model. The argument is the ID.

alignCenter
| widget style |
widget := self widgetAt: #comment .
style := widget textStyle copy.
style alignment: 2.
widget textStyle: style.
widget invalidate.

Accessing the Widget’s Wrapper
Online example: HideExample

In some cases, the application model must send messages to the
wrapper that surrounds the widget. A wrapper is an instance of
WidgetWrapper, which controls various aspects of the widget’s
appearance, such as visibility, enablement, and layout.

1 In a canvas, select the widget to be accessed. In the widget’s ID
property, enter an identifying name for the widget. Apply the
properties and install the canvas.

2 In a System Browser, edit a method in the application model (in
this example, changedListVisibility) so that it sends a wrapperAt:
message to the application model. The argument is the ID.

changedListVisibility
| wrapper desiredState |
wrapper := self wrapperAt: #colorList.
desiredState := self listVisibility value.
desiredState == #hidden

ifTrue: [wrapper beInvisible].
desiredState == #disabled

ifTrue: [
wrapper beVisible.
GUI Developer’s Guide 3-25

Controlling the GUI Programmatically
wrapper disable].
desiredState == #normal

ifTrue: [wrapper enable; beVisible].

Setting Widget Properties
The properties that are typically set in the Canvas using the
Properties Tool can also be set or changed during an application run
by sending appropriate messages to the widget or its wrapper. The
following sections explain how to set a number of properties.
Additional options are available, and can be found by browsing the
widget classes.

Changing a Widget’s Size
In some circumstances, your application may need to resize a widget
while the application is running. In Size3Example, a colored region is
resized in response to Expand and Shrink buttons.

Online example: Size3Example

1 Get the widget’s wrapper from the application model.

2 Send a bounds message to the wrapper to get the widget’s
existing size.

3 Create a rectangle having the desired origin and extent, using the
widget’s bounding rectangle to derive the new values.

4 Send a newBounds: message to the wrapper. The argument is the
new bounding rectangle.

expandBox
| wrapper oldSize newSize |
wrapper := self wrapperAt: #box.
oldSize := wrapper bounds.
"If the box is bigger than the window already, do nothing."
oldSize origin x < 0

ifTrue: [^nil].
"Expand the bounding rectangle by 10 pixels on each side."
newSize := Rectangle

origin: oldSize origin - 10
corner: oldSize corner + 10.

"Assign the new bounding rectangle to the widget wrapper."
wrapper newBounds: newSize.
3-26 VisualWorks

Controlling Widgets
Changing a Widget’s Font
Online example: Font1Example

1 In a method in the application model, get the widget from the
application model.

2 Create an instance of TextAttributes corresponding to the new
font. If the font exists in the fonts menu, you can send a
styleNamed: message to the TextAttributes class. The argument is
the name of the font (for example, #large for the system’s Large
font).

3 Get the label from the widget by sending a label message; get the
text of the label by sending a text message to it. Then install a
blank text temporarily as a means of erasing the old label if the
new font is smaller.

4 Install the new font in the widget by sending a textStyle: message
to the widget. The argument is the TextAttributes instance already
created.

5 Reinstate the original label by sending a labelString: message to
the widget.

changedFont
| widget newStyle oldLabel |widget := (self widgetAt: #label) .
newStyle := TextAttributes styleNamed: (self labelFont value).
"Erase the existing label in case its font is larger than the new

one."
oldLabel := widget label text.
widget labelString: ''.
"Install the new font."
widget textStyle: newStyle.
"Reinstate the original label."
widget labelString: oldLabel.

Hiding a Widget
Sometimes a widget is useful only under certain conditions and
needs to be hidden at other times to avoid confusing the user of your
application. Action buttons need to be hidden when their actions are
not appropriate.

A widget may also be hidden when two alternative widgets are
layered on top of each other. For example, the Online Documentation
window uses a text editor on top of a list editor and hides the view
that is unneeded at any given time.
GUI Developer’s Guide 3-27

Controlling the GUI Programmatically
You can turn on a widget’s Initially Invisible property to cause the
widget to be hidden when the window opens. You can also program
the application model to hide and show the widget while the
application is running.

Online example: HideExample

1 In a method in the application model, get the widget’s wrapper
from the application model.

2 To hide the widget, send a beInvisible message to the wrapper.

3 To make the widget visible again, send a beVisible message to the
wrapper.

changedListVisibility
| wrapper desiredState |
wrapper := self wrapperAt: #colorList.
desiredState := self listVisibility value.
desiredState == #hidden

ifTrue: [wrapper beInvisible].
desiredState == #disabled

ifTrue: [
wrapper beVisible.
wrapper disable].

desiredState == #normal
ifTrue: [

wrapper enable.
wrapper beVisible].

Disabling a Widget
Sometimes a widget is useful only under certain conditions, but
making it invisible would be confusing to the user of your application.
You can disable a widget, causing it to be displayed in gray. In
addition, its controller is inactivated so the widget does not respond to
user input. Action buttons are frequently “grayed out” when not
needed.

You can turn on a widget’s Initially Disabled property to cause the
widget to be disabled when the window opens. You can also program
the application model to disable and enable the widget while the
application is running.

Online example: HideExample

1 In a method in the application model, get the widget’s wrapper.

2 To disable the widget, send a disable message to the wrapper.
3-28 VisualWorks

Controlling Widgets
3 To make the widget active again, send an enable message to the
wrapper.

changedListVisibility
| wrapper desiredState |wrapper := self wrapperAt: #colorList.
desiredState := self listVisibility value.
desiredState == #hidden

ifTrue: [wrapper beInvisible].
desiredState == #disabled

ifTrue: [
wrapper beVisible.
wrapper disable].

desiredState == #normal
ifTrue: [

wrapper enable.
wrapper beVisible].

Changing a Widget’s Colors
Online example: ColorExample

1 In a method in the application model, get the widget’s wrapper.

2 Get the LookPreferences from the wrapper and create a copy with
the desired color. The copy is created when a color-zone
message is sent: foregroundColor:, backgroundColor:, -
selectionForegroundColor:, or selectionBackgroundColor:. The
argument is the desired new color.

3 Install the new LookPreferences by sending a lookPreferences:
message to the wrapper. The argument is the new
LookPreferences.

foregroundColor: aColor
"For each sample widget, change the indicated color layer."
| wrapper lookPref |
self sampleWidgets do: [:widgetID |

wrapper := (self wrapperAt: widgetID).
lookPref := wrapper

lookPreferences foregroundColor: aColor.
wrapper lookPreferences: lookPref].

Adding and Removing Dependencies
When a widget’s value is changed, such as when an item is selected
from a list, the application often needs to react in some way. A
common reaction is to update other widgets based on the new value.
GUI Developer’s Guide 3-29

Controlling the GUI Programmatically
You can arrange for such a reaction, typically as part of the
initialization process. This is known as setting up a dependency or
registering an interest.

You can also bypass the dependency when unusual circumstances
arise. For example, when two widgets depend on each other, one of
them must bypass the dependency mechanism to avoid infinite
recursion.

Adding a Dependency
Online example: DependencyExample

In the application model’s initialize method (typically), send an
onChangeSend:to: message to the widget’s value holder. The first
argument is a message, which will be sent to the second argument.
The second argument is typically the application model itself.

initialize
colorNames := SelectionInList with: ColorValue constantNames.
selectedColor := String new asValue.
fieldIsDependent := false asValue.
"Arrange for the application model to take action when the
check box is turned on or off."
fieldIsDependent

onChangeSend: #changedDependency to: self.

Removing a Dependency by Retracting the Interest
Online example: DependencyExample

1 Send a retractInterestsFor: message to the widget’s value holder.
The argument is the object that registered the interest, typically
the application model itself.

2 After the value has been changed, register the interest again.

changedDependency
"Turn on or off the dependency link between the list and
the input field, depending on the value of the check box."
| valueModel |
valueModel := self colorNames selectionIndexHolder.
self fieldIsDependent value

ifTrue:
[valueModel onChangeSend: #changedSelection to: self]

ifFalse:
[valueModel retractInterestsFor: self].
3-30 VisualWorks

Controlling Widgets
Bypassing All Dependencies
Online example: FieldConnectionExample

1 Send a setValue: message to the widget’s value holder instead of
the usual value: message. The argument is the widget’s new
value.

2 Get the widget from the application model and ask the widget to
update itself with the new value.

changedB
"Use setValue: to bypass dependents, thus avoiding circularity."
self bSquared setValue: (self b value raisedTo: 2).
"Since dependents were bypassed when the model was updated,
update the view manually."
(self widgetAt: #b2) update: #value.

Validation Properties
Frequently, only certain entries are valid for a particular widget. For
example, you might want to restrict input accepted by an input field to
a numeric range from 0 to 999, or check for incompatible checkbox
selections.

Validation properties specify messages a widget sends to its
application model asking for permission to proceed. In this way,
validation provides input flow control, for example, to prevent the user
from entering invalid data into an input field, or to prevent the user
from entering a field before filling in other prerequisite fields.
GUI Developer’s Guide 3-31

Controlling the GUI Programmatically
Validation methods, which you add to the application model, return
either true or false. On true, the widget proceeds with its action; on
false, the widget waits for new, valid input. You can implement the
validation method to redirect input focus or to disable and enable
input widgets.

To create a validation method that inspects the widget’s value, specify
a selector with a colon (selector:). The widget passes its controller
object as the argument to the method. The method can then ask the
controller for the widget’s value. For certain widgets (input fields and
combo boxes), you use statements such as the following to get and
set values through the controller:

input := aController editValue

Notification Properties
You specify Notification properties when you want a widget to inform
its application model that certain actions have taken place, namely,
that the widget has taken focus, changed internal state, or given up
focus. Notification properties are useful for facilitating complex flow of
user input.

Each notification property specifies the symbolic name of a
notification callback, which is the message you want the widget to
immediately send after the relevant action. For each notification

Property Description

Entry Specifies the message the widget sends to its application
model when it prepares to accept focus. If the method returns
true, the widget takes focus; otherwise, focus is refused.

Change Specifies the method the widget sends to its application model
after the user changes the widget’s value and attempts to exit
the widget before the widget writes the input value to its value
model. The method should determine whether the input value
is acceptable. If the method returns true, the widget’s controller
writes the input value to the value model; otherwise, the value
model remains unchanged.

Exit Specifies the method the widget sends to its application model
when it prepares to give up focus. The message is sent any
time the user attempts to exit the widget. The method should
determine whether the widget can actually give up focus. If the
method returns true, the widget gives up focus; otherwise,
focus is retained.

D. Click Specifies the method the widget sends to its application model
when preparing to respond to a double-click.
3-32 VisualWorks

Controlling Widgets
callback you specify, you must program the application model to
contain a corresponding method. You implement this method to
provide the desired response to the widget’s action. You can
implement the notification method to activate other widgets in the
interface.

Giving a Widget Keyboard Focus
It is occasionally desirable to control which widget has keyboard
focus following an action. For example, when an action button is
clicked, by default it then has keyboard focus. But, it may be more
reasonable for the focus to return, say to a list or a text editor, without
having to click back in that widget.

Property Description

Entry Specifies the symbolic name for the widget’s entry notification
callback. The widget sends this message to its application
model immediately after taking focus. You must implement a
corresponding method in the application model that provides
the desired response to this event.

Change Specifies the symbolic name for the widget’s change
notification callback. The widget sends this message to its
application model immediately after the widget sends its input
value to its value model. You must implement a corresponding
method in the application model to provide the desired
response to this event. Note that specifying a change
notification callback is similar to registering an interest in a
value model via onChangeSend:to:, in that both cause a
message to be sent after the value in the value model has
changed.However, the two techniques also differ in important
ways: The change notification callback is sent only to the
application model. The message specified by
onChangeSend:to: is sent to the specified receiver, which may,
but need not be the application model. If both techniques are
used together, the message sent by onChangeSend:to: is sent
first, and the change notification callback is sent second.

Exit Specifies the symbolic name for the widget’s exit notification
callback. The widget sends this message to its application
model immediately after it gives up focus. You must implement
a corresponding method in the application model to provide the
desired response to this event.

D. Click Specifies the symbolic name for the widget’s double-click
notification callback. This callback is the message that the
widget sends to its application model in response to a double-
click. You must implement a corresponding method in the
application model to provide the desired response to this
event.This property appears with the List and Table widgets
only.
GUI Developer’s Guide 3-33

Controlling the GUI Programmatically
To set keyboard focus, send a message such as the following:

self mainWindow keyboardProcessor requestActivationFor:
 (self controllerAt: #List1).

This asks the keyboard processor to activate (give focus to) the
controller for, in this case, the list widget, #List1.
3-34 VisualWorks

4

Adapting Domain Models to Widgets

As described in Building an Application’s GUI, for widgets that have
an aspect, the value of the aspect is represented by its value model.
Value models provide a powerful mechanism for establishing
dependencies between objects, so that when a change occurs to one
object, another is automatically notified and updated.

While this mechanism is useful between any objects, it is used most
to establish dependencies between domain models and application
models. The value model mechanism is a fundamental feature of the
VisualWorks application framework, and is essential to the design
and building of VisualWorks applications.

This chapter describes some standard approaches to configuring
value models.

Value Models
A widget that presents data (such as an input field) relies on an
auxilliary object, called a value model, to manage the data it
presents. That is, instead of holding onto the data directly, a data
widget delegates this task to its value model. Thus, when a data
widget accepts input from a user, it stores this data in its value model.
When a data widget needs to update its display, it asks its value
model for the data to be displayed.

The VisualWorks value model mechanism provides a uniform set of
messages for accessing the data to be presented, allowing all data
widgets to store and refresh their data in a standard way. Two
messages are central to the value model:
GUI Developer’s Guide 4-1

Adapting Domain Models to Widgets
value

Returns the data value from the value model.

value: anObject

Sets data value in the value model and sends a changed:
message with the new value.

Other objects, such as the application model, can also send these
messages to a value model to obtain or change a widget’s data
programmatically.

A data widget is a dependent of its value model, in the sense that the
widget depends on its value model to notify it when the relevant data
has changed. The widget responds to such notification by asking the
value model for the new data and displaying it. This keeps the
widget’s display synchronized with changes made programmatically
to the data.

Choosing a Value Model
There are three standard value model objects used in VisualWorks,
implemented by these three classes:

• ValueHolder

• AspectAdaptor

• PluggableAdaptor

There are several other special-purpose adaptors as well. Browse the
ValueModel subclasses for the full collection.

As described in Building an Application’s GUI, the Define operation in
the UI Painter creates a simple value model for each widget using a
ValueHolder. This mechanism holds the aspect value in an instance
variable of the application model class. The Define operation adds an
instance variable to the class and creates a stub accessor method for
the variable, which returns the ValueHolder. The ValueHolder responds
appropriately to the value and value: messages.

You can alway coordinate values in a domain model and those held in
an aspect instance variable, and so use a ValueHolder. In early
development, this gives a way to set up a GUI and verify that it
operates properly, possibly using only test values. In an application
with a domain model well separated from the application model,
using a ValueHolder requires that you provide the logic necessary to
coordinate values between the models.
4-2 VisualWorks

Configuring a ValueHolder
For many applications, using a ValueHolder is not the preferable
approach, because it involves maintaining a value twice: in both the
domain and application models. Rather, it is frequently better to
configure the application model to get at least some of its widgets’
values directly from the domain model. This is done by using an
AspectAdaptor, which redirects the value and value: messages to the
domain model. In addition to reducing the overhead of the application
model, by eliminating instance variables, getting values from the
domain model is also frequently simpler than ensuring that the
domain and aspect values are coordinated.

When the model does not provide the protocol needed to use an
AspectAdaptor, a PluggableAdaptor allows you to specify accessor
blocks to provide additional processing. This provides the
convenience of working with an adaptor while specifying more of the
GUI-specific processing in the application model.

The trigger-event system provides an additional approach to defining
dependencies, and is appropriate in some situations, particularly for
ensuring that domain and application models are coordinated. Most
windows, dialogs, and widgets trigger events in specified conditions.
Configuring dependencies using events is described in Configuring
Dependencies Using Events. For a general description of the trigger-
event system, refer to the Application Developer’s Guide. The events
triggered by each widget are described in Configuring Widgets.

Configuring a ValueHolder
A ValueHolder is the most basic type of value model. As its name
implies, a ValueHolder is a holder of an object, which is its value. It’s
primary purpose is to respond to the value and value: messages, as
expected by a widget. As such, it is the appropriate value model for
data that is held in an instance variable within the application model
itself.

Online example: Adaptor1Example

Adaptor1Example maintains a list of customer information, which is
represented as instances of Customer1Example. The list itself is held
by the application model, and each record is represented by instance
variables in the application model. So, this example is suitable for
using ValueHolder as its value models.
GUI Developer’s Guide 4-3

./AppDevGuide.pdf

Adapting Domain Models to Widgets
To initialize a variable as storing a ValueHolder, send an asValue
message to the object that is to be held (in the example, accountID is
initialized to a ValueHolder holding the number 0).

initializeID
accountID := 0 asValue.
accountID onChangeSend: #changedID to: self.

The onChangeSend:to: message invokes additional processing
whenever the value is changed by sending a value: message to the
ValueHolder. It is not required by the ValueHolder, but is used in this
example to update the display.

If the value is a String, you can send a newString message to the
ValueHolder class, which is equivalent to the expression String new
asValue. The choice of which to use is a matter of personal
preference.

initializeName
name := ValueHolder newString.
name onChangeSend: #changedName to: self.

Similarly,

• to initialize the value to the Boolean, false, you can send a
newBoolean message to the ValueHolder class. This is equivalent to
the expression false asValue.

• to inititalize the value to the Fraction, 0.0, you can send a
newFraction message to the ValueHolder class. This is equivalent to
the expression 0.0 asValue.

Once a variable has been set to a ValueHolder, update its value by
sending a value: message, as in this segment from the
changedCustomer method:

changedCustomer
...

self accountID value: chosenCustomer accountID.
self name value: chosenCustomer name.
self address value: chosenCustomer address.
self phoneNumber value: chosenCustomer phoneNumber.

...
4-4 VisualWorks

Configuring an AspectAdaptor
Configuring an AspectAdaptor
When a widget presents data that is modeled in a domain object
outside of the application model, it is not necessary to hold that data
in a variable in the application model. While you can represent such
data in a variable in the application model, and so use a ValueHolder
as described above, it is often better to get the data directly from the
domain object. In this case, it is appropriate to use an AspectAdaptor
as the value model, instead of a ValueHolder. An AspectAdaptor is
conceptually a pointer to the remote data.

An AspectAdaptor has a subject, which is the target domain model, an
accessor selector, and an assigner selector, which are sent to the
subject when, respectively, the value and value: messages are sent to
the adaptor.

To initialize an AspectAdaptor, there are several protocols available, but
a simple approach is:

| aspect |
aspect := AspectAdaptor subject: aDomainObject.
aspect accessWith: #getSelector assignWith: #putSelector

Because Smalltalk conventions recommend that an instance variable
instVar have get and put accessor methods instVar and instVar:, this
can be simplified in cases where the convention is followed to:

| aspect |
aspect := AspectAdaptor subject: aDomainObject.
aspect forAspect: #iVarName

Frequently, the subject needs to be changed. To do this, send a
subject: message to the adaptor with the new subject object as
argument:

aspect subject: newDomainObject
Several aspects may use the same subject, for instance if several
parts of the same complex object need to be accessed.

Configuring an AspectAdaptor with a Subject
For example, Adaptor1Example can be modified so that the individual
customer fields are not held locally, but retrieved directly from the
Customer1Example objects using their own protocol. To make the
change, you would:
GUI Developer’s Guide 4-5

Adapting Domain Models to Widgets
1 Change each aspect variable initialization method to initialize to
an AspectAdaptor, rather than the ValueHolder. For example:

initializeID
accountID := AspectAdaptor subject: customers selection.
accountID forAspect: #accountID.

Note that the aspect accessor methods will now return an
AspectAdaptor.

2 Edit the changedCustomer message to update the subject for each
adaptor, and remove unneeded expressions:

changedCustomer
| chosenCustomer selector |
chosenCustomer := self customers selection.
self accountID subject: chosenCustomer.
self name subject: chosenCustomer.
self address subject: chosenCustomer.
self phoneNumber subject: chosenCustomer.
chosenCustomer isNil

ifTrue: [
self accountID value: 0.
self name value: ''.
self address value: ''.
self phoneNumber value: '']

ifFalse: [
self accountID value: chosenCustomer accountID.
self name value: chosenCustomer name.
self address value: chosenCustomer address.
self phoneNumber value: chosenCustomer phoneNumber].

#(#accountID #name #address #phoneNumber)
do: [:componentName |

(self builder componentAt: componentName)
isEnabled: chosenCustomer notNil].

This is sufficient for a simple change to the example, though it lacks
two features: displaying an accountID of 0 when no customer is
selected, and updating the list display as soon as the accountID or
name fields are edited. These defects are easily repaired, and are left
as an exercise for the reader.

Configuring an AspectAdaptor with a Subject Channel
Online example: Adaptor2Example

When several AspectAdaptors share the same subject, and especially
if the subject changes frequently, it is simpler and less error prone to
assign each adaptor a subject channel rather than simply a subject.
4-6 VisualWorks

Configuring an AspectAdaptor
This is the case in the modification of Adaptor1Example outlined above,
and so a subject channel is used in Adaptor2Example and the
subsequent adaptor examples.

A subject channel provides indirect access to the subject, using a
ValueHolder. Any time the value of the subject channel is changed, it is
changed for all adaptors sharing it, thus simplifying the process of
updating the subject.

To initialize an AspectAdaptor with a subject channel, send a
subjectChannel: instance creation method, with a ValueHolder
containing the channel. Accessor and assigner methods are
identified as before. For example:

| aspect |
aspect := AspectAdaptor subjectChannel: aValueHolder.
aspect accessWith: #getSelector assignWith: #putSelector

Again, if conventional accessor and assigner names are used, this
can be simplified to:

| aspect |
aspect := AspectAdaptor subjectChannel: aValueHolder.
aspect forAspect: #iVarName

Typically, the channel ValueHolder will be held in an initialized
instance variable. Then, whenever its value is updated, the channel is
updated for all applicable adaptors.

Configuring a subject channel is illustrated in the Adaptor2Example
application, as follows:

1 In an initialize method in the application model, initialize an
instance variable (selectedCustomer) with a ValueHolder on the
domain model (a Customer1Example instance).

initialize
customers := SelectionInList new.
customers selectionIndexHolder

onChangeSend: #changedCustomer to: self.
selectedCustomer := Customer1Example new asValue.

2 In each aspect accessor method (for example, accountID), send a
subjectChannel: message to the AspectAdaptor class, with the
ValueHolder as argument. Also, assign the aspect accessor
selectors.

accountID
| adaptor |
adaptor := AspectAdaptor subjectChannel: self selectedCustomer.
GUI Developer’s Guide 4-7

Adapting Domain Models to Widgets
adaptor forAspect: #accountID.
adaptor onChangeSend: #redisplayList to: self.
^adaptor

3 In any method that would change the subject of the adaptors,
update the subject channel by sending a value: message with the
new subject:

changedCustomer
| chosenCustomer |
chosenCustomer := self customers selection.
self selectedCustomer value:

(chosenCustomer isNil
ifTrue: [Customer1Example new]
ifFalse: [chosenCustomer]).

"Enable/disable selection-sensitive widgets."
#(#accountID #name #address #phoneNumber #format)

do: [:componentName |
(self builder componentAt: componentName)

isEnabled: chosenCustomer notNil].
In this example, the subject channel is updated in two cases. The
first assigns a default Customer1Example instance when there is no
currently selected customer simply to provide appropriate display
values. The second assigns the currently selected customer, so
its current values are displayed and will be updated if modified. In
both cases, the subject is updated for all aspect adaptors in the
application that have that subject channel.

Adapting Unconventional Accessors
Online example: Adaptor2Example

By Smalltalk convention, accessor message selectors for getting and
setting the value of an instance variable can be derived from the
variable’s name. For example, the domain model in Customer1Example
provides name and name: methods for accessing the value of its name
variable. The previous examples relied on this when identifying the
accessor methods by sending a forAspect: message to an adaptor:

accountID
| adaptor | adaptor := AspectAdaptor subjectChannel: self

selectedCustomer. adaptor forAspect: #accountID.
adaptor onChangeSend: #redisplayList to: self.
^adaptor
4-8 VisualWorks

Configuring an AspectAdaptor
However, this is only a convention, and many domain models do not
follow it, but provide accessor methods whose names are different
from the instance variable they access. For example, another
common naming pattern is, for an instance variable called income, to
name its accessors getIncome and putIncome:.

To specify these accessor method selectors, send an
accessWith:assignWith: message to the adaptor, instead of forAspect:.
The first argument is the selector of “get” accessor method, and the
second argument is the selector of the “set” assigner method.

Adaptor2Example does not require this form, since the selectors follow
the usual convention, but illustrates how to use this form in
configuring the AspectAdaptor for the address aspect:

address
| adaptor |
adaptor := AspectAdaptor subjectChannel: self selectedCustomer.
^adaptor

accessWith: #address
assignWith: #address:

Adapting a Changing Domain
Online example: RandomWatcher and RunawayRandoms

An aspect adaptor notices programmatic changes to the data upon
receiving a value: message. However, it is common for a domain
model to change its data independently of the application model, and
so without sending any messages to the AspectAdaptor. In this case,
you need to provide a way for the domain model to notify the
application model when it changes a value on which the application
model depends.

This involves two modifications: the application model must be
alerted to changes initiated by the domain, and the domain model
must send out a notification when the change occurs.

The example classes illustrate how a domain model,
RunawayRandoms, which updates the value of its current instance
variable independently of the application model, RandomWatcher.
RunawayRandoms was first developed without signalling its change.
RandomWatcher was then created, but could not initially be updated.
RunawayRandoms was then modified, while running, by editing the next
method to send changed:, at which point RandomWatcher immediately
started showing the updates.
GUI Developer’s Guide 4-9

Adapting Domain Models to Widgets
1 Send a subjectSendsUpdates: message to the adaptor with the
argument true. This causes the adaptor to register itself as a
dependent of the subject. In RandomWatcher:

currentValue
| adaptor |
adaptor := AspectAdaptor subject: generator.
adaptor forAspect: #current.
adaptor subjectSendsUpdates: true.^adaptor

2 In the domain model class (RunawayRandom), edit every method
that alters the data value directly to send a changed: message to
self. This notifies all dependents when the domain model makes
the relevant change.

next
current := generator next.
self changed: #current

Configuring a PluggableAdaptor
An AspectAdaptor requires accessor methods in the domain model
that correspond to an aspect in the application model. Occasionally
there is no such direct correspondence, so additional processing is
required to adapt the application to the domain. While you can do this
processing in the application model and hold the results in a
ValueHolder, using a PluggableAdaptor provides the capability but with
the advantages of an AspectAdaptor. Even when there is such a
correspondence, a PluggableAdaptor can be used to provide additional
processing of the aspect values, if needed.

A PluggableAdaptor takes three blocks, which enable it to perform
custom actions at three junctures in the flow of communications
between the widget and the domain model:

• The getBlock: controls what happens when a value is fetched from
the model by the widget. This is a one-argument block with the
model as argument.

• The putBlock: controls what happens when a value is sent to the
model by the widget. This is a two-argument block with the model
and value as arguments.

• The updateBlock: controls when the widget updates itself based on
an update message sent by the model. This is a three-argument
block with the model, aspect being updated, and the update
4-10 VisualWorks

Configuring a PluggableAdaptor
parameter as arguments. The block returns false if the update is
to be rejected, or true if the update is to be accepted.

When the widget is the only source of changes to the data value, the
update block can simply return false. When the data value can be
changed by other objects, the update block performs a test to
determine whether the widget should refetch the data value. Typically
this test uses the update block’s second argument, the aspect, to find
out whether the aspect that it cares about has changed and, if so,
accepts the update.

Create a PluggableAdaptor by sending an on: message to the class,
with the model as argument:

PluggableAdaptor on: aModel
The model is the object from which the adaptor receives its values, so
may be either the application or domain model. In the case of a
domain model, it is equivalent to the AspectAdaptor subject.

As with an AspectAdaptor, the model may change. You can change
the adaptor model by sending a model: message to the
PluggableAdaptor instance:

adaptor model: newModel
And, if the model is shared by several adaptors, you can assign it a
subject channel, so all adaptor models are changed together:

adaptor subjectChannel: aValueHolder

Configuring Accessor Blocks
Online example: Adaptor6Example

In this example, a PluggableAdaptor is used to translate an integer
such as 342 into a string containing prefixed zeroes ('000342'), saving
the user the trouble of entering the leading zeroes.

1 Create the custom adaptor by sending an on: message to the
PluggableAdaptor class. The argument is the domain model.

2 Send a getBlock:putBlock:updateBlock: message to the adaptor. The
first block takes one argument: the domain model. The second
block takes two arguments: the model and the value to be
assigned. The third block takes three arguments: the model, the
aspect of the model that was changed, and a parameter that
corresponds to the argument of a changed:with: message, and
returns a Boolean.
GUI Developer’s Guide 4-11

Adapting Domain Models to Widgets
paddedID
| paddedID |
paddedID := PluggableAdaptor on: self.
paddedID

getBlock: [:model | | paddedString |
paddedString := model accountID printString.
6 - paddedString size

timesRepeat: [paddedString := '0', paddedString].
paddedString]

putBlock: [:model :value |
model accountID: value asNumber]

updateBlock: [:model :aspect :parameter | false].
^paddedID

Setting the update block to return false causes the adaptor to
reject all updates from either the subject domain or application
model. Only changes entered into the entry field are accepted.

Configuring the Update Block
The update block is invoked whenever an update is submitted to the
adaptor from the domain or application model. The block must
evaluate to a Boolean; if true, then the update is accepted, and if false,
the update is rejected. Accordingly, the block provides an opportunity
to test an update to determine whether or not to accept it.

When invoked, the block must handle three arguments, which are the
model, the aspect, and any parameter passed with the update.

For illustration purposes, RandomWatcher can be modified to use a
PluggableAdaptor instead of an AspectAdaptor. Since it needs to accept
updates from its domain model, the update block must provide an
appropriate response. The only method that needs to be changed is:

currentValue
| adaptor |

adaptor := PluggableAdaptor on: generator.
adaptor

getBlock: [:model | model current]
putBlock: [nil]
updateBlock: [:model :aspect :parameter |

(model = generator) & (aspect = #current)].
^adaptor

The model argument of the update block is the object causing the
update, in this case the domain model. If the update were caused by
the application model, by sending a value: message to the aspect, the
model would be self. In this way you can discriminate between
updates by their source.
4-12 VisualWorks

Synchronizing Updates (BufferedValueHolder)
Similarly, the aspect argument is the aspect that has changed. In the
RunawayRandoms next method, this is specified as #current in its
changed: message. This allows discrimination between updates based
on the aspect being changed.

Finally, the parameter is the value of the change. Using this
argument, you can accept or reject, or invoke special processing,
based on the value. For example, you could test for value ranges and
invoke special processing for out-of-range data.

Synchronizing Updates (BufferedValueHolder)
Frequently, when a domain model contains several values that are
updated from a set of widgets, it is desirable to delay updating the
domain model until all of the widgets in the set are ready to update
their models. This is especially true in applications that make use of a
database, to ensure that an entire data record, or row, is updated at
once synchronously. BufferedValueHolder provides this capability.

A BufferedValueHolder wraps a value model, providing a buffer between
the value model and its widget. When a value is entered at the
widget, that that value is held in the buffer until it is triggered to
update the value model.

Each BufferedValueHolder holds a value model as its subject, and a
trigger channel, which is a ValueHolder containing true or false. When
set to true, the trigger channel notifies its dependent widgets to
update their models. When set to false, the BufferedValueHolder
discards the buffered values, canceling the update.

Note that the buffering occurs in only one direction: from the widget to
the value model. If a domain model updates itself and notifies its
dependents, as described in Adapting a Changing Domain above, the
update to the widgets display is immediate.

Adding a BufferedValueHolder
Online example: Adaptor3Example

Adaptor3Example provides an OK button that the user presses after
entering or editing customer information in the input fields. When
pressed, the button action sets the trigger channel to true, signalling
all of the BufferedValueHolders to update their subject value models. If
a customer is deselected before the update is triggered, the values
are cleared from the buffers.
GUI Developer’s Guide 4-13

Adapting Domain Models to Widgets
Adaptor3Example is derived from Adaptor2Example by making these
changes:

1 In the application model, create an instance variable
(updateTrigger) to contain the true/false value, and add an
accessing method for the variable:

updateTrigger
^updateTrigger

2 Initialize the variable to a ValueHolder containing false:

initialize
customers := SelectionInList new.
customers selectionIndexHolder

onChangeSend: #changedCustomer to: self.
selectedCustomer := Customer1Example new asValue.

updateTrigger := false asValue.
This simply sets the initial value of the trigger channel.

3 For each widget in the series, wrap it’s value model in a
BufferedValueHolder by sending a subject:triggerChannel: message to
the BufferedValueHolder class. The first argument is the widget’s
value model (in the example, an AspectAdaptor). The second
argument is the trigger channel (updateTrigger).

accountID
| adaptor bufferedAdaptor |
adaptor:= AspectAdaptorsubjectChannel:self selectedCustomer.
adaptor forAspect: #accountID.
bufferedAdaptor := BufferedValueHolder

subject: adaptor
triggerChannel: self updateTrigger.

^bufferedAdaptor
Note that the buffered value holder does not replace the widget’s
value model, but wraps it.

4 Add an Action Button for the user to indicate that the set of
values is complete and ready to be accepted. Install the canvas
and provide the action method (accept), which sets the value true
to the trigger channel (updateTrigger), thereby triggering the
update

accept
self updateTrigger value: true.
self redisplayList.
4-14 VisualWorks

Adapting Collections
Discarding the Buffered Values
Online example: Adaptor3Example

To clear the buffered values without updating the models, set the
value of the trigger channel to false. Note that the action is caused by
setting the value to false; that the value is already false has no effect.

In Adaptor3Example, the buffers are cleared without updating if the
selected customer is changed or deselected from the list before
clicking OK. This is done in the changedCustomer method:

changedCustomer
| chosenCustomer |
chosenCustomer := self customers selection.
self selectedCustomer value:

(chosenCustomer isNil
ifTrue: [Customer1Example new]
ifFalse: [chosenCustomer]).

"Discard changes that were not OK'd."
self updateTrigger value: false.
"Enable/disable selection-sensitive widgets."
#(#accountID #name #address #phoneNumber #ok)

do: [:componentName |
(self builder componentAt: componentName)

isEnabled: chosenCustomer notNil].
Typically in a UI, a confirmation dialog would be opened before
clearing the buffers, allowing the user to cancel the action. The
example does not do this.

A good UI design would also generally provide a way to explicitly
clear the buffers, rather than leaving the action implicit as in the
example. To make it explicit, you could add another button, and give it
an action method setting the trigger channel to false, forcing the
buffers to clear:

reject
self updateTrigger value: false.

Adapting Collections
Collections of many types are commonly used in domain models to
hold associated data items, and often need to be represented in a
GUI. The appropriate value model to select for the collection depends
on a variety of factors, including:
GUI Developer’s Guide 4-15

Adapting Domain Models to Widgets
• the kind of information the domain model class provides on the
collection (does it hold a “selected” item?),

• the protocol provided by the domain model class to access that
data (does it provide an accessor method for the item to be
displayed in your GUI?), and

• the requirements of the specific widget used to display the data
(e.g., a List widget needs a SelectionInList, and a Tree widgets
needs a SelectionInTree).

If the domain model already has a protocol providing access to the
data, then it is reasonable to use an AspectAdaptor. If it does not, then
you have to choose whether to add protocol to the domain model,
use a PluggableAdaptor, or use a ValueHolder and represent the needed
information as needed within the application model. Or, you can use
one of the special adaptors, or create your own.

Adapting to a SelectionInList
Online examples: Adaptor4Example and Customer2Example

A list or notebook widget is designed to work with a SelectionInList as
its aspect, which contains value holders for its collection and current
selection. A domain model that contains a collection can be adapted
to provide the list, by assigning an adaptor to its list holder. Typically,
the domain will not maintain a selection in that collection, which is
only of interest to the application model.

Like the previous examples, Adaptor4Example uses a SelectionInList for
the List widget aspect, but modifies the earlier examples by adapting
the list held in a Customer2Example instance, which holds an
OrderedCollection of customers.

In the application model, add an instance variable (customers) for the
List widget’s aspect, and one for the current selection
(selectedCustomer). Initialize the List widget’s aspect variable
(customers) to a SelectionInList. Then make the SelectionInList list
holder an AspectAdaptor on the domain model:

initialize
collectionModel := Customer2Example new.
customers := SelectionInList new.
customers listHolder:

((AspectAdaptor subject: collectionModel) forAspect: #customers).
self customers selectionIndexHolder

onChangeSend: #changedCustomer to: self.
selectedCustomer := Customer1Example new asValue.
4-16 VisualWorks

Adapting Collections
The selection is set to an empty Customer1Example simply to provide
default display values.

Also supply the usual aspect accessor method that simply returns the
variable’s value:

customers
^customers

The initialization could also be done as lazy initialization in the
accessor method.

In the special case where the domain class does hold the selection
and provide accessor methods for the selection, you can set up the
adaptor by sending an adapt:aspect:list:selection: message to the
SelectionInList class. The adapt: argument is the domain model (in the
example, collectionModel). The aspect: argument is typically the name
of the domain model’s collection variable. The list: argument is the
name of the domain model’s method that returns the collection. The
selection: argument is the name of the domain model’s method that
sets the selection in the collection.

Adapting a Indexable Collection
When the domain model is an indexable collection or an object with
indexed instance variables, the appropriate adaptor is an
IndexedAdaptor. An IndexedAdaptor redirects the value message to at:
and value: to at:put:, making it simple to adapt an indexed collection to
the requirements of the application model.

An IndexedAdaptor has a subject or subject channel, and specifies an
index number in place of the aspect accessors.

In Adaptor5Example, the domain model has a vector that holds an
instance of Vector, an object with 3 indexed instance variables
representing x, y, and z coordinates.

Online example: Adaptor5Example, Vector

To configure an IndexedAdaptor:

1 Send a subject (or subjectChannel:) message to the IndexedAdaptor
class, with the indexed object (or a ValueHolder on the indexed
object) as the argument.
GUI Developer’s Guide 4-17

Adapting Domain Models to Widgets
2 Send a forIndex: message to the adaptor. The argument is the
position of the desired element in the collection.

xAxis
| adaptor |
adaptor := IndexedAdaptor subjectChannel: self vector.
^adaptor forIndex: 1

Adapting Collections of Collections
Online example: Contact1Browser

Domains can become rather complex, and there are many options for
adapting them. The main issue is one of adapting the right domain
object to the appropriate part of the widget model.

The Contacts Book example provides a domain consisting of
individual Contact instances, which are collected into one or more
ContactsLists, and one or more contact lists collected into a
ContactBook which is implemented as a Dictionary. The browser,
Contact1Browser, needs to adapt each of these.

Note that the example is incomplete in some respects, but contains
the essential adaptors.

First, the application holds its contact book in an instance variable,
book, which is initialized in the initialize method. This is the highest
level domain object and is the primary access point to the others.

In the application, we want to select a group to display, for which we
use a ComboBox widget. The widget needs a list of choices and an
aspect which is the current selected item in the list, named groupList
and group, respectively. The aspect, group, is provided by the widget
when a selection is made. A change notification method, specified on
the Notification property page, handles the update. The list of groups
itself, however, must come from the book, which we can get using an
adaptor.

The book holds contact lists, each with a group label, which is the key
for the list in a Dictionary. The groups method in ContactBook returns
the Set of those keys, and we can adapt this to provide the groupsList
value. Since a Set is not appropriate, we need to modify the value
returned, and so use a PluggableAdaptor:
4-18 VisualWorks

Adapting Collections
groupsList
| listAdaptor |
listAdaptor := PluggableAdaptor on: book.
^listAdaptor

getBlock: [:model | model groups asOrderedCollection]
putBlock: [:model :adaptor | nil]
updateBlock: [:model :adaptor :para | false].

The application at this point does not update the book (no lists or
groups can be added), so the put block does nothing and the update
block returns false, because no updates will come from the domain.

When a group is selected from the list, the group aspect variable is
assigned a value, and the list of contacts needs to be provided. The
list of contacts is displayed in a List widget, the aspect for which,
contactsList, is a SelectionInList. The list is provided by the ContactList
corresponding to the selected group, where the group is the key to
the list in the book. Accordingly, the list holder is provided as an
adaptor on a ContactList.

The list will change frequently, whenever the selected group changes.
To effect the change, the change notification for group (mentioned
above), which we called changedGroup, changes the list whenever
group changes:

changedGroup
"When the selected group changes, change the list."
contactsList list: (book listFor: group value) contacts asList.
contactChannel value: Contact new.

Finally, when the specific contact is selected, an adaptor is needed
on the Contact to extract the displayable information. This changes
frequently, so a subject channel is used, and updated whenever the
contact selection is changed. A change notification is set for the List
widget to send changedContact when a new contact is selected:

changedContact
"When a new contact is selected, update the information"
contactChannel value: contactsList selection

The, for each contact aspect, an adaptor is defined on that subject
channel. For example, for the name aspect, the adaptor is defined as:

name
| adaptor |
adaptor := AspectAdaptor subjectChannel: contactChannel.
adaptor forAspect: #name.
^adaptor
GUI Developer’s Guide 4-19

Adapting Domain Models to Widgets
This illustrates one way of setting up adaptors to access data from
nested collections. Any of the adaptors could be replaced with value
holders, at the cost of more processing in the application model. And,
the adaptors would be configured differently if more or less protocol
were provided by the domain model, possibly requiring more
PluggableAdaptors. Extensions and modifications to the example are
left as an exercise for the reader.

Defining Adaptors in the UI Painter
Instead of defining a value model in the application model, as either a
ValueHolder or an adaptor, the UI Painter allows you to specify an
aspect path in the Aspect property field.

The aspect path causes the interface builder to create an appropriate
aspect adaptor to connect the widget to its domain model. The path
may also cause the builder to create an input buffer behind the
widgets, by combining the aspect adaptor with a BufferedValueHolder.

An aspect path has two parts: the head and the path. The head
begins the aspect path, and is the name of the accessor method that
returns the value model holding the domain object being adapted.
The path is one or more aspect selectors, specifying how to access
the value of the domain model. Each path element may be an
accessor message selector or an index, depending on the object
type.

In addition to the head and path, you can include a trigger that buffers
the values for the aspects to update all buffered widgets at once.

Each of these is illustrated in the following sections.

Aspect Path with Aspect Selectors
Online example: Contact2Browser

Contact2Browser modifies Contact1Browser by replacing the aspect
adaptors for each of the input field aspects with an aspect path. This
simplifies the example by eliminating several aspect methods. Then,
a few other modifications are needed to support the aspect paths.

1 Change the aspects of the input field specs to the following:
4-20 VisualWorks

Defining Adaptors in the UI Painter
In each of these, the aspect path head is contactChannel, which is
a method selector we need to implement, and the path is the
aspect selector: name, address, email, phone, and fax. Each of
these identifies an aspect accessor in class Contact, an instance
of which will be picked out by contactChannel.

2 Implement contactChannel to return the currently selected contact:

contactChannel
^contactsList selectionHolder

These are all the necessary changes, but there are several cleanup
tasks we can perform:

• Remove the name, phone, fax, email, address, and changedContact
methods.

• Remove the line that set contactChannel in changedGroup, to clear
the contact information, which is no longer needed:

changedGroup
"When the selected group changes, change the list."
contactsList list: (book listFor: group value) contacts asList

• Remove changedContact method, and remove the reference to it
from the List widget Notification property page.

• Change initialize, eliminating the initialization of contactChannel:

initialize
book := ContactBook new.
contactsList := SelectionInList new.
group := String new asValue.

• Remove the contactChannel instance variable from the class
definition.

ID Aspect

#name #contactChannel name

#address #contactChannel address

#email #contactChannel email

#phone #contactChannel phone

#fax #contactChannel fax
GUI Developer’s Guide 4-21

Adapting Domain Models to Widgets
Aspect Path with Index Selectors
Online example: Adaptor8Example

When the domain model is an indexable collection or an object with
indexed instance variables, the aspect path can be the index rather
than an accessor method. Adaptor8Example is a modification of
Adaptor5Example that illustrates this.

In this example, the accessor method vector returns the domain
model, and instance of Vector, as was the case Adaptor5Example. The
only difference is in the aspect specification for the three input fields.

The aspect path for each field identifies the index location of the
object returned by vector, replacing the need for accessor methods for
the coordiantes.

Aspect Path with Input Buffering
Online example: Adaptor7Example

When you need buffered input, to synchronize updates, you add a
trigger following the path. The trigger is preceeded by a vertical bar,
or pipe (|), followed by the triggering method selector.

Adaptor7Example modifies Adaptor3Example by using aspect paths with
triggers instead of explicitly configured BufferedAdaptors.

In this example, the four input fields are configured with aspect paths
with triggers, as follows:

Coordinate Aspect

x #vector 1

y #vector 2

z #vector 3

ID Aspect

#accountID #selectedCustomer accountID | updateTrigger

#name #selectedCustomer name | updateTrigger

#address #selectedCustomer address | updateTrigger

#phoneNumber #selectedCustomer phoneNumber | updateTrigger
4-22 VisualWorks

Configuring Dependencies Using Events
The selectedCustomer method returns an instance of
Customer1Example, which supports the accessor methods accountID,
name, address, and phoneNumber. The accept method sets the value of
updateTrigger to true, triggering the update, as in Adaptor3Example.

With the use of aspect paths, the accountID, name, address, and
phoneNumber methods are not needed in the Adaptor7Example class,
and so are not implemented.

The example incorporates some addition changes as well, involving
using the notification property for changing the selected customer,
but this change is independent of the use of aspect paths.

Configuring Dependencies Using Events
The Trigger-Event mechanism provides a much finer-grained
approach to configuring interactions between the GUI and the
application and domain models, by providing many more occasions
for a response to be evoked.

For example, using the usually dependency mechanism, an
ActionButton widget sends its action message when the button is
clicked, but using events the widget can evoke a response when it is
clicked, pressed, tabbed into or out of, getting or losing focus, or
when its label is changing. Similarly, while an InputField widget
updates its model when its value is changed, using events it can also
evoke a response when its value is changed, just before the change
is accepted, when it is clicked, right-clicked, or double-clicked, when it
is scrolled, and so on.

Registering an Interest in a Widget Event
As described in chapter 6, “Event System,” in the Application
Developer’s Guide, an interest in an event can be registered with any
object at any time. In building the GUI, however, interests are typically
registered as soon as the UI is built, and rarely need to be changed
after that. Accordingly, the most usual place to register event
dependencies is in the application model postBuildWith: method,
which is invoked by the UI Builder immediately after building the
window.

For example, it is simple to modify the WalkThrough example,
RandomNumberPicker, to use events rather than the original
dependency mechanism. To illustrate with the two action buttons,
GUI Developer’s Guide 4-23

Adapting Domain Models to Widgets
remove the Action item for each in the GUI Painter Tool, assign each
an ID (#nextButton and #resetButton), and re-install. Then add the
following method to the application model:

postBuildWith: aBuilder
self widget: #nextButton when: #clicked send: #nextRandom to: self.
self widget: #resetButton when: #clicked send: #resetSequence to: self

Test the application to verify that it works as before.

Similar changes can be made to use events for updating the entry
field widgets.

Update Notifications using Events
Using events with the dependency mechanism is a useful alternative
to the subjectSendsUpdates: dependency mechanism, especially if your
domain is already configured to trigger events on changes. Using
events in this context requires a small change in the adaptor
configuration.

Online Example: RandomWatcher and RunawayRandoms

In the section Adapting a Changing Domain above, RandomWatcher
uses the dependency mechanism. To switch to the event system
requires two changes. In the domain model, trigger an event instead
of sending the notification:

next
current := generator next.
self triggerEvent: #currentChanged with: current.

The event symbol can be whatever you want to call the event. It
triggers the event with the value of current.

Then, in the application model, register an interest in the event with
the domain model:

currentValue
| adaptor |
adaptor := AspectAdaptor subject: generator.
adaptor forAspect: #current.
generator when: #currentChanged

do: [:arg | adaptor update: #current with: arg from: generator].
^adaptor

Because the argument is important, register with a when:do:
message. The single argument is passed into the do: block, and the
adaptor value is updated. In the update message, the update:
4-24 VisualWorks

Configuring Dependencies Using Events
argument is the aspect, the with: argument is the new value, and the
from: argument is the source of the value. If the from: argument is the
subject for the aspect, the update is accepted.

The trigger-event mechanism can be used with PluggableAdaptor as
well, as long as the update block returns true. The method would then
be:

currentValue
| adaptor |
adaptor := PluggableAdaptor on: generator.
adaptor

getBlock: [:model | model current]
putBlock: [nil]
updateBlock: [:model :aspect :parameter |

(model = generator) & (aspect = #current)].
generator when: #currentChanged

do: [:arg | adaptor update: #current with: arg from: generator].
^adaptor

Registering an interest in the event can be done in other methods. In
this case, note that the update block arguments are provided by the
registration message, so the aspect is #current as specified.
GUI Developer’s Guide 4-25

Adapting Domain Models to Widgets
4-26 VisualWorks

5

Custom Views

A view displays text or graphics representing all or part of a data
model. Each of the widgets uses a view to display a data model.
When an existing widget does not serve your purpose, you can
create a custom view.

A custom view is like a small application. It typically has a domain
model, a controller, and a view, which is similar to an application
model. You begin that process by creating the view class, and then
add its UI specification and connect it to its domain model.

Building a custom view is described in the context of an example,
CustomViewExample, a simple sketch pad. It uses four classes that
demonstrate the interactions among a domain model (Sketch), a
custom view (SketchView), a custom controller (SketchController), and
an application model (CustomViewExample). SketchView uses a Sketch
as its model, which has a name and a collection of points
representing a series of sketched strokes. SketchView uses a
SketchController to handle mouse and keyboard input.

These examples classes are all in the CustomView-Example parcel.

Creating a View Class
The new view requires a class, which you create as a subclass of
View or one of its subclasses.

Online example: SketchView

1 In a System Browser, select Class > New Class... to display the
class-definition dialog.
GUI Developer’s Guide 5-1

Custom Views
2 In the dialog, specify the name space, class name, and
superclass name. The superclass is typically either View (as in
the example, or a subclass of View). You can also supply any
instance variable names.

3 Click Accept to create the definition.

Smalltalk.Examples defineClass: #SketchView
superclass: #{UI.View}
indexedType: #none
private: false
instanceVariableNames: ''
classInstanceVariableNames: ''
imports: ''
category: 'Examples-Help'

Connecting a View to a Domain Model
A view displays text or graphics that communicate the state of its
domain model, or at least a portion of its domain model. Since a view
must communicate frequently with the domain model, it needs a way
of accessing that object. As a subclass of DependentPart, every view
inherits an instance variable for storing its model. Sending a model:
message to the view, typically when the view is created, stores the
model in this instance variable, where it can be accessed easily.

A side effect of the model: message is that the view is registered as a
dependent of the model. This link sets the stage for the view to
update its display when the model changes.

About the example: Although some views have the same domain
model for their whole lifetimes, SketchView changes its model each
time the user selects a different Sketch. For that reason, SketchView
reimplements the model: method so it can update its display after
storing the new model.

Online example: CustomViewExample, SketchView

1 Tell the view which object to use as its domain model. This is
done in an initialization method or, as in the example, the
application model (CustomViewExample) can notify the view
whenever the domain model changes.

changedSketch
self sketchView model: self sketches selection.
5-2 VisualWorks

Defining What a View Displays
2 If the view needs to take action when its model is changed, such
as redisplaying itself, override the inherited model: method (as in
SketchView).

model: aModel
super model: aModel.
self invalidate.
"Tell the controller where to send menu messages."
self controller performer: aModel.

Defining What a View Displays
A view’s purpose is to display text or graphics. It does so in a method
named displayOn:, which is sent to the view whenever circumstances
require that it update its display.

The view decides what to display based on the state of its domain
model.

It displays the text and/or graphics on a GraphicsContext, which is an
object that windows and other display surfaces use for rendering
objects.

Online example: SketchView

In CustomViewExample, a SketchView is used to display the line
segments that are stored in its domain model, a Sketch.

1 In a displaying protocol, add a displayOn: method to the view. The
argument is a GraphicsContext.

2 In the displayOn: method, get the required data from the model (in
the example, a set of line segments, each represented as a
collection of points).

3 In the displayOn: method, display the appropriate text or graphics,
based on the data.

displayOn: aGraphicsContext
self model isNil ifTrue: [^self].
self model strokes do: [:stroke |

aGraphicsContext displayPolyline: stroke].
GUI Developer’s Guide 5-3

Custom Views
Updating a View When Its Model Changes
Since the purpose of a view is to display some aspect of its domain
model, it must be prepared to change its display when the model is
changed.

When the domain model changes its state, it is responsible for
notifying all of its dependents. It does so by sending a variant of the
changed:with: message to itself. The first argument is a Symbol
indicating what was changed, and the second argument is the new
value.

Shorter versions of the changed:with: message, changed: and changed,
can be used when less information needs to be sent. Read their
comments in a code browser for more information.

The changed:with: message is inherited, and it sends an update:with:
message to each dependent, passing along the same two
arguments. Thus, the view must implement an update:with: method in
which it gets the new data from the model and displays it.

Online example: Sketch, SketchView

1 In any method in the domain model that changes the model in a
way that affects the view, send a variant of the changed:with:
message to the model. (In the example, Sketch sends three such
messages, one when it adds a point and the others when it
erases some or all of its contents.)

add: aPoint
"Add aPoint to the current stroke."
self strokes last add: aPoint.
self changed: #stroke with: self currentLineSegment.

eraseLine
"Erase the last stroke that was drawn."
self strokes isEmpty

ifFalse: [
self strokes removeLast.
self changed: #erase with: nil].

eraseAll
"Erase my contents."
self strokes removeAll: self strokes copy.
self changed: #erase with: nil.

2 In the view, implement a variant of the update:with: method to take
the appropriate action in response to a change in the model. (In
the example, the same update:with: method responds to either of
the changed:with: messages sent by the model.)
5-4 VisualWorks

Connecting a View to a Controller
update: anAspect with: anObject
"When a point is added to the model..."
anAspect == #stroke

ifTrue: [anObject asStroker displayOn: self graphicsContext].
"When the model erases its contents..."
anAspect == #erase

ifTrue: [self invalidate].

Connecting a View to a Controller
If a view responds to mouse or keyboard input, it needs a controller to
process mouse and keyboard input. Such a view is called active. A
view is often closely allied with its controller, so an inherited
mechanism installs the desired controller when the view is created.

Controllers are event-driven in VisualWorks, meaning that they
capture mouse and keyboard events passed into VisualWorks from
the operating system. An view’s controller identifies which events it
responds to, and how it responds.

SketchView uses a SketchController, which changes the cursor to a
crosshair, notifies the model when the user draws with the <Select>
button, and provides a menu when the <Operate> button is pressed.

Creating a Controller Class
Because an input controller defines the interactive character of a
view, changing the controller can have a dramatic impact on the
operation of a view. When an existing controller class does not serve
your purposes, you can create a custom controller class.

An event-driven controller that responds to keyboard input needs to
have an instance variable named keyboardProcessor, and accessor
methods for that variable (keyboardProcessor and keyboardProcessor:).
The controller should not initialize the variable, however, because a
KeyboardProcessor will be supplied by the window using a
keyboardProcessor: message.

By default, an event-driven controller does not accept keyboard
focus. When it handles keyboard input, it must respond true to a
desiresFocus message.
GUI Developer’s Guide 5-5

Custom Views
To create the basic controller class:

1 In a System Browser, define a new controller class.

In the template, specify the name space, the class name, and the
superclass. The superclass is some class in the Controller
hierarchy. For this example it is ControllerWithMenu.

2 Supply variable names, if any, and then Accept the definition.

In our example, a variable named strokeInProgress is created to
store a true/false indication of whether the user is actively
sketching, and a keyboardProcessor variable to specify whether
it accepts keyboard input

SketchController’s definition is:

Smalltalk.Examples defineClass: #SketchController
superclass: #{UI.ControllerWithMenu}
indexedType: #none
private: false
instanceVariableNames: 'strokeInProgress keyboardProcessor '
classInstanceVariableNames: ''
imports: ''
category: 'Examples-Help'

3 Add an initialize method to assign an initial value to the instance
variables. Remember that we do not initialize keyboardProcessor.

initialize
super initialize.
strokeInProgress := false.

4 Add accessor methods for the instance variables. The methods
are responsible for getting and setting the value of each instance
variable.

strokeInProgress
^strokeInProgress

strokeInProgress: aBoolean
strokeInProgress := aBoolean

keyboardProcessor
^keyboardProcessor

keyboardProcessor: kp
keyboardProcessor := kp
5-6 VisualWorks

Connecting a View to a Controller
5 When keyboard input is to be handled, add a desiresFocus
message to the controller. The method simply returns true,
overriding the inherited method, which returns false.

desiresFocus
^true

Connect the Controller to the Model
A controller’s purpose is to respond to input events. Frequently, the
response involves sending a message to the view’s domain model.

A controller inherits a model instance variable (from Controller) for
storing the model so it can easily access that object. Also, by default,
a view sends a model: message to its controller when it receives a
model: message itself, effectively installing the model in both the view
and its controller.

It the default behavior is not appropriate, you can also set the
controller’s model explicitly. This is not necessary for our example. If it
is necessary for your application, simply send a model: message to
the controller. The argument is the model.

Connect the Controller to the View
Online example: SketchView, SketchController

An application model sometimes needs to access a view’s controller.
The usual way of accessing the controller is to ask the view for it.
Thus, the view must itself be able to access its controller.

A view inherits an instance variable for storing its controller. By
default, this instance variable is initialized automatically, when a view
is opened, according to the value returned by its defaultControllerClass
method.

defaultControllerClass
^SketchController

To make a view passive, return NoController from the
defaultControllerClass method.

Alternatively, you can install a controller in a view directly, by sending
a controller: message to the view, with the controller class name as
argument.
GUI Developer’s Guide 5-7

Custom Views
Connecting a Composite View to a Controller
When multiple views inhabit the same window, normally they have
separate controllers. In some situations, the composite object that
groups them needs its own controller, either instead of the individual
controllers or in addition to them. A CompositeView is intended for
grouping views that need a common controller. To initialize its
controller:

Send a controller: message to the composite that groups the views.
The argument is an instance of the desired type of controller (not the
class name as with defaultControllerClass).

Redisplaying All or Part of a View
A view can redisplay its entire contents or just a portion of them. For
example, when one window overlaps another, the overlap region is all
that needs to be redisplayed when the lower window is no longer
obscured by the upper window. This overlap region is called a
damage rectangle, because it is a rectangular region that was
damaged by an overlapping window.

The window’s sensor keeps track of such damage rectangles and
repairs them in a batch to avoid repairing the same region twice.
Sending invalidate to a view causes the entire view to be treated as a
damage rectangle. Alternatively, you can limit the damage rectangle
to a portion of the window.

By default, damage rectangles are accumulated until the window’s
controller reaches a certain point in its cycle of activity. That is
sufficient in most situations. However, when a competing process is
monopolizing the processor, the delay can be significant. In this case,
you can force the damage to be repaired immediately.

Invalidating a view is done in a view method, when the view updates
its model. It can also be done by an application model that has
changed a widget’s data model in a way that bypasses the normal
dependencies.
5-8 VisualWorks

Integrating a View into an Interface
Redisplaying a View
Online example: SketchView

Send invalidate to the view. This is typically done in a view method
that changes the model (as in the example).

model: aModel
super model: aModel.
self invalidate.
"Tell the controller where to send menu messages."
self controller performer: aModel.

To redisplay only part of the view, send invalidateRectangle: to the view.
The argument is a rectangle that represents all or part of the view’s
bounding box. The bounding box can be accessed by sending bounds
to the view.

To ensure that the redisplay occurs immediately, send
invalidateRectangle:repairNow: to the view. The first argument is a
rectangle that represents all or part of a view’s bounding box. The
second argument is true when immediate redisplay is desired, and
false for the default behavior.

Integrating a View into an Interface
A View Holder widget is provided on the UI Painter Palette for
integrating a custom view into a canvas. This view holder enables you
to treat your custom view like a standard widget in that you can paint
its layout and apply borders and scroll bars. However, your
application is responsible for connecting the view to a domain model.

Online example: CustomViewExample, SketchView

1 Select a View Holder from the Palette and place it on the canvas.

2 In the view holder’s View property, enter the name of the
application-model method that supplies an instance of the
desired view (sketchView).

3 If the application model will need to access the custom view while
the application is running, use a System Browser to create an
instance variable (sketchView) in which to store the custom view.
GUI Developer’s Guide 5-9

Custom Views
4 Use a System Browser to create the application-model method
that you named in the View property(sketchView). This method
typically answers the contents of the instance variable.

sketchView
^sketchView

5 In an initialize method in the application model, create an instance
of the custom view. If appropriate, connect the custom view to a
data model. (In the example, there is no model to be connected
until the user adds the first Sketch object.)

initialize
sketches := SelectionInList with: OrderedCollection new.
sketches selectionIndexHolder

onChangeSend: #changedSketch to: self.
sketchView := SketchView new.
5-10 VisualWorks

6

Dialogs

Dialogs are special purpose windows, typically used to display
notices or to prompt for specific information required by an
application.

The class SimpleDialog provides a full capability for creating many
common dialog types, as well as custom dialogs. Instance methods
provide a uniform creation protocol for many standard dialogs, such
as warning and confirmation dialogs. Several subclasses implement
specific dialog types, such as file selection (FileDialog) and color
selection (ColorSelectionDialog).

The Dialog class provides backwards compatibility with an older
implementation, but now invoking SimpleDialog.

Usage examples for several dialogs are provided in the
Dialog-Example parcel.

SimpleDialog
SimpleDialog is a framework that simplifies building dialogs. It provides
an extensive protocol fot building a dialog’s interface. It includes built-
in actions for accept and cancel buttons, which are common in
dialogs. Initialization, when required, is provided by preBuild and
postBuild block.

SimpleDialog is a subclass of ApplicationModel. Accordingly, subclasses
have access to the full UI building capabilities of ApplicationModel. This
is useful for complex dialogs and interaction between a dialog and its
host application.
GUI Developer’s Guide 6-1

Dialogs
Dialogs, unlike normal application models, are preemptive, or modal,
interrupting further work until the dialog is dealt with and closed. If
non-preemptive behavior is required, use ApplicationModel as the
superclass instead of SimpleDialog.

Core Structures
As a subclass of ApplicationModel, a SimpleDialog can be built using the
same features as any other application model.

Accordingly, you can design a dialog using the UI Painter, and save it
as a UI spec in SimpleDialog or a subclass. You open the dialog, just
like any other window, except that it opens as modal, preempting all
processing until the dialog is closed.

The full power of SimpleDialog is available at this level, and is briefly
illustrated in the custom dialog example.

A few generally useful dialogs are built in this way, also, notably the
FileDialog and ColorSelectionDialog, as well as a number of dialogs
created as part of the VisualWorks tool set.

Simple Dialog Construction
SimpleDialog provides a simple interface for assembling dialogs.
Beginning with a blank dialog, several messages add fields or format
features, top to bottom.

An empty dialog can be created and opened with this expression:

(SimpleDialog initializedFor: nil)
openDialog

The initializedFor: message returns a SimpleDialog instance prepared
for receiving the construction messages. The argument can be a
parent window, to inherit the look of the application, or nil for the
default look. The openDialog message calculates the dialog’s size
before opening, so the components are properly displayed.

The rest is just an augmentation, by adding lines. For example:

(SimpleDialog initializedFor: nil)
setInitialGap;
addTextEditor: 'this\is\a\test' withCRs asValue;
addGap;
addDivider;
addGap;
addOK: [^true];
addGap;
openDialog
6-2 VisualWorks

Standard Dialogs
The setInitialGap and addGap lines add padding. The addTextEditor:
message takes a value model, generally one from the hosting
application. Similarly, addOK:, which adds OK and Cancel buttons,
takes a block that returns a value that the hosting application will take
as acceptance, in this case of whatever the text editor displays
(possibly a licensing agreement).

Other messages can be browsed in the “interface construction”
method category in SimpleDialog, and are illustrated in examples.

Standard Dialogs
The Dialog class implements simple creation methods for many
common dialogs. Typically, all you need to do is send a message to
the class that identifies the kind of dialog and any specific information
required, such as text.

These dialogs are all implemented as instances of SimpleDialog. If you
need to enhanced versions, these implementations can serve as
starting points.

Warning Dialog
A warning dialog is frequently used when an action cannot be
completed, such as if a search command cannot find a user-specified
string. The dialog should display a simple textual message indicating
the condition.

Dispaly a warning dialog sending a warn: message to the Dialog class.
The argument is the text to display, and may include CR marks.

warn
| returnVal |
returnVal := Dialog

warn: 'The memory named\''FirstKiss''\was not found.\'
withCRs.

self returnedValue value: returnVal printString.
When the user clicks OK, dialog closes and the warn: message
returns the value nil.

Confirmation Dialog
Frequently an application needs the user to confirm an action by
asking a yes/no question. For example, an application might request
confirmation when the user has initiated an action that would destroy
data (e.g., delete a file).
GUI Developer’s Guide 6-3

Dialogs
By convention, the question is phrased in such a way that a Yes
answer causes the action to proceed, and a No answer terminates the
action with no effect.

Display a confirmation dialog by sending a confirm: message to the
Dialog class, with a string containing the question.

Dialog confirm: 'Really erase all memories\of adolescent period?\'
withCRs.

If the user clicks Yes, the dialog returns true, and if the user clicks No,
the dialog returns false. Your application code implements the specific
action in either case.

The default answer is Yes. In hazardous situations, this might not be a
good default. To change the default response, send a
confirm:initialAnswer: message to Dialog. The second argument is
either true or false.

Dialog
confirm: 'Really erase all memories\of adolescent period?'

withCRs
initialAnswer: false

Multiple-Choice Dialog
Frequently more choices than Yes/No, or other choices are required,
but still only a small number. A multiple-choice dialog provides this
capability. The choices are arrayed as a horizontal row of buttons.

The message that creates a multiple-choice dialog assigns a symbol
to each choice. When the user clicks a choice, the message returns
the corresponding symbol to the application.

Display a multiple-choice dialog by sending a
choose:labels:values:default: message to the Dialog class, where the
arguments are:

• choose - a string stating the question

• labels - an array of strings to be displayed on the answer buttons

• values - an array of Symbols to be used as return values by the
answer buttons.

• default - the Symbol to be returned as the default answer.
6-4 VisualWorks

Standard Dialogs
Dialog
choose: 'Which memory would you like to review first?'
labels: #('Swimming the Channel'

'Triumph at the Coliseum'
'Love & War #47')

values: #(#swim #triumph #love47)
default: #triumph

Text Response Dialog
To prompt for a short, textual response, use the request dialog, which
displays a fill-in-the-blank input field and a label.

To open a request dialog, send request: to the Dialog class, with text
describing what is being requested:

Dialog request: 'Find all memories associated with...'
When the user enters a string and clicks OK, the dialog returns the
user-specified string. If the user clicks Cancel, the default is to return
an empty string.

By default, an empty string appears in the input field. To specify a
default response, send request:initialAnswer: to Dialog, with the default
answer as a string:

Dialog
request: 'Find all memories associated with...'
initialAnswer: 'friend'

If an empty string is not an appropriate response to Cancel, you can
specify an alternate action or value. Send
request:initialAnswer:onCancel: to Dialog, with a block containing the
action to be taken or the value to be returned:

getText
| returnVal |
returnVal := Dialog

request: 'Find all memories associated with...'
initialAnswer: 'friend'
onCancel: [self defaultRuminationTopic].

"Update the text field in the main window."
self returnedValue value: returnVal printString.
GUI Developer’s Guide 6-5

Dialogs
File Dialogs
Several dialogs for accessing files and directories are implemented
as subclasses of FileDialog, which is itself a subclass of SimpleDialog.
A few of the must usual file dialog classes are:

• ChooseDirectoryDialog

• OpenFileDialog

• SaveFileDialog

Several other subclasses implement specific dialogs used by the
development environment. Much of the protocol for these subclasses
is defined in FileDialog and inherited.

For compatibility with earlier implementations, a simplistic interface of
provided in Dialog. Browse the protocol for further information.

Open File Dialog
A file dialog prompts the user to select a file from a navigable list of
files, and return that name to the application for processing.

The basic dialog, implemented by OpenFileDialog, can be created and
displayed by:

OpenFileDialog new select
The select message returns the filename object, or nil if the dialog is
cancelled.

The reset of the protocol simply customizes the appearance of the
basic dialog, giving better visual direction to the user. For example,
windowTitle: displays a more appropriate title, and addFileFilter:pattern:
adds an entry to the file type selection list.

As an example of using a few options, consider:

| dialog |
dialog := OpenFileDialog new.
dialog

windowTitle: 'Import Settings';
acceptButtonLabel: 'Import';
defaultFilename: 'settings.xml';
addFileFilter: 'XML file (*.xml)' pattern: '*.xml';
addFilterForAllFiles;

^dialog select
6-6 VisualWorks

File Dialogs
Rather than return the filename object immediately upon selection
and closing the dialog, you can open the dialog by sending open.

| dialog |
dialog := OpenFileDialog new.
dialog

windowTitle: 'Import Settings';
acceptButtonLabel: 'Import';
defaultFilename: 'settings.xml';
addFileFilter: 'XML file (*.xml)' pattern: '*.xml';
addFilterForAllFiles;

^dialog open.
The open message returns true if a file was selected, and false if the
dialog was cancelled. To later retrieve the selected filename, send
either selection for the Filename object, or selectionString for the name
as a String.

Browse the instance protocol for OpenFileDialog for the full list of
options.

To handle selecting multiple files, use MultiOpenFileDialog.

Note that on Windows platforms, the default is to use the native file
dialog. This can be disabled for special effects.

Handling File Existence Condiitons
When working with files, it is frequently necessary to vary behavior
based on whether the file or directory does or does not already exist.
By default, the dialog accepts any filename that is accepted by the
operating system.

To set restrictions on the filename, send the fileCondition: message
to the dialog. The condition is specified as a symbol. The defined
symbols and actions are:

• #any - accept any legal file name.

• #new - if the file exists, ask for a confirmation to use it anyway.

• #mustBeNew - if the file exists, insist on choosing a different
name.

• #old - if the file does not exist, ask for a confirmation to use it
anyway.

• #mustBeOld - if the file does not exist, insist of choosing an
existing name.
GUI Developer’s Guide 6-7

Dialogs
For example, this dialog insists that the user specify a new file name
or cancel:

dialog := OpenFileDialog new.
dialog

windowTitle: 'Save to new file';
fileCondition: #mustBeNew.

dialog select
In some circumstances, confirmation may be required if the specified
file either already exists or does not exist.

Default handling is defined in the isSelectionAllowedByVersionType
method. You can override this method to customize handling.

Password Dialog
The following is an example of using SimpleDialog interface
construction methods to assemble and format this dialog. Notice the
use of the #password type, which masks the password when entered
as a string of asterisks.

| user pass |
(SimpleDialog initializedFor: nil)

setInitialGap;
addMessage: 'Username' textLine: (user := '' asValue) boundary: 0.4;
addGap;
addMessage: 'Password' textLine: (pass := '' asValue)

type: #password boundary: 0.4;
addGap;
addOK: [true];
openDialog.

user value -> pass value
To include a masked password field in a custom dialog, add an Input
Field using the UIPainter, and set its type to Password.
6-8 VisualWorks

Creating a Custom Dialog
Creating a Custom Dialog
When a standard dialog is not sufficient, you can create your own
using the canvas tool. You can then open the interface specification in
a dialog window.

The basic technique is send an openDialogInterface: message to the
application model, with the symbolic name of the dialog’s interface
specification.

openDialogCanvas
| returnVal |
returnVal := self openDialogInterface: #memoryZonesDialog.
"Update the text field in the main window."
self returnedValue value: returnVal printString.

The dialog is created as an instance of SimpleDialog, which provides
its own interface builder for setting up the dialog’s widgets. The dialog
builder obtains any needed value models, actions, and resources for
its widgets from the application model.

Note, however, that buttons whose Action properties are #accept or
#cancel obtain their actions from the SimpleDialog instance instead.
These predefined actions are useful for OK and Cancel buttons on the
dialog. Consequently, if you define methods named accept or cancel in
the application model, they will be ignored.

An alternative technique for creating a custom dialog (not illustrated
here) is to create a separate model for the dialog (typically, a
subclass of SimpleDialog). You install the dialog’s canvas in this
subclass and then program the subclass to provide the value models,
actions, and resources needed by the dialog’s widgets. This
technique enables you to reuse the dialog more easily in further
applications.

Providing a Temporary Model for the Dialog
You can create a dynamic dialog by programming the application
model to create an instance of SimpleDialog and configure its interface
builder. This creates a temporary model for the dialog, which is useful
when the value models for the dialog’s widgets are only needed
during the lifetime of the dialog. For example, a file-finding dialog
might employ several widgets, each requiring a value model, but only
the ultimate filename is of interest to the application.
GUI Developer’s Guide 6-9

Dialogs
In the example, the properties for the dialog’s list widget tell the
dialog’s builder that the list widget needs a MultiSelectionInList for its
value holders.

1 In the method that is to open the dialog, create an instance of
SimpleDialog.

2 Get the builder from the SimpleModel and preload it with one
binding for each active widget. The aspectAt: argument is the
symbol you specified in the widget’s Aspect property. The put:
argument is an appropriate value model.

3 Ask the SimpleDialog to open the interface.

openTempModelDialog
| returnVal dialogModel list |
dialogModel := SimpleDialog new.
dialogBuilder := dialogModel builder.
"Since the simple model does not respond to a #memoryZones
message, its builder must be preloaded with a multilist."
list := MultiSelectionInList new

list: self memoryZones list copy.
dialogBuilder aspectAt: #memoryZones put: list.
"Open the interface."
returnVal := dialogModel

openFor: self
interface: #memoryZonesDialog.

"Update the text field in the main window."
self returnedValue value: returnVal printString.

Visually Linking a Dialog to a Master Window
By default, the dialogs use system settings for their colors but inherit
their UI Look from their parent application. If your application employs
a special set of color settings, you can make dialogs adopt those
colors to provide visual connection.

To link a dialog to a window, send a useParentColors: message to the
SimpleDialog class. The argument true causes subsequently opened
dialogs to adopt the colors of their master window, in addition to the
UI look.
6-10 VisualWorks

Visually Linking a Dialog to a Master Window
Then send the for: keyword form of the dialog opening message to
the Dialog class, with the master window as the argument for the for:
keyword.

SimpleDialog useColorOveridesFromParent: true.

| masterWindow |
masterWindow := ScheduledWindow new.
masterWindow background: ColorValue yellow.
masterWindow open.

Dialog

warn: 'This dialog has a yellow background, too.'
for: masterWindow.

masterWindow sensor eventQuit: nil.
To reset the SimpleDialog class to its default behavior, send the
useColorOveridesFromParent: message with the argument false.
GUI Developer’s Guide 6-11

Dialogs
6-12 VisualWorks

7

Menus

VisualWorks provides menu bars, menu buttons, and pop-up menus
as GUI elements for presenting lists of options. All three elements
use an underlying instance of Menu for their options. The Menu Editor
provides an easy-to-use tool for creating a menu, or you can
assemble a menu programmatically.

Menu bar and pop-up menus by default send a message to the
application model, while a menu button by default places a value in
its aspect value holder. Building a menu for these different behaviors
affects what you assign to each menu item while building the menu.

To override the default behavior for a type of menu, you can define
the value of a menu item in an action block. In this way, you can
cause a menu bar or pop-up menu item to place a value in a value
holder, or a menu button item to execute a command. This makes the
VisualWorks menu support extremely flexible while at the same time
providing a powerful framework for menu implementation.

Creating a Menu
You can create a menu either using the Menu Editor, or
programmatically.

With the Menu Editor, you can create menus of messages or values.
If a more complex action is required, such as a compound message
or an action block, you can assemble the menu programmatically.

Complex actions are necessary, for example, for assigning a value to
a value holder from a menu bar or pop-up menu, or executing a
command from a button menu.
GUI Developer’s Guide 7-1

Menus
Creating a Menu using the Menu Editor
The Menu Editor provides both menu selections and buttons for
several design operations. In the following instructions, we refer to the
menu selections, but the button equivalent can be used.

Online example: MenuEditorExample

1 Open a Menu Editor by selecting Tools > Menu Editor in the GUI
Painter Tool or Painter > Menu Editor in the Launcher.

2 Add a top-level menu by selecting Edit > New Item, and edit its
properties.

When you add a menu item, it is displayed as <new item>. Edit this
label in the Label String property, giving the menu item the label
you want displayed.

To include a mnemonic for the menu item, insert an ampersand
(&) character in the label before the letter to use as the
mnemonic. For example, I&tem makes t the mnemonic letter for
the item, and is indicated in the menu by underlining the letter.

Subsequent uses of Edit > New Item add items at the same level
as the selected item.

3 Add a submenu by selecting a label and choosing Edit > New
Submenu Item.

The new item is placed below and indented from the selected
item.

4 In each item’s Value property, either:

• enter a message selector

• leave blank, if the item has submenu items

A message selector is sent to the application model by menu bar
and pop-up menus. For a button menu, the selector should be
the widget’s aspect accessor method, which updates the aspect
value holder.

A value property is not needed if the item has subitems, since
selecting the item only displays the submenu.

5 Specify the shortcut character, if desired.

A shortcut character allows the user to select this menu item by
pressing the character key while holding down one or more
modifier keys (<Ctrl>, <Alt>, or <Shift>). To specify a character,
7-2 VisualWorks

Creating a Menu
enter it in the Shortcut character: field on the Details page, and check
the desired modifier key check boxes. The shortcut will be
displayed in the menu.

6 Adjust any menu item levels and locations as needed.

Move > Left and Move > Right change the menu level of an item.
Move > Up and Move > Down change the order of items.

7 If the item needs to be enabled and disabled during application
execution, enter an Enablement Selector on the State page. The
method you write for the selector must return a Boolean value.

8 To use a menu item selection indicator, a check mark by the item,
enter an Indication Selector on the State page. You can also
select for each item whether its selector is initially on or off. The
method you write for the selector must return a Boolean value.

9 Choose Menu > Install... to install a specification for the menu in a
resource method of the application model.

10 Create any methods required by message names entered in a
menu item’s Value property.

Creating a Menu Programmatically
When building a menu programmatically, each menu label is
associated with its action, which may be a value, a command, or an
action block.

Since value and command menus can be created using the Menu
Editor, we illustrate the programmatic approach with an action block
example (but see the MenuCommandExample and MenuValueExample
online examples).

Action blocks are typically used in menu bar and pop-up menus that
place values in value holders (as illustrated), or in button menus that
execute a command. To execute a command, you configure the value
holder for the button menu to send perform: with its value holder value
as argument when its value is changed.

A menu typically is created by a method in a resources protocol on the
class side of an application model. The resource method can also be
an instance method, which is necessary when it relies on data
supplied by a running application.

Online example: MenuValueExample
GUI Developer’s Guide 7-3

Menus
1 In a menu-creating instance method, create a menu builder by
sending a new message to the MenuBuilder class.

An instance method is used in the example
(templatesMenuForMenuBar) because information is needed from
the application model instance. If this is not required, the menu
creation method can be a class method (see the
MenuValueExample class resource methods).

2 For each menu item, send an add: message to the menu builder
with an association as the argument.

The association relates the menu item’s label string and the block
that performs the required action. For value and command
menus, the value holder or message selector occur, as symbols,
in place of the block.

To include a mnemonic for the menu item, insert an ampersand
(&) character in the label before the letter to use as the
mnemonic. For example, I&tem makes t the mnemonic letter for
the item, and is indicated in the menu by underlining the letter.

3 To add a shortcut key sequence for the menu item, which
displays on the menu, specify the character key and the modifier
key or keys. (Note that this is not illustrated in the example code.)

For example, to specify <Ctrl>+<Shift>+A as the shortcut, add
these lines:

menuItem shortcutKeyCharacter: $A.
menuItem shortcutModifiers:

(InputState ctrlMask bitOr: InputState shiftMask).
The modifier keys can be specified individually (ctrlMask,
shiftMask, or altMask), or combined using bitOr: as shown above.

4 To insert a submenu, send a beginSubMenuLabeled: message to
the menu builder with the submenu label as argument.

This begins a submenu definition. Add submenu items by
sending an add: message to the menu builder, as before.

At the end of the submenu definition, send an endSubMenu
message to the menu builder.

5 Get the menu from the menu builder using a menu message and
return it as the result of the menu-creating method.
7-4 VisualWorks

Adding Menus to the User Interface
In this example, all menu items are added within a submenu. This is
necessary here because the menu is being added to the menu bar.
The submenu label is displayed in the menu bar.

The example also illustrates adding graphics and color
programmatically.

templatesMenuForMenuBar
| mb menu submenu |
mb := MenuBuilder new.
mb

beginSubMenuLabeled: 'Templates';
add: ' ' -> [self letter value: self class firstNotice];
add: ' ' -> [self letter value: self class secondNotice];
add: ' ' -> [self letter value: self class finalNotice];
endSubMenu.

"Add graphic labels."
menu := mb menu.
submenu := (menu menuItemLabeled: 'Templates') submenu.
(submenu menuItemAt: 1)

labelImage: (self class oneImage).
(submenu menuItemAt: 2)

labelImage: (self class twoImage).
(submenu menuItemAt: 3)

labelImage: (self class threeImage).
"Set the background color."
submenu backgroundColor: ColorValue chartreuse.
^menu

Adding Menus to the User Interface
You add a menu to your application’s GUI either by adding a menu
bar to the window, adding a menu button widget, or by specifying the
pop-up menu for a widget. These are all defined in the canvas and
Properties Tool by specifying a menu you have defined in the Menu
Editor or in a menu creating method.

Adding a Menu Bar to a Window
A menu bar appears to the user as a set of separate menus across
the top edge of a window. The menus and submenus are actually
implemented by a single menu object. The menu labels displayed
across the menu bar are top-level menu items in the menu object and
their contents are the submenus associated with the top-level menu
items.

Online example: MenuCommandExample
GUI Developer’s Guide 7-5

Menus
1 In the canvas for the window, make sure no widget is selected.

2 In a Properties Tool, turn on the Enable switch for the Menu Bar
property.

3 In the Menu field, enter the name of the menu-creation resource
method (fileMenu).

4 Create the menu definition resource method that you named in
the Menu field, and any action methods that are invoked by the
menu items.

Adding a Menu Button
A menu button is a widget that allows you to place a drop-down menu
anywhere in the canvas. Also, its label typically changes to reflect the
current selection. By default, selecting an item in a button menu
places the value of the menu item in the button menu widget’s aspect
value holder.

For information about configuing the Menu Button widget, refer to
Menu Button.

Online example: MenuValueExample

Adding a Popup Menu to a Widget
Several widgets, notably lists and text editors, provide a pop-up menu
in response to the <Operate> mouse button.

The underlying menu is typically a menu of commands, sending the
associated symbol as a message to the application model.

Online example: MenuCommandExample

1 In the Menu property of the widget, enter the name of the menu
creation resource method (fileMenu).

2 Create the menu creation resource method (fileMenu), and any
action methods named in the menu of commands.

Adding a Menu Bar or Pop-Up Menu of Values
Menu bars and pop-up menus can be used to set the value of a value
holder as the result of the command they execute. You can either
create a method for each message selector, defining it to set the
value holder value, or enter a complex message in the menu
definition. The example illustrates one way of doing the latter.

Online example: MenuValueExample
7-6 VisualWorks

Accessing Menus Programmatically
1 In the Menu property of the widget, enter the name of the method
that returns a menu of values (templatesMenuForPopUp).

2 Use a Menu Editor or System Browser to create the menu
method (templatesMenuForPopUp). In the menu, each item label is
paired with a block in which the widget’s aspect variable (letter) is
updated with the desired value.

templatesMenuForPopUp
| mb |
mb := MenuBuilder new.
mb

add: 'First Notice' -> [self letter value: self class firstNotice];
add: 'Second Notice' -> [self letter value: self class

secondNotice];
add: 'Final Notice' -> [self letter value: self class finalNotice].

^mb menu

Accessing Menus Programmatically
It is useful to be able to access a menu or menu items in order to
modify the menu in some way. The most common use is to enable or
disable (gray out) menu items.

For a menu defined using the Menu Editor, you can access an item
by its ID property. For a menu defined either way, you can access an
item by its label.

Online examples: MenuCommandExample, MenuEditorExample

In the method that is to access the menu, do the following:

1 Get the menu by sending a menuAt: message to the builder, with
the name of the menu’s resource method as argument.

2 Get a menu item, either by:

• label, by sending menuItemLabeled: to the menu with the label
string as the argument, or

• name key (ID), by sending atNameKey: to the menu with the
name key as a symbol as the argument.

3 Get a submenu by sending a submenu message to the menu item
that is the submenu.

4 Get a submenu item by sending menuItemLabeled: or atNameKey: to
the submenu, as in step 2.
GUI Developer’s Guide 7-7

Menus
MenuCommandExample accesses menu items this way to disable and
enable menu items in its configureMenu method:

configureMenu
"Disable or enable the menu items depending on whether
a file is selected."
| menu submenu |
menu := self builder menuAt: #fileMenu.
submenu := (menu menuItemLabeled: 'File') submenu.
self files selection isNil

ifTrue: [
(submenu menuItemLabeled: 'Open') disable.
(submenu menuItemLabeled: 'Delete') disable]

ifFalse: [
(submenu menuItemLabeled: 'Open') enable.
(submenu menuItemLabeled: 'Delete') enable]

It is simple to create its interface using the Menu Editor and assign ID
properties to the File menu and its items. The equivalent
configureMenu method could then be written (assuming the ID
properties are the same as the labels):

configureMenu
"Disable or enable the menu items depending on whether
a file is selected."
| menu submenu |
menu := self builder menuAt: #fileMenu.
submenu := (menu atNameKey: #File) submenu.
self files selection isNil

ifTrue: [
(submenu atNameKey: #Open) disable.
(submenu atNameKey: #Delete) disable]ifFalse: [
(submenu atNameKey: #Open) enable.
(submenu atNameKey: #Delete) enable]

As a variation on this theme, you can operate on a collection of menu
items. In MenuEditorExample, the disableDarkColors method gets the
menu’s collection of menu items by sending a menuItems message to
the menu. It then sends a nameKey message to each menu item to
obtain its name key, and disables each menu item whose name key is
in the darkColors array.
7-8 VisualWorks

Modifying a Menu Dynamically
Modifying a Menu Dynamically
Sometimes a menu needs to change depending on conditions within
the application. The most common change is to simply disable, or
“gray out” an option. More extreme, but also common, is to have
different sets of menu items available depending on the state of the
application.

For example, in a document editing program, there might be only
options for opening documents and closing the application if no
document is open, but several menus with many editing options
available when a document is open.

The following sections describe several useful modifications.

Disabling a Menu Item
Applications frequently disable, or “gray out,” menu items when the
selection in inappropriate for the current state. This is typically done
after testing some condition in the application.

To disable a menu item, send a disable message to the menu item.
Similarly, to enable a menu item, send an enable message to it.

See MenuCommandExample and the example code in the previous
section.

Hiding a Menu Item
Hiding a menu item is sometimes better than disabling it. A disabled
item may frustrate a user if it is not clear why it is disabled, while
hiding it removes the temptation to use it. This is an interface design
decision.

Online example: MenuModifyExample

1 Get the menu and menu item.

Refer to Accessing Menus Programmatically above. You may
need to get a submenu to get to the menu item.

2 To hide the item, send a hideItem: message to the menu, with the
menu item as the argument.

3 To reveal an item, send an unhideItem: message to the menu, with
the menu item as the argument.
GUI Developer’s Guide 7-9

Menus
adjustBenefitList
"Hide benefit items that are not available to the currently
selected job title."
| bMenu item |
bMenu := self builder menuAt: #benefitsMenu.
item := bMenu menuItemLabeled: 'Golden Parachute'.
"Only the President gets the Golden Parachute."
self jobTitle value == #President

ifTrue: [bMenu unhideItem: item]
ifFalse: [bMenu hideItem: item].

Adding an Item to a Menu
You can add a new menu item to the end of a menu.

Online example: MenuModifyExample

1 Get the menu by sending a menuAt: message to the application
model’s builder, with the menu creation resource method as
argument.

2 Send an addItemLabel:value: message to the menu. The first
argument is the label string and the second argument is a
command, a value, or an action block.

addTitle
"Prompt for a new job title and add it to the list."
| newTitle jMenu |
newTitle := Dialog request: 'New title?'.
newTitle isEmpty ifTrue: [^self].
jMenu := self builder menuAt: #jobTitlesMenu.
jMenu addItemLabel: newTitle value: newTitle asSymbol.
self jobTitle value: newTitle asSymbol.

Removing an Item from a Menu
Online example: MenuModifyExample

1 Get the menu and the menu item to be removed.

Refer to Accessing Menus Programmatically above. You may
need to get a submenu to get to the menu item.

2 Send a removeItem: message to the menu, with the menu item to
delete as the argument.

3 In the case of a menu button in which the current selection is
displayed (that is, a menu button whose Label property is blank),
make sure the button’s value holder has a valid value.
7-10 VisualWorks

Modifying a Menu Dynamically
deleteTitle
"Prompt for a title and remove it from the list."

| jMenu removableTitles title item |
jMenu := self builder menuAt: #jobTitlesMenu.
"Don't permit the president to be overthrown."
removableTitles := jMenu labels

reject: [:nextTitle | nextTitle = 'President'].
title := Dialog

choose: 'Delete Title'
fromList: removableTitles
values: removableTitles
lines: 8
cancel: [^nil]
for: Window activeController view.

item := jMenu menuItemLabeled: title.
jMenu removeItem: item.
"If the deleted title is showing, pick the first title."
self jobTitle value == title asSymbol

ifTrue: [self jobTitle value: #President].

Substituting a Different Menu
The MenuSwapExample swaps menus depending on the application
state. This is useful for large changes.

Online example: MenuSwapExample

1 In the Menu property of the widget, enter the name of a method
that returns a value holder containing a menu (menuHolder).

2 In the application model, create an instance variable to hold the
menu in a value holder (menuHolder).

3 Create a method (menuHolder) that returns the value of the
instance variable.

menuHolder
^menuHolder

4 Create the starting menu (nothingSelectedMenu) and the alternate
menu (color-SelectedMenu).

5 In the initialize method, get the starting menu, put it in a value
holder, and assign the holder to the instance variable.
GUI Developer’s Guide 7-11

Menus
initialize
colors := SelectionInList with: ColorValue constantNames.
colors selectionIndexHolder onChangeSend:

#selectionChanged to: self.
menuHolder := self nothingSelectedMenu asValue.

6 Create a method (selectionChanged) that tests to see which menu
should be used and then puts the correct menu in the menu
holder.

selectionChanged
self colors selection isNil

ifTrue: [self menuHolder value: self nothingSelectedMenu]
ifFalse: [self menuHolder value: self colorSelectedMenu]

7 Arrange for the menu-changing method to be invoked when the
relevant condition changes in the application. (In the example,
the onChangeSend:to: message in the initialize method
accomplishes this.)

Displaying an Icon in a Menu
Menu items can have a textual or graphical label.

Adding an Icon to a Menu
Online example: MenuValueExample

It is often useful to substitute a graphic label for a textual label or
combine the two.

Send a labelImage: message to the menu item. The argument is any
visual component, but typically it is a graphic image. The label string
will be displaced to the right to make room for the image. The label
string must have at least one character (even just a space).

templatesMenuForMenuBar
| mb menu submenu |
mb := MenuBuilder new.
mb

beginSubMenuLabeled: 'Templates';
add: ' ' -> [self letter value: self class firstNotice];
add: ' ' -> [self letter value: self class secondNotice];
add: ' ' -> [self letter value: self class finalNotice];
endSubMenu.

"Add graphic labels."
menu := mb menu.
submenu := (menu menuItemLabeled: 'Templates') submenu.
7-12 VisualWorks

Displaying an Icon in a Menu
(submenu menuItemAt: 1)
labelImage: (self class oneImage).

(submenu menuItemAt: 2)
labelImage: (self class twoImage).

(submenu menuItemAt: 3)
labelImage: (self class threeImage).

"Set the background color."
submenu backgroundColor: ColorValue chartreuse.
^menu

Displaying an On/Off Indicator
Online example: MenuValueExample

This procedure prefixes a check mark or check box to the textual
label as a toggle indicator. This technique is frequently used with a
menu item that represents a setting to indicate whether the condition
is on or off. You can also use it to simulate a set of radio buttons in a
menu, as MenuValueExample does.

1 To display an “on” indicator, send a beOn message to the menu
item. The indicator is a check mark in some looks and a box in
others.

2 To display an “off” indicator, send a beOff message. In some
looks, beOff simply removes the “on” indicator; in others it
displays a different image.

setCheckMark
"In the pop-up menu, set the check box to indicate the currently”
displayed template."
| menu item |
menu := self builder menuAt: #templatesMenuForPopUp.
item := menu menuItemAt: 1.
self letter value = self class firstNotice

ifTrue: [item beOn]
ifFalse: [item beOff].

item := menu menuItemAt: 2.
self letter value = self class secondNotice

ifTrue: [item beOn]
ifFalse: [item beOff].

item := menu menuItemAt: 3.
self letter value = self class finalNotice

ifTrue: [item beOn]
ifFalse: [item beOff].
GUI Developer’s Guide 7-13

Menus
Adding a Group with a Single Indicator
Online Example: MenuSelectExample, MenuValue2Example

MenuSelectExample illustrates how to set a single menu item to show
“on” and reset all others of a group of menu choices to be shown “off.”
This is done by sending a beOn message to one item and sending a
beOff message to all others.

MenuValue2Example is a variation in which the indication value
model for each item is set programmatically for both the pop-up menu
and menu button.

An alternate procedure available, which minimizes the amount of
additional code, is to set the indicator in the application model. When
the indication of one or more menu items is set to a value model and
the model value equals the name key for the item, only that item will
be shown selected among the group. Using this procedure also
ensures that the “on” indication is compliant with the look preferences
of the user interface for one-of-many selection. For example, for the
Windows look, a dot is displayed next to the item that is “on.” This
approach also matches the method used to construct a group of
radio buttons (see Radio Buttons).

1 Open a Menu Editor by selecting Tools > Menu Editor in the GUI
Painter Tool or Painter > Menu Editor in the Launcher.

2 For each menu item, enter a different identifier name in the ID:
field and a message selector for the Value: field.

3 Enter the same Indication Selector for each menu item on the State
page. The method you write for the selector must return a value
model.

4 Choose Menu > Install... to install a specification for the menu in a
resource method of the application model.

5 In each menu action method that you write in the application
model, set the value of the indication value model to the ID. For
example:

bePoliceman
self career value: #policeman

6 Set the initial value of the indication value model in your
application to the menu item name you want first selected. If the
initial value is nil or matches none of the items in the group, no
items will be marked as “on.”
7-14 VisualWorks

Toolbars
Toolbars
Toolbars enable a user to select and activate application functions
rapidly making their selection from a set of buttons, usually positioned
below the menu bar or title of a window. Toolbar buttons use an icon
to identify their functions, and serve to invoke an operation where a
menu selection may be slow or tedius.

In VisualWorks, toolbars are created and modified in the same way
as are menus, either using the Menu Editor or programmatically. Any
menu item can correspond to a tool bar button. However, in a tool bar
each item has the following additional properties:

• A label image is required for each toolbar button.

• To show a button as disabled, its image should be derived from
an OpaqueImageWithDisablement instance.

• No submenus are interpreted or shown for a toolbar. Only top
level items are used.

• Shortcut keys or labels defined for a toolbar button are ignored.

• An "on" state is typically shown as a depressed button, and an
"off" state is shown as a raised button. In some look policies the
"on" button appears highlighted.

• In addition to an icon, a help text may be associated with a tool
bar button item. This help text is displayed as fly-by help when
the cursor hovers over a button.

• The divider line separating a group of items in a menu appears
as a space or line between buttons in a toolbar.

Currently, toolbars may only appear as buttons along the top of the
window under the menu bar. On a toolbar, the first menu item
corresponds to the leftmost tool bar button.

Creating a Tool Bar Image
Online example: ToolCommandExample

The source of the tool bar button graphic may be an Image created
using the VisualWorks Image Editor, or created as an external bitmap
file and read into VisualWorks. The graphic may be captured from the
screen or edited by hand, and installed to a class side resource
method in the application.
GUI Developer’s Guide 7-15

Menus
When assembling the tool bar images, note that the tool bar height
will be the height of the largest image for any of the tool bar buttons.
To ensure that all the tool bar buttons appear with the same size, use
the same height and width for all button images. The label image for
a toolbar button may be any size but the most common is between 16
to 20 pixels square. Also, there is no need to add a decorative border
in the image since the tool bar button provides its own.

When you create an image for a tool bar button, the image
background will be visible on the button. To avoid having the image
background stand out, you can either choose the image background
to be the same color as the button or create an
OpaqueImageWithDisablement that masks out the background from the
image. An OpaqueImageWithDisablement consists of two parts: the
image and a black-and-white mask that determines the opaque and
transparent regions. Given an image, you can easily create a mask
from it in the Image Editor. Once you have image and mask resource
methods, create another method that answers an
OpaqueImageWithDisablement.

The following procedure refers to ToolCommandExample.

1 Open an Image Editor by selecting Tools > Image Editor in the GUI
Painter Tool or Painter > Image Editor in the Launcher.

2 Prepare an image use as the enabled image for the toolbar
button. Choose Image > Install… in the Image Editor and install
the image as a class resource method.

3 Create and install a background mask for the button starting with
the current image in the Image Editor. Install the resulting mask
to your application as a class resource method.

4 Optionally, prepare and install a mask resource method to
represent the inactive or disabled button. For simplicity, however,
the inactive mask is usually set to be the mask created for the
active button.

5 Create a new application class method that answers an
OpaqueImageWithEnablement. Create the
OpaqueImageWithEnablement instance by sending a
figure:shape:inactiveMask: message:

openIcon
^OpaqueImageWithEnablement

figure: self openIconImage
shape: self openIconMask
inactiveMask: self openIconMask
7-16 VisualWorks

Toolbars
Adding a Toolbar
Online Example: ToolbarDemo

To use a toolbar, the following parts must be assembled in your
application:

• Images for the tool bar buttons, and accessor methods for the
images.

• A tool bar menu that identifies the actions and images for the tool
bar.

You must also identify the tool bar menu to be shown in the
application window using the GUI Painter Tool.

The following procedure refers to the ToolbarDemo example.

1 Open the Menu Editor by selecting Tools > Menu Editor in the GUI
Painter Tool.

2 Add a menu item for a new toolbar button and enter a one word
description of its function in the Label String: field. This label
serves more as a mnemonic and placeholder in the menu during
design than any purpose for the toolbar.

3 In each item's Value property, enter a message selector for the
method to be performed when the item is selected.

4 On the Details page, enter a button image accessor class and
selector in the Label Image Class: and Selector: fields, respectively.
The accessor method should be a class method in the specified
class.

5 Optionally, add divider lines to effectively separate items in
groups.

6 Choose Menu > Install... to install the specification for the menu in
a resource method of the application model.

7 In the GUI Painter Tool, select the Main Window icon from the
tree list and, in the Tool Bar Menu: field, enter the selector of the
menu creation resource from the step above.

8 Use the Image Editor to create a new image, and install it as a
resource to the toolbar class for each menu item.
GUI Developer’s Guide 7-17

Menus
Modifying a Toolbar Dynamically
Like menus, toolbars may dynamically change their enablement
state, image, visibility, and indication state. A toolbar may also be
swapped out for another toolbar, just as menus can. As for menus,
this is accomplished by sending an appropriate message to a
MenuItem. Unlike menus that are built and opened upon request,
toolbars must also be updated to show their change of state for a
MenuItem. Updating a toolbar button dynamically is simplified by
assigning a value model for any of its menu item's enablement,
image, visibility, or indication. When the value of the model changes
its toolbar button in the application window will update visually.

Disabling a Toolbar Button
Online Example: ToolCommandExample

To show a toolbar button as disabled, the button image should be
prepared as an instance of OpaqueImageWithEnablement. When a
toolbar button uses such an image and its MenuItem is disabled, the
button image will be shown "grayed out."

The ToolCommandExample modifies the MenuCommandExample to add a
tool bar with buttons to open a selected file, add a file, and retract a
file from a list. Another button on the tool bar opens the help dialog.
The application disables the open or retract toolbar buttons when no
file selection exists.

1 Open a Menu Editor by selecting Tools > Menu Editor in the GUI
Painter Tool.

2 For each menu item, on the Details page, set the Label Image Class:
and Selector: fields for the button image accessor. (Refer to
Creating a Tool Bar Image for instructions.)

3 On the State page, enter the method selector in the application
model that accesses a value model that determines whether the
tool bar button is active (true) or disabled (false).

Hiding a Toolbar Button
Online Example: ToolCommandExample

1 Create and initialize an instance variable for a value model on a
Boolean that will determine whether a toolbar button is to be
shown or not.
7-18 VisualWorks

Toolbars
initialize
files := SelectionInList new.
leakyTap := true.
onHook := true.
phoneImage := self class onHookIcon asValue.
tapImage := self class leakyTapIcon asValue.
hideHook := false asValue.
hideTap := false asValue.

2 In the postBuildWith: method of your application model, access the
toolbar menu from the builder.

3 For any toolbar button that is to be dynamically hidden, access its
menu item and send the hidden: message with its value model as
argument.

postBuildWith: aBuilder
| toolMenu |
toolMenu := aBuilder menuAt: #toolBar.
(toolMenu atNameKey: #connection)

labelImage: self phoneImage;
hidden: self hideHook.

(toolMenu atNameKey: #issues)
labelImage: self tapImage;
hidden: self hideTap.

4 When you wish to hide a toolbar button, change its hidden value
to true. To show the toolbar button, change its model value to
false.

toggleHideHook
self hideHook value: self hideHook value not

Changing a Toolbar Button Image
Online Example: ToolCommandExample

1 Create and initialize an instance variable for a value model on the
button image:

initialize
files := SelectionInList new.
leakyTap := true.
onHook := true.
phoneImage := self class onHookIcon asValue.
tapImage := self class leakyTapIcon asValue.
hideHook := false asValue.
hideTap := false asValue.

2 In the postBuildWith: method of your application model, access the
toolbar menu from the builder.
GUI Developer’s Guide 7-19

Menus
3 For any button image that is to be dynamically changed, access
its menu item and send the labelImage: message with its value
model as argument.

postBuildWith: aBuilder
| toolMenu |
toolMenu := aBuilder menuAt: #toolBar."step 2"
(toolMenu atNameKey: #connection)

labelImage: self phoneImage;"step 3"
hidden: self hideHook.

(toolMenu atNameKey: #issues)
labelImage: self tapImage;"step 3"
hidden: self hideTap.

4 Change the button labelImage model value to a new image when
the button image is to be changed.

beOffHook
| menuBar|
menuBar := self builder menuAt: #menuBar.
onHook := false.
(menuBar atNameKey: #onHook) hidden: false.
(menuBar atNameKey: #offHook) hidden: true.
self phoneImage value: self class offHookIcon."step 4"
((self builder componentAt: #toolBar) componentAt: #connection)

widget helpText: 'Disconnect'

Displaying an On/Off Indication
In some applications it is desirable to have a "locking" toolbar button
that stays depressed when on.

Online Example: UniversalSelectExample

1 Assign an instance variable to a value model for a button's
indication state. Set the initial value to true if the button is to
display "on," or false to display "off."

2 In the Menu Editor, set the Indication Selector: field to the accessor
selector for the value model above. Or, programmatically, send
an indication: message to the MenuItem with the value model as
argument.

3 To change the toolbar button to "on," set the value of the model
above to true.
7-20 VisualWorks

Extending Menus and Toolbars
Adding a Group of Buttons with a Single Selection
Online Example: UniversalSelectExample

As in section Adding a Group with a Single Indicator, create a group
of menu items that each identify a different name key, but that all
reference the same value model for indication. When the value of the
model is set to the name key of one item in the group its toolbar
button appears "on" and all others appear "off."

Extending Menus and Toolbars
Online examples: MenuPragma1Example, MenuPragma2Example

VisualWorks tools are designed to allow you to easily extend their
menus and tool bars. This is done by adding methods that invoke a
special menu item definition pragma. This is useful especially for
developers who are enhancing the standard tool set, or adding new
tools.

The menu pragma is a special syntactical element that can be placed
in a method definition:

< pragmaName: ...
>

where ... is a series of menu property specifications. The set of
pragmas is defined in Menu class method pragmas. Use any of these
selectors to define a new menu or tool bar element.

Within VisualWorks, extending menus is done by a variety of system
parcels. For example, the UIPainter parcel adds menus and tool
buttons to the Visual Launcher when it is loaded. Using the system
browser to browse the #actions category in the VisualLauncher class,
you will find methods like:

browseApplications
"Open a new UIFinder."
<menuItem: '&Resources'

icon: #finderIcon
nameKey: nil
menu: #(#menuBar browse)
position: 10.01>

<menuItem: 'Browse Applications'
icon: #finderIcon
nameKey: nil
menu: #(#launcherToolBar)
GUI Developer’s Guide 7-21

Menus
position: 20.02>
self openApplicationForClassNamed: #UIFinderVW2

The first pragma adds the Resources action to the Browse menu
(#menuBar browse) on the Launcher's menu bar. The second pragma
adds the finder button to the Launcher's tool bar (#launcherToolBar).
Both assign the named icon, but neither assigns a nameKey, which
would be used to access the item programmatically.

Following any menu item pragma label, the pragma specifies the
actions to be performed when the item is selected, as a normal
Smalltalk expression.

Pragma Parameters
The following parameters occur in the menu pragmas:

menuItem: aStringOrUserMessage

The menu item label as either a String or UserMessage. As a
UserMessage the argument should be an array specifying the
message key, the catalog ID (optional), and default message
string. For example, #(#key #catalog 'default') or #(#key 'default'). If
the string includes an ampersand (&), the following character
becomes a keyboard access character for the menu item and
appears underlined in the menu label.

submenu: aStringOrUserMessage

A submenu menu item heading as either a String or UserMessage.
If you intend the label to be a UserMessage, the argument should
be an array to specify the message key, the catalog ID (optional),
and default string. For example, #(#key #catalog 'default') or #(#key
'default').

nameKey: aSymbolOrNil

Sets the symbol used to identify this menu item, or nil if not
needed. This symbol is used to access the menu item and may
be used to change its state programmatically, such as to disable
or enable it. If the menu item is a submenu, its nameKey would
appear in each of its item menu pragmas in the menu: parameter
array.

icon: aSelector

Sets the accessor selector for the icon for the menu item, if used.
The accessor method is expected to be defined among class
methods.
7-22 VisualWorks

Extending Menus and Toolbars
menu: anAspectArray

Sets an array of selectors naming the aspect path to reach the
menu item for this pragma, starting from the parent menu. The
first array element is the accessor selector for the parent menu or
tool bar. The remaining elements are the nameKeys of each
submenu following under the parent to reach the menu item. For
example, if a menu pragma defines an item under submenu
Advanced of the VisualLauncher Tools menu, its aspect array would
appear as

#(#menuBar #tools #advanced)

position: aFloat

Specifies the insertion position, represented as a Float. The
integer part represents the group, which is a part of the menu
separated by a line. The fractional part represents the menu
item’s position in the group. If the group number identifies a group
that doesn't already exist, a new group is added. For more
information, see Setting the Menu Item Position.

enablement: aSymbolOrNil

Sets the accessor selector used to determine whether this menu
item is enabled, or nil if the menu item is enabled always. The
method must answer a Boolean: true if enabled, or false if disabled.

indication: aSymbolOrNil

Sets the accessor selector used to determine whether this menu
item has a check selection, or nil if the menu item never checked.
The method must answer a Boolean: true if checked, or false if not
checked.

shortcutKeyCharacter: aCharacterOrSymbol

Specifies the shortcut key for activating this choice from the
keyboard. The entry is the character of the key, unless the key is
a function key (e.g., F1) in which case the entry is a symbol.
When specified, the menu item will display with the key
combination to the right of its label.

shortcutModifiers: anInteger

A code indicating whether any combination of a control, alt, or
shift key is required with the shortcut key. The shift, control, and
alt keys are each given the index 1, 2, and 8, respectfully. The
GUI Developer’s Guide 7-23

Menus
shortcut modifier code is the sum of all these three key codes
pressed. The following table summarizes the possible code
combinations by key press.

helpText: aStringOrUserMessage

Specifies the String or UserMessage to appear as fly-by help
message. Applies only to tool bar items. As a UserMessage the
argument should be an array with the message key, the catalog
ID (optional), and default message string, for example #(#key
#catalog 'default') or #(#key 'default').

Menu Pragma Forms
The following is a list of all pragma forms. Following that, selective
examples are provided. Pragma forms are defined in class
MenuAutomaticGenerator.

Shift Ctrl Alt Code

0

 � 1

 � 2

� 8

� � 3

� � 9

� � 10

� � � 11

Shortcut Enable Indicator Icon Help Pragma

<menuItem: aStringOrUserMessage nameKey:
aSymbolOrNil menu: anAspectArray position:
aFloat>

� <menuItem: aStringOrUserMessage nameKey:
aSymbolOrNil shortcutKeyCharacter:
aCharacterOrSymbol shortcutModifiers: anInteger
menu: anAspectArray position: aFloat>
7-24 VisualWorks

Extending Menus and Toolbars
� � <menuItem: aStringOrUserMessage nameKey:
aSymbolOrNil enablement: aSelectorOrNil indication:
aSelectorOrNil menu: anAspectArray position:
aFloat>

� � � <menuItem: aStringOrUserMessage nameKey:
aSymbolOrNil enablement: aSelectorOrNil indication:
aSelectorOrNil shortcutKeyCharacter:
aCharacterOrSymbol shortcutModifiers: anInteger
menu: anAspectArray position: aFloat>

� <menuItem: aStringOrUserMessage icon: aSelector
nameKey: aSymbolOrNil menu: anAspectArray
position: aFloat>

� � � <menuItem: aStringOrUserMessage icon: aSelector
nameKey: aSymbolOrNil enablement: aSelectorOrNil
indication: aSelectorOrNil menu: anAspectArray
position: aFloat>

� � <menuItem: aStringOrUserMessage icon: aSelector
nameKey: aSymbolOrNil menu: anAspectArray
position: aFloat helpText: aStringOrUserMessage>

� � <menuItem: aStringOrUserMessage icon: aSelector
nameKey: aSymbolOrNil shortcutKeyCharacter:
aCharacterOrSymbol shortcutModifiers: anInteger
menu: anAspectArray position: aFloat>

� � � � <menuItem: aStringOrUserMessage icon: aSelector
nameKey: aSymbolOrNil enablement: aSelectorOrNil
indication: aSelectorOrNil shortcutKeyCharacter:
aCharacterOrSymbol shortcutModifiers: anInteger
menu: anAspectArray position: aFloat>

� � � � <menuItem: aStringOrUserMessage icon: aSelector
nameKey: aSymbolOrNil enablement: aSelectorOrNil
indication: aSelectorOrNil menu: anAspectArray
position: aFloat helpText: aStringOrUserMessage>

<submenu: aStringOrUserMessage nameKey:
aSymbolOrNil menu: anAspectArray position:
aFloat>

� <submenu: aStringOrUserMessage nameKey:
aSymbolOrNil enablement: aSelectorOrNil menu:
anAspectArray position: aFloat>

<computedSubmenu: aStringOrUserMessage
nameKey: aSymbolOrNil menu: anAspectArray
position: aFloat>

Shortcut Enable Indicator Icon Help Pragma
GUI Developer’s Guide 7-25

Menus
Minimal Menu Pragma
The minimal of menu pragmas is:

<menuItem: aStringOrUserMessage
nameKey: aSymbolOrNil
menu: anAspectArray
position: aFloat>

Since the pragma lacks an icon definition, this menu item cannot be
used in a tool bar.

<menuItem: 'Inspect instances..'
nameKey: nil
menu: #(#menuBar #help #tricks)
position: 20.01>

This pragma inserts a menu item labeled “Inspect instances..” in the
first position (.01) of the second (20) menu group. This item would be
accessed by selecting Help (menu item nameKey #help) from the menu
bar, and then selecting the Stupid Menu Tricks submenu (menu item
#tricks), which is added as shown below under Submenu pragmas.
No provision is being made for changing the menu item
programmatically, so the nameKey: parameter is set to nil.

The specific values required to ensure this menu item position may
differ depending on the position numbers of the current menu items.
For groups, incrementing by 10 allows room for inserting another
group if necessary, for example by using a value of 15.

Menu Label as a UserMessage
Instead of providing a literal String for the menu item, you can provide
a 2- or 3-element Array which is used to produce a UserMessage.
Using a UserMessage if preferred especially for applications that
require localization. For more information about UserMessages and
catalogs, refer to the Internationalization Guide.

The label is looked up by key in a catalog of user strings. If no catalog
entry is found by that key, the default String is used.

The 2-element array specifies only the key, as a Symbol literal, and
default string, for example:

#(#lookupKey 'Inspect instances..')
The 3-element array specifies the catalog, also as a Symbol literal, for
example:

#(#lookupKey #menuCatalog 'Inspect instances..')
7-26 VisualWorks

InternationalGuide.pdf

Extending Menus and Toolbars
If a catalog is specified, only that catalog is searched for the key. If no
catalog is specified, all catalogs are searched.

Using the 3-element form, the previous example might become:

<menuItem: #(#lookupKey #menuCatalog 'Inspect instances')
nameKey: nil
menu: #(#menuBar #help #tricks)
position: 20.01>

Including a Shortcut Key
<menuItem: aStringOrUserMessage

nameKey: aSymbolOrNil
shortcutKeyCharacter: aCharacterOrSymbol
shortcutModifiers: anInteger
menu: anAspectArray
position: aFloat>

This pragma adds a shortcut to perform the menu action by pressing
the key specified by shortcutKeyCharacter: in combination with the
control keys specified by shortcutModifiers: from the keyboard. For
example,

<menuItem:'Topics'
nameKey: nil
shortcutKeyCharacter: #F1
shortcutModifiers: 0
menu: #(#menuBar #help)
position: 10.0>

In this case, the F1 key, without modifiers (Ctrl, Alt, Cmd, Shift),
invokes the menu item labeled Topics on the Help menu, which is
added to the first position of the first menu group. “F1” is shown to the
right of the menu item, indicating that it is the shortcut key
combination.

The shortcutModifiers: parameter is an integer indicating a
combination of Ctrl, Alt, and Shift modifier keys, or none. A table
giving the values is provided above, under Pragma Parameters. To
modify the above example to invoke the item by pressing Alt+T,
change it to:

<menuItem:'&Topics'
nameKey: nil
shortcutKeyCharacter: $T
shortcutModifiers: 8
menu: #(#menuBar #help)
position: 10.0>

The “8” indicates the Alt key modifier.
GUI Developer’s Guide 7-27

Menus
The “&” in the label string adds a further decoration, underlining the
following letter. (To show an & in the menu item, enter &&.) If you
open the menu by clicking on it, you can then select that menu item
by pressing the underlined character key. For good GUI design, this
should be the same character as specified as the
shortcutKeyCharacter:.

By some conventions, such as on Windows, this also indicates an
<Alt>, <T> sequence, rather than an <Alt>+<T> combination.
However, the <Alt> and <Ctrl> keys alone have no effect at this time
in VisualWorks, so the sequence is not supported.

Add Enablement and Selection Indicators
<menuItem: aStringOrUserMessage

nameKey: aSymbolOrNil
enablement: aSelectorOrNil
indication: aSelectorOrNil
menu: anAspectArray
position: aFloat>

The enablement: and indication: keywords occur together in menu
pragmas, though either or both can be set to nil. The enablement:
parameter occurs alone in submenus pragmas, since an indicator
would be inappropriate.

The enablement: parameter sets the accessor method selector that
answers whether the menu item should be enabled; or nil if the item
is always enabled. Similarly, the indication: parameter sets the
accessor method selector that answers whether the menu item has
an indicator mark; or nil if the item is never marked. For example,

<menuItem: '&Delete'
nameKey: nil
enablement: #anyFileSelected
indication: nil
menu: #(#menuBar #file)
position: 20.04>

This inserts a menu item labeled Delete, which is enabled if
#anyFileSelected answers true (e.g., if a file is selected in the
application). There is no indicator mark if this item is selected.

<menuItem: '&Toolbar'
nameKey: nil
enablement: nil
indication: #showsToolbar
menu: #(#menuBar #view)
position:10.02>
7-28 VisualWorks

Extending Menus and Toolbars
This inserts a menu item labeled Toolbar, which shows the item
marked if #showsToolbar answers true (e.g., if a tool bar is shown by
the application). The menu item is always enabled.

Adding an Icon
<menuItem: aStringOrUserMessage

icon: aSelector
nameKey: aSymbolOrNil
menu: anAspectArray
position: aFloat>

The pragmas with the icon: keyword add an icon to the menu item. If
the item appears in a menu, the icon is displayed to the left of the
label. If the item appears in a tool bar, the icon is the button image.
For example,

<menuItem: '&Ring bell'
icon: #bellIcon
nameKey: nil
menu: #(#menuBar #help #tricks)
position: 10.01>

This pragma adds a Ring bell menu item and icon from accessor
bellIcon to the Menu tricks submenu (menu item #tricks) of Help (menu
item #help).

<menuItem: 'Time'
icon: #timeIcon
nameKey: nil
menu: #(#launcherToolBar)
position: 20.03>

This pragma inserts a menu button in the tool bar named
launcherToolBar, using class icon accessor message timeIcon.

Adding Fly-by Help
<menuItem: aStringOrUserMessage

icon: aSelector
nameKey: aSymbolOrNil
menu: anAspectArray
position: aFloat
helpText: aStringOrUserMessage>

The helpText: pragma keyword adds a fly-by help message to a tool
bar item. For example,
GUI Developer’s Guide 7-29

Menus
<menuItem: '&Time'
icon:#timeIcon
nameKey: nil
menu: #(#launcherToolBar)
position: 20.03
helpText: 'Time now'>

As with the menuItem: parameter, the help text can be provided by as
a UserMessage, which is especially useful when an application
needs to be localized:

<menuItem: #(#timeItem #menusCatalog '&Time')
icon:#timeIcon
nameKey: nil
menu: #(#launcherToolBar)
position: 20.03
helpText: #(#timeHelp #helpCatalog 'Time now')>

Submenu pragmas
Two pragmas are provided for adding submenus. The simplest is:

<submenu: aStringOrUserMessage
nameKey: aSymbolOrNil
menu: anAspectArray
position: aFloat>

This adds a simple submenu according to the given declaration. For
example,

<submenu: 'Stupid Menu Tricks'
nameKey: #tricks
menu: #(#menuBar #help)
position: 20.01>

adds a submenu labeled Stupid Menu Tricks to the Help (menu item
#help) menu intended for the second group at position one.

The only enhancement support of submenus is the addition of
enablement, which is done with this pragma:

<submenu: aStringOrUserMessage
nameKey: aSymbolOrNil
enablement: aSelectorOrNil
menu: anAspectArray
position: aFloat>

The enablement: keyword takes the usual message selector argument:
7-30 VisualWorks

Extending Menus and Toolbars
<submenu: 'Stupid Menu Tricks'
nameKey: #tricks
enablement: #tricksAvailable
menu: #(#menuBar #help)
position: 20.01>

Since a submenu does not associate an action with its selection any
Smalltalk code appearing below the pragma is not normally invoked
by the menu.

Computed Submenu Pragma
Online Example: MenuPragma2Example

The computed submenu pragma is used to add a submenu that is
defined programmatically in your application.

<computedSubmenu: aStringOrUserMessage
nameKey: aSymbolOrNil
menu: anAspectArray
position: aFloat>

Adds the menu answered by the method that contains this pragma as
a submenu. For example:

emphasisChoices
"Emphasize the text selected with an emphasis from this menu"
<computedSubmenu:'Emphasis'

nameKey: #text
menu: #(menuBar)
position:10.02>

| mb |
mb := MenuBuilder new.
mb add: 'Plain' -> [textStyle value: #plain];

add: 'Bold' -> [textStyle value: #bold];
add: 'Italic' -> [textStyle value:#italic];
add: 'Underlined' -> [textStyle value:#underline].

^mb menu

Adding Items to an Application's Menu or Tool Bar
A menu or tool bar in an application is not updated with menu
pragmas until requested by sending the message
augmentFrom:to:menuName: or augmentFrom:to:menuName:for: to the
menu. These messages search a section of a class heirarchy,
specified by a start class and a stop class, for menu pragmas.
GUI Developer’s Guide 7-31

Menus
To augment a menu from menu pragmas named in class hierarchy,
send a message of the form:

aMenu augmentFrom: startClass
to: stopClass
menuName: menuName
for: definer

where:

startClass

Either stopClass or a subclass of stopClass that will be first
examined for menu pragmas.

stopClass

Either startClass or a superclass of startClass that will be last
examined for menu pragmas.

menuName

The menu ID symbol of the menu to be built. Only menu pragmas
whose first element of their menu: access array match this symbol
are augmented to the menu receiver.

definer

An object that performs any methods with pragma
computedSubmenu:nameKey:menu:position: to generate a menu to
add to the receiver. If nil, ignore menu pragmas that include
computedSubmenu:nameKey:menu:position:.

For example, to augment an application's menu bar named menuBar
for pragmas appearing in its class its postBuildWith: method might
appear as

postBuildWith: aBuilder
(aBuilder menuAt: #menuBar)

augmentFrom: self class
to: self class
menuName: #menuBar
for: self.

Setting the Menu Item Position
The position: argument specifies the location of the menu or toobar
item as a floating-point constant that sets the ordering and grouping
of items.
7-32 VisualWorks

Extending Menus and Toolbars
Menu items are originally numbered, so the first group is numbered
10 and successor groups increment by 10. Similarly, the first item in a
group is at position .01, and the count ascends by 0.01. So a menu
with two groups of three items each has its items numbered 10.01,
10.02, 10.03, 20.01, 20.02, 20.03.

To define a new group, assign a new integer part. For example, using
15 would insert a new group between the two existing groups.

To insert a new item between existing items, use a fractional part. For
example, using 10.025 would insert a new menu item between the
existing second and third items. Using 10.04 would append an item to
the group.

Adding Items to the Launcher
As illustrated above, methods for adding menu and toolbar items to
the VisualLauncher are added to the VisualLauncher class, in the
actions protocol. The launcher updates its button displays immediately
and automatically.

For adding a menu item, specify that the change is in the menu bar,
and which submenu the addition goes in, in an array:

menu: #(#menuBar browse)
Here, #menuBar specifies the method name that defines the menu
bar, and browse is the name key of the Browse menu. Examine
menuBar method for other name keys.

For adding a tool bar button, specify the class method that returns the
appropriate icon. This may be an image resource method, but may
be an intermediate method. For example, the Resource Finder
method tests for the color depth, and returns the resource method for
the appropriate icon:

finderIcon
^Screen default colorDepth == 1

ifTrue: [self BWAppFinder24]
ifFalse: [self CGAppFinder24]

Adding Items to a Browser
A similar approach is used for extending the menu bar operations and
<Operate> menus corresponding to specific panes in browsers. For
each pane in the browsers, there is a subclass of BrowserHelper, in
which you can make any required additions. For example, the
ClassesBrowserHelper class defines various features of a classes pane.
GUI Developer’s Guide 7-33

Menus
By simply adding a method specifying a menu pragma (in the actions
protocol), you can add an item to the menu bar menu and to the
<Operate> menu for the pane controlled by that help class. For
example, add this method to ClassesBrowserHelper, and test the
change to a new instance of a browser with a classes pane:

myMenuItem
<menuItem: ‘My new action’

nameKey: nil
menu: #(#listMenu)
position 40.1>

Since no icons are involved, this shorter version of the menu item
pragma can be used.

Menu and Toolbar Events
Unlike other triggered events sent by the system, the menu and tool
bar events are the only ones that pass along arguments. In all cases,
the argument is the ID (also known as the menuKey) of the menu,
toolbar button or menu item. If there is no ID for the menu, toolbar
button or menu item then nil is sent.

#menuOpened:

When a main menu item is opened because of navigation by the
keyboard or the mouse, the menu bar triggers the #menuOpened:
event. The ID (menuKey) of the menu is sent as a parameter of
this event if it is defined. If no ID (menuKey) is defined, then nil is
sent as the parameter.

#menuClosed:

When a main menu item is closed because of navigation by the
keyboard or the mouse, or a menu item being selected, the menu
bar triggers the #menuOpened: event. The ID (menuKey) of the
menu is sent as a parameter of this event if it is defined. If no ID
(menuKey) is defined, then nil is sent as the parameter.

#menuItemSelected:

When any menu item is selected, without regard to if the menu
item is on a main menu or a sub-menu off of one of the main
menus, the menu bar triggers the #menuItemSelected: event. If the
menu item has no action associated with it, then this event is not
7-34 VisualWorks

Menu and Toolbar Events
triggered. The ID (menuKey) of the menu item is sent as a
parameter of this event if it is defined. If no ID (menuKey) is
defined, then nil is sent as the parameter.

#submenuOpened:

When a menu item has a sub-menu, and that sub-menu is
opened because of navigation by the keyboard or mouse, the
menu bar triggers the #submenuOpened: event. The ID (menuKey)
of the menu is sent as a parameter of this event if it is defined. If
no ID (menuKey) is defined, then nil is sent as the parameter.

#submenuClosed:

When a menu item has a sub-menu, and that sub-menu is closed
because of navigation by the keyboard or mouse, or a sub-menu
item being selected, the menu bar triggers the #submenuOpened:
event. The ID (menuKey) of the menu is sent as a parameter of
this event if it is defined. If no ID (menuKey) is defined, then nil is
sent as the parameter.

Popup Menu Events
Individual widgets are allowed to have local popup / operate menus.
These events are triggered by the underlying widget when one of
those popup menus is created, and if one of the menu items is
selected.

#popupMenuCreated

When a widget creates a popup (<Operate>) menu, the widget
triggers the #popupMenuCreated event.

#popupMenuItemSelected:

When a menu item on a popup menu is selected, the widget
triggers the #popupMenuItemSelected: event. If the menu item has
no action associated with it, then this event is not triggered. The
ID (menuKey) of the menu item is sent as a parameter of this
event if it is defined. If no ID (menuKey) is defined, then nil is sent
as the parameter.

Toolbar Events
Toolbars have a simple event interface, that only triggers when one of
the tool bar buttons is pressed.
GUI Developer’s Guide 7-35

Menus
#toolBarButtonSelected:

When a toolbar button is pressed, the tool bar triggers the
#toolBarButtonSelected: event. If the toolbar button has no action
associated with it, then this event is not triggered. The ID
(menuKey) of the toolbar button is sent as a parameter of this
event if it is defined. If no ID (menuKey) is defined, then nil is sent
as the parameter.
7-36 VisualWorks

8

Drag and Drop

Drag and drop technology allows a user to select an object using the
mouse pointer, drag that object to another location on the screen,
and drop it. This is useful, for instance, for moving or copying items
from one list to another. This operation is common in some
environments for moving files (items) from one directory (a list) to
another.

In VisualWorks, you implement drag and drop by setting one or more
widgets as drop sources and others as drop targets. Currently, only
list widgets can be a drop source, while a drop target can be any
widget except a linked or embedded dataform. Drop sources and
drop targets may be in the same interface, or they may be in the
interfaces of different applications.

You set up drop sources and drop targets by specifying various
message names in their properties, and then programming the
relevant application model(s) to respond to these messages.

Drag and Drop Framework Classes
In a running application, a drag-and-drop interaction is carried out by
instances of several framework classes. Some of these instances are
created as a result of the code you write, while others are created
automatically when the interface is built or when drag and drop is
underway. Each drag-and-drop interaction involves an instance of
these classes:
GUI Developer’s Guide 8-1

Drag and Drop
DragDropData

Holds the data to be transferred, plus information about where
the drag originated (the widget’s controller, containing window,
and application model).

DropSource

Defines the shapes that the pointer can have during a drag,
based on the drop source. The default pointer shapes indicates
whether a move, a copy, or no transfer would take place.

DragDropManager

Tracks the mouse pointer throughout the drag, and is responsible
for setting the pointer’s shape based on location. When a drop
occurs in a drop target, the DragDropManager sends a message to
process the transferred data.

ConfigurableDropTarget

Instances identify the widgets that are potential drop targets.

DragDropContext

Combines the DragDropData, the DropSource, and the
ConfigurableDropTarget in a convenient object for passing as an
argument in various messages.

Adding a Drop Source
A drop source is a widget from which a drag can originate, and
holding the data to be transferred. Currently, only the List and Table
widgets can serve as a drop source.

You enable a list as a drop source by providing values for the Drag OK
and Drag Start properties on the Drop Source page of the Properties
Tool. These properties specify the messages that the widget sends
when the user starts a drag operation, by pressing a mouse button
and moving the mouse.

You program the widget’s application model to respond to these
messages as follows:

• The drag-ok method must return a Boolean to indicate whether
drag and drop is appropriate from this drop source.

• The drag-start method creates DragDropData, DropSource, and
DragDropManager instances.
8-2 VisualWorks

Adding a Drop Source
Online example: ColorDDExample

1 Add a list widget to the canvas, set its Aspect and ID properties,
install the canvas and define its aspect instance variable and
accessor method, and initialize the SelectionInList, as usual for a
list (refer to Lists).

2 In the list’s Drag OK property, enter the name of the method that
will determine whether a drag can proceed from this list
(colorWantToDrag:).

The selector must end with a colon, because the widget sends
this message with its controller as argument. This is true even if
the controller isn’t used.

3 In the list’s Drag Start property, enter the name of the method that
will initiate drag and drop (colorDrag:)

This selector must also end with a colon, for the same reason.

4 Leave the Select On Down property selected.

This causes a selection to occur when the mouse is pressed
down to start the drag, which is the normal drag and drop
behavior, rather than waiting for the mouse to be released. Apply
the properties and install the canvas.

5 Create the drag-ok method (colorWantToDrag:).

This method must return a Boolean (true to permit drag and drop,
false to prevent it), and must accept a Controller as its argument,
even if that controller isn’t used.

colorWantToDrag: aController
"Determine whether to permit a drag to start from this widget. In
 this case, make sure that there is data to drag and that the drag
starts a selection."

^self color list size > 0 and: [self color selection notNil]
6 Create the drag-start method (colorDrag:) in the drag source

protocol.

This method also must accept a Controller as its argument. In the
method:

• Create a DragDropData instance.

• Send a key: message to the DragDropData instance to specify
a symbol (#colorChoice) that identifies the kind of data being
stored. (A drop target can use this key to filter out
inappropriate kinds of data).
GUI Developer’s Guide 8-3

Drag and Drop
• Send messages to the DragDropData instance to specify any
further information that a drop target might use when
evaluating this drag. Typically, you send a contextWindow:
message specifying the containing window, a contextWidget:
message specifying the list widget, and a contextApplication:
message specifying the application model.

• Send a clientData: message to the DragDropData instance to
store the object to be transferred (in the example, the color
that is currently selected). Notice that the color choice is
stored in an IdentityDictionary, which is a general technique for
storing multiple related pieces of data.

• Create an instance of DropSource to make predefined kinds of
visual feedback available during the drag.

• Create an instance of DragDropManager and initialize it with
the DropSource and DragDropData instances.

• Send a doDragDrop message to the DragDropManager to start
the drag and drop.

colorDrag: aController
"Drag the currently selected color. Provide all available
information about the context of the color so that the drop
target can use whatever it needs."

| ds dm data |
data := DragDropData new.
data key: #colorChoice.
data contextWindow: self mainWindow.
data contextWidget: aController view.
data contextApplication: self.
data clientData: IdentityDictionary new.
data clientData at: #colorChoice put: self color selection.
ds := DropSource new.
dm := DragDropManager

withDropSource: ds
withData: data.

dm doDragDrop

Note that when the drag and drop completes, the doDragDrop
message returns a symbol which can be stored in a temporary
variable and then used to trigger further actions (such as cutting the
dragged data out of the drop source list). This symbol is ignored in
the colorDrag: method.
8-4 VisualWorks

Adding a Drop Target
Dragging Multiple Selections
A multiple-selection list can be the source of several drag options.
You set up a multiple-selection list the same way as a single-selection
list, except that:

1 In the Properties Tool for the List widget, click the list’s Multi Select
property.

2 Initialize the list’s aspect variable with a MultiSelectionInList instead
of a SelectionInList.

3 Send the selections message (instead of selection) to obtain the
selected data to store in the DragDropData instance.

The selections message returns an ordered collection of objects.

Adding a Drop Target
A drop target is a widget in which data can potentially be dropped.
You can set up any window or widget as a drop target except a linked
or embedded dataform.

In general, you set up a drop target by filling in one or more of its
properties on the Drop Target page of the Properties Tool, and then
implementing corresponding methods in the application model. Each
of a widget’s DropTarget properties specifies the name of a message
that the DragDropManager sends at various points after the drag
encounters this widget.

At a minimum, you must fill in the widget’s Drop property to specify the
name of a method that implements the desired response when a
drop occurs in that widget. Filling in the Drop property causes the
builder to set up the widget with a ConfigurableDropTarget instance so
that the DragDropManager can recognize the widget as a drop target.

In addition, you normally fill in the widget’s Entry, Over, and Exit
properties to specify the names of methods that provide visual
feedback when the pointer is dragged across the widget. Typically,
these methods specify the pointer’s shape and adjust the drop
target’s appearance to signal whether the drop target can accept a
drop from this particular drag. Strictly speaking, these properties are
optional, in that drag and drop can function without them. However,
providing visual feedback is normally required by user interface
design guidelines.
GUI Developer’s Guide 8-5

Drag and Drop
Providing Visual Feedback During a Drag
As part of adding a drop target, you normally arrange for visual
feedback to be given to users when they drag the pointer over it. The
purpose of this feedback is to let users know whether a drop can be
accepted from this particular drag, and, if so, what kind of transfer
may result. Visual feedback typically includes changing the pointer’s
shape and adjusting the drop target’s appearance—for example, by
highlighting a button, changing a label, or scrolling a list to track the
pointer’s movement over it.

Drop Target Messages
You arrange for visual feedback by filling in the drop target’s Entry,
Over, and Exit properties with the names of messages to be sent by
the DragDropManager at various points during a drag. You then
implement methods in the application model to respond to these
messages:

• The entry message is sent as soon as the pointer enters the
widget’s bounds. The method typically saves the drop target’s
visual state for restoring later, and/or toggles simple visual
characteristics such as highlighting.

• The over message is sent immediately after the entry message,
and then every time the pointer moves within the widget’s
bounds. The method typically adjusts the drop target’s
appearance in response to pointer location or a modifier key
press.

• The exit message is sent wherever the pointer is dragged out of
the widget’s bounds before the mouse button is released. The
method typically restores the widget’s original appearance.

Each method has access to the dragged data through the
DragDropContext instance that is passed to it by the DragDropManager.
The methods query the DragDropContext to decide what kind of visual
feedback to provide. Furthermore, these methods use the
DragDropContext to save and restore drop target characteristics.

Note that no changes are made to a drop target’s appearance unless
you implement them in these methods. Programmatic techniques for
changing widget appearance are described in Configuring Widgets.
8-6 VisualWorks

Providing Visual Feedback During a Drag
Pointer Shapes
Each of the entry, over, and exit methods control the pointer shape by
returning an effect symbol. The DragDropManager passes each effect
symbol to the operation’s DropSource instance, which sets the pointer
shape accordingly. A standard DropSource recognizes these basic
effect symbols:

#dropEffectNone

Produces a pointer shaped like a circle with a slash through it;
usually indicates that no transfer is possible in the pointer’s
current location.

#dropEffectMove

Produces an arrow-shaped pointer with an open box below it;
usually indicates a simple transfer such as a move (data is cut
from the source after the transfer).

#dropEffectCopy

Produces the same pointer as #dropEffectMove, but with a plus
sign; usually indicates a modified transfer such as a copy (data is
left in the source after the transfer).

Changing Color During a Drag
Online example: ColorDDExample

This example highlights the Apply Color button and changes the
pointer’s shape while the pointer is in the button.

1 In the canvas, select the Apply Color button, and set its ID property
(in this case, enter #applyColorButton).

2 On the Drop Target page of a Properties Tool, fill in the widget’s
Entry, Over, and Exit properties with the names of the messages to
be sent during the drag (applyColorEnter:, applyColorOver:, and
applyColorExit:, respectively). Each selector must end with a
colon. Apply the properties and install the canvas.

3 In a System Browser, add an entry method (applyColorEnter:) in an
appropriate protocol (in this case, drop target - button1). The
method must accept a DragDropContext instance as an argument.

4 In the entry method, test the dragged data to determine what
kind of feedback to provide (positive feedback if the data is a
color choice, and negative feedback otherwise). Send a key
GUI Developer’s Guide 8-7

Drag and Drop
message to the DragDropContext instance to obtain the identifying
symbol that was assigned when the drag started. If the data’s key
is not #colorChoice, return an effect symbol (#dropEffectNone) to
signal that a drop is not allowed.

5 If the dragged data is acceptable, highlight the button as if it were
pressed and return an effect symbol (#dropEffectMove) that
signals permission to drop.

applyColorEnter: aDragContext
"A drag has entered the bounds of the Apply Color button. Test
whether a drop would be permitted here with this data. If so, cause
the button to be highlighted as if it were pressed, and return a
symbol that indicates the feedback to be given to the user."

aDragContext key == #colorChoice
ifFalse: [^#dropEffectNone].

(self widgetAt: #applyColorButton)
isInTransition: true.

^#dropEffectMove.
6 Add an over method (applyColorOver:) that accepts a

DragDropContext instance as an argument.

7 In the over method, test the dragged data and return the
appropriate effect symbols. No other processing is necessary in
this method because the button’s highlighting does not vary with
the pointer’s movement.

"A drag is over the Apply Color button. Test whether a drop would be
permitted here with this data. If so, return a symbol that indicates the
feedback to be given to the user. The DragDropManager uses this
symbol to determine the pointer shape."
applyColorOver: aDragContext

aDragContext key == #colorChoice
ifFalse: [^#dropEffectNone].

^#dropEffectMove
8 Add an exit method (applyColorExit:) that accepts a

DragDropContext instance as an argument.

9 In the exit method, test the dragged data and return
#dropEffectNone if the dragged data is not a color choice.

10 If the dragged data is acceptable, reverse any visual effect that
was set in the entry method (in this case, unhighlight the button).

11 Return #dropEffectNone, to signal that no drop has occurred (this
method executes only if the pointer leaves the widget without
dropping).
8-8 VisualWorks

Providing Visual Feedback During a Drag
applyColorExit: aDragContext
"A drag has exited the Apply Color button without dropping. Test
whether a drop would have been permitted here with this data. If so,
restore the button to its former state, and return a symbol that
indicates the feedback to be given to the user."

aDragContext key == #colorChoice
ifFalse: [^#dropEffectNone].

(self widgetAt: #applyColorButton)
isInTransition: false.

^#dropEffectNone

Changing a Button Label During a Drag
Online example: ColorDDExample

This example saves and changes the label of the Apply More Color
button when the pointer enters the button, restoring the original label
when the pointer exits.

1 In the canvas, select the Apply More Color button, and set its ID
property (in this case, enter #applyMoreColorButton).

2 On the Drop Target page of a Properties Tool, set the widget’s Entry,
Over, and Exit properties (enter applyMoreColorEnter:,
applyMoreColorOver:, and applyMoreColorExit:).

3 In an entry method (applyMoreColorEnter:), create an
IdentityDictionary in which to save the drop target’s original state.

4 Save any button characteristics in the IdentityDictionary that are to
be restored later. In this case, store the widget and its label.
(Storing the widget is a stylistic option that enables the widget to
be accessed later through the DragDropContext rather than
through the builder.)

5 Get the widget’s ConfigurableDropTarget instance from the
DragDropContext, and set the IdentityDictionary as its client data.

6 Change the button’s label by sending the labelString: message to
the button. The message argument is the string to be displayed.
Note that a different string is specified depending on the state of
the shift key.
GUI Developer’s Guide 8-9

Drag and Drop
applyMoreColorEnter: aDragContext
"A drag has entered the bounds of the Apply More Color button. Test
whether a drop would be permitted here with this data. If so, store
the current label of the button. Then test whether the shift key is
down. Based on this test, change the button's label and return a
symbol that indicates the feedback to be given to the user."

| widget dict |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].
widget := self widgetAt: #applyMoreColorButton .
dict := IdentityDictionary new.
dict at: #widget put: widget.
dict at: #label put: widget label.
aDragContext dropTarget clientData: dict.
aDragContext shiftDown

ifTrue:
[widget labelString: 'Background'.
^#dropEffectCopy].

widget labelString: 'Foreground'.
^#dropEffectMove.

7 In an exit method (applyMoreColorExit:), get the drop target’s
IdentityDictionary from the DragDropContext.

8 Retrieve the button from the IdentityDictionary. (Alternatively, you
could obtain the button from the builder.)

9 Retrieve the original label from the IdentityDictionary and put it
back on the button. (Note that argument of the label: message is a
label object, not a string.)

10 Remove the drop target data from the DragDropContext. This
prepares the DragDropContext for the next drop target the pointer
may encounter.

applyMoreColorExit: aDragContext
"A drag has exited the Apply More Color button without dropping.
Test whether a drop would have been permitted here with this data. If
so, restore the button to its former state, and return a symbol that
indicates the feedback to be given to the user."

| dict widget |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].
dict := aDragContext dropTarget clientData.
widget := dict at: #widget.
widget label: (dict at: #label).
aDragContext dropTarget clientData: nil.
^#dropEffectNone.
8-10 VisualWorks

Providing Visual Feedback During a Drag
Tracking a Targeted List Item
Online example: ColorDDExample

This example provides visual feedback for a list in which a drop is
intended for a particular item rather than the list as a whole. The
steps cause the pointer’s location to be indicated by target emphasis,
a rectangular border around the item containing the pointer. The
target emphasis tracks the pointer, scrolling if necessary. (Target
emphasis is also used in keyboard traversal of lists to indicate the
target for selection.)

1 In the canvas, select the list of color layers and set its ID property
(in this case, enter #colorLayerList).

2 On the Drop Target page of a Properties Tool, set the widget’s Entry,
Over, and Exit properties (enter colorLayerEnter:, colorLayerOver:, and
colorLayerExit:).

3 In an entry method (colorLayerEnter:), create an IdentityDictionary in
which to save the drop target’s original state.

4 Save any characteristics into the IdentityDictionary that are to be
restored later. In this case, store the widget, the location of any
target emphasis resulting from keyboard traversal, and a Boolean
indicating whether the list has focus.

5 Get the widget’s ConfigurableDropTarget instance from the
DragDropContext. Store the IdentityDictionary as its client data.

6 Give focus to the list to prepare it for tracking the pointer with
target emphasis.

colorLayerEnter: aDragContext
"A drag has entered the bounds of the list of color layers. Test
whether a drop
would be permitted here with this data. If so, save the initial state of
the color layer list, give focus to the list, and return a symbol that
indicates the
feedback to be given to the user."

| dict widget |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].
widget := self widgetAt: #colorLayerList .
dict := IdentityDictionary new.
dict at: #widget put: widget.
dict at: #targetIndex put: widget targetIndex.
dict at: #hasFocus put: widget hasFocus.

GUI Developer’s Guide 8-11

Drag and Drop
aDragContext dropTarget clientData: dict.
widget hasFocus: true.
^#dropEffectMove

7 In an over method (colorLayerOver:), retrieve the list widget from
the DragDropContext.

8 Send the showDropFeedbackIn:allowScrolling: message to the list to
display target emphasis at the pointer’s current position, scrolling
if necessary. (Remember, this message gets sent each time the
pointer moves in the list).

colorLayerOver: aDragContext
"A drag is over the list of color layers. Test whether a drop would be
permitted
here with this data. If so, tell the list to scroll the target emphasis
when the pointer moves. Return a symbol that indicates the feedback
to be given tothe user. The DragDropManager uses this symbol to
determine the pointer shape."

| list |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].
list := aDragContext dropTarget clientData at: #widget.
list

showDropFeedbackIn: aDragContext
allowScrolling: true.

^#dropEffectMove
9 In an exit method (colorLayerExit:), get the drop target’s

IdentityDictionary from the DragDropContext and retrieve the list
widget.

10 Restore the list’s original target emphasis and focus state.

11 Remove the drop target data from the DragDropContext. This
prepares the DragDropContext for the next drop target the pointer
may encounter.

colorLayerExit: aDragContext
"A drag has exited the list of color layers without dropping. Test
whether a drop would have been permitted here with this data. If so,
restore the initial state of the color layer list, and return a symbol that
indicates the feedback to be given to the user."

| dict widget |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].
dict := aDragContext dropTarget clientData.
widget := dict at: #widget.
widget targetIndex: (dict at: #targetIndex).
8-12 VisualWorks

Responding to a Drop
widget hasFocus: (dict at: #hasFocus).
aDragContext dropTarget clientData: nil.
^#dropEffectNone

Responding to a Drop
A central part of creating a drop target is to implement the action to
be taken whenever a drop occurs in it. A typical action is to verify that
the dragged data is acceptable to this drop target, and then process
that data accordingly. You arrange for this by filling in the widget’s Drop
property on the Drop Target page of the Property Tool. This property
specifies the name of the message that the DragDropManager will send
when a drop occurs in the widget. You then create a corresponding
method in the application model to implement the response.

Like the entry, over, and exit methods, a drop method receives a
DragDropContext instance as an argument from the DragDropManager.
The method can examine this instance to determine whether to
accept the dragged data and, if so, how to process it.

A typical drop method adjusts the appearance of the drop target
widget to reverse any visual feedback caused by the enter or over
method or to provide visual evidence of the completed drop. The drop
method may also need to clean up any drop target data that was
created by the entry method.

A drop method returns an effect symbol for the DragDropManager to
return to the drag-start method that initiated the drag.

The example sets up the Apply Color button in ColorDDExample so that
dropping a color on this button applies that color to the foreground
layer of the demonstration widgets.

Adding a Drop Response
Online example: ColorDDExample

1 In the canvas, select the widget you want to use as a drop target.
In this case, select the Apply Color button.

2 On the Drop Target page of a Properties Tool, set the widget’s Drop
property (applyColorDrop:). The selector must end with a colon.
Apply properties and install the canvas.

3 In a System Browser, add a drop method (applyColorDrop:) in an
appropriate protocol (in this case, drop target - button 1). The
method must accept a DragDropContext instance as an argument.
GUI Developer’s Guide 8-13

Drag and Drop
4 In the drop method, determine whether the dragged data should
be accepted for processing (that is, whether it is a color choice).
To do this, send a key message to the DragDropContext instance to
obtain the identifying symbol that was assigned when the drag
started. If the key is not #colorChoice, return an effect symbol
(#dropEffectNone) to signal that no drop is allowed.

5 If the dragged data is acceptable, perform the processing that is
to result from the drop. In this example, send a sourceData
message to the DragDropContext to obtain the DragDropData; then
send this object a clientData message to obtain the selected color.
Turn the selected color into a color value and set it as the
foreground color of the demonstration widgets.

6 Restore the widget’s original appearance (turn off the highlighting
that was turned on by the applyColorEnter: method).

7 Return an effect symbol indicating the result of the drop. This
symbol is passed to the drag-start method (colorDrag:), where it
can be used to trigger further actions at the drop source.

applyColorDrop: aDragContext
"A drop has occurred in the Apply Color button. If the drop is
permitted, set the foreground color of the demonstration widgets to
be the dragged color choice. Restore the button to its former visual
state and return an effect symbol for possible use in the colorDrag
method."

| dict aColor |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].
dict := aDragContext sourceData clientData.
aColor := ColorValue perform: (dict at: #colorChoice).
(self widgetAt: #applyColorButton)

isInTransition: false.
self foregroundColor: aColor.
^#dropEffectMove.

Adding Target Emphasis
Dropping data on a particular list item requires that you enable target
emphasis in the list through the entry and over methods. Target
emphasis tracks the location of the pointer, displaying a rectangular
border around the currently targeted list item.

Online example: ColorDDExample

1 In the canvas, select the list of color layers and set its ID property
(in this case, enter #colorLayerList).
8-14 VisualWorks

Responding to a Drop
2 On the Drop Target page of a Properties Tool, set the widget’s Entry,
Over and Drop properties (colorLayerEnter:, colorLayerOver:, and
colorLayerDrop:).

3 In an entry method (colorLayerEnter:), give focus to the list to
prepare it for displaying target emphasis.

colorLayerEnter: aDragContext
"A drag has entered the bounds of the list of color layers. Test
whether a drop
would be permitted here with this data. If so, save the initial state of
the color layer list, give focus to the list, and return a symbol that
indicates the feedback to be given to the user."

| dict widget |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].
widget := self widgetAt: #colorLayerList .
dict := IdentityDictionary new.
dict at: #widget put: widget.
dict at: #targetIndex put: widget targetIndex.
dict at: #hasFocus put: widget hasFocus.
aDragContext dropTarget clientData: dict.
widget hasFocus: true.

^#dropEffectMove
4 In an over method (colorLayerOver:), retrieve the list widget from

the DragDropContext and send it the
showDropFeedbackIn:allowScrolling: message to display target
emphasis at the pointer’s current position.

colorLayerOver: aDragContext
"A drag is over the list of color layers. Test whether a drop would be
permitted here with this data. If so, tell the list to scroll the target
emphasis when the pointer moves. Return a symbol that indicates
the feedback to be given to the user. The DragDropManager uses this
symbol to determine the pointer shape."

| list |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].
list := aDragContext dropTarget clientData at: #widget.
list

showDropFeedbackIn: aDragContext
allowScrolling: true.

^#dropEffectMove
5 In a drop method (colorLayerDrop:), test whether the dragged data

is a color choice; if so, obtain the selected color from the dragged
data and turn it into a color value.
GUI Developer’s Guide 8-15

Drag and Drop
6 Send a targetIndex message to the list to get the index of the
targeted list item (the item containing the pointer when the drop
occurs).

7 Get the color layer that is shown in the list at the targeted index.

8 Give visual feedback to indicate a successful drop. In this case,
cause the targeted list item to appear selected (set the list’s
selection index to be the targeted index). Alternatively, you could
restore the list to its original visual state, as is done in the
colorLayerExit: method.

9 Use the targeted color layer to choose the appropriate message
for changing the color of the demonstration widgets.

ColorLayerDrop: aDragContext
"A drop has occur in the list of color layers. If the drop is permitted,
combine the dragged color choice and the targeted color layer to
change the color of the appropriate parts of the demonstration
widgets. Return an effect symbol for possible use in the colorDrag
method."

| dict aColor widget idx aLayer |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].
dict := aDragContext sourceData clientData.
aColor := ColorValue perform: (dict at: #colorChoice).
widget := aDragContext dropTarget clientData at: #widget.
idx := widget targetIndex.
idx = 0 ifTrue: [^#dropEffectNone].
aLayer := self colorLayer listHolder value at: idx.
self colorLayer selectionIndexHolder value: idx.
aDragContext dropTarget clientData: nil.
aLayer = 'Foreground'

ifTrue: [self foregroundColor: aColor].
aLayer = 'Background'

ifTrue: [self backgroundColor: aColor].
aLayer = 'Selection Foreground'

ifTrue: [self selectionForegroundColor: aColor].
aLayer = 'Selection Background'

ifTrue: [self selectionBackgroundColor: aColor].
^#dropEffectMove.
8-16 VisualWorks

Examining the Drag Context
Examining the Drag Context
Drop target methods can examine a variety of information by
querying the DragDropContext instance that is passed to them by the
DragDropManager. Among other things, the DragDropContext instance
contains the DragDropData you created in the Drag Start method, plus
the current pointer location and modifier key states. This information
can be useful for determining the appropriate drop response.

In a drop target method, obtain information about the drag from the
DragDropContext instance that is passed to the method (assume the
argument name is aDragContext).

"Get the key that was assigned to the dragged data."
aDragContext key.

"Get the application model from which the drag originated."
aDragContext sourceData contextApplication.

"Get the window from which the drag originated."
aDragContext sourceData contextWindow.

"Get the current pointer location."
aDragContext mousePoint.

Responding to Modifier Keys
Online example: ColorDDExample

You can make drag and drop sensitive to the state of the <Control>,
<Shift>, <Alt>, and <Meta> modifier keys. For example, in many
applications, a user can move a file by dragging it and copy a file by
<Shift>-dragging it.

Making drag and drop sensitive to modifier keys involves:

• Providing the appropriate visual feedback in the drop target’s
entry, over, and exit methods.

• Providing appropriate processing in the drop target’s drop
method.

The example sets up the Apply More Color button in ColorDDExample so
that dragging changes the foreground color of the demonstration
widgets, while <Shift>-dragging changes the background color.

To respond to a modified drag:

1 In the canvas, select the list of color layers and set its ID property
(in this case, enter #applyMoreColorButton).
GUI Developer’s Guide 8-17

Drag and Drop
2 On the Drop Target page of a Properties Tool, set the widget’s Entry,
Over, Exit and Drop properties (applyMoreColorEnter:,
applyMoreColorOver:, applyMoreColorExit:, and applyMoreColorDrop:).
Apply properties and install the canvas.

3 In an entry method (applyMoreColorEnter:), send a shiftDown
message to the DragDropContext instance to find out whether the
user is pressing the <Shift> key down.

4 If the <Shift> key is down, provide appropriate visual feedback. In
this case, change the button’s label to indicate that background
colors will be set, and return an effect symbol (#dropEffectCopy) to
signal a modified transfer.

5 If the <Shift> key is not down, change the button’s label to
indicate that foreground colors will be set, and return an effect
symbol (#dropEffectMove) to signal a regular transfer.

applyMoreColorEnter: aDragContext
"A drag has entered the bounds of the Apply More Color button. Test
whether a drop would be permitted here with this data. If so, store
the current label of the button. Then test whether the shift key is
down. Based on this test, change the button's label and return a
symbol that indicates the feedback to be given to the user."

| widget dict |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].
widget := self widgetAt: #applyMoreColorButton .
dict := IdentityDictionary new.
dict at: #widget put: widget.
dict at: #label put: widget label.
aDragContext dropTarget clientData: dict.
aDragContext shiftDown

ifTrue:
[widget labelString: 'Background'.
^#dropEffectCopy].

widget labelString: 'Foreground'.
^#dropEffectMove.

6 In an over method (applyMoreColorOver:), find out whether the user
has changed the <Shift> key state while dragging the pointer
within the widget. (Remember, this method executes each time
the pointer moves in the widget.) If the <Shift> key is down, test
whether the button’s label needs to change; if so, change it.
Return the #dropEffectCopy symbol.
8-18 VisualWorks

Responding to Modifier Keys
7 If the <Shift> key is not down, test whether the button’s label
needs to change; if so, change it. Return the #dropEffectMove
symbol.

applyMoreColorOver: aDragContext
"A drag is over the Apply More Color button. Test whether a drop
would be permitted here with this data. If so, test whether the shift
key is down. Based on this test, return a symbol that indicates the
feedback to be given to the user. The DragDropManager uses this
symbol to determine the pointer shape."

| widget |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].
widget := aDragContext dropTarget clientData at: #widget.
aDragContext shiftDown

ifTrue:
[widget label text string = 'Background'

ifFalse: [widget labelString: 'Background'].
^#dropEffectCopy].

widget label text string = 'Foreground’
ifFalse: [widget labelString: 'Foreground'].

^#dropEffectMove.
8 In an exit method (applyMoreColorExit:), restore the button’s

original label. In this example, the same label is restored,
regardless of the <Shift> key’s state.

applyMoreColorExit: aDragContext
"A drag has exited the Apply More Color button without dropping.
Test whether a drop would have been permitted here with this data. If
so, restore the button to its former state, and return a symbol that
indicates the feedback to be given to the user."

| dict widget |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].
dict := aDragContext dropTarget clientData.
widget := dict at: #widget.
widget label: (dict at: #label).
aDragContext dropTarget clientData: nil.
^#dropEffectNone.

9 In a drop method (applyMoreColorDrop:), test whether the <Shift>
key is down.

10 If the <Shift> key is down, apply the dragged color choice to the
background color layer of the demonstration widgets. Return
#dropEffectCopy to signal a modified transfer.
GUI Developer’s Guide 8-19

Drag and Drop
11 If the <Shift> key is not down, apply the dragged color choice to
the foreground color layer. Return #dropEffectMove to signal a
regular transfer. Note that a drag-start method could respond
differently depending on which symbol is returned.

applyMoreColorDrop: aDragContext
"A drop has occured in the Apply More Color button. If the drop is
permitted,obtain the dragged color. Then test whether the shift key is
down. If so, set thebackground color of the demonstration widgets.
If not, set their foregroundcolor. Restore the button to its former
visual state and return an effect symbolfor possible use in the
colorDrag method."

| dict widget aColor |
aDragContext key == #colorChoice

ifFalse: [^#dropEffectNone].
dict := aDragContext sourceData clientData.
aColor := ColorValue perform: (dict at: #colorChoice).
dict := aDragContext dropTarget clientData.
widget := dict at: #widget.
widget label: (dict at: #label).
aDragContext dropTarget clientData: nil.
aDragContext shiftDown

ifTrue:
[self backgroundColor: aColor.
^#dropEffectCopy].

self foregroundColor: aColor.
^#dropEffectMove
8-20 VisualWorks

9

Configuring Widgets

VisualWorks provides a rich set of widgets for building the GUI for
your application. The widgets are shown in the canvas’s palette and
can be selected and added to design a window, as described in
Building an Application’s GUI.

This chapter describes the widgets and how to connect them to your
application.

Action Buttons
An action button triggers an action, such as opening a dialog window.
If you want to save space in an interface, consider using a menu
instead of multiple buttons.

To add an action button:

1 Add an action button to the canvas. In the button’s Label property,
enter a descriptive label.

2 In the button’s Action property, enter the message selector that
performs the action.

3 Apply the properties and install the canvas.

4 Create the method for the button in the actions protocol.

tellTime
 | t tString |
t := Time now.
tString := String new.

"Assemble the time string based on the check boxes."
self showHours value

ifTrue: [tString := tString, t hours printString].
GUI Developer’s Guide 9-1

Configuring Widgets
self showMinutes value
ifTrue: [tString := tString, ':', t minutes printString, ':']
ifFalse: [tString := tString, '::'].

self showSeconds value
ifTrue: [tString := tString, t seconds printString].

"Send the time string to the output channel set by the radio
 buttons."
self outputMode value == #transcript

ifTrue: [Transcript show: tString; cr]
ifFalse: [DialogView warn: tString]

Default Button
An Action Button can be set as the default action when Enter is
pressed, by checking the Default check box on the Basics page.

If the user presses Enter when either no widget has focus or the
widget that has focus does not process Enter, then the default button
is activated. If more than one button is set as default (which should
be avoided in a GUI design), the first button in the tab order is the
actual default. In any case, if a button has focus and processes Enter,
it is the defacto “default” of the moment.

Note that setting a button as the default does not ensure that it will
have focus when the UI opens.

In a subcanvas, if the subcanvas has a default button and has focus,
its default button is the default. Otherwise, the application’s default
button, if any, is the default.

Action Button Events
An Action Button triggers events when its label is changing, when it is
pressed, and when it gains and looses focus.

Action Buttons send the #labelChanging and #labelChanged events only
after the Action Button has been created and displayed on the
canvas. Thus, an Action Button does not trigger these events when it
gets its initial label, since that value is assigned before the Action
Button is initially displayed on the canvas.

#labelChanging

When a button's label is about to change, the button triggers the
#labelChanging event.
9-2 VisualWorks

Charts
#labelChanged

After a button's label has changed, the button triggers the
#labelChanged event.

#clicked

When a button is clicked on by the mouse, the button triggers the
#clicked event.

#pressed

When a button is pressed either by keyboard interaction or by
being clicked on by the mouse, the button triggers the #pressed
event.

#gettingFocus

When a button receives focus, either by being tabbed to or by
clicking on by the mouse, the button trigger the #gettingFocus
event.

#losingFocus

When a button loses focus, either by being tabbed away from, or
by having another widget on the canvas gain focus, the button
triggers the #losingFocus event.

#tabbed

When a button has focus, and the Tab key is pressed in request
to have the focus to move to the next widget in the tab order, the
button triggers the #tabbed event.

#backTabbed

When a button has focus, and the Back-Tab (Shift-Tab) key is
pressed in request to have the focus move to the previous widget
in the tab order, the button triggers the #backTabbed event.

Charts
The Chart widget supports a large variety of graphical
representations that are commonly used in business applications to
represent numerical data. The style and appearance of the chart are
set by widget properties.
GUI Developer’s Guide 9-3

Configuring Widgets
The application model provides the chart data in the form of a
collection of numerical data. A simple chart presents a single set or
series of values. A more complex chart, comparing two or more sets
of data, requires two or more collections of values, called a data
series.

Loading the Chart Widget
By default, the chart widget is not loaded or installed in the Palette. To
make chart widgets available to the UI Painter, load the BGOK parcel.
The parcel also includes example classes referred to in this section.

Adding a Chart
To add a bar chart to an application:

1 Select the Chart widget in the Palette, and drop it on a canvas.

2 On the Basics property page, specify the chart’s Aspect, which is
the the name of the instance variable and accessor method that
supplies the data to the chart.

For a simple chart with a single set of data, the aspect returns a
collection containing those values. For charts that compare
multiple data series, and charts with labels as well as values, the
aspect returns a collection or items with additional structure, as
described in Charting Multiple Data Series below.

3 Select the chart Type:.

Chart types are described under Chart Types below.

4 Apply and Install the canvas.

5 Define the chart widget’s aspect and edit it to return a ValueHolder
on the collection containing the chart data.

Charting Multiple Data Series
It is frequently necessary to chart multiple data series, to provide a
graphical comparison of values, such as a comparison of
performance of two or more entities over time.

The Aspect for your chart, declared on the Basics property page, is still
the instance variable for your chart data, but it now holds a collection
of items with some additional structure.
9-4 VisualWorks

Charts
In the simplest case, the aspect is a collection of collections of
numbers, such as the following array of arrays:

#(#(60 40) #(20 55) #(35 10) #(75 50))
This defines two data series, which can be identified by index within
the subcollections For example, in BG_EzChart. the Aspect is specified
as #data2, which specifies the collection in its accessor method:

data2
^#(#(100 20 'A') #(50 30 'B') #(-30 35 'C') #(34 30 'D') #(50 70 'E'))

On the Data Series property page, add two new Data Set: items, giving
each a name, for example Data1 and Data2. By default, with the
aspect field left empty, items are assigned to the data sets in order,
so Data1 is assigned #(100 50 -30 34 50) and Data2 is assigned #(20
30 35 30 70). In this case the aspect can simply be a collection,
rather than a value holder on the collection. The label is added by
defining an additional data set, as described under Adding Labels
below.

If the data in the subcollections are not in the correct order, you can
change the order by specifying the index as the data set aspect. In
this case, the aspect must be a ValueHolder on the collection.

More typically, the collection will consist of structured objects defined
by a class other than the application model, such as the Employee
object used in the BG_Company example. In this case the data series
uses accessor methods defined in the relevant class to return the
collections required for charting.

1 Add a Chart widget to a canvas.

2 On the Basics property page for the chart, specify the Aspect for the
chart, which returns a value holder on a collection.

3 On the Data Series page, click New to add a new Data Set, and

• In the Name field, enter a descriptive name for the first data
set.

• In the Aspect field, enter the accessor method selector for the
items making up this data set, or the index of this item in the
subcollection. The accessor method will be defined in class
defining the collection’s elements.

Repeat this step for each additional data set.

4 Apply your changes.
GUI Developer’s Guide 9-5

Configuring Widgets
5 Using a browser, ensure that the Chart widget’s aspect instance
variable is initialized to a ValueHolder on a collection.

initializeData
"Initalize the employees collection."
|employee|
employee := BG_Employee new.
employee name: 'Fred'; age: 50; salary: 40.
employees add: employee.
employee := BG_Employee new.
employee name: 'Joe'; age: 25; salary: 32.
employees add: employee.
employee := BG_Employee new.
employee name: 'Bob'; age: 36; salary: 33.
employees add: employee.

6 If necessary, define the accessor methods for each data set
added in step 3 (as in BG_Employee).

Adding Labels
To add labels to a chart, include the label strings as another data set.

To add labels:

1 On the Data Series property page, add a new data set with an
appropriate name. For the Aspect, enter the index for the labels in
the collection, or the name of the accessor method that returns
the label from the collection members.

2 Apply your changes.

3 Edit the application code as necessary to include the label in the
collection stored in the chart widget’s aspect instance variable.

Chart Properties

Basic

Aspect

The message selector that returns the collection containing the
chart data and labels.

ID

The identifying name for the chart widget.

Type

The type of chart (see descriptions below under Chart Types).
9-6 VisualWorks

Charts
Orientation

Specifies whether the data scale is oriented vertically or
horizontally.

Options
The properties on the Options page vary widely depending on the
specific chart type, and so are covered for individually for each chart
type in the sections below.

Data Series

Data Set

A drop-down list of the data sets defined for this chart. To add a
new data set, click New and provide a name and other
parameters. To remove a data set, select the data set then click
Delete.

Name

The identifying string for the data set.

Aspect

Either:

• Blank, in which case data points are taken from member
collections in the order the data sets are listed.

• An integer, in which case data points are taken from member
collections as specified by the index.

• A method selector, in which data points are retrieved by sending
the corresponding access message.

Label

If checked, the data set is interpreted as providing a label for the
data sets.

Computed

If checked, the model is expected to be computed within the
application model, typically using a PluggableAdaptor, rather than
represented as an AspectAdaptor on the collection element (see
BG_StockTool for an example).
GUI Developer’s Guide 9-7

Configuring Widgets
Color...

Set foreground and background colors.

Lines...

Set line style and weight.

Pattern...

Set fill pattern.

Legend
This properties page allows you to select the location of the chart
legend, relative to the chart itself, or to display no legend (hidden).

Item - Axis
For charts with a vertical orientation (Basics page), the item axis runs
horizontally.

Title

A general label for the data items, displayed below the data
labels, if any.

Units

A label to describe the units for the data items.

Section

Select placement of lines to divide display into sections. Select
None to hide lines, Major to place lines at data points, Division to
place lines between data points, Edge to place a line at the end of
the chart, Zero to place a line at the zero end of the chart.

Ticks

Placement of tick marks. Select Hide to hide tick marks, Cross to
cross the boundary, Inside to place ticks inside the chart
boundary, Outside to place ticks outside the chart boundary.

Border

If checked, includes a line at the data border.

Axis

If checked, includes a line along the axis line.
9-8 VisualWorks

Charts
Item - Scale

Auto Scale

Set and disabled for all charts except XY charts. When
unchecked (XY charts only), allows you to set the Zero, Div, Min,
Max, Step, and Scale Type parameters.

Invert Scale

Inverts the chart: horizontally, if oriented vertically on the Basics
page.

Zero

The value at which Step increments are started, and the low end
boundary line displayed. For most purposes, this value should be
less than the Min value.

Div

The number minor divisions marked by tick marks between major
division lines.

Min

The value at the low end of the chart scale.

Max

The value at the high end of the chart scale.

Step

Increment between major division lines

Scale Type

Either Normal or Log (logarithmic). For a logarithmic scale, specify
the Base.

Data - Axis
For charts with a vertical orientation (Basics page), the data axis runs
vertically.

Title

A general label for the data scale, displayed left of the scale
labels.
GUI Developer’s Guide 9-9

Configuring Widgets
Units

A label to describe the units for the data scale.

Section

Select placement of lines to divide display into sections. Select
None to hide lines, Major to place lines at data points, Division to
place lines between data points, Edge to place a line at the end of
the chart, Zero to place a line at the zero end of the chart.

Ticks

Placement of tick marks. Select Hide to hide tick marks, Cross to
cross the boundary, Inside to place ticks inside the chart
boundary, Outside to place ticks outside the chart boundary.

Border

If checked, includes a line at the data border.

Axis

If checked, includes a line along the axis line.

Format

Numeric format for the displayed labels:

Position

Location of numeric labels.

Data - Scale

Auto Scale

Set and disabled for all charts except XY charts. When
unchecked (XY charts only), allows you to set the Zero, Div, Min,
Max, Step, and Scale Type parameters.

Invert Scale

Inverts the chart: horizontally, if oriented vertically on the Basics
page.

Zero

The value at which Step increments are started, and the low end
boundary line displayed. For most purposes, this value should be
less than the Min value.
9-10 VisualWorks

Charts
Div

The number minor divisions marked by tick marks between major
division lines.

Min

The value at the low end of the item scale.

Max

The value at the high end of the item scale.

Step

Increment between major division lines

Scale Type

Either Normal or Log (logarithmic). For a logarithmic scale, specify
the Base.

Chart Types
This section briefly describes the charts support by the Chart widget,
and any special requirements for those charts.

Bar Chart
A standard bar chart uses the length of its bars to represent the
magnitude of its data. Bars for data points for multiple data series are
displayed side-by-side. The data can include labels.

The Options page properties are:

Bar Width

A scale to set the bar width from thin to wide enough to fill the
chart.

Bar Overlap

A scale to set the amount of overlap or gap. Centered, the bars
touch. To the right, earlier data set bars overlap later bars. To the
left, a gap is left between bars.

Data Location

Where bar data is displayed. None, no data value is shown; Inside,
data value is in the bar; Outside, data value is above the bar.

Link Line

Not used for Bar Charts.
GUI Developer’s Guide 9-11

Configuring Widgets
Picture

Not used for Bar Charts.

Stacked Bar
A stacked bar chart compares both the total amount and magnitude
of each item by stacking the data series bars on top of another.

#(#(60 40 'Jan') #(20 55 'Feb') #(35 10 'Mar') #(75 50 'Apr'))
The Options page properties are:

Bar Width

A scale to set the bar width from thin to wide enough to fill the
chart.

Bar Overlap

Not used for Stacked Bar charts.

Data Location

Where bar data is displayed. None, no data value is shown; Inside,
data value is in the bar; Outside, data total is above the bar.

Link Line

Connects data set levels with connecting lines.

Picture

Not used for Stacked Bar charts.

Layer
A layer chart indicates the change in the total amount and the
individual amounts of the items within a specified time period. Like a
stacked bar chart, each data series is placed on top of another. A
layer chart, however, connects each item together, denoting the
change from item to item.

The Options page properties are:

Bar Width

Not used for Layer Charts.

Bar Overlap

Not used for Layer Charts.
9-12 VisualWorks

Charts
Data Location

Where data is displayed. None, no data value is shown; Inside,
data value is in the area; Outside, shows data totals above the
area.

Link Line

Not used for Layer Charts.

Picture

Not used for Layer Charts.

Band
A band chart indicates the relative amounts of the components of an
item.

The Options page properties are:

Bar Width

A scale to set the bar width from thin to wide enough to fill the
chart.

Bar Overlap

Not used for Band charts.

Data Location

Where bar data is displayed. None, no data value is shown; Inside,
data value is in the bar; Outside, no data value is shown.

Link Line

Connects data set levels with connecting lines.

Picture

Not used for Band charts.

Pareto
A Pareto chart consists of a bar chart, with the bars arranged in
descending order of item magnitude, with an overlay graph of
cumulative percentages. It is useful for identifying the relatively few
contributors that account for the bulk of an effect (the so-called “80-20
rule”).

The Pareto chart is typically used for a single data series, but can
take multiple data series.
GUI Developer’s Guide 9-13

Configuring Widgets
The figure above uses the following as its data:

#(#(60 'Pareto') #(20 'Others') #(35 'Juran') #(75 'Lorenz'))
Notice that the order of the data is not maintained in the chart, which
shows the data points in decreasing order of magnitude.

The Options page properties are:

Bar Width

A scale to set the bar width from thin to wide enough to fill the
chart.

Bar Overlap

Not used for Pareto charts.

Data Location

Where bar data is displayed. None, no data value is shown; Inside,
data value is in the bar; Outside, data total is above the bar.

Link Line

Not used for Pareto charts.

Picture

Not used for Pareto charts.

Picture
A picture chart represents the unit of a numeric item with a
meaningful picture or symbol. It indicates the magnitude of an item
with the number of pictures. A fraction of the picture is used when the
amount does not equal an even multiple of pictures. As shown in the
chart legend above, each picture represents twenty dollars. In March,
the amount is thirty-five dollars, so a portion of the picture is show to
indicate this amount.

A picture chart can only represent one data series, plus a set for
labels. The above figure uses the following as its data:

#(#(60 'Jan') #(20 'Feb') #(35 'Mar') #(75 'Apr'))
By default, a Picture Chart displays a legend, which can be moved or
hidden on the Legend property page.

The Options page properties are:
9-14 VisualWorks

Charts
Bar Width

A scale to set the bar width from thin to wide enough to fill the
chart.

Bar Overlap

Not relevant for a single data series.

Data Location

Where bar data is displayed. None, no data value is shown; Inside,
data value is in the bar; Outside, data value is above the bar.

Link Line

Not used for Picture Charts.

Picture/Aspect

The method selector that returns the graphic to use as the chart
picture. The graphic can be an Image or subclass, or an
OpaqueImage. For example, with two class resource methods
created using the Image Editor, the accessor method could be:

coins
^(OpaqueImage figure:

self class coins
shape: self class coinsMask)

Note that the chart implementation does not use the mask, so
background is not transparent.

Picture/Unit

Set the number of units represented by a complete picture. By
default, the picture represents a unit of 20.

Line
A line chart indicates the change in the magnitude of data over a
period of time.

The figure above uses the following as its data:

#(#(60 40 80 'Jan') #(20 55 70 'Feb') #(35 10 50 'Mar') #(75 50 90
'Apr'))

The Options page properties are:
GUI Developer’s Guide 9-15

Configuring Widgets
Line

Either Show or Hide the line between data points. The Spline check
box makes the line a spline (curved).

Marker

Either Show or Hide a marker for the data points.

Data

Either Show or Hide data values above the data points.

Stacked Line
A stacked line chart compares the total amount of items with the
magnitude of the components of the items.

The stacked line chart above uses the same data as the line chart.

The Options page properties are:

Line

Either Show or Hide the line between data points. The Spline check
box makes the line a spline (curved).

Marker

Either Show or Hide a marker for the data points.

Data

Either Show or Hide data values above the data points.

Step
Like a regular line chart, a step chart indicates the change in the
magnitude of data over time. It is useful when the changes of
magnitude between intervals are of interest.

The step chart above uses the data:

#(#(60 40 'Jan') #(20 55 'Feb') #(35 10 'Mar') #(75 50 'Apr')
The Options page properties are:

Line

Either Show or Hide the line between data points. The Spline check
box makes the line a spline (curved).
9-16 VisualWorks

Charts
Marker

Either Show or Hide a marker for the data points.

Data

Either Show or Hide data values above the data points.

X-Y Chart
An XY chart indicates any correlations between two characteristics
derived from the scattering status of points plotted in the chart.

The XY chart expects points as its data. For example, an XY chart
with two data series could be set up as follows:

dataPointXY

| array1 array2 array3|
array1 := Array with: 20@60 with: 20@40.
array2 := Array with: 40@40 with: 40@10.
array3 := Array with: 60@75 with: 60@35.
^(Array with: array1 with: array2 with: array3) asValue

The Options page properties are:

Line

Either Show or Hide the line between data points. The Spline check
box makes the line a spline (curved).

Marker

Either Show or Hide a marker for the data points.

Data

Either Show or Hide data values above the data points.

Pie Chart
A pie chart can only represent one data series, but may include
labels.

The chart above uses the following data:

#(#(60 'Jan') #(20 'Feb') #(35 'Mar') #(75 'Apr'))
The Options page properties are:
GUI Developer’s Guide 9-17

Configuring Widgets
Exploding Labels

In a pie chart, a slice can be designated to be exploded. For
example, enter Jan in the Labels to Explode field. Only one label can
be exploded at a time.

Doughnut Labels

A doughnut label appears inside a circle in the center of a pie
chart. To add a doughnut label, enter the label name in the
Doughnut Label field. This label is separate from the labels included
as a data set.

Data

Location of the data value relative to the label. Hide, no data
shown; Below, below the label; Adjacent, same line following the
label.

Shape

Chart shape. Either Circle or Ellipse.

Lines

Lines connecting lable/data with a slice of the pie. Either Show or
Hide.

Check Boxes
A check box is like a toggle button that allows the user to turn on or
turn off an attribute. Check boxes are often used in a group to
represent a set of related attributes.

Selecting one check box has no effect on others in the set, so users
can select as many as they want. When you want only one attribute
to be selected at a time, use radio buttons instead.

To add an check box:

1 Add a check box to the canvas for each selectable option.

2 In its Label property, enter a description for the check box.

3 Enter an Aspect property for the check box.

The value holder for the check box will contain true when the
check box is selected and false when it is not selected.

4 Apply the properties and install the canvas, and use define to
create an instance variable and aspect accessor method.
9-18 VisualWorks

Check Boxes
5 Create or edit the initialize method to initialize the variable to a
value holder containing true if you want the check box to be
selected by default and false otherwise.

initialize
super initialize.
outputMode := #dialog asValue.
showHours := true asValue.
showMinutes := true asValue.
showSeconds := true asValue.

Checkbox Events
A Check Box triggers events when its label is changing, when it gains
and looses focus and when the selection is checked or unchecked.

Check Boxes send the #labelChanging, #labelChanged, #checked and
#unchecked events only after the Check Box has been created and
displayed on the canvas. Thus, a Check Box that has its value initially
set to be checked or unchecked, will not trigger that event, since that
value is assigned before the Check Box is initially displayed on the
canvas.

#labelChanging

When a check box's label is about to change, the check box
triggers the #labelChanging event.

#labelChanged

After a check box's label has changed, the check box triggers the
#labelChanged event.

#clicked

When a check box is clicked on by the mouse, without regard to
the checked or unchecked the check box, the check box triggers
the #clicked event.

#gettingFocus

When a check box receives focus, either by being tabbed to or by
clicking on by the mouse, the check box triggers the #gettingFocus
event.

#losingFocus

When a check box loses focus, either by being tabbed away from,
or by having another widget on the canvas gain focus, the check
box triggers the #losingFocus event.
GUI Developer’s Guide 9-19

Configuring Widgets
#tabbed

When a check box has focus, and the Tab key is pressed in
request to have the focus to move to the next widget in the tab
order, the check box triggers the #tabbed event.

#backTabbed

When a check box has focus, and the Back-Tab (Shift-Tab) key is
pressed in request to have the focus move to the previous widget
in the tab order, the check box triggers the #backTabbed event.

#checked

After a check box has had its state changed from being
unchecked to being checked, the check box triggers the #checked
event.

#unchecked

After a check box has its state changed from being checked to
being unchecked, the check box triggers the #unchecked event.

Click Map
The Click Map widget allows you to define areas of a graphic image
and specify the action to invoke if the user clicks on each area.

Using a Click Maps for a button bar makes it possible to use any
graphic image to represent the row of buttons. The image may
include text, graphics, and a variety of colors. All of the buttons may
be part of a single image, guaranteeing their relative layout.

Adding a Click Map
To add a click map widget to a canvas:

1 Choose the click map widget in the Palette and place it on a
canvas.

2 Set the following Basic properties and Apply them:

ID: A unique identifier for the widget, which will be used to access
the widget.

Visual Message: The message selector that returns the image,
which is typically an image resource method.
9-20 VisualWorks

Click Map
Mappings Selector: The message that returns the mapping between
an area and the action for that location. You define mapping
using the Hot Regions Editor.

Default Click Message: (optional) Specifies the action to be invoked
when the user clicks in an area for which no other action is
specified. If left empty, no action is taken.

3 In the canvas, resize the click map widget so that it closely
outlines the graphic image.

4 Install the canvas, and provide a class name and method name in
which to install the canvas when prompted.

Defining the Hot Region Mappings
1 Select the click map widget in the canvas.

2 In the GUI Painter Tool, choose Tools > Hot Regions Editor.

3 Choose Regions > Read to display the selected click widget’s
image as the background in the Hot Regions Editor. Resize the
window to display the entire image.

4 Choose Edit > New Slice to begin defining a region.

A slice is comprised of one or more areas that invoke the same
action when clicked. The areas in a slice do not need to be
contiguous. Identify areas in the Hot Regions Editor using tools
similar to other bitmap editors:

• The four colors or patterns of ink allow you to select a color
that shows well when selecting a region. The color does not
show in the final click map.

• Six brush sizes and shapes. The first four draw lines, the next
draws an ellipse, and the sixth draws a rectangle.

• A fill-mode bucket that fills the entire image.

5 In the Selector input field, enter a method selector for the action to
be invoked when this slice is clicked and press <Return>.

The selector is added to the menu button in the middle of the Hot
Regions Editor. You can use the menu to switch between
different slices of the same hot region resource.

6 Repeat steps 4 and 5 to define all the slices for this hot region.
GUI Developer’s Guide 9-21

Configuring Widgets
7 Choose Regions > Apply to:

• Install the hot region resource. You are prompted for the class
name and selector for the resource method that stores the hot
region mappings.

• Insert the resource’s selector into the Mapping Selector property of
the click map widget that is selected in the canvas.

8 Close the Hot Regions Editor.

9 Install the canvas.

Using Custom Views and Controllers
If you have an application that uses custom views and controllers,
you can make it work as a VisualWorks application:

1 Make the custom view a subclass of ClickWidget.

2 In the custom view, implement a mouseReleaseAt: method that
specifies what to do when the user clicks in the custom view.

3 Disconnect the custom controller from your application. Move any
custom behavior to the custom view’s mouseReleaseAt: method.

Note that interaction with the user is more limited in web applications
than in other applications. In particular, the only mouse events
transmitted to the application from the web browser are mouse clicks.
Events based on entry, mouse movement, and exit are ignored.

Click Widget Events
A Click Widget triggers events when its view is clicked on.

#clicked

When a click widget is clicked on by the mouse, without regard to
if a mapped region is hit or not, the click widget triggers the
#clicked event.

#hitMappedRegion

When a click widget is clicked on by the mouse, and at least one
of the mapped regions of the click widget has been hit, the click
widget triggers the #hitMappedRegion event.
9-22 VisualWorks

Combo Box
#missedMappedRegion

When a click widget is clicked on by the mouse, and none of the
mapped regions of the click widget has been hit, the click widget
triggers the #missedMappedRegion event. If a click widget has a
Default Click selector defined, then the click widget will never
trigger the #missedMappedRegion event.

Combo Box
A ComboBox presents a list of options and allows the user to select
one. This is often a more useful interface when a limited number of
options are acceptable than is an input field with validation on entries.

The ComboBox has both a collection of options and an item selected
in that collection.

Adding a ComboBox to a Canvas
Online example: ComboBoxExample

1 Add a combo-box widget to the canvas.

2 On the Basics property page, in the Aspect field, enter a name for
the aspect accessor method (in the example, shipper). This
method returns a value model on the selected item for display.

3 In the Choices property, enter the name of the method that returns
value model on a collection of entry choices (shipperChoices).

4 Apply the properties and install the canvas, and use Define to
create the aspect instance variable and accessing method.

5 Create the ComboBox choices method in the application model.

The method returns a value holder containing the list of valid
entries. The value holder can be held in an instance variable (as
in the example).

shipperChoices
^shipperChoices

6 Initialize the field’s aspect variable with a value model containing
data of the type specified in the Type property for the widget.

7 Initialize the choices variable with a value holder containing the
list of valid entries.
GUI Developer’s Guide 9-23

Configuring Widgets
initialize
| list |
shipper := 'Courier' asValue.

list := List new.
list add: 'Courier';
add: 'FedEx';
add: 'UPS';
add: 'USPS'.
shipperChoices := list asValue.

Listing Arbitrary Objects
You can arrange for a combo box to display a list of choices that are
arbitrary objects (for example, a list of Employee objects). You do this
by supplying a print method and a read method that translate the
relevant objects into displayable elements (for example, Strings or
graphical images) and back. For example, in ComboCoversionExample,
the print method enables the combo box to display Employee names
in the pull-down list and, when an Employee is selected, to display that
employee’s name in the field. The read method enables the combo
box to interpret the user’s input as an Employee name, which can be
matched with an existing Employee, or used to create a new one.

Online example: ComboConversionExample

1 On the Basics property page, set the Type property of the combo
box to Object.

2 Fill in the Print property with the name of a method for converting
the relevant objects to strings (in this example, employeeToString:).
The name must end with a colon.

3 Fill in the Read property with the name of a method for converting
strings to objects of the desired type (in this example,
stringToEmployee:). The name must end with a colon.

4 In the application model, create a print method with the name you
specified in the Print property (-employeeToString:). This method
accepts an object from the choices list as an argument (in this
case, an instance of Employee).

5 In the print method, return a String that represents the object from
the choices list. In this example, display the name of the
Employee. The string is displayed in the combo box’s pull-down list
and also in the combo box’s field when the choice is selected.
9-24 VisualWorks

Combo Box
employeeToString: anEmployee
"Return a String for representing the Employee in the combo box’s
list
and field."

^anEmployee name.
6 Create a read method with the name you specified in Read

property (stringToEmployee:). This method accepts a String
argument.

7 In the read method, return an object for the given String. In this
example, determine whether the String is the name of an
Employee in the choices list; if so return that Employee. Otherwise,
create a new Employee and add it to the choices list.

stringToEmployee: aString
"Return an Employee corresponding to the given String. If the String
corresponds to the name of an Employee on the choices list, return
that
Employee. Otherwise, create a new Employee and add it to the list."

| theEmp |
theEmp := self employeeChoices value

detect: [:each | each name = aString]
ifNone: [nil].

theEmp isNil
ifTrue:

[theEmp := Employee new name: aString.
self employeeChoices value addLast: theEmp].

^theEmp

Combo Box Events
A Combo Box triggers events when a selection is changing, when it
gains and looses focus, when it gets clicks from the mouse, and
when its list is exposed and closed. The biggest difference between a
Menu Button and a ComboBox in terms of events triggered, is that a
Menu Button does not trigger the #rightClicked or #doubleClicked
events.

#changing

When a selection in the list of a combo box is made, or in the
case of an editable combo box, the value has been edited, but
before the value is accepted, the combo box triggers the
#changing event.
GUI Developer’s Guide 9-25

Configuring Widgets
#changed

After a selection in the list of a combo box is made, or in the case
of an editable combo box, the value has been edited, when the
value is accepted, the combo box triggers the #changed event. To
trigger #changed at each keystroke, send continuousAccept: to the
widget’s controller with the value true.

#clicked

When a combo box is clicked on with the <Select> mouse button,
the combo box triggers the #clicked event.

#rightClicked

When a combo box is right clicked on with the <Operate> mouse
button, the combo box triggers the #rightClicked event. This event
will occur without regard to whether there is a popup menu
associated with the combo box.

#doubleClicked

When a combo box is double clicked on with the <Select> mouse
button, the combo box triggers the #doubleClicked event. This
event is always immediately preceded by a #clicked event. Read-
only combo boxes do not respond to the double clicked event, but
rather consider the double click to be two separate clicks that
open and immediately close the combo box, and thus do not
trigger the #doubleClicked event.

#gettingFocus

When a list box receives focus, either by being tabbed to or by
clicking on by the mouse, the list box triggers the #gettingFocus
event.

#losingFocus

When a combo box loses focus, either by being tabbed away
from, or by having another widget on the canvas gain focus, the
combo box triggers the #losingFocus event.

#tabbed

When a combo box has focus, and the Tab key is pressed
moving the focus to the next widget in the tab order, the combo
box triggers the #tabbed event.
9-26 VisualWorks

Datasets
#backTabbed

When a combo box has focus, and the Back-Tab (Shift-Tab) key
is pressed moving the focus to the previous widget in the tab
order, the combo box triggers the #backTabbed event.

#listExposed

When a combo box has its selection list exposed, either by
clicking on the combo box or using the down arrow key to open
the list, the combo box triggers the #listExposed event.

#listClosed

When a combo box has its selection list closed, either by clicking
on another widget on the canvas, by clicking on the combo box
when the list is already exposed, or by selecting a new value in
an exposed list, the combo box triggers the #listClosed event.

Datasets
A dataset presents a list of similar objects for a user to edit. Datasets
are similar to tables, but cells in a dataset can be edited directly.
Datasets are best suited for presenting similar kinds of data.

A dataset uses a SelectionInList to hold the list of objects to be
displayed, along with information about the current selection. Each
object in the list is displayed in its own row, with individual aspects of
the object displayed in their own columns. The property pages
specify the means by which each column presents its data, whether
using cells that contain read-only fields, editable fields, combo boxes,
or checkboxes.

Setting up a Dataset
Online example: Dataset1Example

The example displays instances of Employee, which consist of three
objects (name, empNo, and citizen), in three dataset columns.

1 Add the dataset widget to the canvas.

2 On the Basics property page, in the dataset’s Aspect property, enter
the aspect name (dsvList). Apply the property and install the
canvas.

3 Use define to add the dsvList instance variable and accessor
method to the application model.
GUI Developer’s Guide 9-27

Configuring Widgets
The dsvList method returns a SelectionInList object that will hold
the list to be displayed. This method also sets up the
SelectionInList so it will cause a user’s selection to be put in a
separate value holder (selectedRow).

4 In the dataset’s properties, click the New Column button for each
column you want in the dataset.

In the example, three columns are added to the canvas.

5 In the canvas, <Alt>-click in the leftmost column to select it.

6 Display the dataset’s Column property page. The properties you
set on this page will apply to the currently selected column.

7 On the Column page, enter Name as the Label property. This
creates a visual label above the selected column, which is to
display employee names.

8 On the Column page, enter selectedRow name in the Aspect field.
selectedRow refers to the value holder that will hold the object (the
Employee) selected by the user. name refers to the aspect of
Employee that is displayed in this column.

9 On the Column page, select Input Field as the Type. This causes
each cell in the selected column to display its data in an editable
input field. Note that you can optionally specify nondefault
characteristics for these input fields by filling in properties on the
Column Type page.

10 <Alt>-click on the middle column to select it.

11 On the Column page, enter Employee Number as the Label and
selectedRow empNo as the Aspect. Select Input Field as the Type.

12 <Alt>-click on the rightmost column to select it.

13 On the Column page, enter U.S. Citizen as the Label and -
selectedRow citizen as the Aspect. Select Check Box as the Type.

14 When the all properties have been applied, install the canvas.

15 Use the define command to add the selectedRow instance variable
to the application model and to create the -selectedRow method in
the aspects protocol.

The selectedRow method returns a value holder for holding the
user-selected Employee object from the SelectionInList.
9-28 VisualWorks

Datasets
16 Use a browser to initialize the dataset (in an initialize method in an
initialize-release protocol).

initialize
| aList |
aList := List new.
aList add: Employee new initialize.
self dsvList list: aList.

When you open the application, the dataset contains one empty row.
You can type a name and number in the Name and Employee Number
columns, and select the U.S. Citizen check box.

Note that the first part of the Aspect setting for each column must be
the same as the message sent by the SelectionInList to obtain a value
holder for storing the selected object. You used selectedRow in steps
8, 11, and 13, because that name is used in the generated dsvList
method that sets up the SelectionInList. To use a name other than
selectedRow, you must replace -selectedRow with the desired name in
each Aspect field and in the code generated for dsvList. Use the define
command to generate an instance variable and method with the new
name.

Editing Column Properties
You must select a column before you can set its properties. To select
a column:

1 Select the dataset on the canvas.

2 Place the cursor inside one of the columns of the dataset.

3 Hold down the <Control> or <Alt> key while clicking the <Select>
mouse button.

Changing Column Widths
By default, all columns have a width of 80 pixels. You can set specific
widths in the dataset’s Column properties. You can also change the
column widths by editing the dataset in the canvas. For example, to
resize the Employee Number column:

1 In the canvas, <Alt>-click in the Employee Number column to select
it.

2 Place the cursor near the top right or top left margin of the
column.

3 Click and hold the mouse button. The cursor changes to indicate
a column width change operation when properly selected. If
GUI Developer’s Guide 9-29

Configuring Widgets
necessary, move the pointer nearer the corner of the selected
column until the cursor changes appearance.

4 Drag the cursor to widen or narrow the column.

5 Install the canvas.

Changing the Column Order
You can switch the order of a dataset’s columns by editing it in the
canvas. For example, to switch the order of the Employee Number and
U.S. Citizen columns:

1 In the canvas, <Alt>-click in the Employee Number column to select
it.

2 Place the cursor on the drag handle within the selected column.

3 Click and hold on the handle, and drag it toward the U.S. Citizen
column. The cursor changes to indicate the move operation when
properly selected.

4 Install the canvas.

Disabling Column Scrolling
You can set a dataset’s columns so that they cannot be scrolled
horizontally. This is useful if you want to keep one or more columns
displayed on the dataset at all times, while the others continue to
scroll.

1 To disable scrolling for a column (and all columns to the left of it),
select that column and click the Fixed check box in the Column
properties.

2 Apply the property and install the canvas.

Moving the Selection to Another Column
1 Select a column in the dataset using the basic steps.

2 Click the <Select> mouse button for subsequent column
selections.

If you then select another widget on the canvas, you must repeat the
basic steps to reselect a dataset column.
9-30 VisualWorks

Datasets
Scrolling Dataset Columns
You can scroll the columns in the dataset you are painting:

1 Select a column in the dataset.

2 Press <Control> while using the mouse to move the scroll bars
on the dataset.

Formatting Column Labels
When you specify a column label by entering a string in the Label
property, you have no formatting control. You can add formatting to a
label by using a ComposedText, which is a graphic, to set the label.
(Refer to “Working with Text,” Chapter 15 in the Application
Developer’s Guide.)

For example, to split a long label onto two lines, you provide a
composed text that contains the appropriate carriage returns. (See
Dataset4Example in the online examples.) To split the Employee Number
column label:

1 Create a class method (number) in a resources protocol of the
application model. This method returns a composed text that is to
appear as the label.

number
^('Employee Number' asText allBold) asComposedText

2 In the canvas, select the Employee Number column of the dataset.

3 On the Basics property page, enter number as the Label in the
Column properties.

4 Select the Image check box next to Label. This specifies that the
column label will come from the resource method named in the
Label property.

5 Apply the properties and install the canvas.

Similarly, to change the color of the column label, set the text color in
the number method:

number
^('Employee Number' asText emphasizeAllWith:

(Array with: #bold with: #color->ColorValue red))
asComposedText
GUI Developer’s Guide 9-31

AppDevGuide.pdf
AppDevGuide.pdf

Configuring Widgets
Adding a Row
Online example: Dataset2Example

When the number of rows needed for a dataset is not predetermined,
you can program your application to add rows while it is running.

1 Use the Palette to add an Action Button to a canvas containing a
dataset. Leave the button selected.

2 On the Basics property page, enter Add Row as the button’s Label
property and addRow as the button’s Action property. Apply the
properties and install the canvas.

3 Using the define command or a System Browser, add the instance
method addRow in the actions protocol. This method adds a new
object to the list displayed by the dataset. This, in turn, adds a
new row to the dataset.

addRow
(dsvList list) add: Employee new

Adding a Row Marker
A row marker indicates which row is selected within a dataset. It is
used in place of row highlighting. To add a row marker, check Row
Selector on the dataset’s Details properties. The marker appears as the
first column within the dataset.

To make the row selector appear as a button, which may be useful to
make it more obviously a clickable option, check Row Selector As
Buttons, also. Both check boxes must be checked for this option to be
active.

Adding Row Numbering
Rows can be automatically numbered by checking the Show Line
Numbers property on the Details page. Numbers show in the same
column with the row selection indicator.

Providing Initial Data
Online example: Dataset3Example

An initially empty dataset is sufficient if you want users to input the
data after the application is open. However, some applications
require their datasets to display data initially.
9-32 VisualWorks

Datasets
In the application model, create an initialize method that provides the
data for your dataset.

initialize
| aList anEmp |
aList := List new.
"The aspect for the dataset should be a list of Employee
instances. Create an employee to put in the list." anEmp := Employee

new initialize.
anEmp name: 'Tami Hayes'; empNo: '341-2'; citizen: true.
aList add: anEmp.
"Create an employee to put in the list."anEmp := Employee new

initialize.
anEmp name: 'Leo Mazon'; empNo: '786-9'; citizen: false.
aList add: anEmp.
"Set the list for the dataset aspect. This list appears when you
start."self dsvList list: aList.
super initialize.

Dataset Properties

Traversal Page
The Traversal properties only appear for the DataSet widget, and
consist of two sets of radio buttons. Traversal properties define the
wrap action to be taken in the dataset when navigation keys are
used:

Vertical Policy/No Wrapping

Up and Down movement is supported, but does not wrap when at
the top or bottom cell.

Vertical Policy/Wrapping

Up and Down movements are allowed, and wraps when at the top
or bottom cell. At the top cell, an Up movement wraps to the
bottom cell; at the bottom cell, a Down movement wraps to the
top cell.

Up <Shift> <Up arrow>

Down <Shift> <Down arrow>

Right <Tab>

Left <Shift> <Tab>
GUI Developer’s Guide 9-33

Configuring Widgets
Vertical Policy/None

Ignore the Up or Down movement keys.

Horizontal Policy/No Wrapping

Left and Right movement is supported, but does not wrap when at
the leftmost or rightmost column.

Horizontal Policy/Wrap to next row

Left and Right movement is supported, and wraps when at the
leftmost or rightmost column. When at the leftmost column,
moving left wraps to the rightmost column of the next higher row.
When at the rightmost column, moving right wraps to the leftmost
column of the next lower row.

Horizontal Policy/Wrap on same row

Left and Right movement is supported, and wraps on the same
row.

Horizontal Policy/None

Ignore the Right or Left movement keys.

Dataset Events
A Dataset triggers events when a selection is changing, when it gains
and looses focus, when it gets clicks from the mouse, and when it's
view scrolls.

#rightClicked

When a dataset is right clicked on with the <Operate> mouse
button, the dataset triggers the #rightClicked event. This event will
occur without regard to whether there is a popup menu
associated with the dataset.

#doubleClicked

When a dataset is double clicked on with the <Select> mouse
button, the dataset triggers the #doubleClicked event. This event is
always immediately preceded by a #clicked event.

#gettingFocus

When a dataset receives focus, either by being tabbed to or by
clicking on by the mouse, the dataset triggers the #gettingFocus
event.
9-34 VisualWorks

Datasets
#losingFocus

When a dataset loses focus, either by being tabbed away from, or
by having another widget on the canvas gain focus, the dataset
triggers the #losingFocus event.

#tabbed

When a dataset has focus and the last cell in the dataset has
focus, and the Tab key is pressed to the focus to the next widget
in the tab order, and the dataset has its wrapping policy that
allows it to tab out to another widget, the dataset triggers the
#tabbed event.

#backTabbed

When a dataset has focus and the first cell in the dataset has
focus, and the Back-Tab (Shift-Tab) key is pressed to movethe
focus to the previous widget in the tab order, and the dataset has
its wrapping policy that allows it to tab out to another widget, the
dataset triggers the #backTabbed event.

#scrollLeft

If while navigating with the keyboard or mouse, or manipulating a
horizontal scroll bar in a dataset, the dataset scrolls to the left,
the dataset triggers the #scrollLeft event.

#scrollRight

If while navigating with the keyboard or mouse, or manipulating a
horizontal scroll bar in a dataset, the dataset scrolls to the right,
the dataset triggers the #scrollRight event.

#scrollUp

If while navigating with the keyboard or mouse, or manipulating a
vertical scroll bar in a dataset, the dataset scrolls up, the dataset
triggers the #scrollUp event.

#scrollDown

If while navigating with the keyboard or mouse, or manipulating a
vertical scroll bar in a dataset, the dataset scrolls down, the
dataset triggers the #scrollDown event.

#cellGettingFocus

When an individual cell in a dataset receives focus, either by
being tabbed to or by clicking on by the mouse, the dataset
triggers the #cellGettingFocus event.
GUI Developer’s Guide 9-35

Configuring Widgets
#cellLosingFocus

When an individual cell in a dataset loses focus, either by being
tabbed away from, or by having another widget on the canvas
gain focus, the dataset triggers the #cellLosingFocus event.

#cellTabbed

When an individual cell in a dataset has focus, and the and the
Tab key is pressed to move the focus either the next cell in the
dataset or to the next widget in the tab order, the dataset trigger
the #cellTabbed event.

#cellBackTabbed

When an individual call in a dataset has focus, and the Back-Tab
(Shift-Tab) key is pressed in request to move the focus to either
the previous cell in the dataset or the previous widget in the tab
order, the dataset triggers the #cellBackTabbed event.

#cellValueChanged

If a cell is editable, and its value is changed, once the new value
has been accepted the dataset triggers the #cellValueChanged
event. This occurs when the value of the underlying input field
changes, the selection of the underlying combo box changes, or
the check or unchecked value of the underlying check box
changes.

#columnLabelClicked

If a dataset has column labels, and that column label is clicked on
with the mouse, then the dataset triggers the #columnLabelClicked
event.

#rowLabelClicked

If a dataset has row labels, and the row label is clicked on with
the mouse, then the dataset triggers the #rowLabelClicked event.

#rowSelectionsChanging

If a dataset has row labels and a row label is selected or
unselected, or in the case of multiple select datasets the
selections change, or in the case of a dataset where there are no
row labels and the focus changes from one row to another, then
prior to the selection change taking effect, the dataset triggers
the #rowSelectionsChanging event.
9-36 VisualWorks

Divider
#rowSelectionsChanged

If a dataset has row labels and a row label is selected or
unselected, or in the case of multiple select datasets the
selections change, or in the case of a dataset where there are no
row labels and the focus changes from one row to another, then
after the to the selection change has occured, the dataset
triggers the #rowSelectionsChanged event.

#selectionListChanged

Whenever the list underlying a dataset is manipulated, either by
changing a value, reordering, adding or removing items, or
changing the list as a whole, the dataset triggers the
#selectionListChanged event.

Divider
Dividers are simple lines, either horizontal or vertical, that are used to
provide visual separation between widgets or groups of widgets.

Online example: LineExample

To add a Divider to a canvas:

1 Use a Palette to add a divider to the canvas.

2 On the Basics property page, select either Horizontal or Vertical for
the line’s orientation property. Apply the property.

3 Use the widget handles to size and position the divider.

4 Install the canvas.

Lines are one pixel thick. For a thicker line, use a rectangular region
and set its Thick border property.
GUI Developer’s Guide 9-37

Configuring Widgets
Group Box
Similar to a Divider, a Group Box provides visual separation between
widgets. It goes further by presenting a stronger graphical
association among the widgets it groups.

Adding a Group Box
When an interface begins to appear cluttered, the user of your
application may have trouble understanding how the widgets relate to
one another. As a visual aid, cluster the widgets in logical groups.
Spacing is one way to group widgets; another way is to surround
some groups with boxes.

A box can have a label embedded in its top border. Its line thickness
is one pixel. For a thicker line, use a region as described below.

1 Use a Palette to add a box to the canvas. Leave the box selected.

2 Use the widget handles to size and position the box.

3 Fill in the Label property, if desired.

4 Choose the label’s font.

5 Apply the properties and install the canvas.

A box line thickness is one pixel. For a thicker line, use a rectangular
region and set its border property to Thick. Also use a region if you
want to use color.

Making a Group Box Mnemonic
Adding a mnemonic to a Group Box label causes the cursor to jump
to the selected widget when <Alt><key> is pressed.

The <key> is specified by including an ampersand (&) in the Group
Box label string before the mnemonic letter. For example, if the label
is Label, you could make L the mnemonic by changing the label string
to '&Label' in the Group Box’s String: field. The label will show with the
L underscored.

To associate the mnemonic with a widget, enter the widget ID in the
Group Box’s Details page, in the Mnemonic: field.

Group Box Events
A Group Box triggers events only when its label is changing.
9-38 VisualWorks

Input Fields
#labelChanging

When a label or group box's label is about to change, the widget
triggers the #labelChanging event.

#labelChanged

After a label or group box's label has changed, the widget
triggers the #labelChanged event.

Input Fields
An input field is used for both entering and displaying data. You can
also use a field in read-only mode when you just want to display data.

When a field has a short list of valid entries, consider using a menu
button or a combo box instead.

A field uses a value model to manage its data (see Adapting Domain
Models to Widgets). When the field accepts input from a user, it
sends this data to the value model for storage; when the field needs
to update its display, it asks its value model for the data to be
displayed.

Creating an Input Field
Online example: Slider2Example

1 From the Palette, add a field to the canvas.

2 On the Basics property page, in the field’s Aspect property, enter
the name of the get method for the field’s value model.

3 On the Details page, select or assign values for the field’s
properties.

The size property takes an integer value for the maximum
number of characters allowed.

The following subsections describe other properties.

4 Apply the properties and install the canvas.

5 Use the define command to add the instance variable to the
application model and define the aspect accessor method.

6 Define an initialize method for the aspect instance variable, or add
initialization to the aspect accessor method, and evaluate the
method to initialize the variable.
GUI Developer’s Guide 9-39

Configuring Widgets
In this example, the variable is initialized to the desired month using
an initialize method.

initialize
month := (Date nameOfMonth: 1) asValue.”
year := 1900 asValue.
dateRange := (0@1) asValue.”
dateRange onChangeSend: #changedDate to: self.

Restricting Input Type
You specify the type of input that a field is to accept by setting its Type
property. This property converts the input string into an appropriate
kind of object before sending it to the value model. If the conversion
cannot be performed, the field flashes and continues to display the
unaccepted string without storing it in its value model. Ensure that the
field is initialized with the appropriate type of data.

You can choose from the following data types. If none of these types
are appropriate, you can add your own type testing.

Data Type Description

String Input is stored as a ByteString. (Default)

Symbol Input is stored as a Symbol. Useful for applications that
manipulate method selectors.

Text Input is stored as an instance of Text, and supports
formatting.

Number Input is stored as an appropriate subclass of Number.

Password Input is stored as a string, with an asterisk (*) displayed for
each character the user enters. (The actual characters are
sent to the field’s value model.)

Date Input is converted into an instance of Date.

Time Input is converted into an instance of Time.

Timestamp Input is converted into an instance of Timestamp.

FixedPoint(2) Input is converted to a FixedPoint with two decimal places.
Useful for applications that manipulate monetary amounts.

Boolean Input is stored as an instance of Boolean. Accepts true and
false only.
9-40 VisualWorks

Input Fields
Formatting Displayed Data
For some data types, the displayed string can be formatted in various
ways. For example, numbers can be formatted as phone numbers,
monetary units, percentages, and so on.

Predefined data type formats are provided by drop-down lists on the
Basics properties page. The field’s Type property setting determines
the kinds of available formats, if any.

For a description of the format conventions, browse the class
comments for the NumberPrintPolicy, TimestampPrintPolicy, and
StringPrintPolicy classes.

Creating a Custom Format
Online example: FieldTypeExample

A TypeConverter enables a field to display a number in a special
format, such as a monetary format. You define the format as a string
that uses the same conventions as the predefined formats.

Edit the aspect accessor method to initialize the value to a
TypeConverter, and specify the format string. This example shows how
to create a format for a monetary amount.

price
^price isNil

ifTrue: [price := (TypeConverter
onNumberValue: 0 asValue
format: '$###,###,###.##')]

ifFalse: [price]

Validating Input
Frequently, only certain entries are valid for a particular field. For
example, you might want to restrict input to a numeric range such as
0 to 999 or check for undesirable characters.

ByteArray Input is stored as an instance of ByteArray.

Object Input is evaluated as a Smalltalk expression, and the
resulting object is stored as the field’s value. The field
redisplays this object using the object’s printString method.
Note that the VisualWorks compiler is required to run an
application with Object as the data type for an input field.
This is permitted by the license, and the compiler is not
automatically removed by RuntimePackager.

Data Type Description
GUI Developer’s Guide 9-41

Configuring Widgets
For a general description of the Validation properties, refer to
Validation Properties.

Data can be validated either a whole-field at a time, or character by
character. The following subsections describe a few variations on
these options.

Validating a Whole Entry
Online example: FieldValidInputExample

Most often you only need to validate an entire entry in a field. To do
this, you need to specify and define the validation message which is
sent when appropriate based on the user’s actions.

1 On the Validation page of the GUI Painter Tool, enter the names of
validation methods for one or more of the validation points.

In the example, we use:

• the Change property, to determine whether to accept input into
the field’s value model

• the Exit property, to determine whether the field can give up
focus

Both send validateUsername:.

2 On the Basics property page, enter the aspect name (username).

3 Apply properties and install the canvas, and use define to add the
aspect instance variable (username) and aspect method
(username) to the application model. Initialize the instance
variable with a value model.

4 Create the validation method (validateUsername:) entered in the
validation fields.

Because the Change validation needs to validate the data before it is
sent to the field’s value holder, the validation method needs to get the
entered value from the widget’s controller. By naming the method so
its selector ends in a colon, the widget sends the controller as an
argument, which the method can then use.

In the validation method, send an editValue message to the field’s
Controller to obtain the user’s entry. The entry must be obtained from
the controller instead of the value model, because validation occurs
before the entry has been passed to the value model.

The validation in the example consists of checking the entry’s length.
9-42 VisualWorks

Input Fields
If the entry is valid, the validation method returns true, allowing the
field to pass the entry to the value model and, if requested, give up
focus. If the entry is not valid, the method must return false. In the
example, a warning is also returned, telling the user to correct the
entry.

validateUsername: aController
"Check the length of the entered username. Warn the user if the
entered input is too long."
| entry lengthLimit |
lengthLimit := 6.
entry := aController editValue.
"If the username is too long, warn the user (and reject
the input)."
^entry size <= lengthLimit

ifTrue: [true]
ifFalse: [Dialog warn: ’Please enter only ’, lengthLimit
printString ,

’ characters.’.
false]

Validating Individual Characters
Online example: FieldValidation1Example

In some cases, it is more useful to verify the user’s entry at each
keystroke. This approach requires more constant monitoring of the
widget.

1 On the Basics property page, in the ID field, enter an identifier for
the field (codeField). Apply the property and install the canvas.

2 Define a postBuildWith: instance method in the application model
(FieldValidation1Example).

In this method, the first task is to get the controller from the field.
Next, it sends a keyboardHook: message to the controller. The
argument to keyboardHook: is a two-argument block that takes the
keyboard event and the controller as arguments.

Inside the block, invoke the validation method (keyPress:).
Alternatively, you can put the validation code directly inside the
block.

postBuildWith: aBuilder
| ctrlr |
ctrlr := (self controllerAt: #codeField).
ctrlr keyboardHook: [:ev :c |

self keyPress: ev].
GUI Developer’s Guide 9-43

Configuring Widgets
3 Define the validation method (keyPress:).

This method takes the keyboard event as its argument, extracts a
character, and validates it.

As the last step in the keyPress: method, return the event when
you want to forward the keyboard event for normal processing.
Return nil to bypass normal processing.

keyPress: ev
"Validate the character."
| ch ascii |
ch := ev keyValue.
"Allow tab and cr."
ascii := ch asInteger.
(ascii == 9 or: [ascii == 13])

ifTrue: [^ev].
ch isAlphaNumeric

ifFalse: [
Dialog warn: 'Please enter only letters and digits'.
^nil].

^ev

Modifying a Field’s Pop-Up Menu
Online example: FieldMenuExample

By default, a field has a menu of text-editing commands. You can add
or omit commands, override the action that is associated with a
command, or disable the menu entirely.

A field’s menu is usually oriented toward commands. Although you
can arrange for a field’s menu to contain a list of valid entries, this is
properly the job of a menu button.

Adding a Command
1 In the field’s Menu property, enter the name of the method that

you will create to supply a custom menu (expandedMenu).

2 Define the menu-creating method (expandedMenu) in the
application model, in a menu messages protocol.

expandedMenu
"Add a command to the default text-editing menu."
| mb |
mb := MenuBuilder new.
mb

add: 'capitalize'->#capitalize;
line;
9-44 VisualWorks

Input Fields
addDefaultTextMenu.

^mb menu
3 Define the method (capitalize) that is invoked by the newly added

command. Put the method in the menu messages protocol.

capitalize
"Capitalize the field's contents."
self field1 value: (self field1 value

collect: [:ch | ch asUppercase]).

Overriding a Default Command
You can override a default command by building the menu from its
parts. For the command that you want to override, provide the name
of your overriding method as the value (#newAccept).

newAcceptMenu
"Redefine the 'accept' command by invoking a local alternate."
| mb |
mb := MenuBuilder new.
mb

addFindReplaceUndo;
line;
addCopyCutPaste;
line;
add: 'accept'->#newAccept;
add: 'cancel'->#cancel.

^mb menu

newAccept
Transcript show: self field3 value; cr.

Then define the overriding method (newAccept).

Disabling a Field’s Menu
To disable the menu, build a menu creation method that returns a
block containing nil. When asked for its menu, the field will evaluate
this block, and no menu is displayed.

noMenu
^[nil]
GUI Developer’s Guide 9-45

Configuring Widgets
Connecting two Fields
Online example: FieldConnectionExample

When the value in a field depends on the value in another field, you
can link them using the built-in dependency mechanism. The
connection can be either one-way or two-way, depending on the
needs of your application.

To define the dependency, you must register an interest between the
fields. Create a postBuildWith: method in the application model, in an
interface opening protocol, and register the interest in the field that
originates updates. In the onChangeSend:to: method, name a method
to be invoked when that field is changed (changedA).

postBuildWith: aBuilder
self a onChangeSend: #changedA to: self.

Then define the change method (changedA) in the application model
in a change messages protocol. That method updates the dependent
field’s model.

changedA
self aSquared value: (self a value raisedTo: 2).

Controlling the Insertion Point
You can control the position of the insertion point in a field
programmatically. For example, the data in a field might have a prefix
that rarely changes—you could highlight the suffix for convenient
editing. In that case, the “insertion point” is actually a portion of the
field’s text, which will be replaced by the user’s entry.

When the suffix has yet to be filled in, you can simply position the
insertion point at the end of the prefix.

Highlighting a Portion of a Field
Online example: FieldSelectionExample

1 In a method in the application model, ask the field’s wrapper to
takeKeyboardFocus.

2 Tell the field’s controller the indices (character positions) of the
substring that is to be highlighted.

addPart
"Put a template in the partID field, then highlight the suffix."
| wrapper |
self partID value: 'MW-0000'.
wrapper := self wrapperAt: #part1.
9-46 VisualWorks

Input Fields
wrapper takeKeyboardFocus.
wrapper widget controller selectFrom: 4 to: 7.

Positioning the Insertion Point
1 In a method in the application model, ask the field’s wrapper to

takeKeyboardFocus.

2 Tell the field’s controller the character position at which to place
the insertion point.

addPart2
"Put a template in the partID2 field, then position the insertion
point."
| wrapper |
self partID2 value: 'MW-'.
wrapper := self wrapperAt: #part2.
wrapper takeKeyboardFocus.
wrapper widget controller selectAt: 4.

Input Field Events
An Input Field triggers events when its value is changing, when it
gains and looses focus, when it gets clicks from the mouse, and
when it's view scrolls to the left or right.

#changing

When the value of an input field is about to be accepted after
directly editing the value and exiting the input field, the input field
triggers the #changing event.

#changed

After the value of the input field has been accepted, the input
field triggers the #changed event.

#clicked

When a input field is clicked on with the <Select> mouse button,
the input field triggers the #clicked event.

#rightClicked

When a input field is right clicked on with the <Operate> mouse
button, the input field triggers the #rightClicked event. This event
will occur without regard to whether there is a popup menu
associated with the input field.
GUI Developer’s Guide 9-47

Configuring Widgets
#doubleClicked

When a input field is double clicked on with the <Select> mouse
button, the input field will trigger the #doubleClicked event. This
event is always immediately preceded by a #clicked event.

#gettingFocus

When a input field receives focus, either by being tabbed to or by
clicking on by the mouse, the input field triggers the #gettingFocus
event.

#losingFocus

When a input field loses focus, either by being tabbed away from,
or by having another widget on the canvas gain focus, the input
field triggers the #losingFocus event.

#tabbed

When a input field has focus, and the Tab key is pressed in
request to have the focus to move to the next widget in the tab
order, the input field triggers the #tabbed event.

#backTabbed

When a input field has focus, and the Back-Tab (Shift-Tab) key is
pressed to move the focus to the previous widget in the tab order,
the input field triggers the #backTabbed event.

#scrollLeft

If while editing, navigating with the keyboard, or selecting text
with the keyboard or mouse in an input field, the view scrolls to
the left, the input field triggers the #scrollLeft event.

#scrollRight

If while editing, navigating with the keyboard or selecting text with
the keyboard or mouse in an input field, the view scrolls to the
right, the input field triggers the #scrollRight event.

Labels
Online example: LogoExample

A label is used as a title or a description for another widget or group
of widgets, such as a field. Since the text of a label can be changed
while the application is running, a label can also be used for read-
only display.
9-48 VisualWorks

Labels
A label accommodates only a single line of text. For a multiline label,
use a separate label for each line or use a read-only text widget.

Creating a Textual Label
To add a text label, select the Label widget and place it on the
canvas.

On the Basics properties page, enter the text in the label’s Label
property field. Then Apply the properties and Install the canvas.

The label size automatically adjusts to accommodate your text.

Creating a Graphic Label
Use a graphic label when you want to add a pictorial element to an
interface. The graphic can be changed while the application is
running, so you can also use a graphic label to represent a changing
aspect of the model pictorially.

A graphic label is passive. If you need the graphic to respond to a
mouse click, use a graphic button instead.

For a large graphic that requires scroll bars, insert the graphic in a
view holder instead.

To add a graphic label:

1 Use a Palette to place a label widget on the canvas

2 On the Basics property page, in the label’s Label property, enter the
name of the method that will supply the graphic image (in the
example, logo).

The method must be a class method, and by convention is
placed in the resources protocol.

3 Turn on the Label is Image property.

The Supplied by Application property is turned on as well, because
the graphic will be supplied by the method named in step 2.

4 Apply the properties and install the canvas.

You can use the Image Editor to create the graphic image and install
it in the application model, using the method name from step 2. You
can also draw the image using graphics classes in VisualWorks, and
create the class method to return it in the application model.
GUI Developer’s Guide 9-49

Configuring Widgets
Making a Label Mnemonic
Adding a mnemonic to a label causes the cursor to jump to the
selected widget when <Alt><key> is pressed.

The <key> is specified by including an ampersand (&) in the label
string before the mnemonic letter. For example, if the label is Label,
you could make L the mnemonic by changing the label string to
'&Label' in the label’s String: field. The label will show with the L
underscored.

To associate the mnemonic with a widget, enter the widget ID in the
label’s Details page, in the Mnemonic: field.

Supplying the Label at Run Time
An application can change the content of a label while it is running.
This is useful for using a label as a read-only display field.

Because the label changes size dynamically, be careful selecting text
to avoid overlapping neighboring widgets.

To change the label, get the widget from the application model’s
builder. Then, set the label by sending a labelString: message to it with
a string argument, or by sending a label: message to it with a
composed text or graphic as the argument.

The following example updates a label before the canvas is opened,
but you can change the label string at any time after the interface has
been built.

postBuildWith: aBuilder
"Update the slogan's text, and make the company name bold and red."
| slogan txt emph label |
"Insert the years-in-business into the slogan."
slogan := 'Serving Shrimps For '

, (Date today year - 1869) printString, ' Years'.
(self wrapperAt: #slogan) labelString: slogan.
"Make the company name bold and red."
txt := 'Many Hands Shrimppickers' asText
emph := Array

with: #bold
with: #color->ColorValue red.

txt emphasizeFrom: 1 to: 10 with: emph.
label := Label

with: txt
attributes: (TextAttributes styleNamed: #large).

(self wrapperAt: #textLogo) label: label.
9-50 VisualWorks

Labels
Building a Registry of Labels
When you plan to use a label, such as a company name or logo, in
multiple interfaces, you can store it in a central registry. The system
will look for the label in the registry when it does not find the usual
resource method. Two system registries are available, one for
graphics and the other for strings.

Registering a label is usually done in a class-initialization method, so
the registration will occur whenever the class loaded into an
image.Use registries sparingly, especially for graphic images,
because each entry occupies memory until it is explicitly removed.
For a non-registry alternative, consider using a preBuildWith: message
in your application to assign the label to its builder as in

preBuildWith: aBuilder
aBuilder labelAt: #tm put: '(TM)'.

To register a graphic image, send visualAt:put: to ApplicationModel. To
register a string label, send labelAt:put: to ApplicationModel. The first
argument is the name of the label, as defined in the Label property of
the widget. The second argument is the graphic or string.

initialize
"LogoExample initialize"
"Register the graphic image for the trademark symbol."
ApplicationModel

visualAt: #trademark
put: self trademark.

"Register the textual version of the trademark symbol."
ApplicationModel

labelAt: #tm
put: '(TM)'.

Execute the initialization method to make the label available.

To remove a label from the registry, get the appropriate registry by
sending a visuals message to the ApplicationModel class for the
graphics registry, or a labels message for the string registry. Then
send the removeKey:ifAbsent: to the registry specifying the name of the
label as the first argument. The second argument is a block
specifying the action to be take if the label is not found, and can be
empty.

"Visual registry"
| registry |
registry := ApplicationModel visuals.
registry removeKey: #trademark ifAbsent: [].
"Labels registry"
GUI Developer’s Guide 9-51

Configuring Widgets
registry := ApplicationModel labels.
registry removeKey: #tm ifAbsent: [].

Label Events
Labels and Group Boxes trigger events only when their labels are
changing.

#labelChanging

When a label or group box's label is about to change, the widget
triggers the #labelChanging event.

#labelChanged

After a label or group box's label has changed, the widget
triggers the #labelChanged event.

Lists
Online example: List1Example

A list widget is useful for displaying a collection of objects or as an
input device, allowing the user to select one or more elements in the
list.

A list widget depends on two value models, one to hold the collection
of objects to be displayed, and the other to hold the index of the
current selection. SelectionInList and MultiSelectionInList are the
preferred models for a List widget, and contain both of the required
value holders.

The List collection is particularly well suited for use with the List
widget, rather than other sequenced collections. It is extensible, and
propagates change messages to its dependents.

The elements in the collection can be any objects, provided that they
can display themselves textually.

Adding a List
1 Use a Palette to add a list widget to the canvas. Leave the list

selected.

2 On the Basics property page, fill in the list’s Aspect property with the
name of the method that will return an instance of SelectionInList
(or MultiSeletionInList).
9-52 VisualWorks

Lists
3 Use define to add an instance variable and aspect accessor
method to the application model. This instance variable will hold
the SelectionInList.

4 Write an initialize method to initialize the instance variable. You
initialize the variable with an instance of SelectionInList that is itself
initialized with a list of Smalltalk class names.

initialize
super initialize.
classes := SelectionInList with: Smalltalk classNames.
classes selectionIndexHolder onChangeSend: #changedClass

 to: self.
methodNames := MultiSelectionInList new.

instances := SelectionInList new.

Changing the List of Elements
The contents of a list often change frequently. Changing the list is
accomplished by giving the SelectionInList a new collection of
elements. Note that this is not the same as installing an entirely new
SelectionInList, which would break the link with the list widget.

In List1Example, both the Selectors view and the Instances view
change whenever the selection in the Classes view is changed. The
changedClass method is responsible for updating the list, which it does
by getting the SelectionInList from the application model and sending a
list: message to it, with the new List as the argument.

changedClass
| cls |
self classes selection isNil

"No class is selected -- empty the selector list."
ifTrue: [

self methodNames list: List new.
self instances list: List new]

"A class is selected"
ifFalse: [

cls := Smalltalk at: self classes selection.
"Update the selectors list."
self methodNames list: cls selectors asList.
"Update the instances list."
self instances list: cls allInstances].
GUI Developer’s Guide 9-53

Configuring Widgets
To set both a list and the current selection, send a setList:selecting:
instead. This is illustrated in the SetListAndSelectionExample
setListAndSelection method:

setListAndSelection
self targetList setList: self removeSelect list copy

selecting: self selectionList selection
The first argument is a new list, as for the list: method above. The
second argument is a selected item. Both are set at once to avoid
repositioning the target list, unless the selected item is also removed.

In the case of updating a list only, the refreshList: message takes the
modified list, keeping the current selection as the selected item. The
effect is to update the list without changing the selection display. The
use of this method is illustrated in a few methods in
RefreshSelectListExample, such as in the removeSelections method:

removeSelections
| list |
list := self removeSelect list.
undoList add:(self removeSelect selectionIndexes asSortedCollection

asArray collect:[:index| index -> (list at: index)]).
redoList := OrderedCollection new.
list removeAll: self removeSelect selections.
self targetList refreshList: list copy

Enabling Multiple Selections
Sometimes it is appropriate for the user to select more than one item
in a list as targets for an action. A list allows multiple selections when
its Multi Select property is turned on.

A second property, Use Modifier Keys For Multi Select, determines how
selections are to be made. When this property is turned on (the
default), the user:

• Clicks the <Select> mouse button to select a single item on the
list

• <Shift>-clicks to select additional contiguous items

• <Control>-clicks to select additional noncontiguous items

Both properties are typically turned on or off together.

1 On the Details property page, check List widget’s Multi Select
property, and make sure the Use Modifier Keys For Multi Select
property is also checked. Apply properties and install the canvas.
9-54 VisualWorks

Lists
2 In the application model’s initialize method, initialize the list
widget’s aspect variable to hold a MultiSelectionInList (instead of a
SelectionInList).

initialize
super initialize.
classes := SelectionInList with: Smalltalk classNames.
classes selectionIndexHolder onChangeSend: #changedClass

 to: self.
methodNames := MultiSelectionInList new.
instances := SelectionInList new.

Getting a Selection Contents
When a list widget serves as an input device, your application needs
to be able to find out which object is selected. You can ask a
SelectionInList for the selected object or for the index of the selected
object in the list. You can also set the selection programmatically.

For a multiselect list, there may be multiple selections or selection
indexes, so your application model must be prepared to handle a
collection of objects rather than a single selection or index.

When nothing is selected, a SelectionInList returns a nil object as the
selection and zero as the index; a MultiSelectionInList returns an
empty collection for either the selections or the indexes.

In the method that needs to know the current selection in the list, get
the SelectionInList from the application model and send a selection
message to it. To get the index only, send selectionIndex. For a
MultiSelectionInList, use a selections or selectionIndexes message.

changedClass
| cls |
self classes selection isNil

"No class is selected -- empty the selector list."
ifTrue: [

self methodNames list: List new.
self instances list: List new]

"A class is selected"
ifFalse: [

cls := Smalltalk at: self classes selection.
"Update the selectors list."
self methodNames list: cls selectors asSortedCollection.
"Update the instances list."
self instances list: cls allInstances].
GUI Developer’s Guide 9-55

Configuring Widgets
Setting a Selection
It is sometimes useful for a program to set the selection.

To set a list selection, in the method that is to change the selection,
get the SelectionInList from the application model and send it a
selectionIndex: message with the desired index number as the
argument. Alternatively, send a selection: message with the desired
object itself as the argument.

postOpenWith: aBuilder
super postOpenWith: aBuilder.
"Uncomment the line below to auto-select the first class."
self classes selectionIndex: 1.
"Uncomment the lines below to auto-select the last class."
"self classes selection: self classes list last.
(self controllerAt: #classes) cursorPointWithScrolling."
"In the classes list, use boxed highlighting instead of
reverse-video."
(self widgetAt: #classes) strokedSelection.

Note that, for a MultiSelectionInList, send selectionIndexes: or selections:,
supplying as argument a collection of indexes or a collection of
objects in the list.

To select all objects in a multiple-selection list, get the
MultiSelectionInList from the application model and send a selectAll
message to it.

selectAll
self methodNames selectAll.

Similarly, to clear all selections, get the MultiSelectionInList from the
application model and send a clearAll message to it.

clearAll
self methodNames clearAll.

Connecting Two Lists
A list widget frequently interacts with another list, for example if one
list contains items “in” a selection and the other list contains items
that are “out.”
9-56 VisualWorks

Lists
To connect two lists, you register an interest between them. In the
application model’s initialize method, arrange for a change message
to be sent to the application model whenever the selection is
changed in the first list.

initialize
super initialize.
classes := SelectionInList with: Smalltalk classNames.
classes selectionIndexHolder

onChangeSend: #changedClass to: self.
methodNames := MultiSelectionInList new.
instances := SelectionInList new.

Then define the change method in the application model. This
method tests whether anything is selected in the first list (classes) and
then updates the second list (methodNames) appropriately.

changedClass
| cls |
self classes selection isNil

"No class is selected -- empty the selector list."
ifTrue: [

self methodNames list: List new.
self instances list: List new]

"A class is selected"
ifFalse: [

cls := Smalltalk at: self classes selection.
"Update the selectors list."
self methodNames list: cls selectors asSortedCollection.
"Update the instances list."
self instances list: cls allInstances].

List Events
A List Box triggers events when a selection is changing, when the
underlying list itself is changing, when it gains and looses focus,
when it gets clicks from the mouse, and when it's view scrolls.

#clicked

When a list box is clicked on with the <Select> mouse button, the
list box triggers the #clicked event.

#rightClicked

When a list box is right clicked on with the <Operate> mouse
button, the list box triggers the #rightClicked event. This event will
occur without regard to whether there is a popup menu
associated with the list box.
GUI Developer’s Guide 9-57

Configuring Widgets
#doubleClicked

When a list box is double clicked on with the <Select> mouse
button, the list box triggers the #doubleClicked event. This event is
always immediately preceded by a #clicked event.

#gettingFocus

When a list box receives focus, either by being tabbed to or by
clicking on by the mouse, the list box trigger the #gettingFocus
event.

#losingFocus

When a list box loses focus, either by being tabbed away from, or
by having another widget on the canvas gain focus, the list box
triggers the #losingFocus event.

#tabbed

When a list box has focus, and the Tab key is pressed in request
to have the focus to move to the next widget in the tab order, the
list box triggers the #tabbed event.

#backTabbed

When a list box has focus, and the Back-Tab (Shift-Tab) key is
pressed to move the focus to the previous widget in the tab order,
the list box triggers the #backTabbed event.

#scrollLeft

If while navigating with the keyboard or manipulating a horizontal
scroll bar in a list box, the list box scrolls to the left, the list box
triggers the #scrollLeft event.

#scrollRight

If while navigating with the keyboard or manipulating a horizontal
scroll bar in a list box, the list box scrolls to the right, the list box
triggers the #scrollRight event.

#scrollUp

If while navigating with the keyboard or manipulating a vertical
scroll bar in a list box, the list box scrolls up, the list box triggers
the #scrollUp event.
9-58 VisualWorks

Menu Button
#scrollDown

If while navigating with the keyboard or manipulating a vertical
scroll bar in a list box, the list box scrolls down, the list box
triggers the #scrollDown event.

#selectionChanging

When an item in a list box is selected or unselected, or in the
case of a multiple select list box, the selections change, before
the change is applied, the list box triggers the #selectionChanging
event.

#selectionChanged

After an item in a list box is selected or unselected, or in the case
of a multiple select list box, the selections have changed, the list
box triggers the #selectionChanged event.

#selectionListChanged

Whenever the list underlying a list box is manipulated, either by
changing a value, reordering, adding or removing items, or
changing the list as a whole, the list box triggers the
#selectionListChanged event.

Menu Button
A menu button allows you to place a drop-down menu anywhere in
the canvas. Also, its label typically changes to reflect the current
selection. By default, selecting an item in a button menu places the
value of the menu item in the button menu widget’s aspect value
holder.

Adding a Menu Button
Online example: MenuValueExample

1 Add a menu button widget to the canvas and open the Properties
Tool.

2 In the menu button’s Menu property, enter the name of the menu
creation resource method (templates-MenuForMenuButton).

3 In the button’s Aspect property, enter a name for the aspect (letter).

Leave the button’s Label property blank. You can enter a label, but
it will always be displayed in the menu. Leaving the Label blank
displays the current selection on the menu button while the
GUI Developer’s Guide 9-59

Configuring Widgets
application is running. The initial (default) selection is set by
initializing the aspect variable, typically in the initialize method.

4 Use the define command to add the aspect instance variable and
accessor method (letter) to the application model.

5 Create or edit the initialize method to initialize the aspect variable
to a value holder.

Initializing the aspect variable also sets the initial item displayed
on the menu button. This example also illustrates setting a check
mark on the currently selected item.

initialize
letter := self class firstNotice asValue.
letter onChangeSend: #setCheckMark to: self.

6 Create the menu resource method that you named in step 2, and
any action methods that are invoked by the menu items.

Adding a Menu Button with a Menu of Commands
Online example: MenuCommandExample

Adding a Button Menu that executes a command, such as an action
block, differs from a Button Menu that stores a value in the
initialization of the value holder. The value holder must be configured
to perform its value whenever it is changed. This is typically done in
an initialize method:

initialize
files := SelectionInList new.
files selectionIndexHolder onChangeSend: #configureMenu

to: self.
action := nil asValue.
action onChangeSend: #performAction to: self.

You also must define a method that performs the currently selected
action:

performAction
self perform: self action value.

Menu Button Events
A Menu Button triggers events when its value is changing, when it
gains and looses focus, when it gets clicks from the mouse, and
when its list is exposed and closed.
9-60 VisualWorks

Menu Button
#changing

When a selection in the list of a menu button is made, but before
the value is accepted, the menu button triggers the #changing
event.

#changed

After a selection in the list of a menu button is made and the
value is accepted, the menu button triggers the #changed event.

#clicked

When a menu button is clicked on with the <Select> mouse
button, the menu button triggers the #clicked event.

#gettingFocus

When a menu button receives focus, either by being tabbed to or
by clicking on by the mouse, the menu button triggers the
#gettingFocus event.

#losingFocus

When a menu button loses focus, either by being tabbed away
from, or by having another widget on the canvas gain focus, the
menu button triggers the #losingFocus event.

#tabbed

When a menu button has focus, and the Tab key is pressed in
request to have the focus to move to the next widget in the tab
order, the menu button triggers the #tabbed event.

#backTabbed

When a menu button has focus, and the Back-Tab (Shift-Tab) key
is pressed to move the focus to the previous widget in the tab
order, the menu button triggers the #backTabbed event.

#listExposed

When a menu button has its selection list exposed, either by
clicking on the menu button or using the down arrow key to open
the list, the menu button triggers the #listExposed event.
GUI Developer’s Guide 9-61

Configuring Widgets
#listClosed

When a menu button has its selection list closed, either by
clicking on another widget on the canvas, by clicking on the menu
button when the list is already exposed, or by selecting a new
value in an exposed list, the menu button triggers the #listClosed
event.

Notebook
A notebook is a powerful navigational widget. At its simplest, it
provides a list in the form of index tabs. When the user selects an
index tab, the effect is the same as selecting an item in a
conventional list. A notebook can be used in many of the same
situations in which a list or a menu might be used, but its richer set of
capabilities (such as minor keys) extend its range of uses.

A notebook also contains a subcanvas which can be used to display
a different interface for each index tab or, as in this simple example,
the same interface.

In Notebook1Example, the subcanvas contains a list widget, and the list
is changed each time an index tab is selected.

Creating a Notebook
Online example: Notebook1Example

1 Add a notebook widget to the canvas.

2 On the Basics page, enter the:

• Major property aspect name, the aspect that returns a
SelectionInList containing major index tab labels

• Minor property aspect name, the aspect that returns a
SelectionInList containing minor index tab labels (optional)

• ID property, then identifying name for the notebook
(pageHolder)

3 Apply the properties and install the canvas, and define the
instance variables and accessing methods for the notebook’s
major and minor index labels.

4 Initialize the major and minor variable, either in the accessing
method or in an initialize method (as in the example), with a
SelectionInList containing either strings or associations.
9-62 VisualWorks

Notebook
5 Create one or more additional canvases for the interface to
display inside the notebook.

Install this canvas in its own resource method (listSpec), but in the
same application model as the notebook, and define any variables
and methods needed by the subcanvas. (In the example, these
are the classNames variable, the classNames method, and the
initialize method.)

For a notebook that uses different interfaces for each page, you
will create several of these canvases.

6 Edit the initialize method to send an onChangeSend:to: message to
send a changed message (changedLetter) to the application model
when the user selects an index tab.

initialize
| letters |
letters := #(' A' ' B' ' C' ' D' ' E' ' F' ' G' ' H' ' I' ' J' ' K' ' L' ' M'

' N' ' O' ' P' ' Q' ' R' ' S' ' T' ' U' ' V' ' W' ' X' ' Y' ' Z').
majorKeys := SelectionInList with: letters.
majorKeys selectionIndexHolder

onChangeSend: #changedLetter to: self.
classNames := SelectionInList new.

7 Create the change message (changedLetter) to update the
subcanvas.

changedLetter
| chosenLetter list |
chosenLetter := self majorKeys selection last.
list := Smalltalk classNames

select: [:name | name first == chosenLetter].
self classNames list: list.

8 Create a postOpenWith: method to install the subcanvas.

In this method, get the notebook from the application model’s
builder, using the notebook’s ID (pageHolder). Then install the
subcanvas by sending a client:spec: message to the notebook.
The first argument is the subcanvas’s application model (self),
and the second argument is the subcanvas’s spec method
(listSpec).

postOpenWith: aBuilder
(self widgetAt: #pageHolder)

client: self
spec: #listSpec.

majorKeys selectionIndex: 1.
GUI Developer’s Guide 9-63

Configuring Widgets
Setting the Starting Page
Online example: Notebook1Example

By default, a notebook opens on a blank page, but another page
provides better visual clues to the user as to the nature of the
notebook. You can select the opening page either by setting the
selection indexes of the major and minor SelectionInLists, or by
specifying the list element itself.

In an instance method (such as -postOpenWith:), send a selectionIndex:
message to the SelectionInList that holds the major keys. The
argument is the index of the desired tab.

postOpenWith: aBuilder
(self widgetAt: #pageHolder)

client: self
spec: #listSpec.

majorKeys selectionIndex: 1.
If the notebook has minor keys, also set the selection index for that
SelectionInList.

Alternatively, to set the page by specifying the list element, send a
selection: message to the SelectionInList that holds the major keys and,
if applicable, another such message to the minor list. The argument is
the desired element in the list.

Getting the Selected Tab
When the user selects an index tab on a notebook widget, the
selection changes in the underlying SelectionInList. Accessing that
selection is a fundamental operation because the application model
must know which tab is selected before it can take the appropriate
action.

In a method in the application model, get the selected index tab’s
string or association by sending a selection message to the
notebook’s major SelectionInList. (In the example, the resulting string
contains a leading space, so a last message is sent to get the index
letter that follows the space).

changedLetter
| chosenLetter list |
chosenLetter := self majorKeys selection last.
list := Smalltalk classNames

select: [:name | name first == chosenLetter].
self classNames list: list.
9-64 VisualWorks

Notebook
Adding Secondary Tabs (Minor Keys)
Online example: Notebook2Example

In addition to the first set of index tabs, a second row of tabs can be
added along another edge of the notebook. This second set of tabs is
referred to as the minor keys. The minor keys can be used either to
refine the subdivisions implied by the major keys or to filter the
content of the notebook along a separate dimension.

In Notebook2Example, which lists the classes in the system, two minor
keys are used to control whether the page shows all classes
beginning with the selected letter or just the example classes.

1 On the Basics property page, fill in the notebook’s Minor property
with the name of the method that returns a SelectionInList
containing the labels for the secondary tabs (in the example,
minorKeys).

2 Use a System Browser or the canvas’s define command to create
the instance variable (minorKeys) and accessing method
(minorKeys) for the notebook’s list of index labels.

minorKeys
^minorKeys

3 Initialize the variable, either in the accessing method or in an
initialize method (as in the example), with a SelectionInList
containing either strings or associations (the example uses
associations).

4 In the initialize method, use an onChangeSend:to: message to
arrange for the notebook to send a message (changedPage) to the
application model when the user selects a secondary tab. (In the
example, both the major and minor tabs trigger the same
message: changedPage.)

initialize
| letters |
letters := #(' A' ' B' ' C' ' D' ' E' ' F' ' G' ' H' ' I' ' J' ' K' ' L' ' M'

' N' ' O' ' P' ' Q' ' R' ' S' ' T' ' U' ' V' ' W' ' X' ' Y' ' Z').
majorKeys := SelectionInList with: letters.
majorKeys selectionIndexHolder

onChangeSend: #changedPage to: self.
minorKeys := SelectionInList with: (Array

with: 'All classes'-> #all
with: 'Examples only' -> #examples).

GUI Developer’s Guide 9-65

Configuring Widgets
minorKeys selectionIndexHolder
onChangeSend: #changedPage to: self.

classNames := SelectionInList new.
5 Create the change message (changedPage) in which the

subcanvas is updated based on the selected index tab. (In the
example, the classNames list is updated with all class names or
only example classes, based on the minor key.)

changedPage
| chosenLetter list filter filteredList |
"Major key."
chosenLetter := self majorKeys selection last.
list := Smalltalk classNames

select: [:name | name first == chosenLetter].
list addAll: (Examples classNames select:

[:name | name first == chosenLetter]).
"Minor key."
filter := self minorKeys selection value.
filter == #all

ifTrue: [filteredList := list]
ifFalse: [filteredList := list

select: [:name | '*Example' match: name]].
self classNames list: filteredList.

Connecting Minor Tabs to Major Tabs
Online example: Notebook3Example

The major and minor keys of a notebook can be used to navigate
through a two-tiered hierarchy of information. The minor keys can
depend on the major keys so that when the user selects a major key,
a different set of minor keys is presented.

1 In the application model’s initialize method, set the two
SelectionInLists to send onChangeSend:to: messages to notify the
application model when their selections are changed.

initialize
self initializeDepartments.
self initializeEmployees.
majorKeys := SelectionInList with: departments keys asArray.
majorKeys selectionIndexHolder

onChangeSend: #changedDepartment
to: self.

minorKeys := SelectionInList new.

9-66 VisualWorks

Notebook
minorKeys selectionIndexHolder
onChangeSend: #changedSubdepartment
to: self.

employeeList := SelectionInList new.
2 Create the change message (changedDepartment) for the major

keys.

This method gets the selection from the major SelectionInList, and
uses that selection for choosing the new labels for the minor tabs.
The minor key selection is reset to display the first subpage.

changedDepartment
| subdepts sel |
sel := self majorKeys selection.
sel isNil ifTrue: [^self].
"Display the appropriate subdepartments as minor keys."
subdepts := self departments at: sel.
self minorKeys list: subdepts.
self minorKeys selectionIndex: 1.

3 Create the change message (changedSubdepartment) for the minor
keys.

This method gets the minor selection and uses that selection for
updating the canvas in the notebook.

changedSubdepartment
"Display the appropriate employees in the list."
| emps sel |
sel := self minorKeys selection.
sel isNil ifTrue: [^self].
emps := self employees at: sel.
self employeeList list: emps.

Changing the Page Layout (Subcanvas)
Online example: Notebook4Example

It is often useful for a notebook to present a different interface on
each page. This is the basis of, for example, “wizards.”

In Notebook4Example, each index tab represents an example
application. Selecting a tab causes a working instance of that
application to be contained in the notebook.

1 In the application model’s initialize method, set the major keys
SelectionInList to notify the application model when a tab is
selected.
GUI Developer’s Guide 9-67

Configuring Widgets
initialize
| exampleClasses |
exampleClasses := OrderedCollection new.
exampleClasses := Examples keys select: [:c |

(('*Example' match: c)
and: [(Smalltalk at: c) isVisualStartable])
and: [('Notebook*' match: c) not]].

majorKeys := SelectionInList
with: exampleClasses asSortedCollection.

majorKeys selectionIndexHolder
onChangeSend: #changedExample to: self.

2 In the change method (changedExample), get the notebook widget
and send it a client:spec: message to the notebook.

The first argument is the application model (in the example,
exampleClass). The second argument is the spec for the desired
canvas (in the example, each example class’s windowSpec is
used).

changedExample
| sel exampleClass |
sel := self majorKeys selection.
sel isNil ifTrue: [^self].
exampleClass := Examples at: sel value.
(self widgetAt: #pageHolder)

client: exampleClass new
spec: #windowSpec.

Notebook Events
A Notebook triggers events when a tab selection is changing, when
one of its tabs gains or looses focus, and when it's tabs scroll.

#gettingFocus

When any of a notbook's tab groups (either horizontal or vertical)
receives focus by being clicked on by the mouse, or tabbed into
by the keyboard, when none of that group of tabs have had focus,
the notebook triggers the #gettingFocus event.

#losingFocus

When any of a notebook's tabs groups (either horizontal or
vertical) lose focus, by being clicked or tabbed away from, to
anything except another of the tabs in the same group, the
notebook triggers the #losingFocus event.
9-68 VisualWorks

Notebook
#tabbed

When a notebook tab group (either horizontal or vertical) has
focus, and the and the Tab key is pressed to move the focus to
the next widget in the tab order or another tab group on the
notebook, the notebook triggers the #tabbed event.

#backTabbed

When a notebook tab group (either horizontal or vertical) has
focus, and the Back-Tab (Shift-Tab) key is pressed to move the
focus to the previous widget in the tab order or another tab group
on the notebook, the notebook triggers the #backTabbed event.

#scrollLeft

If all of the tabs in a horizontal tab group of a notebook are not
visible, and the left double arrow icon is pressed to scroll
additional horizontal tabs into view, then the notebook triggers
the #scrollLeft event.

#scrollRight

If all tabs in a horizontal tab group of a notebook are not visible,
and the right double arrow icon is pressed to scroll additional
horizontal tabs into view, then the notebook triggers the
#scrollRight event.

#scrollUp

If all tabs in a vertical tab group of a notebook are not visible, and
the up double arrow icon is pressed to scroll additional vertical
tabs into view, then the notebook trigger the #scrollUp event.

#scrollDown

If all tabs in a vertical tab group of a notebook are not visible, and
the down double arrow icon is pressed to scroll additional vertical
tabs into view, then the notebook triggers the #scrollDown event.

#horizontalTabChanging

When a new tab within a horizontal tab group is selected, either
by selection using the mouse or by keyboard navigation, before
the view changes to the newly selected tab the notebook triggers
the #horizontalTabChanging event.
GUI Developer’s Guide 9-69

Configuring Widgets
#horizontalTabChanged

After a new tab within a horizontal tab group is selected, either by
selection using the mouse or by keyboard navigation, the
notebook triggers the #horizontalTabChanged event.

#verticalTabChanging

When a new tab within a vertical tab group is selected, either by
selection using the mouse or by keyboard navigation, before the
view changes to the newly selected tab the notebook triggers the
#verticalTabChanging event.

#verticalTabChanged

After a new tab within a vertical tab group is selected, either by
selection using the mouse or by keyboard navigation, the
notebook triggers the #verticalTabChanged event.

Percent Done Bar
Also sometimes called a Progress Bar, this widget gives a visual
indication of how far a process has advanced. It’s commonly used for
file copy procedures, but can be useful for any number of lengthy
processes to give the user an indication of how much work has been
done and how much more there is to go.

Basic Properties
Only the Basic properties are specific to this widget.

Aspect
The instance variable that determines the percentage. The value is a
numeric value between 0 and 1.

Orientation
Horizontal indicates progress horizontally.

Vertical indicates progress vertically.

Both indicates progress both vertically and horizontally.

Area shows percentage in terms of area covered, rather than linearly.

Reverse reverses the horizontal and/or vertical direction.
9-70 VisualWorks

Radio Buttons
Starting Point
The grid with five radio buttons sets the starting point: top, bottom,
left, right, or center. If Both is selected for the orientation, then the
starting point is either a corner or the center.

Adding a Percent Done Bar
1 Add a Percent Done Bar widget to the canvas and select it.

2 In the Aspect property, enter a name for the aspect.

3 Set the progress orientation: Horizontal, Vertical, or Both.

Optionally, select Reverse, to reverse the direction of progress
indication. Select Area to indicate progress as the percentage of
area filled.

4 Select a starting point radio button.

5 Apply the properties and install the canvas. Use define to add the
aspect instance variable and accessor method.

Percent Done Bar Events
A Percent Done Bar triggers events when its value has changed.

#changed

When a percent done bar is given a new percentage value, it
triggers the #changed event. The percent done bar, unlike other
widgets that trigger #changed events, does not have a matching a
#changing event.

Radio Buttons
A group of radio buttons allows a user to select a single item from a
limited list of choices. Selecting a radio button causes any other
button in its group to be deselected. This characteristic makes radio
buttons useful only where an exclusive selection is appropriate.

Radio buttons are typically used only for a very brief and static set of
choices. If you want your application to reconfigure the list of choices
programmatically, you use a list widget instead. A list is also
scrollable, making it more suitable for a long list of options.

To allow users to select more than one choice, use either a group of
check boxes or a list widget with the multi-select property turned on.
GUI Developer’s Guide 9-71

Configuring Widgets
To add a group of radio buttons:

1 Add a radio button to the canvas for each selectable option.

2 For each button, change the Label property to name the choice.

3 Enter the same Aspect property for each button in the group.

The common aspect is what makes a group.

4 For each button, enter a different Select property.

This symbol is stored in the Aspect value holder whenever the
button is selected.

5 Apply the properties and install the canvas, and use define to add
an instance variable and accessor method for the aspect.

6 Create an initialize method, in which you initialize the aspect
variable to hold a value holder containing one of the valid Select
symbols.

initialize
super initialize.
outputMode := #dialog asValue.
showMinutes := true asValue.
showHours := true asValue.
showSeconds := true asValue.

The default symbol determines which radio button is the default.

Radio Button Events
A Radio Button triggers events when its label is changing, when it
gains and looses focus, and when the selection is turned on or off.

Radio Buttons send the #labelChanging, #labelChanged, #turnedOn and
#turnedOff events only after the Radio Button has been created and
displayed on the canvas. Thus, a Radio Button that has its value
initially set to be turned on or off, will not trigger that event, since that
value is assigned before the Radio Button is initially displayed on the
canvas.

#labelChanging

When a radio button's label is about to change, the radio button
triggers the #labelChanging event.

#labelChanged

After a radio button's label has changed, the radio button triggers
the #labelChanged event.
9-72 VisualWorks

Region
#clicked

When a radio button is clicked on by the mouse, without regard to
the on or off state of the radio button, the radio button triggers the
#clicked event.

#gettingFocus

When a radio button receives focus, either by being tabbed to or
clicking on, the radio button triggers the #gettingFocus event.

#losingFocus

When a radio button loses focus, either by being tabbed away
from or by another widget on the canvas gaining focus, the radio
button triggers the #losingFocus event.

#tabbed

When a radio button has focus, and the Tab key is pressed
causing the focus to move to the next widget in the tab order, the
radio button triggers the #tabbed event.

#backTabbed

When a radio button has focus and the Back-Tab (Shift-Tab) key
is pressed causing focus move to the previous widget in the tab
order, the radio button triggers the #backTabbed event.

#turnedOn

After a radio button has its state changed from being not selected
to being selected, the radio button triggers the #turnedOn event.

#turnedOff

After a radio button has its state changed from being selected to
not being selected, the radio button triggers the #turnedOff event.

Region
For visual variety, you can use a region. A region can be rectangular
or elliptical, and supports colors.

Adding a Region
1 Use a Palette to add a region to the canvas. Leave the region

selected.
GUI Developer’s Guide 9-73

Configuring Widgets
2 Set the region’s Rectangle or Ellipse property, as desired, and apply
the properties.

3 Use the widget handles to size and position the region.

4 If desired, use the Color property page to apply color to the
foreground (border) and/or background (interior).

5 Apply the properties and install the canvas.

Region Events
A Region triggers events when one of its visible properties is
changed programmatically.

#changing

When a region is about to change its size, inside color, border
color or border size, before the change is applied the region
triggers the #changing event.

#changed

After a region has had its size, inside color, border color or border
size changed, the region triggers the #changed event.

Resizing Splitter
The Resizing Splitter widget allows users to resize widgets in the
GUI. For example, in the GUI Painter Tool, a Resizing Splitter is
between the hierarchical list of widgets and the tabbed notebook.

You can change the relative size of both by selecting and dragging
the area between them. The cursor shape changes while it is passing
over a Resizing Splitter, indicating that the border is movable.

Because this widget is really only intended for direct user
manipulation, no programmatic interface is described in this section.

Typically, the Resizing Splitter will be one of the last widgets you add
to the canvas, since you add it between other widgets whose size you
want to allow the user to control.

Adding a Resizing Splitter
1 Select the Resizing Splitter and drop it on the canvas between

the widgets you want to resize.
9-74 VisualWorks

Resizing Splitter
2 Initially the widget is proportioned horizontally, and the the
Horizontal check box is marked, for separating widgets top to
bottom. To separate widgets left to right, uncheck the Horizontal
check box and resize the widget accordingly.

3 In the Left/top widgets: properties field, enter the IDs of the widgets
to the left of or above the widget. Similarly, in the Right/bottom
widgets: field, enter the IDs of the widgets to the right or below the
Resizing Splitter.

Since there may be (frequently are) more than one widget on one
side of a widget, these fields take space-separated widget ID
names. Only widgets in the lists are resized as the Resizer
Splitter is moved. IDs can be listed either simply as identifiers
(TreeView1 TextEditor2) or as symbols (#TreeView1 #TextEditor2).

4 Accept and install the canvas.

Setting Widget Positioning
To make sure the widgets resize appropriately as the ResizIng
Splitter is moved, you will need to set the widget positions carefully.
Use the Position pages for the affected widgets’ properties for precise
control.

The Resizing Splitter can either have a border or be borderless. With
a border it can double as a separator line, and so enhance the look of
your GUI. Without a border it is invisible, and so simply serves as an
area to grab for resizing. Even if you want it to be invisible in the final
product, leaving it with a border can be useful while arranging your
GUI.

For example, let’s set position settings for a GUI with a Tree View in
the top left and a group of Check Boxes on the lower left, separated
by a bordered Resizing Splitter, and a Text Editor on the right
separated by an unbordered Resizing Splitter. The GUI looks like
this:
GUI Developer’s Guide 9-75

Configuring Widgets
Set the positions as shown below (placement of the check boxes is
left as an exercise for the reader):
9-76 VisualWorks

Resizing Splitter
For clarity, the positions are all given as relative either to a line shared
by a Resizing Splitter, or to an edge, but that is not necessary. The
affected widgets are identified in the Resizing Splitter’s Left/top widgets:
and Right/bottom widgets: lists.

Position Offset

TreeView (top left)

Left (L) 0 3

Top (T) 0 3

Right (R) 0.5 -3

Bottom (B) 0.5 -7

TextEditor (right)

Left (L) 0.5 3

Top (T) 0 3

Right (R) 1 -3

Bottom (B) 1 -3

GroupBox (bottom left)

Left (L) 0 3

Top (T) 0.5 3

Right (R) 0.5 -3

Bottom (B) 1.0 -7

ResizingSplitter (horizontal)

Left (L) 0 26

Top (T) 0.5 -2

Right (R) 0.5 -26

Bottom (B) 0.5 2

RisizingSplitter (vertical)

Left (L) 0.5 -2

Top (T) 0 0

Right (R) 0.5 2

Bottom (B) 1 0
GUI Developer’s Guide 9-77

Configuring Widgets
Resizing Splitter Events
A Resizing Splitter triggers events when it is clicked on and when its
position on the canvas has changed.

#clicked

When a resizing splitter is clicked on by the mouse, without
regard to if the splitter is moved, the resizing splitter triggers the
#clicked event.

#moved

When a resizing splitter has finished being moved and then the
mouse button has been released, the resizing splitter triggers the
#moved event.

Sliders
A slider simulates the sliding switch that some electronic devices use
for controlling volume, bass level, and other properties. A slider
enables you as the designer of an application to define a specific
range of legal values, and it enables the user to conveniently select a
value within that range.

Adding a Slider
Online example: Slider1Example

1 Add a slider widget to the canvas.

2 On the Basics property page, in the slider’s Aspect property, enter a
name for the aspect (destination).

3 (Optional) Set the Start, Stop, and Step properties

These properties set the range and increment for the slider. The
default Start is 0 and Stop is 1. The default Step is nil, providing
continuous motion.

4 Apply the properties and install the canvas, and use define to add
the aspect instance variable and accessor method (destination).

5 Create or edit the initialize method to initialize the variable with a
value holder and an initial value.
9-78 VisualWorks

Sliders
initialize
"Destination"
destination := Date today year asValue.
"Current year"
currentYear := Date today year asValue.

"Trip meter"
tripRange := RangeAdaptor

on: currentYear
stop: 4000
grid: 1.

Connecting a Slider to a Field
Although a slider is both an input and an output device, it gives only a
rough idea of the current value. A field is commonly used to display
the precise value.

Connect Slider to Numeric Field
Slider1Example uses a field to display the destination year, because
the slider covers such a large range (zero to 4000) that the user can
only guess at its current value.

1 Add a field to the canvas.

2 In the field’s Aspect property, enter the same aspect name as for
the slider.

3 In the field’s Type property, select Number.

4 Apply the properties and install the canvas.

Connect Slider to a Non-numeric Field
Online example: Slider2Example

By its nature, a slider always manipulates a numeric value. You can
make it appear to manipulate a nonnumeric value, however, by using
a field to display the transformed value. The example translates
numeric values to months.

1 Add a field to the canvas.

2 In the field’s Aspect property, enter a different method name than
the slider’s Aspect (month).

3 In the field’s Type property, select the type that corresponds to the
transformed value (the example uses a String type).

4 Apply the properties and install the canvas, and use define to
create the aspect instance variable and accessing method.
GUI Developer’s Guide 9-79

Configuring Widgets
5 In a method in the application model (typically initialize), initialize
the field’s variable.

6 Edit the initialize method so a change message (-changedDate) is
sent to the application model when the slider’s value changes.

initialize
month :=(Date nameOfMonth: 1) asValue.
year := 1900 asValue.
dateRange := (0@1) asValue.
dateRange onChangeSend: #changedDate to: self.

7 Create the change method (-changedDate) in the application
model.

This method is responsible for changing the field’s value based
on the slider’s new value.

changedDate
"Convert the y-axis value to a month."
| y x |
y := self dateRange value y.
y := (12 - (y * 12) asInteger) max: 1."(12 months)"
self month value: (Date nameOfMonth: y).
"Convert the x-axis value to a year."
x := self dateRange value x.
x := 1900 + (x * 100) asInteger."(100 years)"
self year value: x.

Making a Slider Read-Only
Although it is normally an input device, a slider can be used purely as
an output device. In Slider1Example, we use a read-only slider as a
meter to display the progress of the user’s time-traveling adventure.

1 On the Basics properties page, assign the slider’s ID property with
an identifying name (tripRange).

2 In a method in the application model (typically postBuildWith:), get
the slider component from the builder and disable it.

postBuildWith: aBuilder
"Disable the trip meter, making it read-only."
(self wrapperAt: #tripRange) disable.
9-80 VisualWorks

Sliders
Changing the Slider Range
When the slider’s range is unchanging, you can use the slider’s Start,
Stop, and Step properties to set the range and the step value. When
the range or step varies, however, you need to adjust the range within
the application.

A RangeAdaptor is a specialized value model that also keeps track of
the range and step values. You can change those values by sending
messages to the adaptor.

Online example: Slider1Example (the Trip Meter slider)

1 Edit the slider’s initialization (typically in an initialize method) to
initialize the slider’s aspect variable with a -RangeAdaptor by
sending the instance creation message (on:start:stop:grid:).

The on: argument is a value holder containing the number that
the slider manipulates. When a field is connected to the slider, as
in the example, this argument is the field’s aspect variable. The
grid: argument is the step value.

initialize
"Destination"
destination := Date today year asValue.
"Current year"
currentYear := Date today year asValue.
"Trip meter"
tripRange := RangeAdaptor

on: currentYear
start: 0
stop: 4000
grid: 1.

2 Whenever the range or step must change, send a rangeStart:,
rangeStop:, or grid: message to the adaptor. (In the example, this
is done in the engage method.)

engage
"Start the time trip."
| startingYear destinationYear direction |
startingYear := self currentYear value.
destinationYear := self destination value.
destinationYear == startingYear

ifTrue: [^Dialog warn: 'Please select a new destination.'].
"Set the endpoints on the trip meter."
self tripRange

rangeStart: startingYear;
rangeStop: destinationYear;
GUI Developer’s Guide 9-81

Configuring Widgets
grid: 1.
"Reset the meter to the starting position."
currentYear value: startingYear.
"Set up a step value for the loop that follows (-1 = backward in
 time)."
destinationYear > startingYear

ifTrue: [direction := 1]
ifFalse: [direction := -1].

"For each year of time travel, update the current year."
startingYear to: destinationYear by: direction do: [:yr |

currentYear value: yr].

Making a Slider Two-Dimensional
You can make a slider manipulate a point in two dimensions and then
use the x-axis and y-axis components of that point to control two
separate parameters.

In Slider2Example, a two-dimensional slider is used to alter two fields
simultaneously. The first field uses the y component to display one of
the 12 months. The second field uses the x component to arrive at a
year between 1900 and 2000.

Online example: Slider2Example

1 In an instance method (typically initialize), initialize the slider’s
variable to an instance of Point that is held by a value holder, and
arrange for a change message (changedDate) to be sent to the
application model when the slider’s value changes.

initialize
month := (Date nameOfMonth: 1) asValue.
year := 1900 asValue.
dateRange := (0@1) asValue.
dateRange onChangeSend: #changedDate to: self

2 In a postBuildWith: method, get the slider from the application and
ask it to beTwoDimensional.

postBuildWith: aBuilder
(self widgetAt: #dateRange)

beTwoDimensional;
setMarkerLength: 10.

3 Create the change method (-changedDate) in the application
model.

This method splits the slider’s value into its x-axis and y-axis
components. Each component is a value between 0 and 1 and is
9-82 VisualWorks

Spin Buttons
transformed as needed to produce a suitable value for the related
field.

changedDate
"Convert the y-axis value to a month."
| y x |
y := self dateRange value y.
y := (12 - (y * 12) asInteger) max: 1."12 months"
self month value: (Date nameOfMonth: y).
"Convert the x-axis value to a year."
x := self dateRange value x.
x := 1900 + (x * 100) asInteger."(100 years)"
self year value: x.

Slider Events
A Slider triggers events when its value has changed or folded in half
and eaten whole (without regard to cheese). Unlike other widgets that
interact with the mouse, a Slider never gets focus and thus does not
trigger focus or mouse click events.

#changing

When a slider is about to change its value, the slider triggers the
#changing event.

#changed

After a slider has changed its value, the slider triggers the
#changed event.

Spin Buttons
A spin button allows a user to select a value from a determined
range. The selected value is returned as a selectable object type and
format.

A spin button model must represent a number, whenever its Type
property is set to either String, Text, or Symbol. In these cases the
model must respond to asNumber and not answer zero unless the
model itself represents 0.

For example, model values for a spin button, listed by Type, might be:
GUI Developer’s Guide 9-83

Configuring Widgets
The Low Value is the minimum setting the button will spin to, and the
High Value is the maximum setting. The spin button range is
unbounded unless these values are set.

The Interval is the amount each button press increments or
decrements the spin button value. Any number may be entered for
the Interval, but only positive numbers make sense. The default
Interval value is 1.

For all spin button Types other than Date, Time, and Timestamp, the
Low Value and High Value properties expect only numeric entries; no
non-numeric symbols should appear in the entry.

If the Type property is set to Date, enter Low Value and High Value
entries as dates, such as 12/20/1988 or Sep 30 1990. The Interval
expects values as a number of days.

When Type is set to Time, format Low Value and High Value entries
as times, such as 12:34:23 pm. Do not set a High Value of 12:00:00
am, unless you have the wrap around property set. The Interval
entries are in units of seconds.

If Type is a Timestamp, enter Low and High Values in Timestamp
format, such as 01/03/1999 0:00:00.000. Interval entries are in units
of milliseconds.

The table below summarizes the acceptable spin button property
values for Date, Time, and Timestamp type.

Type Example model value

String '774.3'

Text '12e-03' asText

Symbol #'12'

Type Low/High Value Entry Example Interval Units

Date 12/20/1988, Sep 30 1990 Days

Time 12:34:23 pm, 18:00:00 Seconds

Timestamp 01/03/1999 0:00:00.000 Milliseconds
9-84 VisualWorks

Spin Buttons
Adding a Spin Button
To add a spin button to your GUI:

1 Add a spin button widget to the canvas.

2 In the Aspect property, enter a name for the aspect.

3 (Optional) Set the Type, Format, Low Value, High Value, and Interval
properties

These properties set the returned object type and format, and the
range and increment for the presented values.

4 Apply the properties and install the canvas, and use define to add
the aspect instance variable and accessor method.

5 Create or edit the initialize method to initialize the aspect variable
with a value holder and an initial value.

Spin Button Events
A Spin Button triggers events when its value is changing, when it
gains and looses focus, when it gets clicks from the mouse, when it
spins up or down and it reaches the end of its value range.

#changing

When the value of the spin button is about to be accepted, either
by spinning the button, or after directly editing the value and
exiting the spin button, the spin button triggers the #changing
event.

#changed

After the value of the spin button has been accepted, the spin
button triggers the #changed event.

#clicked

When a spin button is clicked on with the <Select> mouse button,
the spin button triggers the #clicked event.

#rightClicked

When a spin button is right clicked on with the <Operate> mouse
button, the spin button triggers the #rightClicked event. This event
will occur without regard to whether there is a popup menu
associated with the spin button.
GUI Developer’s Guide 9-85

Configuring Widgets
#doubleClicked

When a spin button is double clicked on with the <Select> mouse
button, the spin button will triggers the #doubleClicked event. This
event is always immediately preceded by a #clicked event.

#gettingFocus

When a spin button receives focus, either by being tabbed to or
by clicking on by the mouse, the spin button triggers the
#gettingFocus event.

#losingFocus

When a spin button loses focus, either by being tabbed away
from, or by having another widget on the canvas gain focus, the
spin button triggers the #losingFocus event.

#tabbed

When a spin button has focus, and the Tab key is pressed in
request to have the focus to move to the next widget in the tab
order, the spin button triggers the #tabbed event.

#backTabbed

When a spin button has focus, and the Back-Tab (Shift-Tab) key
is pressed in request to have the focus move to the previous
widget in the tab order, the spin button triggers the #backTabbed
event.

#spinUp

When the up arrow button is pressed on a spin button, prior to
changing the value of the spin button, the spin button triggers the
#spinUp event. If the value of the spin button is changed, the
#spinUp event is always immediately followed by #changing,
#changed and #spunUp events. If the value of the spin button is not
changed, the #spinUp event may be followed by a #bounceTop
event, depending on the settings of the spin button.

#spunUp

After the up arrow button is pressed on a spin button, after
changing the value of the spin button, the spin button triggers the
#spunUp event. The #spunUp event is always immediately
preceded by a #changed event.
9-86 VisualWorks

Spin Buttons
#spinDown

When the down arrow button is pressed on a spin button, prior to
changing the value of the spin button, the spin button triggers the
#spinDown event. If the value of the spin button is changed, the
#spinDown event is always immediately followed by #changing,
#changed and #spunDown events. If the value of the spin button is
not changed, the #spinDown event may be followed by a
#bounceTop event, depending on the settings of the spin button.

#spunDown

After the down arrow button is pressed on a spin button, after
changing the value of the spin button, the spin button triggers the
#spunDown event. The #spunDown event is always immediately
preceded by a #changed event.

#wrapAroundBottom

If a spin button has a low value set in its properties, and has the
wrap around property set, then when the spin button is asked to
spin below the lowest value, after the #spinDown, #changing,
#changed and #spunDown events are triggered, the spin button
triggers the #wrapAroundBottom event.

#wrapAroundTop

If a spin button has a high value set in its properties, and has the
wrap around property set, then when the spin button is asked to
spin above the highest value, after the #spinUp, #changing,
#changed and #spunUp events are triggered, the spin button
triggers the #wrapAroundTop event.

#bounceBottom

If a spin button has a low value set in its properties, and does not
have the wrap around property set, then when the spin button is
asked to spin below the lowest value, after the #spinDown event is
triggered, the spin button triggers the #bounceBottom event.
Because the value has not changed, the #changing, #changed and
#spunDown events will not trigger.

#bounceTop

If a spin button has a high value set in its properties, and does
not have the wrap around property set, then when the spin button
is asked to spin above the highest value, after the #spinUp event
GUI Developer’s Guide 9-87

Configuring Widgets
is triggered, the spin button triggers the #bounceTop event.
Because the value has not changed, the #changing, #changed and
#spunUp events will not trigger.

Subcanvases
A subcanvas is a widget for displaying another canvas in the canvas
you are building. It is an effective way to build an application interface
that incorporates another application interface, or an entire
application, into itself.

There are three primary uses for subcanvases:

Inheriting an application

Within a hierarchy of application models, you can inherit an
interface and its value models.

Nesting an application

By placing an application in a subcanvas, you make its interface
part of your own application’s interface, and effectively
incorporate its domain model into your application as well.

Reusing an interface only

You can incorporate another application’s interface, but supply
your own domain model for it.

All three of these methods promote various levels of reuse. Using
subcanvases in these ways allow you to build a collection of reusable
interfaces.

Inheriting a Subcanvas
Subcanvases provide a way to extend the inheritance mechanism in
Smalltalk to building a user interface. By building an application
model as a subclass of another application model, the subclass will
inherit standard interface modules, value holders, and action
methods.

For example, Subcanvas1Example is a subclass of List2Example, so it
can reuse the List2Example interface, value holders, and actions.
9-88 VisualWorks

Subcanvases
A subclass need not reimplement anything that the parent class has
implemented, but it can override an inherited action.A limitation of the
inheritance approach is that if you use the same inherited interface
twice in a canvas, both will display the same thing. This is because
both reference the same value holder.

Online example: List2Example (parent) and Subcanvas1Example

1 Create a new application model (Subcanvas1Example) as a
subclass of the application model from which it is to inherit
(List2Example).

2 Place a subcanvas widget on the inheriting canvas (the canvas
for Subcanvas1Example).

3 In the subcanvas’s Canvas property, enter the name of the
inherited interface specification to be used by the subcanvas
(listSpec).

This spec name must be unique within the inheritance chain. For
example, you could not embed an inherited canvas named
windowSpec in a local canvas named windowSpec.

The Name and Class properties are not needed for inheriting a
canvas.

4 Apply the property and install the inheriting canvas in its
application model (Subcanvas1Example).

Changing the Value of an Inherited Widget
The power of reuse is fully realized when you provide local values for
the inherited widgets. For example, List2Example initializes its list to
display a collection of color names. The inheriting application,
Subcanvas1Example, provides its own collection, causing the reused
list to display cursor names instead.

1 Create or edit the initialize method in the inheriting application
model (Subcanvas1Example).

2 In the initialize method, invoke the inherited initialize method.

3 In the initialize method, use the inherited aspect message
(selectionInList) to access the desired valued model. Then send
an accessing message (in this case, list:) to the value model to
install the desired value (cursorNames).
GUI Developer’s Guide 9-89

Configuring Widgets
initialize
"Install a different list (cursor names) than
the inherited default (color names)."
| cursorNames |
super initialize.
cursorNames := Cursor class organization

listAtCategoryNamed: #constants.
self selectionInList list: cursorNames.

Nesting One Application in Another
Using the subcanvas, you can embed (or nest) one application in
another. This is useful, for example, for creating a set of reusable
application modules that can be plugged into larger applications as
needed. This approach can help avoid duplication of effort for generic
modules and enforce interface design standards.

The embedded application supplies its own value models and action
methods. Because the applications are not generally related by
inheritance, you cannot override an embedded application’s action
methods.

You can embed the same application any number of times in the
same canvas. For example, you could reuse List2Example four times in
creating a System Browser’s four list views.

Online example: List2Example embedded in Subcanvas2Example

1 Add a subcanvas widget in the reusing canvas.

2 Specify these properties for the subcanvas:

Name, the name of the method that returns an instance of the
embedded application (classNames).

Class, the name of the application that you are embedding
(List2Example).

Canvas, the name of the interface specification for the embedded
application (listSpec).

3 Apply the properties and install the reusing canvas in its
application model (Subcanvas2Example).

4 Add an instance variable (classNames) in the reusing application
model for holding onto the embedded application.

5 Add an accessor method for the instance variable:

classNames
^classNames
9-90 VisualWorks

Subcanvases
6 Create or edit the initialize method in the reusing application
model, so it creates the embedded application and assigns it to
the instance variable:

initialize
"Reusing List2Example's interface only -- initialize the list
holder."
selectionInList := SelectionInList with: Smalltalk classNames.
"Reusing List2Example application -- initialize the application
instance."
classNames := List2Example new.
classNames list: Smalltalk classNames.

Setting a Value in an Embedded Widget
An embedded widget uses the value with which its host application
initializes it.

1 In the initialize method, send a message (list:) to the embedded
application, installing the desired value.

initialize
"Reusing List2Example's interface only -- initialize the list
holder."
selectionInList := SelectionInList with: Smalltalk classNames.
"Reusing List2Example application -- initialize the application
instance."
classNames := List2Example new.
classNames list: Smalltalk classNames.

2 If necessary, as in the example, you may need to add a method
(list:) to the embedded application model that allows an outside
application to supply a new value.

list: aCollection
"Install aCollection in the list. This message is provided so
reusers can install a list that is different than the default list
(color names)."
self selectionInList list: aCollection.

Reusing an Interface Only
You can use a subcanvas to embed one canvas inside another. This
is similar to embedding an entire subapplication, except that the
reusing application must supply all value models and methods for the
interface.

Because you are reusing only the interface, you have to reimplement
all of the supporting value holders and methods. You also have to
supply actions for any buttons in the embedded interface.
GUI Developer’s Guide 9-91

Configuring Widgets
Online example: Subcanvas2Example (which reuses List2Example’s
listSpec)

1 Add a subcanvas in the reusing canvas.

2 Specify these properties for the subcanvas:

Class, the name of the application that defines the interface to be
embedded (List2Example).

Canvas, the name of the interface specification to be embedded
(listSpec).

The Name property is not needed for reusing the interface only.

3 Apply the properties and install the reusing canvas in its
application model (Subcanvas2Example).

4 Edit the reusing application model, adding instance variables and
methods to support the embedded interface.

These instance variables and methods must have the same
names as the corresponding variables and methods in the
reused class. Modify values and action methods as desired.

Changing Interfaces at Run Time
Using a subcanvas makes it easy to change the UI in response to the
current context of the application. In Subcanvas3Example, a subcanvas
is used to hold either a text editor or a list view, depending on
whether the user wants to see textual or listed material related to a
selected class.

Online example: Subcanvas3Example

1 In the subcanvas’s Name property, enter the name of the method
that supplies the initial embedded application
(embeddedApplication).

2 Apply the properties and install the reusing canvas.

3 Create the method (embeddedApplication) that you named in step
1.

4 Create a change method which:

a Creates and initializes an instance of the application model to
swap (Editor2Example)

b Gets the specification for the new interface, by sending an
interfaceSpecFor: message to the embedded application
9-92 VisualWorks

Subcanvases
model’s class (Editor2Example). The argument is the name of
the interface specification (#windowSpec).

c Gets the subcanvas from the builder and sends a client:spec:
message to it. The first argument is the application you
created in step 4a. The second argument is the spec object
you obtained in step 4b.

showComment
 selectedClass subcanvas spec application |
selectedClass := Smalltalk at: self classNames selection.
"Create the subapplication and initialize it."
application := Editor2Example new.
application text value: selectedClass comment.
"Get the spec object for the embedded canvas."
spec := Editor2Example interfaceSpecFor: #windowSpec.
"Get the subcanvas and install the editing application."
subcanvas := self widgetAt: #subcanvas.
subcanvas client: application spec: spec.

Accessing an Embedded Widget
You may need to access a widget within an embedded interface. For
example, when an embedded action button is not appropriate in the
local application, you may want to make it invisible or disable it.

Online example: Subcanvas3Example

1 Before installing a subapplication using client:spec:, initialize the
subapplication’s builder to nil.

This causes the subapplication to release its old builder.

2 Ask the subapplication for widget’s wrapper by sending
wrapperAt:, with the ID of the desired widget.

showMethods
| selectedClass subcanvas spec |
selectedClass := Smalltalk at: self classNames selection.
spec := List2Example interfaceSpecFor: #listSpec.
"Install the method names as the collection in the list
application."
self listApplication list:

selectedClass selectors asSortedCollection.
"Set the subbuilder to nil to discard the old builder. This is only
necessary when the application uses the builder later to access
widgets."
listApplication builder: nil.
"Get the subcanvas and install the list application."
GUI Developer’s Guide 9-93

Configuring Widgets
subcanvas := self widgetAt: #subcanvas.
subcanvas client: listApplication spec: spec.
"Disable the embedded buttons (just to show that we can)."
(listApplication wrapperAt: #addButton) disable.
(listApplication wrapperAt: #deleteButton) disable.

Subcanvas Events
A Subcanvas triggers events when its view scrolls due to activity via
its scroll bars or the Subcanvas builds and displays a new subcanvas.

#changing

When a subcanvas is sent a client:, client:spec:, or
client:spec:builder: message to have it host a new canvas, prior to
the work of building and displaying the new view, the subcanvas
triggers the #changing event. This event is only triggered once a
subcanvas has been built and displayed the first time. Thus the
#changing event is not triggered upon the initial creation of a
subcanvas.

#changed

After a subcanvas is sent a client:, client:spec:, or client:spec:builder:
message to have it host a new canvas, and the new view is
completed being built and displayed, the subcanvas triggers the
#changed event. This event is only triggered once a subcanvas
has been built and displayed the first time. Thus the #changed
event is not triggered upon the initial creation of a subcanvas.

#scrollLeft

If while manipulating a horizontal scroll bar in a subcanvas, the
subcanvas to the left, the subcanvas triggers the #scrollLeft event.

#scrollRight

If while manipulating a horizontal scroll bar in a subcanvas, the
subcanvas scrolls to the right, the subcanvas triggers the
#scrollRight event.

#scrollUp

If while manipulating a vertical scroll bar in a subcanvas, the
subcanvas scrolls up, the subcanvas triggers the #scrollUp event.
9-94 VisualWorks

Tab Control
#scrollDown

If while manipulating a vertical scroll bar in a subcanvas, the
subcanvas scrolls down, the subcanvas triggers the #scrollDown
event.

Tab Control
Online example: TabControlExample

The TabControl is an alternative to the Notebook widget, providing a
tabbed folder look. To change the contents of the subpane below the
row of tabs, click a tab, or select the tab using cursor keys and press
Enter.

The Tab Control shows two scroller buttons, if there are more tabs
than can be displayed in the available header space. Press the
buttons to scroll the tabs.

Compatibility with Notebook
The Tab Control is largely, but not completely, protocol-compatible
with the Notebook widget.

In many cases, you can change from a Notebook to a Tab Control
simply by editing the application’s windowSpec, replacing the
#NoteBookSpec symbol to #TabControlSpec. This conversion method
works, for example, with Notebook1Example, Notebook4Example, and
Notebook5Example.

One limitation is that Tab Control does not support secondary tabs,
as does Notebook. For this reason, the above conversion does not
work for Notebook2Example or Notebook3Example.

For an example specifically using the Tab Control, load the
TabControlExample parcel.

Adding a Tab Control
1 Select the Tab Control on the Palette and drop it on the canvas.

2 In its Aspect property, enter an aspect name. Also enter an ID, or
keep the default. You will need the ID to identify the selected tab.

3 Define the accessor method for the aspect.

The model should be a SelectionInList on either Strings, which
make up textual tab labels, or Associations of a VisualComponent to
GUI Developer’s Guide 9-95

Configuring Widgets
a (optional) String. In TabControlExample, this is handled in two
methods:

tabs
tabs isNil

ifTrue:
[(tabs := SelectionInList with: self labelArray)

selectionIndex: 1.
tabs selectionIndexHolder

onChangeSend: #tabsChanged
to: self].

^tabs

labelArray

"Private - The list of tab names (and/or icons). See also
#specArray."
^Array

with: 'Appearance'
with: self class colorsImage -> 'Colors'
with: self class printerImage -> ''

4 Paint subcanvases for each page (See the appearanceSpec,
colorsSpec, and fontsSpec class methods in TabControlExample for
examples.)

So the canvas can be identified by an index, which will be
retrieved from labelArray, TabControlExample defines a specArray
method:

specArray
"Private - The list of associated sub canvaes. See also
#labelArray."
^#(#appearanceSpec #fontsSpec #colorsSpec)

5 Define a method that will respond by changing subcanvases
when the tab selection has changed. This message is sent when
the SelectionInList changes, as is defined in the tabs method.

tabsChanged
"Every time, a tab is changed, a new sub canvas gets installed."
| index |
index := self tabs selectionIndex.
(self widgetAt: #tabbing)

client: self
spec: (self specArray at: index)

The change is made by the client:spec: message sent to the Tab
Control widget, which is retrieved from the builder.

For additional options and approaches, see above.
9-96 VisualWorks

Tab Control
Defining Initial Labels
The above example defines the set of tab labels in code. You have
the option of defining labels directly in the Details property page. This
can be convenient, especially when there is no need to add pages
dynamically.

To add a label, enter it into the Entry Field below the List and click
Add. To change a label, select it, edit it in the Entry Field, and click
Change. To delete, click Delete. To change the order of lables, select a
label and drag it to its new position in the list.

When you click Apply, your labels are shown in the canvas, unlike
when you provide labels in code.

You access the label by index as before, and so can change
subcanvases in the same way. So, within the Application Model, for a
Tab Control with aspect name tabs, send:

self tabs selectionIndex
returns the index of the currently selected tab.

Placing an Icon on a Tab
Each tab label can be a string, an icon, or an icon and a string. To
use an icon, the SelectionInList must be an Association. The tabs
method invokes labelArray to provide the labels, as follows:

labelArray
"Private - The list of tab names (and/or icons). See also #specArray."
^Array

with: 'Appearance'
with: self class colorsImage -> 'Colors'
with: self class printerImage -> ''

If the label is only a string, then it is provided simply as a String, as in
the case with the first tab, ‘Appearance’.

If the label includes an icon, then the label is specified by an
Association between the icon and a String. The second tab label is an
Association between the graphic returned by self colorsImage and the
String ‘Colors’.

The third tab is an icon without a String, so the String is empty.

Tab Control Events
A Tab Control triggers events when a tab selection is changing, when
one of its tabs gains or looses focus, and when its tabs scroll.
GUI Developer’s Guide 9-97

Configuring Widgets
#gettingFocus

When a tab control receives focus to one of its tabs, by being
clicked on by the mouse, or tabbed into by the keyboard, when
none of the tabs have had focus, the tab control triggers the
#gettingFocus event.

#losingFocus

When a tab control loses focus from one of its tabs, by being
clicked or tabbed away from, to anything except another of its
tabs, the tab control triggers the #losingFocus event.

#tabbed

When a tab control's tabs have focus, and the and the Tab key is
pressed in request to have the focus to move to the next widget in
the tab order, the tab control triggers the #tabbed event.

#backTabbed

When a tab control's tabs have focus, and the Back-Tab (Shift-
Tab) key is pressed in request to have the focus move to the
previous widget in the tab, the tab control triggers the
#backTabbed event.

#scrollLeft

If all of the tabs in a tab control are not visible, and the left arrow
button is pressed to scroll additional tabs into view, then the tab
control triggers the #scrollLeft event.

#scrollRight

If all of the tabs in a tab control are not visible, and the right arrow
button is pressed to scroll additional tabs into view, then the tab
control triggers the #scrollRight event.

#pageLeft

If all of the tabs in a tab control are not visible, and the left arrow
button is pressed to scroll additional tabs into view while the Shift
key is pressed, then the tab control triggers the #pageLeft event.

#pageRight

If all of the tabs in a tab control are not visible, and the right arrow
button is pressed to scroll additional tabs into view while the Shift
key is pressed, then the tab control triggers the #pageRight event.
9-98 VisualWorks

Tables
#tabChanging

When a new tab is selected in a tab control, either by selection
using the mouse or by keyboard navigation, before the view
changes to the newly selected tab, the tab control triggers the
#tabChanging event.

#tabChanged

After a new tab is selected in a tab control, either by selection
using the mouse or by keyboard navigation, the tab control
triggers the #tabChanged event.

Tables
A table displays data in a rows-and-columns structure. In
appearance, tables are similar to dataset widgets, except that tables
do not support direct editing, and tables can display dissimilar kinds
of data. Data must be stored in a collection that allows two-
dimensional access.

TableInterface
A table requires a relatively complex auxiliary object as its value
model, which is provided by TableInterface. A TableInterface holds
information about row and column labeling and formatting, in addition
to the table data itself.

Within a TableInterface, the table data is held by a composite object,
an instance of SelectionInTable, which stores the collection of cell
contents and the selection index. The collection is expected to be a
TwoDList (two-dimensional list), which converts a flat collection such
as an array into a matrix of rows and columns. Alternatively, you can
use a TableAdaptor to adapt a collection.

All of this interface machinery can be held by a single instance
variable in the application model, and you can simply send messages
to that object to fetch the table or the selection or any other aspect of
it. However, you may find it economical to create instance variables to
hold onto various aspects of the table interface. For example, the
SelectionInTable is useful when your application model will need to
access the contents of the table at run time.
GUI Developer’s Guide 9-99

Configuring Widgets
Adding a Table
Online example: Table1Example

1 Add a table widget to the canvas.

2 On the Basics property page, in the Aspect property, enter a name
for the aspect (e.g., tableInterface).

Set other property checkboxes as desired.

3 Apply the properties and install the canvas, and use define to add
the instance variable and accessor method for the aspect
(tableInterface).

Initialization is done in an initialize method (step 5), rather than by
checking the include initialization option.

4 Use a code browser to add other instance variables, as
appropriate.

Because TableInterface is a complex object, it is useful to create
additional instance variables for some of its components. In the
example we create one additional variable, sightingsTable and an
accessor for it.

5 Create an initialize method to initialize the TableInterface.

A new TableInterface takes a SelectionInTable object, which can be
initialized in the same method. In the example we set it as the
value of sightingsTable.

Normally you wouldn’t initialize the table with a hard-coded
collection, but would gather the table data from a database or
some other source.

initialize
| list |
super initialize.
"Create a collection of sightings data."
list := TwoDList

on: #('Vulcans' 188 173 192 'Romulans' 26 26 452) copy
columns: 4
rows: 2.

sightingsTable := SelectionInTable with: list.
"Create a table interface and load it with the sightings."
tableInterface := TableInterface new

selectionInTable: sightingsTable.
9-100 VisualWorks

Tables
Controlling Column Widths
All columns initially have an equal width that is determined by the
space available in the tab-le. If the table expands with the window, the
column widths will also expand.

To set specific widths for the columns, send a column-Widths:
message to the table interface. The argument is an array containing
one number for each column. The number is the width in pixels. Any
column for which no width is specified gets the width of the last entry
in the array.

Reset the widths at any time by adding to the initialize method.

tableInterface columnWidths: #(100 40).
This expression changes the first column so that it is wide enough to
show the entire name of the alien race. These widths will remain in
effect even if the window is expanded.

Connecting a Table to an Input Field
A read-only table is sufficient for some applications, but in many
situations the user needs a way to change the contents of a cell in the
table. This can be arranged indirectly by placing an input field near
the table and connecting it to the highlighted cell. This technique
relies on a single cell being selected.

Online example: Table2Example

1 Add an input field to the canvas.

2 On the Basics property page. in the field’s Aspect property, enter a
name for its aspect (e.g., cellContents).

3 Apply the change and install the canvas, and use define to add an
instance variable and accessor method for the aspect.

4 Add an instance method to update the table when the entry field
changes.

In the example we add changedCell in a change messages protocol:
GUI Developer’s Guide 9-101

Configuring Widgets
changedCell
| cellLocation |
"Get the coordinates of the highlighted cell."
cellLocation := self sightingsTable selectionIndex.
"If a cell is selected, update its contents from the input field."
cellLocation = Point zero

ifFalse: [self sightingsTable table
at: cellLocation
put: self cellContents value]

5 In the application model’s initialize method, initialize the input field
so it sends the changed message.

initialize
| list |
super initialize.
"Create a collection of sightings data."
list := TwoDList

on: #('Vulcans' 188 173 192 'Romulans' 26 26 452) copy
columns: 4
rows: 2.

sightingsTable := SelectionInTable with: list.
"Create a table interface and load it with the sightings."
tableInterface := TableInterface new

selectionInTable: sightingsTable.
cellContents := String new asValue.
self cellContents onChangeSend: #changedCell to: self.

The application adds the input data into the selected cell.

Notice that when you select a new cell, its contents are not shown in
the input field. To make the field update its contents when the table
selection changes, you must register interest in the table selection
with onChangeSend: and trigger an update in the input field.

Labeling Columns and Rows
You can label one or more columns by sending an array of labels to
the table interface. For row labels, you need to send an array of labels
and also an indication of the width of those labels.

Online example: Table3Example

This example adds code to the end of Table2Example’s initialize method
that initializes the row and column labels.

tableInterface
columnLabelsArray: #('Visiting Race' '1992' '1993' '1994');
rowLabelsArray: #(1 2);
rowLabelsWidth: 20.
9-102 VisualWorks

Tables
By default, all cells display their contents beginning at the left margin,
and all labels are centered. You can align data and labels using any
of three symbols: #left, #right, #centered, or -#leftWrapped. Using these
symbols, you can control the alignment of a column’s data, a
column’s labels, or a row’s labels.

Add code to the initialize method that initializes the label alignments.

tableInterface
elementFormats: #(#left #right #right #right);
columnLabelsFormats: #(#left #right #right #right);
rowLabelsFormat: #right.

As the example shows, you can set row labels to the same alignment
by passing a single symbol as argument, and the same applies to the
column alignments. For column data and labels, however, you also
have the option of setting each column’s alignment individually, as we
have done, by passing an array of symbols.

Table Events
A Table triggers events when a selection is changing, when it gains
and looses focus, when it gets clicks from the mouse, and when it's
view scrolls.

#clicked

When a table is clicked on with the <Select> mouse button, the
table triggers the #clicked event.

#rightClicked

When a table is right clicked on with the <Operate> mouse
button, the table triggers the #rightClicked event. This event will
occur without regard to whether there is a popup menu
associated with the table.

#doubleClicked

When a table is double clicked on with the <Select> mouse
button, the table triggers the #doubleClicked event. This event is
always immediately preceded by a #clicked event.

#gettingFocus

When a table receives focus, either by being tabbed to or by
clicking on by the mouse, the table triggers the #gettingFocus
event.
GUI Developer’s Guide 9-103

Configuring Widgets
#losingFocus

When a table loses focus, either by being tabbed away from, or
by having another widget on the canvas gain focus, the table
trigger the #losingFocus event.

#tabbed

When a table has focus, and the and the Tab key is pressed to
move the focus to the next widget in the tab order, the table
triggers the #tabbed event.

#backTabbed

When a table has focus, and the Back-Tab (Shift-Tab) key is
pressed to move the focus to the previous widget in the tab order,
the table triggers the #backTabbed event.

#scrollLeft

If while navigating with the keyboard or mouse, or manipulating a
horizontal scroll bar in a table, the table scrolls to the left, the
table triggers the #scrollLeft event.

#scrollRight

If while navigating with the keyboard or mouse, or manipulating a
horizontal scroll bar in a table, the table scrolls to the right, the
table triggers the #scrollRight event.

#scrollUp

If while navigating with the keyboard or mouse, or manipulating a
vertical scroll bar in a table, the table scrolls up, the table triggers
the #scrollUp event.

#scrollDown

If while navigating with the keyboard or mouse, or manipulating a
vertical scroll bar in a table, the table scrolls down, the table
triggers the #scrollDown event.

#rowSelectionChanged

If a table has its selection mode set to Row, and while navigating
with the mouse or keyboard, the selected row changes, the table
triggers the #rowSelectionChanged event.
9-104 VisualWorks

Text Editors
#columnSelectionChanged

If a table has its selection mode set to Column, and while
navigating with the mouse or keyboard, the selected column
changes, the table triggers the #columnSelectionChanged event.

#cellSelectionChanged

If a table has its selection mode set to Cell, and while navigating
with the mouse or keyboard, the selected cell changes, the table
triggers the #cellSelectionChanged event.

Text Editors
A text editor is useful for displaying and editing text that does not fit
comfortably within a field, especially when the text is expected to
have multiple lines. The text editor has built-in facilities for:

• Line wrapping

• Changing the text style

• Cutting, copying, and pasting

• Undoing and reverting

• Searching and replacing

• Printing

• Executing Smalltalk expressions

Adding a Text Editor
Online example: Editor1Example

1 Add a text editor to the canvas.

2 On the Basics property page, in the Aspect field, enter a name for
the aspect.

3 Install the canvas, and use define to add an instance variable and
aspect accessor method to the application model.

4 Create or edit the initialize method to set the aspect variable to a
value holder containing the initial text to be displayed (usually an
empty string).
GUI Developer’s Guide 9-105

Configuring Widgets
initialize
super initialize.
comment := '' asValue.
classes := SelectionInList with: Smalltalk classNames.
classes selectionIndexHolder

onChangeSend: #changedClass to: self.

textStyle := #plain asValue.
textStyle onChangeSend: #changedStyle to: self.
readOnly := false asValue.
readOnly onChangeSend: #changedReadOnly to: self

Retrieving and Modifying Selected Text
When the user highlights a portion of the text in an editor, your
application can retrieve the highlighted text. Text editors frequently
modify selected text in some way, such as to change the font, and
then insert the revised text into the main text.

1 In an instance method, get the controller from the text editor
widget, and ask the controller for the selected text.

2 Make any modifications to the text.

3 Ask the controller to replace the selection with a new text.

4 Ask the controller’s view to reset its selections (to adjust for a
possible width change in the selection).

5 Ask the view to redisplay itself.

changedStyle
"A text style was selected -- apply it to the current selection in
the comment."
| c selectedText style |
"Get the selected text."
c := self controllerAt: #comment.
selectedText := c selection.
"If nothing is selected, take no action."
selectedText isEmpty ifTrue: [^self].
"If 'Plain' was selected, remove all emphases;
otherwise add the new emphasis."
style := self textStyle value.
style == #plain

ifTrue: [selectedText emphasizeAllWith: nil]
ifFalse: [

selectedText addEmphasis: (Array with: style)
removeEmphasis: nil
allowDuplicates: false].
9-106 VisualWorks

Text Editors
"Ask the controller to insert the modified text, then update the
view."
c replaceSelectionWith: selectedText.
c view resetSelections.
c view invalidate.

Highlighting Text
It is occasionally useful for the application to highlight a text selection,
for example to indicate the result of a search.

To highlight text:

1 Write a method in the application model that gets the controller
from the widget.

2 Ask the controller to select the text between two endpoints (and
ask it to scroll the selection into view if necessary).

3 Ask the builder’s component to take the keyboard focus, so the
highlighting will be displayed.

changedClass
"When the list selection changes, update the comment view."
| selectedClass txt start wrapper |
selectedClass := self classes selection.
selectedClass isNil

ifTrue: [self comment value: '' asText]
ifFalse: [

txt := (selectedClass asQualifiedReference value) comment.
self comment

value: txt.
"Find and highlight the class name in the text."
start := txt

indexOfSubCollection: selectedClass asString
startingAt: 1.

start > 0 ifTrue: [
wrapper := (self wrapperAt: #comment).
wrapper widget controller
selectAndScrollFrom: start
to: start + selectedClass asString size - 1.
wrapper takeKeyboardFocus]].

Aligning Text
By default, text in an editor is aligned at the left margin. For word-
processing applications, you may want to center the text or align it at
the right margin. You can change the alignment by setting the text
editor’s Align property.
GUI Developer’s Guide 9-107

Configuring Widgets
For the initial alignment setting, use the Details property page and set
the editor’s Align property to Left, Center, or Right.Alignment applies to
the entire text. It cannot be applied selectively to a portion of the text.

To change the alignment for the text editor widget programmatically:

1 In a method in the application model, get the widget from the
builder.

2 Get a copy of the widget’s text style. (Do not modify the widget’s
text style directly, because that object is shared by many text
editors in the system.)

3 Set the alignment of the text style to 0, 1, or 2 (0 is flush left, 1 is
flush right, and 2 is centered).

4 Install the new text style in the widget.

5 Ask the widget to redisplay itself.

alignRight
| widget style |
widget := self widgetAt: #comment .
style := widget textStyle copy.
style alignment: 1.
widget textStyle: style.
widget invalidate.

Text Editor Events
A Text Editor triggers events when its value is changing, when it gains
and looses focus, when it gets clicks from the mouse, and when it's
view scrolls.

#changing

When the value of a text editor is about to be accepted after
directly editing the value and exiting the input field, the text editor
triggers the #changing event.

#changed

After the value of the text editor has been accepted, the text
editor triggers the #changed event. To trigger #changed at each
keystroke, send continuousAccept: to the widget’s controller with
the value true.

#clicked

When a text editor is clicked on with the <Select> mouse button,
the text editor triggers the #clicked event.
9-108 VisualWorks

Text Editors
#rightClicked

When a text editor is right clicked on with the <Operate> mouse
button, the text editor triggers the #rightClicked event. This event
will occur without regard to whether there is a popup menu
associated with the text editor.

#doubleClicked

When a text editor is double clicked on with the <Select> mouse
button, the text editor will trigger the #doubleClicked event. This
event is always immediately preceded by a #clicked event.

#gettingFocus

When a text editor receives focus, either by being tabbed to or by
clicking on by the mouse, the text editor triggers the #gettingFocus
event.

#losingFocus

When a text editor looses focus, either by being tabbed away
from, or by having another widget on the canvas gain focus, the
text editor triggers the #losingFocus event.

#tabbed

When a text editor has focus, and the Control-Tab key is pressed
to move the focus to the next widget in the tab order, the text
editor triggers the #tabbed event.

#scrollLeft

If while editing, navigating with the keyboard, selecting text with
the keyboard or mouse, or manipulating a horizontal scroll bar in
a text editor, the view scrolls to the left, the text editor triggers the
#scrollLeft event.

#scrollRight

If while editing, navigating with the keyboard, selecting text with
the keyboard or mouse, or manipulating a horizontal scroll bar in
a text editor, the view scrolls to the right, the text editor triggers
the #scrollRight event.

#scrollUp

If while editing, navigating with the keyboard, selecting text with
the keyboard or mouse, or manipulating a vertical scroll bar in a
text editor, the view scrolls up, the text editor triggers the #scrollUp
event.
GUI Developer’s Guide 9-109

Configuring Widgets
#scrollDown

If while editing, navigating with the keyboard, selecting text with
the keyboard or mouse, or manipulating a vertical scroll bar in a
text editor, the view scrolls down, the text editor triggers the
#scrollDown event.

View Holder
The View Holder widget places a custom view on the canvas. While
the interface to the View Holder widget is very simple, defining the
custom view can be quite complex. See Custom Views, for more
information.

Adding a View Holder
To add a view to a canvas:

1 Add a View Holder widget to the canvas.

2 In the View Holder’s View: field, enter the selector for method that
returns an instance of the view, for example, #myView. Accept
the change and install the canvas.

3 In your application model, define the method you entered in step
2. The method returns an instance of the custom view. For
example:

myView
^MyViewClass new.

View Holder Events
A View Holder triggers events when its view scrolls due to activity via
its scroll bars.

#scrollLeft

If while manipulating a horizontal scroll bar in a view holder, the
tree view holder to the left, the view holder triggers the #scrollLeft
event.

#scrollRight

If while manipulating a horizontal scroll bar in a view holder, the
view holder scrolls to the right, the view holder triggers the
#scrollRight event.
9-110 VisualWorks

View Holder
#scrollUp

If while manipulating a vertical scroll bar in a view holder, the
view holder scrolls up, the view holder triggers the #scrollUp
event.

#scrollDown

If while manipulating a vertical scroll bar in a view holder, the
view holder scrolls down, the view holder triggers the #scrollDown
event.
GUI Developer’s Guide 9-111

Configuring Widgets
9-112 VisualWorks

Index
Symbols

& (menu mnemonic) 7-2, 7-4, 7-28

A
accessor method

adapting 4-5
widget aspect 1-5

accessWith:assignWith: 4-9
action button 9-1
active window, accessing 3-10
adapt:aspect:list:selection: 4-17
adaptor

aspect of a model 4-5
buffered 4-13
custom 4-10
on a collection 4-15
on a collection element 4-17
value holder 4-3

Adaptor1Example 4-3
Adaptor2Example 4-6
Adaptor3Example 4-13, 4-15
Adaptor4Example 4-16
Adaptor5Example 4-17
Adaptor6Example 4-11
adding

widgets to a canvas 1-4
addItemLabel:value: 7-10
aligning

widgets 1-20
alignment 9-108
application

model 1-6
nesting 9-90

applyColorDrop: 8-13
applyColorEnter: 8-7
applyColorExit: 8-7, 8-8
applyColorOver: 8-7, 8-8
applyMoreColorEnter: 8-9
applyMoreColorExit: 8-9
applyMoreColorOver: 8-9
Arrange menu

Align 1-20
Distribute 1-21

aspect adaptor 4-5

aspect path 4-20
asValue 4-4
atNameKey: 7-7

B
backgroundColor: 3-29
band chart 9-13
bar chart 9-11

definition 9-11
beginSubMenuLabeled: 7-4
beInvisible 3-28
beMaster 3-15
beOff 7-13
beOn 7-13
bePartner 3-16
beSlave 3-15
beTwoDimensional 9-82
beVisible 3-28
BGOK 9-4
boolean

in a field 9-40
bordering a widget 1-4
bounded widget 1-16
bounds 3-26
BufferedValueHolder class 4-13
buffering model updates 4-13
business graphics, See chart widget 9-3
buttons

action 9-1
check box 9-18
radio 9-71
See also menu button

bypassing a dependency 3-30
ByteArray

in a field 9-41

C
canvas

installing 1-6
opening an existing 1-7
tab order 1-23

Change Validation property 9-42
changed: 4-10, 5-4
changed:with: 4-11, 5-4
changeRequest 1-27
GUI Developer’s Guide Index-1

chart widget 9-3
check box

adding to UI 9-18
in menu 7-13

choose:labels:values:default: 6-4
clearAll 9-56
Click Map widget 9-20
client:spec: 9-68, 9-93
clientData 8-14
closeRequest 1-27
closing a window 1-26
collapse 3-13
collapsing a window 3-13
collection

adapting 4-15
adapting an element 4-17
See also list widget 9-52

color
label widget 9-49

ColorDDExample 8-3, 8-7, 8-9, 8-11, 8-13,
8-17

colorDrag: 8-3, 8-14
ColorExample 3-29
colorLayerEnter: 8-11
colorLayerExit: 8-11
colorLayerOver: 8-11
colorWantToDrag: 8-3
column widths

dataset 9-29
table 9-101

ComboBoxExample 9-23
ComboConversionExample 9-24
component 3-25
composite widget 1-19
ConfigurableDropTarget class 8-2, 8-5
confirmer dialog 6-3
connecting

field to field 9-46
view to controller 5-5

contextApplication: 8-4
contextWidget: 8-4
contextWindow: 8-4
controller

connecting a composite view 5-8
connecting view 5-5
getting for a widget 5-8

controller: 5-8
controllerAt: 3-9
creating

application model 1-6
icon 3-14

current window 3-10

custom
adaptor 4-10
dialog 6-9
view 5-1

Customer2Example 4-16
CustomViewExample 5-2, 5-9

D
damage

rectangle 5-8
window 3-13

data
formatting 9-41
types in input field 9-40

data series 9-4
labels 9-6

dataset columns
order 9-30
scrolling 9-30
widths 9-29

dataset widget
adding a row 9-32
row marker 9-32

Dataset1Example 9-27
Dataset2Example 9-32
Dataset3Example 9-32
date

in a field 9-40
definedNamedFonts 1-23
dependency

adding 3-30
between widgets 3-29
bypassing 3-30
removing 3-30

DependencyExample 3-30
desiresFocus message 5-5
dialog

custom 6-9
get file name 6-6
textual 6-5
warning 6-3
yes-no 6-3

dimension
of a window 3-12

disable 3-28
disabling

menus 7-9
widgets 3-28

display 3-13
displayBox: 3-12
displaying

in a view 5-3
Index-2 VisualWorks

displayOn: 5-3
doDragDrop 8-4
domain model

adapting an aspect 4-5
connecting to view 5-2
description 1-1
updating view 5-4

doughnut labels 9-18
drag and drop 8-1, ??–8-20

adding 8-2
dropping on a list item 8-14
effect symbol 8-7
examining dragged data 8-17
framework classes 8-1
modifier keys 8-17
multiple selections 8-5
responding to a drop 8-13
visual feedback 8-6

Drag OK property 8-2
Drag Start property 8-2
DragDropContext class 8-2, 8-6
DragDropData class 8-2, 8-3
DragDropManager class 8-2, 8-4, 8-5, 8-13
drag-ok 8-2
drag-start 8-2
drop 8-13
Drop property 8-5, 8-13
drop source 8-1, 8-2

setting up 8-1
drop target 8-1, 8-5

button 8-9
changing button label 8-9
examining dragged data 8-17
list item 8-11, 8-14
messages 8-6
providing visual feedback 8-6
responding to a drop 8-13
setting up 8-1
tracking a specific list item 8-11
using modifier keys 8-17

DropSource class 8-2, 8-4

E
editor widget 9-105
Editor1Example 9-105
effect symbol 8-7, 8-13
elements

adapting 4-17
Ellipse property 9-74
embedded canvas

See subcanvas
enable 3-29, 7-9

endSubMenu 7-4
Entry property 8-5, 8-6
events

activate 3-17
and dependents 4-3
backTabbed 9-3, 9-20, 9-27, 9-35, 9-48,

9-58, 9-61, 9-69, 9-73, 9-86, 9-98,
9-104

bounceBottom 9-87
bounceTop 9-87
bounds 3-17
cellBackTabbed 9-36
cellGettingFocus 9-35
cellLosingFocus 9-36
cellSelectionChanged 9-105
cellTabbed 9-36
cellValueChanged 9-36
changed 9-26, 9-47, 9-61, 9-71, 9-74,

9-83, 9-85, 9-94, 9-108
changing 9-25, 9-47, 9-61, 9-74, 9-83,

9-85, 9-94, 9-108
checked 9-20
clicked 3-18, 9-3, 9-19, 9-22, 9-26, 9-47,

9-57, 9-61, 9-73, 9-78, 9-85, 9-103,
9-108

close 3-18
closing 3-18
collapse 3-18
columnLabelClicked 9-36
columnSelectionChanged 9-105
deactivate 3-18
destroy 3-18
doubleClicked 3-18, 9-26, 9-34, 9-48,

9-58, 9-86, 9-103, 9-109
enter 3-19
exit 3-19
expand 3-19
expose 3-19
gettingFocus 3-19, 9-3, 9-19, 9-26, 9-34,

9-48, 9-58, 9-61, 9-68, 9-73, 9-86,
9-98, 9-103, 9-109

hitMappedRegion 9-22
horizontalTabChanged 9-70
horizontalTabChanging 9-69
labelChanged 9-3, 9-19, 9-52, 9-72
labelChanging 9-2, 9-19, 9-52, 9-72
listClosed 9-27, 9-62
listExposed 9-27, 9-61
losingFocus 3-19, 9-3, 9-19, 9-26, 9-35,

9-48, 9-58, 9-61, 9-68, 9-73, 9-86,
9-98, 9-104, 9-109

mapped 3-20
GUI Developer’s Guide Index-3

menuBarCreated 3-20
menuClosed: 7-34
menuItemSelected: 7-34
menuOpened: 7-34
middleClicked 3-20
missedMappedRegion 9-23
move 3-20
moved 9-78
opening 3-21
pageLeft 9-98
pageRight 9-98
popupMenuCreated 7-35
popupMenuItemSelected: 7-35
pressed 9-3
resize 3-21
rightClicked 3-21, 9-26, 9-34, 9-47, 9-57,

9-85, 9-103, 9-109
rowLabelClicked 9-36
rowSelectionChanged 9-104
rowSelectionsChanged 9-37
rowSelectionsChanging 9-36
scrollDown 3-21, 9-35, 9-59, 9-69, 9-95,

9-104, 9-110, 9-111
scrollLeft 3-21, 9-35, 9-48, 9-58, 9-69,

9-94, 9-98, 9-104, 9-109, 9-110
scrollRight 3-21, 9-35, 9-48, 9-58, 9-69,

9-94, 9-98, 9-104, 9-109, 9-110
scrollUp 3-21, 9-35, 9-58, 9-69, 9-94,

9-104, 9-109, 9-111
selectionChanged 9-59
selectionChanging 9-59
selectionListChanged 9-37, 9-59
spinDown 9-87
spinUp 9-86
spunDown 9-87
spunUp 9-86
submenuClosed: 7-35
submenuOpened: 7-35
tabbed 9-3, 9-20, 9-26, 9-35, 9-48, 9-58,

9-61, 9-69, 9-73, 9-86, 9-98, 9-104,
9-109

tabChanged 9-99
tabChanging 9-99
toolBarButtonSelected: 7-36
toolBarCreated 3-22
turnedOff 9-73
turnedOn 9-73
unchecked 9-20
unknownEvent 3-22
unmapped 3-22
verticalTabChanged 9-70
verticalTabChanging 9-70

window 3-16
wrapAroundBottom 9-87
wrapAroundTop 9-87

examples 1-xx
Exit property 8-5
Exit Validation property 9-42
expand 3-13
expandedMenu 9-44
expanding

windows 3-13
exploding labels 9-18

F
field

connecting to a field 9-46
creating 9-39
dialog 6-5
filtering and validating 9-41
formatting numbers 9-41
highlighting 9-46
menu 9-44
type restriction 9-40
widget, connecting to a slider 9-79

FieldConnectionExample 9-46
FieldMenuExample 9-44
FieldSelectionExample 9-46
FieldTypeExample 9-41
FieldValidation1Example 9-43
FieldValidInputExample 9-42
file name

dialog 6-6
fill-in-the-blank dialog 6-5
filtering

field input 9-41
fixed-point number

in a field 9-40
fly-by help 1-12
font

changing widget’s 1-21
label 9-49

Font1Example 3-27
foregroundColor: 3-29
forIndex: 4-18
formatting

displayed data 9-41
numeric field 9-41

G
getBlock:putBlock:updateBlock: 4-11
globalCursorPoint 3-11
globalization 1-5
graphic image
Index-4 VisualWorks

in menu 7-12
graphic label 9-49
graphical user interface 1-2, 3-33
GraphicsContext class 5-3
graying out widget 3-28
Grid menu 1-16
grid: 9-81

H
help

fly-by help 1-12
HideExample 3-28
hideItem: 7-9
hiding

widgets 3-27
windows 1-27

highlighting
in a field 9-46
in a list 9-56

I
icon

assign to window 3-15
creating 3-14
in a menu 7-12
registering 3-14

icon: 3-15
iconifying a window 3-13
IdentityDictionary class 8-4
IndexedAdaptor class 4-17
Initially Disabled property 3-28
Initially Invisible property 3-28
input field, See field
installing a canvas 1-6
instance

used in drag and drop 8-1
interface

integrating a custom view 5-9
reusing 9-91

interface component 3-25
interface specification 1-6
interfaceSpecFor: 9-92
internationalization 1-5
invalidate 9-108
invalidateRectangle: 5-9
invalidateRectangle:repairNow: 5-9
invalidating a view 5-8

K
key: 8-3
keyboardHook: 9-43
KeyboardProcessor 5-5

L
label

table columns 9-102
table rows 9-102
window 3-12

label widget
changing at runtime 9-50
color 9-49
creating 9-49
font 9-49
graphic 9-49
registry of labels 9-51

label: 3-12, 9-50
labelAt:put: 9-51
labelImage: 7-12
labels

adding to a chart 9-6
doughnut 9-18
exploding 9-18

labelString: 3-27, 8-9
labelString: 9-50
layer chart 9-12
Layout commands

Be Bounded 1-16
Relative 1-14, 1-17
Unbounded 1-16

line chart 9-15
definition 9-15
sample data 9-15

LineExample 9-37
List class 9-52
list widget

adding 9-52
connecting two lists 9-56
highlighting style 9-56

List1Example 9-52
List2Example 9-89, 9-90, 9-92
LogoExample 9-48
LookPreferences class 3-29
lookup key 1-5

M
mainWindow 3-10
marker in a slider 9-82
menu

check box in 7-13
creating 7-3
icon 7-12
in a field 9-44
item label 7-12
mnemonics 7-2, 7-4
modifying at runtime 7-9
GUI Developer’s Guide Index-5

pragma 7-21
shortcut character 7-2

menu bar 7-5
Menu Bar property 1-11, 7-6
menu button widget 7-6, 9-59
Menu Editor 7-1
menu pragma 7-21
menuAt: 7-7
MenuCommandExample 7-5, 7-6, 7-7, 7-8,

7-9, 9-60
MenuEditorExample 7-2, 7-7, 7-8
menuItems 7-8
MenuModifyExample 7-9, 7-10
MenuSelectExample 7-14
MenuSwapExample 7-11
MenuValueExample 7-3, 7-6, 7-12, 7-13,

9-59
message catalog 1-5
mnemonic 9-38, 9-50
model: 5-3
model: message 5-7
Multi Select property 8-5
MultiOpenFileDialog 6-7
MultiSelectionInList class 8-5, 9-52, 9-55

N
nameKey 7-8
nesting applications 9-90
newBoolean 4-4
newBounds: 3-26
newFraction 4-4
newString 4-4
NoController class 5-7
notebook widget

changing the page 9-67
index tabs 9-64
minor keys 9-65, 9-66
secondary tabs 9-65
starting page 9-64
tab selection 9-64

Notebook1Example 9-62, 9-64
Notebook2Example 9-65
Notebook3Example 9-66
Notebook4Example 9-67
notification properties 3-33
notifier

dialog 6-3
number

field formatting 9-41
in a field 9-40

NumberPrintPolicy class 9-41

O
object

in a field 9-41
onChangeSend:to: 3-30
openDialogInterface: 6-9
OpenFileDialog class 6-6
openIn: 1-26
opening

canvases 1-25
specs 1-25
windows 1-24

openWithExtent: 1-26
openWithSpec: 1-24
options

doughnut labels 9-18
exploding labels 9-18

order of tabbing 1-23
Over property 8-5, 8-6

P
page in a notebook 9-64
Pareto chart 9-13

sample data 9-14
partner windows 3-16
password in a field 9-40
picture chart 9-14

sample data 9-14
pie chart 9-17

definition 9-17
doughnut labels 9-18
exploding labels 9-18

PluggableAdaptor class 4-10
positioning a widget 1-16
postBuildWith: 9-43, 9-46
pragma 7-21
Print property 9-24
properties of windows and widgets 1-4

R
radio button 9-71
RandomWatcher example 4-9
range

in a slider 9-81
rangeStart: 9-81
rangeStop: 9-81
Read property 9-24
redisplaying a view 5-8
refreshing a window 3-13
refreshList: 9-54
registering an interest 3-30
registry

of labels 9-51
Index-6 VisualWorks

relative sizing of widget 1-15
removeItem: 7-10
replaceSelectionWith: 9-106
retractInterestsFor: 3-30
reuse techniques 9-88–9-94
reusing an interface 9-91
row selector in a dataset 9-32
RunawayRandoms example 4-9

S
sample data

line chart 9-15
Pareto chart 9-14
picture chart 9-14
XY chart 9-17

Screen 3-11
selectAll 9-56
selectAndScrollFrom:to: 9-107
selection\

 9-64
selectionBackgroundColor: 3-29
selectionForegroundColor: 3-29
selectionIndex: 9-64
selectionIndexes: 9-56
SelectionInList class 4-16, 9-28, 9-52, 9-62
SelectionInTable class 9-99
selections 8-5
setList:selecting: 9-54
setValue: 3-31
showDropFeedbackIn:allowScrolling: 8-12
SimpleDialog class 6-9
Size1Example 1-17
Size2Example 1-16, 1-18
Size3Example 3-26
sizing widgets 1-14
Sketch 5-1, 5-4
SketchController 5-1, 5-7
SketchView 5-2, 5-3, 5-4, 5-7, 5-9
slider widget

adding 9-78
connecting to field 9-79
marker length 9-82
modifying range 9-81
read-only 9-79
two-dimensional 9-82

Slider1Example 9-78, 9-81
Slider2Example 9-39, 9-79, 9-82
source: 1-25
sourceData 8-14
spacing

a group of widgets 1-21
spin button widget

adding 9-85
stacked bar chart 9-12
stacked line chart 9-16
step chart 9-16
StringPrintPolicy class 9-41
styleNamed: 3-27
subcanvas

accessing embedded widget 9-93
in a notebook 9-67

Subcanvas1Example 9-89
Subcanvas2Example 9-90, 9-92
Subcanvas3Example 9-92, 9-93
subject of an adaptor 4-5
subject:triggerChannel: 4-14
subjectChannel: 4-7
subjectSendsUpdates: 4-10
submenu 7-7
substituting a menu 7-11
symbol in a field 9-40
synchronizing updates 4-13

T
tab order 1-23
tabbing

Can Tab property 1-23
order 1-23

TabControlExample 9-95
table widget

connecting to input field 9-101
labeling 9-102
updating 9-101

Table1Example 9-100
Table2Example 9-101
Table3Example 9-102
TableInterface class 9-99
takeKeyboardFocus 9-46, 9-47, 9-107
target emphasis 8-11, 8-14
text

editor, See editor widget
in a field 9-40

TextAttributes 3-27
textStyle: 3-27
textStyle: 9-108
textual dialog 6-5
time

in a field 9-40
time stamp

in a field 9-40
TimestampPrintPolicy class 9-41
title, window 3-12
tools

UIBuilder 1-25
GUI Developer’s Guide Index-7

topComponent 3-11
true-false dialog 6-3
two-dimensional slider 9-82
Type property 9-40
TypeConverter 9-41

U
UIBuilder 1-25
unbounded widget 1-16, 1-17
unhideItem: 7-9
update:with: 5-4
updating

a table 9-101
a view 5-4
buffered 4-13

V
validating field input 9-41
validation properties 3-31, 9-42
value holder 4-3
view

connecting to controller 5-5
connecting to model 5-2
creating 5-1
displaying 5-3
integrating in interface 5-9
invalidating 5-8
redisplaying 5-8
updating 5-4
with no controller 5-7

View Holder widget 5-9
visibility of a widget 3-27
visual component 3-25
visualAt\

put\
 9-51

visuals 9-51

W
warning dialog 6-3
widget

accessing programmatically 3-25
aligning 1-20
border 1-4
bounding 1-16
disable 3-28
embedded in subcanvas 9-93
font 1-21
groups 1-19
hiding 3-27
notification property 3-32
positioning 1-16
sizing 1-14

spacing 1-21
tab order 1-23
unbounded 1-17
validating actions 3-31
validation property 3-31

widgetAt: 3-10, 3-25
widgets

composite 1-19
group 1-19

WidgetWrapper 3-25
width

of dataset columns 9-29
of table columns 9-101

window
active 3-10
at a location 3-11
closing 1-26
creating 1-3
events 3-16
expanding and collapsing 3-13
get dimensions 3-12
hiding 1-27
label 3-12
menu bar 7-5
opening 1-24
position 1-10
refreshing 3-13
set initial size 1-10
specification 1-24

windowAt: 3-11
windowMenuBar 3-10
windowSpec 1-24
wrapper 3-25
wrapperAt: 3-9, 3-25

X
XY chart

sample data 9-17

Y
yes-no dialog 6-3
Index-8 VisualWorks

	About This Book
	Audience
	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information
	Online Help
	VisualWorks FAQ
	News Groups
	Commercial Publications
	Examples

	Building an Application’s GUI
	Separating Domain and Application Models
	GUI Development
	Loading the UI Painter
	Creating a Graphical User Interface
	“Painting” a Window
	Setting Properties
	Installing the Canvas
	Reopening a Canvas
	Defining Value Models
	Testing the User Interface

	Formatting a Canvas
	Setting the Window Size
	Setting the Window Opening Position
	Adding Scrollbars to a Window
	Adding a Menu Bar
	Adding Fly-by Help
	Setting the UI Colors
	Sizing a Widget
	Making a Widget’s Size Fixed
	Making a Widget’s Size Relative
	Applying Explicit Boundaries to an Unbounded Widget

	Positioning a Widget
	Making a Widget’s Origin Fixed
	Giving an Unbounded Widget a Fixed Position

	Making a Widget’s Origin Relative
	Giving an Unbounded Widget a Relative Position

	Grouping Widgets
	Making a Group of Widgets
	Editing Widgets in Groups

	Aligning Widgets
	Distributing Widgets
	Changing a Widget’s Font
	Named Fonts

	Changing the Tabbing Order
	Opening and Closing Windows
	Opening the Main Window
	Opening a Secondary Window
	Setting the Window Size at Opening
	Setting the Startup Location of a Window
	Closing Application Windows

	Hiding a Window
	Performing Final Actions

	The VisualWorks GUI Environment
	UI Painter
	The Canvas
	The Palette
	GUI Painter Tool

	Controlling the GUI Programmatically
	Application Startup and Shutdown
	Launching an Application
	Prebuild Intervention
	Postbuild Intervention
	Postopen Intervention
	Application Cleanup

	Windows
	Creating a Window
	Class Hierarchy
	Window Components
	Controller
	Component
	Event Sensor
	Manager

	Window Processes
	Yielding to Other Processes
	Accessing Window Components
	Accessor Methods

	Accessing a Window
	Getting an Application Window
	Getting the Active Window
	Getting the Window at a Location
	Closing a Window

	Setting Window Properties
	Changing the Window Size
	Determining a Window’s Dimensions
	Changing a Window’s Label
	Adding and Removing Scroll Bars

	Controlling Window Displays
	Refreshing a Window’s Display
	Expanding and Collapsing a Window

	Assigning a Window Icon
	Creating an Icon
	Registering an Icon
	Installing an Icon

	Slave and Master Windows
	Make Windows Equal Partners
	Choosing the Events That Are Sent
	Choosing the Events That Are Received

	Window Events
	Registering Window Events
	Adding an Event to the UI Event Queue

	Controlling Widgets
	Accessing a Widget
	Accessing the Widget’s Wrapper
	Setting Widget Properties
	Changing a Widget’s Size
	Changing a Widget’s Font
	Hiding a Widget
	Disabling a Widget
	Changing a Widget’s Colors

	Adding and Removing Dependencies
	Adding a Dependency
	Removing a Dependency by Retracting the Interest
	Bypassing All Dependencies

	Validation Properties
	Notification Properties
	Giving a Widget Keyboard Focus

	Adapting Domain Models to Widgets
	Value Models
	Choosing a Value Model

	Configuring a ValueHolder
	Configuring an AspectAdaptor
	Configuring an AspectAdaptor with a Subject
	Configuring an AspectAdaptor with a Subject Channel
	Adapting Unconventional Accessors
	Adapting a Changing Domain

	Configuring a PluggableAdaptor
	Configuring Accessor Blocks
	Configuring the Update Block

	Synchronizing Updates (BufferedValueHolder)
	Adding a BufferedValueHolder
	Discarding the Buffered Values

	Adapting Collections
	Adapting to a SelectionInList
	Adapting a Indexable Collection
	Adapting Collections of Collections

	Defining Adaptors in the UI Painter
	Aspect Path with Aspect Selectors
	Aspect Path with Index Selectors
	Aspect Path with Input Buffering

	Configuring Dependencies Using Events
	Registering an Interest in a Widget Event
	Update Notifications using Events

	Custom Views
	Creating a View Class
	Connecting a View to a Domain Model
	Defining What a View Displays
	Updating a View When Its Model Changes
	Connecting a View to a Controller
	Creating a Controller Class
	Connect the Controller to the Model
	Connect the Controller to the View
	Connecting a Composite View to a Controller

	Redisplaying All or Part of a View
	Redisplaying a View

	Integrating a View into an Interface

	Dialogs
	SimpleDialog
	Core Structures
	Simple Dialog Construction

	Standard Dialogs
	Warning Dialog
	Confirmation Dialog
	Multiple-Choice Dialog
	Text Response Dialog

	File Dialogs
	Open File Dialog
	Handling File Existence Condiitons

	Password Dialog
	Creating a Custom Dialog
	Providing a Temporary Model for the Dialog

	Visually Linking a Dialog to a Master Window

	Menus
	Creating a Menu
	Creating a Menu using the Menu Editor
	Creating a Menu Programmatically

	Adding Menus to the User Interface
	Adding a Menu Bar to a Window
	Adding a Menu Button
	Adding a Popup Menu to a Widget
	Adding a Menu Bar or Pop-Up Menu of Values

	Accessing Menus Programmatically
	Modifying a Menu Dynamically
	Disabling a Menu Item
	Hiding a Menu Item
	Adding an Item to a Menu
	Removing an Item from a Menu
	Substituting a Different Menu

	Displaying an Icon in a Menu
	Adding an Icon to a Menu
	Displaying an On/Off Indicator
	Adding a Group with a Single Indicator

	Toolbars
	Creating a Tool Bar Image
	Adding a Toolbar
	Modifying a Toolbar Dynamically
	Disabling a Toolbar Button
	Hiding a Toolbar Button
	Changing a Toolbar Button Image
	Displaying an On/Off Indication

	Adding a Group of Buttons with a Single Selection

	Extending Menus and Toolbars
	Pragma Parameters
	Menu Pragma Forms
	Minimal Menu Pragma
	Menu Label as a UserMessage
	Including a Shortcut Key
	Add Enablement and Selection Indicators
	Adding an Icon
	Adding Fly-by Help
	Submenu pragmas
	Computed Submenu Pragma

	Adding Items to an Application's Menu or Tool Bar
	Setting the Menu Item Position
	Adding Items to the Launcher
	Adding Items to a Browser

	Menu and Toolbar Events
	Popup Menu Events
	Toolbar Events

	Drag and Drop
	Drag and Drop Framework Classes
	Adding a Drop Source
	Dragging Multiple Selections

	Adding a Drop Target
	Providing Visual Feedback During a Drag
	Drop Target Messages
	Pointer Shapes
	Changing Color During a Drag
	Changing a Button Label During a Drag
	Tracking a Targeted List Item

	Responding to a Drop
	Adding a Drop Response
	Adding Target Emphasis

	Examining the Drag Context
	Responding to Modifier Keys

	Configuring Widgets
	Action Buttons
	Default Button
	Action Button Events

	Charts
	Loading the Chart Widget
	Adding a Chart
	Charting Multiple Data Series
	Adding Labels
	Chart Properties
	Basic
	Options
	Data Series
	Legend
	Item - Axis
	Item - Scale
	Data - Axis
	Data - Scale

	Chart Types
	Bar Chart
	Stacked Bar
	Layer
	Band
	Pareto
	Picture
	Line
	Stacked Line
	Step
	X-Y Chart
	Pie Chart

	Check Boxes
	Checkbox Events

	Click Map
	Adding a Click Map
	Defining the Hot Region Mappings
	Using Custom Views and Controllers
	Click Widget Events

	Combo Box
	Adding a ComboBox to a Canvas
	Listing Arbitrary Objects
	Combo Box Events

	Datasets
	Setting up a Dataset
	Editing Column Properties
	Changing Column Widths
	Changing the Column Order
	Disabling Column Scrolling
	Moving the Selection to Another Column
	Scrolling Dataset Columns
	Formatting Column Labels

	Adding a Row
	Adding a Row Marker
	Adding Row Numbering

	Providing Initial Data
	Dataset Properties
	Traversal Page

	Dataset Events

	Divider
	Group Box
	Adding a Group Box
	Making a Group Box Mnemonic
	Group Box Events

	Input Fields
	Creating an Input Field
	Restricting Input Type
	Formatting Displayed Data
	Creating a Custom Format

	Validating Input
	Validating a Whole Entry
	Validating Individual Characters

	Modifying a Field’s Pop-Up Menu
	Adding a Command
	Overriding a Default Command
	Disabling a Field’s Menu

	Connecting two Fields
	Controlling the Insertion Point
	Highlighting a Portion of a Field
	Positioning the Insertion Point

	Input Field Events

	Labels
	Creating a Textual Label
	Creating a Graphic Label
	Making a Label Mnemonic
	Supplying the Label at Run Time
	Building a Registry of Labels
	Label Events

	Lists
	Adding a List
	Changing the List of Elements
	Enabling Multiple Selections
	Getting a Selection Contents
	Setting a Selection
	Connecting Two Lists
	List Events

	Menu Button
	Adding a Menu Button
	Adding a Menu Button with a Menu of Commands
	Menu Button Events

	Notebook
	Creating a Notebook
	Setting the Starting Page
	Getting the Selected Tab
	Adding Secondary Tabs (Minor Keys)
	Connecting Minor Tabs to Major Tabs
	Changing the Page Layout (Subcanvas)
	Notebook Events

	Percent Done Bar
	Basic Properties
	Aspect
	Orientation
	Starting Point

	Adding a Percent Done Bar
	Percent Done Bar Events

	Radio Buttons
	Radio Button Events

	Region
	Adding a Region
	Region Events

	Resizing Splitter
	Adding a Resizing Splitter
	Setting Widget Positioning
	Resizing Splitter Events

	Sliders
	Adding a Slider
	Connecting a Slider to a Field
	Connect Slider to Numeric Field
	Connect Slider to a Non-numeric Field

	Making a Slider Read-Only
	Changing the Slider Range
	Making a Slider Two-Dimensional
	Slider Events

	Spin Buttons
	Adding a Spin Button
	Spin Button Events

	Subcanvases
	Inheriting a Subcanvas
	Changing the Value of an Inherited Widget

	Nesting One Application in Another
	Setting a Value in an Embedded Widget

	Reusing an Interface Only
	Changing Interfaces at Run Time
	Accessing an Embedded Widget
	Subcanvas Events

	Tab Control
	Compatibility with Notebook
	Adding a Tab Control
	Defining Initial Labels
	Placing an Icon on a Tab
	Tab Control Events

	Tables
	TableInterface
	Adding a Table
	Controlling Column Widths
	Connecting a Table to an Input Field
	Labeling Columns and Rows
	Table Events

	Text Editors
	Adding a Text Editor
	Retrieving and Modifying Selected Text
	Highlighting Text
	Aligning Text
	Text Editor Events

	View Holder
	Adding a View Holder
	View Holder Events

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

