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About This Book

The Opentalk Communication Layer Developer’s Guide provides the 
experienced VisualWorks® developer with information necessary to 
implement communications protocols, and to develop distributed 
applications using the Opentalk  Communication Layer. The 
communication layer is also known as the Opentalk Base, and is a part of 
the full Opentalk suite of features.

Audience
This book is written for experienced Smalltalk developers who are 
exploring Opentalk for the first time. Readers should have a good 
understanding of VisualWorks. Please refer to the several VisualWorks 
manuals as needed. This document does not presume deep and 
extensive understanding of communication protocols, distributed 
systems, or the CORBA architecture, but background in these areas is 
extremely helpful, and several reference texts addressing them are 
suggested in Annotated References.

Conventions

We have followed a variety of conventions, which are standard in the 
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Example Description

template Indicates new terms where they are defined, 
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and 
other constructs to be entered outside VisualWorks 
(for example, at a command line).
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Special Symbols
This book uses the following symbols to designate certain items or 
relationships:

filename.xwd Indicates a variable element for which you must 
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any 
other information that you enter through the 
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu 
names, dialog-box fields, and buttons; it also 
indicates emphasis in Smalltalk code samples.

Examples Description

File  New Indicates the name of an item (New) on a menu 
(File).

<Return> key

<Select> button
<Operate> menu

Indicates the name of a keyboard key or mouse 
button; it also indicates the pop-up menu that is 
displayed by pressing the mouse button of the 
same name.

<Control>-<g> Indicates two keys that must be pressed 
simultaneously.

<Escape> <c> Indicates two keys that must be pressed 
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

Example Description
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Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on 
various platforms. Smalltalk traditionally expects a three-button mouse, 
where the buttons are denoted by the logical names <Select>, 
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or 
combinations:

Getting Help
There are many sources of technical help available to users of 
VisualWorks. Cincom technical support options are available to users 
who have purchased a commercial license. Public support options are 
available to both commercial and non-commercial license holders.

Commercial Licensees
If, after reading the documentation, you find that you need additional help, 
you can contact Cincom Technical Support. Cincom provides all 
customers with help on product installation. For other problems there are 
several service plans available. For more information, send email to 
helpna@cincom.com. 

Before Contacting Technical Support
When you need to contact a technical support representative, please be 
prepared to provide the following information:

<Select> button Select (or choose) a window location or a menu 
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are 
appropriate for the current view or selection. The 
menu that is displayed is referred to as the 
<Operate> menu.

<Window> button Bring up the menu of actions that can be 
performed on any VisualWorks window (except 
dialogs), such as move and close. The menu that is 
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>
Opentalk Communication Layer Developer’s Guide  xiii
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• The version id, which indicates the version of the product you are 
using. Choose Help  About VisualWorks in the VisualWorks main 
window. The version number can be found in the resulting dialog 
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have 
imported into the standard image. Choose Help  About VisualWorks in 
the VisualWorks main window. All installed patches can be found in 
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the 
symptom of the problem. To do so, select copy stack in the error notifier 
window (or in the stack view of the spawned Debugger). Then paste 
the text into a file that you can send to technical support.

Contacting Technical Support 
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to 
helpna@cincom.com.

Web
In addition to product and company information, technical support 
information is available on the Cincom website:

http://supportweb.cincom.com
Telephone 

Within North America, you can call Cincom Technical Support at 
(800) 727-3525. Operating hours are Monday through Friday from 
8:30 a.m. to 5:00 p.m., Eastern time. 

Outside North America, you must contact the local authorized 
reseller of Cincom products to find out the telephone numbers and 
hours for technical support.

Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical 
support from Cincom. There are, however, on-line sources of help 
available on VisualWorks and its add-on components. Be assured, you 
are not alone. Many of these resources are valuable to commercial 
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides 
several resources on VisualWorks and Smalltalk:
xiv  VisualWorks
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• A mailing list for users of VisualWorks Non-Commercial, which 
serves a growing community of VisualWorks Non-Commercial users.  
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu 

with the SUBJECT of "subscribe" or "unsubscribe". You can then 
address emails to vwnc@cs.uiuc.edu.

• A Wiki (a user-editable web site) for discussing any and all things 
VisualWorks related at: 

http://www.cincomsmalltalk.com/CincomSmalltalkWiki

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active 
discussions about Smalltalk and VisualWorks, and is a good source for 
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk 
publications website:

http://www.cincomsmalltalk.com/documentation/

is a resource for the most up to date versions of VisualWorks manuals 
and additional information pertaining to Cincom Smalltalk.
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1

Opentalk Communication Layer

Opentalk is a VisualWorks add-on that provides a rich and extensible 
environment for the development, deployment, maintenance, and 
monitoring of distributed applications. Opentalk contains frameworks 
and components for creating and extending communication 
protocols, object services, remotely targeted user interfaces, remote 
development tools, and other architectural components common to 
distributed systems.

The Opentalk Communication Layer consists of those components 
that define the base communication framework, several Smalltalk-to-
Smalltalk communication protocols, and a select set of base services. 
It is that part of Opentalk targeted, first, toward the needs of protocol 
developers, and second, toward the needs of distributed service, 
component, and application developers planning to build directly off 
the communication layer.

This chapter describes the requirements for the Opentalk 
Communication Layer, its installation, and the contents of its parcels.

Installation
The parcels of the Opentalk Communication Layer are contained in 
the $(VISALWORKS)\opentalk directory. Additional parcels provide 
support for specific protocols, such as HTTP and SOAP, which are 
discussed in other VisualWorks documents dealing with those 
protocols. 

To load communication layer support it in its entirety, load the 
following parcels in the order shown:
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1 Opentalk-Prerequisites

2 Opentalk-Core-Support

3 Opentalk-Core

4 Opentalk-STST

5 Opentalk-Groups

6 Opentalk-Core-Services

The first three parcels are the minimal required support for Opentalk, 
and are generally sufficient if you intend to develop and use your own 
protocols in the Opentalk framework. They are loaded as 
prerequisites of the subsequent parcels.

Additional parcels provide further extensions to the Opentalk 
environment.

Parcels Contents
Opentalk has a layered architecture. The Opentalk Communication 
Layer is foundational with respect to the other layers of Opentalk. It 
consists of:

• frameworks and components used to implement communication 
protocols, 

• concrete implementations of protocols for Smalltalk-to-Smalltalk 
unicast, multicast and broadcast, and

• base services immediately required to make those protocols 
usable, namely, simple unicast and multicast event multiplexing 
services and a lightweight naming service. 

The Opentalk Communication Layer is packaged as the following 
parcels in the VisualWorks distribution.

Opentalk-Prerequisites

The parcel Opentalk-Prerequisites defines the Opentalk 
namespace and implements methods in class Object that must be 
loaded early. 
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Opentalk-Core-Support

Opentalk-Core-Support contains base system extensions 
required by Opentalk. These extensions mostly fall into three 
broad categories: 

• methods that enforce pass-by-name for selected tool 
classes;

• methods that establish default pass modes at major nodes in 
the VisualWorks class hierarchy;

• overrides of the default marshaling methods in those classes 
that take explicit advantage of double-dispatching in 
marshaling.

Opentalk-Core

Opentalk-Core defines the core abstract classes of the Opentalk 
communication framework. These are the classes that a protocol 
developer will usually extend to create new communication 
protocols. Included are the classes that define proxies and object 
references, object tables, message headers and message 
bodies, pass mode control wrappers, marshalers, transports, 
object adaptors, request brokers, broker configurations, and 
several Opentalk-specific exceptions.

Opentalk-STST

Opentalk-STST contains the classes required to implement 
Smalltalk-to-Smalltalk unicast. Included are the classes that 
define the transports, the marshaler, and the message types 
specific to the Smalltalk-to-Smalltalk protocols: requests, close 
connection requests, replies, and error replies.

Opentalk-Groups

Opentalk-Groups contains the extensions that implement 
Smalltalk-to-Smalltalk multicast and broadcast. It includes 
classes defining broadcast and multicast transports and 
configurations, the required additional message types, and the 
multicast event service.

Opentalk-Core-Services

Opentalk-Core-Services defines an abstract Opentalk service 
class, a naming service, exceptions specific the naming service, 
and a unicast event service.
Opentalk Communication Layer Developer’s Guide  1-3



Opentalk Communication Layer
Opentalk-HTTP

This is the HTTP transport infrastructure for Opentalk. This 
package can be used with either the simple XML marshaler or 
the SOAP marshaler.

Opentalk-CGI

This is an extension of Opentalk-HTTP to support the use of CGI 
relays in the VisualWorks Application Server.

Opentalk-SOAP

The Opentalk-SOAP package integrates generic SOAP/WSDL 
support with Opentalk-XML to provide transparent messaging 
access to SOAP services for clients and infrastructure for setting 
up SOAP servers.

Opentalk-XML

This package provides support for XML-based communication 
with remote applications via Opentalk. It integrates the generic 
XMLObject marshaling framework (the XMLObjectMarshalers 
package) with Opentalk.

Opentalk-Scheduling

This package defines a scheduler and scheduler policies for use 
alongside request brokers when user applications elect to take 
explicit control of worker process scheduling.

Opentalk-Load-Base

Opentalk-Load-Middlemen

Opentalk-Load-Client

Opentalk-Load-Server

These packages support load balancing in Opentalk.
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Opentalk Tools
Two lightweight tools are included in Opentalk: 

• The OpentalkConsole supports the configuration, creation, and 
registration of all release-quality request brokers. Load parcel 
Opentalk-Tools-Console to access this tool.

• The OpentalkMonitor supports inspection of and registration for all 
the events generated by release-quality brokers and object 
adaptors. Load parcel Opentalk-Tools-Monitor to access this tool.
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Basic Opentalk Concepts

This chapter is a brief overview of some of the basic concepts and 
communication patterns in distributed computing. Discussion of these 
concepts and patterns is intended to provide the background for and 
prolegomena to subsequent discussion of the critical classes in the 
Opentalk Communication Layer. Readers interested in more 
substantive discussion of distributed computing are urged to peruse 
several of the references listed in the annotated bibliography provided 
in Annotated References.

Distributed Systems
Software systems exist along a scale of complexity and integration. 
Distributed systems are at one end of that scale.

Stand-alone Systems
Computers started out as stand-alone systems. In the study of stand-
alone systems, one assumes a single processor, a single sequential 
process, a uniform memory access time, and a constant performance 
cost for every primitive function call. This is the model involved in the 
study of data structures, algorithms, and computational complexity. 
Even if one assumes several processes or processors running on the 
same host, they are assumed to fail together and at once. The case 
is different in a communicating application running on multiple hosts, 
liable to a variety of failures in part.

Communicating systems
Communicating systems, in contrast, are composed of physically 
separated processes that communicate to achieve some end. The 
communication occurs through channels of restricted bandwidth and 
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variable latency. Such systems are susceptible to both processor and 
channel failures. Together, these two failure locations produce a rich 
classification of partial and complete failure modes. There is also 
sharp distinction between the cost of local function calls and those 
calls involving communication costs. 

The Opentalk Communication Layer is intended to support the 
development of communicating systems. Such systems can be 
usefully categorized into two broad types.

Networked Systems
The processes of networked systems communicate, but have only 
ephemeral knowledge of one another’s existence, do not much care 
about one another’s state, and cooperate on an intermittent basis. 
This is the relationship between a process running a network browser 
and another running a page server. 

Networked systems are stand-alone systems that happen to 
communicate. They are like single people who date a lot. Designers 
interested in such systems are interested in defining, accessing, and 
improving useful, discrete, and available services or service 
components. They are interested in reliability at the component or 
service level.

There are two flavors of networked systems: client-server and peer-
to-peer.

Client-Server Systems
In the typical client-server system, there is a designated server 
process. It exists at a fixed, well-known address. Other, client 
processes connect to the server and invoke the service it provides as 
needed. The server usually does not need to know the network 
addresses of the clients. Clients and servers are loosely coupled, and 
the clients do not have the autonomy possessed by the server, since 
they depend upon it and not vice versa.

Peer-to-Peer Systems
Peer-to-peer systems are networked systems specifically designed to 
take advantage of the existence of multiple processes or hosts 
existing in an environment characterized by unstable connectivity and 
unpredictable IP addresses. These systems consist of loosely 
coupled, autonomous processes. Peer-to-peer systems usually take 
advantage of redundancy—the existence of several hosts playing the 
same computational role—to address the reliability and availability of 
the services provided. A classic example is the Usenet.   
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Current peer-to-peer systems often employ custom communication 
protocols and possess special components to manage fluctuating 
host presence and are often targeted at utilizing the ‘wasted’ 
compute cycles of networked hosts. Some of these systems, those 
attempting to support communities that span organizational and 
national boundaries, employ cryptographic components, at several 
levels, to ensure anonymity.

Distributed Systems
The processes in properly distributed systems are, unlike those in 
networked systems, tightly coupled. The communicating processes 
care about whether the others are running or crashed, what state 
they are in, whether they are in agreement about critical state 
variables. The distinguishing mark of such systems is that they are 
actively engaged in maintaining the coherence of distributed state, 
and communicate frequently in order to maintain that coherence. An 
example is the relationship that exists between a primary and a 
backup service process in a simple fault tolerant system.

In these systems, synchronization and coordination problems loom 
large. They are like families with four active children, who play team 
sports that send them off to practices and out-of-town games, take 
separate private music lessons, attend four different schools, and 
don’t drive yet. Developers interested in these kinds of systems are 
interested in integrating and harmonizing services and components, 
and in ensuring the consistent and reliable behavior of several, often 
replicated components, running on several geographically separated 
hosts.

Summary
Irrespective of the degree of coupling displayed, both networked and 
distributed systems involve inter-process communication. Inter-
process communication involves the transfer of data or code from the 
sending process to the receiving process. For transfer to occur, the 
two processes must share a communication channel and a 
communication protocol. The Opentalk Communication Layer 
provides components for building protocols as well as several already 
implemented ones.
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Channels
The communicating processes reside on machines, conventionally 
called hosts. The communication channel that the processes must 
share—often called a circuit, a wire, a transmission line, or a link—is 
something that moves bits between machines. 

Protocols
The communication protocol that the processes must share is, 
broadly, an agreement about how communication is to proceed. More 
particularly, each process sends and receives messages through a 
protocol stack or suite, and a protocol is a specification of the 
message sequences and the message formats logically used in 
communication at the same layer, between a sending layer and a 
receiving one. In fact, only the bottommost layer of a stack 
“communicates” and moves bits. Each level above the bottommost 
uses the services of the layer below, passing data and control to the 
lower layer as required, and all layers provide services to the layers 
above. A service in this context is nothing other than a well-defined 
API. A layer may provide several communication service APIs to 
layers above it.

In principle, it makes no difference at what layer in software or 
hardware a given layer in a protocol stack is implemented. For 
example, IIOP is a protocol layer on top of TCP/IP. In Distributed 
Smalltalk, IIOP is implemented in Smalltalk code. So too are the 
Smalltalk-to-Smalltalk communication protocols of Opentalk. But both 
of these protocol implementations rest upon and invoke TCP/IP and 
UDP protocol primitives implemented in the VisualWorks engine.

Transfer Protocols
Any useful protocol stack or suite contains a transport layer, the 
lowest layer at which the messages handled are logical units of 
information still meaningful to an application, rather than packets or 
cells. The latter are restricted-size or fixed-sized units of binary data, 
containing address information sufficient to identify the sending and 
the receiving host, and are meaningful at network or internet layers.

There are two common types of transfer protocols or services: 
connection-oriented and connectionless.
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Connection-Oriented Transport Protocols
Connection-oriented protocols, also called telephone protocols, 
establish a virtual connection between the sending and the receiving 
processes and use it to transmit a data stream. In these protocols the 
virtual connection must be established before any data is transmitted, 
and the connection must be closed when it is no longer needed. 
Hence the implementation of such protocols explicitly required 
connection management components. The TCP protocol in the 
Internet protocol suite is a connection-oriented protocol.

Connectionless Transport Protocols
Connectionless or mail or datagram protocols transmit messages 
called datagrams to specified destinations. They are usually less 
expensive than connection-oriented protocols, but also less reliable. 
If necessary, the protocol layer above the transport layer will detect 
missing or out-of-order datagrams and take corrective action. The 
UDP protocol of the Internet protocol suite is a connectionless 
protocol.

Summary
Each of these types of communication protocols or services can be 
implemented in terms of the other. For example, the NCS protocol 
implemented in VisualWorks Distributed Smalltalk is a connection-
oriented protocol implemented on top of the connectionless UDP 
transport protocol.

Together, the two transport protocol types are sufficient to implement 
any communication pattern. Newer, high-performance protocol 
stacks, like Asynchronous Transfer Mode (ATM), typically provide an 
adaptation layer to transport protocols such as TCP and UDP. Thus, 
the framework provided by the Opentalk Communication Layer will be 
sufficient for several purposes, and for the foreseeable future. 

Synchronization
In addition to data or code transfer, inter-process communication may 
involve process synchronization. If the communication is 
synchronous or blocking, the sending process waits until the 
receiving process completes the activities entailed by message 
receipt and responds to the sender. If the communication is 
asynchronous or non-blocking, the sending process does not wait for 
a reply or acknowledgement. In either case the receiving process 
usually blocks when no incoming messages are present.
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Patterns of Communication
Distributed systems can be understood and designed at the 
messaging level. This is the level at which distributed systems are 
discussed and analyzed in texts on distributed algorithms.

In that context, a distributed system is modeled as a set of nodes, 
arranged in a directed graph. Each node is associated with a 
process. Each process has states, a message generating function, 
and a state transition function. Each node in the graph has incoming 
and outgoing edges. Associated with each edge is a link that can 
contain at most one message. The state of any process is 
determined by the set of messages it has received and the order in 
which it has received them.

Though this abstract model is useful in the analysis of algorithms, 
several higher-level message patterns are so common in the 
construction of distributed systems that is far better to think in their 
terms. The most useful higher-level patterns are remote invocation, 
remote execution, and group multicast.

Remote Invocation
The remote invocation pattern is also known as the remote procedure 
call (RPC), and sometimes as the client-server communication 
model. Remote invocations usually have the same structure as 
ordinary function invocations: the caller relinquishes control to the 
invoked function at the time of the call and regains control when the 
function returns. A remote invocation is just a remote function 
invocation with the facade of a local one.

A RPC involves two messages: 

• the transmission of a request from the client process to the 
remote server process, and 

• the transmission of a reply from the server to the client.A request 
includes at least:

• an identifier of the object to which the request is addressed, 

• the name of the function to be invoked, and 

• the arguments to that function. 

Requests that expect replies must also include a request identifier.
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A reply includes at least:

• the identifier of the request to which it is a response, and 

• the return value, which may be either an object of the type 
expected, given normal execution, or an exception.

RPCs can be implemented over either connection-oriented protocols 
like TCP or connectionless ones like UDP. If implemented over UDP, 
the RPC layer must address the reliability of the communication.

Synchronous RPCs
RPCs are usually synchronous. The client process blocks until it 
receives a reply from the server.

Asynchronous RPCs
Asynchronous or non-blocking RPCs are useful in several cases. 
Since the client does not wait for a reply, the client and the server 
process can work in parallel. The performance benefits are further 
enhanced if the client can, over a short period, send several 
asynchronous RPC requests, one to each of several servers, which 
increases parallelism. If many client requests have the same 
destination, the client has the option of bundling several of them 
before transmission, to minimize the number of messages sent.

Asynchronous RPCs have two forms: without reply and with reply.

• Asynchronous RPCs without reply are typically used only for non-
critical notifications. 

• Asynchronous RPC with reply has a wider range of uses. If a 
client process is not going to block and yet receive a reply, some 
object must be defined to catch the reply when it arrives, and 
serve as a place-holder for it until it does. Such objects are called 
promises. Promises are implemented in VisualWorks by class 
Promise. Promises are either “blocked” or “ready,” and are created 
“blocked.” When the RPC returns, a Promise stores the returned 
value and becomes “ready.” The return value is stored immutably, 
so that it can be reclaimed more than once. If the client attempts 
the reclaim the promise while it is still “blocked,” the client 
process also blocks. Promises support the use of asynchronous 
RPCs with negligible impact on the structure of client code.
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Remote Execution
Remote execution, or remote compilation and execution, are variants 
of remote invocation in which the data shipped to the server includes 
function definitions, as well as function names and function 
arguments. The function definitions may be expressed in a one of 
several formats. The formats used usually presuppose some degree 
of homogeneity: the communicating processes must be running code 
written in the same implementation language or upon the same 
platform type. The client defines the functions it wishes to have the 
server perform or store under some name for later invocation and 
execution. The server acts as an execution environment. 

This approach can be very flexible, and it is comparatively easy to 
implement in languages like Smalltalk. It also has a long pedigree: 
PostScript employs this approach. It is partially echoed in the 
VisualWorks architecture: the image is a client of the engine, albeit a 
co-located one.

Group Multicast
In multicast, messages are sent to several target processes rather 
than just one. The target processes are said to belong to a multicast 
group. Even if there is no underlying hardware support for multicast, it 
can be implemented using sequential unicast. Group multicast is a 
useful structuring concept in distributed design however 
implemented. Note that multicast implementations usually make the 
decision, about whether the sender of the multicast will also receive 
it, on a relatively low level.

Multicast is useful for:

• locating object or services in a network, 

• multiple updates, needed when several processes are interested 
in the same event, and

• achieving either fault tolerance or faster performance through the 
replication of services or state. 

In a clean group multicast design, the objects in a group should not 
need to be aware of the distinction between object groups (the set of 
all the objects that belong to a group) and process groups (the set of 
all processes that contain objects belonging to the group). 

Any powerful implementation of the concept of the multicast group 
will usually augment the basic multicast transport protocol to improve 
reliability (for example, best effort delivery rather than ‘send once’), to 
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enforce atomicity (all group members receive the message or none 
do), or to guarantee the delivery order of multicast messages. 
Causally ordered multicast is sufficient for most applications. 

Multicast groups take several important forms.    

In subscription groups, the member processes receive the same 
information from a multicast source. Group members do not reply to 
the source.

In peer groups, communication is directed from all objects in the 
group to all objects in the group. This is the standard pattern in 
cooperative work applications. Multicast loopback will be “on” in 
circumstances where the order of the updates is significant and 
message ordering is enforced by the multicast protocol in use.

Server groups are employed when client requests are multicast to all 
of the servers that can handle the client request. Usually, one server 
replies, using unicast. Two may reply if there is concern about rapid 
response in case of failure. There are several subvariations of these 
patterns, dependent on how the replying server set is elected. Server 
groups are one approach for ensuring that all servers have the same 
state. They require protocols enforcing fairly strict reliability, atomicity, 
and ordering guarantees: the servers cannot be guaranteed to be in 
the same state if they receive messages in varying orders, or if some 
of them receive messages that others do not.

Another variation is the client-server group. Clients multicast to the 
server groups, but the replying server multicasts the response back 
to the group consisting of all the servers plus the client. This is the 
pattern used in ISIS.
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Using the Opentalk Communication 
Layer

The Opentalk Communication Layer provides a set of frameworks 
and components for use by protocol developers who are creating 
protocol layers in VisualWorks, operating on top of either the TCP/IP 
or UDP transport layers. 

The Opentalk Communication Layer is designed to be lightweight but 
robust, easy to understand and easy to extend, and rich enough to 
support the tasks of protocol developers interested in creating 
protocols of any type. The Opentalk Communication Layer is, in 
particular, intended to support the implementation of protocols like 
RMI or IIOP on top of TCP/IP, stringent multicast protocols on top of 
UDP, and custom peer-to-peer protocols. It is also suitable for bulk 
data transfer protocols used to replicate memory and disk, and the 
continuous transfer protocols used in telephony, conferencing, and 
cooperative work applications, for digital audio and video. Opentalk 
follows the general outlines of the OMG architecture to enhance 
accessibility.

Apart from being a distributed component “construction kit,” the 
Opentalk Communication Layer provides a number of immediately 
useful components. There is a complete request broker 
implementation that supports configurations using several kinds of 
object adaptors that exploit either TCP or UDP sockets. Brokers can 
be configured to use standard unicast communication, or multicast 
and broadcast messaging. A set of basic services is also provided. 

This chapter describes how to use these components in distributed 
applications. It provides several code examples, offering a pragmatic, 
rather than a theoretical, introduction to Opentalk.
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Using a Broker
Any application wishing to send or receive remote requests needs to 
create and maintain a request broker. Request brokers provide 
transparent remote communication between Smalltalk images and 
represent the communication layer to communicating applications.

Creating and Configuring a Broker
Brokers exploit lower level network protocols to transport messages 
between Smalltalk images. For a broker to be able to receive remote 
messages it has to be associated with a specific location in the 
network, referred to as access points. Access points link the brokers 
with the underlying network protocol, therefore they are expressed in 
terms recognized by the protocol. This means that access points of 
TCP/IP based brokers are instances of IPSocketAddress.

Since a broker cannot function without an access point, brokers are 
always created at an access point. The accessPoint message can be 
sent to an existing broker to obtain the access point it is associated 
with.

Brokers are usually created using one of the instance creation 
messages implemented on the class side of BasicRequestBroker. In 
practice, you usually send these messages to class RequestBroker, 
which provides services that BasicRequestBroker does not. 

For example, a standard Smalltalk-to-Smalltalk TCP broker is created 
on a specified port  using the expression

RequestBroker newStstTcpAtPort: 4242.
This binds the broker to all available interfaces. The binding address  
is derived from the configuration of the host system that the Smalltalk 
image is running on. 

To specify an address for the broker to a single interface, use the 
newStstTcpAT: variant:

RequestBroker newStstTcpAt:
(IPSocketAddress hostAddress: #[211 25 29 171] port: 4242).

The creation method using full IPSocketAddress specification is useful 
when a broker has to run on a specific network interface on a host 
with multiple network interfaces. If the address is one of the host’s 
real addresses, it will bind only to that address.
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Also, for operating across firewalls, it is typically necessary to assign 
the firewall IP to the broker, and configure the firewall to forward 
messages on the port. The firewall and broker must both bind to the 
same port number. If the address is a firewall address, rather than 
one of the host’s real addresses, object references will be exported 
with this address.

Both types of broker creation message are shortcuts for a 
configuration-based expression like the following:

(StandardBrokerConfiguration new
adaptor: (ConnectionAdaptorConfiguration new

transport: (TCPTransportConfiguration new
marshaler: (STSTMarshalerConfiguration new))))

newAt: anIPSocketAddress
Using configuration-based expressions allows one to tune runtime 
component parameters like timeouts and buffer sizes. 

Starting and Stopping a Broker
An instance of a broker has to be activated to be able to mediate a 
remote communication. To bring a broker into an active “running” 
state it has to be started using message start. A broker can be 
stopped with the message stop; it closes all the open communication 
channels and deactivates the broker. A stopped broker can be 
restarted again with start.

| server client |
server := RequestBroker newStstTcpAtPort: 4242.
client := RequestBroker newStstTcpAtPort: 4243.
[ server start.

client start.
(client ping: (IPSocketAddress hostName: 'localhost' port: 4242))

ifTrue: [Transcript show: 'Contact!']
ifFalse: [Transcript show: 'Failure!'].

] ensure: [server stop. client stop].

Using Broker Events
Opentalk contains a generic event tracing mechanism. It is 
implemented by code that triggers normal events at significant points 
in the course of remote message sending, receipt, and execution. 
Some events are triggered in the request broker and others in the 
adaptor. (Adaptors can be used without a broker.)
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A complete list of triggered events is captured in the class-side 
operationalEvents and errorEvents methods of both broker and adaptor 
classes.

Applications can register event handlers with brokers or adaptors 
using the standard event API, for example:

aBroker
when: #importingReference:in
send: #importingReference:in:
to: anEventLogger

The parcel Opentalk-Core-Support provides useful classes that can 
be used to trace broker and adaptor events: ArgumentTransformer, 
EventCollector, and EventPrinter. Application may, of course, provide 
their own event handlers.

The following is an example using an ArgumentTransformer:

aBroker objectAdaptor
when: #exportingObject:oid:in:
send: #show:
to: Transcript
with: (ArgumentTransformer withBlock: [:args |

‘Exporting <1p> with oid <2p>.’
expandMacrosWithArguments: args])

To register the same handler for a number of events the following 
pattern may be used:

log := EventCollector new.
#(#sendingRequest:in #receivingReply:in:) do: [:ev |

aBroker objectAdaptor when: ev send: ev to: log]
There are additional convenience methods that support registering a 
handler for an entire class of events, like sendOperationalEventsTo:, 
sendErrorEventsTo:, and sendAllEventsTo:. For example:

aBroker sendAllEventsTo: EventPrinter new

Message Interceptors
Message interceptors (class MessageInterceptor) are a fairly common 
patternemployed by many middleware frameworks for distributed 
computing (e.g., CORBA) to allow applications to observe, and 
possibly intervene in, processing of remote messages. 

While there are not many fundamental differences between message 
interceptors and broker event handlers, there are advantages to 
modeling these handlers as objects, rather than as ad hoc blocks 
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hooked into the broker events. For example, it is much easier to pass 
state from one interception point to another in the context of an 
interceptor object. 

BasicObjectAdaptor maintains a ProcessingPolicy, which is configured as 
a processingPolicy aspect of AdaptorConfiguration. The main 
responsibility of ProcessingPolicy is to provide InterceptorDispatcher to 
any incoming/outgoing request. 

By default, a new instance of InterceptorDispatcher, configured with 
fresh set of MessageInterceptor instances, is created to handle each 
request/reply pair. However, it is possible to optimize by reusing 
dispatcher/interceptor instances, if the processing is stateless. 

The kinds of dispatchers and interceptors used depend on the policy 
that is currently configured with dispatcher class and a sequence of 
interceptor classes to use. These will be different for different 
protocols as the interception points might be different for different 
protocols. Consider for example message envelope processing in 
SOAP. Users might or might not use their specialized class of 
dispatcher (if some pre/post processing is necessary before/after 
interceptors get invoked) and usually will provide custom interceptor 
classes filling in actual processing at specific interception points. 
Interceptors have a back pointer to their dispatcher which allows 
interceptors to reflect on other interceptors in case such coordination 
is necessary. Therefore the dispatcher also serves a a sort of 
"processing context" for the interceptors.

MarshalerConfiguration defaultProcessingPolicyClass defaults to the right 
type of interceptor or dispatcher to deal with protocol specific events. 
For example, SOAP brokers need SOAPInterceptorDispatcher, which is 
aware of the message envelope events. (This also provides backward 
compatibility with old configurations that do not specify a policy.) The 
policy default is delegated to marshaler configuration because it is 
the one configuration component that reflects the application 
protocol. 

The same interceptor is expected to process corresponding request 
and reply. Interceptors are assigned to a request as soon as it is 
created on the client or server side, before any interception points are 
reached.
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Similarly, each reply gets the dispatcher from its corresponding 
request as soon as possible. On the client side the reply has to be 
first matched with the corresponding request. If the request is not 
found then a new dispatcher is obtained from the processing policy 
so that the interceptors can process events of the orphaned reply.

Remote Objects
This section discusses some concepts and inner aspects of 
distributed object computing that don’t always surface in application 
development. However, you are guaranteed to see them sooner or 
later and it is very useful to have an understanding of these concepts 
ahead of time.

Now that we know how to setup a broker we can discuss how to 
actually use it for its primary purpose, remote object communication. 
The communication means remain the same, using normal Smalltalk 
messages. The complication is in how to address a message to 
something in a remote system. To send a message to a remote 
object, the object has to be identified using a kind of token that 
represents the object in the remote system. Surprisingly this token is 
called an object identifier or OID. Assigning an OID to an object is 
called exporting and an object is exported by sending message 
export:oid: to broker’s object adaptor. An OID is usually a SmallInteger, 
but can be any kind of object that guaranties uniqueness of object of 
given value, e.g. Symbols can be OIDs but Strings cannot.

Once an object is exported a remote system is able to identify it using 
its OID. To send a message to an exported object on a remote 
system a broker method sendMessage:to: can be used. Its first 
argument is an instance of the Smalltalk class Message and its 
second is an instance of ObjRef. ObjRef is just a composite of OID and 
the remote system address, which in case of STST TCP request 
broker is IPSocketAddress.
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| server client str size remoteStr | 
server := RequestBroker newStstTcpAtPort: 4242.
client := RequestBroker newStstTcpAtPort: 4243.
[ server start.

client start.
str := 'Hello'.
server objectAdaptor export: str oid: #Greeting.
remoteStr := ObjRef newOnHostName: 'localhost' port: 4242 

oid: #Greeting.
size := client sendMessage: (Message selector: #size) to: remoteStr.
(size = str size)

ifTrue: [Transcript show: 'Correct! ']
ifFalse: [Transcript show: 'Incorrect! '].

] ensure: [server stop. client stop]
Of course it would be unpleasant if every remote call had to be 
expressed using sendMessage:to:. Therefore Opentalk provides a 
transparent wrapper for ObjRefs that does this for you. The wrapper is 
an instance of class RemoteObject. It’s main purpose is to catch and 
redirect any message sent to it (using the usual doesNotUnderstand: 
trick), transforming it into a sendMessage: for the ObjRef it wraps. A 
RemoteObject may be obtained by sending the message 
remoteObjectToHost:port:oid:.

| server client str remoteStr size |
server := RequestBroker newStstTcpAtPort: 4242.
client := RequestBroker newStstTcpAtPort: 4243.
[ server start.

client start.
str := 'Hello'.
server objectAdaptor export: str oid: #Greeting.
remoteStr := client remoteObjectToHost: 'localhost' port: 4242 

oid: #Greeting.
size := remoteStr size.
(size = str size)

ifTrue: [Transcript show: 'Correct! ']
ifFalse: [Transcript show: 'Incorrect! '].

] ensure: [server stop. client stop]
This is how remote messages works internally. In everyday 
application development, RemoteObjects are usually obtained using 
higher-level services, and since they provide transparent messaging 
there isn’t much OID and broker address juggling involved. We will 
talk about this more in the chapter on broker services.
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Object Passing Modes
So far we’ve been sending remotely only very simple unary 
messages. However, messages can take a number of fairly complex 
parameters and return a complex object as a result as well. How do 
these objects get across to the remote system? By default they don’t. 
ObjRefs are sent instead. This is called passing objects by reference. 
It means that if a parameter of a message is a complex object, and it 
wasn’t exported yet, then it will be exported automatically in the 
course of message sending, and an ObjRef with its OID is sent 
instead of the object. The following code prints “Passed by 
reference!” to the Transcript:

| server client holder remote obj |
server := RequestBroker newStstTcpAtPort: 4242.
client := RequestBroker newStstTcpAtPort: 4243.
[ server start.

client start.
holder := ValueHolder new.
obj := Object new.
server objectAdaptor export: holder oid: #holder.
remote := client remoteObjectToHost: 'localhost' port: 4242

oid: #holder.
remote value: obj.     "Pass the object across"
(holder value _isRemote)

ifTrue: [Transcript show: 'Passed by reference! ']
ifFalse: [Transcript show: 'Passed by value! '].

] ensure: [server stop. client stop]
There are exceptions to this default behavior though. In general all 
immediate objects (nil, true, false, Characters and SmallIntegers), 
Magnitudes, ByteStrings, ByteSymbols, some collections, and others are 
sent across as is. (Actually their value is encoded, sent across, 
decoded and the objects are reconstructed from it on the remote 
system). This is called passing objects by value and the result of 
pass by value is usually 2 copies of the object: one original version in 
the local image and a new copy of it on the remote system. Keep this 
in mind because modifying an object passed by value does not affect 
the original at all!

To force an object to be passed by value, regardless of the default 
rules, use the result of sending asPassedByValue to the object. 
Similarly to force an object to be passed by reference, use the result 
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of asPassedByRef. So if we slightly modify our previous example to use 
asPassedByValue, it will print “Passed by value!” to the Transcript 
instead.

| server client holder remote obj |
server := RequestBroker newStstTcpAtPort: 4242.
client := RequestBroker newStstTcpAtPort: 4243.
[ server start.

client start.
holder := ValueHolder new.
obj := Object new.
server objectAdaptor export: holder oid: #holder.
remote := client remoteObjectToHost: 'localhost' port: 4242

oid: #holder.
remote value: obj asPassedByValue. "Pass the object across"
(holder value _isRemote)

ifTrue: [Transcript show: 'Passed by reference! ']
ifFalse: [Transcript show: 'Passed by value! '].

] ensure: [server stop. client stop 
For further discussion of pass modes, refer to Pass Modes.

Remote API of a Broker
Brokers themselves can be accessed remotely by any other object. A 
Broker automatically exports itself using a well-known name so that 
ObjRefs to it can be constructed on remote sites. This is done by 
sending an activeBrokerAtHost:port: message to the local broker, 
providing the remote broker’s host name and port number as 
arguments. Alternatively activeBrokerAt: message with an instance of 
access point can be used. 

| server client remote |
server := RequestBroker newStstTcpAtPort: 4242.
client := RequestBroker newStstTcpAtPort: 4243.
[ server start.

client start.
remote := client activeBrokerAt: server accessPoint.
((remote echo: 42) = 42)

ifTrue: [Transcript show: 'Echo successful!']
ifFalse: [Transcript show: 'Echo failed! '].

] ensure: [server stop. client stop]
Message echo: is part of the remote API allowing a test of the remote 
broker’s responsiveness.
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RequestBroker extends BasicRequestBroker with access control for the 
remote broker API. It maintains a list of so-called open selectors and 
allows only those selectors to be sent to the broker remotely. Open 
selectors list is maintained using messages openSelectors: and 
openSelectors. The list of open selectors is made use of in 
remotePerform:withArguments:, and it serves only to guard a broker 
against inadvertent tampering or damage. It does not safeguard other 
objects in the image, which are fully exposed to a remote user with a 
reference to them.

Broker Services
Another distinguishing feature of RequestBroker is support for broker 
services. RequestBroker maintains a simple registry of services keyed 
by service identifiers. A remote party can obtain a list of these service 
identifiers using the message serviceIds. Once the remote party 
knows the identifier of a service it would like to use, it can get a 
reference to it by sending message serviceById: to the remote broker 
passing the service identifier as a parameter. Message 
registerService:id: is used to add a service object to the broker’s 
registry. Any object can be a service. It can be something as 
generally useful as a naming service, or something tailored to the 
specific needs of a given application.

The reason why the broker services feature is so important is that it 
helps to resolve a well-known distributed object computing problem 
called initial reference acquisition. Once there are some remote 
references available, their set will grow quickly and autonomously as 
remote messages fly back and forth. The question is how to get the 
first remote reference in a freshly started distributed system. 

The answer is to register the general entry point object under a well-
known identifier as a broker’s service. Then any remote system can 
access it using this identifier. Even if there isn’t an established, well-
known identifier, a remote system can discover the identifiers by 
asking for the list of services or service identifiers registered with a 
broker.
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| server client remote |
server := RequestBroker newStstTcpAtPort: 4242.
client := RequestBroker newStstTcpAtPort: 4243.
[ server start.

client start.
server registerService: Random new id: #RandomGenerator.
remote := (client activeBrokerAtHost: 'localhost' port: 4242)

serviceById: #RandomGenerator.
Transcript show: remote next printString.

] ensure: [server stop. client stop]

Opentalk Service
In order to facilitate service registration, Opentalk provides the 
abstract class OpentalkService as a convenience. It provides support 
for a default instance, a service identifier, and several methods for 
registering instances either 

• in a naming service, 

• as a request broker service, or 

• in a broker's object adaptor under a OID specified by the user.

Concrete subclasses may invoke these methods in class initialization 
methods to ensure that default instances are registered in the 
Opentalk naming service or with a default broker at class initialization 
time. 

The existence of the class OpentalkService is not a constraint; 
instances of any class may be registered as broker services, 
registered in a naming service, or registered in a broker under a 
specified OID. Note also that only those Opentalk services likely to 
have registered instances are subclasses of OpentalkService.

Using NamingService
A naming service is probably the most important distributed object 
service. Its basic function is similar to broker services registry 
discussed before, i.e. mapping well-known names to objects. Both 
are kind of a distributed equivalent of what name spaces are for a 
single image. The difference between the two is in their flexibility and 
robustness. While a broker service registry is very simple and flat, a 
naming service supports a hierarchy of naming contexts that can 
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span multiple distributed images. A broker service registry is like a 
single name space called Smalltalk, whereas a naming service is 
comparable to the current hierarchical name space structure.

A hierarchy of naming contexts always needs a root from which the 
name resolution starts. A naming context is an instance of class 
NamingService and, as such, it is just another distributed object that 
needs to be exported so that it can be accessed remotely. Although it 
does not really matter how the root naming context is exported, 
common practice is to register it as a broker service. And indeed the 
class NamingService is a subclass of OpentalkService so that an 
instance of it can be conveniently created and registered using the 
service registration methods.

There is also a convenience method namingService that returns the 
registered context. If there isn’t one registered yet, it creates one, 
registers and returns it.

The essential API of NamingService is comprised by the methods 
bind:to:, resolve:, resolve:ifAbsent: and unbind:. It was mentioned already 
that there often is a hierarchical structure of contexts. To resolve a 
name of an object registered deeper in the hierarchy a compound 
name can be used. A compound name is a sequence of names of 
contexts all the way from the context that is going to be asked to 
resolve the name (usually the root context) and ending with the name 
of the target object. A compound name may be either a period-
separated String or an OrderedCollection of names. Usage is 
demonstrated in the following example.

| server client remote |
server := RequestBroker newStstTcpAtPort: 4242.
client := RequestBroker newStstTcpAtPort: 4243.
[ server start.

client start.
"Enable remote use of #namingService method"
server openSelectors: server openSelectors, #(namingService).
"Create the root naming context and in it a nested context called
Generators"
server namingService create: 'Generators'.
"Register an instance of Random as Random in Generators"
server namingService bind: 'Generators.Random' to: Random new.
"Obtain a remote reference to Random resolving its name in the remote
naming service"
remote := (client activeBrokerAtHost: 'localhost' port: 4242)

namingService
resolve: 'Generators.Random'.
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Transcript show: remote next printString.
] ensure: [server stop. client stop]

Using UcastEventService
Many applications exploit some kind of event-based mechanism to 
propagate notifications to interested parties. VisualWorks implements 
its own object level events (Object protocols “event *”), which are used 
throughout the system. Opentalk’s event services extend object level 
events with additional multiplexing components that are capable of 
relaying events to remote systems. 

These event relays are instances of UcastEventService. A network of 
them constitutes a unidirectional distributed event channel. 
UcastEventService supports the standard VisualWorks event API 
implemented in Object protocols event *. In addition, there are a 
couple of configuration methods allowing you to plug 
UcastEventServices together to form a channel. These methods are 
addRelay:, removeRelay: and clearRelays. The following example will 
print “Hello!” twice to the Transcript in response to a single event 
triggered.

| b1 b2 b3 remote front back1 back2 |
b1 := RequestBroker newStstTcpAtPort: 4242.
b2 := RequestBroker newStstTcpAtPort: 4243.
b3 := RequestBroker newStstTcpAtPort: 4244.
[ b1 start.

b2 start.
b3 start.
"Register the front relay of the event channel"
front := UcastEventService new.
b1 registerService: front id: 'channel1'.
"Register back1 of the relay channel and plug Transcript into it"
back1 := UcastEventService new.
b2 registerService: back1 name: 'channel1'.
remote := ((b2 activeBrokerAtHost: 'localhost' port: 4242)

serviceById: 'channel1')
addRelay: back1.

back1 when: #show: send: #show: to: Transcript.
"Register back2 of the relay channel and plug Transcript into it"
back2 := UcastEventService new.
b3 registerService: back2 id: 'channel1'.
remote := ((b3 activeBrokerAtHost: 'localhost' port: 4242)

serviceById: 'channel1')
addRelay: back2.

back2 when: #show: send: #show: to: Transcript.
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"And now try to trigger a #show event at the front"
front triggerEvent: #show: with: 'Hello! '.

] ensure: [b1 stop. b2 stop. b3 stop]

Using a Broadcasting RequestBroker
The broadcasting RequestBroker exploits IP broadcasting as the 
underlying communication mechanism. Broadcasting, like 
multicasting, uses UDP sockets to deliver data packets. In broadcast, 
the recipients are determined by the form of the broadcast address. 
There are three commonly used broadcast address types:

Limited Broadcast

The limited broadcast address is 255.255.255.255. A packet sent 
to this address is never forwarded by a router. Thus, it never 
leaves the local subnet, but it is received by all stations on the 
subnet.

Net-Directed Broadcast

The net-directed broadcast address has a host ID (6 bits) of all 
one bits. A class A net-directed broadcast is of the form 
N.255.255.255, where N is the class A network number. All 
stations on the specified network receive the broadcast, unless 
routers have explicitly disabled the default forwarding policy for 
such addresses. This is a wide area broadcast. It is expensive 
and seldom useful.

Subnet-Directed Broadcast

A subnet-directed broadcast address has a host ID (6 bits) of all 
one bits but a defined subnet ID. Routers determine whether a 
packet is a subnet-directed broadcast by reference to the subnet 
mask. This is the most common and most useful form of 
broadcast. It targets a specific network that may be different from 
that of the sender. However, routers may not forward these 
broadcasts either, in the interest of preventing denial of service 
attacks. This form of broadcast is only useful in a controlled 
environment, configured for broadcasts of this type. Any subnet-
directed broadcast to the orioginating networl will have teh same 
effect as a limited broadcast.

A broadcast RequestBroker, by default, assumes that limited broadcast 
is desired. (See BcastTransport groupAddress, where this default is 
arranged.)
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A broker may be configured to use net- or subnet-directed broadcast 
by sending BcastTransportConfiguration message 
networkDirectedWithNetmask:. The argument is a 4 byte ByteArray 
representing the netmask of a given network. It is used to compute 
the broadcasting address from the local host address. An equivalent 
message is networkDirectedWithNetmaskWidth:, which takes a number 
of non-zero bits in the netmask instead. Also, if a standard class C 
subnet is the intended target of the broadcast, the netmask can be 
set using networkDirected:. Finally, if a specific network configuration 
does not use the highest network address for broadcasting, a 
different address can be explicitly set with AdaptorConfiguration 
message accessPoint:. A typical creation expression for a network 
directed broadcasting broker looks something like this:

(BrokerConfiguration basic
adaptor: (AdaptorConfiguration objectGroups

transport: (TransportConfiguration bcast
networkDirectedWithNetmask: #[255.255.254.0];
marshaler: (MarshalerConfiguration stst))))

newAtPort: 4242
Broadcasting is also targeted to a given port and only hosts reading 
given port will actually receive the packet. Therefore broadcasting 
RequestBrokers that are supposed to communicate together have to be 
running on the same port number.

Broadcasting is represented by the concept of object groups at the 
object level. In the case of a broadcasting RequestBroker it means that 
a given OID is not associated with a single object on a single host, 
but rather associates with a number of objects on different hosts. 
Therefore to build an object group with a set of broadcasting 
RequestBrokers each should export its group participant object using a 
given OID. This way an OID effectively becomes a group ID. To 
broadcast a message to participants in a group the message has to 
be addressed to a group proxy. A group proxy is obtained from a 
broker using groupById: message with parameter being that group’s 
ID.

There’s one more aspect of broadcasting that has a significant impact 
on usage of a broadcasting RequestBroker. Given the nature of 
broadcasting, where there is a potentially large number of recipients, 
it would be hard to support the usual two-way request/reply 
semantics of remote messages. How could one meaningfully 
combine a number of replies into a single return value? Therefore 
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broadcasting RequestBrokers support only one-way requests, which 
means there’s no meaningful return value from a message mediated 
by a broadcasting RequestBroker. 

| b1 b2 b3 transcripts |
b1 := RequestBroker newStstBcastAtPort: 4242.
b2 := RequestBroker newStstBcastAtPort: 4242.
b3 := RequestBroker newStstBcastAtPort: 4242.
[ b1 start.

b2 start.
b3 start.
"Export group participants with the group ID"
b1 objectAdaptor export: Transcript oid: #Transcripts.
b2 objectAdaptor export: Transcript oid: #Transcripts.
b3 objectAdaptor export: Transcript oid: #Transcripts.
"Create the group proxy using one of the brokers"
transcripts := b2 groupById: #Transcripts.
transcripts show: 'Hello ! '.
"We need to give the brokers some time to process
the incoming message before they are stopped"
(Delay forMilliseconds: 100) wait.

] ensure: [ b1 stop. b2 stop. b3 stop ]

Using a Multicasting RequestBroker
A multicasting RequestBroker exploits IP multicasting as its underlying 
communication mechanism. Multicasting is very similar to 
broadcasting. Again it is a way to route a packet to a number of 
parties but this time the set of recipients can be fine-tuned, on a host-
by-host basis. A packet to be multicasted has to be addressed to one 
of a range of dedicated multicasting addresses (224.0.0.0 – 
239.255.255.255). The port number is important and has the same 
effect as described above for broadcasting. All that was said about 
broadcasting at the object level applies to multicasting as well: 
multicasts are sent to an object groups and are unidirectional.

| b1 b2 b3 transcripts |
b1 := RequestBroker newStstMcastAtPort: 4242.
b2 := RequestBroker newStstMcastAtPort: 4242.
b3 := RequestBroker newStstMcastAtPort: 4242.
[ b1 start.

b2 start.
b3 start.
"Export group participants with the group ID"
b1 objectAdaptor export: Transcript oid: #Transcripts.
b2 objectAdaptor export: Transcript oid: #Transcripts.
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b3 objectAdaptor export: Transcript oid: #Transcripts.
"Create the group proxy using one of the brokers"
transcripts := b2 groupById: #Transcripts.
transcripts show: 'Hello ! '.
"We need to give the brokers some time to process
the incomming message before they are stopped"
(Delay forMilliseconds: 100) wait.

] ensure: [ b1 stop. b2 stop. b3 stop ]

Using McastEventService
McastEventService is one of the very natural applications of 
multicasting. Functionally it is almost equivalent to UcastEventService, 
i.e. it is an event relaying extension for VW object events. The 
difference springs from the nature of multicasting. Since multicasting 
is inherently omnidirectional, a network of McastEventServices forms an 
omnidirectional channel as well, unlike the UcastEventService which 
creates unidirectional channels.

McastEventService has to be used with either a multicasting or a 
broadcasting RequestBroker. To create a channel, simply form an 
object group with instances of McastEventService as participants. 
Instead of maintaining a collection of event relays McastEventService 
just holds onto a group proxy, which is called its sender. To setup an 
instance of McastEventService with a group proxy use message sender:.

| b1 b2 b3 es1 es2 es3 |
b1 := RequestBroker newStstMcastAtPort: 4242.
b2 := RequestBroker newStstMcastAtPort: 4242.
b3 := RequestBroker newStstMcastAtPort: 4242.
[ b1 start.

b2 start.
b3 start.
"Setup broker 1"
es1 := McastEventService new.
b1 objectAdaptor export: es1 oid: 42.
es1 sender: (b1 groupById: 42).
es1 when: #show: send: #show: to: Transcript.
"Setup broker 2"
es2 := McastEventService new.
b2 objectAdaptor export: es2 oid: 42.
es2 sender: (b2 groupById: 42).
es2 when: #show: send: #show: to: Transcript.
"Setup broker 3"
es3 := McastEventService new.
b3 objectAdaptor export: es3 oid: 42.
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es3 sender: (b3 groupById: 42).
es3 when: #show: send: #show: to: Transcript.
"And now trigger a #show: event at any broker"
es2 triggerEvent: #show: with: 'Hello ! '.
"We need to give the brokers some time to process
the incomming message before they are stopped"
(Delay forMilliseconds: 100) wait.

] ensure: [ b1 stop. b2 stop. b3 stop ]
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4

Some Components of Opentalk 

All three patterns of inter-process communication outlined in the 
previous chapter face common issues as a consequence of the fact 
that they all expect to send request identifiers, object identifiers, 
function identifiers, function arguments, and perhaps function 
definitions, within messages from one process space or host to 
another. As a consequence, the upper layers of all protocol stacks 
used for these messaging patterns tend to have common 
architectural components.

This section discusses some of those common issues and 
components, and points out where and how the logical components 
are represented in the Opentalk Communication Layer. Not all logical 
components are discussed, nor are all of the implementations of the 
Opentalk Communication Layer. Furthermore, no systematic 
attention has been devoted to the components characteristic of 
heterogeneous RPCs. More components, and components specific 
to heterogeneous RPCs, shall be addressed in future editions of this 
document.

Though it should not come as a surprise, additional information of the 
kind presented in this chapter occasionally may be found in the class 
comments of the Opentalk implementation. 

Message Format
You cannot have a message without a message format. In practice a 
message format usually involves two separate chunks of 
specification: one for the message header and another for the 
message bodies of potentially several message types.
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Message Header
A message header is seldom other than a fixed length byte array 
containing a fixed set of items each beginning at a predetermined 
position. The items are of a privileged sort, usually of the kind that 
determine whether and/or how the attached message body is to be 
processed. Reading the header is supposed to be cheap. It is 
standard practice in request processing to process the header, and 
then to branch on the outcomes.

For example, a recipient may defer processing the body based on a 
protocol version number. An older implementation of the protocol can 
usually assume that it is not forward-compatible with a later one. 
Revisions that do and do not retain forward-compatibility can be 
distinguished if a protocol version number has both a “major” and a 
“minor” component, where minor version number changes indicate 
forward compatibility and major ones do not. 

An example of an item that affects the way in which the attached 
message body is processed is a message type identifier. For 
example, if the recipient gets a “time-profile” rather than a “normal” 
message, it may then know that it is required to run the message 
encoded in the message body under a time profiler, rather than in the 
ordinary way, and return the profiling results along with the usual 
return value, so that the sender can assemble a cross-platform 
execution tally.

TransportPackageBytes
In Opentalk, the header bytes of an encoded message are 
represented by the class TransportPackageBytes, and its potential 
subclasses. TransportPackageBytes is a subclass of BinaryStorageBytes 
with a default size of 12 bytes. It contains seven slots for 
representing:

• the “magic,” a protocol identifier 

• the message type

• the major protocol version number

• the minor protocol version number

• the byte order

• an indicator of whether the message is a fragment

• the message length
4-2  VisualWorks



Logical Message State Machines
Message Body
Receivers and senders have to agree on the ordering and the 
constituents of the potentially several message types. Message 
bodies may contain request identifiers, target object identifiers, 
function identifiers, arguments, and possibly other items relevant to 
the communication and execution options supported by the protocol. 
These will all be placed in the message body.

RemoteMessage and its Subclasses
Message bodies are represented in Opentalk by class RemoteMessage 
and its subclasses. The components of message bodies are held in 
instance variables. RemoteMessage itself is an abstract class and only 
declares one instance variable, for a request identifier—almost 
always useful.

Logical Message State Machines
In some protocol implementations, sending one logical message may 
involve sending several actual ones. 

For example, one simple way to ensure consistent message ordering 
within a multicast group is to require all message senders to obtain a 
timestamp or sequence number from a common sequencing service, 
and include that timestamp in the header of any message they issue. 
(It is better, but still involves a single point-of-failure, if the message is 
unicast to the sequencer directly, where the sequencer attaches a 
timestamp or sequence number, and then multicasts the message to 
the group). In this fanciful protocol, sending one logical message 
involves sending two actual ones: one to the sequencer, then a 
second to the multicast group. With a sequence number attached to 
each message, each recipient can easily discover whether it is 
missing messages in its incoming queue, and delay further 
processing until the missing messages arrive.

In cases like this there will be some code component:

• that expresses the message ordering or the message exchange 
sequence required for completion of a single, logical message, 
and

• that records the location of the current logical message in the 
state transition diagram prescribed by the protocol.
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See the discussion of session layers later in this chapter for more 
trenchant remarks on the issues associated with protocols involving 
complex exchanges.

Methods sendRequest:to and evaluateFor:
Opentalk has no dedicated class responsible solely for representing 
the relationship between a complex message and its component 
parts. Simple cases may be handled by overriding methods in the 
context stack proceeding from BasicRequestBroker>>sendMessage:to: on 
the client side, or in the stack proceeding from 
RemoteMessage>>evaluateFor: on the server side.

Note that these are also the two stacks wherein you are likely to 
place halts, whenever you need to examine either client-side 
message sending or server-side message receipt.

Server-Side Message Dispatch
Once a message has been received, the job of processing it has to 
be dispatched or assigned to some process. The style of dispatch is 
an important design dimension. One might defer dispatch and let the 
receiving process unmarshal and evaluate the message. This 
alternative is the least useful and the most dangerous: while 
processing the current message it will be available to receive others. 
It is more usual to dispatch the message to a newly created process 
running at a lower priority than the receiving process, or to dispatch it 
to a process in a pool of processes, also running at lower priority. 
Those processes in turn may evaluate the message and reply, or 
forward the message to yet another image. Regardless, every 
protocol will have some component that regulates server-side 
message dispatch.

The Methods handlingIncomingMessage and dispatchFor:
Opentalk does not have a dedicated class that handles message 
dispatch. Instead dispatch is regulated by handlingIncomingMessage, 
which in turn usually calls dispatchFor:. Both methods have several 
implementations in the Opentalk Communication Layer. 
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Process Environments
A message is sent from one process to another. The originating 
process may have environment variables that affect execution, and 
that must be copied to the environment of the process that will 
respond to the message on the remote host. Such process 
environment variables are items that are constant with respect to the 
logical, distributed process being executed. They retain their value 
irrespective of

• the host

• the number of hosts the that logical process has so far transited 
during the course of execution

• the concrete process currently executing

• the function currently being executed, or

• that function’s arguments. 

They may also be independent of:

• the current message type. 

Such environment variables obviously cannot be treated in the same 
way as function arguments: they have far wider scope.

Two common examples of meaningful environment variables are 
security profiles and interface homes.

Security profiles are used in fine-grained security implementations, 
where users are granted or refused permissions at the level of 
whether they may send specified classes of messages to specified 
classes of objects. When a user logs on, his security profile is 
attached to the process environment of any process he or she 
initiates, and checked at each function invocation. If the user initiates 
a process that issues a remote request, the users profile must be 
copied to the environment of the process on the remote machine that 
handles the request, so that security constraints can still be enforced.

Interface homes are useful In VisualWorks, where several method 
implementations print messages to the Transcript or raise Dialogs. In 
a distributed environment, such implementations may be invoked 
during the course of a logically distributed process originating on 
another machine. In that case, the Transcript printed to should be the 
one on the originating image, and Dialogs should be raised at the 
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same location. So, the originating or home environment must be 
recorded in a process environment variable, and used to redirect 
messages sent to Transcript or Dialog.

Environment variables are seldom of concern to application 
developers, but are often critical in implementing distributed services. 
So, protocol layers above the transport layer will typically include 
environment variables as one of the components of a message body, 
and implement code that copies environment variables into message 
bodies from a sending process, and from message bodies to the 
process that responds to an incoming message. There should also 
be an API that allows service and application developers to define 
and add new environment variables.

Process Priorities
Priorities of the background processes created by Opentalk brokers 
are below the critical process priority range (LowIOPriority and above). 
Priority is configurable, allowing broker performance tuning.

The adaptor configuration parameters 
(ConnectionAdaptorConfiguration), which are applicable to connection-
oriented adaptors, are:

listenerPriority

The listener process priority.

listenerBacklog

The number of allowed pending connection requests.

The transport configuration parameters (TransportConfiguration) are:

workerPriority

The worker process priority.

serverPriority

The server process priority

The serviceContext Instance Variable
Opentalk only defines service contexts for requests, as they only 
make sense for requests, and only in class STSTRequest. The method 
#sendAndWaitForReply: has the code that loads the sender’s current 
process environment into a request. #evaluateFor: loads the service 
contexts of the incoming message into the process dispatched to 
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generate the reply. Objects are placed into the process environment 
by the sender using the method Process>>environmentAt:put: or by 
helper methods, also implemented in class Process, that invoke 
#environmentAt:put:.

Endianness
Communicating computers may not be of the same endianness. In a 
little-endian architecture the least significant byte of an integer has 
the lowest address. In a big-endian architecture, the least significant 
byte of an integer has the highest address. Any communication 
protocol must accommodate the fact that low-level data elements 
may have fundamentally different representations in the two 
communicating process spaces.

There are three common strategies for handling this issue: 

• Assume that the communicating hosts will always be of the same 
endianness. This is rarely a viable option.

• Convert data values to and from a common external 
representation. This entails that you will always have work to do, 
on both the sending and the receiving side 

• Transmit data values as is, with an architecture marker, so that 
the receiver of the data can convert the data as needed. This is 
the lightweight option. In this option, the architecture or 
endianness marker is one component of the message header.

Thus, any generally useful protocol stack implementation will involve 
either a common data representation or an endianness-marker-and-
switcher.

The byteOrder and swap Instance Variables
Opentalk opts for the third design option described above. It records 
endianness in the byteOrder instance variable of MessageHeader. 
MessageHeaders understand the message #swap, the return value of 
which is used to set the boolean value of the swap instance variable 
of STSTStream. The value of that instance variable is referred to by 
several unmarshaling methods: #nextDouble, #nextFloat, #nextLong, and 
their like. The swap instance variable only records whether 
STSTStream should swap byte order while unmarshaling. The local 
endianness is recorded in the isBigEndianPlatform instance variable of 
STSTStream, and is used in the message #nextLong.
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Encodings
In heterogeneous environments, communication occurs between 
processes implemented in languages that have different native 
character set encodings. Note that this is a translation problem, 
specific to character data, at the level of the implementation language 
rather than the host.

The options for handling this problem are the same as those for 
handling the endianness issues—where assumptions about, or 
markers for, the encoding replace those for endianness—but with one 
customary addition. Senders and receivers may negotiate, usually 
just after the connection has been made in connection-oriented 
transfer protocols, whether the server or the client will do the work of 
translating encoded data between the client and the server 
encodings.

This option is one example of a non-trivial message sequencing 
issue: a negotiation protocol becomes one component of the overall 
communication protocol. In cases where servers have significantly 
more power or lighter loads than clients, “server does the work” will 
be favored over “client does the work.”

Whenever this issue arises, there will be some code component that 
specifically addresses encoded data. There also will be machinery for 
marking which items are to undergo encoding translation and which 
are not. This is the rational behind the distinction between the 
“character” and “octet” data types in the OMG IDL specification: 
characters undergo encoding translation, but octets do not.

Character value: self nextLong
Opentalk does not currently have machinery for handling character 
encodings, because its existing concrete protocols assume a 
homogeneous Smalltalk environment. But it does linearize characters 
as SmallIntegers, in anticipation of future encoding machinery.

Marshaling and Unmarshaling
Data is usually structured: Smalltalk objects are trees of lesser 
objects. But the data in a message packet is sequential. As a 
consequence of this mismatch, any generally useful protocol stack 
must provide facilities for flattening or linearizing data structures or 
object trees before transmission and rebuilding them from their 
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linearized form after receipt. So, even if you do not need a common 
data representation to handle the endianness or the encoding issues, 
you will wind up with one to handle the linearization problem: you 
cannot escape work on both the client and the server side.

Marshaling is the process of linearizing object structures into basic 
data elements, and converting the latter to a common data 
representation; unmarshaling is the reverse process of translating 
from the common data representation.

In the implementation of a protocol stack, the components for 
handling endianness, encoded data, and linearization will usually be 
integrated in a marshaling component.

STSTStream
Opentalk uses a stream class for marshaling and unmarshaling. The 
main entry point in its API are #marshalObject: and #unmarshalObject. 
The marshaling and unmarshaling machinery sensitively depends on 
the tables implemented on the class side of STSTStream. STSTStream 
must and does interact heavily with the pass mode control machinery 
discussed in Pass Modes.

STST marshaling employs a set of class-specific type tags, which 
allows optimized marshaling of several commonly-used classes. 
Several blocks of type tags are reserved for customer use, so that 
customers may implement and test application- and class-specific 
marshaling optimizations of their own. We assume no responsibility 
for conflicts in the use of the tag values within those reserved blocks 
(see the initializeTagDispatchTable class method in STSTStream for block 
identification).

Object References
Distributed systems require object references. In RPCs, object 
references represent a particular remote object. In group multicast, 
they represent a particular multicast group. 

An object reference contains the information needed to establish a 
connection to the process space in which the remote object resides. 
In practice, an object reference contains at least two pieces of data: 

• an access point for connecting to a remote application, and 

• the unique identifier of the object that a reference points to. 
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The nature of both the access point and the object identifier depends 
upon the type of communication protocol being used. Some protocols 
will require additional data elements

An object identifier is set by the application from which the reference 
is obtained. The client application that obtains the reference is 
interested in the object identifier solely as a possible means for 
maintaining the local identity—rather than equality—of references 
pointing to the same remote object. 

ObjRef
In Opentalk, object references are implemented by class ObjRef. This 
class may be subclassed as required. ObjRef is a subclass of class 
Object because it is a mere data holder. ObjRef does not reimplement 
doesNotUnderstand:, and instances of the class are used primarily as 
components of proxies and as indices in object tables. Object 
references are passed by value. 

Like several other critical types, ObjRef overrides #marshalWith:. This 
double dispatching of the marshaling operation makes it easy to 
splice a custom marshaler into the Opentalk framework for objects 
that demand custom care.

Transparent Forwarding
The standard implementation of transparent forwarding in Smalltalk 
involves a proxy. A proxy is an object that stands in the place of 
another, usually remote object, which it represents. The class of the 
proxy object reimplements #doesNotUnderstand:, to forward incoming 
messages to the remote object represented. The proxy class usually 
inherits directly from either nil or class Object, so that there are few 
messages that it does understand. 

Several kinds of proxy classes are possible and useful. The most 
usual are:

• the simple forwarding proxy just described, and

• the faulting proxy. 

In response to the first message sent to it, a faulting proxy replaces 
itself with a copy of the object it represents and redispatches that first 
message to it. Subsequent messages arrive at the copy directly.
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In Opentalk, the notion of a proxy is implemented using two classes, 
Proxy and RemoteObject. Faulting proxies are not now implemented. 
However, pass mode wrappers, to be discussed later, are treated as 
kinds of proxies.

Proxy
Proxy is an abstract class that inherits from nil and is intended to be 
the superclass of all of the several kinds of proxies. Proxies are 
wrappers of object references, and hold an instance of class ObjRef in 
their single instance variable. This design allows one to treat remote 
object access data and forwarding or faulting strategies orthogonally. 

Class Proxy implements several messages whose selectors begin 
with an initial underscore. The underscore indicates that these 
messages will be evaluated locally and will not be forwarded.

RemoteObject
A concrete implementation of a forwarding proxy, RemoteObject, adds 
a relationship to a request broker to the Proxy behavior. This 
relationship is important for both sides. RemoteObject needs a broker 
to be able to invoke a remote request. Conversely, a request broker 
needs to keep track of imported remote references and 
corresponding RemoteObjects.

Object Reference Equality
It is possible for an image in remote communication with another to 
obtain a reference to the same object more than once, either as a 
return value in a reply or as an argument in a request. If the image 
retains those several references, it will significantly complicate its 
programming semantics if they are not identical. Furthermore, the 
test for identity should be as cheap as usual; it must not be a remote 
call. Thus, any good implementation of object references will ensure 
that references to the same object are identical, and that their identity 
is evaluated locally.

BasicRequestBroker’s remoteObjectRegistry
In Opentalk, all request brokers inherit from BasicRequestBroker. That 
class has an instance variable called remoteObjectRegistry that holds a 
weak value dictionary: its associations are garbage collected when 
there are no longer any strong references to the value. The routines 
for unmarshaling object references all eventually call objectByRef:. If 
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the reference is not a reference to a local object that has round-
tripped, a new local instance of class RemoteObject is found or created 
to represent it. The method findOrCreateRemoteObject: ensures the 
local identity of object references.

This implementation entails that references are identical only with 
respect to the broker through which they have been obtained. In 
practice, this is not a troublesome constraint. Note that if you intend 
to simultaneously support several types of proxies in the same 
broker, you will need to enhance the machinery that maintains 
reference identity.

Object Tables
Object adaptors require object tables to keep a record of the object 
references they export. The objects are indexed under the object 
identifier (OID) assigned to them by the broker or table. This is the 
identifier included in a reference, to uniquely identify the object 
among those exported by users of the table. When the adaptor 
processes an incoming request, it looks up objects under the OID to 
identify the object that is the target of the request.

Object tables must also support indexing of OIDs under objects. This 
lookup is employed whenever the adaptor creates and exports a new 
reference, to determine whether a reference to the object has already 
been exported and a pre-existing OID should be reused.

Though necessary to the functioning of an object adaptor, and for 
ensuring a stable association between the OIDs found in messages 
and the objects they refer to, object tables should be thought of as 
generic components. Resource managers of several kinds may need 
to maintain an association between OIDs and the objects within the 
resource manger’s domain. Thus, you may have need for and use 
object tables in the implementation of several distributed system 
components.

There are three major design issues involved in implementing object 
tables.

• Object tables must be fast. Object and ID lookups are 
fundamental to message processing, and persons profiling a 
distributed system should have the confidence entailed by 
knowing that the cost of these lookups need never be their 
concern.
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• A decision needs to be made about the stability of the object 
table. Ideally, it should be stable across image shutdown and 
startup, so that references exported before a shutdown or crash 
remain valid after the image has been restarted.

• A decision needs to be made about the strength of the 
references to objects within the table. If the table uses weak key 
and weak value dictionaries, table entries referring to an object 
will be garbage collected once the object is. If the usual, strongly 
referencing dictionaries are employed, the mention of an object in 
the object table will protect it from garbage collection.

It is standard practice to use weak key and value dictionaries in the 
implementation of a request broker so that the issues involved in 
retaining references to exported objects are addressed, as they 
usually should be, at the application rather than the communication 
layer. However, it may make sense to use strong references in an 
object table employed by a resource manager.

ObjectTable
Object tables are implemented in Opentalk by class ObjectTable. 
ObjectTables have four instance variables: an access lock, a weak key 
dictionary, a weak value dictionary, and the value of the numeric OID 
to use, on creation of a new entry. The central public protocol 
consists of three methods: #export:, #export:oid:, and #objectByOID:. 
Object adaptors retain an ObjectTable in their objectTable instance 
variable.

Opentalk’s ObjectTable is now hard-coded to use weak key and weak 
value dictionaries. A future release will support the option of creating 
ObjectTables with strong references. 

Request Brokers
A request broker is the primary representative of the distribution 
framework to an application. Its main purpose is to mediate access to 
all the distribution services, and their corresponding APIs, that an 
application may need. An application sets up an instance of the 
distribution machinery by creating an instance of request broker. It 
activates or deactivates the machinery by starting or stopping the 
broker. Opentalk's brokers also have built-in capability for automatic 
stopping and starting when the smalltalk image shuts down or starts 
up: a broker that was on when an image is shut down will restart 
when the image starts up. 
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Request brokers support two styles of remote request invocation. 
There is an RPC style API consisting of messages #sendMessage:to: 
and #sendMessage:to:timeout:, that allows explicit invocation of remote 
request. The second style allows application developers to use the 
same means, Smalltalk messages, for both local and remote 
communication. It is provided by a transparency layer of 
RemoteObjects wrapped around the RPC style API.

All the above is implemented in class BasicRequestBroker. It's subclass 
RequestBroker extends it with additional features like remote access 
control to broker APIs through the list of open selectors and explicit 
support for broker services. Broker services are a great help 
especially with the initial phases of distributed application start up. To 
be able to obtain contact with application components at startup, a 
component needs to obtain an initial set of references to relevant root 
objects that will support access to, or discovery of, other remote 
objects. A broker services registry plays an important role in this task. 
It allows one to register a service under a well known name using 
#registerService:id:. Once a service, for example, a naming service, is 
registered, other systems can retrieve remote reference to it using a 
known broker method (#serviceById:) and the well-known service 
name. A broker also allows retrieving names of all its registered 
services using the method #serviceIds.

Object Adaptors
Object adaptors represent the hidden side of the distributed 
framework. As opposed to brokers, which are mostly responsible for 
presenting the communication layer to an application or image, 
adaptors are there to talk to the outside. An adaptor manages a 
specific protocol implementation and maintains the necessary 
infrastructure needed to dispatch incoming and outgoing remote 
messages.

An adaptor uses low level network protocols to transport encoded 
requests to the target system. Network protocols use their own notion 
of location to be able to target the delivery of data. Each location has 
its own identifier. In the case of the TCP/IP protocol suite, this 
identifier is called an IP address. Opentalk uses the more generic 
term “access point” to leave room for other protocol suites. An object 
adaptor is instantiated for the access point that is provided by the 
broker that creates the adaptor. That's why the broker creation 
protocol requires an access point specification as a parameter.
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Access points allow for dispatching requests to specific systems. 
However, a distributed object framework needs a finer addressing 
scheme to be able to dispatch requests to individual objects within 
the systems. Therefore object adapters export objects with their own 
identifiers (OIDs), which are then used as part of the addressing 
scheme represented by object references (ObjRefs). Adapters need to 
maintain a mapping between OIDs and objects that they export. This 
mapping is represented by an object table.

Adaptors exploit network protocols to conduct communication over 
the network. Generally, there are two fundamental classes of 
protocols with different usage patterns; therefore we have a different 
adaptor for each protocol class. First, there is 
ConnectionOrientedAdaptor for connection-oriented, “telephone-style” 
protocols like TCP. For these protocols two parties have to establish a 
connection before they can begin to exchange data. Second, there 
are connection-less “mail-style” protocols represented by 
ConnectionLessAdaptor. With these protocols the sending party 
attaches an "address" to the data and releases it to the network. The 
data later arrives to the recipient, unless it gets lost or the recipient is 
not watching for any data to come. A typical example of this type of 
protocol is UDP.

Connection-oriented protocols need some additional infrastructure for 
establishing and maintaining connections. The standard connection 
creation technique involves a “listener.” The side initiating the 
connection is usually called the client and the other side the server. 
Clients make special connection requests. The sole purpose of a 
listener is to wait for them, and pass up to the server, any connection 
creation requests that are delivered to server's access point. 
Therefore each active instance of ConnectionOrientedAdaptor maintains 
a running instance of ConnectionListener fulfilling this role. Once a 
connection is established it is registered in the adaptor's connection 
registry. When the connection is closed it is deregistered.

Transports
An object adaptor needs to maintain certain amount of networking 
infrastructure for the network protocol that it exploits. Apart from that 
there is also encoding and decoding machinery (marshalers) and 
process handling components. All this is expressed in a form of 
Transport in Opentalk. Transport implements an actual transport 
protocol. In order to track request execution status, each outgoing 
request is given its request ID and is registered in the Transport's 
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requestRegistry. The request ID is used to match incoming replies to 
the requests that they originated from. Once a reply arrives the 
corresponding request is unregistered from the registry and the 
reply's value is returned as a result to the process that initiated the 
remote request.

Incoming requests are intercepted and dispatched by the transport's 
server process. The server process is started upon transport creation 
and terminated upon transport shut down. The purpose of the server 
process is to recreate the request on the server side and dispatch it 
to the appropriate receiver. There is no client process because 
request encoding and sending is performed within the context of the 
process initiating the remote request invocation. Note that the server 
process is not responsible for request evaluation and reply send-out, 
because time consuming requests could significantly reduce the 
system's responsiveness, or even cause request losses in case of 
unreliable network protocols.

Connection-oriented protocols are implemented as StreamTransports. 
A StreamTransport represents one end of a lower level network 
connection. Instances of StreamTransport are registered by 
ConnectionOrientedAdaptor as connections.

Connection-less protocols are implemented as DatagramTransports. 
ConnectionLessAdaptor maintains a single instance of 
DatagramTransport for all of its interaction with the network.

Pass Modes
The arguments in a request and the return value of a reply may be 
passed in any of the three usual ways: 

pass by value

In pass-by-value, a copy of the object is transmitted from one 
process to another. It presupposes that both the sender and 
receiver have equivalent implementations of the object in 
question. 

pass by reference

In pass-by-reference, a reference to an object in the object space 
of the sender is transmitted to the receiver.
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pass by name

In pass-by-name, only the name of a named object in the object 
space of the sender is sent to the receiver. It presupposes that 
the receiver has an equivalent object in its object space under the 
same name. The receiver uses that identically named local object 
in place of the name transmitted by the sender.

Though these are well-worn alternatives to the designers of 
programming languages, they have added dimensions in the realm 
distributed computing. To these three, Opentalk adds:

pass by OID

To improve efficiency, some distributed applications pre-replicate 
selected objects to all involved locales. In such cases, if a 
replicated object is an argument to a remotely invoked operation, 
it is a waste of resources to pass the replicate by either reference 
or value. 

Any message sent to a reference immediately involves network 
traffic. Any message sent to a copy, which has been passed by value, 
has no network costs and, without additional machinery, any change 
is not propagated back to the original. Any name passed between 
images is usually assumed to refer to an identical implementation at 
both locales. This assumption is easily violated, and the 
consequences of a violation may be extremely difficult to debug.

Pass-by-OID allows pre-replicated objects to be passed by no more 
than the object identifier (OID) under which they were pre-registered 
in the object tables of both the sending and the receiving object 
adaptors. A passed-by-OID object, on receipt, resolves to either (a) 
its local replicate, or (b) an exception if the passed OID has not been 
pre-registered at both sending and receiving locales. You may think 
of pass-by-OID as a species of 'pass-by-name' for domain class 
instances.

Classes, NameSpaces, NameSpacesOfClasses, BindingReferences, 
LiteralBindingReferences, and Signals may be passed by name 
using, for example,

#{Object.DependentsFields} asPassedByName.
On receipt, a passed-by-name object will resolve to either (a) the 
local object that bears the passed name, or (b) an exception if there 
is no such object. The default pass mode for the six classes 
mentioned remains #reference. This is because use of pass-by-name 
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should be explicit; pass-by-name is reliable and straightforward to 
debug only when identity (or scrupulously calculated divergence) or 
implementation is ensured.

Pass modes have such immediate repercussions and costs—either 
in terms of network traffic, state replication, or the maintenance of 
implementation identity—that no facility for remote messaging is 
complete unless it provides pass mode control. Designers of 
distributed systems deeply care about, and need to be able to affect, 
the way that the arguments and return values of requests and replies 
are passed.

There are three major design decisions involved in implementing 
pass mode control: 

• You must decide whether to support pass-by-name. The usual 
decision is to decline. It is just too fragile in a distributed 
environment.

• You must decide on a set of default pass modes, so that users 
are not required to make pass mode decisions with inconvenient 
regularity and so that the defaults protect users from unpleasant 
surprises.

• You must decide on what levels to support control. In an object-
oriented language this devolves into a finite set of subsidiary 
decisions about whether to support control:

• over all instances of a class,

• by a class over the pass mode of its instance variables, and 

• at the level of a single object.

Your aim is a complete set of safe defaults, the definition of 
meaningful levels at which defaults can be overridden, and an 
obvious interface for both setting and overriding defaults. Almost by 
necessity, the implementation of a pass mode control system is 
spread about, and manifest in several different parts of the system.

Pass Mode Control
In earlier versions of Opentalk, when there were only two available 
pass modes—by value and by reference—the method 
isPassedByValue was overridden to set the default pass mode of an 
object. This is no longer true. Current Opentalk users should pay 
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special attention to this fact. Unmodified user implementations of 
isPassedByValue may not have their intended effect in the new version 
of the STST protocol. The methods

isPassedByValue
isPassedByReference
isPassedByName
isPassedByOID

are now used only to test the pass mode of an object or a 
PassModeWrapper. An object's default pass mode is now changed by 
overriding the method passMode.

A particular instance's pass default mode may be superseded by 
folding the instance in a PassModeWrapper. This is accomplished by 
sending the instance any one of the following messages:

asPassedByValue
asPassedByReference
asPassedByName
asPassedByOID

If an instance already sent by value is sent asPassedByValue, the 
instance rather than a PassModeWrapper is returned. The same holds 
for the other three methods. If an instance's default pass mode 
cannot legally be superseded by the desired pass mode, a pass 
mode exception is raised.

SpecialTypeDispatchTable and TagDispatchTable
STSTStream optimizes the pass mode of a few special objects—nil, 
true, and false—in its dispatch tables. They are, in effect, represented 
by integers in message bodies. Users cannot easily override the pass 
mode of these objects, and they should not. The local nil is just as 
good as any remote one, and costs a lot less to talk to. 
UndefinedObjects and Booleans are paradigmatic immutable types.

isPassedByValue
Other default pass modes are established by several 
implementations of #isPassedByValue, located at critical points in the 
class hierarchy. Note that BlockClosures are passed by reference: you 
cannot assume that a remote image contains a lexical closure’s 
environment of definition.
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asPassedBy methods
The methods #asPassedByRef, #asPassedByValue, #asPassedByName, 
and #asPassedByOID are all implemented in class Object, can be sent 
to any object to override its default pass mode.

PassModeWrapper
The methods #asPassedByRef and #asPassedByValue wrap an object in 
a PassModeWrapper as required. Pass mode wrappers are 
implemented as subclasses of Proxy because they have similar 
semantics: a PassModeWrapper should neither look nor behave like a 
local object; it is a local object on its way to being a remote copy or 
reference.

passInstVars and PassModeTable
The method #passInstVars may be implemented in any class, allowing 
that class to override the default pass mode of the objects contained 
in its instance variables. The method has only one implementation, in 
class Object, where it answers an empty array. Substantive 
implementations will answer an array, usually of the same size as the 
number of instance variables in the class. The array will contain 
symbols, one for each instance variables. The symbols are:

#true, to pass an object using its default pass mode,

#false, to pass a nil, 

#ref, to pass by reference, and 

#value, to pass by value.

The method passInstVars is called by 
STSTStream>>nextPutObjectInstVars:. The implementation makes use of 
STSTStream’s PassModeTable for operational dispatch during 
marshaling.

inspectorClassName
Pass-by-name is employed in Opentalk only to pass the names of 
inspector classes. We can assume that these classes are uniformly 
implemented. In this instance, pass-by-name is enforced by several 
implementations of the method #inspectorClassName, and overrides of 
the method #inspectorClass, found in the parcel Opentalk-Core-
Support.
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Special Implementation of Behavior class>asPassedByValue
Early in the design of Opentalk, we experimented with using pass by 
name for classes. This turned out to be far too sensitive to 
implementation differences between communicating images to be of 
general use. Now, classes are passed by reference. Furthermore, 
Behavior class>>asPassedByValue is implemented so as to discourage 
passing classes by value.

Though we discourage pass by name, you may disregard us. For 
example, with a very small amount of work, you may implement a 
subclass of GeneralBindingReference that gives you pass by name for 
classes, name spaces, and shared variables.

Exceptions
Distributed applications run in a fragile environment. Hosts and 
network connections go up and down. The application needs to be 
notified of such events to be able to cope with them in a 
discriminating manner, that supports the requirements of the 
application. That's why distributed frameworks generate a fair number 
of exceptions that they do not handle.

Opentalk's exception set can be expected to dynamically evolve 
along with Opentalk itself. New types of exceptions will be added with 
new protocol implementations. On the other hand, more 
sophisticated protocols can intercept and handle some of the existing 
exceptions internally.

OtException
All exceptions raised by the Opentalk Communication Layer, and the 
other layers of the Opentalk system, are subclasses of OtException.  
OtException is an abstract class with three abstract subclasses: 
OTSystemException, OtServiceException, and OtComponentException. 
OtSystemException is the abstract superclass of all concrete 
exceptions specific to the Opentalk Communication Layer. The other 
two are the abstract superclasses of concrete exceptions respectively 
specific to Opentalk services (like NamingService) and Opentalk 
components (like service brokers and load balancers).
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OtSystemException and its Subclasses
All exceptions specific to the Opentalk Communication Layer are 
subclasses of the abstract exception, OtSystemException. 
OtSystemException has several concrete subclasses.

OtECommunicationFailure covers a fairly wide range of low level (socket) 
errors or expired timeouts. More detailed explanation of the 
encountered problem is provided as its messageText.

OtETimeout is a subclass of the generic OtECommunicationFailure that 
allows the timeout exception to be resumable. When resumed, it 
makes the client thread wait for another timeout period. This provides 
better support for long computations that may exceed the default 
timeout settings.

OtEInvalidObjectReference is signaled when a request receiver is not 
found in the local system when evaluating a request. This usually 
means that the OID of the target ObjRef is no longer valid. The most 
common reason is that the target object was garbage collected.

OtEMarshaling covers any kind of problem that occurs during request 
marshaling and unmarshaling.

OtEServerError is raised on the client side when an application error 
occurs during a remote request evaluation. The remote exception is 
forwarded to the client in an STSTErrorReply. The forwarded error 
cannot be resumed.

Catching Broker Errors
In the server process loop by default we handle any Error, generate 
an error event and resume the loop expecting next message. 
However by default nobody is watching broker events, so server 
process errors often are silently suppressed and the user sees only 
side-effects of those, such as timed-out requests or requests 
returning with “Connection Closed” in case the client or server broker 
is shuting down early enough. 

To report such errors, an event handler has been added that uses the 
broker event mechanism. The API for handling broker errors is:

handleErrors (default)

Uninstalls any event handlers added by the other methods, 
restoring the default behavior or suppressing unexpected errors.
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passErrors

Do not handle unexpected exceptions, but passes the exception.

haltErrors

Makes the error handling process loop halt on an unexpected 
error event.

showErrors

Prints unexpected error events in the Transcript

Refer to the method comments in BasicRequestBroker for more 
information.

Session Layers
One design decision affecting protocol implementations is whether to 
include a conversational or session layer above the connection layer 
and below the adaptor layer. 

A session layer is commonly used to implement dialog control. 
Session layers may be used for token management, when the 
communicating parties are each forbidden to engage in the same 
operation at the same time. They may also be used for synchronizing 
and check-pointing long-running transfers, liable to interruption by link 
failures or crashes. 

In practice, session layers have scant use in most applications, and it 
is doubtful that a session layer has any place in any general-purpose 
communication framework. 

A standard critique of the OSI Reference Model is that it defines 
several layers that in practice are non-existent or thin. Its session 
layer is the one usually cited for its absence. The British proposal for 
OSI had five layers, not seven. The general consensus is that a 
truncated OSI model, sheared of its presentation and session layers, 
is useful for discussing computer networks. On the other hand, while 
the TCP/IP model is little better than an afterthought, its widely useful 
implementation has never had a session layer. Commonly used 
hybrid models ignore the session layer entirely.

Session layers are a possible design option in protocols that require 
multiple round-trips. If your protocol involves several complex 
negotiations—in other words, if it is highly stateful, because you need 
to remember where you are—then it is not irrational to consider a 
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session layer. It just happens to be far better, and far more flexible, to 
push the required conversational state into the objects 
communicating, or used to communicate, than to hardwire the notion 
of a session into the communication framework itself.

STSTRequest
Fundamentally, a session is just a stateful structure waiting for a 
return. In its Smalltalk-to-Smalltalk protocols, Opentalk implements 
this in the request itself, which contains all of the fundamental 
conversational data: target, request ID, message, reply, and so forth. 
Note that the logic of a message type, which may be arbitrarily 
complex, does not get marshaled.

This approach keeps the communication layer simple, speedy, and 
light. It also provides a strong hint about the right way to add more 
complex, special purpose protocols to Opentalk.
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Broker Configuration

All of the supplied methods for creating a request brokers are 
implemented using configurations. Because the supplied set of 
broker creation methods is sufficient to create all the most commonly 
used brokers, most users can ignore the underlying Opentalk 
configuration framework. However, if you need to tailor a broker for 
some special purpose, knowledge of the options provided by the 
broker configuration system is essential.

This chapter explains the rationale behind the Opentalk broker 
configuration system, and provides an overview of its 
implementation. This chapter lists the available broker configuration 
types. It also lists all of the broker configuration parameters, and 
describes the effect of each.

What is a Configuration?
A configuration is a blueprint for the creation of an object. It is an 
object in its own right, independent of the objects created from it. 
Thus, a configuration can be reused in two ways:

• A configuration can be stored, for example, in a method, and 
reused to create several objects with the same configuration.

• A configuration can be stored in the object created from it, 
making it easy to restore that object to its original configuration.

A separate blueprint is useful whenever the kind of object to be 
created is complex, structured, and amenable to being customized in 
several ways. Brokers are such things, and that is why configurations 
are used to create them.
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Standard Broker Creation Methods
All of the standard broker creation methods on the class side of 
BasicRequestBroker are implemented in terms of configurations. For 
example, newStstTcpAt:, shown below, explicitly creates a nested 
configuration. It then sends the method newAt: to the created 
BrokerConfiguration to create a broker instance:

newStstTcpAt: anIPSocketAddress 
^(StandardBrokerConfiguration new 

adaptor: (ConnectionAdaptorConfiguration new 
requestDispatcher: RequestDispatcherConfiguration standard; 
transport: (TCPTransportConfiguration new 

marshaler: STSTMarshalerConfiguration new 
))) 

newAt: anIPSocketAddress
The configuration configuration options are represented by classes in 
the Configuration hierarchy. 

Broker Configuration Components
Notice that the broker configuration created in newStstTcpAt: has five 
parts:

• an enclosing BrokerConfiguration

• an AdaptorConfiguration

• a RequestDispatcherConfiguration

• a TransportConfiguration

• a MarshalerConfiguration

In its role as the blueprint for an object, a configuration’s structure 
indirectly reveals the structure of the object created from it. The 
structure of the broker configuration method spells out the 
fundamental components of a broker, which consists of:

• A broker’s API, standard or otherwise, that is the interface useful 
to the application making use of remote communication.

• An adaptor, mapping Smalltalk messaging semantics to a major 
protocol family.

• A request dispatcher that assigns the handling of incoming 
remote requests to local Smalltalk processes.
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• A transport that implements the interface to a transport layer like 
TCP, UDP, or HTTP.

• A marshaler that translates Smalltalk objects into and from an on-
the-wire encoding, like STST, CDR, SOAP, or XML.

Because both brokers and their configurations exhibit the same 
layering, it is straightforward, using configurations, to specify a broker 
that, for example, uses an asymmetric connection oriented adaptor, 
with a CGI transport and an XML marshaler. 

The Configuration Classes
In this section we outline the design of the classes used to implement 
configurations in the Opentalk framework.

The Class Hierarchy
All configuration classes inherit from class Configuration. The 
Configuration class hierarchy is defined so as to parallel the 
hierarchies of the configured broker and component classes. This is 
shown by the two hierarchies reproduced below. The first hierarchy is 
for request dispatcher components. The second is for the request 
dispatcher configurations used to create request dispatchers.

Object
EventManager

GenericProtocol
RequestDispatcher

HighLowRequestDispatcher
PoolRequestDispatcher
StandardRequestDispatcher

Object
Configuration

RequestDispatcherConfiguration
HighLowRequestDispatcherConfiguration
PoolRequestDispatcherConfiguration
StandardRequestDispatcherConfiguration

In some component and configuration hierarchy pairs, the structural 
parallelism, or the match between the two sets of class names, may 
not always be as thorough as in this case. However, there is a 
configuration class for every concrete broker or broker component 
class.
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Configuration Instance Variables
The instance variables of a configuration class holds either a 
configurable parameter or the configuration of a subcomponent. A 
good example of this is class BrokerConfiguration, which inherits or 
declares four instance variables:

• autoRestart, an optional Symbol determining when the broker 
should automatically restart

• id, an optional Symbol uniquely identifying the broker

• adaptor, a required AdaptorConfiguration

• requestTimeout, an optional integral number of milliseconds

In this case, three of the variables hold a configurable parameter and 
one holds the configuration of a broker sub-component.

Configuration Specification
After a configuration is created, methods are sent to it to set 
configurable parameters or configurations. You only need to set a 
configuration instance variable if you intend to use a non-default 
value. This is a product of the way in which components created from 
configurations are designed, particularly of the way that components 
lazily access the values in their configuration. This is described in the 
following section.

The Component Classes
The components created from configurations support an API that 
supports such creation. That API follows a standard pattern.

Component Instance Variables
All of the components created from configuration declare or inherit a 
configuration instance variable for storing their source configuration. 
On the class side they implement a new: method that takes a 
configuration as its argument. This method calls an instance side 
initialize: method, that takes the same argument. At its beginning, an 
initialize: method stores the configuration. Thereafter, it executes any 
required setup code.
5-4  VisualWorks



The Component Classes
Configuration Defaults
The default values of configurable parameters are stored on the class 
side of configurable objects. Their value is almost always controlled 
using a standard set of three methods

• a method with the prefix ‘default’ and the suffix ‘Value’ that 
establishes the default value of shipped code

• a method with the prefix ‘default’ followed by the parameter name 
that accesses the current default value

• a method with the prefix ‘default’, followed by the parameter 
name and a colon that changes the default value

Class BasicRequestBroker, for example, implements:

defaultRequestTimeoutValue 
^60000

 
defaultRequestTimeout

^defaultRequestTimeout ifNil: [
self defaultRequestTimeoutValue]

  
defaultRequestTimeout: aSmallInteger 

defaultRequestTimeout := aSmallInteger
The first sets the base default to 6000 milliseconds. The second 
accesses either the base default value or a value set by the user. The 
third is used to reset the default. A like set of methods is implemented 
for most configurable parameters.

Default Accessing
Components always access their defaults lazily, first checking their 
configuration, then checking their class-side defaults. Because of 
this, configurations may always override the defaults set by a 
component class, but components need not specify values that do 
not need to be changed from the default.

In those cases where the value may usefully be changed at runtime, 
at the instance level, the configured component also declares an 
instance variable for the parameter. In that case, the instance variable 
is checked before the value present in the configuration or the value 
set as the class-side default. The accessor requestTimeout in 
BasicRequestBroker illustrates this latter pattern:
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requestTimeout
^requestTimeout ifNil: [

configuration requestTimeout ifNil: [
self class defaultRequestTimeout]]

Configuration Types
This section lists all the methods implemented in the “types” protocol 
of the abstract broker or broker configuration classes. Each method 
creates an instance of a concrete configuration class. When a 
component is produced from that configuration instance, it will be an 
instance of the componentClass that the configuration specifies.

In the following, each method is listed under the class that 
implements it. Each method name is followed by the name of the 
componentClass that the configuration it returns will produce an 
instance of. And it is the eventual componentClass that is described in 
the comment to each type method.

These type methods define the range of possible brokers.

BrokerConfiguration
Specifying a broker configuration type selects a concrete broker 
class. This choice affects the level of service supported by the 
resulting broker. All broker types are compatible with all adaptor, 
transport, or marshaler types.

BasicBrokerConfiguration

Supports a basic broker API, use by an application to start, stop, 
and otherwise control a broker.

StandardBrokerConfiguration

Provides an extended API, which allows an application to use a 
service registry, and control the list of open selectors. 

AdaptorConfiguration
The choice of an adaptor configuration selects a concrete adaptor 
class. This choice affects the way in which Smalltalk messaging 
semantics are mapped to the underlying remote messaging layer. 
Not all adaptor types are compatible with all transport or all marshaler 
types.
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ConnectionlessAdaptor

The adaptor for connectionless protocols, where the same 
instance of a transport can be used to send messages to several 
destinations. Compatible with udp and chttp transport types.

ConnectionOrientedAdaptor

The adaptor for connection-oriented protocols, where the 
transport maintain a listener waiting for connection requests and 
manages a collection of active connections. Compatible with tcp 
and iiop transport types.

ObjectGroupAdaptorConfiguration

The adaptor for connectionless one-way protocols. Compatible 
with bcast and mcast transport types.

TransportConfiguration
The choice of a transport configuration selects a scheme for package 
handling. A package is the set of bits shipped over the wire. A 
package has a header, usually transport-specific, that is distinct from 
the package’s payload. The payload, the message the package 
contains, has a encoding specified by a marshaler. The transport is 
responsible for managing the conversion of packages into decoded 
messages and vice versa, for matching incoming replies with 
previously sent requests, for acting on the information present in a 
package header, and the like. The primary differentiator of transports 
is whether they are compatible with a connectionless or a connection-
oriented adaptor. Their secondary differentiator is the marshaler or 
set of marshalers they can work with.

BcastTransportConfiguration

The connectionless UDP transport for broadcast messaging, 
currently used only with the stst marshaler types.

CGITransportConfiguration

The connection-oriented HTTP transport used with the Common 
Gateway Interface, currently used only with soap and xml 
marshaler types.

CHTTPClientTransport

The connectionless HHTP transport used by HTTP clients, 
currently used only with the soap marshaler type.
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HTTPTransportConfiguration

The connection-oriented HTTP transport, used with the soap, 
web, and xml marshaler types

HTTPSTransportConfiguration

The connection-oriented HTTP transport that is made secure 
with SSL, currently used only with the web marshaler type.

IIOPTransportConfiguration

The CORBA transport, used only with a cdr marshaler type.

McastTransportConfiguration

The connectionless UDP transport for multicast messaging, 
currently used only with the stst marshaler type.

TCPTransportConfiguration

The standard, connection-oriented TCP transport, currently used 
only with the stst marshaler type.

UDPTransportConfiguration

The standard, connectionless UDP transport, currently used only 
with the stst marshaler type.

MarshalerConfiguration
The choice of a marshaler configuration selects the encoder/decoder 
that will be used to translate Smalltalk objects to and from a standard, 
on-the-wire encoding.

SOAPMarshalerConfiguration

The marshaler that translates Smalltalk objects to and from the 
SOAP encoding using WSDL bindings.

STSTMarshalerConfiguration

The marshaler the translates Smalltalk objects to and from the 
STST encoding used for communication between VisualWorks or 
ObjectStudio images.

XMLMarshalerConfiguration

The marshaler that translates Smalltalk objects to and from a 
standard XML encoding using XML object bindings.
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RequestDispatcherConfiguration
The choice of a request dispatcher configuration selects the regimen 
used to assign an incoming request to the Smalltalk process that will 
produce a reply.

HighLowRequestDispatcherConfiguration

Forks a new process for each incoming request, but may be 
configured, depending on characteristics of the request such as 
its selector, to fork some processes at a higher level than the 
worker process priority.

PoolRequestDispatcherConfiguration

Puts each incoming request into a SharedQueue with a fixed 
number of processes as its consumers.

StandardRequestDispatcherConfiguration

Forks a new process, at the worker process priority, for each 
incoming request. This is the default request dispatcher.

SchedulingPolicyConfiguration

CyclicSchedulingPolicy

A cyclic scheduling policy simply rotates a process queue.

LotterySchedulingPolicy

A lottery scheduling policy assigns each process a number of 
lottery tickets and conducts a lottery that picks one ticket. The 
process owning the winning ticket is put to the head of the 
process queue.

Configuration Parameters
In the following, all the broker and broker component configuration 
methods are listed under the configuration class that declares them.

Each method parameter, whether a subconfiguration or a parameter, 
is described as either required or optional. Required parameters must 
be included in a configuration. They specify some essential, defining 
characteristic of a broker or broker component, usually the 
configuration of a broker subcomponent. They usually do not have a 
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default value. Optional parameters specify some more peripheral 
characteristic of a broker or broker component. They always have a 
default value.

Under each parameter, its default values are listed. Because default 
values are specified in component rather than in configuration 
classes, there may be more than one default value.

RestartProtocolConfiguration
Components that need to or should respond to system events -- 
brokers, free-standing objects adaptors, and priority-level schedulers 
-- inherit from RestartProtocol, and their corresponding configuration 
class inherits from RestartProtocolConfiguration. Both are abstract 
classes.

autoRestart: aBoolean

Status: Optional

Function: Determines whether a request broker, free-standing 
adaptor, or priority-level scheduler is automatically restarted after 
system setup or resume. The options are to always restart 
(#always), to never restart (#never), or to restart only if the broker 
or adaptor was running at the time of the preceding system tear 
down or system pause (#ifQuiescent). If schedulers are used, their 
autoRestart value should be kept in sync with that of the brokers or 
adaptors that the scheduler affects.

Default in RestartProtocol: #never

Default in BasicRequestBroker: #ifQuiescent

Default in BasicObjectAdaptor: #ifQuiescent

Default in PriorityLevelScheduler: #ifQuiescent

id: anObject

Status: Optional

Function: The identifier under which a broker, free-standing 
adaptor, or priority-level scheduler is registered in the weak value 
componentRegistry of class OpentalkSystem. If the user does not 
create an identifier, one is automatically generated by the 
defaultComponentIdGenerator defined on the class side of 
RestartProtocol. The componentRegistry both identifies 
components that are affected by system events and that it may 
be useful to programmatically stop or start by id.
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Default: An automatically generated symbol consisting of the 
component class name followed by a millisecond clock value.

BrokerConfiguration

adaptor: aConfiguration

Status: Required

Function: The configuration of the broker’s adaptor.

Default: None.

requestTimeout: anInteger

Status: Optional

Function: The number of milliseconds that a sending broker waits 
for a reply before raising a timeout exception.

Default in BasicRequestBroker: 60000 milliseconds (1 minute)

AdaptorConfiguration
Note that the processing policy default is set in marshaler 
configuration classes.

accessPoint: anIPSocketAddress

Status: Required, But Optional in a Configuration

Function: The IPSocketAddress at which the adaptor will listen 
for incoming messages. This is usually set using 
BrokerConfiguration>>newAt: or BrokerConfiguration>>newAtPort:. But 
if accessPoint is set in an AdaptorConfiguration, a broker may be 
created from the enclosing BrokerConfiguration using new.

Default: None

transport: aConfiguration

Status: Required

Function: The configuration of the adaptor’s transport layer.

Default: None

requestDispatcher: aConfiguration

Status: Optional

Function: The configuration of the adaptor’s request dispatcher. 
The are three possible options. A 
StandardRequestDispatcherConfiguration creates a dispatcher that 
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forks a new process for each incoming request. A 
HighLowRequestDispatcherConfiguration creates a dispatcher that 
forks a new process for each incoming request but forks at one of 
two priority levels, depending on the characteristics of the 
request. A PoolRequestDispatcherConfiguration creates a dispatcher 
that passes incoming requests to a SharedQueue with a fixed 
number of worker processes as its consumers.

Default in BasicObjectAdaptor: a 
StandardRequestDispatcherConfiguration

processingPolicy: aProcessingPolicy

Status: Optional

Function: A processing policy is used to set up interceptors that 
perform special actions during the course of message 
processing.

Default in MarshalerConfiguration: ProcessingPolicy

Default in SOAPMarshalerConfiguration: SOAPProcessingPolicy

localityTest: aBlock

Status: Optional

Function: Provides a configurable test for locality of ObjRefs. The 
block takes two arguments; an ObjRef and the adaptor. It  answers 
a Boolean.

ConnectionAdaptorConfiguration
A ConnectionAdaptorConfiguration configures an adaptor used with 
connection-oriented protocols like TCP/IP. Among its configuration 
parameters are the three used to make an adaptor work effectively as 
the conduit for a Web server. In a standard client-server architecture, 
a server is responsible for serving all connection requests, but on the 
Web, refusing connection requests is acceptable and useful behavior.

connectingTimeout: anInteger

Status: Optional

Function: The purpose of the connecting timeout is to buffer 
setup delays in a platform’s underlying socket implementation. If 
no connection has been established after the number of 
milliseconds specified by connectingTimeout the existing socket 
error is returned.

Default in ConnectionOrientedAdaptor: 1200 milliseconds
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connectionTimeout: anInteger

Status: Optional

Function: The number of milliseconds that a connection can be 
idle before being closed.

Default in ConnectionOrientedAdaptor: 1200000 milliseconds (20 
minutes)

isBiDirectional: aBoolean

Status: Optional

Function: Specifies whether the connection supports 2-way 
communication.

Default: true

listenerPriority: anInteger

Status: Optional

Function: The priority of the process that handles incoming 
connection requests. The priority of this process should be higher 
than both the server and the worker process priorities.

Default in ConectionListener: 83

listenerBacklog: anInteger

Status: Optional

Function: The connection queue backlog.

Default in ConnectionListener: 1

lowerConnectionLimit: anInteger

Status: Optional

Function: One of the three parameters used to control the rate at 
which incoming connection requests are accepted. The limit at 
which connection acceps begin to be delayed.

Default in ConnectionOrientedAdaptor: 900

upperConnectionLimit: anInteger

Status: Optional

Function: One of the three parameters used to control the rate at 
which incoming connection requests are accepted. The limit at 
which connection accepts are refused, and assumed to be higher 
than lowerConnectionLimit.

Default in ConnectionOrientedAdaptor: 1000
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maxAcceptDelay: anInteger

Status: Optional

Function: One of the three parameters used to control the rate at 
which incoming connection requests are accepted. The 
maximum delay to which delays are progressively increased as 
the upperConnectionLimit is approached.

Default in ConnectionOrientedAdaptor: 10 milliseconds

soReuseAddr: aBoolean

Status: Optional

Function: Turns the SO_REUSEADDR socket option on or off. If 
the option is enabled, a process may bind to a port number that is 
already in use. The option should be enabled if you frequently 
create and destroy brokers on platforms that only tardily release 
sockets for reuse, or establish multiple broadcast or multicast 
adaptors on the same port.

Default in ConnectionOrientedAdaptor: false (off)

TransportConfiguration

marshaler: aConfiguration

Status: Required

Function: The configuration of a transport’s marshaler.

Default: None.

bufferSize: anInteger

Status: Optional

Function: Sets the size of the marshaling buffer.

Default in Transport: 1024 bytes

Default in DatagramTransport: 4000 bytes

serverPriority: anInteger

Status: Optional

Function: The priority of the process that handles incoming 
requests by unmarshaling them and dispatching them to a worker 
process. This priority should be less than the listener priority but 
higher than both the worker process priority and user scheduling 
priority.

Default in Transport: 73
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DatagramTransportConfiguration
DatagramTransportConfiguration declares an soReuseAddr instance 
variable at the transport level for use with connectionless protocols.

soReuseAddr: aBoolean

Status: Optional

Function: Turns the SO_REUSEADDR socket option on or off. If 
the option is enabled, a process may bind to a port number that is 
already in use. The option should be enabled if you frequently 
create and destroy brokers on platforms that only tardily release 
sockets for reuse, or establish multiple broadcast or multicast 
adaptors on the same port.

Default in UDPTransport: false (off)

Default in BcastTransport: true (on)

Default in McastTransport: true (on)

BcastTransportConfiguration
The broadcast configuration code does not follow the standard 
pattern. It is arguable that netmask is not a parameter in the usual 
sense. The usual options are either limited or network-directed 
broadcast.

The default value for netmask is set programmatically in the method 
BcastTransport groupAddress.

netmask: aByteArray

Status: Optional

Function: Determines the scope of the broadcast, making it either 
limited, subnet-directed, or network-directed.

Default in BcastTransport: #[255 255 255 255] (limited broadcast)

McastTransportConfiguration
The multicast configuration code does not follow the standard 
pattern. The loopback and ttl values, for example, are better left unset, 
if a user has no reason to give them a particular value. This is 
especially true in light of the fact that multicast implementations differ 
significantly from host to host and OS to OS.
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Both loopBack and ttl values are handled in 
McastTransport>>setOptionsOn:. To turn loopBack on, set its value in an 
McastConfiguration to true. To constrain ttl, set its value in an 
McastConfiguration to an 8-bit quantity.

loopBack: aBoolean

Status: Optional

Function: Determines whether multicast messages are also 
received by their sender.

Default in McastTransport: nil (unset)

mcastAddress: aByteArray

Status: Optional.

Function: The multicast address joined by a multicast broker.

Default in McastTransport: #[224 5 6 7]

ttl: anInteger

Status: Optional

Function: Sets IP_TTL, the upper bound on the number of hops 
an IP packet may traverse before being discarded.

Default in McastTransport: nil (unset)

MarshalerConfiguration

bufferSize: anInteger

Status: Optional

Function: The size in bytes of the marshaling stream.

Default in STSTMarshaler: 1024 bytes

RequestDispatcherConfiguration

workerPriority: anInteger

Status: Optional

Function: The priority level of the processes tasked to respond to 
incoming requests. This priority level should be less than both the 
server and the listener processes. The worker priority is 
customarily set to a value greater than the user scheduling 
priority, but it need not be.

Default in RequestDispatcher: 67
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HighLowRequestDispatcherConfiguration
Setting a value for discriminationBlock is technically optional, but the 
supplied default value is unlikely to be useful in practice.

discriminationBlock: aBlockClosure

Status: Optional

Function: A one-parameter block, taking a remote request as its 
argument, that, if it evaluates to true, causes the request to be 
forked at highPriority rather than at workerPriority.

Default in HighLowRequestDispatcher: a block that answers true if 
the message selector matches '*high*'.

highPriority: anInteger

Status: Optional

Function: The higher of the two priority levels at which worker 
processes should be scheduled. This priority level should be 
lower than server priority (73) but higher than worker priority (67).

Default in HighLowRequestDispatcher: 71

PoolRequestDispatcherConfiguration
The PoolRequestDispatcher should be used when a limit must be 
placed on the growth of the number of worker processes.

processNumber: anInteger

Status: Optional

Function: The number of worker processes that consume from 
the SharedQueue to which incoming requests are dispatched.

Default in PoolRequestDispatcher: 3

PriorityLevelSchedulerConfiguration

lowerThreshold: anInteger

Status: Optional

Function: The size that the quiescent processes list must exceed 
to trigger scheduling activity.

Default in PriorityLevelScheduler: 1
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scheduledPriority: anInteger

Status: Optional

Function: The priority level of the quiescent processes list that 
the scheduler affects.

Default in PriorityLevelScheduler: RequestDispatcher 
defaultWorkerPriority

schedulingPriority: anInteger

Status: Optional

Function: The priority of the process that executes scheduling 
actions. This priority value should be greater than that of? 
scheduledPriority.

Default in PriorityLevelScheduler: 71

schedulingInterval: anInteger

Status: Optional

Function: The interval in milliseconds between invocations of the 
scheduling action.

Default in PriorityLevelScheduler: 331 milliseconds

schedulingPolicy: aConfiguration

Status: Required

Function: A SchedulingPolicy defines the scheduling action, the 
manner in which the quiescent processes list is reordered.

Default: None.

LotterySchedulingPolicyConfiguration

newMultiplier: anInteger

Status: Optional

Function: The factor by which the number of lottery tickets held 
by hitherto unscheduled processes is multiplied before a lottery 
ticket is drawn to select one process for relocation to the head of 
the queue.

Default in LotterySchedulingPolicy: 1
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oldMultiplier: anInteger

Status: Optional

Function: The factor by which the number of lottery tickets held 
by previously scheduled processes is multiplied before a lottery 
ticket is drawn to select one process for relocation to the head of 
the queue.

Default in LotterySchedulingPolicy: 1

Network Configuration
An Opentalk broker must know the IP address of its host to function 
properly. Unfortunately there is no standard, cross-platform way to 
obtain this information. To derive this information, Opentalk relies on 
following procedure (implemented in GenericProtocol class method 
setHost):

1 It obtains the name of its host by sending getHostname.

2 It asks the OS to convert the name to an IP address by sending 
hostAddressByName:. 

This usually works, but can fail depending on the network 
configuration of the host.

It is becoming more common on Unix platforms (e.g., Mac OS X and  
some Linux distributions) that the host name resolves to the 
“localhost” address, 127.0.0.1. This is usually caused by /etc/
hosts mapping the hostname to the localhost address. In this case 
the Opentalk broker is only able to communicate with brokers on the 
same host. 

It is also possible that the hostAddressByName: call will fail (with an 
exception) for some reason. In some configurations it may actually 
invoke DNS to resolve the name, and if the DNS server is not 
responding the call may block the VM for some time before it fails.

To avoid many of these failures, setting the address explicitly may be 
the best solution.

Set Host IP
To avoid using the auto-configuration, set the value of the variable 
GenericProtocol.HostAddress to the appropriate IP address, or 
GenericProtocol.HostAddresses if the host has multiple addresses. The 
setter message is hostAddress:.
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Note, however, that in order to facilitate transparent migration of 
images from host to host, this variable is flushed on image startup so 
that the address can be rediscovered. Therefore the address has to 
be reset after every image start up. 

To set the IP upon start up, create a Subsystem subclass with 
OpentalkSystem as its prerequisite, and set the variable in its setUp 
method. For example, create a subclass MyAppSystem, and define 
these methods:

prerequisiteSystems 
^Array with: OpentalkSystem 

 
setUp 

super setUp. 
GenericProtocol hostAddress: #[ 128 16 16 101 ]

This assumes the host has a single network interface. If the host has 
multiple network interfaces, use hostAddresses instead, which takes an 
array of interface addresses. 

For more information on Subsystems, refer the the Application 
Developer’s Guide.

STST and Firewalls
STST supports pass-by-reference semantics for requests to a broker 
behind a firewall. 

To enable pass-by-reference semantics, the broker needs to 
advertise its external (firewall) address in the object references that it 
generates. This provides clients with a valid address to connect to. 
The client brokers then connect to the firewall, and the firewall 
forwards those connection requests to the server broker behind it. Of 
course, the firewall has to be properly configured for port forwarding.

To configure the broker for this type of setup, create the broker using 

BrokerConfiguration newAt: anAddress 
The address parameter must be the external (firewall) address 
through which the broker can be accessed. The same applies to the 
various instance creation methods on the class side of 
BasicRequestBroker.
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Note that, currently, the port number that is opened on the firewall to 
forward traffic to an STST broker must be the same as the port 
number used by the broker on the physical host that it runs on. So if 
the open port on the firewall is 4242 the broker will also bind to port 
4242 on its host machine. 

With bidirection enabled, the server can reuse a previously 
established connection from the client to deliver requests from the 
server. 

Without bidirection enabled, if the server needs to send a request 
back to client, the client must provide accessible address in the 
corresponding object reference. If the client is sitting behind a 
firewall, it will have to be configured similarly as the server, with an 
external access address and with the firewall configured to forward to 
the client.

If the address parameter to the broker creation methods is neither a 
wildcard address (0.0.0.0) nor completely unspecified (via 
#newAtPort:), the broker treats it as an external (firewall) address. 
The broker binds to all local interfaces and advertises the external 
address in all object references that it generates. The broker 
distinguishes a local address from an external one by obtaining the 
host name from the operating system and converting it to an IP 
address using reverse DNS lookup (see the GenericProtocol class 
method hostAddress). 

Bidirectional Support
Bidirectional connection enables Opentalk clients to access a server 
from behind a firewall. 

Without bidirectional support, a server is unable to send requests 
back to the client unless that client is exposed through the firewall to 
incoming connections. This is usually blocked by client firewalls. 

With bidirectional connections, the server is able to reuse a 
previously established connection initiated by the client, which is 
usually allowed by client firewalls, for requests sent from the server to 
the client, such as callbacks to client objects. 

Bidirectional connection can also allow better network resouce 
management on heavily loaded servers, by eliminating the need for 
two separate connections per client when there are requests flowing 
in both directions. 
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Bidirectional support is controlled by setting the isBiDirectional variable 
in ConnectionAdaptor:

• isBiDirectional: true enables bidirection support

• isBiDirectional: false sets the connection to single-direction only

Currently only STST provides bidirection support. For any other 
protocol, an asymmetric connection is created. (Many protocols, such 
as HTTP, require that anyway.) 

It is safe to mix bidirection capable and incapable brokers arbitrarily; 
they will simply fall back into the asymmetric connection mode. Only 
two bidirection capable brokers can take advantage of bidirectional 
connections.

Special Note about Client Configuration
If the client brokers are not explicitly set up with distinct access 
points, then they will most likely pick up their local host IP, usually 
from one of the private network ranges. If several clients are in this 
situation, it may happen that they end up advertising the same 
address/port for their objects, and the server will not be able to 
distinguish them. The client broker that is associated with that 
address (usually the first to connect in bidirectional mode) will receive 
all requests to that address/port. Without bidirection support, the 
request attempts from the server will simply fail in these cases, but 
with bidirection mode they may just happen to work with 
unpredictable, possibly catastrophic results. 

Accordingly, in a network environment supporting bidirectional 
connections, it is advisable to require the client brokers to be 
configured with their external firewall address. That will guarantee 
uniqueness, and ensure that clients can be distinguished on the 
server side. No holes are needed in the client firewalls, because 
requests will take advantage of bidirectional connections.
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Processes, Connections, and Scheduling

An Opentalk request broker runs within the context of the default 
VisualWorks process scheduling model. This has several implications 
for the way an Opentalk broker operates. This chapter sets out these 
implications, and explains both the connection control and the 
scheduling code shipped with the Opentalk Base.

OS Processes, Threads, and Smalltalk Processes
On conventional operating systems, the VisualWorks object engine 
runs as a single, OS-level, heavyweight process with one thread of 
control. The object engine’s process scheduler shares that single, 
OS-level process among several native Smalltalk processes, 
according to the scheduling system implemented in class 
ProcessorScheduler and described in the Application Developer’s 
Guide.

Native Smalltalk processes are not, by default, mapped to OS-level 
lightweight processes or threads.

This architecture has advantages not provided by an architecture that 
did map native Smalltalk processes to OS-level threads. Because the 
VisualWorks scheduling regimen is deterministic and reflected in the 
image, both the object engine and Smalltalk code are also 
deterministic and therefore comparatively easy to model and to 
debug. The architecture also makes VisualWorks code more efficient 
than it would be otherwise, because switching between two native 
Smalltalk processes is faster than switching between two OS-level 
threads.
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One potential weakness of the architecture arises when the 
heavyweight Smalltalk process performs I/O operations that may 
block the object engine until the I/O operation completes. This 
weakness is addressed by THAPI, discussed in the DLL and C 
Connect User’s Guide. Under THAPI, whenever a native Smalltalk 
process invokes a potentially blocking I/O operation, a separate OS-
level thread is created and passed the information required to make 
the callout.

Another potential weakness is a consequence of the fact that a single 
VisualWorks object engine cannot take optimal advantage of a multi-
processor machine. A multi-processor machine can, in general, run 
as many heavyweight processes, without any timesharing, as it has 
processors. One VisualWorks object engine, since it consumes just 
one heavyweight process, cannot therefore take full advantage of the 
presence of two or more processors. Hence, it is common practice — 
when running VisualWorks on production machines providing a 
single service — to run, on each machine, a number of images equal 
to the number of primary processors on the machine. Users of the 
service can then be routed to the least loaded image that provides it.

Running multiple images on a multi-processor machine is recognized 
to be a partial solution to this problem. Future improvements, 
involving engine enhancements that allow multiple copies of the 
same image to share the same code, and support for concurrent 
programming, are planned.

However, there are other consequences implied by the VisualWorks 
process architecture that are particular to the operation of Opentalk 
request brokers.

Opentalk Subsystem
Opentalk uses the VisualWorks Subsystem framework for responding 
to certain system events, such as start up and shut down. For 
general information about subsystems, refer to the VisualWorks 
Application Developer’s Guide.

Opentalk specific handling for these events is defined in 
OpentalkSystem, a subclass of Subsystem.
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Brokers can configure their behavior at image restart as:

• always restart after an image snapshot or shutdown (#always)

• restart only if they had been running prior to the snapshot or 
shutdown (#ifQuiescent)

• never restart (#never)

The policy is implemented in class RestartProtocol. An application 
rarely may need to change the default value, #ifQuiescent.

OpentalkSystem also maintains a registry of brokers, giving an 
application a way to know what brokers are active in the system. 
Brokers are automatically added to the registry when created. The 
registry is weak, so brokers can be garbage collected when no longer 
referenced. To retrieve the registry contents, send a 
componentRegistry message to OpentalkSystem.

Opentalk-Specific Issues
Broker-specific process issues are a consequence of the interplay 
between the Opentalk request broker architecture and the 
VisualWorks process scheduling system.

Any Opentalk request broker runs three critical sets of processes:

• Each running broker maintains a single listener process, at 
listenerPriority (83), that listens for incoming connection requests. 
When a connection request is received, a connection is 
established.

• Each established connection involves a server process, running 
at serverPriority (73), that listens for messages coming in along 
the connection. 

• Whenever a message is received, the server process spawns a 
another process, running at workerPriority (67), that services the 
request, by sending the message specified in the request to its 
intended, local receiver, a replying to the message’s remote 
sender.
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The VisualWorks process scheduling model is based on two 
principles:

• Higher priority processes are scheduled before lower priority 
processes.

• Processes at the same priority level are scheduled in the order in 
which they have been created.

These two claims are, of course, contingent on the assumptions that 
none of the involved processes include code that yields control, or 
spawns other processes at a higher priority level than that of the 
spawning process. But, none of the Opentalk broker code violates 
these assumptions.

However, these two principles, in conjunction with the process 
architecture of Opentalk, entail three consequences:

• An Opentalk broker may choke under a flood of connection 
requests. During a long burst of connections requests, the 
sustained activity of the connection listener process will disallow 
the running of the lower priority Opentalk server or worker 
processes.

• An Opentalk broker may choke under a flood of message traffic. 
During a long burst of incoming messages, the sustained activity 
of server processes will disallow the running of the lower priority 
worker processes.

• An Opentalk broker will always run worker processes in the order 
in which they were created. As a result, messages that require a 
long-running-worker process to respond to them, will be executed 
before short-running ones, if the former were received first. In 
some cases, this is not optimal behavior.

None of the circumstances mentioned above are frequent or 
particularly disabling. DST, using the same process architecture as 
Opentalk, has been used in message-intense enterprise applications 
for decades, with scant complaint. But each case deserves some 
additional discussion.
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Connection Request Overload
In standard client-server architectures, it is extremely rare for a 
server’s request broker to be overloaded with client connection 
requests, which consume both time and memory. The communication 
between clients and servers is well ordered. The connections 
established between clients and servers are comfortably finite. And, 
in a standard client-server architecture, it is a server’s primary 
responsibilities is to be there, to never refuse and to happily service 
every connection request. This is one of the several reasons why the 
Opentalk listenerPriority is higher than its serverPriority and its 
workerPriority.

However, the same considerations do not hold for Web servers. On 
the Web, heavy bursts of connection requests are not uncommon, 
and when they do occur, it is better to ignore new connection 
requests than to fail to service those already established.

This is the consideration that stands behind the APIs for setting 
concurrent connection limits, in ConnectionAdaptorConfiguration and 
ConnectionOrientedAdaptor.

There are two connection limits, a soft lowerConnectionLimit and a 
hard upperConnectionLimit. It is assumed that lowerConnectionLimit is 
less than upperConnectionLimit. A broker event is generated when the 
number of existing connections exceeds either of these limits. They 
are #reachingConnectionLimit:with: and #reachedConnectionLimit:with: 
respectively. Further, when the upperConnectionLimit is passed, the 
listener process is suspended. Thereafter, as connections are 
dropped, a #leavingConnectionLimit:with: is generated, until the count 
falls below the lowerConnectionLimit. Then, a #leftConnectionLimit:with: 
event is issued, and the connection listener process is resumed. 

Both connection limits are configurable. Also, within the range of the 
two limit boundaries, there is a delay between connection accepts, 
that progressively grows as the upperConnectionLimit is reached. The 
growth of the delay is bounded by the configurable parameter 
maxAcceptDelay.

This facility for controlling the listener process effectively addresses 
the problem of connection request overload.
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Message Request Overload
A broker’s server process may be flooded with messages, 
irrespective of whether the broker is also bombarded with connection 
requests. When receiving a burst of messages, the server process 
will consume both space and time as it forks processes, at the lower, 
workerPriority level, to reply to messages. In very extreme cases, in 
may take minutes for the burst to end, minutes until worker processes 
may begin to run and produce replies.

This is a straightforward resource problem, that is not significantly 
impacted by scheduling regimens. A time-slicing scheduler and a 
deterministic scheduler like that in VisualWorks will both, in the face 
of an intense message burst, show a delay in the production of 
replies to remote requests.

The response to the problem is to add more resource, in particular, 
more hosts running VisualWorks server images. The messages in an 
intense burst may then be distributed among several hosts and 
images using a load balancing scheme.

Adding more resources and load balancing will effectively address 
the problem of message request overload. A VisualWorks load 
balancer is discussed in Opentalk Load Balancing.

Message Processing Order
In the absence of yields or forks in the code that implements the 
methods invoked by remote requests, requests sent to an Opentalk 
broker will be answered in the order in which they were received. This 
is a simple consequence of two facts

• Processes at the same priority level are scheduled in the order in 
which they were created.

• By default, an Opentalk server process spawns all worker 
processes at the same priority level.

Answering requests in the order received is a useful property for any 
node in any distributed system to have. It is good to know why this is 
so.
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Benefits of Order
In asynchronous systems, message senders do not block after a 
message is sent to wait for a reply. If a non-blocking client sends 
three messages to the same server, there is nothing to ensure that 
they will be received in the same order. Suppose, however, that each 
message records its originator and the time when the message was 
sent. A server could, then, by examining the origin and time values, 
ensure that it processed each message from the same client in the 
order in which it was sent. It would be critical for the server to do if 
those messages entailed some change in the server’s state, and the 
client code implicitly relied on the correct ordering of those state 
changes. This would be even more important if significant state was 
distributed among several nodes in the network, and the client’s 
messages to the server involved callbacks to the sending client, or 
further calls out from the server to other nodes, which might in turn 
make further callbacks to either the server or the client that originated 
the message train. Distributed execution trains can be arbitrarily 
complex. For such reasons, asynchronous distributed systems often 
go very far out of their way to ensure that well-defined constraints on 
the order of message delivery are fulfilled.

The issue of message order is far less pressing in the case of 
synchronous systems. In such systems, all message senders, 
whether clients or servers, block, and wait for a reply to every request 
they send, before sending another. If everyone waits for a reply, total 
ordering of message delivery is ensured.

Note, however, this ordering may be disrupted if any of the methods 
invoked in the course of sending a message train or replying to a 
single message yield control or otherwise play with process priorities. 
If they do, the total ordering of message delivery among the several 
interacting nodes of a stateful distributed system may be disturbed, 
with consequent impact on the integrity of the system’s state.Think 
carefully before you issue yields or change process priority in any 
method invoked by a remote message.

This is why building a server to, by default, reply to messages in the 
order in which they were received is a good idea. It is one of several 
reasons why the Opentalk brokers qualify as correctly designed.

Nevertheless, in simple synchronous systems, with few nodes and 
very short chains of distributed computation, or with servers that are 
stateless or nearly so, the order in which servers reply to client 
requests is not a grave issue. A stateless server, or one with no state 
variables dependent on interaction with multiple clients, need not 
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care about the order in which it replies to a set of messages from 
several state-independent clients. If the clients block, thus 
maintaining the ordering of the requests relevant to their state, then a 
server need not be scrupulous about the order in which replies to 
client requests. Furthermore, in this case, a time-slicing regimen may 
outperform one that does not time-slice.

Bi-Modal Message Streams
Consider a burst of remote requests that is bi-model with request to 
server-side execution time. About half of the messages take the 
server image a long time, say, 1000 milliseconds, to respond to; and 
about half take a short time, say, 10 milliseconds. Suppose that the 
server image always deals with a stream of requests that is bi-modal 
in this sense. There are about as many very short-running as long-
running processes spawned by the server image’s request broker.

Also grant that total client-side wait, the sum of the time that clients 
spend waiting for a reply from a server, is a reasonable measure of 
performance. For the sake of this example, assume that total-client-
side wait can be reduced to an accumulation of server-side execution 
times, (even if unmarshaling, marshaling, and message transit time 
would ordinarily be included).

Then, let us narrow the focus to consider a short, four message burst 
in the entire request stream. Suppose that four different clients have 
sent messages to the same broker. They arrive at virtually the same 
time. In response the broker has spawned four worker processes. 
Suppose their executions times in milliseconds are as follows:

1000
1000
10
10

Since a VisualWorks server will run these processes from first to last, 
the total client-side wait, will be:

1000 + 
(1000 + 1000) +
(1000 + 1000 + 10) +
(1000 + 1000 + 10 + 10) = 7030

The first client waits 1000 milliseconds, the second waits 2000 
milliseconds, the third waits 2010 milliseconds, and so on.
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Then suppose the order of the messages was reversed, as in the 
following list of execution times:

10
10
1000
1000

In that case, the total client-side wait would be

10 +
(10 + 10) +
(10 + 10 + 1000) +
(10 + 10 + 1000 + 1000) = 3070

3070 is far less than 7030. So, from the point of view of the clients, 
the server would appear more responsive if the requests that it took 
less time to process were completed before those that took more 
time.

On the basis of such cases, some have argued that Opentalk brokers 
should support time-slicing, a scheduling regimen that distributed 
CPU time among all pending remote requests or worker processes. 
To see how this might work, suppose again that there are four 
requests or worker processes on the queue with the following 
execution times in milliseconds:

1000
1000
10
10

Also suppose that a time-slicing scheduler cycles through these 
processes, allocating CPU time to them in 10 millisecond increments. 
Then the total client-side wait has to be accumulated in terms of 
several passes over the set of processes, and we arrive at the 
somewhat different calculation shown below:

(10 * 2) + 10 +
(10 * 2) + 10 + 10 +
(10 * 2) + 10 + 10 + (98 *20) + 10) +
(10 * 2) + 10 + 10 + (98 *20) + 10) +10 = 4100

The first 30 milliseconds of execution takes 10 milliseconds off each 
of the 1000 millisecond requests and finishes the third request. The 
next 10 millisecond allocation finishes off the fourth request. At that 
point only the two long running requests remain, each with 990 more 
milliseconds to go. So, 98 twenty millisecond passes plus another 10 
milliseconds will finish off the third request. Then, another 10 
milliseconds will finish off the last.
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Time-slicing is better than the average of the two examples that did 
not involve time-slicing:

(7030 + 3070) / 2 = 5050
4100 < 5050

Sadly, these three examples fail to reveal the whole picture. The 
outcome of a simple cyclic time-slicing regimen are highly sensitive to 
the characteristics of the request set and to the amount of CPU time 
allocated per pass by the time-slicer.

Suppose that the requests did not exhibit a bi-modal distribution. 
Suppose that they all consumed 505 milliseconds of execution time, 
as follows:

505
505
505
505

Without time-slicing, the total client-side wait is:

505 +
505 + 505 +
505 + 505 + 505 +
505 + 505 + 505 + 505 = 5050

But, if we used a cyclic time-slicer, with a 5 millisecond cycle, the total 
client-side wait would be:

(100 * 5 * 3) + 5 +
(100 * 5 * 3) + 5 + 5 +
(100 * 5 * 3) + 5 + 5 + 5 +
(100 * 5 * 3) + 5 + 5 + 5 + 5 = 6050

Here, time-slicing underperforms. In general, time-slicing schedulers 
do not do well unless they are very clever, or happen to be supplied 
with a set of processes to schedule that exhibits the anticipated 
variation in execution costs. Note also that the examples above have 
assumed that there is no overhead involved in the context-switching 
that frequent time-slicing entails. That is not true. Yet, despite these 
reservations, and because there are a few circumstances in which 
time-slicers do well, Opentalk comes with optional scheduling code.

Opentalk Schedulers
Opentalk schedulers are available in parcel Opentalk-Schedulers.

The Opentalk schedulers are implemented using a high priority 
process that, at a set interval, rearranges the quiescent processes, at 
a single lower priority. The high-priority process is called the 
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scheduling process. Its priority is called the scheduling priority. The 
priority of the process queue that it rearranges is called the 
scheduled priority. It is assumed that the scheduling priority is higher 
than the scheduled priority. It is also assumed that the scheduled 
priority is carefully chosen, and one not used for system-level 
processes.

The default Opentalk process priorities (67, 73, and 83) are all prime 
numbers, and not used by any other system-level process. Thus, it is 
a straightforward to select Opentalk’s workerPriority (73) as the 
scheduled priority. Note that if an image is running more than one 
broker, and both spawn worker processes at the default worker 
priority, then the worker processes of both brokers will be affected by 
an Opentalk scheduler that schedules the quiescent process list at 
priority 73.

The scheduling process is a loop with a delay. Whenever the delay 
expires the scheduling process invokes its scheduling action. The 
scheduling action rearranges the quiescent process list at the 
scheduled priority. The exact nature of that rearrangement is defined 
by a scheduling policy. Two scheduling policies are provided:

CyclicSchedulingPolicy

This is a simple cyclic or round-robin scheduler of the kind 
described above. The scheduling action is simply moving the first 
process on the scheduled priority queue to the end of the queue.

LotterySchedulingPolicy

This is a simple lottery scheduler. At the start of the scheduling 
action, each quiescent process at the scheduled priority, is 
assigned a variable number of lottery tickets. Then, a winning 
ticket is randomly selected, and the process with the winning 
ticket is put to the head of the process queue. The number of 
tickets assigned to a process is a function of the number of times 
the process has been at the head of the queue in the past. 
Processes assigned more tickets are more likely to win the 
lottery.

Users may implement lottery schedulers of their own, that assign 
tickets on the basis of other properties. The lottery model is flexible, 
and schedulers based upon it are common.
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Cautions
The presence of the Opentalk scheduling code answers the 
arguments of those who feel it would benefit them. However, users 
are reminded to employ the Opentalk schedulers only under the 
following conditions:

• The semantics of their distributed application does not depend on 
faithfully maintaining the order of requests in the order or replies.

• Their servers provably deal with bi-modal or multi-modal request 
streams.

• They have experimented with several, sample request streams, 
that typify the actual service loads experienced by their 
application, to prove that adding time-slicing machinery to a 
server image’s execution overhead entails a decrease in client-
side wait, or some other relevant performance measure.
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Hints for Distributed System Design

With the Opentalk Communication Layer in hand, you will want to 
start developing multi-image systems. This section aims to help new 
users of the Opentalk Communication Layer avoid the most common 
design and implementation mistakes, and to introduce them to the 
most commonly useful system components and design patterns. In 
particular, we hope to begin to make you aware of some of the usual 
design options and design requirements.

We will focus the discussion around a few of the particular issues 
involved in the construction of systems that communicate, over 
channels with limited throughput and variable latency. In some cases, 
we will introduce sample problems, present solutions, and describe 
the logical components involved in those solutions. In others, we shall 
simply make observations that we hope are useful. The observations 
are often in tension, if not opposition: good distributed system design 
requires balance and judgment. Only experience teaches this; and if 
experience is the accumulated result of getting oneself out of peril, it 
is surely complemented by “imperiance,” the art of getting oneself 
into perils of the interesting, informative, and survivable sort. Test 
things for yourself.

Readers interested in a more comprehensive treatment are 
encouraged to peruse the relevant works mentioned in Annotated 
ReferencesAnnotated References, and to examine the bibliographies 
of those works for useful, supplementary citations.
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Shared Objects
Publicly available objects in a distributed environment are shared. In 
other words, distributed systems, from the standpoint of any client 
node in the environment, act like multi-threaded systems.

Problem
The fact that several critical objects in a distributed environment are 
shared resources means that you cannot send two messages in 
succession to a shared object, and assume it has not received other 
messages, from other clients, between them. The object may have 
changed state between your two message sends. You have this 
problem even if your two messages initiated separate transactions. 
Another transaction, initiated by another client, may have been 
interleaved.

Solution
There are two standard solutions to this problem:

• Implement transactions, so that several discrete client messages 
can be sent within the same transactional context. Once 
Opentalk supports transactions, this will be a possible. However, 
it will always be a comparatively expensive solution.

• If you really cannot afford a state change in the recipient between 
your two messages, combine them into one message. Since 
VisualWorks uses only one host OS process, and Smalltalk 
processes are not mapped to host OS threads, and the Smalltalk 
processes that respond to remote requests are forked at the 
same priority level, remote messages will usually execute in an 
acceptably atomic fashion. 

Observation
The reasoning of the second solution assumes that you do not play 
with Smalltalk process priorities in the server-side implementations of 
the methods invoked by client requests. It is a bad idea to do so, 
unless you are very sure of what you are doing: the default request 
brokers depend on the relative priorities of broker listener processes, 
request servicing processes, and those of the usual, local processes. 
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Garbage Collection
VisualWorks images collects local garbage, and Opentalk does not 
yet support distributed garbage collection. Therefore, the existence of 
an object reference, in image A, to a remote object in image B, does 
nothing to prevent image B from garbage collecting the object in 
question. 

Problem
In particular, if you send an ordinary instance creation message to a 
remote class, that returns a reference to it, that instance, in most 
cases, will be garbage collected, and the reference you have to it will 
become invalid. If you send a message to the reference after the 
object has been garbage collected, you will get an 
OtEInvalidObjectReference error.

Solution
If you want to preserve the validity of remote references to an object, 
you have several options.

• If the object is a singleton instance of a class, ensure there is a 
local reference to it in a shared variable or a class instance 
variable of its defining class.

• Store the remotely created object in a naming service, or some 
other referenced collection, co-located with the object.

• Create a repository or factory or resource manager that will retain 
the objects you create remotely.

Note that any object created in these ways must be explicitly 
destroyed when no longer needed.

Solution Components
The notions of a repository, a factory, and a resource manager 
overlap. You may view them as portraits of the same ideal 
component, painted from three perspectives: in terms of one possible 
implementation, in terms of one possible general access model, or in 
terms of a desirable set of high-level responsibilities.

Repository
Repositories are a common construct in GemStone development, 
and they can also be used for storage in memory. A repository is 
usually a singleton instance of its class. It usually contains and 
Opentalk Communication Layer Developer’s Guide  7-3



Hints for Distributed System Design
manages access to only one kind of object. For example, in a nautical 
architecture application, the singleton instance of HullPlanRepository 
would contain all the instances of class HullPlan. The repository 
presents an interface for the creation and destruction of, and keyed or 
indexed access to, the objects it contains. It will usually also support 
methods for accessing sets or instances using select, reject, or 
detect blocks. In a distributed environment, it will be tuned to deliver 
references, copies, partial copies, and subcollections or iterators, of 
its contents, to meet performance requirements. In practice, much of 
the functionality of a repository is a consequence of the fact that it is 
implemented in GemStone, and thereby partakes of GemStone’s 
security and transaction policies.

Factory
The notion of a factory is part of the OMG COS Lifecycle Service. To 
create an object remotely, clients take three steps: 

1 Obtain a reference to the factory finder at the target creation 
locale.

2 Obtain a reference to the relevant factory from the factory finder.

3 Send an object creation message to the factory for a factory. 
Factories are responsible for ensuring that the created object is 
stored. 

In the DST implementation of this service, factory finders are 
implemented as naming contexts, factories are mapped to classes, 
and objects created through the interface are referenced by a shared 
variable that is a set.

The factory interface and its semantics were designed for remote 
object creation, but something very like it may be used behind the 
facade of object access as well. For example, when a server must 
record client state, a client request for an object may be handled on 
the server as an object creation request: the server creates a client-
specific wrapper around the requested object that records client state 
as needed, and passes a reference to the wrapper back to the client.
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Resource Manager
A resource manager is a component that manages resources of 
some single type. It is responsible for:

• encapsulating its service and its resources in a useful interface

• enforcing security and other access policies, and 

• coordinating concurrent access to shared resources.

Time, Synchronous Systems, and Time-outs
The time spent on a RPC is expended in eight places: 

• marshaling the request on the client

• sending the request over the network

• unmarshaling the request on the server

• waiting until the server object is free

• servicing the request

• marshaling the reply

• sending the reply back to the client

• unmarshaling the reply and returning it to the requestor.

One portion of the time is spent waiting. It is, therefore, impossible in 
a distributed environment to know about the state of another 
processor with certainty. If it does not reply within some time-out limit, 
then it could be busy, it could have crashed, or the communication 
link could have failed. You cannot know, unless you assume that the 
system is synchronous.

Assuming that a system is synchronous amounts to assuming:

• that there is an upper bound on message delay, which is the time 
spent on sending receiving, marshaling, and unmarshaling, 

• that there is an upper bound on clock drift, so that you can 
measure time-outs and assume shared units of time and shared 
times within known bounds of accuracy, and

• that there is an upper bound on the time required for a process to 
execute a step—including the time spent waiting.
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It is the assumptions about these several factors that are wrapped 
together in the request time-outs that most communication 
frameworks implement, and particularly in the innocuous looking 
#defaultRequestTimeout of BasicObjectAdaptor.

Observation 1
Opentalk’s hard coded value for #defaultRequestTimeout may not be 
ideal for your system. But we do try hard to get these things right. 
Think before you change it. If you do change it, do so with an 
understanding of what a request time-out is intended to be: the 
amount of time after which a client can reasonably assume that either 
the communication link has failed or the server has crashed.

Observation 2
When evaluating the performance of a server, in addition to the base 
service time, look at the request wait time. The former can be 
measured on the server in isolation, while the latter can only be 
measured in a multi-image configuration, that at least models, with 
acceptable fidelity, the request load the server is designed to support.

Reference, Broker, and Communication Errors
Communicating systems can fail in several more ways than stand-
alone systems, because they involve both communication channels 
and remote processes, each of which may become faulty in several 
ways. Designers must consider and account for at least the most 
prevalent failure modes.

Formal discussions of distributed systems spend much time on the 
classification of failure modes, along the spectrum from “crash 
failures,” where one process goes down and other processes can 
know that it has (the ideal, unattainable good), to “byzantine failures,” 
where a process fails by inconsistently exhibiting behavior calculated 
to subvert the correct behavior of others (the ideal, improbable evil).

In practice, these classifications are seldom useful. There is one 
common failure that apprentice designers of distributed applications 
often experience and often fail to understand, and understanding it is 
a good introduction to the wider problem of dealing with the failures 
specific to communicating systems.
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Problem
A request broker runs one process at relatively high priority to receive 
incoming requests. This process, in most designs, spawns several 
other processes, running at relatively lower priority to handle the 
incoming requests. This priority structure is as it should be: the 
request broker’s first responsibility is to be available for incoming 
requests, and to do its best not to forget or drop a request. However, 
this priority structure entails that a request broker can be choked: if a 
broker is barraged with incoming requests, the image it resides in will 
spend so much its time forking processes to handle requests, that the 
image never gets any time to run them and produce responses.

This problem usually manifests itself by a run of communication time-
outs, on the several clients that are sending requests to the broker in 
question. Since the server-side broker is choked, the clients do not 
receive a response in the amount of time usually allowed for one.

In test lash-ups, where a single client is devoted to nothing other than 
spawning processes that send requests, you may observe failures on 
the server side as well, occurring when the server does get a chance 
to respond. In this case, the client is so busy sending requests that 
replies do not get through. This results in a server-side 
communication failure. These failures are dependent on the client-
side process priority structure.

Solutions
Scenarios like these do not entail that there is something wrong with 
the server-side request broker or the request broker design. The 
problem is in the application design, the deployment design, or the 
hardware specification. There are at least seven standard solutions, 
several of which can and should be executed in parallel.

• Get a server-side machine with more horsepower. This always 
helps. It usually solves the problem outright. In some cases it 
may not be sufficient to compensate for gross faults in the 
software or deployment design.

• Create a client-side handler that retries the request in response 
to a time-out exception. You should do this in all cases, preferably 
once, at a high enough level in your call tree to ensure that you 
only need to do it once. Alternatively, wrap the handler in a 
façade to or wrapper around all remote calls. This is a complete 
solution in those few cases where the client can afford to wait 
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through several retries and you cannot or do not wish to add 
more brokers and images to your deployment design.

• Reduce the number of messages that clients must send to do 
their work. Choked request brokers are often the product of 
nothing more than chatty client APIs, which send ten messages 
where one, with several more arguments, would serve. You 
should check for this possibility in all cases.

• Add additional hosts running server images (or additional server 
images to a multi-processor machines) and hard code a 
distribution of the clients among the additional hosts. This will 
work, but is neither pretty nor amenable to straightforward 
maintenance. 

• Refine the fourth solution by creating a front-line broker. Let one 
request broker serve as the principle point of contact for all 
clients. Let it redirect requests, according to some request 
distribution or load-balancing scheme, to the several back-line 
server images. Set it up so that the several server images 
respond directly to the client rather than through the front-line 
broker. This approach may help, but will not always scale. There 
is still one entity, the front-line request broker, through which 
every request must pass.

• Refine the fourth solution by adding a service broker. Let all 
clients reacquire, from a service broker, the server that the client 
needs to communicate with at the start of each message send or 
each major connected group of sends. Implement the service 
broker so that it enforces a request distribution or load-balancing 
scheme. Note that in this approach, if you do not ensure that 
clients reacquire references to their service providers at 
appropriate intervals, you will subvert any distribution or 
balancing scheme implemented by the service broker. The other 
side of the coin is that this approach has slightly better scaling 
properties than the fifth, when the service broker is addressed by 
clients only at the beginning of long groups of message sends.

• Use multicast rather than unicast. Send requests to a multicast 
group and arrange for the servers in the group to negotiate, 
among themselves, who will respond to a given client request.
7-8  VisualWorks



Reference, Broker, and Communication Errors
Solution Components

Service Brokers
A service broker is a component that answers a reference to a server 
object when requested for a service provider under a service name. 
The server object may be a resource manger, a compute service, or 
any other object that provides a service. Service brokers may, but 
need not, be request distributors or load balancers. Sophisticated 
service brokers may implement several, dynamically alterable 
brokerage policies, for several service types. It is better to put service 
brokers in a shared naming service than several entries for providers 
of the same service.

Request Distributors and Load Balancers
There is a sharp distinction between a request distributor and a load 
balancer. Both may maintain a working collection of the available 
servers, but they differ in other respects.

A request distributor hands out requests like a dealer distributes 
cards: it treats the working collection of available servers as a cycle. It 
is a good choice in cases where most requests to a service type take 
nearly the same amount of service time.

A load balancer either polls the servers for some load measure, or 
expects to receive periodic updates regarding the measure’s value 
from each server. In the former case, the balancer must hold the 
defining list of currently available servers. In the latter, all the servers 
must know and report to the load balancer. In either case, the load 
balancer treats the list of available servers as a sorted collection, 
sorted on the load measure, and it assigns an incoming request to 
the foremost (least busy) member of the collection. Load balancing is 
the required choice in cases where requests to the same service type 
have high variance in service time. 

Load balancing is more expensive than request distribution because 
it requires communication and coordination between the balancer 
and the service providers it regulates. Therefore, if a service has high 
variance in service time as a product of possessing several sub-
services, it is useful to partition the service. Request distribution, 
among instances of the several subtypes of a partitioned service, can 
be more efficient than load balancing, among the several instances of 
a non-partitioned one.
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Observation
Choking the request broker is an instance of a more general issue. 
Any request broker architecture will issue several exceptions. It 
defers the handling of these exception to a higher layer, as being 
beyond its responsibility, and suitable for selective or discriminatory 
handling. The higher layer is, as a consequence, responsible for 
providing the appropriate set of handlers. You cannot design a 
distributed application correctly without knowing the list of exceptions 
raised by the underlying communication layer, and assuming 
knowledgeable responsibility for their treatment.

Scalability and Single Points of Failure
Distributed systems are attractive because they promise scalability. 
As demand for a service increases, you may, ideally, simply add more 
servers that provide it.

Observation 1
Even if you have a putatively scalable collection of several servers, 
among which you distribute or balance service requests, clients using 
unicast will usually require a single, well-known point of access, that 
does the distributing or balancing. Because all client requests go 
through that single point, its optimization is critical.

Observation 2
The single access point is also a single point of failure. If you cannot 
afford failure, you will need to make the access point fault-tolerant in 
one of two ways. Either:

• implement a primary-backup framework, or

• implement the service as a group of service providers, and use 
multicast rather than unicast. 

Observation 3
Adding service providers buys scalability only if you do not need to 
coordinate their state. If there are state coordination costs, adding 
service providers will usually increase those costs exponentially, and 
they will eventually swamp the linear gains accrued by service 
provider addition.
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Remote Message Number
Remote messages take more time than local ones, by three to seven 
or more orders of magnitude. Though a distributed system will 
hopefully be transparent enough so that an application user or a 
component developer can ignore whether the messages he sends 
are going local or remote, the developer of the underlying application 
distribution layer cannot. In other words, even though Opentalk is 
designed so that you are not required to know whether an object is 
local, this does not imply that you always may.

In practice, concern about the comparative cost of local and remote 
messages often devolves into concern about the number of remote 
messages sent to achieve some end.

The cost of a remote message is usually a summation of:

• the base cost of sending a remote message,

• a cost factor derived solely from the message length, and 

• the marshaling costs specific to the object types linearized during 
marshaling.

Flattening a complex, cross-referenced object tree usually takes 
more time than flattening a long array of integers, even if the two 
eventually consume the same amount of space in a message body.

Observation
You often do not have control over what you have to marshal, but if 
you can send one message with four arguments instead of two 
messages with two, you save one payment of the base cost. This is 
why distributed system designers like shared objects possessing 
sparse protocols, and supporting method implementations that do a 
lot for each message sent. Reducing the number of remote 
messages you send to get a job done is one of the easiest ways to 
maximize throughput, and throughput is the interesting measure, not 
bandwidth. 
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Variable Latency of Remote Messages
A remote message, in addition to taking more time than a local one, 
takes an amount of time that varies more widely.

Observation
When measuring the time consumed by a remote message, be 
aware of the fact that you are measuring one point in a range. At 
some point, you will become concerned with the factors that push the 
value to one end of the range rather than the other.

Remote Object Representation
The number of remote messages sent to achieve some end is 
directly affected by whether you elect to locally represent a remote 
object by a reference, a copy, or some species of partial copy. This 
choice is so consequential that no generally useful protocol can be 
called complete without facilities for pass mode control—the ability to 
selectively pass an object by reference or by value. 

There are several ways of representing a remote object on a client, 
and it is useful to know the options and understand something about 
their trade-offs. However, you will need to profile on your own, to 
arrive at practically useful values for the comparative costs.

Using a Direct Reference to an Application Object
Representing an object by a reference—an instance of class 
RemoteObject in Opentalk that is a direct reference to an ordinary 
application object—is good choice when:

• you do not expect to send very many messages to it, and 

• you are not interested in controlling access to the object at the 
level of the remote representation.

You do not want to engage in intense and frequent conversation with 
a reference because every message sent to it involves network 
traffic. It is like having an intimate friend that lives on the other side of 
the country: at some point you notice the phone bill. The flip side is 
that exporting a reference is usually cheaper than sending a copy, 
because a copy of an object of average size is larger than a 
reference. This is another way of saying that even though the phone 
bills are bad, they are often better than the airline charges.
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You need to be uninterested in access control to pass application 
objects by reference, as a consequence of the fact that the reference 
may be passed to more than one client. Exporting a direct reference 
to a name space, for example, allows others to change the name 
space and all of its contents without any security constraints or 
concurrency control, beyond those that may be implemented at the 
level of the request broker. If the broker provides a security service, it 
can prohibit modification by suspect parties, but does nothing to 
prohibit contentious modification by trusted ones without additional 
machinery.

Using a Direct Reference to a Service Provider
A reference to a service provider, such as a resource manager that 
handles resources of the target type does not involve reservations 
about access control. A resource manager, or a well-designed and 
complete service, by definition, handles security and concurrency on 
its own.

Using a Copy or Replicate
Using a copy is preferred when:

• you expect to send many messages to the object, 

• the object is not so large that copying has noticeable 
performance costs, and

• you can accept the inequality between the copy and the original. 

The simplest example of a useful copy is a source code file, checked 
out of a source code repository. It is an object that:

• you expect to modify heavily,

• is usually of manageable size, and 

• you agree to pay the costs associated with either:

• file locks, 

• merges, 

• the communication costs associated with frequent or 
intermittent state update, or 

• aborted transactions.
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If all you had were references and copies, copies of large objects that 
you intended to send frequent messages to would still be problematic 
because of their transfer costs.

Using a Faulting Proxy or Stub
A faulting proxy or stub is a proxy that replaces itself with a copy of 
the object it refers to when it is first sent a message by application 
code, and then redispatches the method to the copy. Subsequent 
messages go to the copy directly.

Faulting proxies are used to reduce the immediate costs of copying a 
large object tree. At selected points in the object tree, subtrees are 
passed as faulting copies. The full cost of the copy is paid in 
installments, rather than at once, and only paid when needed.

The notion of a faulting proxy is elegant, but the task of tuning a 
copying specification so that faulting proxies are placed at the right 
level to ensure good overall performance is often tedious and lengthy.

Using a Reference to a Server Mask
We use the term “mask” to refer to a wrapper around an object or 
reference. A wrapper is understood to be comparatively lightweight: it 
wraps a single object or reference, unlike a resource manager or 
repository, which wraps a set of objects of the same type.

A server mask is co-located with the object it masks on the server. 
The mask may handle various responsibilities. Using a server mask 
is recommended under several circumstances; the following are the 
most common:

• When the server needs to record client state during the 
interaction, a client-specific mask around the target object can be 
tailored to do this.

• When the target object is represented in an unsuitable or 
inefficient manner, a temporary mask can be created on the 
server. The mask will contain a representation that is more 
effective for handling client queries, and maps between that 
representation and the one in use on the server. A mask of this 
sort need not be client-specific.

• When the interface of the target object is unsuitable, it can be 
wrapped in a simple translating mask. This is one of the easiest 
ways to prohibit the remote invocation of selected methods, in the 
absence of other forms of exported interface control.
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Masks have creation, storage, management, and design costs. They 
can be used around both ordinary application objects as well as 
service providers. They can be designed to handle simple security 
and concurrency issues.

Using a Client Mask Around a Reference
You can just as easily create the mask on the client side. Using a 
client mask is encouraged:

• when the client possess the information that determines the 
optimal interface or representation, or some other aspect of the 
wrapping policy, or 

• it is the client, rather than the server, that has the spare cycles 
required for mask creation. 

The client mask may contain instance variables that cache the results 
of queries sent to the reference they contain, when those results are 
known to be sufficiently stable.

Using a Shadow With a Direct Object Reference
We use the term “shadow” for a wrapper created by the server, 
passed by value to the client, and containing a reference to an object 
on the server. Because a shadow is passed by value, it must have 
equivalent implementations on both the server and the client side.

A shadow can implement any of the masking responsibilities 
mentioned previously. A shadow may also be used as an alternative 
to a copy containing faulting proxies, because:

• it may contain instance variables preloaded with frequently 
accessed values, and

• it may also contain empty instance variables, with lazily initializing 
accessing methods, that retrieve a value from the server on first 
call.

Thus, shadows may be designed to act like partial copies containing 
faulting proxies. Tuning a shadow’s instance variables and accessing 
methods is logically equivalent to tuning a replication specification.

Using a Shadow with a Reference to an Object Manager
You may use a shadow with an object identifier and a reference to an 
object manager when the manager provides security and 
concurrency control, and these are required. The identifier is 
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assigned by and meaningful to the resource manager that produces 
the shadow. The manager uses the identifier to dispatch messages 
sent to a remote shadow, and dispatched to it, on to the object the 
shadow represents.

Using Both Client and Server Masks
In some cases, you will use both client and server masks. The client 
mask will contain a reference to the server mask. This makes sense 
when either:

• the relevant information needed to set masking policies is 
present on both the client and the server sides, or 

• it makes sense to distribute the cost of creating masks for 
performance reasons.

Remote Object Number
Some performance problems reduce to questions of scope. The 
fewer remote objects you have to represent locally, the lower your 
overall transfer and representation creation costs.

Observation
The impact of your choice of remote representation may be as 
nothing, when weighed against the impact of the number of remote 
objects you attempt to represent.

Remote Object Alteration
The previous sections examined the several ways in which a remote 
object may be represented, and the virtue of requiring few of them. It 
is an incomplete overview, because it does not exhaust the ways in 
which a remote object can be changed. At the highest level, there are 
only four ways to do this.

Send it a Message
You can change a remote object by sending a message, which 
immediately entails a remote state change, to some suitable local 
representation.

You may also send a direct message in a transactional context. This 
may be a distinct enough kind of message to warrant a high-level 
category of its own. 
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Replace It
You can also change a remote object by changing a copy of it and 
then replacing its remote representation with the local copy, passed 
by value, back to the site of the original, usually to a resource 
manager that will effect the replacement.

Ship Over the Modifying Code
You may, given the supporting infrastructure and sufficient 
homogeneity of environment, ship modifying code over to the site at 
which the object resides, where the server executes it for you. This 
reduces to shipping, in some form, a block: it is the client that 
supplies the implementation of the mutating method. The interesting 
issue is where the compilation occurs.

Create an Agent Which Copies Itself Over and Does the Work
This option only makes sense if you have the supporting 
infrastructure and are not particularly concerned about the time at 
and the order in which target objects are altered. Agents do not have 
much to offer over code shipping unless either:

• they are copying themselves to multiple sites,

• they perform the same job at each site, or perform a 
discriminated agenda of several actions at many sites, or, 

• in the context where several agents are competing for 
computational resources, you sincerely care little about the timing 
and sequencing of the changes they effect. 

Shipping an agent is nearly the ultimate in asynchrony.

Agents may not be distinct enough from code shipping to warrant a 
high-level category of their own.

Replication Rate and Replication Delay
When designers of distributed system are not facing throughput 
issues, they are confronting the tight tolerances present in real-time 
systems or entailed by digital video and voice data. In such cases, 
there may be severe constraints both upon the rate at which data 
must be generated at one location or reproduced at another, and 
upon the allowable delay between generation time and reproduction 
time. 
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A sample rate restriction is the requirement that video data must be 
generated and reproduced at a minimum of 16 frames per second to 
avoid the subjective impression of image “jumpiness.” A sample delay 
restriction is that the reproduction of sound data must exhibit a delay 
of less than 100 milliseconds, between the termination of a 
conversational inquiry and the reproduction of an immediate 
response, to forestall the subjective sense of noticeable hesitation. 

Observation
These are the kinds of problems you address by creating a protocol 
tailored to handle them. You may expect that the most significant 
part, of any complete and generally useful solution, will be 
implemented at levels below the transport layer.

Initial Reference Acquisition
The distributed system designer has to address problems and 
components not present in stand-alone systems. The most obvious is 
the problem of initial reference acquisition: you cannot talk to any 
remote object, or get references to other remote objects, unless you 
have a reference to one of them. When you design a distributed 
system, you cannot ignore this issue.

Problem
Let us assume that the only initial reference, that all clients need to 
obtain at start up, is the reference to a single service broker.

Solutions
The following are the obvious possible solutions:

Generate a reference to the service broker

Use unicast. Have each client programmatically generate a 
reference to the service broker at startup. You can only generate 
a reference programmatically if you know the address of the 
broker, and it has a well-known, constant object identifier. Each 
client has to know the broker’s location and address. You will 
have to alter the machinery for exporting object references, to 
ensure that the service broker always gets the same object 
identifier: this solution involves fundamental alteration of the 
communication layer 
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Generate a reference to the request broker

As a sub-variant of the previous approach, you can install the 
service broker as a service published at the level of the request 
broker. Most request brokers already have a well-known constant 
object identifier. Clients programmatically generate a reference to 
the request broker, and then ask the request broker for the 
service broker under its service name. Clients must know the 
service name, and still need to know the location of the broker. 
The latter can be hard-coded, or placed in a file that is read at 
startup. Neither solution is pretty or easy to maintain. This 
solution does not involve meddling in the implementation of the 
communication layer.

Use a naming service

Have clients resolve the name of the service broker, in the 
naming service to obtain a reference to it. This allows you to shift 
the location of the image containing the service broker without 
undue maintenance costs, and this is a plus. But you still have a 
single point of failure: the naming service. And clients still need to 
get a reference to it, which means that they need to know its 
location. They also need to know the name under which the 
service broker is found in the naming service rather than the 
name under which it is listed as a broker-level service, as in the 
previous solution.

Use multicast

Set up the service broker(s) as a multicast group. Clients send a 
multicast message to the group to gain access to the service 
broker. Clients only need to know the multicast group identifier. 
After getting a reference to the particular service provider they 
require, from the service broker, clients may continue using 
unicast. The maintenance costs here are minimal.

Observation
Multicast is the right protocol for gaining initial access to shared 
resources; unicast is not.
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Encapsulation and Transparency
All of the differences between distributed and stand-alone systems so 
far mentioned or implied are differences that the distributed system 
designer would like to hide from both application-level component 
developers and application users, so that the overall design scores 
high on encapsulation and on various dimensions of transparency. 

Transparency requirements are diverse and several; many of the 
works mentioned in Annotated ReferencesAnnotated References 
describe and discuss them.

Problem
The species of transparency that most immediately affects code 
developers is “access transparency.” This is the requirement that 
objects be accessed in the same way irrespective of their location. Its 
corollary is that application developers should not need to know 
whether an object is local or remote. 

This problem is accentuated by the fact that messages to remote 
objects may deliver special exceptions having to do with reference, 
broker, or communication failure. The handlers that address them 
should not be the concern of application-level developers.

Some communication patterns raise special problems of their own. 
Promises may diminish the impact of asynchronous RPCs on code 
structure, but do not, in the absence of some encapsulation strategy, 
hide that fact that you are using asynchronous RPCs in some cases 
and local calls in others.

No Single Solution
Access transparency can only be achieved by interposing a layer—let 
us call it “the distribution layer”—between the communication layer 
and the level at which the application developer works. This layer is 
the primary responsibility of the distributed system designer. 

The implementation of this layer can be facilitated by off-the-shelf 
components like load balancers, request distributors, proxies, masks, 
and shadows, or by off-the-shelf services that support transactions, 
concurrency control, shared clocks, and the like.

There are several frameworks that claim to provide a complete 
solution to the designer of this layer. Sadly, applications may have 
requirements that are not addressed by a specific “solution”: video 
and voice data have special constraints; cooperative work 
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applications and shared database front-ends have very different 
communication patterns. In short, there may be no existing recipe, 
describing the lineaments of a solution, that will work best in support 
of both your application and the degree of transparency it requires. 
You will have to research, experiment, and work it out for yourself 

Observation 1
You cannot assume that because a protocol framework is designed to 
provide immediate support for access transparency—as the Opentalk 
framework does—that you can afford to ignore location when you 
address the distribution layer.

Observation 2
You cannot assume that, because a distributed application toolkit 
provides, at some point in time, a given set of off-the-shelf 
components, that those are the components you should use to solve 
your problem.

Observation 3
An old study showed that, independent of the implementation 
language used, and number of years of prior programming 
experience, developers were wrong 50% of the time about where the 
time went in the execution of sample blocks of code. The study was 
conducted assuming a stand-alone system.

If you plan to design and implement a distribution layer, use the 
profiler.
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Opentalk Load Balancing

The Opentalk Load Balancing facility is an Opentalk add-on, 
delivered in the VisualWorks distribution’s opentalk/ subdirectory, in a 
set of four parcels. The parcels provide classes for implementing 
most synchronous, unicast, balancing architectures.

The Opentalk Load Balancing facility does not provide components 
for balancing client requests sent using asynchronous unicast or 
multicast. In these cases, the logical equivalent of load balancing is 
provided by asynchronous messaging systems or multicast group 
systems, respectively.

The Opentalk Load Balancing facility is a middleware-level, software 
solution to the problem of load balancing. It cannot be as fast as 
server-level or router-level solutions. However, it is more independent 
of operating systems and hosts, and is likely to be more flexible.

At present, the Opentalk Load Balancing facility is limited to use with 
the Opentalk ST-ST protocol.

At present, the Opentalk Load Balancing facility provides rudimentary 
but adequate support for multiple balancers, and full support for 
architectures without load balancers. Thus, users are not forced to 
employ architectures with a single point of failure. However, the 
primary-backup and fail-over regimes of the Opentalk Load Balancing 
facility reasonably assume that load balancers have negligible state. 
We plan to support full state replication and fail-over services in a 
subsequent release.
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Though the Opentalk load balancing facility implements message 
distribution policies that support session-based or transactional 
communication between client and server, it does not explicitly 
recognize sessions or transactions. It is, fundamentally, a 
configurable and extensible message distribution service. 

Packaging and Installation
The Opentalk Load Balancing facility is distributed in these parcels:

Opentalk-Load-Base

This parcel defines the components presupposed by other load 
balancing parcels.

Opentalk-Load-Client

This parcel defines a generic load balancing client, and a set of 
wrappers that all clients must use to wrap references to load 
balancers or to servers.

Opentalk-Load-Middlemen

This parcel defines a hierarchy of load balancers.

Opentalk-Load-Server

This parcel defines a generic load balancing server, a hierarchy 
of load monitors, and a short hierarchy of load definitions.

Only Opentalk-Load-Base and Opentalk-Load-Client need to be installed 
on images running clients. Install only Opentalk-Load-Base and 
Opentalk-Load-Middlemen in images running load balancers. Install 
Opentalk-Load-Base and Opentalk-Load-Server on images running 
servers. 

Synchronous Unicast Load Balancing
The purpose of this section is to provide an introductory overview of 
the terminology, issues, and components involved in synchronous 
unicast load balancing. It sets the ground for succeeding sections, 
which discuss the possible synchronous unicast load balancing 
architectures, and the implementation, configuration, monitoring, and 
limitations of the Opentalk Load Balancing facility.
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Load Balancing
Load balancing is the generic term for distributing load – understood 
as a set of requests from several clients – among several servers. 
The aim of load balancing is to distribute client requests so as to 
minimize the total time that client requests wait on a server’s request 
queue.

Consider a simple case. Assume that communication, marshaling, 
process switching and all other such costs are negligible. Assume 
that there is one server, running on a single processor host, and that 
twelve clients each send a request to the server at the same time. 
Further, suppose that the server takes 5 seconds to generate a reply 
to each request. Since the server can only compute one reply at a 
time, the first reply it produces will be created in 5 seconds, the 
second in 10, the third in 15, and so on. The total server-side 
compute time is 60 seconds (5 seconds * 12 requests). But from the 
point of view of the clients, the accumulated time that they have each 
spent waiting for a reply is 390 seconds (5 + 10 + 15 + … + 60). 

A better way of describing this, since a load balancer can do nothing 
about a server’s processing speed, is saying that the total time 
incoming requests wait on a server’s processing queue is 330 
seconds (0 + 5 + 10 + 15 + … + 55). That last quantity is the one that 
load balancing attempts to minimize, by distributing requests among 
several servers. If two servers are available, and the requests can be, 
without any overhead costs, equally distributed among them, and the 
total server-side wait would be reduced to 150 seconds (2 * (0 + 5 + 
… + 25)). If there were three servers, the accumulated server-side 
wait would be 90 seconds (3 * (0 + 5 + 10 + 15)). If there were four 
servers, it would be 60 seconds (4 * (0 + 5 + 10)). And, if there were 
six, the accumulated sever-side wait would be 30 seconds (6 * (0 + 
5)), less than a tenth of the accumulated wait attainable with one 
server.

However, request distribution is not free. In distributing requests 
among servers, load balancing incurs costs of its own. A simple 
remote request-reply cycle, as we have said elsewhere, expends time 
in eight moments. They are:

1 The client-side request marshaling time.

2 The request transfer or on-the-wire time.

3 The server-side request unmarshaling time.

4 The server-side request waiting time.
Opentalk Communication Layer Developer’s Guide  8-3



Opentalk Load Balancing
5 The server-side request servicing time.

6 The server-side reply marshaling time.

7 The reply transfer or on-the-wire time.

8 The client-side reply unmarshaling and return time.

Load balancing attempts to minimize, over some request stream, the 
accumulated, per request value of the fourth item in the list above: 
the server-side request waiting time. But it does so at the cost of what 
we call the load balancing overhead. Load balancing overhead is 
informally, though usefully, divided into three parts:

• Redirection Overhead: This is the cost entailed in redirecting 
client requests to optimal servers. It is equivalent to the 
accumulated increase, entailed by load balancing, in request 
send time. That is the amount of marshaling, processing, and 
base transfer time that it takes for a request, once it has been 
recognized as a remote request, to arrive at a server. The total 
redirection overhead is a function of the total number of requests 
and the mean request send time.

• Messaging Overhead: This is the increase in base transfer time 
entailed by the additional load that administrative message traffic 
(between balancers and monitors or between monitors) places 
on the network, plus the total time that sending, receiving, or 
processing administrative messages subtracts from balancer and 
server responsiveness. The total messaging overhead is a 
function of the number of objects that report or require 
information about the current loading of available servers, given a 
defined load balancing architecture and a fixed request stream.

• Preemption Overhead: This is the total amount of time that 
servers spend switching back and forth between (a) the mid-
priority processes that handle load balancing administrative 
traffic, for example, reports on the loading of the various servers, 
(b) the comparatively low priority processes that service received 
client requests, and (c) the comparatively high priority processes 
that read from sockets, unmarshal new incoming requests, and 
fork lower priority processes to handle them. The latter, high-
priority message receipt processes must be of greater priority 
than, and preempt, others, because a server’s primary 
responsibility is to be there to receive incoming client requests, 
regardless of whether it handles them, or reports their impact on 
its load, either immediately or soon. Given this arrangement of 
process priorities, it follows that a server barraged with requests 
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may have little time to report that fact or to service requests. 
Preemption overhead is, relative to a given load balancing 
architecture with a fixed number of servers, a function of the 
density of incoming requests. To the degree that such overhead 
may also delay the processing and transmission of administrative 
traffic about current server loadings, it has a direct impact on the 
degree to which a balancing scheme can balance accurately.

The advantage of this tripartite division, however informal, is that 
alerts you to the three areas of cost to keep in mind. It costs to 
redirect messages, to update the current information about server 
loading, or to drown servers in incoming requests. Load balancing 
pays off only if the balancing overhead, derived from these three 
sources of cost, is less than the achieved reduction in total server-
side wait.

Note that successful load balancing does not entail that each server 
to which requests are distributed, will, within any few minutes, service 
the same number of requests. If clients issue requests at a frequency 
with a period that exceeds their processing time, the requests may 
and can be effectively handled by a single server. In contrast, under a 
well-tuned distribution regimen, if the requests vary widely in 
processing time, but are issued at a frequency with a period near the 
requests’ mean processing time, a few server may handle many 
short-running requests, while others handle a few, long-running ones, 
and still others a middling amount of both long- and short-running 
requests. Equal distribution of requests among servers, is not the aim 
of load balancing, though it is often a workable default.

Note too that given some number, N, of suddenly issued long running 
requests, we could easily attain a total server side wait of near 0 if we 
had N or more single-processor servers. But that would be 
impossible if the number of servers was less than N. The number of 
available servers is a fundamentally limiting factor, which load 
balancing can only work with. It follows that adding another server will 
often have more direct effect on overall performance than any change 
in load balancing code or its configuration. In other words, given a 
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fixed request stream and a variable number of servers, the success 
of a load balancer is measured by the degree to which it minimizes 
and affects the rate of change of:

( ( accumulated server-side wait )
( accumulated redirection overhead )
( accumulated messaging overhead )
( accumulated preemption overhead ) )

/ number of servers
The number of servers has an immediate and certain impact on this 
quantity, because it changes the divisor. The configuration and 
implementation of the load balancer affects only the numerator.

Redirection
In systems where clients use a synchronous, connection-oriented 
protocol to send requests to remote servers, load balancing is usually 
implemented using some form of redirection. Under a redirection 
regime, a client request is initially sent to some remote object — 
either the client’s load balancer or its current server — which in turn 
instructs the client to redirect that request either to a server, or to a 
more optimal server, respectively. More particularly, the client, in 
response to its initial request, receives a reply, that is an exception or 
a special response type. On receiving it, the client opens a new 
connection to the new address provided in the special response, and 
reissues its original request over that new connection.

Redirection preserves the connection-oriented semantics of 
synchronous unicast. The cost of establishing a new connection on 
the client side is one component of redirection overhead. Depending 
on the details of the implementation, redirection may also involve re-
marshaling the original request.

Distribution Strategies
Load may be distributed using any one of several distribution 
strategies. These strategies fall into two broad classes, called static 
or data-free distribution strategies, and adaptive or data-bound 
distribution strategies.

Static or data-free strategies do not rely on knowledge of the current 
or past loading of any server. They are best employed when it is 
known that all client requests have about the same servicing time, 
and that all server hosts have the same or very similar performance 
characteristics. Sample static distribution strategies are the random 
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strategy, that redirects client request to a randomly selected server, 
and the round robin or sequential distribution strategy, that redirects 
incoming requests to available servers cyclically.

Adaptive or data-bound strategies, on the other hand, depend on 
knowledge of current or, to be very exact, recent server loadings. We 
shall refer to such knowledge — usually expressed as a set of 
associations between an available server and its currently known 
load — as load data.

Adaptive strategies are preferred when client requests significantly 
vary in execution time or when server hosts vary in performance. For 
example, the least loaded strategy redirects each incoming request to 
the server currently known to have the least load. In contrast, the 
under mean load strategy redirects a request to a randomly selected 
server with less than the currently known mean load. The former 
strategy, least loaded, is one we call an aggressive strategy, because, 
given the same load data, it always picks the same server, and the 
correctness of its selection is sensitively dependent on the timeliness 
of the available load data. The latter, under mean load, we call a 
defensive strategy, because, given the same load data, it does not 
always pick the same server. It thereby softens the effect of load data 
that is less than timely, but in a probabilistic manner.

Among adaptive strategies, the less aggressive usually have better 
overall performance characteristics. If the load data is dated (and it 
always is), and client requests occur in high volume bursts, then an 
aggressive strategy, like least loaded, will tend to flood the request 
queue of each server that successively appears to be, with each load 
data refresh, the least loaded one. Such behavior does not optimally 
minimize the mean server-side wait. Defensive strategies are less 
likely to surge requests to a single server in this way.

As a general rule of thumb, when testing the suitability of an adaptive 
strategy for several conditions, the important parameters to vary are 
(a) the frequency of load data updates, (b) the request rate, (c) the 
mean request processing time, and (d) the variance of the request 
processing time. As a corollary, do not trust claims about adaptive 
load balancing performance that do not detail — in addition to the 
request count and the server count — the values of at least these 
four parameters.
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Load Monitors
Adaptive distribution strategies require that load monitors be co-
located with server applications. The minimal task of a load monitor is 
to record and report its server application’s load. In some load 
balancing schemes, a monitor may also be responsible for directing 
its server to begin or terminate a server hold. When under a hold, a 
server continues processing the request already on its queue, that is, 
any requests it received before the hold was ordered. But, under 
hold, it redirects any new incoming requests back to the balancer, 
and continues to do so until the hold order is retracted or expires.

Load Definition
A load monitor requires a working definition of load. Among the 
commonly used definitions are (a) server host CPU usage, (b) server 
host process count, and (c) server broker request backlog. Most of 
such measures presume either that server hosts are dedicated to 
handling only client requests, run one image per host processor, or 
run one server request broker per image.

Given the fulfillment of all these assumptions, server request backlog 
is, on several grounds, arguably the best load definition of the three 
mentioned. It is operating system independent, and intimately, if not 
directly, connected with request process server wait time, given that 
the processing time of a pending request cannot be predicted in 
advance.

Load Data Transfer Strategy
Load monitors must implement a load data transfer strategy for 
transferring the load data they produce to the objects responsible for 
request redirection or server hold orders.

There are a number of load data transfer options. Balancers may pull 
load data from monitors, on each request or through periodic polling. 
Monitors may push load data on every load change, or through a 
periodic push.

Event-driven approaches, like to “on request” or “on change” options, 
make messaging overhead a function of the number of requests. 
Periodic approaches entail more overall messaging overhead than 
event-driven approaches when the data update period is greater than 
the request rate, but less overall messaging overhead otherwise. 
Periodic approaches entail some degradation in load balancing 
accuracy, whenever the request arrival period is significantly less 
than the load data transfer period.
8-8  VisualWorks



Synchronous Unicast Load Balancing
All adaptive distribution strategies place an additional load on the 
network, and significantly increase messaging overhead, because 
they involve load data message traffic between the objects that 
produce load data and the objects that consume it.

Server Group Update Strategy
Objects that redirect requests to servers, irrespective of whether they 
attend to load data, require up-to-date knowledge of the set of 
available servers. If a server drops off line, but a balancer is still 
redirecting requests to it, then the load balancing performance 
degrades significantly. So, a load balancing system often implements 
some strategy for dynamically updating the set of currently available 
servers, even if that strategy is exclusively subtractive. An exclusively 
subtractive strategy is one able to dynamically delete known servers 
that go offline, but unable to dynamically add new servers that come 
online.

There are several server group update options. When clients 
experience a communication failure in connection with a particular 
server, they may piggyback a notification of that fact on their next 
message to their load balancer or next current server. Alternatively, 
balancers may poll known servers, and revise their server list 
whenever a poll fails. Yet again, load monitors may send heartbeat 
messages to balancers, which in turn run a periodic process to 
sweep their server list for monitors that have failed to issue a recent 
heartbeat.

All of these approaches increase the total messaging overhead. So, a 
server group update is often ignored, but even exclusively subtractive 
strategies may have enough positive effect to justify their cost. The 
piggybacking strategy is often the cheapest of the available options. It 
does not increase the messaging overhead in terms of message 
count, but only in terms of message size and marshaling time. (The 
processing time involved in subtracting a defunct server from a 
balancer’s server list is common to all approaches.) However, if the 
request communication protocol does not allow piggybacking, and 
server group update is needed, then one of the message-count-
intensive methods must be chosen. Opentalk STST, IIOP, and similar 
protocols permit piggybacking using the message context.

Multiple Load Balancers and Fault-Tolerance
Some architectures, in order to avoid the danger of a single point of 
failure, use multiple load balancers. When a synchronous unicast 
protocol is in play, such architectures usually employ the primary-
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backup approach. One balancer is the designated primary. The 
others are backups. All clients and load monitors begin by sending 
requests or load data updates to the primary. If and when the original 
primary fails, the remaining, backup balancers must agree on the 
identity of the new primary. This is usually implemented using a 
leader election algorithm. Both clients and load monitors must know 
or be able discover the address of the new primary. Lastly, if the 
original primary had any significant state, it should have been 
replicated in all of the backups prior to failure.

Load Balancing Options
This section describes of the options available in synchronous 
unicast load balancing, and discusses their tradeoffs. We will 
assume, for the most part, that there is only one load balancer in the 
architecture.

We begin with the principle options available on the client side. The 
section following this one will discuss load-balancing architectures as 
combinations of the options discussed here.

Client-Side Options
Clients may hold (1) a reference to a balancer, (2) references to both 
a balancer and their current server, or (3) references to their current 
server and to any other servers they have been redirected to or 
configured with.

Client with a Balancer Reference
A client with only a reference to a load balancer sends every request 
to its balancer. The balancer then redirects the client request to an 
appropriate server. 

This is the kind of client to use if you want to balance loads by 
associating servers and requests, rather than servers and clients. It 
supports load balancing with high, request-level granularity.

This is not, at least at first glance, the most efficient option, because 
every client request involves four requests or replies, two more than 
usual. They are:

1 the initial message from the client to the balancer,

2 the balancer’s redirecting response,
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3 the resend of the client’s initial message to the appropriate 
server, and

4 the server’s response.

In short, a client of this sort may nearly triple the mean request send 
time, that is, the mean amount of time it takes for a request, once it 
has been recognized as a remote request on the client side, to arrive 
at a server. The estimate of a near tripling is highly pessimistic, for it 
is based on the assumptions that the balancer’s redirecting response 
will cost as much to marshal and send over the wire and unmarshal 
as the original client request (which is unlikely) and that the client’s 
resend will require a re-marshaling of the original request (which is 
implementation dependent.) Nonetheless, if a client of this kind is 
paired with a balancer using a static distribution strategy, its overall 
cost is low. The redirection overhead of an additional request-reply 
cycle can be far less than the messaging overhead of periodically 
updating a balancer with the current loading of several servers. So, 
this simple client, despite its relatively high cost per client request, is 
often used.

Client with a Balancer and Current Server References
A client with support for managing both a balancer and a current 
server references will send its first message to the balancer, to 
acquire a current server reference. Thereafter, the client sends 
requests to its current server reference, until a request fails with a 
communication fault, at which point it returns to the balancer to obtain 
a new current server reference.

This is the kind of client to use if you want to balance loads by 
associating servers and clients, rather than servers and requests. It 
does not support load balancing of high, message-level granularity 
(except in special cases, where servers, as well as balancers, 
redirect individual requests).

This sort of client has little redirection overhead in comparison with 
the previous one, precisely because it does not attempt to redirect 
every message. Once a client of this kind obtains a server reference, 
it continues to use it. However, clients may vary significantly in the 
number of requests they issue or in the accumulated cost of their 
requests. So, even if clients are equally distributed among servers, 
some servers may still experience far higher loads than others, if they 
are, by happenstance, assigned one or more particularly demanding 
clients. This is less a problem if clients keep and address a server 
reference for a relatively short period than it is if clients hold and 
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address a server reference for a relatively long one. We call the 
period over which clients of this sort retain the same server the 
server retention period.

This type of client is the only choice when clients and servers 
participate in a session or when client-server communication is 
transactional — that is, whenever servers maintain client-specific 
state or vice versa. Clients engaged in sessions or transactions do 
not welcome redirection to another server in any case other than a 
major communication failure in connection with their current server.

You should therefore accept the fact that any session-based or 
transactional communication regimen places limits on the granularity 
to which a message distribution system can balance loads. When 
sessions or transactions are in play, client-level rather than message-
level load balancing granularity must be in force. This does not mean 
that there is something wrong with message distribution. It does 
mean is that you always pay a price for state coordination.

Note that clients involved in sessions or transactions may null out 
their current server reference at the end of every session or 
transaction. That forces the next request to go to the balancer, to 
obtain a new current server reference. It is appropriate for clients, 
rather than any other object, to take such action, because clients 
know when sessions or transactions begin or end. By minimizing the 
server retention period, session-based or transactional clients help 
optimize a load balancing regimen, by employing their awareness of 
state-maintenance boundaries to tighten the load balancing 
granularity to the greatest allowable extent.

Client With Server References
It is possible to balance loads without a load balancer. In such an 
arrangement, load monitors communicate load data amongst 
themselves rather than to a balancer, and the load monitors 
themselves redirect incoming requests. A client designed for this 
arrangement starts out with a reference to at least one server, its 
current server. It sends all of its requests to that server, until either 
the server fails or, under the direction of the server’s co-located load 
monitor, that server redirects it to another. If the client is configured 
with several servers and collects new server references as it is 
redirected, it is in a position to re-establish contact with several 
alternate servers, when and if its current server fails. In this 
arrangement there is no single point of failure (and a single load 
balancer is just that). No host, running only a balancer, can bring the 
entire system to a halt, when its plug is pulled.
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The redirection overhead of this option is the same or less than that 
of the client with a balancer and current server references. But the 
messaging overhead can be very high, because each load monitor 
must communicate its server-specific load data to every other load 
monitor, rather than to a single balancer. The number of 
administrative messages required for a complete load data refresh, 
where N is the number of load monitors, is (N –1) times N, rather than 
1 times N.

Consequently, clients of this type are best used only when you are 
willing to pay the comparatively high administrative communication 
costs that obviate single point failures. They are attractive only when 
N or the number of load monitors (which should equal the number of 
servers) is relatively small, or when the load monitor distribution 
strategy is extremely defensive, that is, not much inclined to 
redirection. Minimizing the frequency of redirection, and thereby the 
size of the redirection overhead, can somewhat offset the cost of the 
messaging overhead involved in any “no balancer” scheme.

For example, a not most loaded strategy will redirect an incoming 
request to some other randomly selected server only if the receiving 
server is the most loaded one. Such a strategy can, in connection 
with this kind of client, cut the redirection overhead immensely.

Note that, though this sort of client maintains a current server 
reference, it cannot be used when client-server communication is 
session-based or transactional. That is because the associated load 
monitors redirect on the request level, not the client level.

Balancer Options
Assuming that there is only a single balancer, there are three usual 
ways in which a balancer may operate:

• without load data, 

• with load data but without a server hold protocol, and 

• with load data and with a server hold protocol. 

A hold protocol is a protocol though which a balancer may order a 
server to redirect, rather than service, any new incoming requests, 
while it continues to process the existing, already queued requests 
that arrived before the hold order.
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Balancer Without Load Data
Balancers that operate in the absence of load data are restricted to 
static distribution strategies. Their servers do not require co-located 
load monitors, and they do not require any protocols or processes for 
obtaining load data.

This is the simplest kind of balancer, and it may by used with clients 
that have only a balancer reference or clients that manage both a 
balancer and a current server reference.

This sort of balancer should be used only when static distribution 
strategies are appropriate. It is, therefore, appropriate in only two 
circumstances:

• when clients keep only a balancer reference but their requests 
vary little in execution time and servers vary little in throughput, or 

• when clients keep both a balancer and a server reference, they 
vary little in number of requests issued, mean request execution 
cost, request rate, and period over which they retain a current 
server reference, and servers vary little in throughput

Balancer With Load Data
Balancers with load data require that servers have co-located load 
monitors, and either pull load data from load monitors or expect it to 
be pushed to them by monitors.

This sort of balancer may be used with clients that have only a 
balancer reference, and with clients that manage both a balancer and 
a current server reference. In the latter case, they do no more than 
assign a client a current reference, when it requires one. Their ability 
to balance load closely is, therefore, in the latter case, a function of 
the length of the period over which clients hold and address the same 
server reference. They are able to correct for the fact that some 
clients may send more, or send more CPU-intensive, requests than 
others — and thereby disturb the balance of the request load among 
the several server — only at the moment when they assign a new 
current server reference to a client that requires one. This liability is a 
positive feature if client-server communication is session-based or 
transactional, for it means that the balancer simply does not redirect 
requests in the midst of a successfully proceeding session or 
transaction.

This type of balancer is best used in these four situations:
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• when clients have only a balancer reference but their requests 
have high variance in processing time, or servers vary in 
performance

• when clients manage both a balancer and a current server 
reference, but all clients have very similar behavior, as measured 
by variance in the number of requests, request rate, and mean 
request processing time, and servers do not significantly vary in 
performance

• when clients manage both a balancer and a current server 
reference, vary in the number of requests, request rate, or mean 
request processing time, or servers vary in performance, but 
clients have a comparatively short server retention period

• when clients keep both a balancer and a current server 
reference, and you do not care about tight correction of client-
specific or server-specific variability because you are running 
sessions or transactions that do not want to be interrupted by a 
redirect or a server hold order

Balancer With Holds
Balancers that support and use a server hold protocol are like 
balancers with data, with this exception: they expect to work with 
monitors that may command their co-located servers to redirect, 
rather than service, new, incoming requests, either for some period or 
until commanded to terminate the hold.

It only makes sense to use balancers of this kind with clients that 
manage both a balancer and a current server reference. Nothing 
prevents you from using this kind of balancer with clients that 
maintain only a balancer reference, but if you are already assigning 
servers by request rather than by client, it is a waste of effort to 
manage the load distribution at the back end too.

Balancers of this sort redirect requests sent to them according to 
their configured distribution strategy. They also run a process that 
monitors server loading, and under specifiable conditions will order a 
load monitor to command its associated server to redirect incoming 
client requests, rather than service them. After a request is 
redirected, the involved client resends its request to the load 
balancer, to get a new current server reference.

These balancers are not appropriate if client-server communication is 
session-based or transactional, because directing a server to hold 
would interrupt either. 
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However, assuming that each request is complete in itself, this the 
best balancer to use in cases when clients keep both a balancer and 
a current server reference, and clients differ markedly in their 
individual behavior, as measured by variance in number of requests, 
request rate, mean request processing time, or server retention 
period, or servers vary widely in performance

Server-Side Options
There are, as the preceding sections imply, four options on the server 
side:

• no load monitors

• monitors that report to a balancer with loads

• monitors that report load data to a balancer and respond to a 
server hold protocol, and

• monitors that report load data to each other rather than to a 
balancer. 

No Monitor
This option only makes sense when your balancer is one that 
disregards load data and uses a static distribution strategy.

Monitor With Balancer
This is the “vanilla” monitor. To operate it requires a configured load 
definition strategy and a configured load data transfer strategy. It 
expects to either push load data to a balancer or to be polled for load 
data. It is designed for use with balancers that use load data but do 
not issue server holds.

Monitor With Server Hold Protocol
This sort of monitor is like a “monitor with loads,” except that it 
responds to hold start and hold stop orders from its balancer and is 
able to command its associated server to cease servicing new 
incoming requests or to again begin servicing them. It is designed for 
use with balancers that support and issue server holds.

Monitor Without a Balancer
A monitor without a balancer needs to be configured with the 
addresses of the other monitors in its group. It either pushes load 
data to all of them or pulls load data from all of them. Like monitors 
with a server hold protocol, a monitor of this kind can direct its server 
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to redirect rather than service a new, incoming request. Like a 
balancer, it implements distribution strategies, and keeps track of all 
the loads of all the servers in its group.

However, the form of the question asked, when requests are 
redirected, is slightly different from the form of the question asked by 
balancers. Instead of asking which is the best server to direct the 
incoming request to, a monitor of this kind asks whether there is a 
more suitable server than the one presently receiving the request. 
Under non-aggressive distribution policies, like not most loaded, this 
results in far less redirection overall, which somewhat compensates 
for the number of messages needed for a full load data update. If the 
present server is not the most loaded one, it will accept and process 
the incoming request. It will redirect it only if, to the best of its 
knowledge, it is the most loaded of all the available servers.

This kind of monitor requires no balancer, retains no balancer 
reference, and is designed to work only with the third kind of client: a 
client that maintains several server references and no balancer 
reference.

Multiple Balancers and Fault-Tolerance
If, instead of using the “no balancer” approach described above, 
multiple balancers are used to ensure fault tolerance, then the 
important options are these:

• the method, if any, by which a primary balancer replicates its 
state in its backups,

• the nature of the leader election algorithm, and

• the means used by clients and load monitors to acquire the 
address of the new primary whenever a fail-over occurs.

In the simplest solution to these problems, balancers are considered 
to have no significant state, clients and load monitors are configured 
with the same list of addresses of existing balancers, and both leader 
election and fail-over are reduced to the process of switching to the 
next known balancer in the commonly shared list of servers whenever 
a message to the primary responds with a communication failure or a 
server fault.

In more complex arrangements, the primary will forward every 
message it receives to its backups, to guarantee that they are in the 
same state as itself. The primary balancer will issue heartbeats, so 
that other balancers can detect when it has gone down. When and if 
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the primary goes down, backups will negotiate the identity of the new 
primary. Once that has been decided, all clients and load monitors 
will be informed of the address of the new primary.

For load balancing, the simplest arrangement is arguably preferable 
because it entails the least messaging overhead. State replication 
messages, heartbeats, leader election negotiations, and leader 
notifications can be ignored. The entry price for this simplification is 
the assumption that balancers have no significant state. That is an 
acceptable assumption in many circumstances. Balancers record 
only four significant kinds of state:

• the addresses of the currently available servers,

• the current loading of those servers,

• the parameters that define the current load distribution regime, 
and

• the state of any processes regulating “pull” data transfer regimes.

So, simple approaches to multiple balancer fault-tolerance are 
acceptable under these conditions:

• All clients and load monitors can be configured at start up with a 
list of the addresses of all balancers, and it is easy to keep those 
lists consistent.

• The rest of the architecture or configuration supports recovery 
from a failed server, so there is little pain associated with having 
to recover from a failed server twice (first in the primary, second 
in a new primary after a fail-over).

• Load data is updated often enough that a brief, post-fail-over 
period, in which load data is more than usually out of date will not 
significantly affect performance. 

• All balancers can easily be configured with the same distribution 
regime and the regime is not changed dynamically or can be 
changed in all balancers easily.

• No balancers use “pull” data transfer strategies.
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Possible Load Balancing Architectures
In this section we list and describe the possible load balancing 
architectures entailed by the options listed in the preceding section. 
Thus, this section has the nature of a summary and review. There are 
exactly seven possible basic architectures given the options so far 
described, only six of which are practically useful.

Again, we explicitly defer discussion of architectures with multiple 
balancers. Also, we are not going to complicate matters by talking 
about architectures that change their configuration dynamically, 
though, in the Opentalk implementation, any complex component 
may be dynamically re-configured down to one of a simpler type. The 
aim of this section is to describe the possible, fundamental 
arrangements, identify the meaningful ones, and specify exactly 
when each of the latter should be used.

Note that whenever we mention variance in request processing time 
in the following, it may be a product of either variability in request 
processing time on the same server or variability among servers in 
request processing speed.

The “Balancer Always, Without Loads” Architecture
In this architecture, the client holds only a balancer reference. Every 
client request goes to the balancer first. The balancer ignores loading 
and has a static distribution strategy. The servers have no co-located 
load monitors.

This is the simplest possible load balancing architecture. Its principal 
cost is the redirection overhead entailed by sending each request to 
the balancer first. However, this cost may be offset by the fact that no 
load monitors are sending load updates to the balancer. This 
architecture is the first of the two with the lightest total messaging 
overhead. This architecture is best used in cases where all of the 
following conditions are fulfilled:

• client-server communication does not involve sessions or 
transactions, 

• a significant increase in mean request send time is acceptable, 

• request processing time has small variance, and

• clients vary in request rate or request number.
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The “Balancer Sometimes, Without Loads” Architecture
In this architecture, the client manages a reference to a balancer and 
a reference to its current server. It sends requests to its current 
server until it experiences a communication failure. It then addresses 
the balancer to obtain a new server reference. The balancer ignores 
loading and has a static distribution strategy. The servers have no co-
located load monitors.

This architecture is the second of the two with the lightest possible 
messaging overhead. It also minimizes redirection overhead. It is 
best used under the two following sets of conditions when either:

• client-server communication does not involve sessions or 
transactions,

• a significant increase in mean request send time is not 
acceptable, and 

• clients vary little in request number, request rate, mean request 
execution time, and server retention period,

or

• client-server communication is session-based or transactional, 
and 

• clients vary little in request number, request rate, mean request 
execution time, and server retention period.

The “Balancer Always, With Loads” Architecture
In this architecture, the client holds only a balancer reference. Every 
client request goes to the balancer first. The balancer examines 
currently know loads before redirecting a requests, and usually has a 
dynamic distribution strategy. All servers have co-located load 
monitors.

This architecture is comparatively high in both redirection overhead 
and messaging overhead. It is best used when all of the following 
conditions are fulfilled:

• client-server communication does not involve sessions or 
transactions,

• a significant increase in mean request send time is acceptable, 
and

• request processing time has high variance.
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The “Balancer Sometimes, With Loads” Architecture
In this architecture, the client manages a reference to a balancer and 
a reference to its current server. It sends requests to its current 
server until it experiences a communication failure. It then addresses 
the balancer to obtain a new server reference. The balancer 
examines currently know loads before redirecting a requests and 
usually has a dynamic distribution strategy. All servers have co-
located load monitors.

This architecture is comparatively low in redirection overhead, but 
comparatively high in messaging overhead. It is best used under the 
following two sets of conditions:

• client-server communication does not involve sessions or 
transactions, 

• a significant increase in mean request send time is not 
acceptable, 

• clients vary in request number, request rate, and mean request 
execution time, 

• the mean server retention period is comparatively short, and

• the server retention period has low variance, 

or

• client-server communication is session-based or transactional, 
and

• clients vary in request number, request rate, mean request 
execution cost, or server retention period.

The “Balancer Always, With Holds” Architecture
This is a possible architecture but not a practical one. Server holds 
make sense only if servers are being assigned to clients rather than 
to requests, and clients vary significantly in the demands they place 
on servers. Holds are a means whereby clients are forced to obtain a 
new current server reference, in order to better equalize load. Thus, 
server holds have no application in connection with a client that 
supports high, message-level, load balancing granularity.
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The “Balancer Sometimes, With Holds” Architecture
In this architecture, the client manages a reference to a balancer and 
a reference to its current server. It sends requests to its current 
server until it experiences a communication failure. It then addresses 
the balancer to obtain a new server reference. The balancer 
examines currently known loads before redirecting a request, and 
has a dynamic distribution strategy. All servers have co-located load 
monitors. In addition to running its redirection policy, the balancer 
runs a process on the side that periodically examines current server 
loading. Under specifiable conditions, it orders selected servers to 
hold, that is, to cease servicing new, incoming requests, and to 
redirect them instead. These, server-redirected client requests are 
resent by the client to the balancer. The balancer, then, on the basis 
of its redirection policy, assigns the involved client a new current 
server reference.

This architecture is comparatively low in redirection overhead, but 
very high in messaging overhead. It is best used when all of the 
following conditions are fulfilled:

• client-server communication does not involve sessions or 
transactions,

• a significant increase in mean request send time is not 
acceptable,

• clients vary in request number, request rate, or mean request 
execution time, and 

• the server retention period has high variance or a comparatively 
high mean.

The “No Balancer” Architecture
This architecture is about as close as you can get, in the unicast 
arena, to the benefits associated with multicast load balancing 
schemes. There is no single point of failure. From the point of view of 
the client, the servers look much like a multicast group. Of course, it 
costs to make that happen with synchronous unicast.

Each client maintains a current server reference and any additional 
server references it may have been configured with. As its requests 
are redirected, it stores any new server references that appear. In 
response to a communication failure, it retries its stored server 
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references until it attains a successful reconnect. If it cannot re-
establish contact with some server, it issues a “servers inaccessible” 
exception.

Each load monitor distributes its load data to all the others, and has a 
distribution strategy. When the server they are co-located with 
becomes overloaded in comparison with others, the load monitor 
redirects new incoming requests to other servers, according to its 
distribution policy.

This architecture has potentially very low redirection overhead, but 
potentially very high messaging overhead. It is best used when all of 
the following conditions are fulfilled:

• client-server communication does not involve sessions or 
transactions,

• a significant increase in mean request send time is not 
acceptable,

• a single point of failure is not acceptable,

• a geometric increase in the messaging overhead incurred by a 
single, complete load data refresh is acceptable, and 

• a very highly defensive distribution strategy is preferred.

Opentalk Load Balancing Implementation
The code of the Opentalk Load Balancing parcels is well commented. 
The purpose of this section is to provide a high-level overview of the 
implementation. Turn to the code comments and the code for the 
details not provided there.

Component Configuration and Creation Machinery
The Opentalk Load Balancing classes follow the configuration pattern 
used in the bundle OpentalkBase. In that pattern, component classes 
have matching configuration classes. Configurations hold 
configurable parameters and sub-configurations. These may both be 
changed, or left unassigned. In the latter case, default values will be 
used. When sent new, a configuration returns a component. The 
created component retains the configuration it was created from in an 
instance variable.
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The component classes of the Opentalk Load Balancing facility, that 
define balancers, monitors, and the like, usually inherit from 
Opentalk.LBComponent. They are matched, nearly one-to-one, with 
classes that inherit from Opentalk.Configuration. For example, the 
component class LoadBalancerWithLoads has a configuration class 
named LoadBalancerWithLoadsConfiguration, and a 
LoadBalancerWithLoads may be configured and created with an 
expression like the following:

( ( LoadBalancerConfiguration withLoads )
dataPort: <Integer> );
requestPort: <Integer>;
serverRefManager:

( ( ServerRefManagerConfiguration standard )
serverAddresses:

<SequenceableCollection of: IPSocketAddress>;
serverOID: <Symbol>;
monitorAddresses:

<SequenceableCollection of: IPSocketAddress>;
monitorOID: <Symbol>;
yourself );

yourself ) new
The details of configuring components for the standard load 
balancing architectures are covered in the next major section of this 
chapter, but you should know about the general features of this 
pattern early on.

Initial Reference Acquisition
The configuration of a distributed system – one with several 
interacting components that are not co-located – usually involves 
initial reference acquisition. During initial reference acquisition, 
components obtain remote references to the other remote 
components they will interact with.

To ease the usual pain involved in reference acquisition, the 
configuration interface of load balancing components uses object 
identifiers (OIDs) and instances of IPSocketAddress in place of the 
usual remote references. This implies that components can be fully 
configured and initialized independently of whether other remote 
objects and remote request brokers have been created or started. 
When needed, remote references are programmatically generated 
from OID and IPSocketAddress pairs. In Opentalk, a RemoteObject, an 
instance of the class that implements a remote reference in Opentalk, 
requires a OID and an IPSocketAddress to be fully specified, and must 
also be created by just the request broker that will use the reference.
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Default Values
The load balancing component classes have class instance variables 
that establish the default and valid values for their configurable 
parameters. To accommodate both the defaults set by components 
and the reassignments that may be provided by configurations, the 
methods that access configurable parameters are of one of these two 
forms:

cyclePeriod
^cyclePeriod ifNil:

[ cyclePeriod := configuration cyclePeriod
ifNil: [ self class defaultCyclePeriod ] ]

dataPort
^configuration dataPort ifNil: 

[ self class defaultDataPort ]
Configurable parameters used heavily during operation usually follow 
the first pattern; while those used less frequently usually follow the 
second.

Runtime Reconfiguration
Some of the significant configurable parameters of component 
classes may be changed at runtime. In every such case, the 
parameters are altered by executing an explicit setter message, that 
is one with a selector like #setDataTransferType:.

In these methods, the validity of the new parameter is checked. Any 
alterations or runtime fix-ups entailed by the parameter change are 
executed. Lastly, the new value is set. These methods contain a 
commented triggerEvent: expression. If the commenting is removed, 
an event will be issued, that you can send to an EventCollector, or 
monitor in some other way.

All of the principal methods in the operational code of the load 
balancing components have trigger expressions of this sort. Many of 
them are commented out, since they are of more use during testing 
or debugging than during normal operation. They are retained within 
double quotes because they are a valuable when things go astray, 
but not worth what they add to execution time otherwise.

Exceptions
The Opentalk-Load-Base parcel introduces three new exception 
classes that are used by the load balancing code. They are:
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OtELoadBalancingConfiguration

This exception is issued, with an appropriate error message text, 
when a configuration error is detected. Note that this exception is 
raised when a configurable parametere for a single component is 
given an invalid value. No checks are run on the consistency of 
the configurations of multiple components.

OtERedirect 

This is the special exception used to force a client to redirect a 
request. The parameter instance variable of the exception will 
contain a server reference or nil. If it is nil, the client is expected 
to return to its current balancer for a new server reference. 
Otherwise, the client uses the reference provided.

OtEServersInaccessible

This is the hard exception issued by a client when it is unable to 
establish contact with any server, given its configured retry limits.

LBComponent
Most of the Opentalk Load Balancing component classes inherit from 
LBComponent. LBComponent in turn inherits from 
Opentalk.GenericProtocol. The latter class does little more than define a 
simple state machine for starting, stopping, restarting, or resetting an 
object. Most of the Opentalk Load Balancing components may be 
started, stopped, or reset. They possess request brokers or periodic 
processes that they start or stop in turn, or may possess sub-
components with such characteristics. Load balancing components 
are implemented in the following classes, or their subclasses:

Class Name Description

LBClient optional superclass of all load-balancing clients

LoadBalancer superclass of all load balancers

LBServer optional superclass of all load-balancing servers

LoadMonitor superclass of all load monitors

LoadDefinition superclass of all load definitions

ServerRefManager superclass of all server reference managers
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In order to ease the programmatic generation of the required remote 
references from OID and IPSocketAddress pairs, LBComponent also 
establishes the default OIDs and port numbers of all components.

The default OIDs are:

The default port numbers are divided into two classes: the port 
numbers for request channels (the brokers that handle client 
requests), and the port numbers for data channels (the brokers that 
handle the administrative communication between balancers and 
monitors). The default port numbers are:

These defaults are stored in class instance variables, and may be 
overridden on a class-by-class basis, if you so wish.Note that the 
distinction between request ports and data ports must be 
scrupulously preserved in all load balancer configurations.

Generic Client
The parcel Opentalk-Load-Client includes a class named LBClient. 
LBClient is associated with a corresponding configuration class, 
named LBClientConfiguration. These are intended to be generic client 
and client configuration classes. They ease the use and configuration 
of the client-side reference wrappers implemented by the LoadRef 
hierarchy.

OID Objects So Identified

#LBClient instances of LBClient and all its subclasses

#LoadBalancer instances of LoadBalancer and all its subclasses

#LBServer instances of LBServer and all its subclasses

#LoadMonitor instances of LoadMonitor and all its subclasses

Class and Channel Type Port

LBClient, Request 3000

LBServer, Request 3300

LoadBalancer, Request 3700

LoadBalancer, Data 3800

LoadMonitor, Data 3900
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Developers creating application-specific load balancing clients or 
client configurations, are urged to subclass from or augment LBClient 
or LBClientConfiguration, though they are not required to.

It is very strongly recommended that every application-specific load 
balancing client wrap its server or balancer references in an instance 
of some concrete subclass of LoadRef. If you do not elect to use the 
LoadRef hierarchy, you will need to implement client-side initial 
reference acquisition, reference management, redirection, and 
message retry logic of your own.

Client-Side Reference Wrappers
The parcel Opentalk-Load-Base defines an abstract class named 
LoadRef. In accord with the general configuration strategy, concrete 
LoadRef classes are associated with LoadRefCongfiguration classes, 
used to configure and create them. The LoadRef hierarchy supplies 
classes that wrap and manage references to remote servers or load 
balancers for clients.

LoadRef declares the instance variables to hold a client’s current 
server reference and a reference to the client’s request broker. 

All of the concrete subclasses of LoadRef implement simple, 
message-based state machines for processing outgoing client 
requests. The states may be roughly grouped into three types:

• send states: The LoadRef is sending a message to a balancer or 
server.

• failure states: The LoadRef has failed to receive a reply to or has 
received an error after a send.

• redirection states: In response to a message, the LoadRef a 
redirect message, and is redirecting a request to another server 
or back to a balancer.

Critical to the operation of the state machines are other instance 
variables, declared in LoadRef, that hold values for configurable 
numeric limits and needed exception or error sets.

The configurable limits are:
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sendLimit

The number of times a message will be sent from a send state, in 
the face of communication or other failures, before transitioning 
to a failure state. Note that this is a “send” and not a “retry” limit. 
So, a sendLimit of 2 permits one retry. The sendLimit should never 
be less than 1.

cycleLimit

The number of times, after a preceding failure state, that a 
LoadRef with a balancer reference will go back to its balancer for a 
new reference, or that a LoadRef with only server references will 
go back to its stock of accumulated server references for a new 
reference. When the cycleLimit is exceeded, the LoadRef issues a 
“servers inaccessible” exception. This parameter functions like 
sendLimit, and also should never be less than 1.

Note:  If you use architectures where a client request may be 
redirected two or three times under normal operating conditions, 
set the cycleLimit to at least 3 or 4. This is important.

The configurable exception and error types declared in LoadRef are:

communicationFailures

These are expected to be protocol-specifc or transport-specific 
communication failures, like failure to establish a connection.

timeoutExceptions

These are expected to be protocol-specific message timeouts.

serverErrors

These are expected to include connection shutdown conditions 
and the like.

Additionally, LoadRefWithServer, an abstract subclass of LoadRef, 
declares the following:

redirectExceptions

These are the exceptions used to implement request redirection.  
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This last is properly declared in a unicast-specific subclass, because 
multicast and asynchronous load balancing schemes are not 
constrained to use redirection.

Making these sets exception classes configurable is a first step on 
the way toward using the load balancing code with several protocols. 
Presently, the state machines treat communicationFailures, 
timeoutExceptions, and serverErrors in the same way. If you require 
more discrimination, subclass from the LoadRef hierarchy, refining the 
inherited state machine to meet you ends.

All of the concrete subclasses of LoadRef reimplement 
doesNotUnderstand: and presume that any message they do not 
understand is an outgoing client request. Note also that LoadRef 
inherits from Object. This entails that the LoadRef classes needed to 
be used with a certain presence of mind. See the class comments for 
more details.

The LoadRef hierarchy includes one abstract subclass of LoadRef, 
named LoadRefUcast. It is included in anticipation of developing 
multicast load reference types. In additions to declaring 
redirectExceptions, it implements the machinery for client-initiated 
server group update. Client-initiated notification of server failures is 
also considered unicast-specific: nothing like it is needed in 
connection with multicast groups.

LoadRefUcast declares a variable named serverGroupUpdateType.

When a LoadRefUcast’s serverGroupUpdateType has the value #active, 
and the load reference has received a failure in communication with a 
server, it will add a reference to that server to its current process 
environment under a well-known key. That association in its process 
environment will be marshaled in the process environment portion of 
the next outgoing request. When that request arrives at a balancer or 
server that attends to a client-issued server failure notification, it can 
take action, usually deleting the server from the list of those currently 
available. This is the piggybacking approach to server group update 
mentioned earlier.

There are only two supported options for client-initiated server group 
update:

#active

The client piggybacks server failure notifications on subsequent 
requests.
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#inactive

The client does not piggyback.

The piggybacking implementation is intentionally simple. Only one 
server reference is piggybacked. So, if the client experiences two 
server failures in a row, but gets through with its third message, only 
the reference to the most recently failed server will be piggybacked 
on the third message.

LoadRefUcast has three concrete subclasses. They are:

Each of these classes one of the client-side options in load balancing 
behavior introduced in Client-Side Options above. For a discussion of 
LoadRefWithBackups, see the section Multiple Balancer Support later 
in this document, on support for multiple balancers.

Load Balancers
The hierarchy under LoadBalancer embodies the distinctions between 
load balancer types described above. The hierarchy tree is:

LoadBalancer
LoadBalancerSansLoads
LoadBalancerWithLoads

LoadBalancerWithHolds
Load balancers lower in this tree can be configured to operate like 
balancer higher in this tree, but not vice versa.

Server Reference Managers
A LoadBalancer, or a LoadMonitor that issues redirects, contains a 
ServerRefManager. A ServerRefMananger manages the server 
references held by a balancer, and implement all request distribution 
and server hold types.

A ServerRefManager holds a collection of ServerRefs. A ServerRef 
contains several instance variables used in managing references to 
servers, contacting their associated load monitors, purging servers 
that have not responded, and recording server hold status.

A ServerRefMananger is created and configured using a 
ServerRefManangerConfiguration. If you need to implement a new 
distribution strategy, augment or subclass from ServerRefMananger.
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Distribution Types
ServerRefManager implements eight distribution types that may be 
used by balancers. Some are static or data-free. Others are dynamic 
or data-bound.

Static Distribution Types
Four static distribution types are implemented:

#first

The first data distribution type sends all requests to the first 
server in the ServerRef collection. It not intended for use in 
deployed applications. It is useful for testing and for establishing 
performance base lines. You can get the same effect by running 
a request stream against a configuration wherein the ServerRef 
collection contains only one ServerRef.

#random

The random distribution type sends each incoming request to a 
server randomly selected from the ServerRef collection. This is a 
robust distribution type, largely immune to any periodicities in the 
request stream, and useful even when requests display middling 
amounts of variance in execution time.

#sequential

The sequential distribution type treats the ServerRef collection as 
a cycle and sends the first request to the first server, the second 
request to the second server, and so on around. This distribution 
type is not entirely immune to periodicities in the request stream, 
for if there are N servers and every Nth request has a higher 
execution time than the others, this distribution type will assign all 
the most expensive requests to the same server.

#timedSequential

The timed sequential type runs a cyclic timing process with a 
settable period. Servers are assigned to requests using an index 
into the ServerRef collection. The timing process increments that 
index at the end of each period. The index starts at 1, is 
incremented to 2 at the end of the first period of the timing 
process, is incremented to 3 at the end of the second period, and 
so on around back to 1. All requests that arrive during the first 
period go to the first server in the ServerRef collection; all those 
that come in during the second period go to the second server; 
and so on around. The advantage of this distribution type that it 
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gives servers long spans of relief from interruption by new, 
incoming requests, during which they can work through their 
existing request queues without distraction. They need to 
unmarshal new incoming requests and spawn worker processes 
to handle them only when their number comes up in the rotation. 
This arrangement may noticeably decrease the overall cost of the 
process switching that can go on when a set of servers is under 
heavy request barrage. On the other hand, if requests come in 
short bursts, and the mean duration of a burst is less than the 
cycle period, then, under timed sequential distribution, all the 
requests in such bursts will be surged to only one or two servers. 
That is far from optimal; a sequential distribution would do better. 
Furthermore, timed sequential distribution is not immune to 
periodicities in the request stream. If there are N servers, the 
cyclic process’s period is K milliseconds, and particularly 
expensive requests arrive near every N * K milliseconds, this 
distribution type will tend to assign the most expensive requests 
to the same server. If short bursts arrive with that critical 
periodicity, performance is even worse.

Again, all static distribution types are best used only when requests 
do not significantly vary in execution time. This condition undercuts 
the susceptibility of some of them to periodicities involving divergence 
in request execution time, because it ensures that there will be little 
such divergence. Within this constraint, timed sequential is not 
recommended in cases where the request stream displays high 
intensity bursts of duration short relative to the timing cycle period. 
However, if bursts have duration that well exceeds the cycle period, 
timed sequential may be a good choice.

Dynamic Distribution Types
Four dynamic distribution types are implemented:

#leastLoaded

The least loaded data distribution type sends each request to the 
currently least loaded server in the ServerRef collection.

#notMostLoaded

The not most loaded data distribution type sends each request to 
a randomly selected server that is not the most loaded one. If all 
servers have the same load it will select randomly from all but the 
last server in the collection sorted by load.
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#underMeanLoad

The under mean load data distribution type calculates the mean 
load, and if there are servers with a load less than the mean, 
sends a request to a randomly selected server in that 
subcollection. If all servers are equally loaded, then a server is 
selected randomly.

#underMedianLoad

The under median load data distribution type sorts the server 
collection by load and sends a request to a server randomly 
selected from the lower half of the server collection sorted by 
load.

Server Hold Types
Server hold actions are applied on each cycle of a ServerRefManangers 
regulation process. The cycle period may be set at configuration time 
and dynamically altered at runtime. Five server hold types are 
implemented:

#holdMostLoadedForPeriod

Under this server hold type a server is instructed to hold for a 
configurable number of milliseconds.

#holdMostLoadedForPeriodOffMean

Under this server hold type a server is instructed to hold for a the 
product of a configurable number of milliseconds and the 
difference between the server’s load and the mean load.

#holdMostLoadedForPeriodOffMedian

Under this server hold type a server is instructed to hold for a the 
product of a configurable number of milliseconds and the 
difference between the server’s load and the median load.

#holdMostLoadedWithMeanTestAction

Under this server hold type a server is instructed to hold until 
instructed. The server will be told again accept incoming 
requests once its load drops below the mean load.

#holdMostLoadedWithMeanTestAction

Under this server hold type a server is instructed to hold until 
instructed. The server will be told again accept incoming 
requests once its load drops below the median load.
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Generic Server
The parcel Opentalk-Load-Server includes a class named LBServer. 
LBServer is associated with a corresponding configuration class, 
named LBServerConfiguration. These are intended to be generic server 
and server configuration classes. LBServer contain two instance 
variables, for a load monitor and for the server’s request broker.

Load Monitors
The LoadMonitor hierarchy contains load monitors of the kinds 
described previously. The hierarchy is as follows:

LoadMonitor
LoadMonitorUcast

LoadMonitoSansBalancer
LoadMonitorWithBalancer
LoadMonitorWithHolds

LoadMonitorUcast declares the instance variables applicable to 
unicast, point-to-point communication. LoadMonitorSansBalancer 
implements a redirecting monitor, with an included ServerRefManager, 
for use with a balancer-free architecture. LoadMonitorWithBalancer 
expects to communicate with a balancer. LoadMonitorWithHolds is for 
use with a balancer that issues server holds.

Load Definitions
Load definitions are implemented by the LoadDefinition hierarchy. At 
present, the hierarchy contains only one concrete subclass, 
LoadIsServerChannelBacklog, that defines load in terms of the number 
of pending requests that have come through the server’s request 
broker. This load definition assumes that a server has a request 
broker dedicated to server requests. Users who wish to create other 
load definitions should subclass from LoadDefinition and 
LoadDefinitionConfiguration.

Server Group Update
The task of server group update is to ensure that those objects which 
require an up-to-date list of the currently available servers do in fact 
have one.

Manual Server Group Update
In the simplest form of server group update is manual. You configure 
a balancer with the available servers. You monitor the servers. When 
one goes off line, you delete it from the balancer's server reference 
Opentalk Communication Layer Developer’s Guide  8-35



Opentalk Load Balancing
manager. When you bring up a new server, you add it to the 
balancer's server reference manager. There are several methods for 
deleting or adding servers, implemented in ServerRefManager. The 
most useful method for server deletion is: 

aLoadBalancerOrLoadMonitorSandBalancer
serverRefManager

deleteServerAt: anIPSocketAddress
serverOID: anOID

To add a server to a load balancer that does not use load data, use:

aLoadBalancerSansLoads
serverRefManager

addServerAt: anIPSocketAddress
serverOID: anOID

To add a server to a load balancer that does use load data, and that 
therefore also makes use of a servers co-located monitor, use:

aLoadBalancerSansLoads
serverRefManager

addServerAt: anIPSocketAddress1
serverOID: anOID1

monitorAt: anIPSocketAddress2
monitorOID: anOID2

Note that if your architecture is one without balancers, you need to 
update the server reference manager of each involved load monitor. 
If your architecture has multiple balancers, you need to update the 
server reference manager of each balancer.

Automatic Subtractive Server Group Update
It is much better if severs that fall off line are subtracted automatically. 
There are three ways to arrange for this to happen. You only need 
one.

• Configure the clients to piggyback a notification that a server has 
failed to respond, and configure balancers (or monitors, in the 
balancer-free architecture) to delete server entries upon receipt 
of such notifications.

• Configure monitors to send heatbeats to their balancer, and 
configure the balancer to remove servers that do not send a 
heartbeat within a configured number of milliseconds.

• Configure balancers to periodically poll monitors for load data 
and to remove those that do not respond within a configured 
number of milliseconds.
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As discussed previously, the last two options add much to the 
messaging overhead.

Automatic Additive Server Group Update
The Opentalk Load Balancing facility has limited facilities for additive 
server group update. It is supported in exactly one case. If you are 
using a “no balancer” architecture, and you add a new server 
configured with the host addresses of the existing servers, and 
monitors are configured to push load data, all the existing servers will 
add the new to their server lists as soon as they receive a load 
update from it.

Multiple Balancer Support
The use of multiple balancers is supported by the use of a special 
reference wrapper called a LoadRefWithBackups. This LoadRef expects 
to be configured with a set of alternate IP addresses for providers of 
the same service. When used to support multiple balancers a 
LoadRefWithBackup replaces the balancer reference in clients and load 
monitors. It is crucial that all clients and all monitors have the same 
list of alternates, listed in the same order for the lightweight fail-over 
mechanism implemented here to work properly.

When, and if, the current balancer addressed by clients and load 
monitors goes down (starts issuing communication failures), both 
clients and monitors will switch over to the next balancer address on 
their LoadRefWithBackup list. This may sound as though it is too simple 
to work. But it has been tested, and it does.

Note that this simple fail-over implementation will only work if all of 
the following conditions are fulfilled:

• All clients and, if they exist, all load monitors must share the 
same list of balancer addresses, identical in length, content, and 
order.

• No balancers are configured to use a load balancing strategy that 
requires the running of a cyclic process specific to the balancer 
or its server reference manager. This means the load monitors, if 
they exist, must push data; server holds, if they are used, must 
be for a fixed millisecond interval; and so on.

Browse the code for a complete account of the configuration 
parameters under which balancer or server reference processes are 
started.  In particular, examine the implementations of the following 
four methods:
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• cycleBoundDataTransferTypes

• cycleBoundDistributionTypes

• cycleBoundHoldTypes

• cycleBoundServerGroupUpdateTypes

The configuration parameters listed in these methods are the ones 
that cannot now be used with multiple balancers.

Opentalk Load Balancing Configuration
This section provides useful templates for configuring load balancing 
applications of your own. Browse the code for the set of parameters 
that may be set in any configuration class. Each such class, in its 
class comment, specifies the impact of each setting. Only the most 
significant and the most frequently altered setting will be discussed in 
the following examples. We will also provide a very few examples of 
sophisticated configurations, so that you can see what they look like.

It cannot be emphasized too strongly that you will need to play with 
configurations for some time, and with some intelligence, to tune a 
load balancing architecture for the request load it is intended to 
distribute.

Scenario Description
To minimize the potential complexity of the following code samples, 
we shall assume that the following, simplified situation exists:

• All clients, balancers, and servers run on the same platform and 
OS.

• All clients are on one host, the host address of which is provided 
by the method clientForcedHostAddress.

• All balancers on another host, the address of which is provided 
by balancerForcedHostAddress.

• All servers and load monitors, if they exist, are present on a third 
host, the address of which is provided by serverFocedHostAddress.

• The default ports, for request and data channels, established in 
the load balancing code, or offsets from them, will always be 
used.

• There are three clients.
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• There is one balancer in the single configuration; and there are 
three in the multiple balancer configurations.

• There are three servers.

• Clients are instances of LBClientTest, a subclass of LBClient, and 
are configured and created using instances of 
LBClientTestConfiguration. LBClientConfiguration has been 
augmented with the method test that answers an instance of 
LBClientTestConfiguration.

• Servers are instances of LBServerTest, a subclass of LBServer, and 
are configured and created using instances of 
LBServerTestConfiguration. LBServerConfiguration has been 
augmented with the method test that answers an instance of 
LBServerTestConfiguration. 

The “Balancer Always, Without Loads” Architecture

Client Configuration
A simple client for this architecture may be configured and created 
thus:

^( ( LBClientConfiguration test )
loadRef: ( ( LoadRefConfiguration balancerRef )

balancerAddress: ( IPSocketAddress
hostAddress: ( LBComponent balancerForcedHostAddress )
port: LoadBalancer defaultRequestPort );

balancerOID: LBComponent defaultBalancerOID;
yourself ) new

This configuration uses several default settings. In particular the 
serverGroupUpdateType is set to #inactive, and the client will not 
piggyback notification of server failures in its requests to the load 
balancer. To change that use:

^( ( LBClientConfiguration test )
loadRef: ( ( LoadRefConfiguration balancerRef )

serverGroupUpdateType: #inactive;
balancerAddress: ( IPSocketAddress

hostAddress: ( LBComponent balancerForcedHostAddress )
port: LoadBalancer defaultRequestPort );

balancerOID: LBComponent defaultBalancerOID;
yourself ) new
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If you expect that servers may fail, a client needs to cycle back to the 
load balancer for a new reference. If you expect a client to withstand 
server failures in this way, you would add one line to the configuration 
to increase the cycleLimit:

^( ( LBClientConfiguration test )
loadRef: ( ( LoadRefConfiguration balancerRef )

cycleLimit: 3;
serverGroupUpdateType: #active;
balancerAddress: ( IPSocketAddress

hostAddress: ( LBComponent balancerForcedHostAddress )
port: LoadBalancer defaultRequestPort );

balancerOID: LBComponent defaultBalancerOID;
yourself ) new

If you want the client to retry once, on all sends, and before cycling 
back to the load balancer on a server communication failure, you 
would add one additional line, to set the sendLimit:

^( ( LBClientConfiguration test )
loadRef: ( ( LoadRefConfiguration balancerRef )

sendLimit: 2;
cycleLimit: 3;
serverGroupUpdateType: #active;
balancerAddress: ( IPSocketAddress

hostAddress: ( LBComponent balancerForcedHostAddress )
port: LoadBalancer defaultRequestPort );

balancerOID: LoadComponent defaultBalancerOID;
yourself ) new

Note that it makes sense to increase the send limit only if temporary, 
high variations in load are more likely to be the cause a request 
timeout than a server crash.

Balancer Configuration
A simple balancer for this architecture may be configured and created 
by executing the following code:

| sa |
sa := Array new: 3.
0 to: 2 do: [ :x | sa

at: x 
put: ( IPSocketAddress

hostAddress: ( LBComponent serverForcedHostAddress )
port: LBComponent defaultServerRequestPort + x ) ].

^( ( LoadBalancerConfiguration sansLoads )
serverRefManager:

( ( ServerRefManagerConfiguration standard )
serverAddresses: sa;
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serverOID: LBComponent defaultServerOID;
yourself );

yourself ) new
The address information for all of the servers is created. Then, the 
LoadBalancerConfiguration is given a ServferRefManangerConfiguration 
with appropriate parameters. Since few are set, defaults will be used 
for others. For example, the default distribution type, #sequential, will 
be used.

A more realistic common configuration might look like this one, which 
both sets the distribution type, and configures the balancer not to 
ignore server failure notification from clients, but to act on them by 
deleting a server reported as having failed to respond:

| sa |
sa := Array new: 3.
0 to: 2 do: [ :x | sa

at: x 
put: ( IPSocketAddress

hostAddress: ( LBComponent serverForcedHostAddress )
port: LBComponent defaultServerRequestPort + x ) ].

^( ( LoadBalancerConfiguration sansLoads )
clientFailureActionType: #delete;
distributionType: #random;
serverRefManager:

( ( ServerRefManagerConfiguration standard )
serverAddresses: sa;
serverOID: LBComponent defaultServerOID;
yourself );

yourself ) new
If the static distribution policy #timedSequential is used, one additional 
parameter becomes important: the millisecond interval at which the 
target server is changed. That is set by changing that cyclePeriod of 
the ServerRefManagerConfiguration:

| sa |
sa := Array new: 3.
0 to: 2 do: [ :x | sa

at: x 
put: ( IPSocketAddress

hostAddress: ( LBComponent serverForcedHostAddress )
port: LBComponent defaultServerRequestPort + x ) ].

^( ( LoadBalancerConfiguration sansLoads )
clientFailureActionType: #delete;
cyclePeriod: 10133;
distributionType: #timedSequential;

 serverRefManager:
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( ( ServerRefManagerConfiguration standard )
serverAddresses: sa;
serverOID: LBComponent defaultServerOID;
yourself );

yourself ) new

Server Configuration
Almost nothing needs to be done in the configuration of servers for 
this architecture, because there are no load monitors. Server 
configuration, given the scenario assumptions specified above, 
amount to just this:

^LBServerConfiguration test new

The “Balancer Sometimes, Without Loads” Architecture
This architecture differs from the previous one only in having a client 
that maintains a current server reference as well as a balancer 
reference. So, only the client configuration differs from the 
configurations presented for the previous architecture.

Client Configuration
The client configuration differs from that in the previous architecture 
only in specifying a different type of LoadRefConfiguration, a 
balancerAndServerRef rather than a balancerRef. So, the simplest client 
configuration goes thus:

^( ( LBClientConfiguration test )
loadRef: ( LoadRefConfiguration balancerAndServerRef )

balancerAddress: ( IPSocketAddress
hostAddress: ( LBComponent balancerForcedHostAddress )
port: LoadBalancer defaultRequestPort );

balancerOID: LBComponent defaultBalancerOID;
yourself ) new

The “Balancer Always, With Loads” Architecture
This architecture has the same client as the Balancer Always, 
Without Loads” architecture, but differs from it in requiring a more 
complex balancer and server configurations. The complexity is a 
product of these facts:
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• The servers have co-located load monitors.

• The balancers need to know the addresses of both the servers 
and the monitors.

• The communication regime, for the communication of load data 
between monitors and balancers must be defined.

Balancer Configuration
A simple balancer for this architecture may be configured and created 
by executing the following code:

| sa ma |
sa := Array new: 3.
0 to: 2 do: [ :x | sa

at: x 
put: ( IPSocketAddress

hostAddress: ( LBComponent serverForcedHostAddress )
 port: LBComponent defaultServerRequestPort + x ) ].

ma := Array new: 3.
0 to: 2 do: [ :x | ma

at: x 
put: ( IPSocketAddress 

hostAddress: ( LBComponent serverForcedHostAddress )
port: LBConfiguration defaultMonitorDataPort + x ) ].

^( ( LoadBalancerConfiguration withLoads )
serverRefManager:

( ( ServerRefManagerConfiguration standard )
serverAddresses: sa;
serverOID: LBComponent defaultServerOID;
monitorAddresses: ma;
monitorOID: LoadComponent defaultMonitorOID;
yourself );

yourself ) new

Note:  Note that the addresses for the monitors must be created 
using the monitor data port. This is important.

Clearly, most of the interesting settings are given default values. In 
particular,

• the distribution type will be #underMeanLoad,

• the data transfer type will be #receive, meaning that the balancer 
will expect monitors to push load data,
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• the server group update type will be #monitorPush, which again 
means that balancers will be passive, and

• the client failure action type will be #ignore, meaning that if clients 
piggyback a server failure notification on a request to the 
balancer, that information will not be acted on.

The following shows a more complex configuration, in particular, one 
where client failure notifications are acted on, and balancer poll 
monitors for data on an interval, using a cyclic process, the frequency 
and priority of which is set in the configuration:

| sa ma |
sa := Array new: 3.
0 to: 2 do: [ :x | sa

at: x 
put: ( IPSocketAddress

hostAddress: ( LBComponent serverForcedHostAddress )
port: LBComponent defaultServerRequestPort + x ) ].

ma := Array new: 3.
0 to: 2 do: [ :x | ma

at: x 
put: ( IPSocketAddress 

 hostAddress: ( LBComponent serverForcedHostAddress )
 port: LBConfiguration defaultMonitorDataPort + x ) ].

^( ( LoadBalancerConfiguration withLoads )
clientFailureActionType: #delete;
cyclePeriod: 7583;
cyclePriority: RequestTransport workerPriority + 1;
dataTransferType: #pollOnInterval;
distributionType: #underMedianLoad;
serverGroupUpdateType: #monitorPush;
serverRefManager:

( ( ServerRefManagerConfiguration standard )
serverAddresses: sa;
serverOID: LBComponent defaultServerOID;
monitorAddresses: ma;
monitorOID: LoadComponent defaultMonitorOID;
yourself );

yourself ) new
The following is another sophisticated configuration, which down-
configures a balancer of this type to use a data-free distribution type, 
but uses the existing monitors to subtractively refine the balancer’s 
list of available server. A server will be deleted on a “sweep” if a 
heartbeat from it has not been received within the set cutoff interval. 
The corresponding monitor configuration should turn on heartbeats, 
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and ensure that the priority of the process that issues neartbeats is 
greater than the priority of the processes used by the co-located 
server to handle incoming requests.

| sa ma |
sa := Array new: 3.
0 to: 2 do: [ :x | sa

at: x 
put: ( IPSocketAddress

hostAddress: ( LBComponent serverForcedHostAddress )
port: LBComponent defaultServerRequestPort + x ) ].

ma := Array new: 3.
0 to: 2 do: [ :x | ma

at: x 
put: ( IPSocketAddress 

hostAddress: ( LBComponent serverForcedHostAddress )
port: LBConfiguration defaultMonitorDataPort + x ) ].

^( ( LoadBalancerConfiguration withLoads )
clientFailureActionType: #delete;
cyclePeriod: 12641;
cyclePriority: RequestTransport workerPriority + 1;
dataTransferType: #noData;
distributionType: #timedSequential;
serverGroupUpdateType: #onSweep;
sweepCutoff: 8429;
serverRefManager:

( ( ServerRefManagerConfiguration standard )
cyclePeriod: 6047;
serverAddresses: sa;
serverOID: LBComponent defaultServerOID;
monitorAddresses: ma;
monitorOID: LoadComponent defaultMonitorOID;
yourself );

yourself ) new
Note that we are presenting a complex configuration of this sort only 
to show you what one may look like. The simplest possible 
configuration for your situation is usually the best and the most 
efficient.

Server Configuration
For this architecture, the simplest server configuration is as follows:

^( ( LBServerConfiguration test )
loadMonitor:( ( LoadMonitorConfiguration withBalancer )

balancerAddress:
( IPSocketAddress hostAddress:

( LBComponent balancerForcedHostAddress )
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port: LBComponent defaultBalancerDataPort );
balancerOID: LBComponent defaultBalancerOID;

yourself );
yourself ) new

Of course, default values are used heavily here.Note that the 
balancer data port, not the balancer request port, is used in 
configuring a monitor’s balancer address. A monitor must not send 
any messages to the balancer’s request port, which is reserved for 
client use. This is critically important.

Note:  Note that if you configure a balancer to “receive” load 
data, you must configure the load monitors to push it; if you do 
not, no load data will be transferred. Similarly, if you configure 
balancers to pull load data, you should not configure monitors to 
push it, because then the data would be sent twice.

The following is an example of a slightly more complex configuration 
where monitors are explicitly configured to push load data on each 
change in load:

^( ( LBServerConfiguration test )
loadMonitor:

( ( LoadMonitorConfiguration withBalancer )
balancerAddress:

( IPSocketAddress
hostAddress:

( LBComponent balancerForcedHostAddress )
port: LBComponent defaultBalancerDataPort );
balancerOID: LBComponent defaultBalancerOID;
dataTransferType: #pushOnChange;
 yourself );

yourself ) new
This monitor configuration is the one appropriate for the last balancer 
configuration above. The monitor does not push data, but does issue 
heartbeats.

^( ( LBServerConfiguration test )
loadMonitor:

( ( LoadMonitorConfiguration withBalancer )
balancerAddress:

( IPSocketAddress
hostAddress:

( LBComponent balancerForcedHostAddress )
port: LBComponent defaultBalancerDataPort );
balancerOID: LBComponent defaultBalancerOID;
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dataTransferType: #noData;
serverGroupUpdateType: #onHeartbeat;
cyclePeriod: 10007;
cyclePriority: RequestTransport listenerPriority + 1;
yourself );

yourself ) new

The “Balancer Sometimes, With Loads” Architecture
As in the case of the previous “Balancer Sometimes” architecture, 
this architecture differs from the previous one only in having a client 
that maintain a current server reference as well as a balancer 
reference. See The “Balancer Sometimes, Without Loads” 
Architecture above for the configuration of an appropriate client.

The “Balancer Always, With Holds” Architecture
This architecture has the same client as the “Balancer Always, With 
Loads” architecture, but differs from it in requiring slightly different 
balancer and server configurations. The difference is a product of 
these facts:

• Different balancer and monitor classes, which support the server 
hold protocol, must be used.

• There are additional options, relating to server holds.

The same warnings about coordinating balancer and monitor 
configurations apply.

Balancer Configuration
A simple balancer for this architecture may be configured and created 
by executing the following code:

| sa ma |
sa := Array new: 3.
0 to: 2 do: [ :x | sa

at: x 
put: ( IPSocketAddress

hostAddress: ( LBComponent serverForcedHostAddress )
port: LBComponent defaultServerRequestPort + x ) ].

ma := Array new: 3.
0 to: 2 do: [ :x | ma

at: x 
put: ( IPSocketAddress 

hostAddress: ( LBComponent serverForcedHostAddress )
port: LBConfiguration defaultMonitorDataPort + x ) ].

^( ( LoadBalancerConfiguration withHolds )
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serverRefManager:
( ( ServerRefManagerConfiguration standard )

serverAddresses: sa;
serverOID: LBComponent defaultServerOID;
monitorAddresses: ma;
monitorOID: LoadComponent defaultMonitorOID;
yourself );

yourself ) new
The simplest configuration that does not use defaults, and explicitly 
configures the simplest hold strategy is shown below. In this example, 
we set the hold type to that using a fixed millisecond interval; we set 
that interval, and; and we set the frequency at which holds are 
applied. Note that the hold policy and period are set at the level of the 
balancer, but the period at which holds are applied is set in the server 
reference mananger using cyclePeriod:.

| sa ma |
sa := Array new: 3.
0 to: 2 do: [ :x | sa

at: x 
 put: ( IPSocketAddress

hostAddress: ( LBComponent serverForcedHostAddress )
 port: LBComponent defaultServerRequestPort + x ) ].

ma := Array new: 3.
0 to: 2 do: [ :x | ma

at: x 
put: ( IPSocketAddress 

hostAddress: ( LBComponent serverForcedHostAddress )
port: LBConfiguration defaultMonitorDataPort + x ) ].

^( ( LoadBalancerConfiguration withHolds )
dataTransferType: #receive;
distributionType: #underMedianLoad;
holdPeriod: 1033;
holdType: #holdMostLoadedForPeriod;
serverRefManager:

( ( ServerRefManagerConfiguration standard )
cyclePeriod: 1609;
serverAddresses: sa;
serverOID: LBComponent defaultServerOID;
monitorAddresses: ma;
monitorOID: LoadComponent defaultMonitorOID;
yourself );

yourself ) new
All other hold types are configured similarly.
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Server Configuration
Nothing special need be done on the server side, except to specify a 
monitor class that responds to the server hold protocol, as follows, for 
the simplest case:

^( ( LBServerConfiguration test )
loadMonitor:

( ( LoadMonitorConfiguration withBalancerWithHolds )
balancerAddress:

( IPSocketAddress
hostAddress:

( LBComponent balancerForcedHostAddress )
port: LBComponent defaultBalancerDataPort );

balancerOID: LBComponent defaultBalancerOID;
yourself );

yourself ) new

The “Balancer Sometimes, With Holds” Architecture
Again, as in the case of the previous “Balancer Sometimes” 
architecture, this architecture differs from the previous one only in 
having a client that maintains a current server reference as well as a 
balancer reference. See The “Balancer Sometimes, Without Loads” 
Architecture above for the configuration of an appropriate client.

The “No Balancer” Architecture
In the “No Balancer” architecture there is no balancer configuration. 
But, client load references must be of the kind that record multiple 
server references, and each load monitor should know the addresses 
of all of the other monitors and servers. A data transfer type must be 
established, shared by all monitors. Furthermore, slightly different 
parameters are used to configure the distribution type. Within the 
bounds of these differences, the configuration of this architecture is a 
simple extension of what you have seen so far.

Client Configuration
You can configure a appropriate client with only one server reference 
as follows:

| sa |
sa := ( Array with:

( IPSocketAddress
hostAddress: ( LBComponent serverForcedHostAddress )
port: LBComponent defaultServerRequestPort ) );

^( ( LBClientConfiguration test )
loadRef: ( ( LoadRefConfiguration serversRef )
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serverAddresses: sa;
serverOID: LBServer defaultOID;
yourself );

yourself ) new
However, it is better to provide as client with as many server 
addresses as you can guarantee at startup.

Server Configuration
The simplest server configuration reads thus:

| sa ma |
sa := Array new: 3.
0 to: 2 do: [ :x | sa

at: x 
put: ( IPSocketAddress 

hostAddress: LBComponent serverForcedHostAddress
port: LBComponent defaultServerRequestPort + x ) ].

ma := Array new: 3.
0 to: 2 do: [ :x | ma

at: x
put: ( IPSocketAddress 

hostAddress: LBComponent serverForcedHostAddress
port: LBComponent defaultMonitorDataPort + x ) ].^( ( 

LBServerConfiguration test )loadMonitor:( ( LoadMonitorConfiguration 
sansBalancer )serverRefManager:( ( ServerRefManagerConfiguration 
standard ) serverAddresses: sa;serverOID: LBComponent 
defaultServerOID;monitorAddresses: ma;monitorOID: LBComponent 
defaultMonitorOID;yourself );yourself );yourself ) new

Note the discrimination between the use of request ports and data 
ports.

Again, this configuration relies heavily on default settings. A more 
exacting configuration might read:

| sa ma |
sa := Array new: 3.
0 to: 2 do: [ :x | sa

at: x 
put: ( IPSocketAddress 

hostAddress: LBComponent serverForcedHostAddress
port: LBComponent defaultServerRequestPort + x ) ].

ma := Array new: 3.
0 to: 2 do: [ :x | ma

at: x
put: ( IPSocketAddress 

hostAddress: LBComponent serverForcedHostAddress
port: LBComponent defaultMonitorDataPort + x ) ].
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^( ( LBServerConfiguration test )
loadMonitor:

( ( LoadMonitorConfiguration sansBalancer )
serverRefManager:

( ( ServerRefManagerConfiguration standard )
serverAddresses: sa;
serverOID: LBComponent defaultServerOID;
monitorAddresses: ma;
monitorOID: LBComponent defaultMonitorOID;
yourself );

yourself );
cyclePeriod: 5527;
cyclePriority: RequestTransport listenerPriority + 1;
dataTransferType: #pushOnInterval;
distributionType: #notMostLoaded:;
yourself ) new

This configures a monitor to push load data to all other monitors at a 
period of 5527 milliseconds, sets the cycle period priority, and sets 
the distribution strategy to #notMostLoaded:. Note that the Symbols that 
specify a distribution type in this architecture have an appended 
colon, as compared to the parameters used in all other architectures. 
These method selectors take an argument, the server that is co-
located with the load monitor, and entail a redirect only of some other 
server, known to the load monitor, is better suited to handle the 
request under the specified request distribution regime.

Multiple Balancer Architectures
In multiple balancer architectures, both clients and load monitors, if 
they exist, must be provided with the identical set of balancer 
references, wrapped in a LoadRefWithBackups.

Client Configuration
The simplest configuration looks like this:

| ba |
ba := Array new: 3.
0 to: 2 do: [ :x | ba

at: x
put: ( IPSocketAddress

hostAddress: LBComponent balancerForcedHostAddress
port: LBComponent defaultBalancerRequestPort + x ) ].

^( ( LBClientConfiguration test )
loadRef:

( ( LoadRefConfiguration multipleBalancersRef )
loadRef:
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( ( LoadRefConfiguration withBackups )
serviceAddresses: ba;
serviceOID: LBComponent defaultBalancerOID;
yourself ) );

yourself ) new
Note that you can use multiple balancers only with “Balancer 
Sometimes” architectures. This is a known, unnecessary limitation.

Server Configuration
A simple server configuration, corresponding to that of the preceding 
client, reads:

| ba |
ba := Array new: 3.
0 to: 2 do: [ :x | ba

at: x
put: ( IPSocketAddress

hostAddress: LBComponent balancerForcedHostAddress
port: LBComponent defaultBalancerDataPort + x ) ].

^( ( LBServerConfiguration test )
loadMonitor:

( ( LoadMonitorConfiguration withMultipleBalancers )
loadRef:

( ( LoadRefConfiguration withBackups )
serviceAddresses: ba;
serviceOID: LBComponent defaultBalancerOID );
yourself );

yourself ) new

Monitoring and Operation

Monitoring
Monitoring is supported by the several events issued by every 
LBComponent. To discover what events an LBComponent may issue, 
examine its implemented and inherited class-side “event” protocol.

Events may be subscribed to using the methods in the instance-side 
“events api” protocol. Instances of Opentalk.EventCollector are designed 
to be useful event receivers.
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Operation
After configuration, when starting up a load balancing application, it is 
best to start clients last. If servers have monitors that push load data 
to balancers, start balancers before servers. If balancers pull load 
data from monitors, start servers before balancers. The shutdown 
order should be the reverse of the start order.

Known Limitations
The current implementation has the following known limitations or 
issues in approximate order of severity:

• As presently implemented the redirection of a client request 
involves a re-marshaling of that request. For the moment, the 
higher-level, less intrusive, generic approach seemed best.  

• The current load balancing code is restricted to use with the 
Opentalk-STST protocol. It should be extended to work with IIOP.

• Real use of this facility would be promoted by our completion of 
the VW Opentalk SNMP protocol and an integration of this 
framework into SNMP so that load balancers, monitors, and 
servers could be managed in the usual way.

• The load balancing components fully support architectures with 
one balancer or zero balancers, but provide only conditional 
support for architectures with more than one balancer. The 
implementation of a full-bore, primary-backup state replication 
and fail-over facility is the best way to address this.

• All clients that use multiple balancers are clients built for the 
“Balancer Sometimes” architecture.  The “Balancer Always” 
architecture does not support multiple balancers. This is an 
unnecessary limitation.

• The LoadRefs, used to wrap client-side references inherit from 
Object rather than nil. This means that clients cannot used 
methods implemented by a concrete subclass of LoadRef or that 
class' superclasses without adding overrides to the LoadRef 
hierarchy. For the moment, this seems better than the “initial 
underbar” protocol found in Proxy and RemoteObject.

• The load balancing components require complex configuration. 
This is largely inescapable. The configurable defaults ease the 
problem. 
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• The configuration scheme does not provide automatic checks for 
mismatched configurations. For example, if you configure a load 
balancer to passively receive load data from monitors, and 
configure monitors to passively wait for balancers to poll for load 
data, nothing but the poor operation of your architecture will tell 
you that you blew it. However, an initial round of communication 
between clients, balancers, and monitors, for hand-shaking and 
configuration-checking seemed too costly.

• It is considered good design practice for a load balancing system 
to have negligible impact on the client side. LoadRefs may seem, 
to some, more than negligibly intrusive. However, since they have 
no impact on the structure of client code beyond wrapping 
references that a client must acquire in any case, and also relieve 
the client of implementing retry logic, this is not a compelling 
complaint. Developers who wish to implement client-side retry, 
redirection, reference maintenance, and initial reference 
acquisition logic of their own may do so.

• The load definition strategy supplied by the implementation, 
LoadIsServerChannelBacklog, will count, as contributing to server-
side load, those methods that are redirected, by either a server 
under hold or a server operating in a “no balancer” architecture. 
In such cases, the total number of messages addressed to the 
server is not equivalent to the number of processed requests. 
Some will see this as a simple and obvious consequence of the 
balancing scheme in play. Others may object to the fact that this 
aspect of the load definition includes part of the cost of balancing 
in the balancing, in an architecture-dependent manner. 

• Many load balancing configuration options are set using Symbols. 
Many would prefer explicit strategy classes. There are tradeoffs 
in either case. On one hand, you may have a dozen distribution 
strategies implemented in a single class, with one method for 
each, where adding a new strategy entails adding a new method 
to that class or a subclass of it. On the other hand, you may have 
a dozen strategy classes, each with one method. Either the 
strategy classes will have additional instance variables or their 
implementation of the required method will have more 
parameters than are present in the former case. And there will be 
a thirteenth abstract class that all the concrete ones inherit from.

• The configuration of many server hold types requires that two 
parameters be set in the balancer and one parameter be set in 
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that balancer's server reference manager. This is apt to entail 
some confusion.

• The external API for adding or deleting servers from 
ServerRefManagers is less than perfectly transparent.

Given resources and interest, these issues will be addressed in 
future releases. 
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Opentalk, Distributed Smalltalk, and I3

Users of DST will notice similarities between Opentalk and the 
Implicit Invocation Interface (I3) present in Distributed Smalltalk 
(DST), and be concerned about the relationship between these two 
products.

Opentalk is not intended to be a long-term replacement for I3.

I3 is an alternative marshaler, built into the DST marshaling 
framework. It uses the IIOP protocol, and allows DST users working 
in a homogeneous environment to prototype a DST application 
without writing IDL. Since such prototypes will often be ported to 
heterogeneous environments, DST uses the standard DST marshaler 
if an applicable IDL interface declaration is present, even when I3 is 
turned on. This allows a DST developer, who is porting an I3 
prototype to a heterogeneous environment, to test IDL code 
incrementally in a homogeneous one.

In the long term, IIOP and DST will be reimplemented under the 
Opentalk Base. At that time, the motivations for a DST facility like I3 
will still exist. I3 will remain, but will be reimplemented to accord with 
the then current DST marshaling framework.
Opentalk Communication Layer Developer’s Guide A-1



Opentalk, Distributed Smalltalk, and I3
A-2  VisualWorks



B

Annotated References

The following collection of annotated references is organized by topic. 
The topics are arranged alphabetically. The annotations express the 
evaluations of the authors of this manual.

Communication Protocols
Pete Loshin. TCP/IP Clearly Explained. Third Edition. Morgan 
Kaufmann, San Diego, California, 1997. ISBN 0-12-455826-7.

This is perhaps the most accessible introductory text on TCP/IP and 
UDP. It is an excellent base upon which to approach more complete 
treatments.

W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols. 
Addison-Wesley, Reading, Massachusetts, 1994. ISBN 0-201-63346-
9.

This is a voluminous work. It has no excuse for omitting anything, and 
does not. It is the best of its several rivals.

Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated, Volume 
2: The Implementation. Addison-Wesley, Reading, Massachusetts, 
1995. ISBN 0-201-63354-X.

This is the implementation-level companion of the previously 
mentioned work mentioned. It has the same virtues.
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Computer Networks
Douglas E. Comer. Computer Networks and Internets. Second 
Edition.  Prentice Hall, Upper Saddle River, New Jersey, 1999. ISBN 
0-13-083617-6.

This is a standard text.

Andrew S. Tannenbaum. Computer Networks. Third Edition. Prentice 
Hall PTR, Upper Saddle River, New Jersey, 1996. ISBN 0-13-
349945-6.

This is another standard text. It gives more space than does Comer 
to ATM, and is arguably superior in other respects as well.

Distributed Agents
Jacques Farber. Multi-Agent Systems: An Introduction to Distributed 
Artificial Intelligence. Addison-Wesley, Harlow, England, 1999. ISBN 
0-201-36048-9.

This is an available, complete discussion of the area. It now has no 
serious current competitors as a general survey that begins at an 
accessible level. This evaluation is likely to be overturned by 
forthcoming publications.

Distributed Algorithms
Valmir C. Barbosa. An Introduction to Distributed Algorithms. The 
MIT Press, Cambridge, Massachusetts, 1996. ISBN 0-262-02412-8.

This work is more narrowly focused on specific problem areas, and 
less compendious than Lynch.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann 
Publishers, Inc., San Francisco, California, 1996. ISBN 1-55860-348-
4.

This is the current, standard collection, and superior to the available 
contenders.
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Distributed Systems
Prabhat K. Andleigh and Michael R. Gretzinger. Distributed Object-
Oriented Data-Systems Design. PRT Prentice Hall, Englewood Cliffs, 
New Jersey, 1992. ISBN 0-13-174913-7.

This is an older and somewhat dated text. It is nevertheless a useful 
treatment of distributed system design, as it was understood before 
the full advent of the current object models, which obscured the 
importance of some earlier work.

George Couloris, Jean Dollimore, and Tim Kindeberg. Distributed 
Systems: Concepts and Design. Third Edition. Addison-Wesley, 
Harlow, England, 2000. ISBN 0-201-61918-0.

This is an excellent and highly recommended text.

Sape Mullender, editor. Distributed Systems. Second Edition. 
Addisson-Wesley, Wokingham, England, 1993. ISBN 0-201-62427-3. 
Andrew S. Tannenbaum. Computer Networks. Third Edition. Prentice 
Hall PTR, Upper Saddle River, New Jersey, 1996. ISBN 0-13-
349945-6.

This text is weaker than Coloris, Dollimore, and Kindberg on 
multicast, and suffers from being a collection of papers rather than a 
single work. It is still excellent, and highly recommended. 

CORBA and Smalltalk ORBs
Thomas J. Mowbray and Raphael C. Malveau. CORBA Design 
Patterns. John Wiley and Sons, Inc., New York, New York, 1997. 
ISBN 0-471-15882-8.

This is a collection and description of a few of the common design 
patterns present in networked rather than distributed systems. It is 
spotty: you are likely to find no more than twenty pages of immediate 
practical use.

Ron Ben-Natan. CORBA: A Guide to the Common Request Broker 
Architecture. McGraw-Hill, New York, New York, 1995.  ISBN 0-07-
005427-4.

This is an older work about a fast-changing specification, but it is one 
of the few works on the CORBA architecture to devote substantial 
attention to Distributed Smalltalk.
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Terry Montlick. The Distributed Smalltalk Survival Guide. Cambridge 
University Press, Cambridge, United Kingdom, 1999. ISBN 0-521-
64552-2.

This book’s observations about the comparative merits of the several 
available distributed Smalltalk implementations are already dated, but 
it is the only available, recent survey of its field.

Group Multicast
Kenneth P. Birman and Robbert van Renesse. Reliable Distributed 
Computing with the Isis Toolkit. IEEE Computer Society Press, Los 
Alamitos, CA, 1994. ISBN 0-8186-5342-6

This book is mandatory reading for anyone who would rather not 
reinvent the wheel in multicast group support.

Thomas A. Maufer. Deploying IP Multicast in the Enterprise. Prentice 
Hall PTR, Upper Saddle River, New Jersey, 1998. ISBN 0-13-
897687-2.

This book addresses the qualities of several multicast 
implementations, at the levels below the transport layer, and provides 
information not readily available elsewhere.

Peer-To-Peer
Andy Oram, ed. Peer-to-Peer: Harnessing the Power of Disruptive 
Technologies. O’Reilly and Associates, Inc., Sebastopol, California, 
2001. ISBN 0-596-00110-X.

This is the best current overview of peer-to-peer technology.

Performance Analysis
Raj Jain. The Art of Computer System Performance Analysis: 
Techniques for Experimental Design, Measurement, Simulation, and 
Modeling. John Wiley and Sons, Inc., New York, New York, 1991. 
ISBN 0-471-50336-3.

This is an excellent and comprehensive text on one of the most 
important aspects of distributed system evaluation and design.
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