
Cincom Smalltalk™

Internet Client
Developer's Guide
P46-0134-07

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

Copyright © 2001-2008 Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0134-07

Software Release 7.6

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, COM Connect, and StORE are trademarks of Cincom Systems, Inc., its
subsidiaries, or successors. ENVY is a registered trademark of Object Technology
International, Inc. GemStone is a registered trademark of GemStone Systems, Inc. All
other products or services mentioned herein are trademarks of their respective
companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation copyright © 2001-2008 by Cincom
Systems, Inc. All rights reserved. No part of it may be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without prior
written consent from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

www.cincom.com

Contents

About This Book ix

Introduction .. ix
Audience .. x
Organization... x

Conventions ... xi
Typographic Conventions .. xi
Special Symbols.. xi
Mouse Buttons and Menus ... xii

Getting Help ... xii
Commercial Licensees.. xii
Non-Commercial Licensees ... xiii
Additional Sources of Information .. 3-xiv

Chapter 1 Introduction to Net Clients

Loading Net Clients ..1-2
NetClient Settings ..1-3

Settings Tool Pages ...1-3
Settings API ..1-3

Logging Tool ...1-4
Importing Net Clients into a Name Space ..1-5
Common interface classes ...1-5

NetClient ...1-5
NetUser ...1-6
URI ..1-6

Creating a URI ...1-7
Working with URI paths ..1-7
Escaping characters in a URI ...1-8
Operations on URIs ..1-8
Internet Client Developer’s Guide iii

Contents
Chapter 2 FTP

Introduction .. 2-1
NetClients FTP Interfaces ... 2-2

When to use FtpURL or FTPClient .. 2-2
Default Settings API .. 2-2

FTP Basics .. 2-3
FTP Access and Security ... 2-3
Guarded and Unguarded Stream Transfers .. 2-3
Passive and Active Modes .. 2-3

Using FtpURL .. 2-4
Identify a remote FTP file .. 2-4

Defaults .. 2-5
Special Symbols in the Access String ... 2-5

FtpURL Exception Handling ... 2-5
Binary File Transfers ... 2-6

Download a file in binary mode .. 2-6
Upload a file in binary mode .. 2-6

Directory operations ... 2-6
Create a new directory ... 2-6
Delete a directory .. 2-7
List files in a directory .. 2-7

Operations on Files ... 2-7
Delete a file .. 2-7
Determine the size of a file .. 2-7

Testing .. 2-8
Determine if a file or directory exists .. 2-8
Determine if the URI is a directory ... 2-8

Stream operations .. 2-8
Create a file on a remote server .. 2-9
Upload a file to a remote server ... 2-9
Download a file from a remote server (Text mode) 2-9
Read a file from a remote server ... 2-10

Using FTPClient .. 2-10
FTPClient as an FTP session ... 2-10
Connecting to an FTP host ... 2-11
Re-establishing a connection .. 2-12
Setting passive or active mode ... 2-12
Ensuring that the connection closes ... 2-13
Handling FTP Exceptions ... 2-13
File structure types ... 2-16
File data representation .. 2-16
File transfer operations ... 2-16
iv VisualWorks

Contents
Download a file from a remote server ..2-16
Upload a file to a remote server ...2-17
Restarting a file transfer ...2-17

Directory operations ..2-17
Get the current directory ..2-17
Create a new directory ...2-18
Delete a directory ...2-18
Listing files in a directory ..2-18

File operations ...2-19
Delete a remote file ..2-19
Rename a remote file ...2-20
Get a file size ..2-20

Setting file transfer mode ..2-20
Getting server information ...2-21

Display the remote server type ...2-21
Display the remote server status ..2-21

Using FTP commands and responses ..2-22
Simple commands and responses ...2-22
Data transfer commands ..2-23
Protecting against a disconnect ...2-23

Chapter 3 Internet Messages and MIME Types

Introduction ..3-1
MIME support classes ..3-2
Creating Mime Entities ...3-3

Adding header fields ...3-4
Adding a body ...3-5

Simple Body ...3-5
Multipart Body ..3-6

Creating a File Attachment ..3-7
Sending a Message ...3-7
Reading a MIME Message ...3-8

Accessing headers ..3-8
Accessing bodies ..3-10

Get content information of a message part3-11
Extract the best text representation ..3-12

Message transfer encoding ..3-12
International characters in header fileds ...3-14
Processing non-ASCII data ...3-14
Unknown Encoding ...3-17
Internet Client Developer’s Guide v

Contents
Chapter 4 HTTP

Introduction .. 4-1
HTTP support level ... 4-1
Default settings ... 4-1
Implementation Classes ... 4-2

HttpClient class .. 4-3
HttpRequest class .. 4-3
HttpResponse class ... 4-3
HttpException class ... 4-3
HttpEntity class .. 4-3

Secure HTTP .. 4-3
Connecting to an HTTP server .. 4-4

Creating a connection ... 4-4
Connection persistence .. 4-4
Closing a connection .. 4-5

Requesting an HTTP document .. 4-5
Creating a basic request ... 4-5
Modifying a request .. 4-6

Change the version number .. 4-6
Add header fields ... 4-7
Add a simple message body .. 4-7
Adding a multi-part body .. 4-8

Sending the request ... 4-8
Posting Form Data .. 4-9

Reading a HTTP response .. 4-11
Status line ... 4-11
Header fields .. 4-12

Standard headers .. 4-12
Additional headers ... 4-12

Message body .. 4-13
Cookie Support .. 4-13

How Cookies are Used During a Session ... 4-13
How Cookies are Handled .. 4-14
Cookie Handling Settings ... 4-14
Setting Cookie Fields .. 4-15

Streaming on an HTTP connection .. 4-16
Basic read protocol ... 4-16
Handling attachments ... 4-17
Chunking Large Attachments ... 4-18
Compression .. 4-19

Authentication .. 4-20
vi VisualWorks

Contents
Using a Proxy Server ...4-22
HTTP Exception Handling ..4-23

Chapter 5 Email

Mailboxes ...5-1
SMTP ...5-2

Creating a SMTP client instance ...5-2
Sending a message ..5-2

Examples ...5-3
Secure SMTP ..5-4
Handling SMTP exceptions ...5-4

POP3 ..5-4
Creating a POP3 client instance ...5-5
Running a POP3 session ..5-5

Connecting and disconnecting ...5-5
Logging into the server ...5-6
Sending POP3 commands ...5-6

Secure POP3 ..5-6
POP3Client Commands ..5-6

Get inbox information ...5-7
Retrieve a message ...5-8
Delete a message ..5-9

POP3 states ..5-10
State changes ..5-10
State errors ..5-11

Handling POP3 exceptions ...5-11
IMAP ..5-11

Creating an IMAPClient instance ..5-12
Running an IMAP session ...5-12

Connect and Log in ..5-12
Mailbox maintenance ...5-13
Message maintenance ...5-13
Log out ...5-13

IMAPClient states ..5-13
Command responses ..5-14
Message flags ...5-15
Mailbox names ..5-16
Mailbox maintenance ..5-17

Determine the number of messages in the inbox5-18
Getting mailbox status information ...5-19
Selecting a mailbox ..5-20
Creating/deleting a mailbox ..5-20
Internet Client Developer’s Guide vii

Contents
Rename a mailbox ... 5-21
List mailboxes .. 5-21
Add a message to a mailbox .. 5-21

Message maintenance ... 5-22
Reading message data .. 5-23
Copy a message to another mailbox ... 5-24
Delete a message .. 5-25
Search for messages ... 5-25
Setting are reading message flags .. 5-28

Working with unique identifiers ... 5-28
Handling IMAPClient Errors .. 5-30

Mail Attachments ... 5-30
Retrieve the names of attachments .. 5-31
Save an attachment .. 5-31
Decoding an attachment ... 5-33

Mail Archives ... 5-34

Index Index-1
viii VisualWorks

About This Book

Introduction
This document describes the VisualWorks Net Clients libraries and
frameworks for building internet client applications. Standard internet
client services include FTP, HTML, and E-mail.

These services are built on top of various underlying technologies. For
client-server communications, these are all built on top of an underlying
Socket communications technology, which is discussed in Basic Libraries.
HTML and email use Internet Message and MIME formats, the data
structures that are exchanged over the internet, which are described in
Chapter 3, “Internet Messages and MIME Types.”

Net Clients is an integral part of the VisualWorks technologies that enable
you to build applications to take advantage of the internet and e-business.

In addition to Net Clients, VisualWorks includes:

• Security support for common symmetric and public key security
algorithms (refer to the Security Guide)

• WebServices, for XML-based web service providing protocols, such
as SOAP and WSDL (refer to the Web Service Developer’s Guide)

• WebToolkit and VisualWave, for developing Web server based
applications (refer to the Web Application Developer’s Guide)

• Distributed Smalltalk, for distributed applications, including CORBA
complient applications (refer to the Distributed Smalltalk Application
Developer’s Guide)

• Opentalk, for general communications protocol support (refer to the
Opentalk Protocol Layer Developer's Guide).
Internet Client Developer’s Guide ix

About This Book
Audience
This document is intended for new and experienced developers to quickly
become productive developing internet client applications using the Net
Clients capabilities of VisualWorks.

It is assumed that you have a beginning knowledge of programming in a
Smalltalk environment, though not necessarily with VisualWorks. For
introductory level information, the on-line VisualWorks Tutorial (available
at http://www.cincom.com/smalltalk/tutorial), and the Application
Developer’s Guide.

Organization
This document begins with a general overview of the Net Clients libraries
and frameworks, including some general purpose classes and tools that
are used throughout the specific components.

Following an introduction to socket programming in VisualWorks, the
chapters proceed through the higher-level protocols used for internet
communications and how to employ them in VisualWorks.

The chapters are as follows:

Chapter 1, “Introduction to Net Clients” provides an overview of the
protocols and other features supported by Net Clients. It describes
loading the Net Client libraries, how to access these libraries in your
application, and a few tools provided by Net Clients.

Chapter 2, “FTP” covers the VisualWorks implementation of the common
File Transfer Protocol for clients. FTP is a very simple protocol for
transferring files between hosts using a TCP/IP connection.

Chapter 3, “Internet Messages and MIME Types” describes building
internet messages out of mime-type entities, and accessing the parts of
messages. Messages are used for HTTP and email services.

Chapter 4, “HTTP” sending requests and receiving responses from an
HTTP server. Requests and responses are in the form of internet
messages, as described in the previous chapter.

Chapter 5, “Email” describes building email clients to send and receive
mail messages. The three major protocols, POP3 and IMAP for receiving,
SMTP for sending, are covered.

For a description of the basic VisualWorks XML framework, refer to the
Application Developer’s Guide. For XML-to-Smalltalk mapping, refer to
the Web Service Developer’s Guide.
x VisualWorks

http://www.cincom.com/smalltalk/tutorial

Conventions
Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Special Symbols
This book uses the following symbols to designate certain items or
relationships:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File New Indicates the name of an item (New) on a menu
(File).

<Return> key

<Select> button
<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.
Internet Client Developer’s Guide xi

About This Book
Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or
combinations:

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>
xii VisualWorks

mailto:supportweb@cincom.com

Getting Help
• The version id, which indicates the version of the product you are
using. Choose Help About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to:

supportweb@cincom.com.
Web

In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com
Telephone

Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.

Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:
Internet Client Developer’s Guide xiii

mailto:supportweb@cincom.com
http://supportweb.cincom.com

About This Book
• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu
with the SUBJECT of "subscribe" or "unsubscribe".

• An excellent Smalltalk archive is maintained by faculty and students
at UIUC, who are long-time Smalltalk users and leading lights in the
Smalltalk community, at:

http://st-www.cs.uiuc.edu/
• A Wiki (a user-editable web site) for discussing any and all things

VisualWorks related at:

http://wiki.cs.uiuc.edu/VisualWorks
• A variety of tutorials and other materials specifically on VisualWorks

at:

http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincomsmalltalk.com/documentation/
is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.
xiv VisualWorks

mailto:vwnc-request@cs.uiuc.edu
http://st-www.cs.uiuc.edu/
http://wiki.cs.uiuc.edu/VisualWorks
http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
news:comp.lang.smalltalk
http://www.cincomsmalltalk.com/documentation/

1
Introduction to Net Clients

Net Clients contains the frameworks and class libraries for VisualWorks
that provide general access to common internet communications
facilities. Specifically, it provides the following frameworks:

• Uniform Resource Identification (URI) framework. Represent and
access resources.

• FTP framework. Access remote files and directories.

• MIME-type framework. Parsing and composing with e-mail/HTTP
messages.

• HTTP client engine framework. Send and receive HTTP messages.

• Mail frameworks:

• POP3 client engine framework. Receive e-mail messages and
maintain mail folders.

• IMAP4rev1 client engine framework. Receive e-mail messages
and maintain mail folders.

• SMTP client engine framework. Send e-mail messages.

The underlying technology for all of this is socket communications (BSD
Sockets). Documentation for using sockets is included in this document,
because their most common use is for internet communications.

In addition to the frameworks, Net Clients provides tools to assist in
developing internet client applications:

• Logging tool. Records all outgoing and incoming messages for
selected protocols.

• Network Settings tool. Specifies a default settings required by some
protocols.
Internet Client Developer’s Guide 1-1

Introduction to Net Clients
Loading Net Clients
Net Clients support is contained in a set of parcels. To access and use
the code, you must load one or more of these parcels.

In the Settings Tool, there are options to autoload FTP, HTTP, and HTTPS
parcels if their functionality is required. Set these options on the URI page
of the Settings Tool.

To load the entire collection, load the single NetClients parcel. This one
parcel loads all the others.

To better control your image file size, load only the components you
intend to use in your application. The top-level component parcels, which
are installed in the net/ directory, are:

NetClients Loads all NetClients support

FTPSupport FTP support

HTTP HTTP and HTTPS support

IMAP IMAP support

Mail Basic mail support

MIME MIME support

NetConfigTool NetClients settings tool

POP3 POP3 support

POP3S Secure POP3 over SSL addition to POP3

SMTP SMTP support

SMTPS Secure SMTP over SLL addition to SMTP

URISupport URI support

WebSupport Web client support extensions

NetClientBase Prerequisites for other parcels; automatically loaded
1-2 VisualWorks

NetClient Settings
NetClient Settings

Settings Tool Pages
The parcel NetConfigTool installs a Net Client settings pages in the
Settings Tool (System Settings in the Visual Launcher) to configure a few
default values that are useful while working with Net Clients frameworks.

The tool has several pages providing relevant settings. To get information
on a specific page, click Help with that page selected.

In general, this tool is not suitable for use in applications, and you will
want to provide your own account management tools. There may be
situations where it is useful, however, such as providing a default email
account for an automated reporting feature.

Setting values used by various classes throughout the NetClients
framework, and are described in the relevant sections.

Settings API
Besides specific parameters set for a protocol instance, it is frequently
useful to set default values for certain parameters. The Settings tool
pages, as mentioned, are not generally appropriate for use in an
application. To allow you to set default values more generally, several API
Internet Client Developer’s Guide 1-3

Introduction to Net Clients
methods are provided as class methods. Most of the API is defined in
classes specific to the protocol. The following methods provide general
setting API defined in NetClients class:

defaultDelaySeconds: aNumber
Sets aNumber seconds between attempts to connect to the server,
allowing for the server to become not busy.

defaultRetries: aNumber
Sets aNumber of retries before quitting with failure.

defaultTimeout: aNumber
Sets aNumber of seconds before timing out.

Logging Tool
The Logging Tool is useful for understanding how network
communications are happening, and especially for diagnosing problems
with your network client code.

To use the logging tool, load the LoggingTool parcel (in the parcels/
directory). Then open the tool by evaluating (DoIt) in a workspace:

LoggingTool open
NetClients components register themselves with the Logging Tool when
they are loaded. The Logging menu lists all of the protocols currently
registered. The submenus provide options for which messages to log. To
add a message set, select it. Selected message sets are marked with a
check mark.

To begin logging, select Trace Trace ON.
1-4 VisualWorks

Importing Net Clients into a Name Space
Importing Net Clients into a Name Space
All Net Client support classes are defined in the Smalltalk.Net name space.
Application code that uses these facilities should include this name space
by a general import.

You can import the Net name space either into your own name space,
making these resources available to every class in that name space, or
into individual classes that need to use Net Client support.

To import the Net name space, include this line in the imports: line in either
the class or the name space definition:

private Net.*
For example, you may have a network client application that uses many
or all of the NetClient support classes. Your class definition, with the Net.*
import, might look something like this:

Smalltalk.MyNamespace defineClass: #MyNetClientApp
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: 'user mailAddress proxy'
classInstanceVariableNames: ''
imports: 'private Net.*'
category: 'Tools-Mail'

Because your application is defined in your own name space, and
possibly only few of your classes require access to Net, it would be
inappropriate to import Net into your name space. If, on the other hand,
your network clients application were defined in its own sub-name space,
then importing Net to that name space might be appropriate.

Common interface classes
There are a few classes that are invoked throughout the Net Clients
framework: NetClient, NetUser, and URI.

NetClient
NetClient is the abstract superclass for the specific clients. However, a
good deal of useful protocol, especially with respect to connections, is
inherited from NetClient, and so you should be aware of it.

A useful set of methods is the instance creation class methods, which are
used frequently in the examples.
Internet Client Developer’s Guide 1-5

Introduction to Net Clients
connectToHost: hostName
connectToHost: hostName port: portNum

Creates a client instance and establishes a connection to hostName, a
String, on the default port for the protocol. If portNum is specified, that
port is used instead of the default.

host: hostName
host: hostName port: portNum

Creates a client instance targeted on hostName, a String, on the
default port for the protocol. If portNum is specified, that port is used
instead of the default.

Instance methods provide connection support, and allow you to set or get
user and host information. Browse the accessing and connection method
categories for useful messages.

NetUser
Most internet services require a user ID, and usually a password, to gain
access (log in) to the service. For very simple services, such as FTP, the
user name and password are simply String data.

Most of the clients, however, require the user ID and password to be
specified by an instance of NetUser. A NetUser instance is a convenient
holder for several pieces of user information, as is done by the Network
Settings tool. It holds at least the user ID and password, but also the
user’s full name, an account name and an email address.

To create a NetUser instance, send a username:password: message to the
class, with the user name and password specified as strings:

user := NetUser username: 'Fred' password: 'dont_ask'
To add other information items, send the appropriate set message:

user fullName: 'Frederick P. User';
mailAddress: 'fpuser@someplace.net'.

There are also setter methods for changing the user name and password,
as well as getter methods for all of these data items.

URI
Net Clients includes a framework for working with URIs (Uniform
Resource Identifiers) and URLs (Universal Resource Locators). The
framework provides an easy-to-use mechanism to create URL objects
from a String, as well as a simple interface for performing some
operations on the URL, such as reading and writing, if permitted by the
resource.
1-6 VisualWorks

Common interface classes
A URI is a string that represents the address of a piece of information on
the Internet. A URL is a type of URI that specifies the protocol type, such
as FTP, HTTP, and MailTo.

Creating a URI
In VisualWorks, a URI is an object that is created by parsing a String
specifying the URI. To parse the String, send it an asURI message:

'ftp://download.cincom.com/documents/public/some.doc' asURI
The result in this case is an FtpURL object, which was determined from
the protocol prefix. If the prefix had been “http:” the result would be an
HttpURL. If the protocol were an unknown type, such as “MailTo:”, the
result would be an UnknownURLType.

The URI string has three main parts: the protocol, the host, and the path.
The protocol is determined by reading from the beginning of the string to
the colon (FTP). The host is read from the String, from immediately
following the double slash (//) up to the first single slash
(download.cincom.com). Everything else is the path.

For local files, you can generate a URI from a Filename:

'localfile.txt' asFilename asURI
A URI object can be returned to a String by sending asString to it.

Working with URI paths
Since URIs frequently have paths, as in the FTP URI above, it is useful to
be able to travel the path, either up or down. Several messages are
provided (implemented in URLwithPath) to do this.

The URI path is stored as an OrderedCollection of Strings, which are the
string segments between slashes or following the last slash. So, in the
FTP URI above, the path is stored as an OrderedCollection with
'documents', 'public', and 'some.doc'. The following path resolution
messages operate on the path components. Browse URLwithPath for more
methods.

construct: pathString
Returns a new URI differing from the receiver as specified by
pathString.

resolveRelativePath: pathString
Returns a new URI resulting from removing the last path component
and the applying pathString. Primarily useful when the last component
is not a directory.
Internet Client Developer’s Guide 1-7

Introduction to Net Clients
withComponent: pathComponentString
Returns a new URI with the pathComponentString appended. The
pathComponentString is assumed to be URL-encoded (special
characters are escaped).

withSimpleComponent: pathComponentString
Returns a new URI with the pathComponentString appended. The
pathComponentString is assumed not to be URL-encoded (special
characters are escaped), and so encodes them appropriately.

For example, given an URI to a file, you can create a new URI to a file
relative to its path by sending a resolveRelativePath: message to the URI
object. The argument is a String containing relative path information.

uri := 'ftp://download.cincom.com/documents/some.doc' asURI.
pix := uri resolveRelativePath: '../graphics/pic.jpg'.

Escaping characters in a URI
Certain characters must be “escaped” in an URI, that is represented by a
percent sign (%) followed by their ASCII decimal value (e.g., '$' must be
represented as '%24'). withSimpleComponent: escapes the necessary
characters in a component before adding it. However, to escape the
entire path of a URI you need to work on all components. Send an
escaped: message to the URI with each component as argument and
collect the results, then plug the path back in by sending a path: message:

| uri escPath |
uri := 'http://www.somesite.com/St&Mickey/buck$/index.html' asURI.
escPath := uri path collect: [:comp | uri escaped: comp].
uri path: escPath.

Operations on URIs
The URI framework also provides a simple way for a program to perform
various operations on URI resource. FtpURL has the richest protocol, as
described in “Using FtpURL” in Chapter 2, “FTP.”

Each type of URI represents a different accessing protocol, which has
different limitations, so not all types of URI support the same accessing
messages. These two messages for reading and writing data are
common among the protocols:

readStreamDo: aBlock
Create a read stream on the URI resource and performs the read
operations defined in aBlock on the stream.

writeStreamDo: aBlock
Creates a write stream on the URI resource, and performs the write
operation defined in aBlock on the stream.
1-8 VisualWorks

Common interface classes
See the discussion of FtpURL for examples, and browse the other
methods defined in the FtpURL, FileURL, and HttpURL classes.
Internet Client Developer’s Guide 1-9

Introduction to Net Clients

1-10 VisualWorks

2
FTP

Introduction
File Transfer Protocol is a simple protocol for copying files between host
and client computers. Both systems must support TCP/IP .

FTP involves both client and server services. The FTP client requests a
file transfer or other service from the FTP server. Most systems that have
a TCP/IP protocol suite installed also have FTP.

VisualWorks FTP support currently implements client services only.

VisualWorks FTP connection services are built on top of the
SocketAccessor TCP/IP services provided in the base VisualWorks, which
allows FTP services to be added as a module.

The following basic operations are available with FTP:

• Copy a single or multiple files from one host to another

• List all accessible files on a target host

• Create and/or remove directories on a target host

• Identify the current directory on a target host

• Append a local file to a file located on a remote (target) host

• Append a file from one remote host to a file located on a second host
Internet Client Developer’s Guide 2-1

FTP
NetClients FTP Interfaces
NetClients provides two interface classes to FTP operations:

• FtpURL A simplified API that allows you to access remote files in a
style similar to that provided by Filename for local files. See Using
FtpURL.

• FTPClient The primary VisualWorks interface to FTP. See Using
FTPClient.

In a few situations you may also need to issue “raw” FTP commands
directly. FTPClient provides a way to do this as well. See Using FTP
commands and responses.

The main API is provided by FTPClient, which typically “wraps” the
command API and itself is defined in FTPClient. FtpURL is a simplified API
that invokes FTPClient to perform the actual FTP transactions.

When to use FtpURL or FTPClient
Which of these interfaces you choose to use depends on a variety of
factors. A rule of thumb is, if you are performing a very simple FTP
operation, consider using FtpURL; otherwise, use FTPClient.

A major consideration is how many operations you are performing. FtpURL
is useful to perform a single operation per connection, because its
commands close the connection upon completion. So, if you only need to
transfer a single file, and you can specify the file’s location as an FTP
URI, you may be able to use FtpURL.

On the other hand, if you need to perform several operations using the
same connection, such as getting a directory listing, changing directories,
and then transferring a file, you need to use FTPClient. Using FTPClient you
establish a connection and hold it open until you explicitly close it.

Another consideration is the amount of directory and file name
management you need to perform. FtpURL operates on a URI, which is
created by sending the asURI message to a string that specifies the
transfer protocol, login information, and exact file locations. FTPClient
commands, on the other hand, allow you a good deal more flexibility in
managing the login procedure, selecting a directory, and specifying files.

Default Settings API
Two defaults settings for FTP sessions can be set either using the
Settings tool or the following API methods. Both are class methods in the
Net.Settings class.
2-2 VisualWorks

FTP Basics
ftpAnonymousLoginPassword: aString
By convention, the default password for anonymous FTP is the user’s
email address. For convenience, you may set a default address as a
String.

ftpPassiveMode: aBoolean
If the client requires that the server be in passive mode, set the
argument as true. The server is notified to enter passive mode.

FTP Basics

FTP Access and Security
To establish an FTP connection you need a user account (user name)
and password on the remote server. Since FTP includes no facility for
masking or encrypting passwords, logging in to a FTP connection carries
some inherent risk if the transmission containing your password is
intercepted. For this reason, it is best to use anonymous login whenever
possible, or some other restricted access login.

Sites that make files available for public access usually support
anonymous FTP, which allows you to log on using the anonymous user
name and your email address as the password.

For sites that do not support anonymous FTP, or to access resources that
are not available to the public, you need an account and password. To get
an account, contact the system administrator.

Guarded and Unguarded Stream Transfers
Stream transfers are supported in two modes: guarded and unguarded.

Guarded transfers ensure that the connection is closed at the end of a
transfer.

Unguarded transfers leave the connection open at the end of a transfer,
ready for another operation. It is the programmer’s responsibility to
ensure that the connection is closed when all FTP operations are
complete.

Passive and Active Modes
The standard way for an FTP session to begin is for the server to initiate
the connection; this is active mode. Because a client may be behind a
firewall that blocks the server from making the data connection, passive
mode may be required. VisualWorks supports the ability to configure a
server for passive data transfer.
Internet Client Developer’s Guide 2-3

FTP
In passive mode, the FTP server listens on the data port for a connection
request from the client (the active process). When the connection is
established, the data transfer begins between client and server, and the
server sends a confirming reply to the client.

Using FtpURL
FtpURL provides a simplified interface for performing FTP transactions. It
primarily provides utility methods allowing transactions to mimic Filename
protocol. Using this interface, you can access remote files much the same
way you access local files—by sending a message to a FtpURL specifying
the remote file, rather than a file name.

FtpURL commands attempt to open a connection and, if successful,
execute the command and then close the connection. Accordingly, this
sort of FTP session is very short. For longer FTP sessions, executing a
sequence of FTP commands, use FTPClient.

Identify a remote FTP file
A FtpURL object holds the information necessary to make an FTP
connection, including:

• user name

• password

• host name

• port

• file path

The easiest way to create a FtpURL with this information is to send asURI
to a String, in the form:

‘ftp://<username>:<password>@<host>:<port>/<path>’ asURI
Note that the file path separator character must be “/”; platform
separators do not work at this time. Special characters, such as the “@”
in an email address, must be replaced with a hexadecimal value (e.g.,
replace “@” with “%40”). See Special Symbols in the Access String
below for replacement values).
2-4 VisualWorks

Using FtpURL
Caution: Because passwords are not encrypted when logging onto
a FTP host, specifying a user name and password may present a
security risk. For this reason, it is preferable to use anonymous
access (the default) whenever possible.

Defaults
The <port>, <username>, and <password> parameters are all
optional. If not specified:

• the default port is 21

• the user name is anonymous

• you are prompted for the password. For anonymous FTP, this is
usually your email address.

Using all of these defaults, the minimum FtpURL forming command will
be in the form:

‘ftp://<host>/<path>’ asURI

Special Symbols in the Access String
If your access String includes certain symbols except where they are
required by the String format (for example, an “@” in an email address),
you must replace the symbol with a string representing its hex value (for
example, replace "@" with "%40"). Other characters (especially in the
password) should also be encoded so they are not confused with the
URL syntax.

Some of the more common symbols are:

FtpURL Exception Handling
FtpURL commands include a default exception handling mechanism.

Symbol Replacement string (hex value)

% (percent) %25

, (comma) %2C

 / (forward slash) %2F

: (colon) %3A

; (semi-colon) %3A

@ (at sign) %40

 (space) %20
Internet Client Developer’s Guide 2-5

FTP
Exception conditions that prevent the operation from being performed,
such as inadequate permission to upload a file, display a notifier,
including the FTP response number and a brief text description.

Transient conditions, such as a log-in challenge that can be handled by
submitting an anonymous login, are handled transparently. A notifier is
displayed only if the condition persists so the process cannot continue.

FtpURL invokes the exception handling mechanism by placing command
processing code in a block that is passed to safelyExecuteBlock:, which in
turn sends handleException. Both of these methods are defined in
URLwithPath. To use the FtpURL API in an application, you may need to
circumvent the default error handling described above, by overriding one
or both of these methods in a subclass of FtpURL. For more on FTP
exception handling, see “Handling FTP Exceptions” below.

Binary File Transfers
Binary mode is the default for file transfers using FtpURL. Transfers are
performed by sending the copyTo: message to an FtpURL, with another
FtpURL as argument. Accordingly, the same syntax is used for both
uploads and downloads.

For text (ASCII) file transfers, use either the FtpURL stream methods (see
Stream operations) or FTPClient commands (see Using FTPClient).

Download a file in binary mode
To download a file in binary mode, send copyTo: to an FtpURL for the
remote, source file, with another FtpURL for the local, target directory or
file as the message argument.

'ftp://anonymous:my%40email@yourftpserver/visualworks/welcome.pdf'
asURI copyTo: 'welcome.pdf' asFilename asURI.

Upload a file in binary mode
To upload a file in binary mode, send copyTo: to an FtpURL for the local
source file, with another FtpURL for the remote, target directory or file as
the message argument.

'vwlogo.jpg' asFilename asURI copyTo:
'ftp://anonymous:my%40email@yourftpserver/visualworks/vwlogo.jpg'

asURI.

Directory operations

Create a new directory
To create a directory, send makeDirectory to the FtpURL.
2-6 VisualWorks

Using FtpURL
'ftp://name:password@yourftpserver/visualworks/testDir2' asURI
makeDirectory.

You must have suitable access to create a directory, which is seldom the
case for anonymous FTP.

Delete a directory
To delete a directory, send removeDirectory to the FtpURL.

'ftp://name:password@yourftpserver/visualworks/testDir2' asURI
removeDirectory.

You must have suitable access to delete a directory, which is seldom the
case for anonymous FTP.

If the directory is not empty, an error notifier will display: “550 : The
directory is not empty”. An error will also result if the directory cannot be
found: “550 : The system cannot find the file specified”.

List files in a directory
To get a directory listing, send directoryContents to the FtpURL.

'ftp://name:password@yourftpserver/visualworks' asURI directoryContents.
This command, if successful, returns an OrderedCollection of FtpURLs, one
for each item in the directory. Each FtpURL includes the user name and
password, as specified in the command.

Operations on Files

Delete a file
To delete a file, send the delete message to the FtpURL. The login account
must have suitable access privilege on the server.

'ftp://name:password@yourftpserver/visualworks/file1.txt' asURI delete.
An error notifier will display if the file cannot be found: “550 : The system
cannot find the file specified”.

Determine the size of a file
To get the size (in bytes) of a file, send the fileSize message to the FtpURL.

'ftp://name:password@yourftpserver/visualworks/file1.txt' asURI fileSize.
Internet Client Developer’s Guide 2-7

FTP
Testing

Determine if a file or directory exists
To determine whether a file exists on the server, send the exists message
to the FtpURL. The message returns either true or false, depending on
the existence of the file or directory.

'ftp://name:password@yourftpserver/visualworks/file1.txt' asURI exists.

Determine if the URI is a directory
To determine whether a target is a directory, send the isDirectory message
to the FtpURL. The message returns either true if the target is a directory,
and false otherwise.

'ftp://name:password@yourftpserver/visualworks/file1.txt' asURI isDirectory.

Stream operations
Two stream methods are provided for performing text file transfers. Both
of these methods use a guarded transfer, which ensures that streams are
closed after use:

readStreamDo:
Read the resource that the URI represents. The message takes a
2-argument block as its argument, with the data stream as the first
argument and a Dictionary of properties as the second argument. If
the URI allows you to know or guess the MIME type of the data, that
is included in the dictionary under the key #MIME. The dictionary may
have other keys, depending on the type of URI and the server which
holds the resource. The stream must be used within the block only,
because it will be closed when the block finishes executing. The
return value of readStreamDo: will be the value returned by the block.

writeStreamDo:
Write a new resource to the target URI. The argument to the
message is a block that takes a stream as its only argument. The
stream must be used within the block only. It will be closed when the
block finishes executing. The return value of writeStreamDo: will be the
value returned by the block.

For more information about stream operations, refer to the VisualWorks
Application Developer’s Guide.
2-8 VisualWorks

Using FtpURL
Create a file on a remote server
To create a file, simply open a write stream on the remote server and
write the file contents. The file may be empty, creating an empty file.

'ftp://user:password@yourftpserver/visualworks/file1.txt' asURI
writeStreamDo: [:ftpStream | ftpStream text;

nextPutAll: 'blah blah'; cr].

Upload a file to a remote server
To upload a file to a server create a ReadStream on the local file and a
WriteStream on a FtpURL for the remote file, then write the input data to the
output stream. Stream data is assumed to be byte data, so is suitable for
both text and binary files.

| input output |
input := 'test.text' asFilename readStream.
output := 'ftp://user:password@ftphost/visualworks/hello4.txt' asURI.
[input atEnd] whileFalse: [output writeStreamDo:

[:ftpStream | ftpStream text; nextPutAll: input text.]].
input close.

Note that writeStreamDo: on the FtpURL creates a guarded stream, which
automatically closes the output stream when the transfer terminates. The
input stream, which is simply opened on a file, still needs to be closed, as
is done in the last line.

Download a file from a remote server (Text mode)
To download a file from a server, create a ReadStream on a FtpURL for the
remote file, and a WriteStream on the local file, then write the input data to
the output stream. Stream data is assumed to be byte data, so this
method is suitable for both text and binary files.

| output |
output := 'helloworld.txt' asFilename writeStream.
'ftp://user:password@ftpserver/visualworks/hello.txt' asURI readStreamDo:

[:stream :params | stream text.[stream atEnd] whileFalse:
[output nextPut: stream next]].

output close.
Note that readStreamDo: on the FtpURL creates a guarded stream, which
automatically closes the input stream when the transfer terminates. The
output stream, which is simply opened on a file, still needs to be closed,
as is done in the last line.
Internet Client Developer’s Guide 2-9

FTP
Read a file from a remote server
Instead of downloading a remote file to a local file, you can use FtpURL
to read a stream for immediate processing by an application. In this
example we simply inspect the results, but you can substitute other
processing.

'ftp://user:password@ftpserver/visualworks/file1.txt' asURI
readStreamDo: [:stream :params | stream contents inspect].

The read stream is a guarded stream (created by readStreamDo:), and so
is closed automatically when the transfer ends.

Using FTPClient
FTPClient provides the main protocol for managing FTP sessions. FTPClient
provides more complete and detailed control over an FTP session than
does FtpURL, while relieving you of many of the details of controlling a
session.

With this control comes added responsibility. Notably, you are responsible
for explicitly closing the connection when the session is complete. Using
an ensure: block is strongly recommended.

Using FTPClient is very similar to using FTP from a command-line
interface. The sequence of messages sent for FTPClient closely mimics
the typical sequence of commands used during an FTP session with a
command-line interface.

FTPClient as an FTP session
An FTP session is initiated by opening a connection to a host and logging
in. The connection remains open for processing commands until either
the client or the host closes it.

In VisualWorks, an FTP session is represented by an instance of
FTPClient. From a very high point of view, a session goes like this:

1 Create an FTPClient instance.

2 Connect the FTPClient to a host.

3 Log in to the host by sending a user name and password to the
FTPClient.

4 Conduct various FTP operations by sending messages to the
FTPClient.

5 Close the connection.
2-10 VisualWorks

Using FTPClient
An overly simple example looks like this:

| ftpClient |

"create client"
ftpClient := FTPClient new.

"connect to host"
ftpClient connectToHost: 'ftp.parcplace.com' .

"log in"
ftpClient login: 'anonymous' passwd: 'bruce@parcplace.com'.

"do stuff"
Transcript nextPutAll: ftpClient currentWorkingDirectory displayString;

cr ;
flush.

"close connection"
ftpClient close.

Enhancements are either elaborations on or simplifications of this
sequence. For example, a simplification is that you can connect and log in
using a single message. As an elaboration, you will want to do some
exception handling and wrap your session in an ensure: block.

Connecting to an FTP host
FTPClient provides several instance creation methods that establish a
connection and login to an FTP host.

connectToHost: aHost
connectToHost: aHost port: aPort
These methods open a connection to the specified host (host name
or IP) and port (an integer). If no port is specified, the default (21) is
used. Note that a user is not logged in by these commands; use
FTPClient instance methods to send login information.

loginToHost: aHostName asUser: userString withPassword: passwdString
loginToHost: aHostName asUser: userString withPassword: passwdString
withAcct: acctString
These methods open a connection to the specified host, and login
using the specified user name and password. If an additional access
account is required by the host, use the second form.

The connection remains open until you explicitly close it, or the
connection is closed by the host. To close the connection, send a close
message to the FTPClient. For catching an error resulting from the host
closing the connection, see “Handling FTP Exceptions” below.

Using loginToHost:asUser:withPassword: the previous example simplifies
slightly to:
Internet Client Developer’s Guide 2-11

FTP
| ftpClient |

"create client, connect, and log in"
ftpClient := FTPClient loginToHost: 'ftp.parcplace.com'

asUser: 'anonymous'
withPassword: 'bruce@parcplace.com'.

"do stuff"
Transcript nextPutAll: ftpClient currentWorkingDirectory displayString;

cr ;
flush.

"close connection"
ftpClient close.

Re-establishing a connection
FTP connections can terminate for any number of reasons, and you may
be left with an incomplete transaction. Most FTPClient methods
automatically attempt to re-establish a connection, if necessary, in order
to complete the requested operation.

If necessary, you can trap the FTPConnectionSignal and provide your own
reconnection code. This exception is raised when an attempt is made to
issue a command while the FTP control connection is closed. Refer to
“Handling FTP Exceptions” below for more information on trapping
exceptions.

On the client side, you can test to see if the connection is opened by
asking the client’s protocol interpreter whether it is closed. For example, if
ftpClient is an FTPClient instance, you can send this message, which
returns a Boolean:

ftpClient clientPI closed
Note that this message may return false, indicating that the protocol
interpreter still believes the connection is open, even though the server
may have closed the control connection.

If the connection is closed for either reason, you can reconnect by
sending a reconnect message to the FTPClient instance:

ftpClient reconnect

Setting passive or active mode
Besides the default settings option described above, the following
FTPClient instance methods control the transfer mode:

setServerPassive
Instructs the server to enter passive mode.
2-12 VisualWorks

Using FTPClient
setServerActive
Instructs the server to enter active mode.

copyFromFTP: FTPServer file: remoteFileName toFile: loaclFileName
passive: aBoolean
Sets the server mode to passive (true) or active (false) for this copy
operation only.

Ensuring that the connection closes
It is the responsibility of your application to ensure that the connection is
closed when the FTP session ends. In the normal case, in which the
transactions proceed without difficulty, and the connection remains open
until the application is finished, sending a close (or disconnect) message to
the FTPClient is sufficient, as shown in the examples so far.

Especially for prolonged and more complex sessions, involving multiple
transactions and intermediate processing, additional steps should be
taken to ensure that the connection is closed if something goes wrong.

Both normal and abnormal termination can be covered by using an
ensure block. This involves simply enclosing the session code in a block,
and following it with ensure: [ftpClient close]. For example, again slightly
modifying our example code:

| ftpClient |

"create client, connect, and log in"
[ftpClient := FTPClient loginToHost: 'ftp.parcplace.com'

asUser: 'anonymous'
withPassword: 'bruce@parcplace.com'.

"do stuff"
Transcript nextPutAll: ftpClient currentWorkingDirectory displayString;

cr ;
flush.]

"close connection"
ensure: [ftpClient close].

Now, whether the FTP session terminates normally, by succeeding, or
abnormally by failing somewhere, the connection will be closed.

Refer to the VisualWorks Application Developer’s Guide for more
information about unwind code protection.

Handling FTP Exceptions
Wrapping your code in an ensure block is a general way of protecting
against exceptions that would leave an open connection. Often, however,
more specific handling of exception conditions is necessary.
Internet Client Developer’s Guide 2-13

FTP
For general information about exception handling in VisualWorks, refer to
the Application Developer’s Guide.

A number of exception classes are provided for trapping exception
conditions, based on the FTP response. These are all subclasses of the
FTPSignal class, which is itself a subclass of Exception.

These exception classes cover all FTP responses except for the 2xx
“success” responses.

To capture these exception classes, use the on:do: message. The receiver
is a block, containing the code for which an exception is being trapped.
The first argument is one of the exception classes. The second argument
is a block of code to execute if the exception occurs. For example:

Exception Class Description FTP Response
Code

FTPConnectionSignal There is no connection, or the connection
has become stale.

none

FTPPreliminaryReply Preliminary response. The requested
action is being initiated. No further
requests should be sent until a
completion reply is received.

1xx

FTPIntermediateReply Positive intermediate reply. The command
has been accepted but is being held
pending receipt of further information.
The application should send another
command specifying this information.

3xx

FTPChallenge Positive intermediate response, but the
server needs more information, usually a
user name, password, or account.

3xx

FTPTransientReply Transient negative completion reply. The
command was not accepted, and the
action did not take place. The condition is
temporary. The application should return
to the beginning of the command
sequence (if any) and begin again.

4xx

FTPPermSignal Permanent negative reply. 5xx

FTPNoSocketSignal The request was not accepted and the
action did not take place. The request
sequence should not be repeated in the
same order.

5xx
2-14 VisualWorks

Using FTPClient
| ftpClient |
[ftpClient := FTPClient loginToHost: 'ftp.parcplace.com'

asUser: 'anonymous'
withPassword: 'bruce@parcplace.com'.

"do stuff"
[ftpClient makeDirectory: 'bogus']
“catch exception”

on: FTPPermSignal
do: [:x | Transcript show: x parameter code; cr] .]

"close connection"

ensure: [ftpClient close].
This code raises a permanent FTP exception because the server does
not grant directory creation access to anonymous accounts, and so the
do: block is evaluated. The single argument to the do: block is the
FTPPermSignal instance.

For most purposes, the exception classes provide sufficient information
for application programming. If more detailed information is required, you
can work with the FTP response itself, which is represented by an
instance of FTPResponse, and is returned by the exception class in answer
to the parameter message, as shown. These four messages return parts
of the FTP response:

code
Returns the FTP response code as a String.

message
Returns the FTP response message as a String.

status
Returns the FTP response code as a number.

statusAt: anInteger
Returns the digit at the specified position (1 - 3).

The response codes returned by code, status, and statusAt: are intended
for use by programs (automata), and are interpreted as specified in RFC
959. The text message is suitable for humans, so can be used in any
notification you might want to display to the user.
Internet Client Developer’s Guide 2-15

FTP
File structure types
FTP distinguishes three types of file structures commonly used on
diverse hosts: File, Record, and Page structures. VisualWorks currently
implements only the File type, which is an unstructured data file.

However, VisualWorks does provide the structure: message to specify the
structure. To specify the file structure, send a structure: message to the
FTPClient with either $F, $R, or $P as the argument:

ftpClient structure: $F.

File data representation
When transferring files between dissimilar systems, FTP clients and
servers are responsible for converting data received between the host
system’s data representation format and NVT-ASCII representation
specified for FTP usage.

In VisualWorks these issues are simplified because VisualWorks already
handles data format translation for different platforms. Consequently,
even for a client application deployed on different types of systems, you
do not need to provide special handling for different file data
representations. VisualWorks handles that for you.

File transfer operations
Two methods are provided for transferring files between a host and a
client:

retrieveFileNamed: aString as: aFilenameOrString
Downloads the file from the remote host to the local client.

storeFileNamed: aFilenameOrString to: aString
Uploads the file from the local client to the remote host.

The remote file name is specified as a String, and can be specified
relative to the current directory set for the FTP session on the server.

The local file can be specified by a String, or by a Filename (or
LogicalFilename or PortableFilename). Use Filename methods for setting the
local current directory.

Download a file from a remote server
To download a file, send a retrieveFileNamed:as: message to the FTPClient
instance. The first argument is either a Filename or a String, specifying the
name of the local copy of the file. The second argument is a String
specifying the remote, source file relative to the current directory on the
server.
2-16 VisualWorks

Using FTPClient
By default, file transfers are in binary mode.

| ftpClient |
ftpClient := FTPClient loginToHost: 'ftpserver'

asUser: 'user' withPassword: 'password'.
ftpClient setCurrentDirectory: 'visualworks'.
ftpClient retrieveFileNamed: 'hello.txt' as: 'helloworld.txt'.
ftpClient close.

Upload a file to a remote server
To upload a file, send a storeFilename:as: message to the FTPClient
instance. The first argument is a String specifying the name of the file as it
will be stored remotely, relative to the current directory on the server. The
second argument is either a Filename or a String, specifying the local file to
be uploaded.

By default, file transfers are in binary mode.

| ftpClient |
ftpClient := FTPClient loginToHost: 'yourftpserver'

asUser: 'zzuser' withPassword: 'zzpassword'.
ftpClient setCurrentDirectory: 'visualworks'.
ftpClient storeFileNamed: 'vwlogo.jpg' to: 'vwlogo2.jpg'.
ftpClient close.

Restarting a file transfer
Especially for large file transfers, it is convenient to be able to restart a
transfer at the point where it was interrupted by a lost connection.
NetClients provides two messages that allow you to restart a file transfer
at the place where it was interrupted. These commands rely on the server
supporting the FTP SIZE command. If this command is not supported,
they restart at the beginning of the file.

restartRetrieveLocalFile: localFileNameString fromFile: remoteFileNameString
Checks the size of the (partially downloaded) local file, and begins
transferring only data that has not been transferred yet.

restartStoreRemoteFile: remoteFileNameString fromFile: localFileNameString
Checks the size of the (partially uploaded) remote file, and begins
transferring only data that has not been transferred yet.

Directory operations

Get the current directory
To get the current directory on the remote host, send a
currentWorkingDirectory message to the FTPClient instance.
Internet Client Developer’s Guide 2-17

FTP
| ftpClient |
ftpClient := FTPClient loginToHost: 'servername'

asUser: 'user' withPassword: 'password'.
ftpClient currentWorkingDirectory.
ftpClient close.

Create a new directory
To create a directory on the remote host, send a makeDirectory: message
to the FTPClient instance. The argument is a String specifying the directory
to create. The parent directory must already exist.

| ftpClient |
ftpClient := FTPClient loginToHost: 'ftpserver'

asUser: 'user' withPassword: 'password'.
ftpClient makeDirectory: 'visualworks'.
ftpClient close.

Delete a directory
To delete a directory, send a removeDirectory: message to the FTPClient
instance. The argument is a String specifying the directory to remove:

| ftpClient |
ftpClient := FTPClient loginToHost: 'yourftpserver'

asUser: 'zzuser' withPassword: 'zzpassword'.
ftpClient removeDirectory: 'visualworks'.
ftpClient close.

The directory must exist and be empty, otherwise an FTPPermSignal is
raised, e.g., “550 : The directory is not empty”.

Listing files in a directory
Two messages are provided for listing directory contents:

directoryContents: aCollection do: aBlock
Retrieves a Collection containing the contents of the specified
directories, and passes its contents to the block for processing. The
directory listing is in “long” format:

-rw-r--r-- 1 bboyer pps 10 Nov 26 1996 stuff.txt

filesInDirectory: aCollection do: aBlock
Retrieves a Collection containing only the file names contained in the
specified directories, and passes it to the block for processing.
2-18 VisualWorks

Using FTPClient
The directories to be listed are provided in an collection, such as an Array.
To list the current directory only, give an empty collection:

"a single directory"
ftpClient filesInDirectory: #(thisDirectory) do: [:entry | some work].

"multiple directories"
ftpClient filesInDirectory: #(archives newWork)

do: [:entry | some work].
"current directory"

ftpClient filesInDirectory: #() do: [:entry | some work].
For a single directory, it can be given as a String. The current directory,
can be specified as a quoted single space:

"a single directory"
ftpClient directoryContents: ‘thisDirectory’ do: [some work].

"the current directory"
ftpClient directoryContents: ' ' do: [some work].

If a directory is specified including path name separators, it must be
provided as a String:

"current directory and a subdirectory"
ftpClient filesInDirectory: #(' ' 'archives/newWork') do: [some work].

Pattern matching can be used to filter the list. The pattern must be
specified as a String:

"list only files and directories starting with 's' or 't' "
ftpClient directoryContents: #('s*' 't*') do [some work]

This next example lists the current directory contents in long format and
then in filename-only format, to the Transcript:

| ftpClient |
[ftpClient := FTPClient loginToHost: 'ftpserver'

asUser: 'user' withPassword: 'password'.
ftpClient directoryContents: #() do: [:entry | Transcript show: entry; cr].
ftpClient filesInDirectory: #() do: [:entry | Transcript show: entry; cr]
] ensure: [ftpClient close].

File operations

Delete a remote file
To delete a file, send a deleteFile: message to the FTPClient instance. The
argument is the name of the file as a String.
Internet Client Developer’s Guide 2-19

FTP
| ftpClient |
ftpClient := FTPClient loginToHost: 'ftpserver'

asUser: 'user' withPassword: 'password'.
ftpClient setCurrentDirectory: 'visualworks'.
ftpClient deleteFile: 'hello.txt'.
ftpClient close.

An error will result if the file cannot be found: “550 : The system cannot
find the file specified”.

Rename a remote file
To rename a file, send a rename:to: message to the FTPClient instance. The
first argument is the file’s original name as a String, and the second
argument is the new name as a String.

| ftpClient |
ftpClient := FTPClient loginToHost: 'ftpserver'

asUser: 'user' withPassword: ‘password'.
ftpClient setCurrentDirectory: 'visualworks'.
ftpClient rename: 'hello4.txt' to: 'hellofour.txt'.
ftpClient close.

Get a file size
Some FTP servers will report a file size, if they support the FTP SIZE
command. To get the size, send a fileSize: message to the FTPClient
instance. The argument is the file name as a String.

Systems that do not support the command will raise an FTPPermSignal,
which you should trap.

| ftpClient |

ftpClient := FTPClient loginToHost: 'ftpserver'
asUser: 'user' withPassword: ‘password'.

[ftpClient fileSize: 'prom.zip']
on: FTPPermSignal
do: [:x | Transcript cr; show: x parameter message ; cr.]

ftpClient close.
For systems that do not report file sizes in response to this command,
you can parse the results of the directoryContents:do: command to extract
the size.

Setting file transfer mode
FTP recognizes Stream, Block, and Compressed file transfer modes.
NetClients currently only supports Stream mode.
2-20 VisualWorks

Using FTPClient
If your application provides its own support for Block and Compressed
modes, you can set the mode by sending a mode: message to the
FTPClient instance. The argument is a character identifying the mode.

| ftpClient |

"S=Stream B=Block C=Compressed"
ftpClient := FTPClient loginToHost: 'ftpserver'

asUser: 'user' withPassword: 'password'.
ftpClient mode: $S.

ftpClient close.

Getting server information

Display the remote server type
Some FTP servers will report information about the server, in response to
the FTP SYST command. Typically, Windows servers respond, but UNIX
servers do not.

To get system information where available, send a remoteSystemType
message to the FTPClient instance. Trap for FTPPermSignal to catch
requests to non-responding systems.

| ftpClient |

ftpClient := FTPClient loginToHost: 'ftpserver'
asUser: 'user' withPassword: 'password'.

[ftpClient remoteSystemType inspect]
on: FTPPermSignal
do: [:x | Transcript show: x parameters code ; cr].

ftpClient close.

Display the remote server status
All FTP servers will report their status. The actual information returned is
not specified, and is typically not very descriptive.

| ftpClient |

ftpClient := FTPClient loginToHost: 'ftpserver'
asUser: 'user' withPassword: ‘password'.

(ftpClient stat) inspect.

ftpClient close.
Internet Client Developer’s Guide 2-21

FTP
Using FTP commands and responses
FTPClient also provides a more immediate interface to FTP, allowing you to
issue the raw FTP commands yourself. For instance, instead of sending
directoryContents:do:, you can explicitly send the FTP LIST command with
the appropriate parameters.

This interface provides you more control over your FTP session, allowing
options that might not be available using the higher-level interfaces
already described. It also carries with it more responsibility, because you
are responsible for issuing these commands, and waiting for responses,
in the required sequences.

Refer to RFC 959 and auxiliary documents for command and sequence
descriptions. In this section we describe the FTPClients protocol for issuing
the low-level commands, and some simple examples.

Simple commands and responses
FTP commands and responses are transferred on the control port. For
some FTP commands, this is the only port involved in the exchange. For
these simple commands, send an executeCommand: message to an
FTPClient instance. The argument is a String consisting of the FTP
command, or the FTP command and its argument if one is required.

For example the following code changes the working directory and then
deletes a file. Both commands take an argument. Finally, the connection
is closed and disconnected. Since a permanent exception may occur if
the directory or the file doesn’t exist, we trap them.

| ftpClient |

[ftpClient := FTPClient loginToHost: 'ftpserver'
asUser: 'user' withPassword: 'password'.
[ftpClient executeCommand: 'CWD visualworks']

on: FTPPermSignal do:
[:x | Transcript show: x parameter message; cr].

[ftpClient executeCommand: 'DELE helloX.txt']
on: FTPPermSignal do:

[:x | Transcript show: x parameter message; cr].
ftpClient executeCommand: 'QUIT'

] ensure: [ftpClient disconnect]
Notice that the FTP QUIT command tells the server to close the
connection. Following it with a disconnect (or quit) message to the FTPClient
at this point only informs the client that the connection is closed.
2-22 VisualWorks

Using FTPClient
Data transfer commands
Many commands, such as those that transfer files or directory listings,
require a data port in addition to the control port. VisualWorks currently
supports only stream data for the data port. The following messages
support data transfer:

readStreamCmd: aCommandString
Create a ReadStream on the data connection created by
aCommandString. The command string begins with the FTP command,
and includes any command arguments.

writeStreamCmd: aCommandString
Create a WriteStream on the data connection created by
aCommandString. The command string begins with the FTP command,
and includes any command arguments.

The following opens a ReadStream to receive a directory listing and writes
the results to the Transcript:

| ftpClient strm |

[ftpClient := FTPClient loginToHost: 'ftpserver'
asUser: 'user' withPassword: 'password'.

strm := ftpClient readStreamCmd: 'LIST archives'.
Transcript show: strm upToEnd ;cr.
strm close.
ftpClient executeCommand: 'QUIT'.

] ensure: [ftpClient disconnect]

Protecting against a disconnect
When executing a sequence of commands or a data transfer, the server
may drop the control connection, resulting in a 421 reply. To simplify
capturing these errors and automatically doing a retry, you can send
executeSequence: to the FTPClient instance, with your low-level command
wrapped in a block. This is done frequently in FTPClient methods, which
you may inspect for examples.

Modifying the above example, we could (partially) protect against
intermediate disconnects like this:
Internet Client Developer’s Guide 2-23

FTP
| ftpClient strm |

[ftpClient := FTPClient loginToHost: 'ftpserver'
asUser: 'user' withPassword: 'password'.

ftpClient executeSequence:
[strm := ftpClient readStreamCmd: 'LIST archives'.
Transcript show: strm upToEnd ;cr.
strm close.
ftpClient executeCommand: 'QUIT'.]

] ensure: [ftpClient disconnect]
2-24 VisualWorks

3
Internet Messages and MIME Types

Introduction
Internet messaging and electronic mail standards were defined initially to
consist exclusively of plain, US-ASCII text. Such text messaging
standards are defined in RFC 822, and is the basis for almost all
subsequent internet mail and messaging standards.

A text message, as defined in RFC 822, consists of two parts: a header
and a body. The header is a collection of fields (date, from, subject). The
body, which is optional, consists simply of lines of text.

This representation is too limiting for many purposes, however, so
internet messaging standards have been extended beyond the
capabilities of plain text. MIME types, defined in RFCs 2045-2048,
provide a standard for specifying other kinds of message body content,
such as non-US-ASCII text, binary data, such as executables and
images, and multi-part messages. In short, MIME

• defines the structure of multi-part messages

• provides a mechanism for specifying the type of information in the
message (content-type)

• describes how non-ASCII information can be transported

• describes how non-ASCII information can be encoded in message
headers

• defines 7-bit transport and content transfer encoding

This chapter describes the support provided by VisualWorks for handling
internet messages and MIME types. These capabilities form the
foundations for the messaging services support described in subsequent
chapters.
Internet Client Developer’s Guide 3-1

Internet Messages and MIME Types
MIME support classes
NetClients provides an extensive framework in the MIME parcel. Of those
many classes, the following are essential for working with MIME:

MessageElement
MimeEntity

RFC822Message
MailMessage

MimeMessageBody
MultipartBody
SimpleBody

HeaderField
StructuredHeaderField

CollectionField
CacheControl

ScalarField
DateField
MailboxListField
NumericField
SingleMailboxField
VersionField

ValueWithParametersField
AcceptHeaderFields

AcceptCharsetField
AcceptField
AcceptLanguageField
ManOptField

AuthenticateChallengeField
SingleValueWithParametersField

ContentDispositionField
ContentTypeField

RFC822Message and MailMessage are the enclosing message entities to
which other MIME entities are added. MimeEntity provides all the basic
support for defining MIME entities. RFC822Message adds specific protocol
for a large number of header fields to a text message. MailMessage further
adds protocol specifically for dealing with complex message bodies,
including attachments.

These classes provide the protocol you need to use. The remaining
classes encapsulate the syntax and semantics of MIME messages, doing
the following work:

• Parses the message according to various protocols (RFC822, MIME,
HTTP)

• Decodes encoded headers
3-2 VisualWorks

Creating Mime Entities
• Provides messages for setting and getting most common header
fields, including those with parameters

Protocols that send MIME messages build on the basic MIME protocol,
adding further specialized functionality. For example, in all the sample
code found in the chapters pertaining to e-mail, you will find reference to
the MailMessage class. It is used for both sending and receiving electronic
messages and is, indeed, the "backbone" within VisualWorks that
enables Internet messaging.

Creating Mime Entities
A MIME entity is either a header element or a body element in some
enclosing message, either a mail message or an HTTP message.
Accordingly, they are created for inclusion in some top-level container, the
message.

For example, you might start with a basic RFC 822 style message:

msg := RFC822Message new
This creates a very basic message. You can inspect the result to examine
its structure. To this basic structure you add MIME entities as needed.

MailMessage provides support for additional message entities that are
typically used only by mail messages, such as attachments.

Of particular interest for this chapter is that it has a header instance
variable, which holds a set of header entities (initially empty), and a value
instance variable, which holds its body, if any.

A better way to create a new MIME entity is to send one of these instance
creation messages to MimeEntity or a subclass:

source: aStream
Creates a simple MIME entity from the contents of the Stream.

fileName: aStringOrFilename withEncoding: aSymbol
Creates a simple MIME entity containing the contents of the file,
guessing at the MIME type from the afileName extension. If afileName
does not have an extension, returns default 'application/octet-stream'.

newTextHTML
Creates a new entity with type text/html.

newTextPlain
Creates a new entity with type text/plain.
Internet Client Developer’s Guide 3-3

Internet Messages and MIME Types
readFrom: aStream
Creates a new entity from aStream, parsing the information, such as
message headers, based on its structure.

readHeaderFrom: aStream
Creates a new entity containing the aStream, parsing the header
information only.

The result is a new MimeEntity with the appropriate MIME type specified in
the entity header. These will be used in later examples.

Adding header fields
MIME defines a few specific header fields and permits others. Net Clients
supports adding any of these to the header.

Headers that are defined by MIME are supported by specific set/get
accessors. A sampling of the setters is (browse the MimeEntity accessing
method category for more, and for getters):

charset: aString
Set the ‘charset=aString’ to the Content-type header.

contentId: aString
Add or set the ‘ContentId:’ header to aString.

contentLength: anInteger
Add or set the ‘Content-length:’ header to anInteger.

contentTransferEncoding: encodingNameString
Add or set the ‘Content-transfer-encoding:’ header to
encodingNameString.

contentType: aString
Add or set the ‘Content-type:’ header to aString, with the default
charset.

mimeVersion: aString
Add or set the ‘Mime-version:’ header to aString.

addMimeVersion
Add or set the ‘Mime-version:‘ header with the default version string.

Any of these can be sent to the message already created to set the
header. For example:

| message |
message := RFC822Message new.
message addMimeVersion.
message contentType: ‘text/xml’.
3-4 VisualWorks

Creating Mime Entities
The messages create the appropriate instances of HeaderField subclasses
and add them to the header.

Some header fields take optional parameters and other information.
These are implemented as subclasses of ValueWithParametersField, and
provide additional messages for supplying the additional information. For
example, ContentTypeField represents the content-type field in MIME
and HTTP protocols, which may specify a type, a subtype, may specify a
character set for text types, and boundary for multipart subtypes, and so
on. If you use these header fields, browse the class for supporting
messages.

Additional fields can be added to the header for informational purposes.
This is done by creating a HeaderField with a value and adding that to the
message header. For example:

| message header |
message := RFC822Message new.
header := HeaderField name: 'MyField'.
header value: 'dummy'.
message addField: header.

Another useful message is getFieldAt:, which takes a field name as a String
for its argument. If the field already exists, the message returns the field
and its value. If the field does not yet exist, it is created, and you can then
provide a value for it. The following expression checks for a field’s
existence, creates it if necessary, and sets its value:

| message |
message := RFC822Message new.
(message getFieldAt: 'bogus') value isNil

ifTrue: [message fieldValueAt: 'bogus' put: 'stuff']
Net Clients email and HTTP support provide protocol for adding headers
that are meaningful for specific types of messages, as described in later
chapters.

Adding a body
Instances of MimeEntity and its subclasses include a value instance
variable that contains the message body, which holds either a SimpleBody
or a MultipartBody (which are subclasses of MimeMessageBody).

Simple Body
Initially value holds an empty SimpleBody. To access the body, send a body
message to the message:

message body
Internet Client Developer’s Guide 3-5

Internet Messages and MIME Types
To give the body a simple content, such as a String, send a contents:
message to it:

message contents: 'some text'
The value could also be read from a file:

message contents: 'test.txt' asFilename
A better way to specify the body is when the message is created initially,
by using the source: instance creation method:

message := MimeEntity source: ‘some text’ readStream.
There are a couple other instance creation methods, defined in MimeEntity
(such as readFrom: illustrated below), that do the same. This has the
advantage of creating the message with the correct content type, and
creating the SimpleBody with value ‘some text’.

The following is a more complete example of creating a MIME mail
message using this last approach:

| message messageString |
messageString := 'Date: 27 Aug 76 09:32 PDT

From: Jon Doe <JDoe@This-Host.This-net>
Subject: Re: The Syntax in the RFC
Sender: KSecy@Other-Host
Reply-To: Sam.Irving@Reg.Organization
To: George Jones <Group@Some-Reg.An-Org>,
 Al.Neuman@MAD.Publisher
Message-ID: <4231.629.XYzi-What@Other-Host>

A bunch of text.
'.

message := MimeEntity readFrom: messageString readStream.
This specifies the entire message, including message headers (Date,
From, Subject, etc.) as a String in the form specified for a MIME message.
The last line uses the readFrom: instance creation method to create the
MIME message from the String.

Multipart Body
MIME provides the capacity of multipart messages, consisting of multiple
MIME body elements preceded, followed, and separated by a boundary
marker. NetClients represents a multipart message as a message with a
MultipartBody, which holds a collection of MimeEnties as body parts.

To create a multipart body, simply send an addPart: message to the MIME
message with a MimeEntity as the argument:
3-6 VisualWorks

Sending a Message
| message newEntity |
message := MailMessage source: 'some text' readStream.
newEntity := MimeEntity source: 'some other text' readStream.
message addPart: newEntity.

If the MIME message currently has a SimpleBody, addPart: mutates the
current body to a MultipartBody, with the original body as the first body
part, and adds the new element to the collection of body parts. If the body
is already a MultipartBody, the new part is simply added to the collection.

As explained above, using the source:, or other MimeEntity instance
creation methods, invokes the MIME framework to provide the correct
content type.

Body parts are separated by a “boundary.” A default boundary is
provided, but you probably want to specify your own. After the body has
been converted to multipart, you can specify the boundary by sending a
boundary: message to the MIME message:

msg boundary: 'some_string_that_will_not_occur_naturally’
The boundary delimiter begins with -- (two hyphens), which are provided
by VisualWorks. The String may be up to 70 characters, and must be such
that it does not occur in any of the embedded elements. Any strategy to
create such a String can be used.

Creating a File Attachment
You can create a file attachment for an external file by sending the
fileName:withEncoding: instance creation message to MimeEntity. For
example:

attachment := MimeEntity fileName: 'visual.im.zip'
withEncoding: #'Windows-1252'.

The entity is created with the proper content type. You can then add the
entity to a message as a part, as described above.

Sending a Message
Normally, a message is constructed and then sent by an appropriate
client (HTTP, SMTP, etc.) using the message protocol for that client (e.g.,
sendMessage: for SMTPClient). Refer to the chapters for individual protocols
later in this document.
Internet Client Developer’s Guide 3-7

Internet Messages and MIME Types
As a convenience, MailMessage defines a send message, which sends the
message via the default SMTP server, if one is defined. The server is
defined in the Net Settings tool. A default user may also be specified, but
is not required if the message From: line has a legal mail address (name
and domain).

For example, if a default SMTP server is specified in Net Settings, this
should succeed:

| message |
message := MailMessage newTextPlain.
message from: 'santa@northpole.net';

to: 'jdoe@abc.com';
subject: 'Start making your list now';
text: 'What would you like for Christmas?';
yourself.

message send.
If a default user is also specified, then the from: 'santa@northpole.net' can
also be omitted.

Reading a MIME Message
Reading a MIME message entails accessing headers and body parts as
needed.

Accessing headers
Several messages are provided for accessing header fields.

The following messages, and variations of them, are defined in the
accessing field and body parts message category in MimeEntity. These
provide general access to fields in MIME entities.

fieldValueAt: aString
Returns the value of the header field named aString, or nil if it doesn’t
exist or is empty.

fieldsAt: aString
Returns a List of all header fields named aString. This is useful if there
are multiple header fields with the same name, as is permitted by
MIME.

getFieldAt: aString
Returns the value of header field aString if it exists; otherwise creates
the field.
3-8 VisualWorks

Reading a MIME Message
For example, given the complete MIME message example above, the
following will return the subject line as a String:

mimeMsg fieldValueAt: ‘subject’
Notice that the header fields have initial lower-case names.

There are specific messages for accessing particular fields as well,
especially content related fields. These are implemented using the above
methods, providing an easier to use interface. Browse the

contentId
Returns the value of the content-id field.

contentLength
Returns the value of the content-length field.

contentType
Returns the value of the content-type field.

RFC822Message defines additional messages for accessing headers of
specific interest in mail messages. Browse the accessing method category
for the complete set. The following is a small sample of the available
messages.

to
Returns the contents of the to field.

from
Returns the contents of the from field.

bcc
Returns the contents of the bcc field.

cc
Returns the contents of the cc field.

date
Returns the value of the date field.

replyTo
Returns the value of the reply-to field.

For example, given a mail message, you request any of this header
information from it:
Internet Client Developer’s Guide 3-9

Internet Messages and MIME Types
| message mimeMsg addressee |
message := popClient retrieveMessage: 1.
mimeMsg := MailMessage readFrom: message readStream.
^mimeMsg to.

Accessing bodies
A MIME message may have a single-part (SimpleBody) or multipart
(MultipartBody) body, or no body at all.

The basic MimeEntity protocol for accessing bodies consists of these
messages:

contents
For a simple message, returns a ByteString containing the message
body. For a multi-part message, returns an OrderedCollection of the
parts, which are instances of MimeEntity.

parts
Returns an OrderedCollection of the message parts of a multi-part
message (same as contents). The collection is empty for a simple
message.

partAt: partIndex
Returns the MimeEntity at the specified partIndex of the collection
returned by parts.

To test whether the body is simple or multi-part, send an isMultipart
message to the message. The response is a Boolean which you can use
to choose how to process the message. For example, this returns the
message text as a ByteString for either:

message isMultipart ifTrue:
[^(message partAt: 1) contents].
^message contents.

Given a multi-part message, which will be an instance of MailMessage,
there are additional messages you can send it to operate on its text part
or parts. Browse the accessing and utility method categories for these
operations.

For example, texts are often included in a variety of formats, such as
text/plain or text/html, providing the mail reader a choice of text
formats to use for display purposes. When there are alternatives, the text
type itself is multipart/alternative, and each format is provided as
a part.

The following messages allow you access these formats and parts.
3-10 VisualWorks

Reading a MIME Message
allAlternativeTextFormats
Returns a collection of all alternative text formats.

allTextParts
Returns a collection of all text parts.

prepareForTransport
Verifies that fields are in proper order, that required fields are present,
that assigned boundaries are present, and that attachments are
base64 encoded.

replaceTextWith: aString
Replaces the message body with aString, and resets the content type.

saveAttachment: aMimeEntity on: aStream
Writes aMimeEntity on aStream using appropriate encoding.

saveAttachmentAt: anIndex on: aStream
Writes the message attachment at anIndex on aStream with
appropriate encoding.

saveTextOn: aStream
Writes the message text on aStream. If the text includes alternates, all
are written in the order they occur.

saveTextOn: aString inPreferenceOrder: anArrary
Writes all alternate message texts on aStream in the order specified
by anArray, e.g., #('html' 'plain' '*')

text
Returns the plain text part of a message text.

textInPreferenceOrder:
Returns text in all alternative formats, in the specified order.

Get content information of a message part
Message parts are MIME entities, and so you can get the usual MIME
information from it. For example, the following code checks a multi-part
message to verify that the first part is plain text, and if so, returns the text:
Internet Client Developer’s Guide 3-11

Internet Messages and MIME Types
| msg message plainText |
msg := mailClient retrieveMessage: 1.
message := MailMessage readFrom: msg readStream.
message isMultipart ifTrue:

[((message partAt: 1) contentType = 'text/plain') ifTrue:
[^plainText := ((message partAt: 1) contents)]].

Extract the best text representation
Some clients can send a message in alternative formats as separate
parts, such as plain text and HTML. The message itself has content type
multipart/alternative. Alternates are, by convention, placed in the
message in order of increasing complexity, so plain text comes first.

Clients that can handle multiple formats, such as plain test and HTML,
can specify their own preference order for the version to display, by
sending textInPreferenceOrder: to the mail message with an ordered
collection of preferences. So, if your client displays HTML, you may prefer
that format over plain text, but still use plain text if there is no HTML
alternate. Follow the list with asterisk (*) to accept any format in the
absence of a preferred format. This example extracts html if available,
plain text if not, and the first available if neither of those is available.

| msg message |
msg := mailClient retrieveMessage: 1.
message := MailMessage readFrom: msg readStream.
^message textInPreferenceOrder: #('html' 'plain' '*').

Message transfer encoding
MIME entities can be encoded using the encoding scheme specified in
the content-transfer-encoding field. Encoding is necessary to encode
data for transfer over some transfer protocols, such as SNMP which
restricts mail message data to 7-bit US-ASCII.

Net Clients supports the two standard encoding schemes, base64 and
quoted-printable, which transform messages to conform to the 7-bit US-
ASCII restriction. Other encodings can be specified, but Net Clients does
not provide the encoding.

Quoted-printable is used for message bodies that are mostly 7-bit US-
ASCII, but may contain a few 8-bit characters. Any 8-bit characters are
transformed to be represented as “=” followed by the two-digit
hexadecimal representation.
3-12 VisualWorks

Message transfer encoding
Base64 encoding is used for message bodies if quoted-printable is not
appropriate. It represents arbitrary octets in a 65 character subset of US-
ASCII. Base64 encoding can be used, for example, to include binary data
in a mail message, such as in an attachment.

By default when a MIME message is written, base64 transfer encoding is
applied. So,

MailMessage new
addFileAttachment: 'visual.zip';
subject: 'Sending zip file';
send.

will send the message attachment base64 encoded.

The default encoding option can be set to false by sending:

MimeWriteHandler applyTransferEncoding: false
Net Clients protocol for encoding and decoding is very simple. These
messages are sent to a MimeEntity, typically a SimpleBody:

addContentTranferEncoding: anEncoding
Modifies the receiver MimeEntity to include the content-transfer-
encoding header for anEncoding, and encodes the body as
appropriate. The String specifying anEncoding is not validated, but
must be either 'base64' or 'quoted-printable' (case sensitive) for the
body to be encoded. If you do not add the content transfer encoding
for mail message attachments that are not plain text, the mail client
adds default encoding 'base64' when the message is sent.

removeContentTransferEncoding
Removes the content-transfer-encoding header and decodes
the body if it had been either base64 or quoted-printable encoded.

For example, if you added a part that should be encoded (and did not use
a message like addFileAttachment: that handles the encoding), you can
access the part and apply the encoding:

(mailMessage parts at: 2) addContentTransferEncoding: ‘base64’
Removing content transfer encoding is a configurable setting.

Settings mailRemoveContentTransferEncoding: true.
The default setting is false. If set to true, content transfer encoding is
removed while parsing the message.

To remove the encoding from a part of a received message, send:

(mailMessage parts at: 2) removeContentTransferEncoding
Internet Client Developer’s Guide 3-13

Internet Messages and MIME Types
International characters in header fileds
To send messages with header fields that have non-ASCII characters, the
field values should be represented as encoded-word's:

encoded-word = "=?" charset "?" encoding "?" encoded-text "?="
The charset portion specifies the character set associated with the
unencoded text. A charset can be any of the character set names allowed
in an MIME "charset" parameter of a "text/plain" body part, or any
character set name registered with IANA for use with the MIME text/plain
content-type.

VisualWorks supports encoding values "Q" and "B". The "B" encoding is
identical to the "BASE64" encoding defined by RFC 2045. The "Q"
encoding is similar to the "Quoted-Printable" content transfer encoding
defined in RFC 2045.

To correctly encode national characters in the header fields, set the
header character set by sending headerCharset: to the mime entity.

MailMessage new
date: Timestamp now;
headerCharset: 'iso-8859-2';
from: '"Žluva Tůma Řízek" <xxx@server.cz>';
to: '"Božidar Šlapetko" <yyy@server.de>';
subject: 'Příliš žluťoučký kůň úpěl ďábelské

ódy.';
charset: 'iso-8859-2';
text: 'PŘÍLIŠ ŽLUŤOUČKÝ KŮŇ ÚPĚL ĎÁBELSKÉ ÓDY.';
yourself.

If the header character set is not provided and the header field contains
non-ASCII characters, the mime entity makes a guess about the charset,
based on the string contents. (See MimeEncodedWordCoDec class method
findEncodingFor:.)

Processing non-ASCII data
The NonASCIICharacter exception is raised while parsing a message or
header with non-ASCII characters.

To simply accept non-ASCII characters without raising an exception, send
an acceptNonAsciiCharacters: message to the MimeParserHandler, or
appropriate subclass. By default NonASCIICharacter will be raised.

For example, this message contains the copyright character, which is not
a valid in ASCII character. By default the NonASCIICharacter will be raised:
3-14 VisualWorks

Message transfer encoding
bytes :=
'Subject: Cincom©
Content-Type: text/plain

1234 ' asByteArrayEncoding: 'ISO-8859-1'.
stream := EncodedStream on:

bytes readStream encodedBy: (StreamEncoder new: #'ISO-8859-1').
[MailBuildHandler readFrom: stream

] on: NonASCIICharacter
do: [:ex | ex parameter].

To make the parsing process proceed accepting the character as is, set
the acceptNonAsciiCharacters option to true:

stream := EncodedStream on: bytes
readStream encodedBy: (StreamEncoder new: #'ISO-8859-1').

message := MailBuildHandler new
acceptNonAsciiCharacters: true;
readFrom: stream.

To parse individual header fields with non-ASCII characters, read the
header using a readFrom:acceptNonAsciiCharacters: message:

string := 'Received: (from Cincom©) Tue, 18 Apr 89 23:29:47 +0900'.
HeaderField readFrom: string readStream acceptNonAsciiCharacters: true.

The same default behavior, raising the NonASCIICharacter exception,
applies to parsing individual fields as well:

[HeaderField readFrom: string readStream
] on: NonASCIICharacter do: [:ex | ex parameter].

When constructing a new mail message, header field values with non-
ASCII characters are accepted. They are properly encoded using the
specified encoding (ISO-8859-1 by default) and processed according to
the MIME standard when the message is written out.

Note that if the default encoding cannot handle provided characters, a
different encoding should be explicitly specified using the headerCharset:
message. In the following example, the ISO-8859-2 encoding is used to
encode the accented Czech characters.
Internet Client Developer’s Guide 3-15

Internet Messages and MIME Types
message := MailMessage new
headerCharset: 'iso-8859-2';
from: '"Žluva Tůma Řízek" <xxx@server.cz>';
to: '"Božidar Šlapetko" <yyy@server.de>';
subject: 'Ahoj';
text: 'text';
yourself.

stream := String new writeStream.
message writeOn: stream.
stream contents

In general you can parse MIME messages from any kind of stream
(internal or external). However, to facilitate parsing MIME messages
straight from external streams, the parser works from bytes (not
characters) at the lowest level. This assumption causes certain
complications when working with internal streams on Strings as the
underlying collections. (Internal streams on top of ByteArrays do not have
any issues and behave exactly the same as external streams). These
“character streams” are automatically wrapped in a DecodedStream which
converts characters to bytes using ISO-8859-1, the character set
prescribed by the MIME standard. Because of this it is possible for the
DecodedStream to encounter a character that it cannot encode. Although
such message is technically invalid (such characters should be encoded
differently using valid characters) it is still possible to finish parsing the
message. The stream is set up with a special stream error policy, the
ReplaceUnsupportedCharacters policy, which signals an
UnsupportedCharacterReplacement notification for these characters and by
default replaces them with ASCII character NUL (code 0). This allows the
MIME parsers to recover and continue. This notification can also be
trapped by an application level handler and resumed with a different
replacement character if so desired. The example below replaces the
(invalid) trademark character with an underscore:

string :=
'Content-Disposition: attachment; filename="Cincom™ .txt"
Content-Type: text/plain; name="Cincom™ .txt"

some bytes
'.

[MimeBuildHandler readFrom: string readStream.
] on: UnsupportedCharacterReplacement

do: [:ex | ex resume: $_].
3-16 VisualWorks

Message transfer encoding
Several web browsers send Http message with non-ascii characters in
parameter values. For example the filename parameter in Content-
Disposition field can be sent in utf-8 encoding only. The parser can be
configured to try to decode these values. To set this option, send, for
example:

ValueWithParams defaultParameterValueEncoding: ‘utf8’
specifying the decoder. By default the value is nil, indicating that such
characters will not be decoded.

Unknown Encoding
The UnknownEncoding exception is raised when the message content-type
specifies an unknown encoding, either because such encoding does not
exist, or because a corresponding encoder is not available in the image at
that time.

This exception can be resumed, either with an explicitly specified
encoding (e.g., resumeWith: #'US-ASCII') or without a parameter (resume).
In the latter case the default encoding is applied (ISO-8859-1). Here is an
example (note the charset value in the Content-Type header field):

input :=
'From: Fred Foobar <foobar@Blurdybloop.COM>
Subject: afternoon meeting
To: mooch@owatagu.siam.edu
Content-Type: text/plain; charset=klingon

 Hello Joe, do you think we can meet at 3:30 tomorrow?
'.

"Default handling: if the exception is simply resumed, the message body
source will use ISO8859-1"
[message := MailFileReader readFrom: input readStream.

] on: UnknownEncoding
do: [:ex | ex resume].

message contents

"Overriding the default encoding: to force the message body source to use
US-ASCII encoding"
[message := MailFileReader readFrom: input readStream

] on: UnknownEncoding
do: [:ex | ex resume: #'US-ASCII'].
Internet Client Developer’s Guide 3-17

Internet Messages and MIME Types
3-18 VisualWorks

4
HTTP

Introduction
HTTP (Hypertext Transfer Protocol) is an application-level protocol for
distributed, collaborative, hypermedia information systems. It is a
request/response protocol, in which a client sends a request to the
server, and the server responds with a status line followed by a MIME-like
message, most frequently a web page.

HTTP within VisualWorks mimics Filename. You can access web pages
(URLs) just like local files. This provides a level of transparency in
accessing HTTP-based documents. For example, you could access a
financial web site and retrieve the latest stock quote for a particular ticker
by parsing the stream of HTML that is returned.

HTTP support level
VisualWorks provides sufficient features to implement an unconditionally
HTTP/1.1 compliant client. However, VisualWorks does not enforce
HTTP/1.1 compliance of the client application.

In this chapter we explain the features available in VisualWorks and their
use, with pointers to developing a client that is conditionally HTTP/1.1
compliant (implementing the MUST, but not the SHOULD, requirements
of RFC 2616). However, we do not attempt to cover every requirement to
make your application unconditionally compliant. Refer to RFC 2616 for
the complete requirements.

Default settings
Default settings for HTTP are configurable in the Settings tool or using
the following class methods.

In class Net.Settings
Internet Client Developer’s Guide 4-1

HTTP
httpKeepAlive: aBoolean
If true, keeps the connection alive between requests; closes after
each request otherwise.

httpRedirectRequest: aBoolean
If true, allows HttpMoveError (301 and 302) responses to forward to
the relocated site; forwarding is blocked otherwise.

httpProxyHost: aHostSpec
Sets the HTTP proxy to aHostSpec.

httpProxyExceptions: aList
Sets a list of server names, as an ordered collection of strings, which
the client does not use the proxy to access.

httpUser: aNetUser
Sets the default user to aNetUser, an instance of NetUser.

In class Net.HttpProtocolInterpreter

enableCookieProcessing: aBoolean
If true, enables cookie processing; disabled otherwise.

In class Net.CookieAgent

cacheCookies: aBoolean
If true, allows caching cookies; disallowed otherwise.

useCachedCookies: aBoolean
If true, allows using cached cookies; disallowed otherwise.

enableLimits: aBoolean
If true, checks limitations on cookie entries and size.

numberEntries: aNumber
Sets a limit on the number of entries in a cookie.

numberEntriesPerServer: aNumber
Sets a per-server limit on the number of entries in a cookie.

numberBytesPerCookie: aNumber
Sets a byte size limit on cookies.

These default settings can all be overridden for a client instance.

Implementation Classes
HTTP client support is implemented in a large number classes. This
chapter focuses on those few classes that are necessary for building a
client. The following is a brief overview of the most central classes. Other
classes, though not all, are mentioned throughout the chapter as
appropriate.
4-2 VisualWorks

Introduction
HttpClient class
HttpClient is the main class for modeling a client session. A HttpClient
instance establishes and maintains a connection with the server. It holds
a request, and is responsible for issuing that request and receiving back
the response. It also handles some “unsuccessful” response conditions,
such as a challenge for server or proxy authorization.

HttpRequest class
HttpRequest models a request. Accordingly, it holds the HTTP request line,
header, and body. It supports a flexible set of messages for constructing a
request in preparation for the HttpClient to send.

HttpResponse class
HttpResponse models a request response, containing a status line,
headers, and a simple or multi-part body. It’s messages give easy access
to each of these elements.

HttpException class
HttpException is the superclass for all HTTP exception conditions.
Subclasses represent more specific conditions. Trapping the appropriate
condition is the core of HTTP error handling.

HttpEntity class
HttpEntiry is the superclass for HttpRequest and HttpResponse. It
implements the shared behavior.

Secure HTTP
The HTTPS parcel adds extentions that integrate SSL functionality with
HttpClient, providing the ability to conduct an HTTP conversation over a
secure channel established using SSL. A URI with the “https://” prefix
invokes this functionality without the need for a separate client class.

Note that secure usage of SSL requires certain level of understanding of
the issues involved. Therefore, we urge you to consult the available SSL
documentation before relying on security of HTTPS. Refer to the Security
Guide for more information on SSL support in VisualWorks.
Internet Client Developer’s Guide 4-3

HTTP
Connecting to an HTTP server

Creating a connection
For most uses, the connection information is gathered from the
HttpRequest (see Requesting an HTTP document), and the connection is
made when the request is executed (see Sending the request).

However, it may on occasion be desirable to control a connection more
explicitly. To create a connection to an HTTP server, send one of these
messages to HttpClient:

connectToHost: aString
Establishes a connection to the host named aString on port 80.

connectToHost: aString port: anInteger
Establishes a connection to the host named aString on port anInteger.

host: aString port: anInteger
Identifies the host name as aString and the port number as anInteger,
but does not establish a connection.

connect
Establishes a connection to the current host and port, and returns a
Stream on the connection.

Connection persistence
HTTP 1.0 connections were maintained for only a single transaction,
retrieving a single URI. As HTTP transactions have become more
complex, for example, requesting in-line images and other associated
data, this strategy has proven to be inefficient.

In HTTP/1.1 persistent connections are the default. The server may (but
need not) assume that the connection persists, unless the client includes
a Connection header with a connection-token close.

The persistence state of an HttpClient is stored as a Boolean in the
HttpClient keepAlive instance variable. By default it is set to false in
VisualWorks for a new client, so you may need to set it to true for a
HTTP/1.1 client. When the request is sent, the appropriate connection-
token is added to the request, indicating whether the connection is to
close or remain alive, based on the keepAlive value.

Use the following protocol to set and retrieve the value:
4-4 VisualWorks

Requesting an HTTP document
keepAlive: aBoolean
Set the connection persistence state to aBoolean. Set to true for
persistent, false for non-persistent.

keepAlive
Return a Boolean indicating the connection persistence state.

If a persistent connection is used, the application is responsible for
closing the connection when it is finished retrieving data.

Closing a connection
To close the connection, send a close message to the client:

client := HttpClient new.
" do some work ".
client close

Clients and servers can indicate that a connection is being closed by
including a Connection header field with a close token. A client must
not send any more requests on a connection once it has indicated that
the connection is closed.

Requesting an HTTP document
VisualWorks represents an HTTP request by an instance of HttpRequest.
A request consists of:

• An HttpRequestLine instance (representing the Request-Line),
consisting of:

• an HTTP request method (e.g., GET or POST)

• a request-URI (e.g.,
http://www.somecorp.com/index.html)

• a protocol (e.g., HTTP/1.1)

• A collection of headers

• A message body (if any)

Creating a basic request
There is a single, general HttpRequest instance creation method:
Internet Client Developer’s Guide 4-5

HTTP
method: aMethodString url: requestURIString
Returns an HttpRequest instance with an HttpRequestLine for the HTTP
method aMethodString, and default version HTTP/1.1. requestURIString
must include the protocol, host, and absolute path of the resource.
The absolute path is included in the HttpRequestLine, and the host is
held in a HttpRequest Host: header field.

For example:

req := HttpRequest method: 'GET' url: 'http://www.cincom.com'
For the main HTTP commands, there are special instance creation
methods:

delete: urlString
Returns a DELETE request.

get: urlString
Returns a GET request.

headers: urlString
Returns a HEADERS request.

post: urlString
Returns a POST request.

put: urlString
Returns a PUT request.

Using this method, the following is equivalent to the previous example:

req := HttpRequest get: 'http://www.cincom.com'
Browse the Http commands class method category in HttpRequest for
additional methods.

Modifying a request
Once you have an HttpRequest instance, you can modify or add parts to it
as necessary.

Change the version number
The basic request created above includes an HttpRequestLine and a
(initially empty) collection of headers. The request line holds the method
name, the absolute path (without the host), and the protocol version. So,
for the example above, the request line is:

GET / HTTP/1.1
Since no path was given in the creation command, but only the host
name, the absolute path is simply /.

You may need to change the HTTP version level, which you can do with:
4-6 VisualWorks

Requesting an HTTP document
version: aVersionString
Set the protocol version to aVersionString.

So, if you are using HTTP/1.0, change the default version by sending:

req version: 'HTTP/1.0'

Add header fields
There are a large number of header fields that can be inserted into an
HTTP request. Most of these can be added using messages provided by
HttpRequest and its superclasses. Browse the accessing fields and similarly
named message categories.

For example, the Accept request-header is used to specify a range of
acceptable media types. To specify types, send the accept: message to
the HttpRequest with either a String or an AcceptField instance, specifying
the types:

req accept: ‘audio/basic’
req accept: (AcceptField media: 'audio/basic')

When specified as a String creates an AcceptField header, if it doesn’t
already exist in the request, and adds the String to the list of accepted
types. If the AcceptField already exists, the String is simply added to the
list. However, when specified as an AcceptField, the message replaces the
entire AcceptField with the new one.

The valid values for the header fields are specified in RFC 2616.
VisualWorks automatically adds some header fields as part of other
operations, such as adding a message body.

Add a simple message body
Some requests, such as PUT messages, may have a message body,
which may be encoded. Requests that include a body must indicate this
by including either a Content-Length or Transfer-Encoding
header field.

To add a body, send a contents: message to the request. Using this
approach, you are responsible to supply any necessary header. The
content length is added later by the message writer.

The argument can be a String, in the case of a text body, for example:

req contentType: ‘text/plain’
bodyText := 'This is a test body'.
req contents: bodyText.

To provide a body from a file, whether the file is text or binary, you can
provide a Filename. More extensive header information is generally
required:
Internet Client Developer’s Guide 4-7

HTTP
req contentType: ‘application/octet-stream;name=visual.im;
charset=iso-8859-1’

req contents: 'visual.im' asFilename
It is easier, however, to include binary parts in a multipart body using
addPart:, which provides the appropriate header information.

Adding a multi-part body
Creating a multipart body uses the mechanism provided by MIME
support, as described in Chapter 3, “Internet Messages and MIME
Types.”

To summarize, you create a new MimeEntity by sending, for example, a
fileName: instance creation message to MimeEntity. The result is a new
MimeEntity with the appropriate MIME type specified in the entity header.
You then add the part to the request body as a new message part:

req := HttpRequest put: ‘http://some.server/’.
req contents: ‘some text’.
newPart := MimeEntity fileName: ‘c:\XMLSources\myXMLfile.xml’.
req addPart: newPart.

In this case, the request already had a SimpleBody, and the addPart:
message converts the request body to a MultipartBody, adjusts the request
header, makes the original body a part, and adds the new part. It also
declares the required boundary delimiter in the request header and
inserts it where required, before each part and after the last part.

Sending the request
Once you have built the request, you instruct the HTTP client to send the
request to the server by sending it an executeRequest: message, with the
request as the argument. For example, the following retrieves the Cincom
home web page:

| httpClient request response |
httpClient := HttpClient new.
request := HttpRequest get: 'http://www.cincom.com'.
response := httpClient executeRequest: request

The returned value of the executeRequest: message is an HttpResponse,
which we hold for processing.

This simple request uses the default settings for message chunking (true)
and compression (false). Refer to “Chunking Large Attachments” on
page 4-18 and “Compression” on page 4-19 for information about
controlling these featuers.
4-8 VisualWorks

Requesting an HTTP document
Posting Form Data
The capabilities for submission of HTML form data support both simple
"url encoded" format in a single-part HTTP request (content-type:
application/x-www-form-urlencoded), and data submission as an
individual parts in a multi-part HTTP request (content-type:
multipart/form-data). These options are provided as extensions to
HttpClient and HttpRequest, loaded from the WebSupport package.

Multi-part messages are used when form data contains entries with
relatively large values, for example when a form has external files
attached to it for upload to the server.

The default behavior is to submit forms as simple requests. Form entries
can be added individually using #addFormKey:value: message, or set at
once using #formData: message, which takes a collection of
Associations. Note that #formData: replaces any previous form content.

stream := String new writeStream.
(HttpRequest post: 'http://localhost/xx/ValueOfFoo')

addFormKey: 'foo' value: 'bar';
addFormKey: 'file' value: 'myFile';
writeOn: stream.

stream contents
An alternative way to post a form is using HttpClient. In this case the
request is immediately executed and the result is returned from the
server.

HttpClient new
post: 'http://localhost/xx/ValueOfFoo'
formData: (

Array
with: 'foo' -> 'bar';
with:'file' -> 'myFile').

To force the form to submit as a multipart message, send #beMultipart to
the request at any point. Any previously added entries are automatically
converted to message parts. Note however that conversion of multipart
messages back to simple messages is not supported, as it is not always
possible without a potential loss of information.

stream := String new writeStream.
(HttpRequest post: 'http://localhost/xx/ValueOfFoo')

addFormKey: 'foo' value: 'bar';
beMultipart;
addFormKey: 'file' value: 'myFile';
writeOn: stream.

stream contents
Internet Client Developer’s Guide 4-9

HTTP
File entries can be added using message addFormKey:filename:source:.
Adding a file entry automatically forces the message to become multipart,
to be able to capture both the entry key and the filename.

stream := String new writeStream.
(HttpRequest post: 'http://localhost/xx/ValueOfFoo')

addFormKey: 'foo' value: 'bar';
addFormKey: 'text' filename: 'text.txt'

source: 'some text' readStream;
writeOn: stream.

stream contents
Adding a file entry attempts to guess the appropriate Content-Type for
that part from the filename extension. If it does not succeed, the content
type is set to default, application/octet-stream. File names with non-ASCII
characters are automatically encoded using UTF8 encoding. UTF8 is
also used for the file contents if the source is a character stream (as
opposed to byte stream).

Adding an entry to a multipart message returns the newly created part.
This allows you to modify any of the default settings or to add new ones.
For example, this changes the filename and file contents encoding to
ISO8859-2:

stream := String new writeStream.
request := HttpRequest post: 'http://localhost/xx/ValueOfFoo'.
part := request addFormKey: 'czech'

filename: 'kú .txt'
source: 'P íli lu ou ký kú úp l ábelské ódy.' withCRs readStream.

part headerCharset: #'iso-8859-2';
charset: #'iso-8859-2'.

request writeOn: stream.
stream contents

To parse messages containing forms into any of the supported forms,
send a formData message to the HTTP message. The result is a
collection of associations, the same form as the input to the formData:
message.

(HttpRequest post: 'http://localhost/xx/ValueOfFoo')
addFormKey: 'foo' value: 'bar';
addFormKey: 'file' value: 'myFile';
formData

File entry values are entire message parts, so that all the associated
information can be accessed.
4-10 VisualWorks

Reading a HTTP response
request := (HttpRequest post: 'http://localhost/xx/ValueOfFoo')
addFormKey: 'foo' value: 'bar';
addFormKey: 'text' filename: 'text.txt' source: 'some text' readStream;
yourself.

part := request formData last value.
part contents

Reading a HTTP response
The response you receive back from a request is structurally very similar
to the request. The main difference is that it has a status line rather than
a request line.

Accessor methods are provided for extracting information from the
response. Accessor methods are defined in HttpResponse and its
superclasses.

The most important information is typically in the body. Your application
will use information in the header to determine what kind of data is
contained in the body, so it can process that data appropriately.

For this section, we’ll use the response received from Yahoo:

| client req resp |
client := HttpClient new.
req := HttpRequest get: 'http://www.yahoo.com'.
resp := client executeRequest: req.

Status line
The status line tells you the HTTP version, and the success status of the
request. To get the status line, send statusLine to the response:

resp statusLine.
which, for the successful request just made, returns:

HTTP/1.0 200 OK
To get just the parts of this line you can send other, more specific
messages. The following messages are useful:

statusLine
Returns the entire response status line (an HttpResponseStatusLine).

protocol
Returns the protocol part of the status line as a String ('HTTP')

version
Returns the protocol version as a String ('1.0')
Internet Client Developer’s Guide 4-11

HTTP
descriptionString
Returns the response description as a String ('200 OK')

code
Returns only the message code, as a String ('200')

Header fields
The HttpResponse includes a set of header fields and values. Most of the
headers are standard fields, and are supported by specific accessor
methods. Other special headers may exist as well, and can be accessed
using more general methods.

Standard headers
Accessor methods for most standard HTTP header fields are defined in
HttpResponse and its superclasses, in the accessing fields message
categories.

For example:

connection
Returns a List of connection parameters, indicating whether the
connection is closed (close) or kept alive (keep-alive).

contentLength
Returns the value of the content-length HTTP header field.

date
Returns the date, as a Timestamp, that the message originated.

Browse the classes for additional field messages.

Additional headers
In addition to the standard header fields, special fields are frequently
defined.

If you know the field name, you can get the value by sending a fieldAt: or
fieldsAt: message:

fieldAt: aString
Returns the first HeaderField named aString.

fieldsAt: aString
Returns a List of HeaderFields named aString.

For example, you can retrieve a set-cookie field value like this:

cookieField := resp fieldAt: 'set-cookie'.
However, since more than one set-cookie field may be present, use:

cookieFieldList := resp fieldsAt: ‘set-cookie’.
4-12 VisualWorks

Cookie Support
It may also be useful in some situations to process fields even though you
cannot anticipate their names. To get the collection of all headers, send a
header message to the response:

headers := resp header.
This returns a MessageHeader instance, which contains a List of
HeaderFields as its value. Send a value message to this to get the List.

Message body
The point of many of the headers is to give your application the
information it needs to process the message body.

In the case of a message with a simple body, you can simply send a body
message to the response:

msgBody := resp body.
If the body is a multipart body, send a parts message to the response:

msgParts := resp parts.
This returns an OrderedCollection of MimeEntity instances.

How to parse the body is beyond the scope of this section. The most
common body contents is a web page, in HTML, in which case the body
contents needs to be passed to an HTML parser.

Cookie Support
Cookies are used to introduce state into a series of HTTP exchanges,
providing a way to define a “session.” Information is stored on the client
system, and then used during the session to identify the client and
various aspects of the session.

VisualWorks client support includes support for handling and caching
HTTP Cookies. Two specifications are supported: the original Netscape
specification, and the RFC2965 specification. Although the Netscape
specification was preliminary, and has been subject to criticism,
Netscape-style cookies remain the most commonly used, and is the only
style supported by most web browsers at this time.

How Cookies are Used During a Session
When an HTTP client makes a request of a server, it respects a one-time
response; state is not required for such a simple exchange.
Internet Client Developer’s Guide 4-13

HTTP
If a server wants to begin a series of exchanges in which state is relevant,
it responds to the client request by including an additional response
header to the client defining the cookie; either a Set-Cookie (Netscape)
or Set-Cookie2 (RFC2965) header.

If the client chooses to continue the exchange, it returns a Cookie header
containing the cookie send from the server. The server may either ignore
that header, or return a Set-Cookie (or Set-Cookie2) response header
with the same or different information as in the Cookie header sent by the
client. This exchange of headers continues through the duration of the
exchange.

RFC2965 refers to this exchange as a “session.” The session continues
until the server effectively ends it by sending a Set-Cookie2 header with
MaxAge=0.

How Cookies are Handled
Most of the operations of receiving and caching cookies, and attaching
them to outgoing HTTP requests, are handled automatically by HttpClient,
depending on the settings for cookie handling.

When cookie processing is enabled (either by default, as described in
”Cookie Handling Settings,” or for an instance as described below),
cookie processing is performed automatically for HTTP requests and
responses. If an HttpResponse includes a Set-Cookie or Set-Cookie2
header field, a CookieAgent is created to process and create the cookie.
The agent holds the cookie in its cache for use in further interactions with
the site. Additional requests to the site include the cookie header field for
client identification. No further intervention is required.

Cookies are not cached by default, but caching can be enabled either in
the Settings Tool or by command (see below). When caching is enabled,
cookies held by a CookieAgent are written to the cache,
CookieAgent.Registry, when the Http session is closed. No additional
interaction is required.

Accordingly, in general there is no need to interact with the CookieAgent.
However, if there is reason to do so, the cookie agent can be retrieved
from the HttpClient.

Cookie Handling Settings
The API methods described above (see “Default settings” on page 4-1)
and the Http Cookie page in the Settings Tool provide default settings for
cookie handling. The setting options are explained in the online help for
the settings pages.
4-14 VisualWorks

Cookie Support
Some of these default settings can be overridden for an HttpClient
instance. Some settings are applied directly to the client but most are
sent to the cookie agent.

For example, to enable cookie processing, overriding the default to not
process cookies, you can write:

client := HttpClient new.
client enableCookies: true

Other settings can be overridden using class methods defined in
CookieAgent. For example, your code might change the cache cookies
setting for a specific HTTP client, which it can do only after a cookie has
been received and a cookie agent created:

client := HttpClient new.
client enableCookies: true.
"Access a site that sends a cookie"
response := client get: 'http://www.amazon.com'.
agent := client cookieAgent.
agent cacheCookies: true.
client close.

Note that the cookie is cached only once the client is closed.

Messages that are sent to the HttpClient are:

enableCookies: aBoolean
If set to true, enables processing of cookies received.

Messages that are sent to the CookieAgent are:

cacheCookies: aBoolean
When enabled (true), cookies that are received during an HTTP
session are written to the cookie cache, CookieAgent.Registry, when
the HttpClient is closed.

enableLimits: aBoolean
When enabled (true), cookie verification limits are checked.

useCachedCookies: aBoolean
When enabled (true), cached cookies are used for the session.

Setting Cookie Fields
CookieAgent creates cookies based on Set-Cookie or Set-Cookie2
response headers, and returns the cookie with subsequent responses.
This is done automatically, based on cookie handling settings, and there
is no need to intervene in the process. Neither is it generally desirable to
do so.
Internet Client Developer’s Guide 4-15

HTTP
However, in case there were a reason to construct your own cookie, the
API is provided to do so, for either Netscape or RFC2965 style cookies.
Examples in both styles are provided in the class comment for
CookieAgent, which you should review.

One special case for which you do need to create a Cookie2 header is
the case where the client wants to negotiate up to using RFC style
cookies. As described in the RFC, if a client receives a Set-Cookie
response header, i.e., in Netscape style, instead of a Set-Cookie2
response header, it should respond with a Cookie header in the Netscape
style, but should also send a Cookie2 request header:

Cookie2: $Version="1"

This informs the server that the client understands the RFC style cookies,
and the session could continue in that style. If the server does not
understand the RFC style cookies, it will simply ignore the header.

To add the Cookie2 field, create a request for the response, then add the
field using addField:. For example,

request := (HttpRequest post: 'http://www.amazon.com')
addField: Cookie2Field version: 1.

And then send the request:

client executeRequest: request

Streaming on an HTTP connection
Streaming support is implemented using layers of stream wrappers to
handle different aspects of message transport processing. Aspects like
compression, character encoding, HTTP chunking, etc., are processed
by their own wrappers.

Basic read protocol
A simple interface for creating a Stream on a URI is provided by these two
message selectors:

readStreamCmd: commandString url: urlOrString
Connect, send a request, and answer a http connection stream.

readStreamCmd: commandString url: urlOrString do: aBlock
Connect, send a request, evaluate aBlock on the connection stream,
ensure disconnect, and answer the block evaluation result.
4-16 VisualWorks

Streaming on an HTTP connection
In these messages, commandString is simply the HTTP command ('GET',
'PUT', 'POST', etc.). The URI must be a complete path, including the
protocol and server. The server part is used to make the connection. The
remainder of the path is used with the command string to place the
command.

readStreamCmd:url: creates an open ReadStream, and holds the stream
open for reading using the standard Stream operations. You are
responsible for closing the connection when you are finished processing
the Stream.

| client stream |
client := HttpClient new.
stream := client readStreamCmd: 'GET' url: 'http://www.yahoo.com'.
[stream atEnd] whileFalse: [Transcript show: stream nextLine; cr].
stream close

readStreamCmd:url: creates the ReadStream and performs the actions
described in aBlock on the stream. aBlock is expected to be a one-
argument block, with the stream as the input argument. This method
ensures that the stream is closed before completing.

| client stream |
client := HttpClient new.
stream := client readStreamCmd: 'GET'

url: 'http://www.yahoo.com'
do: [:x | [x atEnd] whileFalse: [Transcript show: x nextLine; cr.]]

Handling attachments
As long as attachments are small, they can be handled in memory.
Larger attachments, however, need to be read from and written to files.

Received attachments are written to a file, by default. To toggle this to
receive attachments into memory, send

HttpBuildHandler saveAttachmentsAsFiles: false
Attachment files are saved in a directory, which is by default named
http-temp-files and located in the image directory. To change the
default directory use the following expression:

HttpBuildHandler defaultAttachmentDirectory: 'myDirectory'.
HttpBuildHandler creates a file name based on the Content-
Disposition filename parameter. If a file with this name already exists
a new name will be generated. In all cases the framework raises a
notification, AttachmentFilename, allowing the user to override the file name
on the fly. For example:
Internet Client Developer’s Guide 4-17

HTTP
[response := client executeRequest: request
] on: AttachmentFilename

do: [:ex | ex resume: 'http-temp-files\MyTempFile.txt'].

Chunking Large Attachments
For uploading big files, messages are chunked. HTTP chunking is a
transport encoding which splits the message in a number of smaller
“chunks” and writes each chunk in sequence. A size indicator is included
for individual chunks rather than for the entire message. Writing even very
large messages is efficient, because we don’t have to compute the actual
byte size of the entire message up front.

When writing a message, the stack of stream wrappers includes a
ChunkedWriteStream, which collects the message body bytes in a buffer
until the buffer is filled. The buffer size is settable, with the default size set
to 4K. If the message body fits entirely into a single buffer, the message is
not chunked, but is sent intact, and the message header will include the
“Content-length” field with corresponding byte size value. If the body is
longer than the buffer, then when the ChunkedWriteStream is about to write
the first chunk into the underlying stream, the higher levels of the
framework add a "transfer-encoding: chunked" header field and the body
is written out in the chunked format.

As was mentioned, the chunk size is settable. To set the size globally (in
bytes) send a message:

ChunkedWriteStream class>>defaultWriteLimit: aNumber
To set the chunk size individually for each message use the following
pattern:

pwriter := HttpWriteHandler new.
writer chunkSize: aNumber.
writer writeMessage: anHttpMessage on: aWriteStream.

or

client := HttpClient new.
client chunkSize: 200.
response := client executeRequest: aHttpRequest.

Chunking can cause trouble for version 1.0 HTTP servers that do not
support it. To suppress chunking, either set the default to not chunk:

HttpWriteHandler shouldChunk: false
or send doNotChunk to the HttpRequest:
4-18 VisualWorks

Streaming on an HTTP connection
Sending not chunked message:
request := HttpRequest get: url.
request doNotChunk.
response := request execute.

Messages are chunked by default (shouldChunk: true). The option setting
works as follows:

• When shouldChunk is true (default),

• if the message body size exceeds the size specified by the
chunkSize option (defaultChunkSize is set to 4K), the message is
chunked;

• if message body size has fewer bytes than the specified
chunkSize, the messages is not chunked, and uses the content-
length header instead.

• When shouldChunk to false, the message is not chunked regardless of
body size and uses the content-length header instead.

Note that, when shouldChunk is false, the writer needs to be able to
determine the exact, final byte size of the message body (e.g., if the body
is to be compressed it has to be the compressed size). The size has to be
known before it starts writing the body, so that it can inject the correct
content-length field into the header. In general in this mode the body is
first written into an internal stream to determine the correct byte count,
then the header is finished with the right content-length, and finally the
body bytes are copied from the internal stream. As an optimization, if the
body is simple (i.e. not multi-part) and the size of the body is known in
advance, the writer will use that body size for the content-length field and
then write the body bytes to the outging stream directly. This does not
change the behavior in any way, but does make the handling of this
particular case more efficient manner than the other non-chunked cases.

For code samples on how to control chunking in HTTP see the class
comment of HttpWriteHandler.

Compression
The streaming implementation also includes an option that allows you to
control compression of the outgoing messages. Setting the option to true
will transfer the message in gzip format ("Transfer-Encoding: gzip"). The
default value is false. Use the following pattern to enable gzip
compression of messages:
Internet Client Developer’s Guide 4-19

HTTP
client := HttpClient new.
client useGZipTransfer: true.
[response := client executeRequest: request] ensure: [client close]

or:

writer := HttpWriteHandler new.
writer useGZipTransfer: true.
writer writeMessage: httpMessage on: stream.

A compressed, chunked message will be sent out using both of these
transfer encodings and will include the following header fields:

Transfer-Encoding: gzip
Transfer-Encoding: chunked

The body will be compressed and then split into chunks of the specified
size.

Authentication
In general, HTTP requests are passed without user authorization
information (user ID and password). If a 401, “authentication required,”
response is received back, the HttpClient creates an instance of
AuthenticationPolicy. The class AuthenticationPolicy provides different types
of authentication for HTTP messages.

The policy selects a supported authentication scheme from the server
challenge, creates an instance of the specific authentication, and adds an
authorization field to a request.

The policy will try to handle the server challenge if:

• a user name and password is provided

• the server challenge includes an authentication scheme that is
supported by HttpClient

Currently supported authentication schemes are: Basic, Digest, and
NTLM. The client side preferences for authentication mechanism are
controlled by the authentication order (#authOrder), which can be
specified either at the global level (class side) or at the individual instance
level.

An HTTP client always sends an unauthorized message first, which
results in a challenge response if the site requires
authentication/authorization. How the challenge is answered depends on
the information available to the HttpClient. Here are a few cases.
4-20 VisualWorks

Authentication
• The user name and password provided before the request, by being
set in the HttpClient instance.

cl := HttpClient new.
cl username: 'winUsername' password: 'winPass'.
reply := cl get: aURI.

The authentication scheme will be selected from the server 401/407
reply. The user name and password will then be encoded based on
this scheme and the request will be sent to the server.

• The HttpClient may be configured to respond with a specific
authorization scheme:

cl := HttpClient new.
cl username: 'winUsername' password: 'winPass'.
cl useBasicAuth.
reply := cl get: aURI

If the specified scheme is not acceptable to the server, the request
will fail. In addition to useBasicAuth, used above, there is also
useNTLMAuth to specify the policy.

• If the user name and password are not provided, the HttpClient will
raise an HttpUnauthorizedError exception. Your error handling code will
specify the handling.

cl := HttpClient new.
[reply := cl get: aURI.
] on: Net.HttpUnauthorizedError
do: [:ex |

cl username: 'winUsername' password: 'winPass'.
ex retry]

• You can also specifying authorization information for a proxy server.

proxy := (HostSpec new
name: 'ntlmAuthProxyServer';
type: 'http';
yourself).

proxy netUser:
(NetUser username: 'winUsername' password: 'winPass').

cl := HttpClient new.
cl

proxyHost: proxy;
useProxy: true.

reply := cl get: html.
This next sample demonstrates how an HTTPClient uses the
Authentication policy.
Internet Client Developer’s Guide 4-21

HTTP
The HttpClient received the 401 reply from the server. The server can
accept the NTLM and Basic authentication.

request := HttpRequest readFrom:
'GET http://www.cincomx.com/en/index.asp HTTP/1.1
Host: www.cincom.com:4545
Connection: Keep-Alive' readStream.

reply := HttpResponse readFrom:
'HTTP/1.1 401 Unauthorized
WWW-Authenticate: Negotiate
WWW-Authenticate: NTLM
WWW-Authenticate: Basic realm="testrealm@host.com"' readStream.

To process the 401 message the HttpClient creates an instance of the
authentication policy.

polBuilder := AuthenticationPolicy new.
The default policy order is set as

AuthenticationPolicy class>>defaultAuthOrder
^Array

with: NTLMAuthentication
with: DigestAuthentication
with: BasicAuthentication

This order can be changed at the instance level, if desired:

polBuilder policiesOrder: (Array
with: BasicAuthentication
with: DigestAuthentication
with: NTLMAuthentication).

Set the authentication information:

polBuilder username: 'aUser' password: 'password'.
Check if the policy can process the reply challenge.

polBuilder acceptChallenge: reply request: request.
Based on the authentication policy order the Basic scheme will be
selected to authorize the request.

polBuilder addAuthorizationTo: request.

Using a Proxy Server
If you access the internet through a proxy, you should set the proxy
information using the Net Settings tool (see NetClient Settings).
4-22 VisualWorks

HTTP Exception Handling
For an application environment, you may need to set the proxy
programmatically, to provide your own access to the settings. You can do
this using either of these HttpClient class methods:

proxyHost: aString
Sets the HTTP proxy to host aString on port 80.

proxyHost: aString port: anInteger
Sets the HTTP proxy to host aString on port anInteger.

proxyHost: aString port: anInteger userid: aUserName password: aPassword
Sets the HTTP proxy to host aString on port anInteger, and assigns
aUserName as the proxy login name. If aUserName is not already a
defined identity, then create it, and assign aPassword.

If you specify a proxy host, you should send the an enableProxy message,
to ensure that it is used.

With the proxy specified, you send an HTTP request as usual:

| client req resp |
HttpClient proxyHost: 'PROXYSERVER' port: 80.
HttpClient enableProxy.
client := HttpClient new.
req := HttpRequest get: 'http://finance.yahoo.com'.
^resp := client executeRequest req.

The request will be sent to the proxy, which forwards the request,
receives the response, and passes it to the client.

For proxy authentication, see Authentication above.

HTTP Exception Handling
HttpException and its subclasses are raised as exceptions in response to
errors and exceptions in an HTTP exchange.

Subclasses and superclasses are arranged by specificity. HttpException is
the most general HTTP error, and so is the super class of them all.
HttpClientError is one subclass of HttpException, and applies to all 400
series errors. HttpUnauthorizedError applies specifically to 401 errors, and
is a subclass of HttpException.
Internet Client Developer’s Guide 4-23

HTTP
The most specific error applicable is raised, allowing your application to
take specific actions where appropriate. For example, HttpMovedError is
more specific than HttpRedirectionError, and both are more specific than
HttpException.

Special handling is built into the HttpClient to handle certain exception
cases. For example, authorization errors 401 and 407 initiate retries, if an
appropriate user ID and password are identified. (See Authentication for
more information.) Similarly, a 301 or 302 error initiates a retry with the
new URL, if possible. In such cases, your error processing only needs to
handle cases that the built-in handling does not handle.

Number Exception Class

1xx HttpInformationalError

301 HttpMovedError

302 HttpMovedError

3xx HttpRedirectionError

401 HttpUnauthorizedError

407 HttpProxyAuthenticationError

4xx HttpClientError

510 HttpNotExtendedError

5xx HttpServerError

xxx HttpException
4-24 VisualWorks

5
Email

NetClients provides support for three standard email protocols: SMTP for
outgoing mail, POP3 for incoming mail, and IMAP for full control over
mailbox contents on a server.

Mail clients send and receive mail messages that are created and
formatted as described in Chapter 3, “Internet Messages and MIME
Types.” This chapter only deals with the mail system protocol itself.

In building a mail client, you typically need to provide for both sending and
receiving mail. POP3 and IMAP are mail receiver clients, and SMTP is a
sender client. The mail protocols you choose is determined by the
support provided by the server you need to access. For internet ISPs,
combining POP3 and SMTP is the most common.

For POP3 and SMTP servers that support secure connections using
SSL, these client libraries provide secure connection options.

Mailboxes
The Mailbox class and its subclasses provide a high-level interface that
makes it simple to check mailboxes. There’s a class for IMAP and for
POP3, in this hierarchy:

Mailbox
IMAPMailbox
POP3Mailbox

The following protocol is useful for checking a mailbox:

allHeaders
Returns a collection of message headers

anyNewMail
Returns a Boolean; true if there are new messages, false otherwise.
Internet Client Developer’s Guide 5-1

Email
messageCount
Returns the number of messages in the mailbox.

getMessage: anInteger
Returns the message, in an instance of LetterInTransit, specified by
anInteger.

You create either an IMAPMailbox or a POP3Mailbox, and then you can
send any of these messages. For example:

mailbox := IMAPMailbox “or POP3Mailbox”
user: (NetUser username: 'nicki' password: 'hox3')
server: 'mail.northpole.net'.

mailbox allHeaders.
If there’s already an open connection, it is used for the command and left
open. If there isn’t already a connection, then one is created, and closed
upon command completion.

SMTP
SMTP (Simple Mail Transfer Protocol) is the simplest of the mail
protocols. It is designed to send an e-mail message from the client to a
SMTP server by simply writing a Stream of data to port 25.

SMTP client support is provided in a single class, SMTPClient, which
inherits from NetClient.

Creating a SMTP client instance
SimpleSMTPClient instance creation protocol is inherited from NetClient.
Since SMTP typically uses port 25, you generally only need to specify the
host as a String:

SMTPClient host: 'smtp.some_isp.net'
If an SMTP client is defined as the default outgoing mail client in the
Network Settings, you can access it by:

SMTPClient defaultOutgoingMailClient

Sending a message
There are two utility messages in the SMTPClient protocol for sending mail
messages. To send a single message on a connection, use:

sendMessage: aMailMessage
Sends aMailMessage to the SMTP server.

This message does the following:
5-2 VisualWorks

SMTP
1. Open connection

2. Login

3. Send the message

4. Quit and disconnect

To send multiple messages over a single connection, use:

sendMessage: aMailMessage
This message can be used to send a few mail messages over the
same connection. The client has to be connected and authenticated
before the msesage is sent. After the message is sent the client
changes the state from transaction to authenticated. After all
messages have been sent, the connection must be closed by
sending a quit message.

Depending on the useAuthentication setting, the utilities will start the
communication session with the EHLO or HELO commands. Based on
the server reply for the EHLO command the client selects a supported
authentication scheme and sends authorization information to the server.
If the hand shake is successful, the client is moved to the “authenticated”
state. The useAuthentication option is set to true by default.

Examples
• Sending an authenticated message over a regular connection:

smtpClient := SMTPClient host: 'smtp.somehost.com'.
smtpClient user: (NetUser username: 'username' password: 'password').
smtpClient send: message.

• Sending an authenticated message over a SSL connection:

smtpClient := SMTPClient host: 'smtp.somehost.com'.
smtpClient user: (NetUser username: 'username' password: 'password').
smtpClient useSecureConnection.
smtpClient send: message

• Sending a non-authenticated message over a regular connection:

smtpClient := SMTPClient host: 'smtp.somehost.com'.
smtpClient useAuthentication: false.
smtpClient send: message

• Sending a few messages
Internet Client Developer’s Guide 5-3

Email
smtpClient := SMTPClient host: 'smtp.somehost.com'.
smtpClient user: (NetUser username: 'username' password: 'password').
smtpClient connect.
[smtpClient login..

smtpClient send: message1.
smtpClient send: message2.
] ensure: [smtpClient quit]

Secure SMTP
To establish a secure SMTP session, set the client to secure mode by
sending useSecureConnection to the client.

client := SMTPClient new.
client user: (NetUser username: 'username' password: 'password').
client hostName: 'smtp.com' portNumber: '9090'.
client useSecureConnection.
[client connect] on: Security.X509.SSLBadCertificate do: [:ex | ex proceed].
client send: self message

You should also handle the SSLBadCerticate exception, as shown.

To set the connection back to normal mode, send useDefaultConnection to
the client.

Handling SMTP exceptions
SMTPClient raises no exceptions of its own. General SocketAccessor errors
can occur, however, and should be trapped. See “Socket Programming”
in Basic Libraries for information.

POP3
POP3 (Post Office Protocol 3) is a simple mail-reading protocol that can
run over TCP/IP. POP3 enables reading and deleting of messages in a
mailbox.

POP3 support is provided by the POP3Client class and several support
classes. POP3Client provides the public interface; the remaining classes
should be considered private to the implementation.

This section discusses using the POP3Client to receive messages and
manage the mailbox. For information about handling messages once they
are received, refer to Chapter 3, “Internet Messages and MIME Types.”
5-4 VisualWorks

POP3
Creating a POP3 client instance
POP3Client instance creation protocol is inherited from NetClient. Since
POP3 typically uses port 110, you generally only need to specify the host
as a String, without specifying the port:

POP3Client host: 'pop.some_isp.net'
If the POP3 client is defined as the default incoming mail client in the
Network Settings, you can access it by:

POP3Client defaultIncomingMailClient
Note that the default client might be an IMAP client, so this will require
some error handling.

Running a POP3 session
A POP3 session begins when a client connects to the server on port 110.
The client then waits for the server to send a greeting. Once the greeting
is received, the client and server begin exchanging commands and
responses. The commands that may be issued are dependent upon the
client state, either POP3AuthorizationState or POP3TransactionState. At the
end of the exchange, the client closes the connection.

Connecting and disconnecting
For POP3Client, the connection is controlled by these messages, which
are sent to a POP3Client instance:

connect
Creates a connection to the server identified by the client and waits
for the greeting response from the server.

disconnect
Closes the connection to the server, but does not terminating the
session. To complete a transaction, be sure to send quit before
disconnect.

quit
Quits the TRANSACTION state, entering the UPDATE state. This
does not disconnect from the server.

close
Performs quit followed by disconnect.

By default, POP3Client performs five retries before failing, to accommodate
a temporary failure due to a busy server. If the connection cannot be
established, a NetClientError is raised.

To end the session, send close to the client to close the connection.
Internet Client Developer’s Guide 5-5

Email
Logging into the server
Once a connection is established, the client enters the
POP3AuthorizationState, in which it can send login messages. The client
must have a user, which is identified by sending it a user: message with a
NetUser instance:

pop3Client user: (NetUser username: ‘myUserId’ password: ‘secret’).
With the user identified, the client can log in by sending the login
message:

pop3Client login.
Upon successfully logging in, the client state is changed to
POP3TransactionState, and mail management commands can be sent.

POP3Client does not default to using the default user set in Network
Settings. You can, however, access and use the default user ID:

pop3Client user: NetUser registry defaultIdentity.
pop3Client login.

Sending POP3 commands
Once you are logged in, issuing POP3 commands is simply a matter of
sending the correct command message with any required parameters.
Browse the commands method category to see the complete set.

Secure POP3
To establish a secure POP3 session, set the client to secure mode by
sending useSecureConnection to the client.

pop3Client := POP3Client new.
pop3Client user: (NetUser username: 'username' password: 'password').
pop3Client hostName: 'hostname'.
pop3Client useSecureConnection.
[pop3Client connect] on: Security.X509.SSLBadCertificate do:
[:ex | ex proceed].
[pop3Client login; list] ensure: [pop3Client close]

You should also handle the SSLBadCerticate exception, as shown.

To set the connection back to normal mode, send useDefaultConnection to
the client.

POP3Client Commands
POP3 commands defined in RFC 1939 are implemented as POP3Client
methods.

The available methods are:
5-6 VisualWorks

POP3
apop: mailboxNameString digest: MD5DigestString
Provides an alternative login method for POP3 servers that support
the POP3 APOP command.

delete: messageNumber
Marks message messageNumber to be deleted from the mailbox when
it is updated upon disconnect.

deleteMessageIds: aCollectionOfUIDs
Marks all messages in aCollectionOfUIDs, each member of which is a
unique-ID (see retrieveMessageID: below), for deletion from the
mailbox when it is updated upon disconnect.

list
Returns an OrderedCollection of POP3Status instances, one for each
message in the mailbox. Each POP3Status indicates the message
number and the size of the message, in octets.

list: messageNumber
Returns a POP3Status for messageNumber, containing the message
number and its size, in octets.

noop
Sends a POP3 NOOP (no op) message. The server returns a
positive response, if it is operating properly.

reset
Restores any messages marked for deletion.

retrieveMessage: messageNumber
Returns message messageNumber as a ByteString.

retrieveMessageID: messageNumber
Returns the unique ID for messageNumber as a ByteString.

retrieveMessageLines: messageNumber
Returns an OrderedCollection of the lines of message messageNumber,
each line as a ByteString.

status
Returns a POP3Status containing the number of messages and the
total size, in octets.

top: numberOfLines of: messageNumber
Returns the message header and firstnumberOfLines lines of message
messageNumber.

Get inbox information
The status, list, and list: messages return information about the inbox in
instances of POP3Status. status returns a POP3Status indicating the number
of messages in the inbox and the total size of the contents of the inbox.
Internet Client Developer’s Guide 5-7

Email
list returns an OrderedCollection of POP3Status instances, each of which
contains a message number and the size of the message. list: returns a
single POP3Status containing the message number and size of the
specified message.

Each POP3Status responds to the messages messages and octets.
messages returns either the total number of messages (status) or the
message number (list and list:). octets returns either the total size of
messages in the inbox (status) or the size of each message (list and list:).

For example, to print a listing of message numbers and sizes to the
Transcript, do:

| popClient msgList |
popClient := POP3Client host: 'pop.yourserver.net'.
popClient user: (NetUser username: 'jdoe'

password: 'passwordforjoe').
popClient connect;

login.
popClient list do:

[:msg | Transcript show: msg messages printString;
nextPut: Tab;
show: msg octets; cr].

popClient close. " Sign off and disconnect"

Retrieve a message
The retrieveMessage: and retrieveMessageLines: are the most common
messages for retrieving a message from the inbox. For both, you specify
the message to retrieve by its message number. retrieveMessage: returns
the message as a ByteString, and retrieveMessageLines: returns the
message as an OrderedCollection of ByteStrings, each ByteString containing
one line of the message.

For some purposes the ByteString might be adequate, but for MIME
enabled mail clients the message needs to be rendered as a MailMessage.
To do this, open a ReadStream on the message ByteString and send a
readFrom: message to MailMessage with the read stream as argument, as
shown below.
5-8 VisualWorks

POP3
| popClient message mimeMsg |
popClient := POP3Client host: 'pop.yourserver.net'.
popClient user: (NetUser username: 'jdoe'

password: 'passwordforjoe').
popClient connect;

login.
message := popClient retrieveMessage: 1.
mimeMsg := MailMessage readFrom: message readStream.
popClient close.

Delete a message
The delete: and deleteMessageIds: mark messages in the inbox for deletion.
Messages are not actually deleted until the session enters the UPDATE
state, which occurs when the client is sent quit.

Message numbers are only valid message identifiers during the session
that reported the number, so is only reliable during the current session.
So, for example, to delete the last message by its message number, use
delete: as follows:

| popClient lastMsgNum |
popClient := POP3Client host: 'pop.yourserver.net'.
popClient user: (NetUser username: 'jdoe'

password: 'passwordforjoe').
popClient connect;

login.
lastMsgNum := popClient status messages.
popClient delete: lastMsgNum.
popClient close.

An alternative is to use the message’s unique-ID, which is a server-
assigned identifier that uniquely identifies the message across sessions.
So, a client application could store message information locally and
permit deleting a message at a later time by using this unique-ID, rather
than trying to identify the message by its current number.

To get the unique-ID from the mail server, send a retrieveMessageID:
message. The collected IDs can then be passed as a collection to
deleteMessageIds: for deletion. This example collects all the current
message IDs and then deletes all messages using those IDs.
Internet Client Developer’s Guide 5-9

Email
| popClient idCollection numMsgs |
popClient := POP3Client host: 'pop.yourserver.net'.
popClient user: (NetUser username: 'jdoe'

password: 'passwordforjoe').
popClient connect;

login.
numMsgs := popClient status messages.
numMsgs >= 1 ifTrue:

[idCollection := 1 to: numMsgs collect:
[:num | popClient retrieveMessageID: num]].

popClient deleteMessageIds: idCollection.
popClient close.

Since messages are only marked for deletion until the session is
terminated, you can “undelete” messages during the session, by sending
a reset message to the client. This undeletes all messages currently
marked for deletion. So, in the last message, we could change our mind
and restore all the messages by inserting this before the quit message
line:

popClient reset.

POP3 states
NetClients supports three session states, represented by three classes:
POP3State, POP3AuthorizationState and POP3TransactionState.

State changes
POP3State is the default state, and is assigned to a client when it is first
created.

Upon successful connection, the client’s state is changed to
POP3AuthorizationState. In this state the login message can be sent to the
client, which sends the USER and PASS POP3 commands.

Upon successfully logging in, the client’s state is changed to
POP3TransactionState. In this state, the usual command messages can be
sent, for retrieving messages or message information, and deleting
messages from the mailbox. The disconnect message can also be sent in
this state, terminating the session, but should be preceded by quit to
cause the update..

When the session is terminated using disconnect, the client’s state is
returned to POP3State.
5-10 VisualWorks

IMAP
State errors
Attempting to send commands to the client while it is in POP3State will
raise a POP3StateError. Similarly, attempting to send the login message
while the client is in POP3TransactionState, or sending any of the
transaction commands while it is in POP3Authorization state, will also raise
POP3StateError.

If the session is terminated by the server, such as when the connection is
timed out, the client’s state remains in its last state; it is not changed to
POP3State. Attempting to send commands while the client is in this
condition will either raise a general socket error, a Message Not
Understood error, or, if the message is inconsistent with its last state, a
POP3StateError.

Handling POP3 exceptions
There are only two exceptions specifically relevant to a POP3 session:
NetClientError and POP3StateError. General SocketAccessor errors may also
occur, however, and should also be handled (refer to “Socket
Programming” in Basic Libraries for information).

NetClientError is signaled if connect fails to create a connection. For
example, if the host is incorrect, the socket cannot be created, resulting in
this error. Your application should trap and handle:

[pop3Client connect]
on: NetClientError do:
[:ex | ex handleThis]

POP3StateError is raised if a command is sent while the client is in the
incorrect state. All commands, except user: and pass:, require the client to
be in POP3TransactionState, which is set upon successful connection and
unset upon disconnection. While the connection is being established, the
state is POP3AuthorizationState, which permits user: and pass: commands.

In general, your application will be so constructed that you will not need to
handle state errors.

IMAP
IMAP (Internet Message Access Protocol) allows a mail client to access
electronic mail messages that are stored on a server and manage a
collection of mailboxes. With mail stored on the server, you can maintain
your mailboxes equally from a desktop computer at home, a workstation
at the office, and a notebook computer while traveling, without the need
to transfer messages or files back and forth between these computers.
Internet Client Developer’s Guide 5-11

Email
Due to the size and complexity of the IMAP specification, this section
cannot explain all there is to know about IMAP. For additional information,
refer to RFC 2060.

Creating an IMAPClient instance
IMAPClient instance creation protocol is inherited from NetClient. Since
IMAP typically uses port 143, you generally only need to specify the host
as a String, without specifying the port:

IMAPClient host: 'imapHost.someISP.net'
If the IMAP client is defined as the default incoming mail client in the
Network Settings, you can access it by:

IMAPClient defaultIncomingMailClient
Note that the default client might be a POP3 client, so this will require
some error handling.

Running an IMAP session
Unlike POP3 and SMTP sessions, an IMAP connection is expected to be
maintained for a long period of time.

From the time the IMAP connection is established until it disconnects, it
passes through a series of states, each of which is represented in
VisualWorks by a class (see “IMAPClient states” below).

Connect and Log in
Once you have created an IMAPClient instance, you need to connect to an
IMAP server and log in.

To connect, send a connect message to the IMAPClient instance:

imapClient connect.
Once successfully connected, the client state is changed to
IMAPNonAuthenticatedState, and you are ready to log in.

Logging in, as always, requires a user ID, supplied by a NetUser instance.
Once the user ID is provided to the client, send the login command:

imapClient user: (NetUser username: 'nicki' password: ‘somepassword').
imapClient login.

IMAP allows for an alternative authentication mechanism, which may be
implemented by an IMAP server. For logging into such a server, use the
authenticate: message with the appropriate authentication string as
argument.
5-12 VisualWorks

IMAP
Mailbox maintenance
Once successfully logged in, the client state advances to
IMAPAuthenticatedState. Several mailbox maintenance commands are
available at this point, such as commands for creating and deleting
mailboxes, listing and examining mailboxes, adding a message to a
mailbox, and subscribing and unsubscribing to mailboxes.

Message maintenance
Operations on messages require that a mailbox is selected. Upon
selection, the client is placed into a IMAPSelectedState. Commands
affecting messages, such as retrieving, moving, or modifying a message,
in all of which a message is identified by number, are performed for the
selected mailbox. The mailbox remains selected until another mailbox is
selected, the mailbox is closed or deleted, or the client is disconnected.

Log out
A session ends when it is disconnected, either by the client or the server.
The client disconnects by sending a logout message to the IMAPClient
instance. The state is returned to the default IMAPState, and no further
commands may be sent.

The server may close the connection by timing out, usually after at least
30 minutes of inactivity. The client state is not updated in this case.

IMAPClient states
In the course of an IMAP session the client enters a variety of states,
represented in VisualWorks as the following classes:

IMAPState
The default state for a client prior to connection and following logout.
No IMAP commands can be sent the client in this state, though the
connect message can be sent.

IMAPNonAuthenticatedState
Upon successful connection the client enters this state, for user
authentication. The login message can be sent in this state, to
authenticate using a username and plain-text password.

IMAPAuthenticatedState
Upon successful authorization the client enters this state, for
selecting a mailbox. A mailbox must be selected, by sending a select:,
examine:, or create: message.

IMAPSelectedState
The client is set into this state when a mailbox is selected by sending
a select:, examine:, or create: message.
Internet Client Developer’s Guide 5-13

Email
Only certain IMAP commands can be sent to an IMAPClient in any given
state. The messages implementing IMAP commands are all defined in
IMAPState as returning an error signal. IMAPState subclasses for which a
message is valid reimplement the message. Browse the commands
message category for these classes.

Command responses
In the course of a session, IMAP clients send commands to the server,
and the server sends back responses reporting results and status.

Most IMAPClient command messages return an instance of
IMAPCommand, which contains the server responses. Utility messages
typically return the most relevant part or parts of the response, for easier
processing, rather than the IMAPCommand object, and so are not
discussed in this section.

One important response is the completion response, which indicates
whether the command succeeded or not. Send the message
completionResponse to the IMAPCommand to get an IMAPResponseTagged
object. The status field, which is accessed by the status message, is
frequently useful to verify whether a command has succeeded:

(imapClient select: 'some box')
completionResponse status = 'OK'

ifTrue: ["do some operation on messages"]
Typical completion responses are: 'OK' for success, 'NO' for failure, and
'BAD' for an incorrect command or arguments. Even better for testing for
success or failure, send a successful or failed message, which simplifies
the above to:

(imapClient select: 'some box') successful
ifTrue: [do some operation on messages]

Command messages also return a command response, which can be
accessed by sending a commandResponse message to the IMAPCommand.
Depending on the command, the response may be a IMAPResponse or an
undefined object. The contents of the IMAPResponse also varies,
depending on the command, and so needs to be taken into account. For
example, a status: message

(client status: 'blapperty'
criteria: #('unseen' 'uidnext' 'messages')) completionResponse

returns an IMAPResponse with a 2-element Array in its parameters variable.
The second element contains the information you want in a collection of
field names and values, which you would access like this:
5-14 VisualWorks

IMAP
(client status: 'blapperty'
criteria: #('unseen' 'uidnext' 'messages'))

completionResponse parameters at: 2.
A fetch: command, on the other hand, returns a single element in its
parameters Array, which itself contains a collection. For example,

(client fetch: #(1 2 3) retrieve: #(uid rfc822))
commandResponse parameters

returns a single-element Array in parameters, which in turn contains a 4-
element Array. The first and third elements are the names of the
requested fields ('UID' and 'RFC822', respectively), and the second and
fourth elements are the respective field values.

In other cases, such as a select: command:

(client select: 'blapperty') commandResponse
the value is nil, and so not interesting.

All IMAPCommands include server responses in their response variable,
which holds an OrderedCollection of server responses. If you require server
responses from, for example, the select: command, you can get them by
sending a responses message to the IMAPCommand. Since it’s an ordered
collection and the order is consistent on the server, you can extract the
information you want. For example to get the UIDVALITITY response,
send:

(imapClient select: 'bloopity') responses at: 5
The response is an IMAPResponseStatus whose value is an Association,
whose value is the UIDVALIDITY value, so you can dig further with:

((imapClient select: 'bloopity') responses at: 5) value value.
Browse the various classes mentioned above to find additional methods
for accessing response values.

Message flags
IMAP supports a variety of message flags that indicate various
dispositions of the messages.

The most commonly set flags to set are \Seen, indicating that the
message has been read, and \Delete, indicating that the message is to
be cleared from the mailbox at the next expunge. These are supported by
the following IMAPClient messages:

markAsSeen: aCollection
Set the \Seen flag for the message numbers listed in aCollection in
the currently selected mailbox.
Internet Client Developer’s Guide 5-15

Email
markForDelete: aCollection
Set the \Delete flag for the message numbers listed in aCollection in
the currently selected mailbox. Messages will be deleted at next
expunge.

The messages are applied to the currently selected mailbox, so ensure
that the correct mailbox is selected before sending the message.

imapClient select: 'bloopity'.
imapClient markAsSeen: #(1 2 5 9).

To set other flags, send a store: message the client, after selecting the
target mailbox. The argument is a String consisting of the message
numbers to flag, '+FLAGS ', and the list of flags to set enclosed in
parentheses. So, for example, to mark a message (say, number 5) for
urgent or special attention, you can set the \Flagged flag:

imapClient select: 'bloopity'.
imapClient store: '5 +FLAGS (\Flagged)'

A range of numbers, say 1 to 3, is specified by separating the numbers
with a colon: '1:3'. For a list of numbers, separate with commas: '1,3,7'.

To remove a flag, use '-FLAGS' instead of '+FLAGS'. For example, to mark
a sequence of messages as unread, send:

imapClient select: 'bloopity'.
imapClient store: '1:5 -FLAGS (\Seen)'.

Standard IMAP flags that you can set are: \Answered, \Deleted,
\Flagged, \Seen, and \Draft. Other flags may be defined by your
server implementation.

Mailbox names
Mailbox naming conventions are determined by the server
implementation, except that there must be one case-insensitive name,
“INBOX,” to serve as the main mailbox, so you are always assured to
have that mailbox name available.

IMAP mailboxes may be arranged in a hierarchy. If they are, the level
separator is a single character specified by the server, such as the
forward slash (“/”).

Some IMAP implementations may also support multiple services, and so
support Usenet as well as mail. In this case, namespaces are specified.
In the hierarchical name, the namespace name is prefixed with “#”,
allowing a name such as "#news.comp.mail.misc".

For other naming rules, refer to RFC2060.
5-16 VisualWorks

IMAP
Mailbox maintenance
IMAP allows you to perform a variety of maintenance operations on
mailboxes. The client needs to be in IMAPAuthenticatedState or
IMAPSelectedState to perform these operations, so the client must be
logged into the server.

A number of these basic command messages are also supported by
utility messages, some of which are mentioned and/or illustrated in
examples. Browse the IMAPClient utility method category for others.

select: nameString
Makes nameString the current mailbox, giving read/write access to the
messages in it, and sets the client state to IMAPSelectedState. Returns
an IMAPCommand with an OrderedCollection of status responses in its
responses variable.

examine: nameString
Same as select: except that access to the messages is read-only.

create: nameString
Creates a new mailbox, nameString. If no mailbox was selected, then
mailboxName is selected as the current mailbox and the client state is
set to IMAPSelectedState.

delete: nameString
Deletes mailbox nameString. If nameString is the current mailbox, then
the client state is set to IMAPAuthenticatedState.

rename: nameString newname: newNameString
Renames nameString mailbox to newNameString. No changes are
made to current mailbox selection of client state.

subscribe: nameString
Subscribes to the mailbox nameString.

unsubscrible: nameString
Unsubscribes from the mailbox nameString.

list: namePattern
list: aRefString mailbox: namePattern

Returns an IMAPCommand with an OrderedCollection in its responses
variable, containing mailbox names matching namePattern, which may
contain pattern matching characters. Asterisk (*) matches any
number of characters, percent (%) matches any single character
except the hierarchy delimiter. (See the examples below.) If aRefString
is specified, it is the hierarchy prefix to the namePattern.
Internet Client Developer’s Guide 5-17

Email
lsub: aRefString mailbox: namePattern
Returns an IMAPCommand with an OrderedCollection in its responses
variable, containing names of subscribed mailboxes matching
namePattern, relative to aRefString, as described for list:.

status: nameString
status: nameString criteria: aStringOrCollection

Returns an IMAPCommand containing an OrderedCollection of status
information in its responses variable. For status: the number of
messages in the mailbox nameString is returned. For status:criteria:, the
information requested by aStringOrCollection is returned. Status items
that may be requested are: MESSAGES (number of messages);
RECENT (number of messages with \Recent flag set); UIDNEXT
(the next UID value to be set); UIVALIDITY (the UID validity number
of the mailbox); UNSEEN (the number of messages that do not have
the \Seen flag set).

append: messageString to: nameString
append: messageString to: nameString flags: flagList date: aDate

Adds messageString, a RFC822 format message as a String, to
mailbox nameString. The longer form allows you to also specify
message flags, as a String containing a parenthesized list, and a date
String, either or both of which may be nil.

Determine the number of messages in the inbox
A common piece of information frequently needed about a mailbox is how
many messages there are in it, or how many messages in a specific state
are in it.

The simple message count is returned by the messageCount: message,
which returns the number of messages in the specified mailbox. If you
want the message count for inbox, you can use messageCount message:

| imapClient inCount outCount |
imapClient := IMAP Client host: 'somehost.net'.
imapClient user:

(NetUser username: 'nicki' password: ‘somepassword').
imapClient login.
"Get inbox count"
inCount := imapClient messageCount.
"Get outbox count"
outCount := imapClient messageCount: 'outbox'.
^Array with: inCount with: outCount.

To get the count of only new messages, send newMessages or
newMessages:. To get the number of unseen messages in the inbox, send
unseenMessages.
5-18 VisualWorks

IMAP
The messages mentioned above are utility messages that send a status:
message with specific arguments. Refer to “Getting mailbox status
information” below for using this message with additional arguments.

Getting mailbox status information
Beyond the message count, there are several status items you can
request from a mailbox. Status item names are case-insensitive:

MESSAGES
Returns the number of messages in the mailbox.

RECENT
Returns the number of messages with \Recent flag set, which is set
by the server to indicate that the message is new during the current
session. The flag is unset by the server when the client disconnects
or the mailbox is closed. The client cannot set this flag.

UIDNEXT
Returns the next UID value to be assigned to a message in this
mailbox. See “Working with unique identifiers” below.

UIDVALIDITY
Returns the UID validity number of the mailbox. See “Working with
unique identifiers” below.

UNSEEN
The number of messages that do not have the \Seen flag set, which
is set by the client to indicate that the message has been viewed.

To get the status information, send a status:forMailbox: message with a
String or a collection of Strings specifying the status fields, and a mailbox
name. This is a utility method that returns a List of the status field values
as Strings, in an order determined by the server but is frequently as
shown above (not the order requested).

| imapClient resp |
imapClient := IMAPClient host: 'somehost.net'.
imapClient user:

(NetUser username: 'nicki' password: ‘somepassword').
imapClient login.
^resp := imapClient

status: #('recent' 'uidvalidity' 'unseen' 'uidnext' 'messages')
forMailbox: 'bloopity'.

For example, the above may return List ('2' '0' '8' '106708' '2').

To get more information, which may be necessary, for example, if the
order of status fields from your server is not known, you can send a
status:criteria: message. Notice that the order of arguments is reversed
Internet Client Developer’s Guide 5-19

Email
from the utility method above, though the arguments themselves are the
same. This message returns an IMAPCommand instance, from which the
responses can be retrieved as follows:

imapClient status: 'bloopity'
criteria: #('unseen' 'uidnext' 'messages' 'recent' 'uidvalidity')
commandResponse parameters at: 2

This command returns an Array containing the same values as above, but
each preceded by its status field: #('MESSAGES' '2' 'RECENT' '0' 'UIDNEXT'
'8' 'UIDVALIDITY' '106708' 'UNSEEN' '2').

Selecting a mailbox
Before performing maintenance operations on messages, you must
select a mailbox. A mailbox can be selected for either read/write access,
or for read-only access. To select a mailbox for read/write access, send a
select: message to the client with the mailbox name:

imapClient select: 'mailbox'.
For read-only access, send examine: instead. Both commands return an
IMAPCommand with an OrderedCollection in its responses variable that
contains information about the mailbox.

A slight simplification is provided by the utility message examineMailbox:.

imapClient examineMailbox: 'mailbox'.
This message returns the OrderedCollection of responses.

Creating/deleting a mailbox
To create a new mailbox, send a create: command with the mailbox name
as a String:

imapClient create: 'bloopity'.
The mailbox may be in a hierarchy, in which case the mailbox name
includes the entire path, starting at the root, with each element in the
hierarchy separated by a server assigned separator character (frequently
“/”). Any elements in the path that do not already exist are also created.

imapClient create: 'bloopity/blip'.
To delete a mailbox, send a delete: message with the mailbox name:

imapCleint delete: 'bloopity'.
Again the name may be a path in the hierarchy, starting at the root. If a
mailbox is deleted that contains other mailboxes, all are deleted.
5-20 VisualWorks

IMAP
Rename a mailbox
To rename a mailbox, send a rename:newName: message to the client. |
client.

imapClient rename: 'bloopity' newName: 'blapperty'.
Although the mailbox name is changed, its UIDVALIDITY number
remains the same, allowing a client to resynchronize with the server.

List mailboxes
To get a list of mailboxes, send a list: message, with a mailbox name
pattern String as argument. You can use an asterisk (*) to match any
number of characters, or a percent sign (%) to match any single character
except the hierarchy divider.

For example, to list all mailboxes, send:

imapClient list: '*'
The list is returned as an OrderedCollection of IMAPResponse objects in the
IMAPCommand responses variable. You can check for the existence of a
specific mailbox by listing only it:

imapClient list: 'inbox'
If the mailbox exists, it is returned in the collection; otherwise, the
collection is empty.

To list only mailboxes relative to an initial segment of a mailbox hierarchy,
send a list:mailbox: message. The first argument is the reference mailbox,
and may be a path fragment starting at the root. The second argument is
a pattern, and may also include path information. The reference mailbox
name is prepended to the mailbox name. So,

client list: 'bloopity/' mailbox: 'bl%p'
lists all mailboxes matching ‘bloopity/bl%p’.

Add a message to a mailbox
Placing a message in a mailbox is a mailbox maintenance task, and so
can be performed while the client is in IMAPAuthorizedState. To place a
message in the mailbox, send an append:to: message to the client with the
message and the mailbox as Strings.

The message must be represented as a ByteString, so if you construct it
as a MIME message, send printString to convert it:
Internet Client Developer’s Guide 5-21

Email
message := MailMessage newTextPlain.
message

from: 'santa@northpole.net';
to: 'darlene@goodkid.net';

subject: 'Start making your list now';
text: 'What would you like for Christmas?'.

imapClient append: message printString to: 'blippy/blop'

Message maintenance
The following messages implement the basic IMAP commands for
working with mail messages. There are also a variety of utility methods
available that simplify certain specific tasks. The following sections
discuss how to use the command and utility methods to manage mail
messages.

check
Requests a “checkpoint” of the currently selected mailbox. A
checkpoint is any server implementation-dependent housekeeping
associated with the mailbox.

close
Permanently removes any messages marked for deletion in the
currently selected mailbox, and returns the client to
IMAPAuthenticatedState. No EXPUNGE responses are returned.

expunge
Permanently removes any messages marked for deletion in the
currently selected mailbox. An EXPUNGE response is returned for
each message deleted.

search: aCriteria
Returns an IMAPCommand with an OrderedCollection in its responses
variable containing the message sequence numbers of all messages
in the currently selected box matching aCriteria. See the examples
below.

fetch: aCriteria
fetch: messageNumbers retrieve: aCriteria

Retrieves message information from the currently selected mailbox,
based on aCriteria. The second form restricts the command to the
specified messageNumbers, which is a collection of message numbers.
Several utility messages are provided to simplify fetches. See the
examples below for more information.
5-22 VisualWorks

IMAP
store: argumentString
Sets and removes flags from a message. The argumentString
consists of a list or range of numbers, '+FLAGS' or '-FLAGS', and a
parenthetical list of flags to set or unset. See “Message flags” above.

copy: msgNumberCollection to: mailboxName
Copies the messages listed in msgNumberCollection to the mailbox
mailboxName.

Reading message data
The fetch: and its family read message data from the current mailbox. The
basic fetch: command takes a String argument, where the structure of the
String is as specified for the FETCH command in RFC 2060, and is quite
complex.

For purposes of retrieving a mail message from a mailbox, the
fetchMessage: message is considerably simpler. Given a message
sequence number, it returns an Association with the message number as
key and an Array containing the message in a ByteString as its value.

Since, in general, you will want to handle the message as a MailMessage
rather than as a ByteString, the following example illustrates the
conversion:

| imapClient message msgString |
imapClient := IMAPClient host: 'somehost.net'.
imapClient user:

(NetUser username: 'nicki' password: ‘somepassword').
imapClient login.
imapClient select: 'inbox'.
msgString := ((imapClient fetchMessage: 1) value first) .
message := MailMessage readFrom: msgString readStream.
^message.

The various parts of the message can then be accessed using all the
methods provided by MailMessage and its superclasses.

To retrieve multiple messages, use fetchMessages:, with a collection of
message sequence numbers. Similarly, to retrieve only the headers of
several messages, send fetchMessageHeaders: with a collection of
message sequence numbers. Browse the utility method category for
additional methods.

To more fully specify the message data to be retrieved, send a fetch:with:
utility message. The first argument is a collection of message numbers,
and the second argument is a collection of fields, typically as Strings. (The
method is quite forgiving and accepts unquoted field names, which it
renders internally as either Strings or Symbols). For example:
Internet Client Developer’s Guide 5-23

Email
imapClient fetch: #(3 8) with: #('UID' 'RFC822').
imapClient fetch: #(1 4 5 6) with: #(UID BODY).

Several fields (defined in RFC2060) can be retrieved this way:

BODY
Non-extensible form of BODYSTRUCTURE.

BODYSTRUCTURE
The MIME body structure of the message, computed by the server
from the header information.

ENVELOPE
The envelope structure of the message.

FLAGS
The flags that are set for the message.

INTERNALDATE
The internal date of the message.

RFC822
The entire message.

RFC822.HEADER
The message header.

RFC822.SIZE
The message size.

UID
The message unique identifier.

If you need more complete control over the requested data than this, use
the fetch: message, which takes a String in the format specified in
RFC2060. This allows you to use macros, such as ALL and BODY.PEEK,
as well as including parameters. For example:

imapClient fetch: '1:3 (uid Body.Peek[Header.Fields (Message-id From)])' .

Copy a message to another mailbox
To copy a message from the current mailbox to another, send a copy:to:
message to the IMAPClient instance. The first argument is a collection of
message numbers and the second is the target mailbox name as a String.

imapClient select: 'inbox'.
imapClient copy: #(1) to: 'Deleted Items'.

This is a copy, so the message remains in the original mailbox. To effect a
move, such as when deleting an item by moving it to the Deleted Items
tray, follow the copy with a delete:, as shown below.
5-24 VisualWorks

IMAP
Delete a message
To delete a message from the current mailbox, send a markForDelete:
message to the IMAPClient instance. The argument is a collection of
message sequence numbers to be deleted.

imapClient select: 'inbox'.
imapClient copy: #(1) to: 'Deleted Items'.
imapClient markForDelete: #(1).

Note that the message is not actually removed from the mailbox until the
session is terminated, you close the mailbox (send close to the client with
the mailbox selected), or you send expunge to the client with the mailbox
selected.

Search for messages
The searchMessages: message returns an Array of message numbers in
the currently selected mailbox matching the search criteria. The search
criteria are specified as a String argument. For example,

imapClient select: 'inbox'.
msgNumbers := imapClient searchMessages: 'UNSEEN FROM "Fred"'.

returns an Array of message numbers in the inbox that have “Fred” in the
FROM field, and which have not yet been read. Note that “Fred” is
matched as if it were a pattern, *Fred*, matching “Fred Mayor”, “Mayor,
Fred”, or “Freda Fredrickson”.

The following items may be included in the search criteria String. For
items with a string argument, the string is in double quotation marks (“ “).
Dates are given as described in RFC2060, but briefly in the form:

dd-mmm-yyyy hh:mm:ss zone

where dd is a one or two-digit day number (e.g., 1 or 21), mmm is the first
three month name characters (e.g., Jan or Mar), and yyyy is the four-digit
year number. The time component is hours minutes seconds. The zone is
the number of hours and minutes relative to Greenwich (e.g., -0700 for
PDT). For example:

16-Oct-2001 17:47:32 -0400

message-set
Include messages with these message sequence numbers. Individual
numbers are separated by a comma, 2,4,6,8. Ranges are specified by
two numbers separated by a colon, 4:8. corresponding to the
specified message sequence number set

ALL
All messages in the mailbox.
Internet Client Developer’s Guide 5-25

Email
ANSWERED
Messages with the \Answered flag set.

BCC string
Messages that contain the specified string in the message's BCC
field.

BEFORE date
Messages whose internal date is earlier than the specified date.

BODY string
Messages that contain the specified string in the body of the
message.

CC string
Messages that contain the specified string in the envelope structure's
CC field.

DELETED
Messages with the \Deleted flag set.

DRAFT
Messages with the \Draft flag set.

FLAGGED
Messages with the \Flagged flag set.

FROM string
Messages that contain the specified string in the envelope structure's
FROM field.

HEADER field-name string
Messages that have a header with the specified header field-name
with the specified string in the field-body.

KEYWORD flag
Messages with the specified keyword set.

LARGER octets
Messages with a size larger than the specified number of octets.

NEW
Messages that have the \Recent flag set but not the \Seen flag.

NOT search-key
Messages that do not match the specified search key.

OLD
Messages that do not have the \Recent flag set.

ON date
Messages whose internal date is within the specified date.
5-26 VisualWorks

IMAP
OR search-key1 search-key2
Messages that match either search key.

RECENT
Messages that have the \Recent flag set.

SEEN
Messages that have the \Seen flag set.

SENTBEFORE date
Messages whose Date: header is earlier than the specified date.

SENTON date
Messages whose Date: header is within the specified date.

SENTSINCE date
Messages whose Date: header is within or later than the specified
date.

SINCE date
Messages whose internal date is within or later than the specified
date.

SMALLER octets
Messages with a size smaller than the specified number of octets.

SUBJECT string
Messages that contain the specified string in the envelope structure's
SUBJECT field.

TEXT string
Messages that contain the specified string in the header or body of
the message.

TO string
Messages that contain the specified string in the envelope structure's
TO field.

UID uid-set
Messages with unique identifiers corresponding to the specified
unique identifier set.

UNANSWERED
Messages that do not have the \Answered flag set.

UNDELETED
Messages that do not have the \Deleted flag set.

UNDRAFT
Messages that do not have the \Draft flag set.

UNFLAGGED
Messages that do not have the \Flagged flag set.
Internet Client Developer’s Guide 5-27

Email
UNKEYWORD flag
Messages that do not have the specified keyword set.

UNSEEN
Messages that do not have the \Seen flag set.

Here are a couple more examples:

imapClient searchMessages: '1:100 BEFORE 1-Feb-1999'.
imapClient searchMessages:

'FLAGGED SINCE 1-Feb-1999 NOT FROM "Smith"‘

Setting are reading message flags
Message flags mark messages for various purposes, as described above
in “Message flags”.

For example, it is the responsibility of the client to mark a message as
seen when it has fetched the message. The client can use the presence
of the flag to highlight messages that have not been read.

To set a flag for a message in the current mailbox, send a store: message
to the IMAPClient with a String argument specifying the message or
messages to flag, the flag operation, and the flag to set or unset. For
example, to mark a message as read, or seen, send:

imapClient select: 'inbox'.
imapClient store: '3 +FLAG SEEN'.

To mark it as unread, use -FLAG instead.

To retrieve the flags for a message or a collection of messages, send a
fetch:with: message, as described above in “Reading message data”.
Rather than retrieving the message, though, you just want its flags.

imapClient select: 'inbox'.
imapClient fetch: #(3) with: #('FLAGS').

Working with unique identifiers
Messages have both sequential numbers and unique identifier numbers
within a mailbox. Most commands refer to messages by their sequential
numbers, but at times it is better to use their unique identifiers.

The message UID is a 32-bit value guaranteed to be unique within the
mailbox. In general, the number persists between sessions, but is
guaranteed to remain constant during a session. UIDs are assigned to
messages in strictly ascending order.
5-28 VisualWorks

IMAP
Each mailboxes has a unique identifier validity number, a 32-bit value,
which remains constant even if the mailbox is renamed or moved. This
allows a client to resynchronize with the server even after such a change
is made. If a mailbox is deleted and recreated, a new UID validity number
is assigned.

Combining the message UID and the mailbox UID validity number
provides a 64-bit unique identifier for each message.

Three messages are provided specifically for working with message
UIDs:

searchMessagesForUids: aCollection
Returns a collection of message sequence numbers corresponding
the UIDs listed in aCollection. The elements of aCollection are Strings
representing individual message numbers (e.g., '5') or ranges of
message numbers (e.g., '1:5').

uidFor: aCollection
Returns an OrderedCollection of UIDs corresponding to the message
sequence numbers listed in aCollection.

uid: commandString
Implements the IMAP UID command. commandString is an IMAP
COPY, FETCH, STORE, or SEARCH command, as described in
RFC2060. For COPY, FETCH, and STORE, the message number
arguments are interpreted as UIDs. For SEARCH, the message
number arguments are sequence numbers, but the numbers returned
are UIDs.

Using these commands you can convert between UIDs and sequence
numbers as needed. For instance, since UIDs don’t change, if your client
caches messages you will want to use the UIDs to coordinate actions on
the cached copy with the server copy. So, if you have a cached message
with a UID of 2245, you can delete it from the server as follows:

| msgSeqID |
imapClient select: 'inbox'.
msgSeqID := imapClient searchMessagesForUids: #(2245).
(imapClient copy: msgSeqID to: 'Deleted Items')

completionResponse status = 'OK' ifTrue:
[imapClient markForDelete: msgSeqID ; expunge].

A mailbox UID validity number is returned as part of the response when
the mailbox is selected or examined, or when its status is requested. The
status:forMailbox: command is the easiest way to get the UID validity
number, which returns a List of the requested values:
Internet Client Developer’s Guide 5-29

Email
(imapClient status: #(UIDVALIDITY) forMailbox: 'inbox') first.
Since only one value was requested, we can be sure it is the first in the
list. Use this number to validate a mailbox when synchronizing the client
with the server. If the mailbox by this name has been deleted and
recreated, the number will be different, indicating the change.

Handling IMAPClient Errors
There are only two exceptions specifically relevant to a IMAP session:
NetClientError and IMAPStateError. General SocketAccessor errors may also
occur, however, and should also be handled (refer to “Socket
Programming” in Basic Libraries for information).

NetClientError is signaled if connect fails to create a connection. For
example, if the host is incorrect, the socket cannot be created, resulting in
this error. Your application should trap and handle:

[imapClient connect]
on: NetClientError do:
[:ex | ex handleThis]

IMAPStateError is raised if a command is sent while the client is in the
incorrect state, as described in “IMAPClient states” above. You can
capture the state that originates the error by sending originator to it. For
example, if the client is in IMAPAuthenticatedState, this will return the
offended state:

[imapClient fetch: #(1) retrieve: #(RFC822)]
on: IMAPStateError do: [:err | ^err originator].

Mail Attachments
Attachments are files included in a message, but typically in a format
recognizable to an application other than the reader. The following
messages for handling attachments is provided by MailMessage.

addFileAttachment: aFilename
Adds a part to the message containing the specified aFilename, and
encodes it appropriately.

attachments
Returns an OrderedCollection of MimeEntity instances containing the
attachments.

attachmentAt: index
Returns the MimeEntity containing the attachment at index.
5-30 VisualWorks

Mail Attachments
attachmentNames
Returns a List of the file names of the attachments.

saveAttachment: aMimeEntity on: aStream
Writes the attachment aMimeEntity on aStream.

saveAttachmentAt: index on: aStream
Writes the attachment at index on aStream.

Retrieve the names of attachments
A client typically needs to list attachments in a form allowing the user to
select one for processing, such as saving to disk or opening in an
application. Send an attachmentNames message to the MailMessage to get
a list of names.

| message msg |
msg := mailClient retrieveMessage: 4.
message := MailMessage readFrom: msg readStream.
^message attachmentNames.

Save an attachment
Mail attachments can be automatically saved to an external file. This
feature is configurable by sending a saveAttachmentsAsFiles: message to
MimeParserHandler. The default setting for mail attachments is to not save
attachments (false), which is different from the HTTP default (true).

Mail attachment files are saved in a directory, which is by default named
mail-temp-files and located in the image directory. Use the following
expression to change the default directory:

MailBuildHandler defaultAttachmentDirectory: 'myDirectory'
The file names for attachments are based on the filename parameter in
the Content-Disposition header fields. If a file with that name already
exists a new name will be generated. Once the file name is determined
the framework raises a notification, AttachmentFilename, allowing the
application code to override the file name on the fly. If the notification is
not handled the originally suggested file name will be used. For example:
Internet Client Developer’s Guide 5-31

Email
input :=
'From: zz@holcim.com

Content-Type: multipart/related;
boundary="--11"

----11
Content-Type: text/plain; name="budd.txt"
Content-Disposition: attachment; filename="budd.txt"
Content-Transfer-Encoding: base64

QWxhZGRpbjpvcGVuIHNlc2FtZQ==

----11--
' readStream.

[message := MailBuildHandler new
removeContentTransferEncoding: true;
saveAttachmentsAsFiles: true;
readFrom: input.

] on: AttachmentFilename
do: [:ex |

"The suggested a FATFilename('mail-temp-files\budd.txt') is replaced
by image\my-budd.txt "

ex resume: 'my-', ex filename tail].
message parts first contents

If the file name provided by the AttachmentFilename notification already
exists, the framework raises an error, AttachmentFileExists. This error is
resumable allowing the user specify a new file name as a resumption
parameter. If it is resumed without a parameter or the new filename from
the parameter also exists, the corresponding file will be deleted and the
name reused for the attachment. For example:
5-32 VisualWorks

Mail Attachments
input :=
'From: zz@holcim.com

Content-Type: multipart/related;
boundary="--11"

----11
Content-Type: text/plain; name="budd.txt"
Content-Disposition: attachment; filename="budd.txt"
Content-Transfer-Encoding: base64

QWxhZGRpbjpvcGVuIHNlc2FtZQ==

----11--
' .

[[message := MailBuildHandler new
saveAttachmentsAsFiles: true;
readFrom: input readStream.

] on: AttachmentFilename
do: [:ex | ex resume: 'temp-', ex filename tail].

] on: AttachmentFileExists do: [:ex | ex resume: 'anotherTemp.txt']
Obviously, if this exception is not resumed, the attachment will not be
saved and parsing of the enclosing message containing this attachment
will end here, unfinished.

Decoding an attachment
A mail message attachment might not specify the character set, as in this
sample:

Content-Type: application/octet-stream
Content-Transfer-Encoding: base64
Content-Disposition: attachment;

filename="=?windows-1250?B?NCAtIFD47WxpmiCebHWdb3Xoa/0ga/
nyIPpw7Gwg7+FiZWxza+kg82R5?="

UPjtbGmaIJ5sdZ1vdehr/SBr+
fIg+nDsbCDv4WJlbHNr6SDzZHkuIA0KUNjNTEmKII5MVY1PVchL
3SBL2dIg2lDMTCDPwUJFTFNLySDTRFkuIA==

After removing the Content-Transfer-Encoding field the attachment body
value will be displayed using the ASCII encoder. To display the
attachment using the correct character set, set the default character set:

Settings defaultCharsetEncoder: aSymbol.
Then send a decodedContents message to the mime entity to decode the
entity body value.
Internet Client Developer’s Guide 5-33

Email
If defaultCharsetEncoder is set to nil, the default locale character set will be
used to decode mime contents.

Mail Archives
Reading mail messages from archive files is processed differently than
from a server. One significant difference is that, unlike reading from a mail
server using a transient stream, the expectation is that when reading from
a file the source will be persistent. Accordingly, it is not necessary to hold
the entire message in memory, but can simply point to the source.

Creating a message from an archive file is done by MailFileReader, rather
than MailBuildHandler which is used for transient sources. Suppose you
have an archived message, and open a readstream on it. which we can
represent as (the readstream will be on a file):

input :=
'From: zz@holcim.com

Content-Type: multipart/related;
boundary="--11"

----11
Content-Type: text/plain; name="budd.txt"
Content-Disposition: attachment; filename="budd.txt"
Content-Transfer-Encoding: base64

QWxhZGRpbjpvcGVuIHNlc2FtZQ==

----11--
' readStream.

To create the MailMessage from the archive, simply read from the stream.

message := MailFileReader readFrom: input.
message parts last contents.
5-34 VisualWorks

Index
A
attachments, working with 5-30
authorization, HTTP 4-20

B
binary mode, and FtpURL 2-6

C
common interface classes

NetClient 1-5
NetUser 1-6
URI 1-6

connection, HTTP
closing 4-5
creating 4-4
persistence 4-4

D
default network settings 1-4
directory operations, FTP 2-17

E
email

introduction 5-1
mailboxes 5-1
POP3 5-4
SMTP 5-2

ensure block 2-13
escape character representation, in URI 1-8
exceptions

in HTTP, handling 4-23

F
file

operations
FTPClient 2-19
FtpURL 2-7

transfer operations, and FTPClient 2-16
File Transfer Protocol. See FTP.
framework

FTP 1-1
HTTP client engine 1-1
IMAP4rev1 client engine 1-1
MIME-type 1-1

POP3 client engine 1-1
SMTP client engine 1-1
URI 1-1

FTP
access and security 2-3
basic operations 2-1
framework 1-1
guarded and unguarded stream

transfers 2-3
interfaces 2-2
introduction 2-1
passive and active modes 2-3
when to use FtpURL or FTPClient 2-2

FTPClient
as an FTP session 2-10
compared with FtpURL 2-10
connecting to an FTP host 2-11
directory operations 2-17
ensuring that the connection closes 2-13
file

data representation 2-16
operations 2-19
structure types 2-16
transfer operations 2-16

getting server information 2-21
handling FTP exceptions 2-13
introduction 2-2, 2-10
re-establishing a connection 2-12
setting file transfer mode 2-20
using FTP commands and responses

2-22
when to use 2-2

FtpURL
binary mode and 2-6
default parameters 2-5
exception handling 2-5
identifying a remote FTP file 2-4
introduction 2-2
special symbols in the access string 2-5
stream operations 2-8
using 2-4
when to use 2-2
Internet Client Developer’s Guide Index-1

Index
H
HTTP

authorization 4-20
client engine framework 1-1
connecting to an HTTP server 4-4
exception handling 4-23
implementation classes 4-2
introduction 4-1
reading an HTTP response 4-11
requesting an HTTP document 4-5
streaming on an HTTP connection 4-16
support level in VisualWorks 4-1
using a proxy server 4-22

HttpClient class 4-3
HttpException

class 4-3
subclasses 4-23

HttpRequest class 4-3
HttpResponse class 4-3
Hypertext Transfer Protocol. See HTTP.

I
IMAP

command responses 5-14
IMAP4rev1 client engine framework 1-1
IMAPClient

creating an instance 5-12
handling errors 5-30
states 5-13

introduction 5-11
mailbox

maintenance 5-17
names 5-16

message
flags 5-15
maintenance 5-22

running a session 5-12
working with unique identifiers 5-28

IMAPClient class 5-12
Internet Message Access Protocol. See

IMAP.

L
Logging tool

description 1-4
introduction 1-1

M
Mailbox class 5-1
mailboxes

maintenance 5-17

names 5-16
overview 5-1

message
reading 3-8
sending 3-7
transfer encoding 3-12

MIME
accessing

bodies 3-10
headers 3-8

adding
body 3-5
header fields 3-4

capabilities 3-1
creating entities 3-3
extracting best text representation 3-12
getting content information of a message

part 3-11
message transfer encoding 3-12
multipart body 3-6
reading a MIME message 3-8
RFC 822 3-1
sending a message 3-7
simple body 3-5
support classes 3-2
working with attachments 5-30

MIME-type framework 1-1
multipart body 3-6
Mutipurpose Internet Mail Extensions. See

MIME.

N
Name Space, importing Net Clients into 1-5
Net Clients

common interface classes 1-5
frameworks 1-1
importing into a Name Space 1-5
loading 1-2
tools 1-1

NetClient common interface class 1-5
NetUser common interface class 1-6
Network Settings tool

introduction 1-1

O
operations, performing on URIs 1-8

P
POP3

client engine framework 1-1
commands 5-6
creating a POP3 client instance 5-5
handling exceptions 5-11
Index-2 VisualWorks

Index
introduction 5-4
running a POP3 session 5-5
states 5-10

Pop3Client class
creating an instance 5-5
methods as POP3 commands 5-6

PPO3Client class
sending connect and disconnect

commands to an instance 5-5
proxy server, using 4-22

R
request, HTTP

creating 4-5
introduction 4-5
modifying 4-6
sending 4-8
status line 4-11

response, HTTP
header fields 4-12
introduction 4-11
message body 4-13

RFC 1939, and POP3Client commands 5-6
RFC 2616, and HTTP support level in

VisualWorks 4-1
RFC 822, and MIME 3-1

S
security, and FTP 2-3
simple body 3-5
Simple Mail Transfer Protocol. See SMTP.
SMTP

client engine framework 1-1
creating a SMTP client instance 5-2
handling exceptions 5-4
introduction 5-2

special symbols, in the FtpURL access
string 2-5

streams
guarded and unguarded stream

transfers 2-3
stream operations and FtpURL 2-8

symbols, in the FtpURL access string 2-5

T
tools

Logging tool 1-1
NetClient settings

description 1-3
Network Settings tool

introduction 1-1

U
Uniform Resource Identification. See URI.
URI

common interface class
creating a URI 1-7
escaping characters in a URI 1-8
introduction 1-6
operations on URIs 1-8
working with URI paths 1-7

framework 1-1
Internet Client Developer’s Guide Index-3

	Contents
	About This Book
	Introduction
	Audience
	Organization

	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees
	Additional Sources of Information

	Introduction to Net Clients
	Loading Net Clients
	NetClient Settings
	Settings Tool Pages
	Settings API

	Logging Tool
	Importing Net Clients into a Name Space
	Common interface classes
	NetClient
	NetUser
	URI
	Creating a URI
	Working with URI paths
	Escaping characters in a URI
	Operations on URIs

	FTP
	Introduction
	NetClients FTP Interfaces
	When to use FtpURL or FTPClient

	Default Settings API

	FTP Basics
	FTP Access and Security
	Guarded and Unguarded Stream Transfers
	Passive and Active Modes

	Using FtpURL
	Identify a remote FTP file
	Defaults
	Special Symbols in the Access String

	FtpURL Exception Handling
	Binary File Transfers
	Download a file in binary mode
	Upload a file in binary mode

	Directory operations
	Create a new directory
	Delete a directory
	List files in a directory

	Operations on Files
	Delete a file
	Determine the size of a file

	Testing
	Determine if a file or directory exists
	Determine if the URI is a directory

	Stream operations
	Create a file on a remote server
	Upload a file to a remote server
	Download a file from a remote server (Text mode)
	Read a file from a remote server

	Using FTPClient
	FTPClient as an FTP session
	Connecting to an FTP host
	Re-establishing a connection
	Setting passive or active mode
	Ensuring that the connection closes
	Handling FTP Exceptions
	File structure types
	File data representation
	File transfer operations
	Download a file from a remote server
	Upload a file to a remote server
	Restarting a file transfer

	Directory operations
	Get the current directory
	Create a new directory
	Delete a directory
	Listing files in a directory

	File operations
	Delete a remote file
	Rename a remote file
	Get a file size

	Setting file transfer mode
	Getting server information
	Display the remote server type
	Display the remote server status

	Using FTP commands and responses
	Simple commands and responses
	Data transfer commands
	Protecting against a disconnect

	Internet Messages and MIME Types
	Introduction
	MIME support classes
	Creating Mime Entities
	Adding header fields
	Adding a body
	Simple Body
	Multipart Body

	Creating a File Attachment

	Sending a Message
	Reading a MIME Message
	Accessing headers
	Accessing bodies
	Get content information of a message part
	Extract the best text representation

	Message transfer encoding
	International characters in header fileds
	Processing non-ASCII data
	Unknown Encoding

	HTTP
	Introduction
	HTTP support level
	Default settings
	Implementation Classes
	HttpClient class
	HttpRequest class
	HttpResponse class
	HttpException class
	HttpEntity class

	Secure HTTP

	Connecting to an HTTP server
	Creating a connection
	Connection persistence
	Closing a connection

	Requesting an HTTP document
	Creating a basic request
	Modifying a request
	Change the version number
	Add header fields
	Add a simple message body
	Adding a multi-part body

	Sending the request
	Posting Form Data

	Reading a HTTP response
	Status line
	Header fields
	Standard headers
	Additional headers

	Message body

	Cookie Support
	How Cookies are Used During a Session
	How Cookies are Handled
	Cookie Handling Settings
	Setting Cookie Fields

	Streaming on an HTTP connection
	Basic read protocol
	Handling attachments
	Chunking Large Attachments
	Compression

	Authentication
	Using a Proxy Server
	HTTP Exception Handling

	Email
	Mailboxes
	SMTP
	Creating a SMTP client instance
	Sending a message
	Examples

	Secure SMTP
	Handling SMTP exceptions

	POP3
	Creating a POP3 client instance
	Running a POP3 session
	Connecting and disconnecting
	Logging into the server
	Sending POP3 commands

	Secure POP3
	POP3Client Commands
	Get inbox information
	Retrieve a message
	Delete a message

	POP3 states
	State changes
	State errors

	Handling POP3 exceptions

	IMAP
	Creating an IMAPClient instance
	Running an IMAP session
	Connect and Log in
	Mailbox maintenance
	Message maintenance
	Log out

	IMAPClient states
	Command responses
	Message flags
	Mailbox names
	Mailbox maintenance
	Determine the number of messages in the inbox
	Getting mailbox status information
	Selecting a mailbox
	Creating/deleting a mailbox
	Rename a mailbox
	List mailboxes
	Add a message to a mailbox

	Message maintenance
	Reading message data
	Copy a message to another mailbox
	Delete a message
	Search for messages
	Setting are reading message flags

	Working with unique identifiers
	Handling IMAPClient Errors

	Mail Attachments
	Retrieve the names of attachments
	Save an attachment
	Decoding an attachment

	Mail Archives

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

