
Cincom Smalltalk™

Opentalk Communication
Layer Developer's Guide

P46-0135-06

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

© 1995–2009 Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0135-06

Software Release 7.7

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, COM Connect, and StORE are trademarks of Cincom Systems, Inc., its
subsidiaries, or successors. ENVY is a registered trademark of Object Technology
International, Inc. GemStone is a registered trademark of GemStone Systems, Inc. All
other products or services mentioned herein are trademarks of their respective
companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation © 1995–2009 by Cincom Systems, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior written consent
from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

www.cincom.com

Contents
About This Book xi

Audience .. xi
Conventions ... xi

Typographic Conventions .. xi
Special Symbols ..xii
Mouse Buttons and Menus ..xiii

Getting Help ..xiii
Commercial Licensees ...xiii

Before Contacting Technical Support ..xiii
Contacting Technical Support ...xiv

Non-Commercial Licensees ...xiv
Additional Sources of Information ... xv

Chapter 1 Opentalk Communication Layer 1-1

Installation ..1-1
Parcels Contents ...1-2

Opentalk Tools ...1-5

Chapter 2 Basic Opentalk Concepts 2-1

Distributed Systems ...2-1
Stand-alone Systems ..2-1
Communicating systems ...2-1

Networked Systems ...2-2
Client-Server Systems ...2-2
Peer-to-Peer Systems ..2-2
Distributed Systems ...2-3

Summary ...2-3
Channels ..2-4
Protocols ..2-4

Transfer Protocols ...2-4
Connection-Oriented Transport Protocols2-5
Opentalk Communication Layer Developer’s Guide iii

Connectionless Transport Protocols .. 2-5
Summary ... 2-5

Synchronization ... 2-5
Patterns of Communication ... 2-6

Remote Invocation .. 2-6
Synchronous RPCs ... 2-7
Asynchronous RPCs .. 2-7

Remote Execution .. 2-8
Group Multicast .. 2-8

Chapter 3 Using the Opentalk Communication Layer 3-1

Using a Broker ... 3-2
Creating and Configuring a Broker ... 3-2
Starting and Stopping a Broker .. 3-3
Using Broker Events ... 3-3
Message Interceptors ... 3-4

Remote Objects ... 3-6
Object Passing Modes ... 3-8
Remote API of a Broker ... 3-9
Broker Services ... 3-10

Opentalk Service .. 3-11
Using NamingService .. 3-11
Using UcastEventService .. 3-13
Using a Broadcasting RequestBroker .. 3-14
Using a Multicasting RequestBroker .. 3-16
Using McastEventService .. 3-17

Chapter 4 Some Components of Opentalk 4-1

Message Format .. 4-1
Message Header .. 4-2

TransportPackageBytes ... 4-2
Message Body .. 4-3

RemoteMessage and its Subclasses ... 4-3
Logical Message State Machines .. 4-3

Methods sendRequest:to and evaluateFor: .. 4-4
Server-Side Message Dispatch ... 4-4

The Methods handlingIncomingMessage and dispatchFor: 4-4
Process Environments ... 4-5

Process Priorities .. 4-6
The serviceContext Instance Variable ... 4-6

Endianness .. 4-7
The byteOrder and swap Instance Variables .. 4-7
iv VisualWorks

Encodings ..4-8
Character value: self nextLong ..4-8

Marshaling and Unmarshaling ...4-8
STSTStream ...4-9

Object References ...4-9
ObjRef ...4-10

Transparent Forwarding ...4-10
Proxy ...4-11
RemoteObject ...4-11

Object Reference Equality ...4-11
BasicRequestBroker’s remoteObjectRegistry ...4-11

Object Tables ...4-12
ObjectTable ...4-13

Request Brokers ..4-13
Object Adaptors ...4-14
Transports ..4-15
Pass Modes ..4-16

Pass Mode Control ..4-18
SpecialTypeDispatchTable and TagDispatchTable4-19
isPassedByValue ...4-19
asPassedBy methods ..4-20
PassModeWrapper ..4-20
passInstVars and PassModeTable ..4-20
inspectorClassName ...4-20
Special Implementation of Behavior class>asPassedByValue4-21

Exceptions ..4-21
OtException ...4-21
OtSystemException and its Subclasses ..4-22
Catching Broker Errors ..4-22

Session Layers ...4-23
STSTRequest ..4-24

Chapter 5 Broker Configuration 5-1

What is a Configuration? ..5-1
Standard Broker Creation Methods ..5-2

Broker Configuration Components ..5-2
The Configuration Classes ...5-3

The Class Hierarchy ..5-3
Configuration Instance Variables ...5-4
Configuration Specification ...5-4

The Component Classes ..5-4
Component Instance Variables ...5-4
Opentalk Communication Layer Developer’s Guide v

Configuration Defaults .. 5-5
Default Accessing ... 5-5

Configuration Types ... 5-6
BrokerConfiguration .. 5-6
AdaptorConfiguration .. 5-6
TransportConfiguration ... 5-7
MarshalerConfiguration .. 5-8
RequestDispatcherConfiguration .. 5-9
SchedulingPolicyConfiguration ... 5-9

Configuration Parameters .. 5-9
RestartProtocolConfiguration ... 5-10
BrokerConfiguration .. 5-11
AdaptorConfiguration .. 5-11
ConnectionAdaptorConfiguration .. 5-12
TransportConfiguration ... 5-14
DatagramTransportConfiguration .. 5-15
BcastTransportConfiguration .. 5-15
McastTransportConfiguration .. 5-15
MarshalerConfiguration .. 5-16
RequestDispatcherConfiguration .. 5-16
HighLowRequestDispatcherConfiguration .. 5-17
PoolRequestDispatcherConfiguration ... 5-17
PriorityLevelSchedulerConfiguration .. 5-17
LotterySchedulingPolicyConfiguration .. 5-18

Network Configuration ... 5-19
Set Host IP ... 5-19
STST and Firewalls .. 5-20
Bidirectional Support .. 5-21

Special Note about Client Configuration 5-22

Chapter 6 Processes, Connections, and Scheduling 6-1

OS Processes, Threads, and Smalltalk Processes ... 6-1
Opentalk Subsystem ... 6-2
Opentalk-Specific Issues ... 6-3
Connection Request Overload .. 6-5
Message Request Overload .. 6-6
Message Processing Order ... 6-6

Benefits of Order .. 6-7
Bi-Modal Message Streams .. 6-8
Opentalk Schedulers .. 6-10
Cautions ... 6-12
vi VisualWorks

Chapter 7 Hints for Distributed System Design 7-1

Shared Objects ..7-2
Problem ...7-2
Solution ...7-2
Observation ...7-2

Garbage Collection ..7-3
Problem ...7-3
Solution ...7-3
Solution Components ..7-3

Repository ..7-3
Factory ...7-4
Resource Manager ...7-5

Time, Synchronous Systems, and Time-outs ...7-5
Observation 1 ..7-6
Observation 2 ..7-6

Reference, Broker, and Communication Errors ..7-6
Problem ...7-7
Solutions ...7-7
Solution Components ..7-9

Service Brokers ..7-9
Request Distributors and Load Balancers7-9

Observation ...7-10
Scalability and Single Points of Failure ..7-10

Observation 1 ..7-10
Observation 2 ..7-10
Observation 3 ..7-10

Remote Message Number ...7-11
Observation ...7-11

Variable Latency of Remote Messages ..7-12
Observation ...7-12

Remote Object Representation ..7-12
Using a Direct Reference to an Application Object7-12
Using a Direct Reference to a Service Provider ..7-13
Using a Copy or Replicate ...7-13
Using a Faulting Proxy or Stub ..7-14
Using a Reference to a Server Mask ..7-14
Using a Client Mask Around a Reference ...7-15
Using a Shadow With a Direct Object Reference7-15
Using a Shadow with a Reference to an Object Manager7-15
Using Both Client and Server Masks ..7-16

Remote Object Number ...7-16
Observation ...7-16
Opentalk Communication Layer Developer’s Guide vii

Remote Object Alteration .. 7-16
Send it a Message .. 7-16
Replace It ... 7-17
Ship Over the Modifying Code .. 7-17
Create an Agent Which Copies Itself Over and Does the Work 7-17

Replication Rate and Replication Delay .. 7-17
Observation .. 7-18

Initial Reference Acquisition .. 7-18
Problem .. 7-18
Solutions ... 7-18
Observation .. 7-19

Encapsulation and Transparency ... 7-20
Problem .. 7-20
No Single Solution .. 7-20
Observation 1 ... 7-21
Observation 2 ... 7-21
Observation 3 ... 7-21

Chapter 8 Opentalk Load Balancing 8-1

Packaging and Installation ... 8-2
Synchronous Unicast Load Balancing ... 8-2

Load Balancing ... 8-3
Redirection ... 8-6
Distribution Strategies ... 8-6
Load Monitors ... 8-8
Load Definition .. 8-8
Load Data Transfer Strategy ... 8-8
Server Group Update Strategy ... 8-9
Multiple Load Balancers and Fault-Tolerance ... 8-9

Load Balancing Options .. 8-10
Client-Side Options ... 8-10

Client with a Balancer Reference ... 8-10
Client with a Balancer and Current Server References 8-11
Client With Server References .. 8-12

Balancer Options .. 8-13
Balancer Without Load Data .. 8-14
Balancer With Load Data ... 8-14
Balancer With Holds .. 8-15

Server-Side Options ... 8-16
No Monitor ... 8-16
Monitor With Balancer ... 8-16
viii VisualWorks

Monitor With Server Hold Protocol ...8-16
Monitor Without a Balancer ..8-16

Multiple Balancers and Fault-Tolerance ..8-17
Possible Load Balancing Architectures ..8-19

The “Balancer Always, Without Loads” Architecture8-19
The “Balancer Sometimes, Without Loads” Architecture8-20
The “Balancer Always, With Loads” Architecture8-20
The “Balancer Sometimes, With Loads” Architecture8-21
The “Balancer Always, With Holds” Architecture8-21
The “Balancer Sometimes, With Holds” Architecture8-22
The “No Balancer” Architecture ...8-22

Opentalk Load Balancing Implementation ...8-23
Component Configuration and Creation Machinery8-23
Initial Reference Acquisition ..8-24
Default Values ...8-25
Runtime Reconfiguration ...8-25
Exceptions ...8-25
LBComponent ...8-26
Generic Client ...8-27
Client-Side Reference Wrappers ...8-28
Load Balancers ...8-31
Server Reference Managers ...8-31
Distribution Types ..8-32

Static Distribution Types ...8-32
Dynamic Distribution Types ..8-33

Server Hold Types ...8-34
Generic Server ..8-35
Load Monitors ...8-35
Load Definitions ..8-35
Server Group Update ..8-35

Manual Server Group Update ..8-35
Automatic Subtractive Server Group Update8-36
Automatic Additive Server Group Update8-37

Multiple Balancer Support ...8-37
Opentalk Load Balancing Configuration ...8-38

Scenario Description ...8-38
The “Balancer Always, Without Loads” Architecture8-39

Client Configuration ..8-39
Balancer Configuration ...8-40
Server Configuration ..8-42

The “Balancer Sometimes, Without Loads” Architecture8-42
Client Configuration ..8-42
Opentalk Communication Layer Developer’s Guide ix

The “Balancer Always, With Loads” Architecture 8-42
Balancer Configuration .. 8-43
Server Configuration .. 8-45

The “Balancer Sometimes, With Loads” Architecture 8-47
The “Balancer Always, With Holds” Architecture 8-47

Balancer Configuration .. 8-47
Server Configuration .. 8-49

The “Balancer Sometimes, With Holds” Architecture 8-49
The “No Balancer” Architecture .. 8-49

Client Configuration ... 8-49
Server Configuration .. 8-50

Multiple Balancer Architectures .. 8-51
Client Configuration ... 8-51
Server Configuration .. 8-52

Monitoring and Operation .. 8-52
Monitoring ... 8-52
Operation .. 8-53

Known Limitations ... 8-53

Chapter A Opentalk, Distributed Smalltalk, and I3 A-1

Chapter B Annotated References B-1

Communication Protocols ..B-1
Computer Networks ...B-2
Distributed Agents ...B-2
Distributed Algorithms ...B-2
Distributed Systems ...B-3
CORBA and Smalltalk ORBs ...B-3
Group Multicast ...B-4
Peer-To-Peer ..B-4
Performance Analysis ..B-4

Index Index-1
x VisualWorks

About This Book

The Opentalk Communication Layer Developer’s Guide provides the
experienced VisualWorks® developer with information necessary to
implement communications protocols, and to develop distributed
applications using the Opentalk Communication Layer. The
communication layer is also known as the Opentalk Base, and is a part of
the full Opentalk suite of features.

Audience
This book is written for experienced Smalltalk developers who are
exploring Opentalk for the first time. Readers should have a good
understanding of VisualWorks. Please refer to the several VisualWorks
manuals as needed. This document does not presume deep and
extensive understanding of communication protocols, distributed
systems, or the CORBA architecture, but background in these areas is
extremely helpful, and several reference texts addressing them are
suggested in Annotated References.

Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).
Opentalk Communication Layer Developer’s Guide xi

About This Book
Special Symbols
This book uses the following symbols to designate certain items or
relationships:

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File New Indicates the name of an item (New) on a menu
(File).

<Return> key

<Select> button
<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

Example Description
xii VisualWorks

Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or
combinations:

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
helpna@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>
Opentalk Communication Layer Developer’s Guide xiii

mailto:supportweb@cincom.com

About This Book
• The version id, which indicates the version of the product you are
using. Choose Help About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to
helpna@cincom.com.

Web
In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com
Telephone

Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.

Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:
xiv VisualWorks

mailto:supportweb@cincom.com
http://supportweb.cincom.com

• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu

with the SUBJECT of "subscribe" or "unsubscribe". You can then
address emails to vwnc@cs.uiuc.edu.

• A Wiki (a user-editable web site) for discussing any and all things
VisualWorks related at:

http://www.cincomsmalltalk.com/CincomSmalltalkWiki

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincomsmalltalk.com/documentation/

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.
Opentalk Communication Layer Developer’s Guide xv

mailto:vwnc-request@cs.uiuc.edu
mailto:vwnc@cs.uiuc.edu
http://www.cincomsmalltalk.com/CincomSmalltalkWiki
news:comp.lang.smalltalk
http://www.cincomsmalltalk.com/documentation/

About This Book

xvi VisualWorks

1

Opentalk Communication Layer

Opentalk is a VisualWorks add-on that provides a rich and extensible
environment for the development, deployment, maintenance, and
monitoring of distributed applications. Opentalk contains frameworks
and components for creating and extending communication
protocols, object services, remotely targeted user interfaces, remote
development tools, and other architectural components common to
distributed systems.

The Opentalk Communication Layer consists of those components
that define the base communication framework, several Smalltalk-to-
Smalltalk communication protocols, and a select set of base services.
It is that part of Opentalk targeted, first, toward the needs of protocol
developers, and second, toward the needs of distributed service,
component, and application developers planning to build directly off
the communication layer.

This chapter describes the requirements for the Opentalk
Communication Layer, its installation, and the contents of its parcels.

Installation
The parcels of the Opentalk Communication Layer are contained in
the $(VISALWORKS)\opentalk directory. Additional parcels provide
support for specific protocols, such as HTTP and SOAP, which are
discussed in other VisualWorks documents dealing with those
protocols.

To load communication layer support it in its entirety, load the
following parcels in the order shown:
Opentalk Communication Layer Developer’s Guide 1-1

Opentalk Communication Layer
1 Opentalk-Prerequisites

2 Opentalk-Core-Support

3 Opentalk-Core

4 Opentalk-STST

5 Opentalk-Groups

6 Opentalk-Core-Services

The first three parcels are the minimal required support for Opentalk,
and are generally sufficient if you intend to develop and use your own
protocols in the Opentalk framework. They are loaded as
prerequisites of the subsequent parcels.

Additional parcels provide further extensions to the Opentalk
environment.

Parcels Contents
Opentalk has a layered architecture. The Opentalk Communication
Layer is foundational with respect to the other layers of Opentalk. It
consists of:

• frameworks and components used to implement communication
protocols,

• concrete implementations of protocols for Smalltalk-to-Smalltalk
unicast, multicast and broadcast, and

• base services immediately required to make those protocols
usable, namely, simple unicast and multicast event multiplexing
services and a lightweight naming service.

The Opentalk Communication Layer is packaged as the following
parcels in the VisualWorks distribution.

Opentalk-Prerequisites

The parcel Opentalk-Prerequisites defines the Opentalk
namespace and implements methods in class Object that must be
loaded early.
1-2 VisualWorks

Installation
Opentalk-Core-Support

Opentalk-Core-Support contains base system extensions
required by Opentalk. These extensions mostly fall into three
broad categories:

• methods that enforce pass-by-name for selected tool
classes;

• methods that establish default pass modes at major nodes in
the VisualWorks class hierarchy;

• overrides of the default marshaling methods in those classes
that take explicit advantage of double-dispatching in
marshaling.

Opentalk-Core

Opentalk-Core defines the core abstract classes of the Opentalk
communication framework. These are the classes that a protocol
developer will usually extend to create new communication
protocols. Included are the classes that define proxies and object
references, object tables, message headers and message
bodies, pass mode control wrappers, marshalers, transports,
object adaptors, request brokers, broker configurations, and
several Opentalk-specific exceptions.

Opentalk-STST

Opentalk-STST contains the classes required to implement
Smalltalk-to-Smalltalk unicast. Included are the classes that
define the transports, the marshaler, and the message types
specific to the Smalltalk-to-Smalltalk protocols: requests, close
connection requests, replies, and error replies.

Opentalk-Groups

Opentalk-Groups contains the extensions that implement
Smalltalk-to-Smalltalk multicast and broadcast. It includes
classes defining broadcast and multicast transports and
configurations, the required additional message types, and the
multicast event service.

Opentalk-Core-Services

Opentalk-Core-Services defines an abstract Opentalk service
class, a naming service, exceptions specific the naming service,
and a unicast event service.
Opentalk Communication Layer Developer’s Guide 1-3

Opentalk Communication Layer
Opentalk-HTTP

This is the HTTP transport infrastructure for Opentalk. This
package can be used with either the simple XML marshaler or
the SOAP marshaler.

Opentalk-CGI

This is an extension of Opentalk-HTTP to support the use of CGI
relays in the VisualWorks Application Server.

Opentalk-SOAP

The Opentalk-SOAP package integrates generic SOAP/WSDL
support with Opentalk-XML to provide transparent messaging
access to SOAP services for clients and infrastructure for setting
up SOAP servers.

Opentalk-XML

This package provides support for XML-based communication
with remote applications via Opentalk. It integrates the generic
XMLObject marshaling framework (the XMLObjectMarshalers
package) with Opentalk.

Opentalk-Scheduling

This package defines a scheduler and scheduler policies for use
alongside request brokers when user applications elect to take
explicit control of worker process scheduling.

Opentalk-Load-Base

Opentalk-Load-Middlemen

Opentalk-Load-Client

Opentalk-Load-Server

These packages support load balancing in Opentalk.
1-4 VisualWorks

Opentalk Tools
Opentalk Tools
Two lightweight tools are included in Opentalk:

• The OpentalkConsole supports the configuration, creation, and
registration of all release-quality request brokers. Load parcel
Opentalk-Tools-Console to access this tool.

• The OpentalkMonitor supports inspection of and registration for all
the events generated by release-quality brokers and object
adaptors. Load parcel Opentalk-Tools-Monitor to access this tool.
Opentalk Communication Layer Developer’s Guide 1-5

Opentalk Communication Layer
1-6 VisualWorks

2

Basic Opentalk Concepts

This chapter is a brief overview of some of the basic concepts and
communication patterns in distributed computing. Discussion of these
concepts and patterns is intended to provide the background for and
prolegomena to subsequent discussion of the critical classes in the
Opentalk Communication Layer. Readers interested in more
substantive discussion of distributed computing are urged to peruse
several of the references listed in the annotated bibliography provided
in Annotated References.

Distributed Systems
Software systems exist along a scale of complexity and integration.
Distributed systems are at one end of that scale.

Stand-alone Systems
Computers started out as stand-alone systems. In the study of stand-
alone systems, one assumes a single processor, a single sequential
process, a uniform memory access time, and a constant performance
cost for every primitive function call. This is the model involved in the
study of data structures, algorithms, and computational complexity.
Even if one assumes several processes or processors running on the
same host, they are assumed to fail together and at once. The case
is different in a communicating application running on multiple hosts,
liable to a variety of failures in part.

Communicating systems
Communicating systems, in contrast, are composed of physically
separated processes that communicate to achieve some end. The
communication occurs through channels of restricted bandwidth and
Opentalk Communication Layer Developer’s Guide 2-1

Basic Opentalk Concepts
variable latency. Such systems are susceptible to both processor and
channel failures. Together, these two failure locations produce a rich
classification of partial and complete failure modes. There is also
sharp distinction between the cost of local function calls and those
calls involving communication costs.

The Opentalk Communication Layer is intended to support the
development of communicating systems. Such systems can be
usefully categorized into two broad types.

Networked Systems
The processes of networked systems communicate, but have only
ephemeral knowledge of one another’s existence, do not much care
about one another’s state, and cooperate on an intermittent basis.
This is the relationship between a process running a network browser
and another running a page server.

Networked systems are stand-alone systems that happen to
communicate. They are like single people who date a lot. Designers
interested in such systems are interested in defining, accessing, and
improving useful, discrete, and available services or service
components. They are interested in reliability at the component or
service level.

There are two flavors of networked systems: client-server and peer-
to-peer.

Client-Server Systems
In the typical client-server system, there is a designated server
process. It exists at a fixed, well-known address. Other, client
processes connect to the server and invoke the service it provides as
needed. The server usually does not need to know the network
addresses of the clients. Clients and servers are loosely coupled, and
the clients do not have the autonomy possessed by the server, since
they depend upon it and not vice versa.

Peer-to-Peer Systems
Peer-to-peer systems are networked systems specifically designed to
take advantage of the existence of multiple processes or hosts
existing in an environment characterized by unstable connectivity and
unpredictable IP addresses. These systems consist of loosely
coupled, autonomous processes. Peer-to-peer systems usually take
advantage of redundancy—the existence of several hosts playing the
same computational role—to address the reliability and availability of
the services provided. A classic example is the Usenet.
2-2 VisualWorks

Distributed Systems
Current peer-to-peer systems often employ custom communication
protocols and possess special components to manage fluctuating
host presence and are often targeted at utilizing the ‘wasted’
compute cycles of networked hosts. Some of these systems, those
attempting to support communities that span organizational and
national boundaries, employ cryptographic components, at several
levels, to ensure anonymity.

Distributed Systems
The processes in properly distributed systems are, unlike those in
networked systems, tightly coupled. The communicating processes
care about whether the others are running or crashed, what state
they are in, whether they are in agreement about critical state
variables. The distinguishing mark of such systems is that they are
actively engaged in maintaining the coherence of distributed state,
and communicate frequently in order to maintain that coherence. An
example is the relationship that exists between a primary and a
backup service process in a simple fault tolerant system.

In these systems, synchronization and coordination problems loom
large. They are like families with four active children, who play team
sports that send them off to practices and out-of-town games, take
separate private music lessons, attend four different schools, and
don’t drive yet. Developers interested in these kinds of systems are
interested in integrating and harmonizing services and components,
and in ensuring the consistent and reliable behavior of several, often
replicated components, running on several geographically separated
hosts.

Summary
Irrespective of the degree of coupling displayed, both networked and
distributed systems involve inter-process communication. Inter-
process communication involves the transfer of data or code from the
sending process to the receiving process. For transfer to occur, the
two processes must share a communication channel and a
communication protocol. The Opentalk Communication Layer
provides components for building protocols as well as several already
implemented ones.
Opentalk Communication Layer Developer’s Guide 2-3

Basic Opentalk Concepts
Channels
The communicating processes reside on machines, conventionally
called hosts. The communication channel that the processes must
share—often called a circuit, a wire, a transmission line, or a link—is
something that moves bits between machines.

Protocols
The communication protocol that the processes must share is,
broadly, an agreement about how communication is to proceed. More
particularly, each process sends and receives messages through a
protocol stack or suite, and a protocol is a specification of the
message sequences and the message formats logically used in
communication at the same layer, between a sending layer and a
receiving one. In fact, only the bottommost layer of a stack
“communicates” and moves bits. Each level above the bottommost
uses the services of the layer below, passing data and control to the
lower layer as required, and all layers provide services to the layers
above. A service in this context is nothing other than a well-defined
API. A layer may provide several communication service APIs to
layers above it.

In principle, it makes no difference at what layer in software or
hardware a given layer in a protocol stack is implemented. For
example, IIOP is a protocol layer on top of TCP/IP. In Distributed
Smalltalk, IIOP is implemented in Smalltalk code. So too are the
Smalltalk-to-Smalltalk communication protocols of Opentalk. But both
of these protocol implementations rest upon and invoke TCP/IP and
UDP protocol primitives implemented in the VisualWorks engine.

Transfer Protocols
Any useful protocol stack or suite contains a transport layer, the
lowest layer at which the messages handled are logical units of
information still meaningful to an application, rather than packets or
cells. The latter are restricted-size or fixed-sized units of binary data,
containing address information sufficient to identify the sending and
the receiving host, and are meaningful at network or internet layers.

There are two common types of transfer protocols or services:
connection-oriented and connectionless.
2-4 VisualWorks

Synchronization
Connection-Oriented Transport Protocols
Connection-oriented protocols, also called telephone protocols,
establish a virtual connection between the sending and the receiving
processes and use it to transmit a data stream. In these protocols the
virtual connection must be established before any data is transmitted,
and the connection must be closed when it is no longer needed.
Hence the implementation of such protocols explicitly required
connection management components. The TCP protocol in the
Internet protocol suite is a connection-oriented protocol.

Connectionless Transport Protocols
Connectionless or mail or datagram protocols transmit messages
called datagrams to specified destinations. They are usually less
expensive than connection-oriented protocols, but also less reliable.
If necessary, the protocol layer above the transport layer will detect
missing or out-of-order datagrams and take corrective action. The
UDP protocol of the Internet protocol suite is a connectionless
protocol.

Summary
Each of these types of communication protocols or services can be
implemented in terms of the other. For example, the NCS protocol
implemented in VisualWorks Distributed Smalltalk is a connection-
oriented protocol implemented on top of the connectionless UDP
transport protocol.

Together, the two transport protocol types are sufficient to implement
any communication pattern. Newer, high-performance protocol
stacks, like Asynchronous Transfer Mode (ATM), typically provide an
adaptation layer to transport protocols such as TCP and UDP. Thus,
the framework provided by the Opentalk Communication Layer will be
sufficient for several purposes, and for the foreseeable future.

Synchronization
In addition to data or code transfer, inter-process communication may
involve process synchronization. If the communication is
synchronous or blocking, the sending process waits until the
receiving process completes the activities entailed by message
receipt and responds to the sender. If the communication is
asynchronous or non-blocking, the sending process does not wait for
a reply or acknowledgement. In either case the receiving process
usually blocks when no incoming messages are present.
Opentalk Communication Layer Developer’s Guide 2-5

Basic Opentalk Concepts
Patterns of Communication
Distributed systems can be understood and designed at the
messaging level. This is the level at which distributed systems are
discussed and analyzed in texts on distributed algorithms.

In that context, a distributed system is modeled as a set of nodes,
arranged in a directed graph. Each node is associated with a
process. Each process has states, a message generating function,
and a state transition function. Each node in the graph has incoming
and outgoing edges. Associated with each edge is a link that can
contain at most one message. The state of any process is
determined by the set of messages it has received and the order in
which it has received them.

Though this abstract model is useful in the analysis of algorithms,
several higher-level message patterns are so common in the
construction of distributed systems that is far better to think in their
terms. The most useful higher-level patterns are remote invocation,
remote execution, and group multicast.

Remote Invocation
The remote invocation pattern is also known as the remote procedure
call (RPC), and sometimes as the client-server communication
model. Remote invocations usually have the same structure as
ordinary function invocations: the caller relinquishes control to the
invoked function at the time of the call and regains control when the
function returns. A remote invocation is just a remote function
invocation with the facade of a local one.

A RPC involves two messages:

• the transmission of a request from the client process to the
remote server process, and

• the transmission of a reply from the server to the client.A request
includes at least:

• an identifier of the object to which the request is addressed,

• the name of the function to be invoked, and

• the arguments to that function.

Requests that expect replies must also include a request identifier.
2-6 VisualWorks

Patterns of Communication
A reply includes at least:

• the identifier of the request to which it is a response, and

• the return value, which may be either an object of the type
expected, given normal execution, or an exception.

RPCs can be implemented over either connection-oriented protocols
like TCP or connectionless ones like UDP. If implemented over UDP,
the RPC layer must address the reliability of the communication.

Synchronous RPCs
RPCs are usually synchronous. The client process blocks until it
receives a reply from the server.

Asynchronous RPCs
Asynchronous or non-blocking RPCs are useful in several cases.
Since the client does not wait for a reply, the client and the server
process can work in parallel. The performance benefits are further
enhanced if the client can, over a short period, send several
asynchronous RPC requests, one to each of several servers, which
increases parallelism. If many client requests have the same
destination, the client has the option of bundling several of them
before transmission, to minimize the number of messages sent.

Asynchronous RPCs have two forms: without reply and with reply.

• Asynchronous RPCs without reply are typically used only for non-
critical notifications.

• Asynchronous RPC with reply has a wider range of uses. If a
client process is not going to block and yet receive a reply, some
object must be defined to catch the reply when it arrives, and
serve as a place-holder for it until it does. Such objects are called
promises. Promises are implemented in VisualWorks by class
Promise. Promises are either “blocked” or “ready,” and are created
“blocked.” When the RPC returns, a Promise stores the returned
value and becomes “ready.” The return value is stored immutably,
so that it can be reclaimed more than once. If the client attempts
the reclaim the promise while it is still “blocked,” the client
process also blocks. Promises support the use of asynchronous
RPCs with negligible impact on the structure of client code.
Opentalk Communication Layer Developer’s Guide 2-7

Basic Opentalk Concepts
Remote Execution
Remote execution, or remote compilation and execution, are variants
of remote invocation in which the data shipped to the server includes
function definitions, as well as function names and function
arguments. The function definitions may be expressed in a one of
several formats. The formats used usually presuppose some degree
of homogeneity: the communicating processes must be running code
written in the same implementation language or upon the same
platform type. The client defines the functions it wishes to have the
server perform or store under some name for later invocation and
execution. The server acts as an execution environment.

This approach can be very flexible, and it is comparatively easy to
implement in languages like Smalltalk. It also has a long pedigree:
PostScript employs this approach. It is partially echoed in the
VisualWorks architecture: the image is a client of the engine, albeit a
co-located one.

Group Multicast
In multicast, messages are sent to several target processes rather
than just one. The target processes are said to belong to a multicast
group. Even if there is no underlying hardware support for multicast, it
can be implemented using sequential unicast. Group multicast is a
useful structuring concept in distributed design however
implemented. Note that multicast implementations usually make the
decision, about whether the sender of the multicast will also receive
it, on a relatively low level.

Multicast is useful for:

• locating object or services in a network,

• multiple updates, needed when several processes are interested
in the same event, and

• achieving either fault tolerance or faster performance through the
replication of services or state.

In a clean group multicast design, the objects in a group should not
need to be aware of the distinction between object groups (the set of
all the objects that belong to a group) and process groups (the set of
all processes that contain objects belonging to the group).

Any powerful implementation of the concept of the multicast group
will usually augment the basic multicast transport protocol to improve
reliability (for example, best effort delivery rather than ‘send once’), to
2-8 VisualWorks

Patterns of Communication
enforce atomicity (all group members receive the message or none
do), or to guarantee the delivery order of multicast messages.
Causally ordered multicast is sufficient for most applications.

Multicast groups take several important forms.

In subscription groups, the member processes receive the same
information from a multicast source. Group members do not reply to
the source.

In peer groups, communication is directed from all objects in the
group to all objects in the group. This is the standard pattern in
cooperative work applications. Multicast loopback will be “on” in
circumstances where the order of the updates is significant and
message ordering is enforced by the multicast protocol in use.

Server groups are employed when client requests are multicast to all
of the servers that can handle the client request. Usually, one server
replies, using unicast. Two may reply if there is concern about rapid
response in case of failure. There are several subvariations of these
patterns, dependent on how the replying server set is elected. Server
groups are one approach for ensuring that all servers have the same
state. They require protocols enforcing fairly strict reliability, atomicity,
and ordering guarantees: the servers cannot be guaranteed to be in
the same state if they receive messages in varying orders, or if some
of them receive messages that others do not.

Another variation is the client-server group. Clients multicast to the
server groups, but the replying server multicasts the response back
to the group consisting of all the servers plus the client. This is the
pattern used in ISIS.
Opentalk Communication Layer Developer’s Guide 2-9

Basic Opentalk Concepts
2-10 VisualWorks

3

Using the Opentalk Communication
Layer

The Opentalk Communication Layer provides a set of frameworks
and components for use by protocol developers who are creating
protocol layers in VisualWorks, operating on top of either the TCP/IP
or UDP transport layers.

The Opentalk Communication Layer is designed to be lightweight but
robust, easy to understand and easy to extend, and rich enough to
support the tasks of protocol developers interested in creating
protocols of any type. The Opentalk Communication Layer is, in
particular, intended to support the implementation of protocols like
RMI or IIOP on top of TCP/IP, stringent multicast protocols on top of
UDP, and custom peer-to-peer protocols. It is also suitable for bulk
data transfer protocols used to replicate memory and disk, and the
continuous transfer protocols used in telephony, conferencing, and
cooperative work applications, for digital audio and video. Opentalk
follows the general outlines of the OMG architecture to enhance
accessibility.

Apart from being a distributed component “construction kit,” the
Opentalk Communication Layer provides a number of immediately
useful components. There is a complete request broker
implementation that supports configurations using several kinds of
object adaptors that exploit either TCP or UDP sockets. Brokers can
be configured to use standard unicast communication, or multicast
and broadcast messaging. A set of basic services is also provided.

This chapter describes how to use these components in distributed
applications. It provides several code examples, offering a pragmatic,
rather than a theoretical, introduction to Opentalk.
Opentalk Communication Layer Developer’s Guide 3-1

Using the Opentalk Communication Layer
Using a Broker
Any application wishing to send or receive remote requests needs to
create and maintain a request broker. Request brokers provide
transparent remote communication between Smalltalk images and
represent the communication layer to communicating applications.

Creating and Configuring a Broker
Brokers exploit lower level network protocols to transport messages
between Smalltalk images. For a broker to be able to receive remote
messages it has to be associated with a specific location in the
network, referred to as access points. Access points link the brokers
with the underlying network protocol, therefore they are expressed in
terms recognized by the protocol. This means that access points of
TCP/IP based brokers are instances of IPSocketAddress.

Since a broker cannot function without an access point, brokers are
always created at an access point. The accessPoint message can be
sent to an existing broker to obtain the access point it is associated
with.

Brokers are usually created using one of the instance creation
messages implemented on the class side of BasicRequestBroker. In
practice, you usually send these messages to class RequestBroker,
which provides services that BasicRequestBroker does not.

For example, a standard Smalltalk-to-Smalltalk TCP broker is created
on a specified port using the expression

RequestBroker newStstTcpAtPort: 4242.
This binds the broker to all available interfaces. The binding address
is derived from the configuration of the host system that the Smalltalk
image is running on.

To specify an address for the broker to a single interface, use the
newStstTcpAT: variant:

RequestBroker newStstTcpAt:
(IPSocketAddress hostAddress: #[211 25 29 171] port: 4242).

The creation method using full IPSocketAddress specification is useful
when a broker has to run on a specific network interface on a host
with multiple network interfaces. If the address is one of the host’s
real addresses, it will bind only to that address.
3-2 VisualWorks

Using a Broker
Also, for operating across firewalls, it is typically necessary to assign
the firewall IP to the broker, and configure the firewall to forward
messages on the port. The firewall and broker must both bind to the
same port number. If the address is a firewall address, rather than
one of the host’s real addresses, object references will be exported
with this address.

Both types of broker creation message are shortcuts for a
configuration-based expression like the following:

(StandardBrokerConfiguration new
adaptor: (ConnectionAdaptorConfiguration new

transport: (TCPTransportConfiguration new
marshaler: (STSTMarshalerConfiguration new))))

newAt: anIPSocketAddress
Using configuration-based expressions allows one to tune runtime
component parameters like timeouts and buffer sizes.

Starting and Stopping a Broker
An instance of a broker has to be activated to be able to mediate a
remote communication. To bring a broker into an active “running”
state it has to be started using message start. A broker can be
stopped with the message stop; it closes all the open communication
channels and deactivates the broker. A stopped broker can be
restarted again with start.

| server client |
server := RequestBroker newStstTcpAtPort: 4242.
client := RequestBroker newStstTcpAtPort: 4243.
[server start.

client start.
(client ping: (IPSocketAddress hostName: 'localhost' port: 4242))

ifTrue: [Transcript show: 'Contact!']
ifFalse: [Transcript show: 'Failure!'].

] ensure: [server stop. client stop].

Using Broker Events
Opentalk contains a generic event tracing mechanism. It is
implemented by code that triggers normal events at significant points
in the course of remote message sending, receipt, and execution.
Some events are triggered in the request broker and others in the
adaptor. (Adaptors can be used without a broker.)
Opentalk Communication Layer Developer’s Guide 3-3

Using the Opentalk Communication Layer
A complete list of triggered events is captured in the class-side
operationalEvents and errorEvents methods of both broker and adaptor
classes.

Applications can register event handlers with brokers or adaptors
using the standard event API, for example:

aBroker
when: #importingReference:in
send: #importingReference:in:
to: anEventLogger

The parcel Opentalk-Core-Support provides useful classes that can
be used to trace broker and adaptor events: ArgumentTransformer,
EventCollector, and EventPrinter. Application may, of course, provide
their own event handlers.

The following is an example using an ArgumentTransformer:

aBroker objectAdaptor
when: #exportingObject:oid:in:
send: #show:
to: Transcript
with: (ArgumentTransformer withBlock: [:args |

‘Exporting <1p> with oid <2p>.’
expandMacrosWithArguments: args])

To register the same handler for a number of events the following
pattern may be used:

log := EventCollector new.
#(#sendingRequest:in #receivingReply:in:) do: [:ev |

aBroker objectAdaptor when: ev send: ev to: log]
There are additional convenience methods that support registering a
handler for an entire class of events, like sendOperationalEventsTo:,
sendErrorEventsTo:, and sendAllEventsTo:. For example:

aBroker sendAllEventsTo: EventPrinter new

Message Interceptors
Message interceptors (class MessageInterceptor) are a fairly common
patternemployed by many middleware frameworks for distributed
computing (e.g., CORBA) to allow applications to observe, and
possibly intervene in, processing of remote messages.

While there are not many fundamental differences between message
interceptors and broker event handlers, there are advantages to
modeling these handlers as objects, rather than as ad hoc blocks
3-4 VisualWorks

Using a Broker
hooked into the broker events. For example, it is much easier to pass
state from one interception point to another in the context of an
interceptor object.

BasicObjectAdaptor maintains a ProcessingPolicy, which is configured as
a processingPolicy aspect of AdaptorConfiguration. The main
responsibility of ProcessingPolicy is to provide InterceptorDispatcher to
any incoming/outgoing request.

By default, a new instance of InterceptorDispatcher, configured with
fresh set of MessageInterceptor instances, is created to handle each
request/reply pair. However, it is possible to optimize by reusing
dispatcher/interceptor instances, if the processing is stateless.

The kinds of dispatchers and interceptors used depend on the policy
that is currently configured with dispatcher class and a sequence of
interceptor classes to use. These will be different for different
protocols as the interception points might be different for different
protocols. Consider for example message envelope processing in
SOAP. Users might or might not use their specialized class of
dispatcher (if some pre/post processing is necessary before/after
interceptors get invoked) and usually will provide custom interceptor
classes filling in actual processing at specific interception points.
Interceptors have a back pointer to their dispatcher which allows
interceptors to reflect on other interceptors in case such coordination
is necessary. Therefore the dispatcher also serves a a sort of
"processing context" for the interceptors.

MarshalerConfiguration defaultProcessingPolicyClass defaults to the right
type of interceptor or dispatcher to deal with protocol specific events.
For example, SOAP brokers need SOAPInterceptorDispatcher, which is
aware of the message envelope events. (This also provides backward
compatibility with old configurations that do not specify a policy.) The
policy default is delegated to marshaler configuration because it is
the one configuration component that reflects the application
protocol.

The same interceptor is expected to process corresponding request
and reply. Interceptors are assigned to a request as soon as it is
created on the client or server side, before any interception points are
reached.
Opentalk Communication Layer Developer’s Guide 3-5

Using the Opentalk Communication Layer
Similarly, each reply gets the dispatcher from its corresponding
request as soon as possible. On the client side the reply has to be
first matched with the corresponding request. If the request is not
found then a new dispatcher is obtained from the processing policy
so that the interceptors can process events of the orphaned reply.

Remote Objects
This section discusses some concepts and inner aspects of
distributed object computing that don’t always surface in application
development. However, you are guaranteed to see them sooner or
later and it is very useful to have an understanding of these concepts
ahead of time.

Now that we know how to setup a broker we can discuss how to
actually use it for its primary purpose, remote object communication.
The communication means remain the same, using normal Smalltalk
messages. The complication is in how to address a message to
something in a remote system. To send a message to a remote
object, the object has to be identified using a kind of token that
represents the object in the remote system. Surprisingly this token is
called an object identifier or OID. Assigning an OID to an object is
called exporting and an object is exported by sending message
export:oid: to broker’s object adaptor. An OID is usually a SmallInteger,
but can be any kind of object that guaranties uniqueness of object of
given value, e.g. Symbols can be OIDs but Strings cannot.

Once an object is exported a remote system is able to identify it using
its OID. To send a message to an exported object on a remote
system a broker method sendMessage:to: can be used. Its first
argument is an instance of the Smalltalk class Message and its
second is an instance of ObjRef. ObjRef is just a composite of OID and
the remote system address, which in case of STST TCP request
broker is IPSocketAddress.
3-6 VisualWorks

Remote Objects
| server client str size remoteStr |
server := RequestBroker newStstTcpAtPort: 4242.
client := RequestBroker newStstTcpAtPort: 4243.
[server start.

client start.
str := 'Hello'.
server objectAdaptor export: str oid: #Greeting.
remoteStr := ObjRef newOnHostName: 'localhost' port: 4242

oid: #Greeting.
size := client sendMessage: (Message selector: #size) to: remoteStr.
(size = str size)

ifTrue: [Transcript show: 'Correct! ']
ifFalse: [Transcript show: 'Incorrect! '].

] ensure: [server stop. client stop]
Of course it would be unpleasant if every remote call had to be
expressed using sendMessage:to:. Therefore Opentalk provides a
transparent wrapper for ObjRefs that does this for you. The wrapper is
an instance of class RemoteObject. It’s main purpose is to catch and
redirect any message sent to it (using the usual doesNotUnderstand:
trick), transforming it into a sendMessage: for the ObjRef it wraps. A
RemoteObject may be obtained by sending the message
remoteObjectToHost:port:oid:.

| server client str remoteStr size |
server := RequestBroker newStstTcpAtPort: 4242.
client := RequestBroker newStstTcpAtPort: 4243.
[server start.

client start.
str := 'Hello'.
server objectAdaptor export: str oid: #Greeting.
remoteStr := client remoteObjectToHost: 'localhost' port: 4242

oid: #Greeting.
size := remoteStr size.
(size = str size)

ifTrue: [Transcript show: 'Correct! ']
ifFalse: [Transcript show: 'Incorrect! '].

] ensure: [server stop. client stop]
This is how remote messages works internally. In everyday
application development, RemoteObjects are usually obtained using
higher-level services, and since they provide transparent messaging
there isn’t much OID and broker address juggling involved. We will
talk about this more in the chapter on broker services.
Opentalk Communication Layer Developer’s Guide 3-7

Using the Opentalk Communication Layer
Object Passing Modes
So far we’ve been sending remotely only very simple unary
messages. However, messages can take a number of fairly complex
parameters and return a complex object as a result as well. How do
these objects get across to the remote system? By default they don’t.
ObjRefs are sent instead. This is called passing objects by reference.
It means that if a parameter of a message is a complex object, and it
wasn’t exported yet, then it will be exported automatically in the
course of message sending, and an ObjRef with its OID is sent
instead of the object. The following code prints “Passed by
reference!” to the Transcript:

| server client holder remote obj |
server := RequestBroker newStstTcpAtPort: 4242.
client := RequestBroker newStstTcpAtPort: 4243.
[server start.

client start.
holder := ValueHolder new.
obj := Object new.
server objectAdaptor export: holder oid: #holder.
remote := client remoteObjectToHost: 'localhost' port: 4242

oid: #holder.
remote value: obj. "Pass the object across"
(holder value _isRemote)

ifTrue: [Transcript show: 'Passed by reference! ']
ifFalse: [Transcript show: 'Passed by value! '].

] ensure: [server stop. client stop]
There are exceptions to this default behavior though. In general all
immediate objects (nil, true, false, Characters and SmallIntegers),
Magnitudes, ByteStrings, ByteSymbols, some collections, and others are
sent across as is. (Actually their value is encoded, sent across,
decoded and the objects are reconstructed from it on the remote
system). This is called passing objects by value and the result of
pass by value is usually 2 copies of the object: one original version in
the local image and a new copy of it on the remote system. Keep this
in mind because modifying an object passed by value does not affect
the original at all!

To force an object to be passed by value, regardless of the default
rules, use the result of sending asPassedByValue to the object.
Similarly to force an object to be passed by reference, use the result
3-8 VisualWorks

Remote API of a Broker
of asPassedByRef. So if we slightly modify our previous example to use
asPassedByValue, it will print “Passed by value!” to the Transcript
instead.

| server client holder remote obj |
server := RequestBroker newStstTcpAtPort: 4242.
client := RequestBroker newStstTcpAtPort: 4243.
[server start.

client start.
holder := ValueHolder new.
obj := Object new.
server objectAdaptor export: holder oid: #holder.
remote := client remoteObjectToHost: 'localhost' port: 4242

oid: #holder.
remote value: obj asPassedByValue. "Pass the object across"
(holder value _isRemote)

ifTrue: [Transcript show: 'Passed by reference! ']
ifFalse: [Transcript show: 'Passed by value! '].

] ensure: [server stop. client stop
For further discussion of pass modes, refer to Pass Modes.

Remote API of a Broker
Brokers themselves can be accessed remotely by any other object. A
Broker automatically exports itself using a well-known name so that
ObjRefs to it can be constructed on remote sites. This is done by
sending an activeBrokerAtHost:port: message to the local broker,
providing the remote broker’s host name and port number as
arguments. Alternatively activeBrokerAt: message with an instance of
access point can be used.

| server client remote |
server := RequestBroker newStstTcpAtPort: 4242.
client := RequestBroker newStstTcpAtPort: 4243.
[server start.

client start.
remote := client activeBrokerAt: server accessPoint.
((remote echo: 42) = 42)

ifTrue: [Transcript show: 'Echo successful!']
ifFalse: [Transcript show: 'Echo failed! '].

] ensure: [server stop. client stop]
Message echo: is part of the remote API allowing a test of the remote
broker’s responsiveness.
Opentalk Communication Layer Developer’s Guide 3-9

Using the Opentalk Communication Layer
RequestBroker extends BasicRequestBroker with access control for the
remote broker API. It maintains a list of so-called open selectors and
allows only those selectors to be sent to the broker remotely. Open
selectors list is maintained using messages openSelectors: and
openSelectors. The list of open selectors is made use of in
remotePerform:withArguments:, and it serves only to guard a broker
against inadvertent tampering or damage. It does not safeguard other
objects in the image, which are fully exposed to a remote user with a
reference to them.

Broker Services
Another distinguishing feature of RequestBroker is support for broker
services. RequestBroker maintains a simple registry of services keyed
by service identifiers. A remote party can obtain a list of these service
identifiers using the message serviceIds. Once the remote party
knows the identifier of a service it would like to use, it can get a
reference to it by sending message serviceById: to the remote broker
passing the service identifier as a parameter. Message
registerService:id: is used to add a service object to the broker’s
registry. Any object can be a service. It can be something as
generally useful as a naming service, or something tailored to the
specific needs of a given application.

The reason why the broker services feature is so important is that it
helps to resolve a well-known distributed object computing problem
called initial reference acquisition. Once there are some remote
references available, their set will grow quickly and autonomously as
remote messages fly back and forth. The question is how to get the
first remote reference in a freshly started distributed system.

The answer is to register the general entry point object under a well-
known identifier as a broker’s service. Then any remote system can
access it using this identifier. Even if there isn’t an established, well-
known identifier, a remote system can discover the identifiers by
asking for the list of services or service identifiers registered with a
broker.
3-10 VisualWorks

Using NamingService
| server client remote |
server := RequestBroker newStstTcpAtPort: 4242.
client := RequestBroker newStstTcpAtPort: 4243.
[server start.

client start.
server registerService: Random new id: #RandomGenerator.
remote := (client activeBrokerAtHost: 'localhost' port: 4242)

serviceById: #RandomGenerator.
Transcript show: remote next printString.

] ensure: [server stop. client stop]

Opentalk Service
In order to facilitate service registration, Opentalk provides the
abstract class OpentalkService as a convenience. It provides support
for a default instance, a service identifier, and several methods for
registering instances either

• in a naming service,

• as a request broker service, or

• in a broker's object adaptor under a OID specified by the user.

Concrete subclasses may invoke these methods in class initialization
methods to ensure that default instances are registered in the
Opentalk naming service or with a default broker at class initialization
time.

The existence of the class OpentalkService is not a constraint;
instances of any class may be registered as broker services,
registered in a naming service, or registered in a broker under a
specified OID. Note also that only those Opentalk services likely to
have registered instances are subclasses of OpentalkService.

Using NamingService
A naming service is probably the most important distributed object
service. Its basic function is similar to broker services registry
discussed before, i.e. mapping well-known names to objects. Both
are kind of a distributed equivalent of what name spaces are for a
single image. The difference between the two is in their flexibility and
robustness. While a broker service registry is very simple and flat, a
naming service supports a hierarchy of naming contexts that can
Opentalk Communication Layer Developer’s Guide 3-11

Using the Opentalk Communication Layer
span multiple distributed images. A broker service registry is like a
single name space called Smalltalk, whereas a naming service is
comparable to the current hierarchical name space structure.

A hierarchy of naming contexts always needs a root from which the
name resolution starts. A naming context is an instance of class
NamingService and, as such, it is just another distributed object that
needs to be exported so that it can be accessed remotely. Although it
does not really matter how the root naming context is exported,
common practice is to register it as a broker service. And indeed the
class NamingService is a subclass of OpentalkService so that an
instance of it can be conveniently created and registered using the
service registration methods.

There is also a convenience method namingService that returns the
registered context. If there isn’t one registered yet, it creates one,
registers and returns it.

The essential API of NamingService is comprised by the methods
bind:to:, resolve:, resolve:ifAbsent: and unbind:. It was mentioned already
that there often is a hierarchical structure of contexts. To resolve a
name of an object registered deeper in the hierarchy a compound
name can be used. A compound name is a sequence of names of
contexts all the way from the context that is going to be asked to
resolve the name (usually the root context) and ending with the name
of the target object. A compound name may be either a period-
separated String or an OrderedCollection of names. Usage is
demonstrated in the following example.

| server client remote |
server := RequestBroker newStstTcpAtPort: 4242.
client := RequestBroker newStstTcpAtPort: 4243.
[server start.

client start.
"Enable remote use of #namingService method"
server openSelectors: server openSelectors, #(namingService).
"Create the root naming context and in it a nested context called
Generators"
server namingService create: 'Generators'.
"Register an instance of Random as Random in Generators"
server namingService bind: 'Generators.Random' to: Random new.
"Obtain a remote reference to Random resolving its name in the remote
naming service"
remote := (client activeBrokerAtHost: 'localhost' port: 4242)

namingService
resolve: 'Generators.Random'.
3-12 VisualWorks

Using UcastEventService
Transcript show: remote next printString.
] ensure: [server stop. client stop]

Using UcastEventService
Many applications exploit some kind of event-based mechanism to
propagate notifications to interested parties. VisualWorks implements
its own object level events (Object protocols “event *”), which are used
throughout the system. Opentalk’s event services extend object level
events with additional multiplexing components that are capable of
relaying events to remote systems.

These event relays are instances of UcastEventService. A network of
them constitutes a unidirectional distributed event channel.
UcastEventService supports the standard VisualWorks event API
implemented in Object protocols event *. In addition, there are a
couple of configuration methods allowing you to plug
UcastEventServices together to form a channel. These methods are
addRelay:, removeRelay: and clearRelays. The following example will
print “Hello!” twice to the Transcript in response to a single event
triggered.

| b1 b2 b3 remote front back1 back2 |
b1 := RequestBroker newStstTcpAtPort: 4242.
b2 := RequestBroker newStstTcpAtPort: 4243.
b3 := RequestBroker newStstTcpAtPort: 4244.
[b1 start.

b2 start.
b3 start.
"Register the front relay of the event channel"
front := UcastEventService new.
b1 registerService: front id: 'channel1'.
"Register back1 of the relay channel and plug Transcript into it"
back1 := UcastEventService new.
b2 registerService: back1 name: 'channel1'.
remote := ((b2 activeBrokerAtHost: 'localhost' port: 4242)

serviceById: 'channel1')
addRelay: back1.

back1 when: #show: send: #show: to: Transcript.
"Register back2 of the relay channel and plug Transcript into it"
back2 := UcastEventService new.
b3 registerService: back2 id: 'channel1'.
remote := ((b3 activeBrokerAtHost: 'localhost' port: 4242)

serviceById: 'channel1')
addRelay: back2.

back2 when: #show: send: #show: to: Transcript.
Opentalk Communication Layer Developer’s Guide 3-13

Using the Opentalk Communication Layer
"And now try to trigger a #show event at the front"
front triggerEvent: #show: with: 'Hello! '.

] ensure: [b1 stop. b2 stop. b3 stop]

Using a Broadcasting RequestBroker
The broadcasting RequestBroker exploits IP broadcasting as the
underlying communication mechanism. Broadcasting, like
multicasting, uses UDP sockets to deliver data packets. In broadcast,
the recipients are determined by the form of the broadcast address.
There are three commonly used broadcast address types:

Limited Broadcast

The limited broadcast address is 255.255.255.255. A packet sent
to this address is never forwarded by a router. Thus, it never
leaves the local subnet, but it is received by all stations on the
subnet.

Net-Directed Broadcast

The net-directed broadcast address has a host ID (6 bits) of all
one bits. A class A net-directed broadcast is of the form
N.255.255.255, where N is the class A network number. All
stations on the specified network receive the broadcast, unless
routers have explicitly disabled the default forwarding policy for
such addresses. This is a wide area broadcast. It is expensive
and seldom useful.

Subnet-Directed Broadcast

A subnet-directed broadcast address has a host ID (6 bits) of all
one bits but a defined subnet ID. Routers determine whether a
packet is a subnet-directed broadcast by reference to the subnet
mask. This is the most common and most useful form of
broadcast. It targets a specific network that may be different from
that of the sender. However, routers may not forward these
broadcasts either, in the interest of preventing denial of service
attacks. This form of broadcast is only useful in a controlled
environment, configured for broadcasts of this type. Any subnet-
directed broadcast to the orioginating networl will have teh same
effect as a limited broadcast.

A broadcast RequestBroker, by default, assumes that limited broadcast
is desired. (See BcastTransport groupAddress, where this default is
arranged.)
3-14 VisualWorks

Using a Broadcasting RequestBroker
A broker may be configured to use net- or subnet-directed broadcast
by sending BcastTransportConfiguration message
networkDirectedWithNetmask:. The argument is a 4 byte ByteArray
representing the netmask of a given network. It is used to compute
the broadcasting address from the local host address. An equivalent
message is networkDirectedWithNetmaskWidth:, which takes a number
of non-zero bits in the netmask instead. Also, if a standard class C
subnet is the intended target of the broadcast, the netmask can be
set using networkDirected:. Finally, if a specific network configuration
does not use the highest network address for broadcasting, a
different address can be explicitly set with AdaptorConfiguration
message accessPoint:. A typical creation expression for a network
directed broadcasting broker looks something like this:

(BrokerConfiguration basic
adaptor: (AdaptorConfiguration objectGroups

transport: (TransportConfiguration bcast
networkDirectedWithNetmask: #[255.255.254.0];
marshaler: (MarshalerConfiguration stst))))

newAtPort: 4242
Broadcasting is also targeted to a given port and only hosts reading
given port will actually receive the packet. Therefore broadcasting
RequestBrokers that are supposed to communicate together have to be
running on the same port number.

Broadcasting is represented by the concept of object groups at the
object level. In the case of a broadcasting RequestBroker it means that
a given OID is not associated with a single object on a single host,
but rather associates with a number of objects on different hosts.
Therefore to build an object group with a set of broadcasting
RequestBrokers each should export its group participant object using a
given OID. This way an OID effectively becomes a group ID. To
broadcast a message to participants in a group the message has to
be addressed to a group proxy. A group proxy is obtained from a
broker using groupById: message with parameter being that group’s
ID.

There’s one more aspect of broadcasting that has a significant impact
on usage of a broadcasting RequestBroker. Given the nature of
broadcasting, where there is a potentially large number of recipients,
it would be hard to support the usual two-way request/reply
semantics of remote messages. How could one meaningfully
combine a number of replies into a single return value? Therefore
Opentalk Communication Layer Developer’s Guide 3-15

Using the Opentalk Communication Layer
broadcasting RequestBrokers support only one-way requests, which
means there’s no meaningful return value from a message mediated
by a broadcasting RequestBroker.

| b1 b2 b3 transcripts |
b1 := RequestBroker newStstBcastAtPort: 4242.
b2 := RequestBroker newStstBcastAtPort: 4242.
b3 := RequestBroker newStstBcastAtPort: 4242.
[b1 start.

b2 start.
b3 start.
"Export group participants with the group ID"
b1 objectAdaptor export: Transcript oid: #Transcripts.
b2 objectAdaptor export: Transcript oid: #Transcripts.
b3 objectAdaptor export: Transcript oid: #Transcripts.
"Create the group proxy using one of the brokers"
transcripts := b2 groupById: #Transcripts.
transcripts show: 'Hello ! '.
"We need to give the brokers some time to process
the incoming message before they are stopped"
(Delay forMilliseconds: 100) wait.

] ensure: [b1 stop. b2 stop. b3 stop]

Using a Multicasting RequestBroker
A multicasting RequestBroker exploits IP multicasting as its underlying
communication mechanism. Multicasting is very similar to
broadcasting. Again it is a way to route a packet to a number of
parties but this time the set of recipients can be fine-tuned, on a host-
by-host basis. A packet to be multicasted has to be addressed to one
of a range of dedicated multicasting addresses (224.0.0.0 –
239.255.255.255). The port number is important and has the same
effect as described above for broadcasting. All that was said about
broadcasting at the object level applies to multicasting as well:
multicasts are sent to an object groups and are unidirectional.

| b1 b2 b3 transcripts |
b1 := RequestBroker newStstMcastAtPort: 4242.
b2 := RequestBroker newStstMcastAtPort: 4242.
b3 := RequestBroker newStstMcastAtPort: 4242.
[b1 start.

b2 start.
b3 start.
"Export group participants with the group ID"
b1 objectAdaptor export: Transcript oid: #Transcripts.
b2 objectAdaptor export: Transcript oid: #Transcripts.
3-16 VisualWorks

Using McastEventService
b3 objectAdaptor export: Transcript oid: #Transcripts.
"Create the group proxy using one of the brokers"
transcripts := b2 groupById: #Transcripts.
transcripts show: 'Hello ! '.
"We need to give the brokers some time to process
the incomming message before they are stopped"
(Delay forMilliseconds: 100) wait.

] ensure: [b1 stop. b2 stop. b3 stop]

Using McastEventService
McastEventService is one of the very natural applications of
multicasting. Functionally it is almost equivalent to UcastEventService,
i.e. it is an event relaying extension for VW object events. The
difference springs from the nature of multicasting. Since multicasting
is inherently omnidirectional, a network of McastEventServices forms an
omnidirectional channel as well, unlike the UcastEventService which
creates unidirectional channels.

McastEventService has to be used with either a multicasting or a
broadcasting RequestBroker. To create a channel, simply form an
object group with instances of McastEventService as participants.
Instead of maintaining a collection of event relays McastEventService
just holds onto a group proxy, which is called its sender. To setup an
instance of McastEventService with a group proxy use message sender:.

| b1 b2 b3 es1 es2 es3 |
b1 := RequestBroker newStstMcastAtPort: 4242.
b2 := RequestBroker newStstMcastAtPort: 4242.
b3 := RequestBroker newStstMcastAtPort: 4242.
[b1 start.

b2 start.
b3 start.
"Setup broker 1"
es1 := McastEventService new.
b1 objectAdaptor export: es1 oid: 42.
es1 sender: (b1 groupById: 42).
es1 when: #show: send: #show: to: Transcript.
"Setup broker 2"
es2 := McastEventService new.
b2 objectAdaptor export: es2 oid: 42.
es2 sender: (b2 groupById: 42).
es2 when: #show: send: #show: to: Transcript.
"Setup broker 3"
es3 := McastEventService new.
b3 objectAdaptor export: es3 oid: 42.
Opentalk Communication Layer Developer’s Guide 3-17

Using the Opentalk Communication Layer
es3 sender: (b3 groupById: 42).
es3 when: #show: send: #show: to: Transcript.
"And now trigger a #show: event at any broker"
es2 triggerEvent: #show: with: 'Hello ! '.
"We need to give the brokers some time to process
the incomming message before they are stopped"
(Delay forMilliseconds: 100) wait.

] ensure: [b1 stop. b2 stop. b3 stop]
3-18 VisualWorks

4

Some Components of Opentalk

All three patterns of inter-process communication outlined in the
previous chapter face common issues as a consequence of the fact
that they all expect to send request identifiers, object identifiers,
function identifiers, function arguments, and perhaps function
definitions, within messages from one process space or host to
another. As a consequence, the upper layers of all protocol stacks
used for these messaging patterns tend to have common
architectural components.

This section discusses some of those common issues and
components, and points out where and how the logical components
are represented in the Opentalk Communication Layer. Not all logical
components are discussed, nor are all of the implementations of the
Opentalk Communication Layer. Furthermore, no systematic
attention has been devoted to the components characteristic of
heterogeneous RPCs. More components, and components specific
to heterogeneous RPCs, shall be addressed in future editions of this
document.

Though it should not come as a surprise, additional information of the
kind presented in this chapter occasionally may be found in the class
comments of the Opentalk implementation.

Message Format
You cannot have a message without a message format. In practice a
message format usually involves two separate chunks of
specification: one for the message header and another for the
message bodies of potentially several message types.
Opentalk Communication Layer Developer’s Guide 4-1

Some Components of Opentalk
Message Header
A message header is seldom other than a fixed length byte array
containing a fixed set of items each beginning at a predetermined
position. The items are of a privileged sort, usually of the kind that
determine whether and/or how the attached message body is to be
processed. Reading the header is supposed to be cheap. It is
standard practice in request processing to process the header, and
then to branch on the outcomes.

For example, a recipient may defer processing the body based on a
protocol version number. An older implementation of the protocol can
usually assume that it is not forward-compatible with a later one.
Revisions that do and do not retain forward-compatibility can be
distinguished if a protocol version number has both a “major” and a
“minor” component, where minor version number changes indicate
forward compatibility and major ones do not.

An example of an item that affects the way in which the attached
message body is processed is a message type identifier. For
example, if the recipient gets a “time-profile” rather than a “normal”
message, it may then know that it is required to run the message
encoded in the message body under a time profiler, rather than in the
ordinary way, and return the profiling results along with the usual
return value, so that the sender can assemble a cross-platform
execution tally.

TransportPackageBytes
In Opentalk, the header bytes of an encoded message are
represented by the class TransportPackageBytes, and its potential
subclasses. TransportPackageBytes is a subclass of BinaryStorageBytes
with a default size of 12 bytes. It contains seven slots for
representing:

• the “magic,” a protocol identifier

• the message type

• the major protocol version number

• the minor protocol version number

• the byte order

• an indicator of whether the message is a fragment

• the message length
4-2 VisualWorks

Logical Message State Machines
Message Body
Receivers and senders have to agree on the ordering and the
constituents of the potentially several message types. Message
bodies may contain request identifiers, target object identifiers,
function identifiers, arguments, and possibly other items relevant to
the communication and execution options supported by the protocol.
These will all be placed in the message body.

RemoteMessage and its Subclasses
Message bodies are represented in Opentalk by class RemoteMessage
and its subclasses. The components of message bodies are held in
instance variables. RemoteMessage itself is an abstract class and only
declares one instance variable, for a request identifier—almost
always useful.

Logical Message State Machines
In some protocol implementations, sending one logical message may
involve sending several actual ones.

For example, one simple way to ensure consistent message ordering
within a multicast group is to require all message senders to obtain a
timestamp or sequence number from a common sequencing service,
and include that timestamp in the header of any message they issue.
(It is better, but still involves a single point-of-failure, if the message is
unicast to the sequencer directly, where the sequencer attaches a
timestamp or sequence number, and then multicasts the message to
the group). In this fanciful protocol, sending one logical message
involves sending two actual ones: one to the sequencer, then a
second to the multicast group. With a sequence number attached to
each message, each recipient can easily discover whether it is
missing messages in its incoming queue, and delay further
processing until the missing messages arrive.

In cases like this there will be some code component:

• that expresses the message ordering or the message exchange
sequence required for completion of a single, logical message,
and

• that records the location of the current logical message in the
state transition diagram prescribed by the protocol.
Opentalk Communication Layer Developer’s Guide 4-3

Some Components of Opentalk
See the discussion of session layers later in this chapter for more
trenchant remarks on the issues associated with protocols involving
complex exchanges.

Methods sendRequest:to and evaluateFor:
Opentalk has no dedicated class responsible solely for representing
the relationship between a complex message and its component
parts. Simple cases may be handled by overriding methods in the
context stack proceeding from BasicRequestBroker>>sendMessage:to: on
the client side, or in the stack proceeding from
RemoteMessage>>evaluateFor: on the server side.

Note that these are also the two stacks wherein you are likely to
place halts, whenever you need to examine either client-side
message sending or server-side message receipt.

Server-Side Message Dispatch
Once a message has been received, the job of processing it has to
be dispatched or assigned to some process. The style of dispatch is
an important design dimension. One might defer dispatch and let the
receiving process unmarshal and evaluate the message. This
alternative is the least useful and the most dangerous: while
processing the current message it will be available to receive others.
It is more usual to dispatch the message to a newly created process
running at a lower priority than the receiving process, or to dispatch it
to a process in a pool of processes, also running at lower priority.
Those processes in turn may evaluate the message and reply, or
forward the message to yet another image. Regardless, every
protocol will have some component that regulates server-side
message dispatch.

The Methods handlingIncomingMessage and dispatchFor:
Opentalk does not have a dedicated class that handles message
dispatch. Instead dispatch is regulated by handlingIncomingMessage,
which in turn usually calls dispatchFor:. Both methods have several
implementations in the Opentalk Communication Layer.
4-4 VisualWorks

Process Environments
Process Environments
A message is sent from one process to another. The originating
process may have environment variables that affect execution, and
that must be copied to the environment of the process that will
respond to the message on the remote host. Such process
environment variables are items that are constant with respect to the
logical, distributed process being executed. They retain their value
irrespective of

• the host

• the number of hosts the that logical process has so far transited
during the course of execution

• the concrete process currently executing

• the function currently being executed, or

• that function’s arguments.

They may also be independent of:

• the current message type.

Such environment variables obviously cannot be treated in the same
way as function arguments: they have far wider scope.

Two common examples of meaningful environment variables are
security profiles and interface homes.

Security profiles are used in fine-grained security implementations,
where users are granted or refused permissions at the level of
whether they may send specified classes of messages to specified
classes of objects. When a user logs on, his security profile is
attached to the process environment of any process he or she
initiates, and checked at each function invocation. If the user initiates
a process that issues a remote request, the users profile must be
copied to the environment of the process on the remote machine that
handles the request, so that security constraints can still be enforced.

Interface homes are useful In VisualWorks, where several method
implementations print messages to the Transcript or raise Dialogs. In
a distributed environment, such implementations may be invoked
during the course of a logically distributed process originating on
another machine. In that case, the Transcript printed to should be the
one on the originating image, and Dialogs should be raised at the
Opentalk Communication Layer Developer’s Guide 4-5

Some Components of Opentalk
same location. So, the originating or home environment must be
recorded in a process environment variable, and used to redirect
messages sent to Transcript or Dialog.

Environment variables are seldom of concern to application
developers, but are often critical in implementing distributed services.
So, protocol layers above the transport layer will typically include
environment variables as one of the components of a message body,
and implement code that copies environment variables into message
bodies from a sending process, and from message bodies to the
process that responds to an incoming message. There should also
be an API that allows service and application developers to define
and add new environment variables.

Process Priorities
Priorities of the background processes created by Opentalk brokers
are below the critical process priority range (LowIOPriority and above).
Priority is configurable, allowing broker performance tuning.

The adaptor configuration parameters
(ConnectionAdaptorConfiguration), which are applicable to connection-
oriented adaptors, are:

listenerPriority

The listener process priority.

listenerBacklog

The number of allowed pending connection requests.

The transport configuration parameters (TransportConfiguration) are:

workerPriority

The worker process priority.

serverPriority

The server process priority

The serviceContext Instance Variable
Opentalk only defines service contexts for requests, as they only
make sense for requests, and only in class STSTRequest. The method
#sendAndWaitForReply: has the code that loads the sender’s current
process environment into a request. #evaluateFor: loads the service
contexts of the incoming message into the process dispatched to
4-6 VisualWorks

Endianness
generate the reply. Objects are placed into the process environment
by the sender using the method Process>>environmentAt:put: or by
helper methods, also implemented in class Process, that invoke
#environmentAt:put:.

Endianness
Communicating computers may not be of the same endianness. In a
little-endian architecture the least significant byte of an integer has
the lowest address. In a big-endian architecture, the least significant
byte of an integer has the highest address. Any communication
protocol must accommodate the fact that low-level data elements
may have fundamentally different representations in the two
communicating process spaces.

There are three common strategies for handling this issue:

• Assume that the communicating hosts will always be of the same
endianness. This is rarely a viable option.

• Convert data values to and from a common external
representation. This entails that you will always have work to do,
on both the sending and the receiving side

• Transmit data values as is, with an architecture marker, so that
the receiver of the data can convert the data as needed. This is
the lightweight option. In this option, the architecture or
endianness marker is one component of the message header.

Thus, any generally useful protocol stack implementation will involve
either a common data representation or an endianness-marker-and-
switcher.

The byteOrder and swap Instance Variables
Opentalk opts for the third design option described above. It records
endianness in the byteOrder instance variable of MessageHeader.
MessageHeaders understand the message #swap, the return value of
which is used to set the boolean value of the swap instance variable
of STSTStream. The value of that instance variable is referred to by
several unmarshaling methods: #nextDouble, #nextFloat, #nextLong, and
their like. The swap instance variable only records whether
STSTStream should swap byte order while unmarshaling. The local
endianness is recorded in the isBigEndianPlatform instance variable of
STSTStream, and is used in the message #nextLong.
Opentalk Communication Layer Developer’s Guide 4-7

Some Components of Opentalk
Encodings
In heterogeneous environments, communication occurs between
processes implemented in languages that have different native
character set encodings. Note that this is a translation problem,
specific to character data, at the level of the implementation language
rather than the host.

The options for handling this problem are the same as those for
handling the endianness issues—where assumptions about, or
markers for, the encoding replace those for endianness—but with one
customary addition. Senders and receivers may negotiate, usually
just after the connection has been made in connection-oriented
transfer protocols, whether the server or the client will do the work of
translating encoded data between the client and the server
encodings.

This option is one example of a non-trivial message sequencing
issue: a negotiation protocol becomes one component of the overall
communication protocol. In cases where servers have significantly
more power or lighter loads than clients, “server does the work” will
be favored over “client does the work.”

Whenever this issue arises, there will be some code component that
specifically addresses encoded data. There also will be machinery for
marking which items are to undergo encoding translation and which
are not. This is the rational behind the distinction between the
“character” and “octet” data types in the OMG IDL specification:
characters undergo encoding translation, but octets do not.

Character value: self nextLong
Opentalk does not currently have machinery for handling character
encodings, because its existing concrete protocols assume a
homogeneous Smalltalk environment. But it does linearize characters
as SmallIntegers, in anticipation of future encoding machinery.

Marshaling and Unmarshaling
Data is usually structured: Smalltalk objects are trees of lesser
objects. But the data in a message packet is sequential. As a
consequence of this mismatch, any generally useful protocol stack
must provide facilities for flattening or linearizing data structures or
object trees before transmission and rebuilding them from their
4-8 VisualWorks

Object References
linearized form after receipt. So, even if you do not need a common
data representation to handle the endianness or the encoding issues,
you will wind up with one to handle the linearization problem: you
cannot escape work on both the client and the server side.

Marshaling is the process of linearizing object structures into basic
data elements, and converting the latter to a common data
representation; unmarshaling is the reverse process of translating
from the common data representation.

In the implementation of a protocol stack, the components for
handling endianness, encoded data, and linearization will usually be
integrated in a marshaling component.

STSTStream
Opentalk uses a stream class for marshaling and unmarshaling. The
main entry point in its API are #marshalObject: and #unmarshalObject.
The marshaling and unmarshaling machinery sensitively depends on
the tables implemented on the class side of STSTStream. STSTStream
must and does interact heavily with the pass mode control machinery
discussed in Pass Modes.

STST marshaling employs a set of class-specific type tags, which
allows optimized marshaling of several commonly-used classes.
Several blocks of type tags are reserved for customer use, so that
customers may implement and test application- and class-specific
marshaling optimizations of their own. We assume no responsibility
for conflicts in the use of the tag values within those reserved blocks
(see the initializeTagDispatchTable class method in STSTStream for block
identification).

Object References
Distributed systems require object references. In RPCs, object
references represent a particular remote object. In group multicast,
they represent a particular multicast group.

An object reference contains the information needed to establish a
connection to the process space in which the remote object resides.
In practice, an object reference contains at least two pieces of data:

• an access point for connecting to a remote application, and

• the unique identifier of the object that a reference points to.
Opentalk Communication Layer Developer’s Guide 4-9

Some Components of Opentalk
The nature of both the access point and the object identifier depends
upon the type of communication protocol being used. Some protocols
will require additional data elements

An object identifier is set by the application from which the reference
is obtained. The client application that obtains the reference is
interested in the object identifier solely as a possible means for
maintaining the local identity—rather than equality—of references
pointing to the same remote object.

ObjRef
In Opentalk, object references are implemented by class ObjRef. This
class may be subclassed as required. ObjRef is a subclass of class
Object because it is a mere data holder. ObjRef does not reimplement
doesNotUnderstand:, and instances of the class are used primarily as
components of proxies and as indices in object tables. Object
references are passed by value.

Like several other critical types, ObjRef overrides #marshalWith:. This
double dispatching of the marshaling operation makes it easy to
splice a custom marshaler into the Opentalk framework for objects
that demand custom care.

Transparent Forwarding
The standard implementation of transparent forwarding in Smalltalk
involves a proxy. A proxy is an object that stands in the place of
another, usually remote object, which it represents. The class of the
proxy object reimplements #doesNotUnderstand:, to forward incoming
messages to the remote object represented. The proxy class usually
inherits directly from either nil or class Object, so that there are few
messages that it does understand.

Several kinds of proxy classes are possible and useful. The most
usual are:

• the simple forwarding proxy just described, and

• the faulting proxy.

In response to the first message sent to it, a faulting proxy replaces
itself with a copy of the object it represents and redispatches that first
message to it. Subsequent messages arrive at the copy directly.
4-10 VisualWorks

Object Reference Equality
In Opentalk, the notion of a proxy is implemented using two classes,
Proxy and RemoteObject. Faulting proxies are not now implemented.
However, pass mode wrappers, to be discussed later, are treated as
kinds of proxies.

Proxy
Proxy is an abstract class that inherits from nil and is intended to be
the superclass of all of the several kinds of proxies. Proxies are
wrappers of object references, and hold an instance of class ObjRef in
their single instance variable. This design allows one to treat remote
object access data and forwarding or faulting strategies orthogonally.

Class Proxy implements several messages whose selectors begin
with an initial underscore. The underscore indicates that these
messages will be evaluated locally and will not be forwarded.

RemoteObject
A concrete implementation of a forwarding proxy, RemoteObject, adds
a relationship to a request broker to the Proxy behavior. This
relationship is important for both sides. RemoteObject needs a broker
to be able to invoke a remote request. Conversely, a request broker
needs to keep track of imported remote references and
corresponding RemoteObjects.

Object Reference Equality
It is possible for an image in remote communication with another to
obtain a reference to the same object more than once, either as a
return value in a reply or as an argument in a request. If the image
retains those several references, it will significantly complicate its
programming semantics if they are not identical. Furthermore, the
test for identity should be as cheap as usual; it must not be a remote
call. Thus, any good implementation of object references will ensure
that references to the same object are identical, and that their identity
is evaluated locally.

BasicRequestBroker’s remoteObjectRegistry
In Opentalk, all request brokers inherit from BasicRequestBroker. That
class has an instance variable called remoteObjectRegistry that holds a
weak value dictionary: its associations are garbage collected when
there are no longer any strong references to the value. The routines
for unmarshaling object references all eventually call objectByRef:. If
Opentalk Communication Layer Developer’s Guide 4-11

Some Components of Opentalk
the reference is not a reference to a local object that has round-
tripped, a new local instance of class RemoteObject is found or created
to represent it. The method findOrCreateRemoteObject: ensures the
local identity of object references.

This implementation entails that references are identical only with
respect to the broker through which they have been obtained. In
practice, this is not a troublesome constraint. Note that if you intend
to simultaneously support several types of proxies in the same
broker, you will need to enhance the machinery that maintains
reference identity.

Object Tables
Object adaptors require object tables to keep a record of the object
references they export. The objects are indexed under the object
identifier (OID) assigned to them by the broker or table. This is the
identifier included in a reference, to uniquely identify the object
among those exported by users of the table. When the adaptor
processes an incoming request, it looks up objects under the OID to
identify the object that is the target of the request.

Object tables must also support indexing of OIDs under objects. This
lookup is employed whenever the adaptor creates and exports a new
reference, to determine whether a reference to the object has already
been exported and a pre-existing OID should be reused.

Though necessary to the functioning of an object adaptor, and for
ensuring a stable association between the OIDs found in messages
and the objects they refer to, object tables should be thought of as
generic components. Resource managers of several kinds may need
to maintain an association between OIDs and the objects within the
resource manger’s domain. Thus, you may have need for and use
object tables in the implementation of several distributed system
components.

There are three major design issues involved in implementing object
tables.

• Object tables must be fast. Object and ID lookups are
fundamental to message processing, and persons profiling a
distributed system should have the confidence entailed by
knowing that the cost of these lookups need never be their
concern.
4-12 VisualWorks

Request Brokers
• A decision needs to be made about the stability of the object
table. Ideally, it should be stable across image shutdown and
startup, so that references exported before a shutdown or crash
remain valid after the image has been restarted.

• A decision needs to be made about the strength of the
references to objects within the table. If the table uses weak key
and weak value dictionaries, table entries referring to an object
will be garbage collected once the object is. If the usual, strongly
referencing dictionaries are employed, the mention of an object in
the object table will protect it from garbage collection.

It is standard practice to use weak key and value dictionaries in the
implementation of a request broker so that the issues involved in
retaining references to exported objects are addressed, as they
usually should be, at the application rather than the communication
layer. However, it may make sense to use strong references in an
object table employed by a resource manager.

ObjectTable
Object tables are implemented in Opentalk by class ObjectTable.
ObjectTables have four instance variables: an access lock, a weak key
dictionary, a weak value dictionary, and the value of the numeric OID
to use, on creation of a new entry. The central public protocol
consists of three methods: #export:, #export:oid:, and #objectByOID:.
Object adaptors retain an ObjectTable in their objectTable instance
variable.

Opentalk’s ObjectTable is now hard-coded to use weak key and weak
value dictionaries. A future release will support the option of creating
ObjectTables with strong references.

Request Brokers
A request broker is the primary representative of the distribution
framework to an application. Its main purpose is to mediate access to
all the distribution services, and their corresponding APIs, that an
application may need. An application sets up an instance of the
distribution machinery by creating an instance of request broker. It
activates or deactivates the machinery by starting or stopping the
broker. Opentalk's brokers also have built-in capability for automatic
stopping and starting when the smalltalk image shuts down or starts
up: a broker that was on when an image is shut down will restart
when the image starts up.
Opentalk Communication Layer Developer’s Guide 4-13

Some Components of Opentalk
Request brokers support two styles of remote request invocation.
There is an RPC style API consisting of messages #sendMessage:to:
and #sendMessage:to:timeout:, that allows explicit invocation of remote
request. The second style allows application developers to use the
same means, Smalltalk messages, for both local and remote
communication. It is provided by a transparency layer of
RemoteObjects wrapped around the RPC style API.

All the above is implemented in class BasicRequestBroker. It's subclass
RequestBroker extends it with additional features like remote access
control to broker APIs through the list of open selectors and explicit
support for broker services. Broker services are a great help
especially with the initial phases of distributed application start up. To
be able to obtain contact with application components at startup, a
component needs to obtain an initial set of references to relevant root
objects that will support access to, or discovery of, other remote
objects. A broker services registry plays an important role in this task.
It allows one to register a service under a well known name using
#registerService:id:. Once a service, for example, a naming service, is
registered, other systems can retrieve remote reference to it using a
known broker method (#serviceById:) and the well-known service
name. A broker also allows retrieving names of all its registered
services using the method #serviceIds.

Object Adaptors
Object adaptors represent the hidden side of the distributed
framework. As opposed to brokers, which are mostly responsible for
presenting the communication layer to an application or image,
adaptors are there to talk to the outside. An adaptor manages a
specific protocol implementation and maintains the necessary
infrastructure needed to dispatch incoming and outgoing remote
messages.

An adaptor uses low level network protocols to transport encoded
requests to the target system. Network protocols use their own notion
of location to be able to target the delivery of data. Each location has
its own identifier. In the case of the TCP/IP protocol suite, this
identifier is called an IP address. Opentalk uses the more generic
term “access point” to leave room for other protocol suites. An object
adaptor is instantiated for the access point that is provided by the
broker that creates the adaptor. That's why the broker creation
protocol requires an access point specification as a parameter.
4-14 VisualWorks

Transports
Access points allow for dispatching requests to specific systems.
However, a distributed object framework needs a finer addressing
scheme to be able to dispatch requests to individual objects within
the systems. Therefore object adapters export objects with their own
identifiers (OIDs), which are then used as part of the addressing
scheme represented by object references (ObjRefs). Adapters need to
maintain a mapping between OIDs and objects that they export. This
mapping is represented by an object table.

Adaptors exploit network protocols to conduct communication over
the network. Generally, there are two fundamental classes of
protocols with different usage patterns; therefore we have a different
adaptor for each protocol class. First, there is
ConnectionOrientedAdaptor for connection-oriented, “telephone-style”
protocols like TCP. For these protocols two parties have to establish a
connection before they can begin to exchange data. Second, there
are connection-less “mail-style” protocols represented by
ConnectionLessAdaptor. With these protocols the sending party
attaches an "address" to the data and releases it to the network. The
data later arrives to the recipient, unless it gets lost or the recipient is
not watching for any data to come. A typical example of this type of
protocol is UDP.

Connection-oriented protocols need some additional infrastructure for
establishing and maintaining connections. The standard connection
creation technique involves a “listener.” The side initiating the
connection is usually called the client and the other side the server.
Clients make special connection requests. The sole purpose of a
listener is to wait for them, and pass up to the server, any connection
creation requests that are delivered to server's access point.
Therefore each active instance of ConnectionOrientedAdaptor maintains
a running instance of ConnectionListener fulfilling this role. Once a
connection is established it is registered in the adaptor's connection
registry. When the connection is closed it is deregistered.

Transports
An object adaptor needs to maintain certain amount of networking
infrastructure for the network protocol that it exploits. Apart from that
there is also encoding and decoding machinery (marshalers) and
process handling components. All this is expressed in a form of
Transport in Opentalk. Transport implements an actual transport
protocol. In order to track request execution status, each outgoing
request is given its request ID and is registered in the Transport's
Opentalk Communication Layer Developer’s Guide 4-15

Some Components of Opentalk
requestRegistry. The request ID is used to match incoming replies to
the requests that they originated from. Once a reply arrives the
corresponding request is unregistered from the registry and the
reply's value is returned as a result to the process that initiated the
remote request.

Incoming requests are intercepted and dispatched by the transport's
server process. The server process is started upon transport creation
and terminated upon transport shut down. The purpose of the server
process is to recreate the request on the server side and dispatch it
to the appropriate receiver. There is no client process because
request encoding and sending is performed within the context of the
process initiating the remote request invocation. Note that the server
process is not responsible for request evaluation and reply send-out,
because time consuming requests could significantly reduce the
system's responsiveness, or even cause request losses in case of
unreliable network protocols.

Connection-oriented protocols are implemented as StreamTransports.
A StreamTransport represents one end of a lower level network
connection. Instances of StreamTransport are registered by
ConnectionOrientedAdaptor as connections.

Connection-less protocols are implemented as DatagramTransports.
ConnectionLessAdaptor maintains a single instance of
DatagramTransport for all of its interaction with the network.

Pass Modes
The arguments in a request and the return value of a reply may be
passed in any of the three usual ways:

pass by value

In pass-by-value, a copy of the object is transmitted from one
process to another. It presupposes that both the sender and
receiver have equivalent implementations of the object in
question.

pass by reference

In pass-by-reference, a reference to an object in the object space
of the sender is transmitted to the receiver.
4-16 VisualWorks

Pass Modes
pass by name

In pass-by-name, only the name of a named object in the object
space of the sender is sent to the receiver. It presupposes that
the receiver has an equivalent object in its object space under the
same name. The receiver uses that identically named local object
in place of the name transmitted by the sender.

Though these are well-worn alternatives to the designers of
programming languages, they have added dimensions in the realm
distributed computing. To these three, Opentalk adds:

pass by OID

To improve efficiency, some distributed applications pre-replicate
selected objects to all involved locales. In such cases, if a
replicated object is an argument to a remotely invoked operation,
it is a waste of resources to pass the replicate by either reference
or value.

Any message sent to a reference immediately involves network
traffic. Any message sent to a copy, which has been passed by value,
has no network costs and, without additional machinery, any change
is not propagated back to the original. Any name passed between
images is usually assumed to refer to an identical implementation at
both locales. This assumption is easily violated, and the
consequences of a violation may be extremely difficult to debug.

Pass-by-OID allows pre-replicated objects to be passed by no more
than the object identifier (OID) under which they were pre-registered
in the object tables of both the sending and the receiving object
adaptors. A passed-by-OID object, on receipt, resolves to either (a)
its local replicate, or (b) an exception if the passed OID has not been
pre-registered at both sending and receiving locales. You may think
of pass-by-OID as a species of 'pass-by-name' for domain class
instances.

Classes, NameSpaces, NameSpacesOfClasses, BindingReferences,
LiteralBindingReferences, and Signals may be passed by name
using, for example,

#{Object.DependentsFields} asPassedByName.
On receipt, a passed-by-name object will resolve to either (a) the
local object that bears the passed name, or (b) an exception if there
is no such object. The default pass mode for the six classes
mentioned remains #reference. This is because use of pass-by-name
Opentalk Communication Layer Developer’s Guide 4-17

Some Components of Opentalk
should be explicit; pass-by-name is reliable and straightforward to
debug only when identity (or scrupulously calculated divergence) or
implementation is ensured.

Pass modes have such immediate repercussions and costs—either
in terms of network traffic, state replication, or the maintenance of
implementation identity—that no facility for remote messaging is
complete unless it provides pass mode control. Designers of
distributed systems deeply care about, and need to be able to affect,
the way that the arguments and return values of requests and replies
are passed.

There are three major design decisions involved in implementing
pass mode control:

• You must decide whether to support pass-by-name. The usual
decision is to decline. It is just too fragile in a distributed
environment.

• You must decide on a set of default pass modes, so that users
are not required to make pass mode decisions with inconvenient
regularity and so that the defaults protect users from unpleasant
surprises.

• You must decide on what levels to support control. In an object-
oriented language this devolves into a finite set of subsidiary
decisions about whether to support control:

• over all instances of a class,

• by a class over the pass mode of its instance variables, and

• at the level of a single object.

Your aim is a complete set of safe defaults, the definition of
meaningful levels at which defaults can be overridden, and an
obvious interface for both setting and overriding defaults. Almost by
necessity, the implementation of a pass mode control system is
spread about, and manifest in several different parts of the system.

Pass Mode Control
In earlier versions of Opentalk, when there were only two available
pass modes—by value and by reference—the method
isPassedByValue was overridden to set the default pass mode of an
object. This is no longer true. Current Opentalk users should pay
4-18 VisualWorks

Pass Modes
special attention to this fact. Unmodified user implementations of
isPassedByValue may not have their intended effect in the new version
of the STST protocol. The methods

isPassedByValue
isPassedByReference
isPassedByName
isPassedByOID

are now used only to test the pass mode of an object or a
PassModeWrapper. An object's default pass mode is now changed by
overriding the method passMode.

A particular instance's pass default mode may be superseded by
folding the instance in a PassModeWrapper. This is accomplished by
sending the instance any one of the following messages:

asPassedByValue
asPassedByReference
asPassedByName
asPassedByOID

If an instance already sent by value is sent asPassedByValue, the
instance rather than a PassModeWrapper is returned. The same holds
for the other three methods. If an instance's default pass mode
cannot legally be superseded by the desired pass mode, a pass
mode exception is raised.

SpecialTypeDispatchTable and TagDispatchTable
STSTStream optimizes the pass mode of a few special objects—nil,
true, and false—in its dispatch tables. They are, in effect, represented
by integers in message bodies. Users cannot easily override the pass
mode of these objects, and they should not. The local nil is just as
good as any remote one, and costs a lot less to talk to.
UndefinedObjects and Booleans are paradigmatic immutable types.

isPassedByValue
Other default pass modes are established by several
implementations of #isPassedByValue, located at critical points in the
class hierarchy. Note that BlockClosures are passed by reference: you
cannot assume that a remote image contains a lexical closure’s
environment of definition.
Opentalk Communication Layer Developer’s Guide 4-19

Some Components of Opentalk
asPassedBy methods
The methods #asPassedByRef, #asPassedByValue, #asPassedByName,
and #asPassedByOID are all implemented in class Object, can be sent
to any object to override its default pass mode.

PassModeWrapper
The methods #asPassedByRef and #asPassedByValue wrap an object in
a PassModeWrapper as required. Pass mode wrappers are
implemented as subclasses of Proxy because they have similar
semantics: a PassModeWrapper should neither look nor behave like a
local object; it is a local object on its way to being a remote copy or
reference.

passInstVars and PassModeTable
The method #passInstVars may be implemented in any class, allowing
that class to override the default pass mode of the objects contained
in its instance variables. The method has only one implementation, in
class Object, where it answers an empty array. Substantive
implementations will answer an array, usually of the same size as the
number of instance variables in the class. The array will contain
symbols, one for each instance variables. The symbols are:

#true, to pass an object using its default pass mode,

#false, to pass a nil,

#ref, to pass by reference, and

#value, to pass by value.

The method passInstVars is called by
STSTStream>>nextPutObjectInstVars:. The implementation makes use of
STSTStream’s PassModeTable for operational dispatch during
marshaling.

inspectorClassName
Pass-by-name is employed in Opentalk only to pass the names of
inspector classes. We can assume that these classes are uniformly
implemented. In this instance, pass-by-name is enforced by several
implementations of the method #inspectorClassName, and overrides of
the method #inspectorClass, found in the parcel Opentalk-Core-
Support.
4-20 VisualWorks

Exceptions
Special Implementation of Behavior class>asPassedByValue
Early in the design of Opentalk, we experimented with using pass by
name for classes. This turned out to be far too sensitive to
implementation differences between communicating images to be of
general use. Now, classes are passed by reference. Furthermore,
Behavior class>>asPassedByValue is implemented so as to discourage
passing classes by value.

Though we discourage pass by name, you may disregard us. For
example, with a very small amount of work, you may implement a
subclass of GeneralBindingReference that gives you pass by name for
classes, name spaces, and shared variables.

Exceptions
Distributed applications run in a fragile environment. Hosts and
network connections go up and down. The application needs to be
notified of such events to be able to cope with them in a
discriminating manner, that supports the requirements of the
application. That's why distributed frameworks generate a fair number
of exceptions that they do not handle.

Opentalk's exception set can be expected to dynamically evolve
along with Opentalk itself. New types of exceptions will be added with
new protocol implementations. On the other hand, more
sophisticated protocols can intercept and handle some of the existing
exceptions internally.

OtException
All exceptions raised by the Opentalk Communication Layer, and the
other layers of the Opentalk system, are subclasses of OtException.
OtException is an abstract class with three abstract subclasses:
OTSystemException, OtServiceException, and OtComponentException.
OtSystemException is the abstract superclass of all concrete
exceptions specific to the Opentalk Communication Layer. The other
two are the abstract superclasses of concrete exceptions respectively
specific to Opentalk services (like NamingService) and Opentalk
components (like service brokers and load balancers).
Opentalk Communication Layer Developer’s Guide 4-21

Some Components of Opentalk
OtSystemException and its Subclasses
All exceptions specific to the Opentalk Communication Layer are
subclasses of the abstract exception, OtSystemException.
OtSystemException has several concrete subclasses.

OtECommunicationFailure covers a fairly wide range of low level (socket)
errors or expired timeouts. More detailed explanation of the
encountered problem is provided as its messageText.

OtETimeout is a subclass of the generic OtECommunicationFailure that
allows the timeout exception to be resumable. When resumed, it
makes the client thread wait for another timeout period. This provides
better support for long computations that may exceed the default
timeout settings.

OtEInvalidObjectReference is signaled when a request receiver is not
found in the local system when evaluating a request. This usually
means that the OID of the target ObjRef is no longer valid. The most
common reason is that the target object was garbage collected.

OtEMarshaling covers any kind of problem that occurs during request
marshaling and unmarshaling.

OtEServerError is raised on the client side when an application error
occurs during a remote request evaluation. The remote exception is
forwarded to the client in an STSTErrorReply. The forwarded error
cannot be resumed.

Catching Broker Errors
In the server process loop by default we handle any Error, generate
an error event and resume the loop expecting next message.
However by default nobody is watching broker events, so server
process errors often are silently suppressed and the user sees only
side-effects of those, such as timed-out requests or requests
returning with “Connection Closed” in case the client or server broker
is shuting down early enough.

To report such errors, an event handler has been added that uses the
broker event mechanism. The API for handling broker errors is:

handleErrors (default)

Uninstalls any event handlers added by the other methods,
restoring the default behavior or suppressing unexpected errors.
4-22 VisualWorks

Session Layers
passErrors

Do not handle unexpected exceptions, but passes the exception.

haltErrors

Makes the error handling process loop halt on an unexpected
error event.

showErrors

Prints unexpected error events in the Transcript

Refer to the method comments in BasicRequestBroker for more
information.

Session Layers
One design decision affecting protocol implementations is whether to
include a conversational or session layer above the connection layer
and below the adaptor layer.

A session layer is commonly used to implement dialog control.
Session layers may be used for token management, when the
communicating parties are each forbidden to engage in the same
operation at the same time. They may also be used for synchronizing
and check-pointing long-running transfers, liable to interruption by link
failures or crashes.

In practice, session layers have scant use in most applications, and it
is doubtful that a session layer has any place in any general-purpose
communication framework.

A standard critique of the OSI Reference Model is that it defines
several layers that in practice are non-existent or thin. Its session
layer is the one usually cited for its absence. The British proposal for
OSI had five layers, not seven. The general consensus is that a
truncated OSI model, sheared of its presentation and session layers,
is useful for discussing computer networks. On the other hand, while
the TCP/IP model is little better than an afterthought, its widely useful
implementation has never had a session layer. Commonly used
hybrid models ignore the session layer entirely.

Session layers are a possible design option in protocols that require
multiple round-trips. If your protocol involves several complex
negotiations—in other words, if it is highly stateful, because you need
to remember where you are—then it is not irrational to consider a
Opentalk Communication Layer Developer’s Guide 4-23

Some Components of Opentalk
session layer. It just happens to be far better, and far more flexible, to
push the required conversational state into the objects
communicating, or used to communicate, than to hardwire the notion
of a session into the communication framework itself.

STSTRequest
Fundamentally, a session is just a stateful structure waiting for a
return. In its Smalltalk-to-Smalltalk protocols, Opentalk implements
this in the request itself, which contains all of the fundamental
conversational data: target, request ID, message, reply, and so forth.
Note that the logic of a message type, which may be arbitrarily
complex, does not get marshaled.

This approach keeps the communication layer simple, speedy, and
light. It also provides a strong hint about the right way to add more
complex, special purpose protocols to Opentalk.
4-24 VisualWorks

5

Broker Configuration

All of the supplied methods for creating a request brokers are
implemented using configurations. Because the supplied set of
broker creation methods is sufficient to create all the most commonly
used brokers, most users can ignore the underlying Opentalk
configuration framework. However, if you need to tailor a broker for
some special purpose, knowledge of the options provided by the
broker configuration system is essential.

This chapter explains the rationale behind the Opentalk broker
configuration system, and provides an overview of its
implementation. This chapter lists the available broker configuration
types. It also lists all of the broker configuration parameters, and
describes the effect of each.

What is a Configuration?
A configuration is a blueprint for the creation of an object. It is an
object in its own right, independent of the objects created from it.
Thus, a configuration can be reused in two ways:

• A configuration can be stored, for example, in a method, and
reused to create several objects with the same configuration.

• A configuration can be stored in the object created from it,
making it easy to restore that object to its original configuration.

A separate blueprint is useful whenever the kind of object to be
created is complex, structured, and amenable to being customized in
several ways. Brokers are such things, and that is why configurations
are used to create them.
Opentalk Communication Layer Developer’s Guide 5-1

Broker Configuration
Standard Broker Creation Methods
All of the standard broker creation methods on the class side of
BasicRequestBroker are implemented in terms of configurations. For
example, newStstTcpAt:, shown below, explicitly creates a nested
configuration. It then sends the method newAt: to the created
BrokerConfiguration to create a broker instance:

newStstTcpAt: anIPSocketAddress
^(StandardBrokerConfiguration new

adaptor: (ConnectionAdaptorConfiguration new
requestDispatcher: RequestDispatcherConfiguration standard;
transport: (TCPTransportConfiguration new

marshaler: STSTMarshalerConfiguration new
)))

newAt: anIPSocketAddress
The configuration configuration options are represented by classes in
the Configuration hierarchy.

Broker Configuration Components
Notice that the broker configuration created in newStstTcpAt: has five
parts:

• an enclosing BrokerConfiguration

• an AdaptorConfiguration

• a RequestDispatcherConfiguration

• a TransportConfiguration

• a MarshalerConfiguration

In its role as the blueprint for an object, a configuration’s structure
indirectly reveals the structure of the object created from it. The
structure of the broker configuration method spells out the
fundamental components of a broker, which consists of:

• A broker’s API, standard or otherwise, that is the interface useful
to the application making use of remote communication.

• An adaptor, mapping Smalltalk messaging semantics to a major
protocol family.

• A request dispatcher that assigns the handling of incoming
remote requests to local Smalltalk processes.
5-2 VisualWorks

The Configuration Classes
• A transport that implements the interface to a transport layer like
TCP, UDP, or HTTP.

• A marshaler that translates Smalltalk objects into and from an on-
the-wire encoding, like STST, CDR, SOAP, or XML.

Because both brokers and their configurations exhibit the same
layering, it is straightforward, using configurations, to specify a broker
that, for example, uses an asymmetric connection oriented adaptor,
with a CGI transport and an XML marshaler.

The Configuration Classes
In this section we outline the design of the classes used to implement
configurations in the Opentalk framework.

The Class Hierarchy
All configuration classes inherit from class Configuration. The
Configuration class hierarchy is defined so as to parallel the
hierarchies of the configured broker and component classes. This is
shown by the two hierarchies reproduced below. The first hierarchy is
for request dispatcher components. The second is for the request
dispatcher configurations used to create request dispatchers.

Object
EventManager

GenericProtocol
RequestDispatcher

HighLowRequestDispatcher
PoolRequestDispatcher
StandardRequestDispatcher

Object
Configuration

RequestDispatcherConfiguration
HighLowRequestDispatcherConfiguration
PoolRequestDispatcherConfiguration
StandardRequestDispatcherConfiguration

In some component and configuration hierarchy pairs, the structural
parallelism, or the match between the two sets of class names, may
not always be as thorough as in this case. However, there is a
configuration class for every concrete broker or broker component
class.
Opentalk Communication Layer Developer’s Guide 5-3

Broker Configuration
Configuration Instance Variables
The instance variables of a configuration class holds either a
configurable parameter or the configuration of a subcomponent. A
good example of this is class BrokerConfiguration, which inherits or
declares four instance variables:

• autoRestart, an optional Symbol determining when the broker
should automatically restart

• id, an optional Symbol uniquely identifying the broker

• adaptor, a required AdaptorConfiguration

• requestTimeout, an optional integral number of milliseconds

In this case, three of the variables hold a configurable parameter and
one holds the configuration of a broker sub-component.

Configuration Specification
After a configuration is created, methods are sent to it to set
configurable parameters or configurations. You only need to set a
configuration instance variable if you intend to use a non-default
value. This is a product of the way in which components created from
configurations are designed, particularly of the way that components
lazily access the values in their configuration. This is described in the
following section.

The Component Classes
The components created from configurations support an API that
supports such creation. That API follows a standard pattern.

Component Instance Variables
All of the components created from configuration declare or inherit a
configuration instance variable for storing their source configuration.
On the class side they implement a new: method that takes a
configuration as its argument. This method calls an instance side
initialize: method, that takes the same argument. At its beginning, an
initialize: method stores the configuration. Thereafter, it executes any
required setup code.
5-4 VisualWorks

The Component Classes
Configuration Defaults
The default values of configurable parameters are stored on the class
side of configurable objects. Their value is almost always controlled
using a standard set of three methods

• a method with the prefix ‘default’ and the suffix ‘Value’ that
establishes the default value of shipped code

• a method with the prefix ‘default’ followed by the parameter name
that accesses the current default value

• a method with the prefix ‘default’, followed by the parameter
name and a colon that changes the default value

Class BasicRequestBroker, for example, implements:

defaultRequestTimeoutValue
^60000

defaultRequestTimeout

^defaultRequestTimeout ifNil: [
self defaultRequestTimeoutValue]

defaultRequestTimeout: aSmallInteger

defaultRequestTimeout := aSmallInteger
The first sets the base default to 6000 milliseconds. The second
accesses either the base default value or a value set by the user. The
third is used to reset the default. A like set of methods is implemented
for most configurable parameters.

Default Accessing
Components always access their defaults lazily, first checking their
configuration, then checking their class-side defaults. Because of
this, configurations may always override the defaults set by a
component class, but components need not specify values that do
not need to be changed from the default.

In those cases where the value may usefully be changed at runtime,
at the instance level, the configured component also declares an
instance variable for the parameter. In that case, the instance variable
is checked before the value present in the configuration or the value
set as the class-side default. The accessor requestTimeout in
BasicRequestBroker illustrates this latter pattern:
Opentalk Communication Layer Developer’s Guide 5-5

Broker Configuration
requestTimeout
^requestTimeout ifNil: [

configuration requestTimeout ifNil: [
self class defaultRequestTimeout]]

Configuration Types
This section lists all the methods implemented in the “types” protocol
of the abstract broker or broker configuration classes. Each method
creates an instance of a concrete configuration class. When a
component is produced from that configuration instance, it will be an
instance of the componentClass that the configuration specifies.

In the following, each method is listed under the class that
implements it. Each method name is followed by the name of the
componentClass that the configuration it returns will produce an
instance of. And it is the eventual componentClass that is described in
the comment to each type method.

These type methods define the range of possible brokers.

BrokerConfiguration
Specifying a broker configuration type selects a concrete broker
class. This choice affects the level of service supported by the
resulting broker. All broker types are compatible with all adaptor,
transport, or marshaler types.

BasicBrokerConfiguration

Supports a basic broker API, use by an application to start, stop,
and otherwise control a broker.

StandardBrokerConfiguration

Provides an extended API, which allows an application to use a
service registry, and control the list of open selectors.

AdaptorConfiguration
The choice of an adaptor configuration selects a concrete adaptor
class. This choice affects the way in which Smalltalk messaging
semantics are mapped to the underlying remote messaging layer.
Not all adaptor types are compatible with all transport or all marshaler
types.
5-6 VisualWorks

Configuration Types
ConnectionlessAdaptor

The adaptor for connectionless protocols, where the same
instance of a transport can be used to send messages to several
destinations. Compatible with udp and chttp transport types.

ConnectionOrientedAdaptor

The adaptor for connection-oriented protocols, where the
transport maintain a listener waiting for connection requests and
manages a collection of active connections. Compatible with tcp
and iiop transport types.

ObjectGroupAdaptorConfiguration

The adaptor for connectionless one-way protocols. Compatible
with bcast and mcast transport types.

TransportConfiguration
The choice of a transport configuration selects a scheme for package
handling. A package is the set of bits shipped over the wire. A
package has a header, usually transport-specific, that is distinct from
the package’s payload. The payload, the message the package
contains, has a encoding specified by a marshaler. The transport is
responsible for managing the conversion of packages into decoded
messages and vice versa, for matching incoming replies with
previously sent requests, for acting on the information present in a
package header, and the like. The primary differentiator of transports
is whether they are compatible with a connectionless or a connection-
oriented adaptor. Their secondary differentiator is the marshaler or
set of marshalers they can work with.

BcastTransportConfiguration

The connectionless UDP transport for broadcast messaging,
currently used only with the stst marshaler types.

CGITransportConfiguration

The connection-oriented HTTP transport used with the Common
Gateway Interface, currently used only with soap and xml
marshaler types.

CHTTPClientTransport

The connectionless HHTP transport used by HTTP clients,
currently used only with the soap marshaler type.
Opentalk Communication Layer Developer’s Guide 5-7

Broker Configuration
HTTPTransportConfiguration

The connection-oriented HTTP transport, used with the soap,
web, and xml marshaler types

HTTPSTransportConfiguration

The connection-oriented HTTP transport that is made secure
with SSL, currently used only with the web marshaler type.

IIOPTransportConfiguration

The CORBA transport, used only with a cdr marshaler type.

McastTransportConfiguration

The connectionless UDP transport for multicast messaging,
currently used only with the stst marshaler type.

TCPTransportConfiguration

The standard, connection-oriented TCP transport, currently used
only with the stst marshaler type.

UDPTransportConfiguration

The standard, connectionless UDP transport, currently used only
with the stst marshaler type.

MarshalerConfiguration
The choice of a marshaler configuration selects the encoder/decoder
that will be used to translate Smalltalk objects to and from a standard,
on-the-wire encoding.

SOAPMarshalerConfiguration

The marshaler that translates Smalltalk objects to and from the
SOAP encoding using WSDL bindings.

STSTMarshalerConfiguration

The marshaler the translates Smalltalk objects to and from the
STST encoding used for communication between VisualWorks or
ObjectStudio images.

XMLMarshalerConfiguration

The marshaler that translates Smalltalk objects to and from a
standard XML encoding using XML object bindings.
5-8 VisualWorks

Configuration Parameters
RequestDispatcherConfiguration
The choice of a request dispatcher configuration selects the regimen
used to assign an incoming request to the Smalltalk process that will
produce a reply.

HighLowRequestDispatcherConfiguration

Forks a new process for each incoming request, but may be
configured, depending on characteristics of the request such as
its selector, to fork some processes at a higher level than the
worker process priority.

PoolRequestDispatcherConfiguration

Puts each incoming request into a SharedQueue with a fixed
number of processes as its consumers.

StandardRequestDispatcherConfiguration

Forks a new process, at the worker process priority, for each
incoming request. This is the default request dispatcher.

SchedulingPolicyConfiguration

CyclicSchedulingPolicy

A cyclic scheduling policy simply rotates a process queue.

LotterySchedulingPolicy

A lottery scheduling policy assigns each process a number of
lottery tickets and conducts a lottery that picks one ticket. The
process owning the winning ticket is put to the head of the
process queue.

Configuration Parameters
In the following, all the broker and broker component configuration
methods are listed under the configuration class that declares them.

Each method parameter, whether a subconfiguration or a parameter,
is described as either required or optional. Required parameters must
be included in a configuration. They specify some essential, defining
characteristic of a broker or broker component, usually the
configuration of a broker subcomponent. They usually do not have a
Opentalk Communication Layer Developer’s Guide 5-9

Broker Configuration
default value. Optional parameters specify some more peripheral
characteristic of a broker or broker component. They always have a
default value.

Under each parameter, its default values are listed. Because default
values are specified in component rather than in configuration
classes, there may be more than one default value.

RestartProtocolConfiguration
Components that need to or should respond to system events --
brokers, free-standing objects adaptors, and priority-level schedulers
-- inherit from RestartProtocol, and their corresponding configuration
class inherits from RestartProtocolConfiguration. Both are abstract
classes.

autoRestart: aBoolean

Status: Optional

Function: Determines whether a request broker, free-standing
adaptor, or priority-level scheduler is automatically restarted after
system setup or resume. The options are to always restart
(#always), to never restart (#never), or to restart only if the broker
or adaptor was running at the time of the preceding system tear
down or system pause (#ifQuiescent). If schedulers are used, their
autoRestart value should be kept in sync with that of the brokers or
adaptors that the scheduler affects.

Default in RestartProtocol: #never

Default in BasicRequestBroker: #ifQuiescent

Default in BasicObjectAdaptor: #ifQuiescent

Default in PriorityLevelScheduler: #ifQuiescent

id: anObject

Status: Optional

Function: The identifier under which a broker, free-standing
adaptor, or priority-level scheduler is registered in the weak value
componentRegistry of class OpentalkSystem. If the user does not
create an identifier, one is automatically generated by the
defaultComponentIdGenerator defined on the class side of
RestartProtocol. The componentRegistry both identifies
components that are affected by system events and that it may
be useful to programmatically stop or start by id.
5-10 VisualWorks

Configuration Parameters
Default: An automatically generated symbol consisting of the
component class name followed by a millisecond clock value.

BrokerConfiguration

adaptor: aConfiguration

Status: Required

Function: The configuration of the broker’s adaptor.

Default: None.

requestTimeout: anInteger

Status: Optional

Function: The number of milliseconds that a sending broker waits
for a reply before raising a timeout exception.

Default in BasicRequestBroker: 60000 milliseconds (1 minute)

AdaptorConfiguration
Note that the processing policy default is set in marshaler
configuration classes.

accessPoint: anIPSocketAddress

Status: Required, But Optional in a Configuration

Function: The IPSocketAddress at which the adaptor will listen
for incoming messages. This is usually set using
BrokerConfiguration>>newAt: or BrokerConfiguration>>newAtPort:. But
if accessPoint is set in an AdaptorConfiguration, a broker may be
created from the enclosing BrokerConfiguration using new.

Default: None

transport: aConfiguration

Status: Required

Function: The configuration of the adaptor’s transport layer.

Default: None

requestDispatcher: aConfiguration

Status: Optional

Function: The configuration of the adaptor’s request dispatcher.
The are three possible options. A
StandardRequestDispatcherConfiguration creates a dispatcher that
Opentalk Communication Layer Developer’s Guide 5-11

Broker Configuration
forks a new process for each incoming request. A
HighLowRequestDispatcherConfiguration creates a dispatcher that
forks a new process for each incoming request but forks at one of
two priority levels, depending on the characteristics of the
request. A PoolRequestDispatcherConfiguration creates a dispatcher
that passes incoming requests to a SharedQueue with a fixed
number of worker processes as its consumers.

Default in BasicObjectAdaptor: a
StandardRequestDispatcherConfiguration

processingPolicy: aProcessingPolicy

Status: Optional

Function: A processing policy is used to set up interceptors that
perform special actions during the course of message
processing.

Default in MarshalerConfiguration: ProcessingPolicy

Default in SOAPMarshalerConfiguration: SOAPProcessingPolicy

localityTest: aBlock

Status: Optional

Function: Provides a configurable test for locality of ObjRefs. The
block takes two arguments; an ObjRef and the adaptor. It answers
a Boolean.

ConnectionAdaptorConfiguration
A ConnectionAdaptorConfiguration configures an adaptor used with
connection-oriented protocols like TCP/IP. Among its configuration
parameters are the three used to make an adaptor work effectively as
the conduit for a Web server. In a standard client-server architecture,
a server is responsible for serving all connection requests, but on the
Web, refusing connection requests is acceptable and useful behavior.

connectingTimeout: anInteger

Status: Optional

Function: The purpose of the connecting timeout is to buffer
setup delays in a platform’s underlying socket implementation. If
no connection has been established after the number of
milliseconds specified by connectingTimeout the existing socket
error is returned.

Default in ConnectionOrientedAdaptor: 1200 milliseconds
5-12 VisualWorks

Configuration Parameters
connectionTimeout: anInteger

Status: Optional

Function: The number of milliseconds that a connection can be
idle before being closed.

Default in ConnectionOrientedAdaptor: 1200000 milliseconds (20
minutes)

isBiDirectional: aBoolean

Status: Optional

Function: Specifies whether the connection supports 2-way
communication.

Default: true

listenerPriority: anInteger

Status: Optional

Function: The priority of the process that handles incoming
connection requests. The priority of this process should be higher
than both the server and the worker process priorities.

Default in ConectionListener: 83

listenerBacklog: anInteger

Status: Optional

Function: The connection queue backlog.

Default in ConnectionListener: 1

lowerConnectionLimit: anInteger

Status: Optional

Function: One of the three parameters used to control the rate at
which incoming connection requests are accepted. The limit at
which connection acceps begin to be delayed.

Default in ConnectionOrientedAdaptor: 900

upperConnectionLimit: anInteger

Status: Optional

Function: One of the three parameters used to control the rate at
which incoming connection requests are accepted. The limit at
which connection accepts are refused, and assumed to be higher
than lowerConnectionLimit.

Default in ConnectionOrientedAdaptor: 1000
Opentalk Communication Layer Developer’s Guide 5-13

Broker Configuration
maxAcceptDelay: anInteger

Status: Optional

Function: One of the three parameters used to control the rate at
which incoming connection requests are accepted. The
maximum delay to which delays are progressively increased as
the upperConnectionLimit is approached.

Default in ConnectionOrientedAdaptor: 10 milliseconds

soReuseAddr: aBoolean

Status: Optional

Function: Turns the SO_REUSEADDR socket option on or off. If
the option is enabled, a process may bind to a port number that is
already in use. The option should be enabled if you frequently
create and destroy brokers on platforms that only tardily release
sockets for reuse, or establish multiple broadcast or multicast
adaptors on the same port.

Default in ConnectionOrientedAdaptor: false (off)

TransportConfiguration

marshaler: aConfiguration

Status: Required

Function: The configuration of a transport’s marshaler.

Default: None.

bufferSize: anInteger

Status: Optional

Function: Sets the size of the marshaling buffer.

Default in Transport: 1024 bytes

Default in DatagramTransport: 4000 bytes

serverPriority: anInteger

Status: Optional

Function: The priority of the process that handles incoming
requests by unmarshaling them and dispatching them to a worker
process. This priority should be less than the listener priority but
higher than both the worker process priority and user scheduling
priority.

Default in Transport: 73
5-14 VisualWorks

Configuration Parameters
DatagramTransportConfiguration
DatagramTransportConfiguration declares an soReuseAddr instance
variable at the transport level for use with connectionless protocols.

soReuseAddr: aBoolean

Status: Optional

Function: Turns the SO_REUSEADDR socket option on or off. If
the option is enabled, a process may bind to a port number that is
already in use. The option should be enabled if you frequently
create and destroy brokers on platforms that only tardily release
sockets for reuse, or establish multiple broadcast or multicast
adaptors on the same port.

Default in UDPTransport: false (off)

Default in BcastTransport: true (on)

Default in McastTransport: true (on)

BcastTransportConfiguration
The broadcast configuration code does not follow the standard
pattern. It is arguable that netmask is not a parameter in the usual
sense. The usual options are either limited or network-directed
broadcast.

The default value for netmask is set programmatically in the method
BcastTransport groupAddress.

netmask: aByteArray

Status: Optional

Function: Determines the scope of the broadcast, making it either
limited, subnet-directed, or network-directed.

Default in BcastTransport: #[255 255 255 255] (limited broadcast)

McastTransportConfiguration
The multicast configuration code does not follow the standard
pattern. The loopback and ttl values, for example, are better left unset,
if a user has no reason to give them a particular value. This is
especially true in light of the fact that multicast implementations differ
significantly from host to host and OS to OS.
Opentalk Communication Layer Developer’s Guide 5-15

Broker Configuration
Both loopBack and ttl values are handled in
McastTransport>>setOptionsOn:. To turn loopBack on, set its value in an
McastConfiguration to true. To constrain ttl, set its value in an
McastConfiguration to an 8-bit quantity.

loopBack: aBoolean

Status: Optional

Function: Determines whether multicast messages are also
received by their sender.

Default in McastTransport: nil (unset)

mcastAddress: aByteArray

Status: Optional.

Function: The multicast address joined by a multicast broker.

Default in McastTransport: #[224 5 6 7]

ttl: anInteger

Status: Optional

Function: Sets IP_TTL, the upper bound on the number of hops
an IP packet may traverse before being discarded.

Default in McastTransport: nil (unset)

MarshalerConfiguration

bufferSize: anInteger

Status: Optional

Function: The size in bytes of the marshaling stream.

Default in STSTMarshaler: 1024 bytes

RequestDispatcherConfiguration

workerPriority: anInteger

Status: Optional

Function: The priority level of the processes tasked to respond to
incoming requests. This priority level should be less than both the
server and the listener processes. The worker priority is
customarily set to a value greater than the user scheduling
priority, but it need not be.

Default in RequestDispatcher: 67
5-16 VisualWorks

Configuration Parameters
HighLowRequestDispatcherConfiguration
Setting a value for discriminationBlock is technically optional, but the
supplied default value is unlikely to be useful in practice.

discriminationBlock: aBlockClosure

Status: Optional

Function: A one-parameter block, taking a remote request as its
argument, that, if it evaluates to true, causes the request to be
forked at highPriority rather than at workerPriority.

Default in HighLowRequestDispatcher: a block that answers true if
the message selector matches '*high*'.

highPriority: anInteger

Status: Optional

Function: The higher of the two priority levels at which worker
processes should be scheduled. This priority level should be
lower than server priority (73) but higher than worker priority (67).

Default in HighLowRequestDispatcher: 71

PoolRequestDispatcherConfiguration
The PoolRequestDispatcher should be used when a limit must be
placed on the growth of the number of worker processes.

processNumber: anInteger

Status: Optional

Function: The number of worker processes that consume from
the SharedQueue to which incoming requests are dispatched.

Default in PoolRequestDispatcher: 3

PriorityLevelSchedulerConfiguration

lowerThreshold: anInteger

Status: Optional

Function: The size that the quiescent processes list must exceed
to trigger scheduling activity.

Default in PriorityLevelScheduler: 1
Opentalk Communication Layer Developer’s Guide 5-17

Broker Configuration
scheduledPriority: anInteger

Status: Optional

Function: The priority level of the quiescent processes list that
the scheduler affects.

Default in PriorityLevelScheduler: RequestDispatcher
defaultWorkerPriority

schedulingPriority: anInteger

Status: Optional

Function: The priority of the process that executes scheduling
actions. This priority value should be greater than that of?
scheduledPriority.

Default in PriorityLevelScheduler: 71

schedulingInterval: anInteger

Status: Optional

Function: The interval in milliseconds between invocations of the
scheduling action.

Default in PriorityLevelScheduler: 331 milliseconds

schedulingPolicy: aConfiguration

Status: Required

Function: A SchedulingPolicy defines the scheduling action, the
manner in which the quiescent processes list is reordered.

Default: None.

LotterySchedulingPolicyConfiguration

newMultiplier: anInteger

Status: Optional

Function: The factor by which the number of lottery tickets held
by hitherto unscheduled processes is multiplied before a lottery
ticket is drawn to select one process for relocation to the head of
the queue.

Default in LotterySchedulingPolicy: 1
5-18 VisualWorks

Network Configuration
oldMultiplier: anInteger

Status: Optional

Function: The factor by which the number of lottery tickets held
by previously scheduled processes is multiplied before a lottery
ticket is drawn to select one process for relocation to the head of
the queue.

Default in LotterySchedulingPolicy: 1

Network Configuration
An Opentalk broker must know the IP address of its host to function
properly. Unfortunately there is no standard, cross-platform way to
obtain this information. To derive this information, Opentalk relies on
following procedure (implemented in GenericProtocol class method
setHost):

1 It obtains the name of its host by sending getHostname.

2 It asks the OS to convert the name to an IP address by sending
hostAddressByName:.

This usually works, but can fail depending on the network
configuration of the host.

It is becoming more common on Unix platforms (e.g., Mac OS X and
some Linux distributions) that the host name resolves to the
“localhost” address, 127.0.0.1. This is usually caused by /etc/
hosts mapping the hostname to the localhost address. In this case
the Opentalk broker is only able to communicate with brokers on the
same host.

It is also possible that the hostAddressByName: call will fail (with an
exception) for some reason. In some configurations it may actually
invoke DNS to resolve the name, and if the DNS server is not
responding the call may block the VM for some time before it fails.

To avoid many of these failures, setting the address explicitly may be
the best solution.

Set Host IP
To avoid using the auto-configuration, set the value of the variable
GenericProtocol.HostAddress to the appropriate IP address, or
GenericProtocol.HostAddresses if the host has multiple addresses. The
setter message is hostAddress:.
Opentalk Communication Layer Developer’s Guide 5-19

Broker Configuration
Note, however, that in order to facilitate transparent migration of
images from host to host, this variable is flushed on image startup so
that the address can be rediscovered. Therefore the address has to
be reset after every image start up.

To set the IP upon start up, create a Subsystem subclass with
OpentalkSystem as its prerequisite, and set the variable in its setUp
method. For example, create a subclass MyAppSystem, and define
these methods:

prerequisiteSystems
^Array with: OpentalkSystem

setUp

super setUp.
GenericProtocol hostAddress: #[128 16 16 101]

This assumes the host has a single network interface. If the host has
multiple network interfaces, use hostAddresses instead, which takes an
array of interface addresses.

For more information on Subsystems, refer the the Application
Developer’s Guide.

STST and Firewalls
STST supports pass-by-reference semantics for requests to a broker
behind a firewall.

To enable pass-by-reference semantics, the broker needs to
advertise its external (firewall) address in the object references that it
generates. This provides clients with a valid address to connect to.
The client brokers then connect to the firewall, and the firewall
forwards those connection requests to the server broker behind it. Of
course, the firewall has to be properly configured for port forwarding.

To configure the broker for this type of setup, create the broker using

BrokerConfiguration newAt: anAddress
The address parameter must be the external (firewall) address
through which the broker can be accessed. The same applies to the
various instance creation methods on the class side of
BasicRequestBroker.
5-20 VisualWorks

Network Configuration
Note that, currently, the port number that is opened on the firewall to
forward traffic to an STST broker must be the same as the port
number used by the broker on the physical host that it runs on. So if
the open port on the firewall is 4242 the broker will also bind to port
4242 on its host machine.

With bidirection enabled, the server can reuse a previously
established connection from the client to deliver requests from the
server.

Without bidirection enabled, if the server needs to send a request
back to client, the client must provide accessible address in the
corresponding object reference. If the client is sitting behind a
firewall, it will have to be configured similarly as the server, with an
external access address and with the firewall configured to forward to
the client.

If the address parameter to the broker creation methods is neither a
wildcard address (0.0.0.0) nor completely unspecified (via
#newAtPort:), the broker treats it as an external (firewall) address.
The broker binds to all local interfaces and advertises the external
address in all object references that it generates. The broker
distinguishes a local address from an external one by obtaining the
host name from the operating system and converting it to an IP
address using reverse DNS lookup (see the GenericProtocol class
method hostAddress).

Bidirectional Support
Bidirectional connection enables Opentalk clients to access a server
from behind a firewall.

Without bidirectional support, a server is unable to send requests
back to the client unless that client is exposed through the firewall to
incoming connections. This is usually blocked by client firewalls.

With bidirectional connections, the server is able to reuse a
previously established connection initiated by the client, which is
usually allowed by client firewalls, for requests sent from the server to
the client, such as callbacks to client objects.

Bidirectional connection can also allow better network resouce
management on heavily loaded servers, by eliminating the need for
two separate connections per client when there are requests flowing
in both directions.
Opentalk Communication Layer Developer’s Guide 5-21

Broker Configuration
Bidirectional support is controlled by setting the isBiDirectional variable
in ConnectionAdaptor:

• isBiDirectional: true enables bidirection support

• isBiDirectional: false sets the connection to single-direction only

Currently only STST provides bidirection support. For any other
protocol, an asymmetric connection is created. (Many protocols, such
as HTTP, require that anyway.)

It is safe to mix bidirection capable and incapable brokers arbitrarily;
they will simply fall back into the asymmetric connection mode. Only
two bidirection capable brokers can take advantage of bidirectional
connections.

Special Note about Client Configuration
If the client brokers are not explicitly set up with distinct access
points, then they will most likely pick up their local host IP, usually
from one of the private network ranges. If several clients are in this
situation, it may happen that they end up advertising the same
address/port for their objects, and the server will not be able to
distinguish them. The client broker that is associated with that
address (usually the first to connect in bidirectional mode) will receive
all requests to that address/port. Without bidirection support, the
request attempts from the server will simply fail in these cases, but
with bidirection mode they may just happen to work with
unpredictable, possibly catastrophic results.

Accordingly, in a network environment supporting bidirectional
connections, it is advisable to require the client brokers to be
configured with their external firewall address. That will guarantee
uniqueness, and ensure that clients can be distinguished on the
server side. No holes are needed in the client firewalls, because
requests will take advantage of bidirectional connections.
5-22 VisualWorks

6

Processes, Connections, and Scheduling

An Opentalk request broker runs within the context of the default
VisualWorks process scheduling model. This has several implications
for the way an Opentalk broker operates. This chapter sets out these
implications, and explains both the connection control and the
scheduling code shipped with the Opentalk Base.

OS Processes, Threads, and Smalltalk Processes
On conventional operating systems, the VisualWorks object engine
runs as a single, OS-level, heavyweight process with one thread of
control. The object engine’s process scheduler shares that single,
OS-level process among several native Smalltalk processes,
according to the scheduling system implemented in class
ProcessorScheduler and described in the Application Developer’s
Guide.

Native Smalltalk processes are not, by default, mapped to OS-level
lightweight processes or threads.

This architecture has advantages not provided by an architecture that
did map native Smalltalk processes to OS-level threads. Because the
VisualWorks scheduling regimen is deterministic and reflected in the
image, both the object engine and Smalltalk code are also
deterministic and therefore comparatively easy to model and to
debug. The architecture also makes VisualWorks code more efficient
than it would be otherwise, because switching between two native
Smalltalk processes is faster than switching between two OS-level
threads.
Opentalk Communication Layer Developer’s Guide 6-1

Processes, Connections, and Scheduling
One potential weakness of the architecture arises when the
heavyweight Smalltalk process performs I/O operations that may
block the object engine until the I/O operation completes. This
weakness is addressed by THAPI, discussed in the DLL and C
Connect User’s Guide. Under THAPI, whenever a native Smalltalk
process invokes a potentially blocking I/O operation, a separate OS-
level thread is created and passed the information required to make
the callout.

Another potential weakness is a consequence of the fact that a single
VisualWorks object engine cannot take optimal advantage of a multi-
processor machine. A multi-processor machine can, in general, run
as many heavyweight processes, without any timesharing, as it has
processors. One VisualWorks object engine, since it consumes just
one heavyweight process, cannot therefore take full advantage of the
presence of two or more processors. Hence, it is common practice —
when running VisualWorks on production machines providing a
single service — to run, on each machine, a number of images equal
to the number of primary processors on the machine. Users of the
service can then be routed to the least loaded image that provides it.

Running multiple images on a multi-processor machine is recognized
to be a partial solution to this problem. Future improvements,
involving engine enhancements that allow multiple copies of the
same image to share the same code, and support for concurrent
programming, are planned.

However, there are other consequences implied by the VisualWorks
process architecture that are particular to the operation of Opentalk
request brokers.

Opentalk Subsystem
Opentalk uses the VisualWorks Subsystem framework for responding
to certain system events, such as start up and shut down. For
general information about subsystems, refer to the VisualWorks
Application Developer’s Guide.

Opentalk specific handling for these events is defined in
OpentalkSystem, a subclass of Subsystem.
6-2 VisualWorks

Opentalk-Specific Issues
Brokers can configure their behavior at image restart as:

• always restart after an image snapshot or shutdown (#always)

• restart only if they had been running prior to the snapshot or
shutdown (#ifQuiescent)

• never restart (#never)

The policy is implemented in class RestartProtocol. An application
rarely may need to change the default value, #ifQuiescent.

OpentalkSystem also maintains a registry of brokers, giving an
application a way to know what brokers are active in the system.
Brokers are automatically added to the registry when created. The
registry is weak, so brokers can be garbage collected when no longer
referenced. To retrieve the registry contents, send a
componentRegistry message to OpentalkSystem.

Opentalk-Specific Issues
Broker-specific process issues are a consequence of the interplay
between the Opentalk request broker architecture and the
VisualWorks process scheduling system.

Any Opentalk request broker runs three critical sets of processes:

• Each running broker maintains a single listener process, at
listenerPriority (83), that listens for incoming connection requests.
When a connection request is received, a connection is
established.

• Each established connection involves a server process, running
at serverPriority (73), that listens for messages coming in along
the connection.

• Whenever a message is received, the server process spawns a
another process, running at workerPriority (67), that services the
request, by sending the message specified in the request to its
intended, local receiver, a replying to the message’s remote
sender.
Opentalk Communication Layer Developer’s Guide 6-3

Processes, Connections, and Scheduling
The VisualWorks process scheduling model is based on two
principles:

• Higher priority processes are scheduled before lower priority
processes.

• Processes at the same priority level are scheduled in the order in
which they have been created.

These two claims are, of course, contingent on the assumptions that
none of the involved processes include code that yields control, or
spawns other processes at a higher priority level than that of the
spawning process. But, none of the Opentalk broker code violates
these assumptions.

However, these two principles, in conjunction with the process
architecture of Opentalk, entail three consequences:

• An Opentalk broker may choke under a flood of connection
requests. During a long burst of connections requests, the
sustained activity of the connection listener process will disallow
the running of the lower priority Opentalk server or worker
processes.

• An Opentalk broker may choke under a flood of message traffic.
During a long burst of incoming messages, the sustained activity
of server processes will disallow the running of the lower priority
worker processes.

• An Opentalk broker will always run worker processes in the order
in which they were created. As a result, messages that require a
long-running-worker process to respond to them, will be executed
before short-running ones, if the former were received first. In
some cases, this is not optimal behavior.

None of the circumstances mentioned above are frequent or
particularly disabling. DST, using the same process architecture as
Opentalk, has been used in message-intense enterprise applications
for decades, with scant complaint. But each case deserves some
additional discussion.
6-4 VisualWorks

Connection Request Overload
Connection Request Overload
In standard client-server architectures, it is extremely rare for a
server’s request broker to be overloaded with client connection
requests, which consume both time and memory. The communication
between clients and servers is well ordered. The connections
established between clients and servers are comfortably finite. And,
in a standard client-server architecture, it is a server’s primary
responsibilities is to be there, to never refuse and to happily service
every connection request. This is one of the several reasons why the
Opentalk listenerPriority is higher than its serverPriority and its
workerPriority.

However, the same considerations do not hold for Web servers. On
the Web, heavy bursts of connection requests are not uncommon,
and when they do occur, it is better to ignore new connection
requests than to fail to service those already established.

This is the consideration that stands behind the APIs for setting
concurrent connection limits, in ConnectionAdaptorConfiguration and
ConnectionOrientedAdaptor.

There are two connection limits, a soft lowerConnectionLimit and a
hard upperConnectionLimit. It is assumed that lowerConnectionLimit is
less than upperConnectionLimit. A broker event is generated when the
number of existing connections exceeds either of these limits. They
are #reachingConnectionLimit:with: and #reachedConnectionLimit:with:
respectively. Further, when the upperConnectionLimit is passed, the
listener process is suspended. Thereafter, as connections are
dropped, a #leavingConnectionLimit:with: is generated, until the count
falls below the lowerConnectionLimit. Then, a #leftConnectionLimit:with:
event is issued, and the connection listener process is resumed.

Both connection limits are configurable. Also, within the range of the
two limit boundaries, there is a delay between connection accepts,
that progressively grows as the upperConnectionLimit is reached. The
growth of the delay is bounded by the configurable parameter
maxAcceptDelay.

This facility for controlling the listener process effectively addresses
the problem of connection request overload.
Opentalk Communication Layer Developer’s Guide 6-5

Processes, Connections, and Scheduling
Message Request Overload
A broker’s server process may be flooded with messages,
irrespective of whether the broker is also bombarded with connection
requests. When receiving a burst of messages, the server process
will consume both space and time as it forks processes, at the lower,
workerPriority level, to reply to messages. In very extreme cases, in
may take minutes for the burst to end, minutes until worker processes
may begin to run and produce replies.

This is a straightforward resource problem, that is not significantly
impacted by scheduling regimens. A time-slicing scheduler and a
deterministic scheduler like that in VisualWorks will both, in the face
of an intense message burst, show a delay in the production of
replies to remote requests.

The response to the problem is to add more resource, in particular,
more hosts running VisualWorks server images. The messages in an
intense burst may then be distributed among several hosts and
images using a load balancing scheme.

Adding more resources and load balancing will effectively address
the problem of message request overload. A VisualWorks load
balancer is discussed in Opentalk Load Balancing.

Message Processing Order
In the absence of yields or forks in the code that implements the
methods invoked by remote requests, requests sent to an Opentalk
broker will be answered in the order in which they were received. This
is a simple consequence of two facts

• Processes at the same priority level are scheduled in the order in
which they were created.

• By default, an Opentalk server process spawns all worker
processes at the same priority level.

Answering requests in the order received is a useful property for any
node in any distributed system to have. It is good to know why this is
so.
6-6 VisualWorks

Message Processing Order
Benefits of Order
In asynchronous systems, message senders do not block after a
message is sent to wait for a reply. If a non-blocking client sends
three messages to the same server, there is nothing to ensure that
they will be received in the same order. Suppose, however, that each
message records its originator and the time when the message was
sent. A server could, then, by examining the origin and time values,
ensure that it processed each message from the same client in the
order in which it was sent. It would be critical for the server to do if
those messages entailed some change in the server’s state, and the
client code implicitly relied on the correct ordering of those state
changes. This would be even more important if significant state was
distributed among several nodes in the network, and the client’s
messages to the server involved callbacks to the sending client, or
further calls out from the server to other nodes, which might in turn
make further callbacks to either the server or the client that originated
the message train. Distributed execution trains can be arbitrarily
complex. For such reasons, asynchronous distributed systems often
go very far out of their way to ensure that well-defined constraints on
the order of message delivery are fulfilled.

The issue of message order is far less pressing in the case of
synchronous systems. In such systems, all message senders,
whether clients or servers, block, and wait for a reply to every request
they send, before sending another. If everyone waits for a reply, total
ordering of message delivery is ensured.

Note, however, this ordering may be disrupted if any of the methods
invoked in the course of sending a message train or replying to a
single message yield control or otherwise play with process priorities.
If they do, the total ordering of message delivery among the several
interacting nodes of a stateful distributed system may be disturbed,
with consequent impact on the integrity of the system’s state.Think
carefully before you issue yields or change process priority in any
method invoked by a remote message.

This is why building a server to, by default, reply to messages in the
order in which they were received is a good idea. It is one of several
reasons why the Opentalk brokers qualify as correctly designed.

Nevertheless, in simple synchronous systems, with few nodes and
very short chains of distributed computation, or with servers that are
stateless or nearly so, the order in which servers reply to client
requests is not a grave issue. A stateless server, or one with no state
variables dependent on interaction with multiple clients, need not
Opentalk Communication Layer Developer’s Guide 6-7

Processes, Connections, and Scheduling
care about the order in which it replies to a set of messages from
several state-independent clients. If the clients block, thus
maintaining the ordering of the requests relevant to their state, then a
server need not be scrupulous about the order in which replies to
client requests. Furthermore, in this case, a time-slicing regimen may
outperform one that does not time-slice.

Bi-Modal Message Streams
Consider a burst of remote requests that is bi-model with request to
server-side execution time. About half of the messages take the
server image a long time, say, 1000 milliseconds, to respond to; and
about half take a short time, say, 10 milliseconds. Suppose that the
server image always deals with a stream of requests that is bi-modal
in this sense. There are about as many very short-running as long-
running processes spawned by the server image’s request broker.

Also grant that total client-side wait, the sum of the time that clients
spend waiting for a reply from a server, is a reasonable measure of
performance. For the sake of this example, assume that total-client-
side wait can be reduced to an accumulation of server-side execution
times, (even if unmarshaling, marshaling, and message transit time
would ordinarily be included).

Then, let us narrow the focus to consider a short, four message burst
in the entire request stream. Suppose that four different clients have
sent messages to the same broker. They arrive at virtually the same
time. In response the broker has spawned four worker processes.
Suppose their executions times in milliseconds are as follows:

1000
1000
10
10

Since a VisualWorks server will run these processes from first to last,
the total client-side wait, will be:

1000 +
(1000 + 1000) +
(1000 + 1000 + 10) +
(1000 + 1000 + 10 + 10) = 7030

The first client waits 1000 milliseconds, the second waits 2000
milliseconds, the third waits 2010 milliseconds, and so on.
6-8 VisualWorks

Message Processing Order
Then suppose the order of the messages was reversed, as in the
following list of execution times:

10
10
1000
1000

In that case, the total client-side wait would be

10 +
(10 + 10) +
(10 + 10 + 1000) +
(10 + 10 + 1000 + 1000) = 3070

3070 is far less than 7030. So, from the point of view of the clients,
the server would appear more responsive if the requests that it took
less time to process were completed before those that took more
time.

On the basis of such cases, some have argued that Opentalk brokers
should support time-slicing, a scheduling regimen that distributed
CPU time among all pending remote requests or worker processes.
To see how this might work, suppose again that there are four
requests or worker processes on the queue with the following
execution times in milliseconds:

1000
1000
10
10

Also suppose that a time-slicing scheduler cycles through these
processes, allocating CPU time to them in 10 millisecond increments.
Then the total client-side wait has to be accumulated in terms of
several passes over the set of processes, and we arrive at the
somewhat different calculation shown below:

(10 * 2) + 10 +
(10 * 2) + 10 + 10 +
(10 * 2) + 10 + 10 + (98 *20) + 10) +
(10 * 2) + 10 + 10 + (98 *20) + 10) +10 = 4100

The first 30 milliseconds of execution takes 10 milliseconds off each
of the 1000 millisecond requests and finishes the third request. The
next 10 millisecond allocation finishes off the fourth request. At that
point only the two long running requests remain, each with 990 more
milliseconds to go. So, 98 twenty millisecond passes plus another 10
milliseconds will finish off the third request. Then, another 10
milliseconds will finish off the last.
Opentalk Communication Layer Developer’s Guide 6-9

Processes, Connections, and Scheduling
Time-slicing is better than the average of the two examples that did
not involve time-slicing:

(7030 + 3070) / 2 = 5050
4100 < 5050

Sadly, these three examples fail to reveal the whole picture. The
outcome of a simple cyclic time-slicing regimen are highly sensitive to
the characteristics of the request set and to the amount of CPU time
allocated per pass by the time-slicer.

Suppose that the requests did not exhibit a bi-modal distribution.
Suppose that they all consumed 505 milliseconds of execution time,
as follows:

505
505
505
505

Without time-slicing, the total client-side wait is:

505 +
505 + 505 +
505 + 505 + 505 +
505 + 505 + 505 + 505 = 5050

But, if we used a cyclic time-slicer, with a 5 millisecond cycle, the total
client-side wait would be:

(100 * 5 * 3) + 5 +
(100 * 5 * 3) + 5 + 5 +
(100 * 5 * 3) + 5 + 5 + 5 +
(100 * 5 * 3) + 5 + 5 + 5 + 5 = 6050

Here, time-slicing underperforms. In general, time-slicing schedulers
do not do well unless they are very clever, or happen to be supplied
with a set of processes to schedule that exhibits the anticipated
variation in execution costs. Note also that the examples above have
assumed that there is no overhead involved in the context-switching
that frequent time-slicing entails. That is not true. Yet, despite these
reservations, and because there are a few circumstances in which
time-slicers do well, Opentalk comes with optional scheduling code.

Opentalk Schedulers
Opentalk schedulers are available in parcel Opentalk-Schedulers.

The Opentalk schedulers are implemented using a high priority
process that, at a set interval, rearranges the quiescent processes, at
a single lower priority. The high-priority process is called the
6-10 VisualWorks

Message Processing Order
scheduling process. Its priority is called the scheduling priority. The
priority of the process queue that it rearranges is called the
scheduled priority. It is assumed that the scheduling priority is higher
than the scheduled priority. It is also assumed that the scheduled
priority is carefully chosen, and one not used for system-level
processes.

The default Opentalk process priorities (67, 73, and 83) are all prime
numbers, and not used by any other system-level process. Thus, it is
a straightforward to select Opentalk’s workerPriority (73) as the
scheduled priority. Note that if an image is running more than one
broker, and both spawn worker processes at the default worker
priority, then the worker processes of both brokers will be affected by
an Opentalk scheduler that schedules the quiescent process list at
priority 73.

The scheduling process is a loop with a delay. Whenever the delay
expires the scheduling process invokes its scheduling action. The
scheduling action rearranges the quiescent process list at the
scheduled priority. The exact nature of that rearrangement is defined
by a scheduling policy. Two scheduling policies are provided:

CyclicSchedulingPolicy

This is a simple cyclic or round-robin scheduler of the kind
described above. The scheduling action is simply moving the first
process on the scheduled priority queue to the end of the queue.

LotterySchedulingPolicy

This is a simple lottery scheduler. At the start of the scheduling
action, each quiescent process at the scheduled priority, is
assigned a variable number of lottery tickets. Then, a winning
ticket is randomly selected, and the process with the winning
ticket is put to the head of the process queue. The number of
tickets assigned to a process is a function of the number of times
the process has been at the head of the queue in the past.
Processes assigned more tickets are more likely to win the
lottery.

Users may implement lottery schedulers of their own, that assign
tickets on the basis of other properties. The lottery model is flexible,
and schedulers based upon it are common.
Opentalk Communication Layer Developer’s Guide 6-11

Processes, Connections, and Scheduling
Cautions
The presence of the Opentalk scheduling code answers the
arguments of those who feel it would benefit them. However, users
are reminded to employ the Opentalk schedulers only under the
following conditions:

• The semantics of their distributed application does not depend on
faithfully maintaining the order of requests in the order or replies.

• Their servers provably deal with bi-modal or multi-modal request
streams.

• They have experimented with several, sample request streams,
that typify the actual service loads experienced by their
application, to prove that adding time-slicing machinery to a
server image’s execution overhead entails a decrease in client-
side wait, or some other relevant performance measure.
6-12 VisualWorks

7

Hints for Distributed System Design

With the Opentalk Communication Layer in hand, you will want to
start developing multi-image systems. This section aims to help new
users of the Opentalk Communication Layer avoid the most common
design and implementation mistakes, and to introduce them to the
most commonly useful system components and design patterns. In
particular, we hope to begin to make you aware of some of the usual
design options and design requirements.

We will focus the discussion around a few of the particular issues
involved in the construction of systems that communicate, over
channels with limited throughput and variable latency. In some cases,
we will introduce sample problems, present solutions, and describe
the logical components involved in those solutions. In others, we shall
simply make observations that we hope are useful. The observations
are often in tension, if not opposition: good distributed system design
requires balance and judgment. Only experience teaches this; and if
experience is the accumulated result of getting oneself out of peril, it
is surely complemented by “imperiance,” the art of getting oneself
into perils of the interesting, informative, and survivable sort. Test
things for yourself.

Readers interested in a more comprehensive treatment are
encouraged to peruse the relevant works mentioned in Annotated
ReferencesAnnotated References, and to examine the bibliographies
of those works for useful, supplementary citations.
Opentalk Communication Layer Developer’s Guide 7-1

Hints for Distributed System Design
Shared Objects
Publicly available objects in a distributed environment are shared. In
other words, distributed systems, from the standpoint of any client
node in the environment, act like multi-threaded systems.

Problem
The fact that several critical objects in a distributed environment are
shared resources means that you cannot send two messages in
succession to a shared object, and assume it has not received other
messages, from other clients, between them. The object may have
changed state between your two message sends. You have this
problem even if your two messages initiated separate transactions.
Another transaction, initiated by another client, may have been
interleaved.

Solution
There are two standard solutions to this problem:

• Implement transactions, so that several discrete client messages
can be sent within the same transactional context. Once
Opentalk supports transactions, this will be a possible. However,
it will always be a comparatively expensive solution.

• If you really cannot afford a state change in the recipient between
your two messages, combine them into one message. Since
VisualWorks uses only one host OS process, and Smalltalk
processes are not mapped to host OS threads, and the Smalltalk
processes that respond to remote requests are forked at the
same priority level, remote messages will usually execute in an
acceptably atomic fashion.

Observation
The reasoning of the second solution assumes that you do not play
with Smalltalk process priorities in the server-side implementations of
the methods invoked by client requests. It is a bad idea to do so,
unless you are very sure of what you are doing: the default request
brokers depend on the relative priorities of broker listener processes,
request servicing processes, and those of the usual, local processes.
7-2 VisualWorks

Garbage Collection
Garbage Collection
VisualWorks images collects local garbage, and Opentalk does not
yet support distributed garbage collection. Therefore, the existence of
an object reference, in image A, to a remote object in image B, does
nothing to prevent image B from garbage collecting the object in
question.

Problem
In particular, if you send an ordinary instance creation message to a
remote class, that returns a reference to it, that instance, in most
cases, will be garbage collected, and the reference you have to it will
become invalid. If you send a message to the reference after the
object has been garbage collected, you will get an
OtEInvalidObjectReference error.

Solution
If you want to preserve the validity of remote references to an object,
you have several options.

• If the object is a singleton instance of a class, ensure there is a
local reference to it in a shared variable or a class instance
variable of its defining class.

• Store the remotely created object in a naming service, or some
other referenced collection, co-located with the object.

• Create a repository or factory or resource manager that will retain
the objects you create remotely.

Note that any object created in these ways must be explicitly
destroyed when no longer needed.

Solution Components
The notions of a repository, a factory, and a resource manager
overlap. You may view them as portraits of the same ideal
component, painted from three perspectives: in terms of one possible
implementation, in terms of one possible general access model, or in
terms of a desirable set of high-level responsibilities.

Repository
Repositories are a common construct in GemStone development,
and they can also be used for storage in memory. A repository is
usually a singleton instance of its class. It usually contains and
Opentalk Communication Layer Developer’s Guide 7-3

Hints for Distributed System Design
manages access to only one kind of object. For example, in a nautical
architecture application, the singleton instance of HullPlanRepository
would contain all the instances of class HullPlan. The repository
presents an interface for the creation and destruction of, and keyed or
indexed access to, the objects it contains. It will usually also support
methods for accessing sets or instances using select, reject, or
detect blocks. In a distributed environment, it will be tuned to deliver
references, copies, partial copies, and subcollections or iterators, of
its contents, to meet performance requirements. In practice, much of
the functionality of a repository is a consequence of the fact that it is
implemented in GemStone, and thereby partakes of GemStone’s
security and transaction policies.

Factory
The notion of a factory is part of the OMG COS Lifecycle Service. To
create an object remotely, clients take three steps:

1 Obtain a reference to the factory finder at the target creation
locale.

2 Obtain a reference to the relevant factory from the factory finder.

3 Send an object creation message to the factory for a factory.
Factories are responsible for ensuring that the created object is
stored.

In the DST implementation of this service, factory finders are
implemented as naming contexts, factories are mapped to classes,
and objects created through the interface are referenced by a shared
variable that is a set.

The factory interface and its semantics were designed for remote
object creation, but something very like it may be used behind the
facade of object access as well. For example, when a server must
record client state, a client request for an object may be handled on
the server as an object creation request: the server creates a client-
specific wrapper around the requested object that records client state
as needed, and passes a reference to the wrapper back to the client.
7-4 VisualWorks

Time, Synchronous Systems, and Time-outs
Resource Manager
A resource manager is a component that manages resources of
some single type. It is responsible for:

• encapsulating its service and its resources in a useful interface

• enforcing security and other access policies, and

• coordinating concurrent access to shared resources.

Time, Synchronous Systems, and Time-outs
The time spent on a RPC is expended in eight places:

• marshaling the request on the client

• sending the request over the network

• unmarshaling the request on the server

• waiting until the server object is free

• servicing the request

• marshaling the reply

• sending the reply back to the client

• unmarshaling the reply and returning it to the requestor.

One portion of the time is spent waiting. It is, therefore, impossible in
a distributed environment to know about the state of another
processor with certainty. If it does not reply within some time-out limit,
then it could be busy, it could have crashed, or the communication
link could have failed. You cannot know, unless you assume that the
system is synchronous.

Assuming that a system is synchronous amounts to assuming:

• that there is an upper bound on message delay, which is the time
spent on sending receiving, marshaling, and unmarshaling,

• that there is an upper bound on clock drift, so that you can
measure time-outs and assume shared units of time and shared
times within known bounds of accuracy, and

• that there is an upper bound on the time required for a process to
execute a step—including the time spent waiting.
Opentalk Communication Layer Developer’s Guide 7-5

Hints for Distributed System Design
It is the assumptions about these several factors that are wrapped
together in the request time-outs that most communication
frameworks implement, and particularly in the innocuous looking
#defaultRequestTimeout of BasicObjectAdaptor.

Observation 1
Opentalk’s hard coded value for #defaultRequestTimeout may not be
ideal for your system. But we do try hard to get these things right.
Think before you change it. If you do change it, do so with an
understanding of what a request time-out is intended to be: the
amount of time after which a client can reasonably assume that either
the communication link has failed or the server has crashed.

Observation 2
When evaluating the performance of a server, in addition to the base
service time, look at the request wait time. The former can be
measured on the server in isolation, while the latter can only be
measured in a multi-image configuration, that at least models, with
acceptable fidelity, the request load the server is designed to support.

Reference, Broker, and Communication Errors
Communicating systems can fail in several more ways than stand-
alone systems, because they involve both communication channels
and remote processes, each of which may become faulty in several
ways. Designers must consider and account for at least the most
prevalent failure modes.

Formal discussions of distributed systems spend much time on the
classification of failure modes, along the spectrum from “crash
failures,” where one process goes down and other processes can
know that it has (the ideal, unattainable good), to “byzantine failures,”
where a process fails by inconsistently exhibiting behavior calculated
to subvert the correct behavior of others (the ideal, improbable evil).

In practice, these classifications are seldom useful. There is one
common failure that apprentice designers of distributed applications
often experience and often fail to understand, and understanding it is
a good introduction to the wider problem of dealing with the failures
specific to communicating systems.
7-6 VisualWorks

Reference, Broker, and Communication Errors
Problem
A request broker runs one process at relatively high priority to receive
incoming requests. This process, in most designs, spawns several
other processes, running at relatively lower priority to handle the
incoming requests. This priority structure is as it should be: the
request broker’s first responsibility is to be available for incoming
requests, and to do its best not to forget or drop a request. However,
this priority structure entails that a request broker can be choked: if a
broker is barraged with incoming requests, the image it resides in will
spend so much its time forking processes to handle requests, that the
image never gets any time to run them and produce responses.

This problem usually manifests itself by a run of communication time-
outs, on the several clients that are sending requests to the broker in
question. Since the server-side broker is choked, the clients do not
receive a response in the amount of time usually allowed for one.

In test lash-ups, where a single client is devoted to nothing other than
spawning processes that send requests, you may observe failures on
the server side as well, occurring when the server does get a chance
to respond. In this case, the client is so busy sending requests that
replies do not get through. This results in a server-side
communication failure. These failures are dependent on the client-
side process priority structure.

Solutions
Scenarios like these do not entail that there is something wrong with
the server-side request broker or the request broker design. The
problem is in the application design, the deployment design, or the
hardware specification. There are at least seven standard solutions,
several of which can and should be executed in parallel.

• Get a server-side machine with more horsepower. This always
helps. It usually solves the problem outright. In some cases it
may not be sufficient to compensate for gross faults in the
software or deployment design.

• Create a client-side handler that retries the request in response
to a time-out exception. You should do this in all cases, preferably
once, at a high enough level in your call tree to ensure that you
only need to do it once. Alternatively, wrap the handler in a
façade to or wrapper around all remote calls. This is a complete
solution in those few cases where the client can afford to wait
Opentalk Communication Layer Developer’s Guide 7-7

Hints for Distributed System Design
through several retries and you cannot or do not wish to add
more brokers and images to your deployment design.

• Reduce the number of messages that clients must send to do
their work. Choked request brokers are often the product of
nothing more than chatty client APIs, which send ten messages
where one, with several more arguments, would serve. You
should check for this possibility in all cases.

• Add additional hosts running server images (or additional server
images to a multi-processor machines) and hard code a
distribution of the clients among the additional hosts. This will
work, but is neither pretty nor amenable to straightforward
maintenance.

• Refine the fourth solution by creating a front-line broker. Let one
request broker serve as the principle point of contact for all
clients. Let it redirect requests, according to some request
distribution or load-balancing scheme, to the several back-line
server images. Set it up so that the several server images
respond directly to the client rather than through the front-line
broker. This approach may help, but will not always scale. There
is still one entity, the front-line request broker, through which
every request must pass.

• Refine the fourth solution by adding a service broker. Let all
clients reacquire, from a service broker, the server that the client
needs to communicate with at the start of each message send or
each major connected group of sends. Implement the service
broker so that it enforces a request distribution or load-balancing
scheme. Note that in this approach, if you do not ensure that
clients reacquire references to their service providers at
appropriate intervals, you will subvert any distribution or
balancing scheme implemented by the service broker. The other
side of the coin is that this approach has slightly better scaling
properties than the fifth, when the service broker is addressed by
clients only at the beginning of long groups of message sends.

• Use multicast rather than unicast. Send requests to a multicast
group and arrange for the servers in the group to negotiate,
among themselves, who will respond to a given client request.
7-8 VisualWorks

Reference, Broker, and Communication Errors
Solution Components

Service Brokers
A service broker is a component that answers a reference to a server
object when requested for a service provider under a service name.
The server object may be a resource manger, a compute service, or
any other object that provides a service. Service brokers may, but
need not, be request distributors or load balancers. Sophisticated
service brokers may implement several, dynamically alterable
brokerage policies, for several service types. It is better to put service
brokers in a shared naming service than several entries for providers
of the same service.

Request Distributors and Load Balancers
There is a sharp distinction between a request distributor and a load
balancer. Both may maintain a working collection of the available
servers, but they differ in other respects.

A request distributor hands out requests like a dealer distributes
cards: it treats the working collection of available servers as a cycle. It
is a good choice in cases where most requests to a service type take
nearly the same amount of service time.

A load balancer either polls the servers for some load measure, or
expects to receive periodic updates regarding the measure’s value
from each server. In the former case, the balancer must hold the
defining list of currently available servers. In the latter, all the servers
must know and report to the load balancer. In either case, the load
balancer treats the list of available servers as a sorted collection,
sorted on the load measure, and it assigns an incoming request to
the foremost (least busy) member of the collection. Load balancing is
the required choice in cases where requests to the same service type
have high variance in service time.

Load balancing is more expensive than request distribution because
it requires communication and coordination between the balancer
and the service providers it regulates. Therefore, if a service has high
variance in service time as a product of possessing several sub-
services, it is useful to partition the service. Request distribution,
among instances of the several subtypes of a partitioned service, can
be more efficient than load balancing, among the several instances of
a non-partitioned one.
Opentalk Communication Layer Developer’s Guide 7-9

Hints for Distributed System Design
Observation
Choking the request broker is an instance of a more general issue.
Any request broker architecture will issue several exceptions. It
defers the handling of these exception to a higher layer, as being
beyond its responsibility, and suitable for selective or discriminatory
handling. The higher layer is, as a consequence, responsible for
providing the appropriate set of handlers. You cannot design a
distributed application correctly without knowing the list of exceptions
raised by the underlying communication layer, and assuming
knowledgeable responsibility for their treatment.

Scalability and Single Points of Failure
Distributed systems are attractive because they promise scalability.
As demand for a service increases, you may, ideally, simply add more
servers that provide it.

Observation 1
Even if you have a putatively scalable collection of several servers,
among which you distribute or balance service requests, clients using
unicast will usually require a single, well-known point of access, that
does the distributing or balancing. Because all client requests go
through that single point, its optimization is critical.

Observation 2
The single access point is also a single point of failure. If you cannot
afford failure, you will need to make the access point fault-tolerant in
one of two ways. Either:

• implement a primary-backup framework, or

• implement the service as a group of service providers, and use
multicast rather than unicast.

Observation 3
Adding service providers buys scalability only if you do not need to
coordinate their state. If there are state coordination costs, adding
service providers will usually increase those costs exponentially, and
they will eventually swamp the linear gains accrued by service
provider addition.
7-10 VisualWorks

Remote Message Number
Remote Message Number
Remote messages take more time than local ones, by three to seven
or more orders of magnitude. Though a distributed system will
hopefully be transparent enough so that an application user or a
component developer can ignore whether the messages he sends
are going local or remote, the developer of the underlying application
distribution layer cannot. In other words, even though Opentalk is
designed so that you are not required to know whether an object is
local, this does not imply that you always may.

In practice, concern about the comparative cost of local and remote
messages often devolves into concern about the number of remote
messages sent to achieve some end.

The cost of a remote message is usually a summation of:

• the base cost of sending a remote message,

• a cost factor derived solely from the message length, and

• the marshaling costs specific to the object types linearized during
marshaling.

Flattening a complex, cross-referenced object tree usually takes
more time than flattening a long array of integers, even if the two
eventually consume the same amount of space in a message body.

Observation
You often do not have control over what you have to marshal, but if
you can send one message with four arguments instead of two
messages with two, you save one payment of the base cost. This is
why distributed system designers like shared objects possessing
sparse protocols, and supporting method implementations that do a
lot for each message sent. Reducing the number of remote
messages you send to get a job done is one of the easiest ways to
maximize throughput, and throughput is the interesting measure, not
bandwidth.
Opentalk Communication Layer Developer’s Guide 7-11

Hints for Distributed System Design
Variable Latency of Remote Messages
A remote message, in addition to taking more time than a local one,
takes an amount of time that varies more widely.

Observation
When measuring the time consumed by a remote message, be
aware of the fact that you are measuring one point in a range. At
some point, you will become concerned with the factors that push the
value to one end of the range rather than the other.

Remote Object Representation
The number of remote messages sent to achieve some end is
directly affected by whether you elect to locally represent a remote
object by a reference, a copy, or some species of partial copy. This
choice is so consequential that no generally useful protocol can be
called complete without facilities for pass mode control—the ability to
selectively pass an object by reference or by value.

There are several ways of representing a remote object on a client,
and it is useful to know the options and understand something about
their trade-offs. However, you will need to profile on your own, to
arrive at practically useful values for the comparative costs.

Using a Direct Reference to an Application Object
Representing an object by a reference—an instance of class
RemoteObject in Opentalk that is a direct reference to an ordinary
application object—is good choice when:

• you do not expect to send very many messages to it, and

• you are not interested in controlling access to the object at the
level of the remote representation.

You do not want to engage in intense and frequent conversation with
a reference because every message sent to it involves network
traffic. It is like having an intimate friend that lives on the other side of
the country: at some point you notice the phone bill. The flip side is
that exporting a reference is usually cheaper than sending a copy,
because a copy of an object of average size is larger than a
reference. This is another way of saying that even though the phone
bills are bad, they are often better than the airline charges.
7-12 VisualWorks

Remote Object Representation
You need to be uninterested in access control to pass application
objects by reference, as a consequence of the fact that the reference
may be passed to more than one client. Exporting a direct reference
to a name space, for example, allows others to change the name
space and all of its contents without any security constraints or
concurrency control, beyond those that may be implemented at the
level of the request broker. If the broker provides a security service, it
can prohibit modification by suspect parties, but does nothing to
prohibit contentious modification by trusted ones without additional
machinery.

Using a Direct Reference to a Service Provider
A reference to a service provider, such as a resource manager that
handles resources of the target type does not involve reservations
about access control. A resource manager, or a well-designed and
complete service, by definition, handles security and concurrency on
its own.

Using a Copy or Replicate
Using a copy is preferred when:

• you expect to send many messages to the object,

• the object is not so large that copying has noticeable
performance costs, and

• you can accept the inequality between the copy and the original.

The simplest example of a useful copy is a source code file, checked
out of a source code repository. It is an object that:

• you expect to modify heavily,

• is usually of manageable size, and

• you agree to pay the costs associated with either:

• file locks,

• merges,

• the communication costs associated with frequent or
intermittent state update, or

• aborted transactions.
Opentalk Communication Layer Developer’s Guide 7-13

Hints for Distributed System Design
If all you had were references and copies, copies of large objects that
you intended to send frequent messages to would still be problematic
because of their transfer costs.

Using a Faulting Proxy or Stub
A faulting proxy or stub is a proxy that replaces itself with a copy of
the object it refers to when it is first sent a message by application
code, and then redispatches the method to the copy. Subsequent
messages go to the copy directly.

Faulting proxies are used to reduce the immediate costs of copying a
large object tree. At selected points in the object tree, subtrees are
passed as faulting copies. The full cost of the copy is paid in
installments, rather than at once, and only paid when needed.

The notion of a faulting proxy is elegant, but the task of tuning a
copying specification so that faulting proxies are placed at the right
level to ensure good overall performance is often tedious and lengthy.

Using a Reference to a Server Mask
We use the term “mask” to refer to a wrapper around an object or
reference. A wrapper is understood to be comparatively lightweight: it
wraps a single object or reference, unlike a resource manager or
repository, which wraps a set of objects of the same type.

A server mask is co-located with the object it masks on the server.
The mask may handle various responsibilities. Using a server mask
is recommended under several circumstances; the following are the
most common:

• When the server needs to record client state during the
interaction, a client-specific mask around the target object can be
tailored to do this.

• When the target object is represented in an unsuitable or
inefficient manner, a temporary mask can be created on the
server. The mask will contain a representation that is more
effective for handling client queries, and maps between that
representation and the one in use on the server. A mask of this
sort need not be client-specific.

• When the interface of the target object is unsuitable, it can be
wrapped in a simple translating mask. This is one of the easiest
ways to prohibit the remote invocation of selected methods, in the
absence of other forms of exported interface control.
7-14 VisualWorks

Remote Object Representation
Masks have creation, storage, management, and design costs. They
can be used around both ordinary application objects as well as
service providers. They can be designed to handle simple security
and concurrency issues.

Using a Client Mask Around a Reference
You can just as easily create the mask on the client side. Using a
client mask is encouraged:

• when the client possess the information that determines the
optimal interface or representation, or some other aspect of the
wrapping policy, or

• it is the client, rather than the server, that has the spare cycles
required for mask creation.

The client mask may contain instance variables that cache the results
of queries sent to the reference they contain, when those results are
known to be sufficiently stable.

Using a Shadow With a Direct Object Reference
We use the term “shadow” for a wrapper created by the server,
passed by value to the client, and containing a reference to an object
on the server. Because a shadow is passed by value, it must have
equivalent implementations on both the server and the client side.

A shadow can implement any of the masking responsibilities
mentioned previously. A shadow may also be used as an alternative
to a copy containing faulting proxies, because:

• it may contain instance variables preloaded with frequently
accessed values, and

• it may also contain empty instance variables, with lazily initializing
accessing methods, that retrieve a value from the server on first
call.

Thus, shadows may be designed to act like partial copies containing
faulting proxies. Tuning a shadow’s instance variables and accessing
methods is logically equivalent to tuning a replication specification.

Using a Shadow with a Reference to an Object Manager
You may use a shadow with an object identifier and a reference to an
object manager when the manager provides security and
concurrency control, and these are required. The identifier is
Opentalk Communication Layer Developer’s Guide 7-15

Hints for Distributed System Design
assigned by and meaningful to the resource manager that produces
the shadow. The manager uses the identifier to dispatch messages
sent to a remote shadow, and dispatched to it, on to the object the
shadow represents.

Using Both Client and Server Masks
In some cases, you will use both client and server masks. The client
mask will contain a reference to the server mask. This makes sense
when either:

• the relevant information needed to set masking policies is
present on both the client and the server sides, or

• it makes sense to distribute the cost of creating masks for
performance reasons.

Remote Object Number
Some performance problems reduce to questions of scope. The
fewer remote objects you have to represent locally, the lower your
overall transfer and representation creation costs.

Observation
The impact of your choice of remote representation may be as
nothing, when weighed against the impact of the number of remote
objects you attempt to represent.

Remote Object Alteration
The previous sections examined the several ways in which a remote
object may be represented, and the virtue of requiring few of them. It
is an incomplete overview, because it does not exhaust the ways in
which a remote object can be changed. At the highest level, there are
only four ways to do this.

Send it a Message
You can change a remote object by sending a message, which
immediately entails a remote state change, to some suitable local
representation.

You may also send a direct message in a transactional context. This
may be a distinct enough kind of message to warrant a high-level
category of its own.
7-16 VisualWorks

Replication Rate and Replication Delay
Replace It
You can also change a remote object by changing a copy of it and
then replacing its remote representation with the local copy, passed
by value, back to the site of the original, usually to a resource
manager that will effect the replacement.

Ship Over the Modifying Code
You may, given the supporting infrastructure and sufficient
homogeneity of environment, ship modifying code over to the site at
which the object resides, where the server executes it for you. This
reduces to shipping, in some form, a block: it is the client that
supplies the implementation of the mutating method. The interesting
issue is where the compilation occurs.

Create an Agent Which Copies Itself Over and Does the Work
This option only makes sense if you have the supporting
infrastructure and are not particularly concerned about the time at
and the order in which target objects are altered. Agents do not have
much to offer over code shipping unless either:

• they are copying themselves to multiple sites,

• they perform the same job at each site, or perform a
discriminated agenda of several actions at many sites, or,

• in the context where several agents are competing for
computational resources, you sincerely care little about the timing
and sequencing of the changes they effect.

Shipping an agent is nearly the ultimate in asynchrony.

Agents may not be distinct enough from code shipping to warrant a
high-level category of their own.

Replication Rate and Replication Delay
When designers of distributed system are not facing throughput
issues, they are confronting the tight tolerances present in real-time
systems or entailed by digital video and voice data. In such cases,
there may be severe constraints both upon the rate at which data
must be generated at one location or reproduced at another, and
upon the allowable delay between generation time and reproduction
time.
Opentalk Communication Layer Developer’s Guide 7-17

Hints for Distributed System Design
A sample rate restriction is the requirement that video data must be
generated and reproduced at a minimum of 16 frames per second to
avoid the subjective impression of image “jumpiness.” A sample delay
restriction is that the reproduction of sound data must exhibit a delay
of less than 100 milliseconds, between the termination of a
conversational inquiry and the reproduction of an immediate
response, to forestall the subjective sense of noticeable hesitation.

Observation
These are the kinds of problems you address by creating a protocol
tailored to handle them. You may expect that the most significant
part, of any complete and generally useful solution, will be
implemented at levels below the transport layer.

Initial Reference Acquisition
The distributed system designer has to address problems and
components not present in stand-alone systems. The most obvious is
the problem of initial reference acquisition: you cannot talk to any
remote object, or get references to other remote objects, unless you
have a reference to one of them. When you design a distributed
system, you cannot ignore this issue.

Problem
Let us assume that the only initial reference, that all clients need to
obtain at start up, is the reference to a single service broker.

Solutions
The following are the obvious possible solutions:

Generate a reference to the service broker

Use unicast. Have each client programmatically generate a
reference to the service broker at startup. You can only generate
a reference programmatically if you know the address of the
broker, and it has a well-known, constant object identifier. Each
client has to know the broker’s location and address. You will
have to alter the machinery for exporting object references, to
ensure that the service broker always gets the same object
identifier: this solution involves fundamental alteration of the
communication layer
7-18 VisualWorks

Initial Reference Acquisition
Generate a reference to the request broker

As a sub-variant of the previous approach, you can install the
service broker as a service published at the level of the request
broker. Most request brokers already have a well-known constant
object identifier. Clients programmatically generate a reference to
the request broker, and then ask the request broker for the
service broker under its service name. Clients must know the
service name, and still need to know the location of the broker.
The latter can be hard-coded, or placed in a file that is read at
startup. Neither solution is pretty or easy to maintain. This
solution does not involve meddling in the implementation of the
communication layer.

Use a naming service

Have clients resolve the name of the service broker, in the
naming service to obtain a reference to it. This allows you to shift
the location of the image containing the service broker without
undue maintenance costs, and this is a plus. But you still have a
single point of failure: the naming service. And clients still need to
get a reference to it, which means that they need to know its
location. They also need to know the name under which the
service broker is found in the naming service rather than the
name under which it is listed as a broker-level service, as in the
previous solution.

Use multicast

Set up the service broker(s) as a multicast group. Clients send a
multicast message to the group to gain access to the service
broker. Clients only need to know the multicast group identifier.
After getting a reference to the particular service provider they
require, from the service broker, clients may continue using
unicast. The maintenance costs here are minimal.

Observation
Multicast is the right protocol for gaining initial access to shared
resources; unicast is not.
Opentalk Communication Layer Developer’s Guide 7-19

Hints for Distributed System Design
Encapsulation and Transparency
All of the differences between distributed and stand-alone systems so
far mentioned or implied are differences that the distributed system
designer would like to hide from both application-level component
developers and application users, so that the overall design scores
high on encapsulation and on various dimensions of transparency.

Transparency requirements are diverse and several; many of the
works mentioned in Annotated ReferencesAnnotated References
describe and discuss them.

Problem
The species of transparency that most immediately affects code
developers is “access transparency.” This is the requirement that
objects be accessed in the same way irrespective of their location. Its
corollary is that application developers should not need to know
whether an object is local or remote.

This problem is accentuated by the fact that messages to remote
objects may deliver special exceptions having to do with reference,
broker, or communication failure. The handlers that address them
should not be the concern of application-level developers.

Some communication patterns raise special problems of their own.
Promises may diminish the impact of asynchronous RPCs on code
structure, but do not, in the absence of some encapsulation strategy,
hide that fact that you are using asynchronous RPCs in some cases
and local calls in others.

No Single Solution
Access transparency can only be achieved by interposing a layer—let
us call it “the distribution layer”—between the communication layer
and the level at which the application developer works. This layer is
the primary responsibility of the distributed system designer.

The implementation of this layer can be facilitated by off-the-shelf
components like load balancers, request distributors, proxies, masks,
and shadows, or by off-the-shelf services that support transactions,
concurrency control, shared clocks, and the like.

There are several frameworks that claim to provide a complete
solution to the designer of this layer. Sadly, applications may have
requirements that are not addressed by a specific “solution”: video
and voice data have special constraints; cooperative work
7-20 VisualWorks

Encapsulation and Transparency
applications and shared database front-ends have very different
communication patterns. In short, there may be no existing recipe,
describing the lineaments of a solution, that will work best in support
of both your application and the degree of transparency it requires.
You will have to research, experiment, and work it out for yourself

Observation 1
You cannot assume that because a protocol framework is designed to
provide immediate support for access transparency—as the Opentalk
framework does—that you can afford to ignore location when you
address the distribution layer.

Observation 2
You cannot assume that, because a distributed application toolkit
provides, at some point in time, a given set of off-the-shelf
components, that those are the components you should use to solve
your problem.

Observation 3
An old study showed that, independent of the implementation
language used, and number of years of prior programming
experience, developers were wrong 50% of the time about where the
time went in the execution of sample blocks of code. The study was
conducted assuming a stand-alone system.

If you plan to design and implement a distribution layer, use the
profiler.
Opentalk Communication Layer Developer’s Guide 7-21

Hints for Distributed System Design
7-22 VisualWorks

8

Opentalk Load Balancing

The Opentalk Load Balancing facility is an Opentalk add-on,
delivered in the VisualWorks distribution’s opentalk/ subdirectory, in a
set of four parcels. The parcels provide classes for implementing
most synchronous, unicast, balancing architectures.

The Opentalk Load Balancing facility does not provide components
for balancing client requests sent using asynchronous unicast or
multicast. In these cases, the logical equivalent of load balancing is
provided by asynchronous messaging systems or multicast group
systems, respectively.

The Opentalk Load Balancing facility is a middleware-level, software
solution to the problem of load balancing. It cannot be as fast as
server-level or router-level solutions. However, it is more independent
of operating systems and hosts, and is likely to be more flexible.

At present, the Opentalk Load Balancing facility is limited to use with
the Opentalk ST-ST protocol.

At present, the Opentalk Load Balancing facility provides rudimentary
but adequate support for multiple balancers, and full support for
architectures without load balancers. Thus, users are not forced to
employ architectures with a single point of failure. However, the
primary-backup and fail-over regimes of the Opentalk Load Balancing
facility reasonably assume that load balancers have negligible state.
We plan to support full state replication and fail-over services in a
subsequent release.
Opentalk Communication Layer Developer’s Guide 8-1

Opentalk Load Balancing
Though the Opentalk load balancing facility implements message
distribution policies that support session-based or transactional
communication between client and server, it does not explicitly
recognize sessions or transactions. It is, fundamentally, a
configurable and extensible message distribution service.

Packaging and Installation
The Opentalk Load Balancing facility is distributed in these parcels:

Opentalk-Load-Base

This parcel defines the components presupposed by other load
balancing parcels.

Opentalk-Load-Client

This parcel defines a generic load balancing client, and a set of
wrappers that all clients must use to wrap references to load
balancers or to servers.

Opentalk-Load-Middlemen

This parcel defines a hierarchy of load balancers.

Opentalk-Load-Server

This parcel defines a generic load balancing server, a hierarchy
of load monitors, and a short hierarchy of load definitions.

Only Opentalk-Load-Base and Opentalk-Load-Client need to be installed
on images running clients. Install only Opentalk-Load-Base and
Opentalk-Load-Middlemen in images running load balancers. Install
Opentalk-Load-Base and Opentalk-Load-Server on images running
servers.

Synchronous Unicast Load Balancing
The purpose of this section is to provide an introductory overview of
the terminology, issues, and components involved in synchronous
unicast load balancing. It sets the ground for succeeding sections,
which discuss the possible synchronous unicast load balancing
architectures, and the implementation, configuration, monitoring, and
limitations of the Opentalk Load Balancing facility.
8-2 VisualWorks

Synchronous Unicast Load Balancing
Load Balancing
Load balancing is the generic term for distributing load – understood
as a set of requests from several clients – among several servers.
The aim of load balancing is to distribute client requests so as to
minimize the total time that client requests wait on a server’s request
queue.

Consider a simple case. Assume that communication, marshaling,
process switching and all other such costs are negligible. Assume
that there is one server, running on a single processor host, and that
twelve clients each send a request to the server at the same time.
Further, suppose that the server takes 5 seconds to generate a reply
to each request. Since the server can only compute one reply at a
time, the first reply it produces will be created in 5 seconds, the
second in 10, the third in 15, and so on. The total server-side
compute time is 60 seconds (5 seconds * 12 requests). But from the
point of view of the clients, the accumulated time that they have each
spent waiting for a reply is 390 seconds (5 + 10 + 15 + … + 60).

A better way of describing this, since a load balancer can do nothing
about a server’s processing speed, is saying that the total time
incoming requests wait on a server’s processing queue is 330
seconds (0 + 5 + 10 + 15 + … + 55). That last quantity is the one that
load balancing attempts to minimize, by distributing requests among
several servers. If two servers are available, and the requests can be,
without any overhead costs, equally distributed among them, and the
total server-side wait would be reduced to 150 seconds (2 * (0 + 5 +
… + 25)). If there were three servers, the accumulated server-side
wait would be 90 seconds (3 * (0 + 5 + 10 + 15)). If there were four
servers, it would be 60 seconds (4 * (0 + 5 + 10)). And, if there were
six, the accumulated sever-side wait would be 30 seconds (6 * (0 +
5)), less than a tenth of the accumulated wait attainable with one
server.

However, request distribution is not free. In distributing requests
among servers, load balancing incurs costs of its own. A simple
remote request-reply cycle, as we have said elsewhere, expends time
in eight moments. They are:

1 The client-side request marshaling time.

2 The request transfer or on-the-wire time.

3 The server-side request unmarshaling time.

4 The server-side request waiting time.
Opentalk Communication Layer Developer’s Guide 8-3

Opentalk Load Balancing
5 The server-side request servicing time.

6 The server-side reply marshaling time.

7 The reply transfer or on-the-wire time.

8 The client-side reply unmarshaling and return time.

Load balancing attempts to minimize, over some request stream, the
accumulated, per request value of the fourth item in the list above:
the server-side request waiting time. But it does so at the cost of what
we call the load balancing overhead. Load balancing overhead is
informally, though usefully, divided into three parts:

• Redirection Overhead: This is the cost entailed in redirecting
client requests to optimal servers. It is equivalent to the
accumulated increase, entailed by load balancing, in request
send time. That is the amount of marshaling, processing, and
base transfer time that it takes for a request, once it has been
recognized as a remote request, to arrive at a server. The total
redirection overhead is a function of the total number of requests
and the mean request send time.

• Messaging Overhead: This is the increase in base transfer time
entailed by the additional load that administrative message traffic
(between balancers and monitors or between monitors) places
on the network, plus the total time that sending, receiving, or
processing administrative messages subtracts from balancer and
server responsiveness. The total messaging overhead is a
function of the number of objects that report or require
information about the current loading of available servers, given a
defined load balancing architecture and a fixed request stream.

• Preemption Overhead: This is the total amount of time that
servers spend switching back and forth between (a) the mid-
priority processes that handle load balancing administrative
traffic, for example, reports on the loading of the various servers,
(b) the comparatively low priority processes that service received
client requests, and (c) the comparatively high priority processes
that read from sockets, unmarshal new incoming requests, and
fork lower priority processes to handle them. The latter, high-
priority message receipt processes must be of greater priority
than, and preempt, others, because a server’s primary
responsibility is to be there to receive incoming client requests,
regardless of whether it handles them, or reports their impact on
its load, either immediately or soon. Given this arrangement of
process priorities, it follows that a server barraged with requests
8-4 VisualWorks

Synchronous Unicast Load Balancing
may have little time to report that fact or to service requests.
Preemption overhead is, relative to a given load balancing
architecture with a fixed number of servers, a function of the
density of incoming requests. To the degree that such overhead
may also delay the processing and transmission of administrative
traffic about current server loadings, it has a direct impact on the
degree to which a balancing scheme can balance accurately.

The advantage of this tripartite division, however informal, is that
alerts you to the three areas of cost to keep in mind. It costs to
redirect messages, to update the current information about server
loading, or to drown servers in incoming requests. Load balancing
pays off only if the balancing overhead, derived from these three
sources of cost, is less than the achieved reduction in total server-
side wait.

Note that successful load balancing does not entail that each server
to which requests are distributed, will, within any few minutes, service
the same number of requests. If clients issue requests at a frequency
with a period that exceeds their processing time, the requests may
and can be effectively handled by a single server. In contrast, under a
well-tuned distribution regimen, if the requests vary widely in
processing time, but are issued at a frequency with a period near the
requests’ mean processing time, a few server may handle many
short-running requests, while others handle a few, long-running ones,
and still others a middling amount of both long- and short-running
requests. Equal distribution of requests among servers, is not the aim
of load balancing, though it is often a workable default.

Note too that given some number, N, of suddenly issued long running
requests, we could easily attain a total server side wait of near 0 if we
had N or more single-processor servers. But that would be
impossible if the number of servers was less than N. The number of
available servers is a fundamentally limiting factor, which load
balancing can only work with. It follows that adding another server will
often have more direct effect on overall performance than any change
in load balancing code or its configuration. In other words, given a
Opentalk Communication Layer Developer’s Guide 8-5

Opentalk Load Balancing
fixed request stream and a variable number of servers, the success
of a load balancer is measured by the degree to which it minimizes
and affects the rate of change of:

((accumulated server-side wait)
(accumulated redirection overhead)
(accumulated messaging overhead)
(accumulated preemption overhead))

/ number of servers
The number of servers has an immediate and certain impact on this
quantity, because it changes the divisor. The configuration and
implementation of the load balancer affects only the numerator.

Redirection
In systems where clients use a synchronous, connection-oriented
protocol to send requests to remote servers, load balancing is usually
implemented using some form of redirection. Under a redirection
regime, a client request is initially sent to some remote object —
either the client’s load balancer or its current server — which in turn
instructs the client to redirect that request either to a server, or to a
more optimal server, respectively. More particularly, the client, in
response to its initial request, receives a reply, that is an exception or
a special response type. On receiving it, the client opens a new
connection to the new address provided in the special response, and
reissues its original request over that new connection.

Redirection preserves the connection-oriented semantics of
synchronous unicast. The cost of establishing a new connection on
the client side is one component of redirection overhead. Depending
on the details of the implementation, redirection may also involve re-
marshaling the original request.

Distribution Strategies
Load may be distributed using any one of several distribution
strategies. These strategies fall into two broad classes, called static
or data-free distribution strategies, and adaptive or data-bound
distribution strategies.

Static or data-free strategies do not rely on knowledge of the current
or past loading of any server. They are best employed when it is
known that all client requests have about the same servicing time,
and that all server hosts have the same or very similar performance
characteristics. Sample static distribution strategies are the random
8-6 VisualWorks

Synchronous Unicast Load Balancing
strategy, that redirects client request to a randomly selected server,
and the round robin or sequential distribution strategy, that redirects
incoming requests to available servers cyclically.

Adaptive or data-bound strategies, on the other hand, depend on
knowledge of current or, to be very exact, recent server loadings. We
shall refer to such knowledge — usually expressed as a set of
associations between an available server and its currently known
load — as load data.

Adaptive strategies are preferred when client requests significantly
vary in execution time or when server hosts vary in performance. For
example, the least loaded strategy redirects each incoming request to
the server currently known to have the least load. In contrast, the
under mean load strategy redirects a request to a randomly selected
server with less than the currently known mean load. The former
strategy, least loaded, is one we call an aggressive strategy, because,
given the same load data, it always picks the same server, and the
correctness of its selection is sensitively dependent on the timeliness
of the available load data. The latter, under mean load, we call a
defensive strategy, because, given the same load data, it does not
always pick the same server. It thereby softens the effect of load data
that is less than timely, but in a probabilistic manner.

Among adaptive strategies, the less aggressive usually have better
overall performance characteristics. If the load data is dated (and it
always is), and client requests occur in high volume bursts, then an
aggressive strategy, like least loaded, will tend to flood the request
queue of each server that successively appears to be, with each load
data refresh, the least loaded one. Such behavior does not optimally
minimize the mean server-side wait. Defensive strategies are less
likely to surge requests to a single server in this way.

As a general rule of thumb, when testing the suitability of an adaptive
strategy for several conditions, the important parameters to vary are
(a) the frequency of load data updates, (b) the request rate, (c) the
mean request processing time, and (d) the variance of the request
processing time. As a corollary, do not trust claims about adaptive
load balancing performance that do not detail — in addition to the
request count and the server count — the values of at least these
four parameters.
Opentalk Communication Layer Developer’s Guide 8-7

Opentalk Load Balancing
Load Monitors
Adaptive distribution strategies require that load monitors be co-
located with server applications. The minimal task of a load monitor is
to record and report its server application’s load. In some load
balancing schemes, a monitor may also be responsible for directing
its server to begin or terminate a server hold. When under a hold, a
server continues processing the request already on its queue, that is,
any requests it received before the hold was ordered. But, under
hold, it redirects any new incoming requests back to the balancer,
and continues to do so until the hold order is retracted or expires.

Load Definition
A load monitor requires a working definition of load. Among the
commonly used definitions are (a) server host CPU usage, (b) server
host process count, and (c) server broker request backlog. Most of
such measures presume either that server hosts are dedicated to
handling only client requests, run one image per host processor, or
run one server request broker per image.

Given the fulfillment of all these assumptions, server request backlog
is, on several grounds, arguably the best load definition of the three
mentioned. It is operating system independent, and intimately, if not
directly, connected with request process server wait time, given that
the processing time of a pending request cannot be predicted in
advance.

Load Data Transfer Strategy
Load monitors must implement a load data transfer strategy for
transferring the load data they produce to the objects responsible for
request redirection or server hold orders.

There are a number of load data transfer options. Balancers may pull
load data from monitors, on each request or through periodic polling.
Monitors may push load data on every load change, or through a
periodic push.

Event-driven approaches, like to “on request” or “on change” options,
make messaging overhead a function of the number of requests.
Periodic approaches entail more overall messaging overhead than
event-driven approaches when the data update period is greater than
the request rate, but less overall messaging overhead otherwise.
Periodic approaches entail some degradation in load balancing
accuracy, whenever the request arrival period is significantly less
than the load data transfer period.
8-8 VisualWorks

Synchronous Unicast Load Balancing
All adaptive distribution strategies place an additional load on the
network, and significantly increase messaging overhead, because
they involve load data message traffic between the objects that
produce load data and the objects that consume it.

Server Group Update Strategy
Objects that redirect requests to servers, irrespective of whether they
attend to load data, require up-to-date knowledge of the set of
available servers. If a server drops off line, but a balancer is still
redirecting requests to it, then the load balancing performance
degrades significantly. So, a load balancing system often implements
some strategy for dynamically updating the set of currently available
servers, even if that strategy is exclusively subtractive. An exclusively
subtractive strategy is one able to dynamically delete known servers
that go offline, but unable to dynamically add new servers that come
online.

There are several server group update options. When clients
experience a communication failure in connection with a particular
server, they may piggyback a notification of that fact on their next
message to their load balancer or next current server. Alternatively,
balancers may poll known servers, and revise their server list
whenever a poll fails. Yet again, load monitors may send heartbeat
messages to balancers, which in turn run a periodic process to
sweep their server list for monitors that have failed to issue a recent
heartbeat.

All of these approaches increase the total messaging overhead. So, a
server group update is often ignored, but even exclusively subtractive
strategies may have enough positive effect to justify their cost. The
piggybacking strategy is often the cheapest of the available options. It
does not increase the messaging overhead in terms of message
count, but only in terms of message size and marshaling time. (The
processing time involved in subtracting a defunct server from a
balancer’s server list is common to all approaches.) However, if the
request communication protocol does not allow piggybacking, and
server group update is needed, then one of the message-count-
intensive methods must be chosen. Opentalk STST, IIOP, and similar
protocols permit piggybacking using the message context.

Multiple Load Balancers and Fault-Tolerance
Some architectures, in order to avoid the danger of a single point of
failure, use multiple load balancers. When a synchronous unicast
protocol is in play, such architectures usually employ the primary-
Opentalk Communication Layer Developer’s Guide 8-9

Opentalk Load Balancing
backup approach. One balancer is the designated primary. The
others are backups. All clients and load monitors begin by sending
requests or load data updates to the primary. If and when the original
primary fails, the remaining, backup balancers must agree on the
identity of the new primary. This is usually implemented using a
leader election algorithm. Both clients and load monitors must know
or be able discover the address of the new primary. Lastly, if the
original primary had any significant state, it should have been
replicated in all of the backups prior to failure.

Load Balancing Options
This section describes of the options available in synchronous
unicast load balancing, and discusses their tradeoffs. We will
assume, for the most part, that there is only one load balancer in the
architecture.

We begin with the principle options available on the client side. The
section following this one will discuss load-balancing architectures as
combinations of the options discussed here.

Client-Side Options
Clients may hold (1) a reference to a balancer, (2) references to both
a balancer and their current server, or (3) references to their current
server and to any other servers they have been redirected to or
configured with.

Client with a Balancer Reference
A client with only a reference to a load balancer sends every request
to its balancer. The balancer then redirects the client request to an
appropriate server.

This is the kind of client to use if you want to balance loads by
associating servers and requests, rather than servers and clients. It
supports load balancing with high, request-level granularity.

This is not, at least at first glance, the most efficient option, because
every client request involves four requests or replies, two more than
usual. They are:

1 the initial message from the client to the balancer,

2 the balancer’s redirecting response,
8-10 VisualWorks

Load Balancing Options
3 the resend of the client’s initial message to the appropriate
server, and

4 the server’s response.

In short, a client of this sort may nearly triple the mean request send
time, that is, the mean amount of time it takes for a request, once it
has been recognized as a remote request on the client side, to arrive
at a server. The estimate of a near tripling is highly pessimistic, for it
is based on the assumptions that the balancer’s redirecting response
will cost as much to marshal and send over the wire and unmarshal
as the original client request (which is unlikely) and that the client’s
resend will require a re-marshaling of the original request (which is
implementation dependent.) Nonetheless, if a client of this kind is
paired with a balancer using a static distribution strategy, its overall
cost is low. The redirection overhead of an additional request-reply
cycle can be far less than the messaging overhead of periodically
updating a balancer with the current loading of several servers. So,
this simple client, despite its relatively high cost per client request, is
often used.

Client with a Balancer and Current Server References
A client with support for managing both a balancer and a current
server references will send its first message to the balancer, to
acquire a current server reference. Thereafter, the client sends
requests to its current server reference, until a request fails with a
communication fault, at which point it returns to the balancer to obtain
a new current server reference.

This is the kind of client to use if you want to balance loads by
associating servers and clients, rather than servers and requests. It
does not support load balancing of high, message-level granularity
(except in special cases, where servers, as well as balancers,
redirect individual requests).

This sort of client has little redirection overhead in comparison with
the previous one, precisely because it does not attempt to redirect
every message. Once a client of this kind obtains a server reference,
it continues to use it. However, clients may vary significantly in the
number of requests they issue or in the accumulated cost of their
requests. So, even if clients are equally distributed among servers,
some servers may still experience far higher loads than others, if they
are, by happenstance, assigned one or more particularly demanding
clients. This is less a problem if clients keep and address a server
reference for a relatively short period than it is if clients hold and
Opentalk Communication Layer Developer’s Guide 8-11

Opentalk Load Balancing
address a server reference for a relatively long one. We call the
period over which clients of this sort retain the same server the
server retention period.

This type of client is the only choice when clients and servers
participate in a session or when client-server communication is
transactional — that is, whenever servers maintain client-specific
state or vice versa. Clients engaged in sessions or transactions do
not welcome redirection to another server in any case other than a
major communication failure in connection with their current server.

You should therefore accept the fact that any session-based or
transactional communication regimen places limits on the granularity
to which a message distribution system can balance loads. When
sessions or transactions are in play, client-level rather than message-
level load balancing granularity must be in force. This does not mean
that there is something wrong with message distribution. It does
mean is that you always pay a price for state coordination.

Note that clients involved in sessions or transactions may null out
their current server reference at the end of every session or
transaction. That forces the next request to go to the balancer, to
obtain a new current server reference. It is appropriate for clients,
rather than any other object, to take such action, because clients
know when sessions or transactions begin or end. By minimizing the
server retention period, session-based or transactional clients help
optimize a load balancing regimen, by employing their awareness of
state-maintenance boundaries to tighten the load balancing
granularity to the greatest allowable extent.

Client With Server References
It is possible to balance loads without a load balancer. In such an
arrangement, load monitors communicate load data amongst
themselves rather than to a balancer, and the load monitors
themselves redirect incoming requests. A client designed for this
arrangement starts out with a reference to at least one server, its
current server. It sends all of its requests to that server, until either
the server fails or, under the direction of the server’s co-located load
monitor, that server redirects it to another. If the client is configured
with several servers and collects new server references as it is
redirected, it is in a position to re-establish contact with several
alternate servers, when and if its current server fails. In this
arrangement there is no single point of failure (and a single load
balancer is just that). No host, running only a balancer, can bring the
entire system to a halt, when its plug is pulled.
8-12 VisualWorks

Load Balancing Options
The redirection overhead of this option is the same or less than that
of the client with a balancer and current server references. But the
messaging overhead can be very high, because each load monitor
must communicate its server-specific load data to every other load
monitor, rather than to a single balancer. The number of
administrative messages required for a complete load data refresh,
where N is the number of load monitors, is (N –1) times N, rather than
1 times N.

Consequently, clients of this type are best used only when you are
willing to pay the comparatively high administrative communication
costs that obviate single point failures. They are attractive only when
N or the number of load monitors (which should equal the number of
servers) is relatively small, or when the load monitor distribution
strategy is extremely defensive, that is, not much inclined to
redirection. Minimizing the frequency of redirection, and thereby the
size of the redirection overhead, can somewhat offset the cost of the
messaging overhead involved in any “no balancer” scheme.

For example, a not most loaded strategy will redirect an incoming
request to some other randomly selected server only if the receiving
server is the most loaded one. Such a strategy can, in connection
with this kind of client, cut the redirection overhead immensely.

Note that, though this sort of client maintains a current server
reference, it cannot be used when client-server communication is
session-based or transactional. That is because the associated load
monitors redirect on the request level, not the client level.

Balancer Options
Assuming that there is only a single balancer, there are three usual
ways in which a balancer may operate:

• without load data,

• with load data but without a server hold protocol, and

• with load data and with a server hold protocol.

A hold protocol is a protocol though which a balancer may order a
server to redirect, rather than service, any new incoming requests,
while it continues to process the existing, already queued requests
that arrived before the hold order.
Opentalk Communication Layer Developer’s Guide 8-13

Opentalk Load Balancing
Balancer Without Load Data
Balancers that operate in the absence of load data are restricted to
static distribution strategies. Their servers do not require co-located
load monitors, and they do not require any protocols or processes for
obtaining load data.

This is the simplest kind of balancer, and it may by used with clients
that have only a balancer reference or clients that manage both a
balancer and a current server reference.

This sort of balancer should be used only when static distribution
strategies are appropriate. It is, therefore, appropriate in only two
circumstances:

• when clients keep only a balancer reference but their requests
vary little in execution time and servers vary little in throughput, or

• when clients keep both a balancer and a server reference, they
vary little in number of requests issued, mean request execution
cost, request rate, and period over which they retain a current
server reference, and servers vary little in throughput

Balancer With Load Data
Balancers with load data require that servers have co-located load
monitors, and either pull load data from load monitors or expect it to
be pushed to them by monitors.

This sort of balancer may be used with clients that have only a
balancer reference, and with clients that manage both a balancer and
a current server reference. In the latter case, they do no more than
assign a client a current reference, when it requires one. Their ability
to balance load closely is, therefore, in the latter case, a function of
the length of the period over which clients hold and address the same
server reference. They are able to correct for the fact that some
clients may send more, or send more CPU-intensive, requests than
others — and thereby disturb the balance of the request load among
the several server — only at the moment when they assign a new
current server reference to a client that requires one. This liability is a
positive feature if client-server communication is session-based or
transactional, for it means that the balancer simply does not redirect
requests in the midst of a successfully proceeding session or
transaction.

This type of balancer is best used in these four situations:
8-14 VisualWorks

Load Balancing Options
• when clients have only a balancer reference but their requests
have high variance in processing time, or servers vary in
performance

• when clients manage both a balancer and a current server
reference, but all clients have very similar behavior, as measured
by variance in the number of requests, request rate, and mean
request processing time, and servers do not significantly vary in
performance

• when clients manage both a balancer and a current server
reference, vary in the number of requests, request rate, or mean
request processing time, or servers vary in performance, but
clients have a comparatively short server retention period

• when clients keep both a balancer and a current server
reference, and you do not care about tight correction of client-
specific or server-specific variability because you are running
sessions or transactions that do not want to be interrupted by a
redirect or a server hold order

Balancer With Holds
Balancers that support and use a server hold protocol are like
balancers with data, with this exception: they expect to work with
monitors that may command their co-located servers to redirect,
rather than service, new, incoming requests, either for some period or
until commanded to terminate the hold.

It only makes sense to use balancers of this kind with clients that
manage both a balancer and a current server reference. Nothing
prevents you from using this kind of balancer with clients that
maintain only a balancer reference, but if you are already assigning
servers by request rather than by client, it is a waste of effort to
manage the load distribution at the back end too.

Balancers of this sort redirect requests sent to them according to
their configured distribution strategy. They also run a process that
monitors server loading, and under specifiable conditions will order a
load monitor to command its associated server to redirect incoming
client requests, rather than service them. After a request is
redirected, the involved client resends its request to the load
balancer, to get a new current server reference.

These balancers are not appropriate if client-server communication is
session-based or transactional, because directing a server to hold
would interrupt either.
Opentalk Communication Layer Developer’s Guide 8-15

Opentalk Load Balancing
However, assuming that each request is complete in itself, this the
best balancer to use in cases when clients keep both a balancer and
a current server reference, and clients differ markedly in their
individual behavior, as measured by variance in number of requests,
request rate, mean request processing time, or server retention
period, or servers vary widely in performance

Server-Side Options
There are, as the preceding sections imply, four options on the server
side:

• no load monitors

• monitors that report to a balancer with loads

• monitors that report load data to a balancer and respond to a
server hold protocol, and

• monitors that report load data to each other rather than to a
balancer.

No Monitor
This option only makes sense when your balancer is one that
disregards load data and uses a static distribution strategy.

Monitor With Balancer
This is the “vanilla” monitor. To operate it requires a configured load
definition strategy and a configured load data transfer strategy. It
expects to either push load data to a balancer or to be polled for load
data. It is designed for use with balancers that use load data but do
not issue server holds.

Monitor With Server Hold Protocol
This sort of monitor is like a “monitor with loads,” except that it
responds to hold start and hold stop orders from its balancer and is
able to command its associated server to cease servicing new
incoming requests or to again begin servicing them. It is designed for
use with balancers that support and issue server holds.

Monitor Without a Balancer
A monitor without a balancer needs to be configured with the
addresses of the other monitors in its group. It either pushes load
data to all of them or pulls load data from all of them. Like monitors
with a server hold protocol, a monitor of this kind can direct its server
8-16 VisualWorks

Load Balancing Options
to redirect rather than service a new, incoming request. Like a
balancer, it implements distribution strategies, and keeps track of all
the loads of all the servers in its group.

However, the form of the question asked, when requests are
redirected, is slightly different from the form of the question asked by
balancers. Instead of asking which is the best server to direct the
incoming request to, a monitor of this kind asks whether there is a
more suitable server than the one presently receiving the request.
Under non-aggressive distribution policies, like not most loaded, this
results in far less redirection overall, which somewhat compensates
for the number of messages needed for a full load data update. If the
present server is not the most loaded one, it will accept and process
the incoming request. It will redirect it only if, to the best of its
knowledge, it is the most loaded of all the available servers.

This kind of monitor requires no balancer, retains no balancer
reference, and is designed to work only with the third kind of client: a
client that maintains several server references and no balancer
reference.

Multiple Balancers and Fault-Tolerance
If, instead of using the “no balancer” approach described above,
multiple balancers are used to ensure fault tolerance, then the
important options are these:

• the method, if any, by which a primary balancer replicates its
state in its backups,

• the nature of the leader election algorithm, and

• the means used by clients and load monitors to acquire the
address of the new primary whenever a fail-over occurs.

In the simplest solution to these problems, balancers are considered
to have no significant state, clients and load monitors are configured
with the same list of addresses of existing balancers, and both leader
election and fail-over are reduced to the process of switching to the
next known balancer in the commonly shared list of servers whenever
a message to the primary responds with a communication failure or a
server fault.

In more complex arrangements, the primary will forward every
message it receives to its backups, to guarantee that they are in the
same state as itself. The primary balancer will issue heartbeats, so
that other balancers can detect when it has gone down. When and if
Opentalk Communication Layer Developer’s Guide 8-17

Opentalk Load Balancing
the primary goes down, backups will negotiate the identity of the new
primary. Once that has been decided, all clients and load monitors
will be informed of the address of the new primary.

For load balancing, the simplest arrangement is arguably preferable
because it entails the least messaging overhead. State replication
messages, heartbeats, leader election negotiations, and leader
notifications can be ignored. The entry price for this simplification is
the assumption that balancers have no significant state. That is an
acceptable assumption in many circumstances. Balancers record
only four significant kinds of state:

• the addresses of the currently available servers,

• the current loading of those servers,

• the parameters that define the current load distribution regime,
and

• the state of any processes regulating “pull” data transfer regimes.

So, simple approaches to multiple balancer fault-tolerance are
acceptable under these conditions:

• All clients and load monitors can be configured at start up with a
list of the addresses of all balancers, and it is easy to keep those
lists consistent.

• The rest of the architecture or configuration supports recovery
from a failed server, so there is little pain associated with having
to recover from a failed server twice (first in the primary, second
in a new primary after a fail-over).

• Load data is updated often enough that a brief, post-fail-over
period, in which load data is more than usually out of date will not
significantly affect performance.

• All balancers can easily be configured with the same distribution
regime and the regime is not changed dynamically or can be
changed in all balancers easily.

• No balancers use “pull” data transfer strategies.
8-18 VisualWorks

Possible Load Balancing Architectures
Possible Load Balancing Architectures
In this section we list and describe the possible load balancing
architectures entailed by the options listed in the preceding section.
Thus, this section has the nature of a summary and review. There are
exactly seven possible basic architectures given the options so far
described, only six of which are practically useful.

Again, we explicitly defer discussion of architectures with multiple
balancers. Also, we are not going to complicate matters by talking
about architectures that change their configuration dynamically,
though, in the Opentalk implementation, any complex component
may be dynamically re-configured down to one of a simpler type. The
aim of this section is to describe the possible, fundamental
arrangements, identify the meaningful ones, and specify exactly
when each of the latter should be used.

Note that whenever we mention variance in request processing time
in the following, it may be a product of either variability in request
processing time on the same server or variability among servers in
request processing speed.

The “Balancer Always, Without Loads” Architecture
In this architecture, the client holds only a balancer reference. Every
client request goes to the balancer first. The balancer ignores loading
and has a static distribution strategy. The servers have no co-located
load monitors.

This is the simplest possible load balancing architecture. Its principal
cost is the redirection overhead entailed by sending each request to
the balancer first. However, this cost may be offset by the fact that no
load monitors are sending load updates to the balancer. This
architecture is the first of the two with the lightest total messaging
overhead. This architecture is best used in cases where all of the
following conditions are fulfilled:

• client-server communication does not involve sessions or
transactions,

• a significant increase in mean request send time is acceptable,

• request processing time has small variance, and

• clients vary in request rate or request number.
Opentalk Communication Layer Developer’s Guide 8-19

Opentalk Load Balancing
The “Balancer Sometimes, Without Loads” Architecture
In this architecture, the client manages a reference to a balancer and
a reference to its current server. It sends requests to its current
server until it experiences a communication failure. It then addresses
the balancer to obtain a new server reference. The balancer ignores
loading and has a static distribution strategy. The servers have no co-
located load monitors.

This architecture is the second of the two with the lightest possible
messaging overhead. It also minimizes redirection overhead. It is
best used under the two following sets of conditions when either:

• client-server communication does not involve sessions or
transactions,

• a significant increase in mean request send time is not
acceptable, and

• clients vary little in request number, request rate, mean request
execution time, and server retention period,

or

• client-server communication is session-based or transactional,
and

• clients vary little in request number, request rate, mean request
execution time, and server retention period.

The “Balancer Always, With Loads” Architecture
In this architecture, the client holds only a balancer reference. Every
client request goes to the balancer first. The balancer examines
currently know loads before redirecting a requests, and usually has a
dynamic distribution strategy. All servers have co-located load
monitors.

This architecture is comparatively high in both redirection overhead
and messaging overhead. It is best used when all of the following
conditions are fulfilled:

• client-server communication does not involve sessions or
transactions,

• a significant increase in mean request send time is acceptable,
and

• request processing time has high variance.
8-20 VisualWorks

Possible Load Balancing Architectures
The “Balancer Sometimes, With Loads” Architecture
In this architecture, the client manages a reference to a balancer and
a reference to its current server. It sends requests to its current
server until it experiences a communication failure. It then addresses
the balancer to obtain a new server reference. The balancer
examines currently know loads before redirecting a requests and
usually has a dynamic distribution strategy. All servers have co-
located load monitors.

This architecture is comparatively low in redirection overhead, but
comparatively high in messaging overhead. It is best used under the
following two sets of conditions:

• client-server communication does not involve sessions or
transactions,

• a significant increase in mean request send time is not
acceptable,

• clients vary in request number, request rate, and mean request
execution time,

• the mean server retention period is comparatively short, and

• the server retention period has low variance,

or

• client-server communication is session-based or transactional,
and

• clients vary in request number, request rate, mean request
execution cost, or server retention period.

The “Balancer Always, With Holds” Architecture
This is a possible architecture but not a practical one. Server holds
make sense only if servers are being assigned to clients rather than
to requests, and clients vary significantly in the demands they place
on servers. Holds are a means whereby clients are forced to obtain a
new current server reference, in order to better equalize load. Thus,
server holds have no application in connection with a client that
supports high, message-level, load balancing granularity.
Opentalk Communication Layer Developer’s Guide 8-21

Opentalk Load Balancing
The “Balancer Sometimes, With Holds” Architecture
In this architecture, the client manages a reference to a balancer and
a reference to its current server. It sends requests to its current
server until it experiences a communication failure. It then addresses
the balancer to obtain a new server reference. The balancer
examines currently known loads before redirecting a request, and
has a dynamic distribution strategy. All servers have co-located load
monitors. In addition to running its redirection policy, the balancer
runs a process on the side that periodically examines current server
loading. Under specifiable conditions, it orders selected servers to
hold, that is, to cease servicing new, incoming requests, and to
redirect them instead. These, server-redirected client requests are
resent by the client to the balancer. The balancer, then, on the basis
of its redirection policy, assigns the involved client a new current
server reference.

This architecture is comparatively low in redirection overhead, but
very high in messaging overhead. It is best used when all of the
following conditions are fulfilled:

• client-server communication does not involve sessions or
transactions,

• a significant increase in mean request send time is not
acceptable,

• clients vary in request number, request rate, or mean request
execution time, and

• the server retention period has high variance or a comparatively
high mean.

The “No Balancer” Architecture
This architecture is about as close as you can get, in the unicast
arena, to the benefits associated with multicast load balancing
schemes. There is no single point of failure. From the point of view of
the client, the servers look much like a multicast group. Of course, it
costs to make that happen with synchronous unicast.

Each client maintains a current server reference and any additional
server references it may have been configured with. As its requests
are redirected, it stores any new server references that appear. In
response to a communication failure, it retries its stored server
8-22 VisualWorks

Opentalk Load Balancing Implementation
references until it attains a successful reconnect. If it cannot re-
establish contact with some server, it issues a “servers inaccessible”
exception.

Each load monitor distributes its load data to all the others, and has a
distribution strategy. When the server they are co-located with
becomes overloaded in comparison with others, the load monitor
redirects new incoming requests to other servers, according to its
distribution policy.

This architecture has potentially very low redirection overhead, but
potentially very high messaging overhead. It is best used when all of
the following conditions are fulfilled:

• client-server communication does not involve sessions or
transactions,

• a significant increase in mean request send time is not
acceptable,

• a single point of failure is not acceptable,

• a geometric increase in the messaging overhead incurred by a
single, complete load data refresh is acceptable, and

• a very highly defensive distribution strategy is preferred.

Opentalk Load Balancing Implementation
The code of the Opentalk Load Balancing parcels is well commented.
The purpose of this section is to provide a high-level overview of the
implementation. Turn to the code comments and the code for the
details not provided there.

Component Configuration and Creation Machinery
The Opentalk Load Balancing classes follow the configuration pattern
used in the bundle OpentalkBase. In that pattern, component classes
have matching configuration classes. Configurations hold
configurable parameters and sub-configurations. These may both be
changed, or left unassigned. In the latter case, default values will be
used. When sent new, a configuration returns a component. The
created component retains the configuration it was created from in an
instance variable.
Opentalk Communication Layer Developer’s Guide 8-23

Opentalk Load Balancing
The component classes of the Opentalk Load Balancing facility, that
define balancers, monitors, and the like, usually inherit from
Opentalk.LBComponent. They are matched, nearly one-to-one, with
classes that inherit from Opentalk.Configuration. For example, the
component class LoadBalancerWithLoads has a configuration class
named LoadBalancerWithLoadsConfiguration, and a
LoadBalancerWithLoads may be configured and created with an
expression like the following:

((LoadBalancerConfiguration withLoads)
dataPort: <Integer>);
requestPort: <Integer>;
serverRefManager:

((ServerRefManagerConfiguration standard)
serverAddresses:

<SequenceableCollection of: IPSocketAddress>;
serverOID: <Symbol>;
monitorAddresses:

<SequenceableCollection of: IPSocketAddress>;
monitorOID: <Symbol>;
yourself);

yourself) new
The details of configuring components for the standard load
balancing architectures are covered in the next major section of this
chapter, but you should know about the general features of this
pattern early on.

Initial Reference Acquisition
The configuration of a distributed system – one with several
interacting components that are not co-located – usually involves
initial reference acquisition. During initial reference acquisition,
components obtain remote references to the other remote
components they will interact with.

To ease the usual pain involved in reference acquisition, the
configuration interface of load balancing components uses object
identifiers (OIDs) and instances of IPSocketAddress in place of the
usual remote references. This implies that components can be fully
configured and initialized independently of whether other remote
objects and remote request brokers have been created or started.
When needed, remote references are programmatically generated
from OID and IPSocketAddress pairs. In Opentalk, a RemoteObject, an
instance of the class that implements a remote reference in Opentalk,
requires a OID and an IPSocketAddress to be fully specified, and must
also be created by just the request broker that will use the reference.
8-24 VisualWorks

Opentalk Load Balancing Implementation
Default Values
The load balancing component classes have class instance variables
that establish the default and valid values for their configurable
parameters. To accommodate both the defaults set by components
and the reassignments that may be provided by configurations, the
methods that access configurable parameters are of one of these two
forms:

cyclePeriod
^cyclePeriod ifNil:

[cyclePeriod := configuration cyclePeriod
ifNil: [self class defaultCyclePeriod]]

dataPort
^configuration dataPort ifNil:

[self class defaultDataPort]
Configurable parameters used heavily during operation usually follow
the first pattern; while those used less frequently usually follow the
second.

Runtime Reconfiguration
Some of the significant configurable parameters of component
classes may be changed at runtime. In every such case, the
parameters are altered by executing an explicit setter message, that
is one with a selector like #setDataTransferType:.

In these methods, the validity of the new parameter is checked. Any
alterations or runtime fix-ups entailed by the parameter change are
executed. Lastly, the new value is set. These methods contain a
commented triggerEvent: expression. If the commenting is removed,
an event will be issued, that you can send to an EventCollector, or
monitor in some other way.

All of the principal methods in the operational code of the load
balancing components have trigger expressions of this sort. Many of
them are commented out, since they are of more use during testing
or debugging than during normal operation. They are retained within
double quotes because they are a valuable when things go astray,
but not worth what they add to execution time otherwise.

Exceptions
The Opentalk-Load-Base parcel introduces three new exception
classes that are used by the load balancing code. They are:
Opentalk Communication Layer Developer’s Guide 8-25

Opentalk Load Balancing
OtELoadBalancingConfiguration

This exception is issued, with an appropriate error message text,
when a configuration error is detected. Note that this exception is
raised when a configurable parametere for a single component is
given an invalid value. No checks are run on the consistency of
the configurations of multiple components.

OtERedirect

This is the special exception used to force a client to redirect a
request. The parameter instance variable of the exception will
contain a server reference or nil. If it is nil, the client is expected
to return to its current balancer for a new server reference.
Otherwise, the client uses the reference provided.

OtEServersInaccessible

This is the hard exception issued by a client when it is unable to
establish contact with any server, given its configured retry limits.

LBComponent
Most of the Opentalk Load Balancing component classes inherit from
LBComponent. LBComponent in turn inherits from
Opentalk.GenericProtocol. The latter class does little more than define a
simple state machine for starting, stopping, restarting, or resetting an
object. Most of the Opentalk Load Balancing components may be
started, stopped, or reset. They possess request brokers or periodic
processes that they start or stop in turn, or may possess sub-
components with such characteristics. Load balancing components
are implemented in the following classes, or their subclasses:

Class Name Description

LBClient optional superclass of all load-balancing clients

LoadBalancer superclass of all load balancers

LBServer optional superclass of all load-balancing servers

LoadMonitor superclass of all load monitors

LoadDefinition superclass of all load definitions

ServerRefManager superclass of all server reference managers
8-26 VisualWorks

Opentalk Load Balancing Implementation
In order to ease the programmatic generation of the required remote
references from OID and IPSocketAddress pairs, LBComponent also
establishes the default OIDs and port numbers of all components.

The default OIDs are:

The default port numbers are divided into two classes: the port
numbers for request channels (the brokers that handle client
requests), and the port numbers for data channels (the brokers that
handle the administrative communication between balancers and
monitors). The default port numbers are:

These defaults are stored in class instance variables, and may be
overridden on a class-by-class basis, if you so wish.Note that the
distinction between request ports and data ports must be
scrupulously preserved in all load balancer configurations.

Generic Client
The parcel Opentalk-Load-Client includes a class named LBClient.
LBClient is associated with a corresponding configuration class,
named LBClientConfiguration. These are intended to be generic client
and client configuration classes. They ease the use and configuration
of the client-side reference wrappers implemented by the LoadRef
hierarchy.

OID Objects So Identified

#LBClient instances of LBClient and all its subclasses

#LoadBalancer instances of LoadBalancer and all its subclasses

#LBServer instances of LBServer and all its subclasses

#LoadMonitor instances of LoadMonitor and all its subclasses

Class and Channel Type Port

LBClient, Request 3000

LBServer, Request 3300

LoadBalancer, Request 3700

LoadBalancer, Data 3800

LoadMonitor, Data 3900
Opentalk Communication Layer Developer’s Guide 8-27

Opentalk Load Balancing
Developers creating application-specific load balancing clients or
client configurations, are urged to subclass from or augment LBClient
or LBClientConfiguration, though they are not required to.

It is very strongly recommended that every application-specific load
balancing client wrap its server or balancer references in an instance
of some concrete subclass of LoadRef. If you do not elect to use the
LoadRef hierarchy, you will need to implement client-side initial
reference acquisition, reference management, redirection, and
message retry logic of your own.

Client-Side Reference Wrappers
The parcel Opentalk-Load-Base defines an abstract class named
LoadRef. In accord with the general configuration strategy, concrete
LoadRef classes are associated with LoadRefCongfiguration classes,
used to configure and create them. The LoadRef hierarchy supplies
classes that wrap and manage references to remote servers or load
balancers for clients.

LoadRef declares the instance variables to hold a client’s current
server reference and a reference to the client’s request broker.

All of the concrete subclasses of LoadRef implement simple,
message-based state machines for processing outgoing client
requests. The states may be roughly grouped into three types:

• send states: The LoadRef is sending a message to a balancer or
server.

• failure states: The LoadRef has failed to receive a reply to or has
received an error after a send.

• redirection states: In response to a message, the LoadRef a
redirect message, and is redirecting a request to another server
or back to a balancer.

Critical to the operation of the state machines are other instance
variables, declared in LoadRef, that hold values for configurable
numeric limits and needed exception or error sets.

The configurable limits are:
8-28 VisualWorks

Opentalk Load Balancing Implementation
sendLimit

The number of times a message will be sent from a send state, in
the face of communication or other failures, before transitioning
to a failure state. Note that this is a “send” and not a “retry” limit.
So, a sendLimit of 2 permits one retry. The sendLimit should never
be less than 1.

cycleLimit

The number of times, after a preceding failure state, that a
LoadRef with a balancer reference will go back to its balancer for a
new reference, or that a LoadRef with only server references will
go back to its stock of accumulated server references for a new
reference. When the cycleLimit is exceeded, the LoadRef issues a
“servers inaccessible” exception. This parameter functions like
sendLimit, and also should never be less than 1.

Note: If you use architectures where a client request may be
redirected two or three times under normal operating conditions,
set the cycleLimit to at least 3 or 4. This is important.

The configurable exception and error types declared in LoadRef are:

communicationFailures

These are expected to be protocol-specifc or transport-specific
communication failures, like failure to establish a connection.

timeoutExceptions

These are expected to be protocol-specific message timeouts.

serverErrors

These are expected to include connection shutdown conditions
and the like.

Additionally, LoadRefWithServer, an abstract subclass of LoadRef,
declares the following:

redirectExceptions

These are the exceptions used to implement request redirection.
Opentalk Communication Layer Developer’s Guide 8-29

Opentalk Load Balancing
This last is properly declared in a unicast-specific subclass, because
multicast and asynchronous load balancing schemes are not
constrained to use redirection.

Making these sets exception classes configurable is a first step on
the way toward using the load balancing code with several protocols.
Presently, the state machines treat communicationFailures,
timeoutExceptions, and serverErrors in the same way. If you require
more discrimination, subclass from the LoadRef hierarchy, refining the
inherited state machine to meet you ends.

All of the concrete subclasses of LoadRef reimplement
doesNotUnderstand: and presume that any message they do not
understand is an outgoing client request. Note also that LoadRef
inherits from Object. This entails that the LoadRef classes needed to
be used with a certain presence of mind. See the class comments for
more details.

The LoadRef hierarchy includes one abstract subclass of LoadRef,
named LoadRefUcast. It is included in anticipation of developing
multicast load reference types. In additions to declaring
redirectExceptions, it implements the machinery for client-initiated
server group update. Client-initiated notification of server failures is
also considered unicast-specific: nothing like it is needed in
connection with multicast groups.

LoadRefUcast declares a variable named serverGroupUpdateType.

When a LoadRefUcast’s serverGroupUpdateType has the value #active,
and the load reference has received a failure in communication with a
server, it will add a reference to that server to its current process
environment under a well-known key. That association in its process
environment will be marshaled in the process environment portion of
the next outgoing request. When that request arrives at a balancer or
server that attends to a client-issued server failure notification, it can
take action, usually deleting the server from the list of those currently
available. This is the piggybacking approach to server group update
mentioned earlier.

There are only two supported options for client-initiated server group
update:

#active

The client piggybacks server failure notifications on subsequent
requests.
8-30 VisualWorks

Opentalk Load Balancing Implementation
#inactive

The client does not piggyback.

The piggybacking implementation is intentionally simple. Only one
server reference is piggybacked. So, if the client experiences two
server failures in a row, but gets through with its third message, only
the reference to the most recently failed server will be piggybacked
on the third message.

LoadRefUcast has three concrete subclasses. They are:

Each of these classes one of the client-side options in load balancing
behavior introduced in Client-Side Options above. For a discussion of
LoadRefWithBackups, see the section Multiple Balancer Support later
in this document, on support for multiple balancers.

Load Balancers
The hierarchy under LoadBalancer embodies the distinctions between
load balancer types described above. The hierarchy tree is:

LoadBalancer
LoadBalancerSansLoads
LoadBalancerWithLoads

LoadBalancerWithHolds
Load balancers lower in this tree can be configured to operate like
balancer higher in this tree, but not vice versa.

Server Reference Managers
A LoadBalancer, or a LoadMonitor that issues redirects, contains a
ServerRefManager. A ServerRefMananger manages the server
references held by a balancer, and implement all request distribution
and server hold types.

A ServerRefManager holds a collection of ServerRefs. A ServerRef
contains several instance variables used in managing references to
servers, contacting their associated load monitors, purging servers
that have not responded, and recording server hold status.

A ServerRefMananger is created and configured using a
ServerRefManangerConfiguration. If you need to implement a new
distribution strategy, augment or subclass from ServerRefMananger.
Opentalk Communication Layer Developer’s Guide 8-31

Opentalk Load Balancing
Distribution Types
ServerRefManager implements eight distribution types that may be
used by balancers. Some are static or data-free. Others are dynamic
or data-bound.

Static Distribution Types
Four static distribution types are implemented:

#first

The first data distribution type sends all requests to the first
server in the ServerRef collection. It not intended for use in
deployed applications. It is useful for testing and for establishing
performance base lines. You can get the same effect by running
a request stream against a configuration wherein the ServerRef
collection contains only one ServerRef.

#random

The random distribution type sends each incoming request to a
server randomly selected from the ServerRef collection. This is a
robust distribution type, largely immune to any periodicities in the
request stream, and useful even when requests display middling
amounts of variance in execution time.

#sequential

The sequential distribution type treats the ServerRef collection as
a cycle and sends the first request to the first server, the second
request to the second server, and so on around. This distribution
type is not entirely immune to periodicities in the request stream,
for if there are N servers and every Nth request has a higher
execution time than the others, this distribution type will assign all
the most expensive requests to the same server.

#timedSequential

The timed sequential type runs a cyclic timing process with a
settable period. Servers are assigned to requests using an index
into the ServerRef collection. The timing process increments that
index at the end of each period. The index starts at 1, is
incremented to 2 at the end of the first period of the timing
process, is incremented to 3 at the end of the second period, and
so on around back to 1. All requests that arrive during the first
period go to the first server in the ServerRef collection; all those
that come in during the second period go to the second server;
and so on around. The advantage of this distribution type that it
8-32 VisualWorks

Opentalk Load Balancing Implementation
gives servers long spans of relief from interruption by new,
incoming requests, during which they can work through their
existing request queues without distraction. They need to
unmarshal new incoming requests and spawn worker processes
to handle them only when their number comes up in the rotation.
This arrangement may noticeably decrease the overall cost of the
process switching that can go on when a set of servers is under
heavy request barrage. On the other hand, if requests come in
short bursts, and the mean duration of a burst is less than the
cycle period, then, under timed sequential distribution, all the
requests in such bursts will be surged to only one or two servers.
That is far from optimal; a sequential distribution would do better.
Furthermore, timed sequential distribution is not immune to
periodicities in the request stream. If there are N servers, the
cyclic process’s period is K milliseconds, and particularly
expensive requests arrive near every N * K milliseconds, this
distribution type will tend to assign the most expensive requests
to the same server. If short bursts arrive with that critical
periodicity, performance is even worse.

Again, all static distribution types are best used only when requests
do not significantly vary in execution time. This condition undercuts
the susceptibility of some of them to periodicities involving divergence
in request execution time, because it ensures that there will be little
such divergence. Within this constraint, timed sequential is not
recommended in cases where the request stream displays high
intensity bursts of duration short relative to the timing cycle period.
However, if bursts have duration that well exceeds the cycle period,
timed sequential may be a good choice.

Dynamic Distribution Types
Four dynamic distribution types are implemented:

#leastLoaded

The least loaded data distribution type sends each request to the
currently least loaded server in the ServerRef collection.

#notMostLoaded

The not most loaded data distribution type sends each request to
a randomly selected server that is not the most loaded one. If all
servers have the same load it will select randomly from all but the
last server in the collection sorted by load.
Opentalk Communication Layer Developer’s Guide 8-33

Opentalk Load Balancing
#underMeanLoad

The under mean load data distribution type calculates the mean
load, and if there are servers with a load less than the mean,
sends a request to a randomly selected server in that
subcollection. If all servers are equally loaded, then a server is
selected randomly.

#underMedianLoad

The under median load data distribution type sorts the server
collection by load and sends a request to a server randomly
selected from the lower half of the server collection sorted by
load.

Server Hold Types
Server hold actions are applied on each cycle of a ServerRefManangers
regulation process. The cycle period may be set at configuration time
and dynamically altered at runtime. Five server hold types are
implemented:

#holdMostLoadedForPeriod

Under this server hold type a server is instructed to hold for a
configurable number of milliseconds.

#holdMostLoadedForPeriodOffMean

Under this server hold type a server is instructed to hold for a the
product of a configurable number of milliseconds and the
difference between the server’s load and the mean load.

#holdMostLoadedForPeriodOffMedian

Under this server hold type a server is instructed to hold for a the
product of a configurable number of milliseconds and the
difference between the server’s load and the median load.

#holdMostLoadedWithMeanTestAction

Under this server hold type a server is instructed to hold until
instructed. The server will be told again accept incoming
requests once its load drops below the mean load.

#holdMostLoadedWithMeanTestAction

Under this server hold type a server is instructed to hold until
instructed. The server will be told again accept incoming
requests once its load drops below the median load.
8-34 VisualWorks

Opentalk Load Balancing Implementation
Generic Server
The parcel Opentalk-Load-Server includes a class named LBServer.
LBServer is associated with a corresponding configuration class,
named LBServerConfiguration. These are intended to be generic server
and server configuration classes. LBServer contain two instance
variables, for a load monitor and for the server’s request broker.

Load Monitors
The LoadMonitor hierarchy contains load monitors of the kinds
described previously. The hierarchy is as follows:

LoadMonitor
LoadMonitorUcast

LoadMonitoSansBalancer
LoadMonitorWithBalancer
LoadMonitorWithHolds

LoadMonitorUcast declares the instance variables applicable to
unicast, point-to-point communication. LoadMonitorSansBalancer
implements a redirecting monitor, with an included ServerRefManager,
for use with a balancer-free architecture. LoadMonitorWithBalancer
expects to communicate with a balancer. LoadMonitorWithHolds is for
use with a balancer that issues server holds.

Load Definitions
Load definitions are implemented by the LoadDefinition hierarchy. At
present, the hierarchy contains only one concrete subclass,
LoadIsServerChannelBacklog, that defines load in terms of the number
of pending requests that have come through the server’s request
broker. This load definition assumes that a server has a request
broker dedicated to server requests. Users who wish to create other
load definitions should subclass from LoadDefinition and
LoadDefinitionConfiguration.

Server Group Update
The task of server group update is to ensure that those objects which
require an up-to-date list of the currently available servers do in fact
have one.

Manual Server Group Update
In the simplest form of server group update is manual. You configure
a balancer with the available servers. You monitor the servers. When
one goes off line, you delete it from the balancer's server reference
Opentalk Communication Layer Developer’s Guide 8-35

Opentalk Load Balancing
manager. When you bring up a new server, you add it to the
balancer's server reference manager. There are several methods for
deleting or adding servers, implemented in ServerRefManager. The
most useful method for server deletion is:

aLoadBalancerOrLoadMonitorSandBalancer
serverRefManager

deleteServerAt: anIPSocketAddress
serverOID: anOID

To add a server to a load balancer that does not use load data, use:

aLoadBalancerSansLoads
serverRefManager

addServerAt: anIPSocketAddress
serverOID: anOID

To add a server to a load balancer that does use load data, and that
therefore also makes use of a servers co-located monitor, use:

aLoadBalancerSansLoads
serverRefManager

addServerAt: anIPSocketAddress1
serverOID: anOID1

monitorAt: anIPSocketAddress2
monitorOID: anOID2

Note that if your architecture is one without balancers, you need to
update the server reference manager of each involved load monitor.
If your architecture has multiple balancers, you need to update the
server reference manager of each balancer.

Automatic Subtractive Server Group Update
It is much better if severs that fall off line are subtracted automatically.
There are three ways to arrange for this to happen. You only need
one.

• Configure the clients to piggyback a notification that a server has
failed to respond, and configure balancers (or monitors, in the
balancer-free architecture) to delete server entries upon receipt
of such notifications.

• Configure monitors to send heatbeats to their balancer, and
configure the balancer to remove servers that do not send a
heartbeat within a configured number of milliseconds.

• Configure balancers to periodically poll monitors for load data
and to remove those that do not respond within a configured
number of milliseconds.
8-36 VisualWorks

Opentalk Load Balancing Implementation
As discussed previously, the last two options add much to the
messaging overhead.

Automatic Additive Server Group Update
The Opentalk Load Balancing facility has limited facilities for additive
server group update. It is supported in exactly one case. If you are
using a “no balancer” architecture, and you add a new server
configured with the host addresses of the existing servers, and
monitors are configured to push load data, all the existing servers will
add the new to their server lists as soon as they receive a load
update from it.

Multiple Balancer Support
The use of multiple balancers is supported by the use of a special
reference wrapper called a LoadRefWithBackups. This LoadRef expects
to be configured with a set of alternate IP addresses for providers of
the same service. When used to support multiple balancers a
LoadRefWithBackup replaces the balancer reference in clients and load
monitors. It is crucial that all clients and all monitors have the same
list of alternates, listed in the same order for the lightweight fail-over
mechanism implemented here to work properly.

When, and if, the current balancer addressed by clients and load
monitors goes down (starts issuing communication failures), both
clients and monitors will switch over to the next balancer address on
their LoadRefWithBackup list. This may sound as though it is too simple
to work. But it has been tested, and it does.

Note that this simple fail-over implementation will only work if all of
the following conditions are fulfilled:

• All clients and, if they exist, all load monitors must share the
same list of balancer addresses, identical in length, content, and
order.

• No balancers are configured to use a load balancing strategy that
requires the running of a cyclic process specific to the balancer
or its server reference manager. This means the load monitors, if
they exist, must push data; server holds, if they are used, must
be for a fixed millisecond interval; and so on.

Browse the code for a complete account of the configuration
parameters under which balancer or server reference processes are
started. In particular, examine the implementations of the following
four methods:
Opentalk Communication Layer Developer’s Guide 8-37

Opentalk Load Balancing
• cycleBoundDataTransferTypes

• cycleBoundDistributionTypes

• cycleBoundHoldTypes

• cycleBoundServerGroupUpdateTypes

The configuration parameters listed in these methods are the ones
that cannot now be used with multiple balancers.

Opentalk Load Balancing Configuration
This section provides useful templates for configuring load balancing
applications of your own. Browse the code for the set of parameters
that may be set in any configuration class. Each such class, in its
class comment, specifies the impact of each setting. Only the most
significant and the most frequently altered setting will be discussed in
the following examples. We will also provide a very few examples of
sophisticated configurations, so that you can see what they look like.

It cannot be emphasized too strongly that you will need to play with
configurations for some time, and with some intelligence, to tune a
load balancing architecture for the request load it is intended to
distribute.

Scenario Description
To minimize the potential complexity of the following code samples,
we shall assume that the following, simplified situation exists:

• All clients, balancers, and servers run on the same platform and
OS.

• All clients are on one host, the host address of which is provided
by the method clientForcedHostAddress.

• All balancers on another host, the address of which is provided
by balancerForcedHostAddress.

• All servers and load monitors, if they exist, are present on a third
host, the address of which is provided by serverFocedHostAddress.

• The default ports, for request and data channels, established in
the load balancing code, or offsets from them, will always be
used.

• There are three clients.
8-38 VisualWorks

Opentalk Load Balancing Configuration
• There is one balancer in the single configuration; and there are
three in the multiple balancer configurations.

• There are three servers.

• Clients are instances of LBClientTest, a subclass of LBClient, and
are configured and created using instances of
LBClientTestConfiguration. LBClientConfiguration has been
augmented with the method test that answers an instance of
LBClientTestConfiguration.

• Servers are instances of LBServerTest, a subclass of LBServer, and
are configured and created using instances of
LBServerTestConfiguration. LBServerConfiguration has been
augmented with the method test that answers an instance of
LBServerTestConfiguration.

The “Balancer Always, Without Loads” Architecture

Client Configuration
A simple client for this architecture may be configured and created
thus:

^((LBClientConfiguration test)
loadRef: ((LoadRefConfiguration balancerRef)

balancerAddress: (IPSocketAddress
hostAddress: (LBComponent balancerForcedHostAddress)
port: LoadBalancer defaultRequestPort);

balancerOID: LBComponent defaultBalancerOID;
yourself) new

This configuration uses several default settings. In particular the
serverGroupUpdateType is set to #inactive, and the client will not
piggyback notification of server failures in its requests to the load
balancer. To change that use:

^((LBClientConfiguration test)
loadRef: ((LoadRefConfiguration balancerRef)

serverGroupUpdateType: #inactive;
balancerAddress: (IPSocketAddress

hostAddress: (LBComponent balancerForcedHostAddress)
port: LoadBalancer defaultRequestPort);

balancerOID: LBComponent defaultBalancerOID;
yourself) new
Opentalk Communication Layer Developer’s Guide 8-39

Opentalk Load Balancing
If you expect that servers may fail, a client needs to cycle back to the
load balancer for a new reference. If you expect a client to withstand
server failures in this way, you would add one line to the configuration
to increase the cycleLimit:

^((LBClientConfiguration test)
loadRef: ((LoadRefConfiguration balancerRef)

cycleLimit: 3;
serverGroupUpdateType: #active;
balancerAddress: (IPSocketAddress

hostAddress: (LBComponent balancerForcedHostAddress)
port: LoadBalancer defaultRequestPort);

balancerOID: LBComponent defaultBalancerOID;
yourself) new

If you want the client to retry once, on all sends, and before cycling
back to the load balancer on a server communication failure, you
would add one additional line, to set the sendLimit:

^((LBClientConfiguration test)
loadRef: ((LoadRefConfiguration balancerRef)

sendLimit: 2;
cycleLimit: 3;
serverGroupUpdateType: #active;
balancerAddress: (IPSocketAddress

hostAddress: (LBComponent balancerForcedHostAddress)
port: LoadBalancer defaultRequestPort);

balancerOID: LoadComponent defaultBalancerOID;
yourself) new

Note that it makes sense to increase the send limit only if temporary,
high variations in load are more likely to be the cause a request
timeout than a server crash.

Balancer Configuration
A simple balancer for this architecture may be configured and created
by executing the following code:

| sa |
sa := Array new: 3.
0 to: 2 do: [:x | sa

at: x
put: (IPSocketAddress

hostAddress: (LBComponent serverForcedHostAddress)
port: LBComponent defaultServerRequestPort + x)].

^((LoadBalancerConfiguration sansLoads)
serverRefManager:

((ServerRefManagerConfiguration standard)
serverAddresses: sa;
8-40 VisualWorks

Opentalk Load Balancing Configuration
serverOID: LBComponent defaultServerOID;
yourself);

yourself) new
The address information for all of the servers is created. Then, the
LoadBalancerConfiguration is given a ServferRefManangerConfiguration
with appropriate parameters. Since few are set, defaults will be used
for others. For example, the default distribution type, #sequential, will
be used.

A more realistic common configuration might look like this one, which
both sets the distribution type, and configures the balancer not to
ignore server failure notification from clients, but to act on them by
deleting a server reported as having failed to respond:

| sa |
sa := Array new: 3.
0 to: 2 do: [:x | sa

at: x
put: (IPSocketAddress

hostAddress: (LBComponent serverForcedHostAddress)
port: LBComponent defaultServerRequestPort + x)].

^((LoadBalancerConfiguration sansLoads)
clientFailureActionType: #delete;
distributionType: #random;
serverRefManager:

((ServerRefManagerConfiguration standard)
serverAddresses: sa;
serverOID: LBComponent defaultServerOID;
yourself);

yourself) new
If the static distribution policy #timedSequential is used, one additional
parameter becomes important: the millisecond interval at which the
target server is changed. That is set by changing that cyclePeriod of
the ServerRefManagerConfiguration:

| sa |
sa := Array new: 3.
0 to: 2 do: [:x | sa

at: x
put: (IPSocketAddress

hostAddress: (LBComponent serverForcedHostAddress)
port: LBComponent defaultServerRequestPort + x)].

^((LoadBalancerConfiguration sansLoads)
clientFailureActionType: #delete;
cyclePeriod: 10133;
distributionType: #timedSequential;

 serverRefManager:
Opentalk Communication Layer Developer’s Guide 8-41

Opentalk Load Balancing
((ServerRefManagerConfiguration standard)
serverAddresses: sa;
serverOID: LBComponent defaultServerOID;
yourself);

yourself) new

Server Configuration
Almost nothing needs to be done in the configuration of servers for
this architecture, because there are no load monitors. Server
configuration, given the scenario assumptions specified above,
amount to just this:

^LBServerConfiguration test new

The “Balancer Sometimes, Without Loads” Architecture
This architecture differs from the previous one only in having a client
that maintains a current server reference as well as a balancer
reference. So, only the client configuration differs from the
configurations presented for the previous architecture.

Client Configuration
The client configuration differs from that in the previous architecture
only in specifying a different type of LoadRefConfiguration, a
balancerAndServerRef rather than a balancerRef. So, the simplest client
configuration goes thus:

^((LBClientConfiguration test)
loadRef: (LoadRefConfiguration balancerAndServerRef)

balancerAddress: (IPSocketAddress
hostAddress: (LBComponent balancerForcedHostAddress)
port: LoadBalancer defaultRequestPort);

balancerOID: LBComponent defaultBalancerOID;
yourself) new

The “Balancer Always, With Loads” Architecture
This architecture has the same client as the Balancer Always,
Without Loads” architecture, but differs from it in requiring a more
complex balancer and server configurations. The complexity is a
product of these facts:
8-42 VisualWorks

Opentalk Load Balancing Configuration
• The servers have co-located load monitors.

• The balancers need to know the addresses of both the servers
and the monitors.

• The communication regime, for the communication of load data
between monitors and balancers must be defined.

Balancer Configuration
A simple balancer for this architecture may be configured and created
by executing the following code:

| sa ma |
sa := Array new: 3.
0 to: 2 do: [:x | sa

at: x
put: (IPSocketAddress

hostAddress: (LBComponent serverForcedHostAddress)
 port: LBComponent defaultServerRequestPort + x)].

ma := Array new: 3.
0 to: 2 do: [:x | ma

at: x
put: (IPSocketAddress

hostAddress: (LBComponent serverForcedHostAddress)
port: LBConfiguration defaultMonitorDataPort + x)].

^((LoadBalancerConfiguration withLoads)
serverRefManager:

((ServerRefManagerConfiguration standard)
serverAddresses: sa;
serverOID: LBComponent defaultServerOID;
monitorAddresses: ma;
monitorOID: LoadComponent defaultMonitorOID;
yourself);

yourself) new

Note: Note that the addresses for the monitors must be created
using the monitor data port. This is important.

Clearly, most of the interesting settings are given default values. In
particular,

• the distribution type will be #underMeanLoad,

• the data transfer type will be #receive, meaning that the balancer
will expect monitors to push load data,
Opentalk Communication Layer Developer’s Guide 8-43

Opentalk Load Balancing
• the server group update type will be #monitorPush, which again
means that balancers will be passive, and

• the client failure action type will be #ignore, meaning that if clients
piggyback a server failure notification on a request to the
balancer, that information will not be acted on.

The following shows a more complex configuration, in particular, one
where client failure notifications are acted on, and balancer poll
monitors for data on an interval, using a cyclic process, the frequency
and priority of which is set in the configuration:

| sa ma |
sa := Array new: 3.
0 to: 2 do: [:x | sa

at: x
put: (IPSocketAddress

hostAddress: (LBComponent serverForcedHostAddress)
port: LBComponent defaultServerRequestPort + x)].

ma := Array new: 3.
0 to: 2 do: [:x | ma

at: x
put: (IPSocketAddress

 hostAddress: (LBComponent serverForcedHostAddress)
 port: LBConfiguration defaultMonitorDataPort + x)].

^((LoadBalancerConfiguration withLoads)
clientFailureActionType: #delete;
cyclePeriod: 7583;
cyclePriority: RequestTransport workerPriority + 1;
dataTransferType: #pollOnInterval;
distributionType: #underMedianLoad;
serverGroupUpdateType: #monitorPush;
serverRefManager:

((ServerRefManagerConfiguration standard)
serverAddresses: sa;
serverOID: LBComponent defaultServerOID;
monitorAddresses: ma;
monitorOID: LoadComponent defaultMonitorOID;
yourself);

yourself) new
The following is another sophisticated configuration, which down-
configures a balancer of this type to use a data-free distribution type,
but uses the existing monitors to subtractively refine the balancer’s
list of available server. A server will be deleted on a “sweep” if a
heartbeat from it has not been received within the set cutoff interval.
The corresponding monitor configuration should turn on heartbeats,
8-44 VisualWorks

Opentalk Load Balancing Configuration
and ensure that the priority of the process that issues neartbeats is
greater than the priority of the processes used by the co-located
server to handle incoming requests.

| sa ma |
sa := Array new: 3.
0 to: 2 do: [:x | sa

at: x
put: (IPSocketAddress

hostAddress: (LBComponent serverForcedHostAddress)
port: LBComponent defaultServerRequestPort + x)].

ma := Array new: 3.
0 to: 2 do: [:x | ma

at: x
put: (IPSocketAddress

hostAddress: (LBComponent serverForcedHostAddress)
port: LBConfiguration defaultMonitorDataPort + x)].

^((LoadBalancerConfiguration withLoads)
clientFailureActionType: #delete;
cyclePeriod: 12641;
cyclePriority: RequestTransport workerPriority + 1;
dataTransferType: #noData;
distributionType: #timedSequential;
serverGroupUpdateType: #onSweep;
sweepCutoff: 8429;
serverRefManager:

((ServerRefManagerConfiguration standard)
cyclePeriod: 6047;
serverAddresses: sa;
serverOID: LBComponent defaultServerOID;
monitorAddresses: ma;
monitorOID: LoadComponent defaultMonitorOID;
yourself);

yourself) new
Note that we are presenting a complex configuration of this sort only
to show you what one may look like. The simplest possible
configuration for your situation is usually the best and the most
efficient.

Server Configuration
For this architecture, the simplest server configuration is as follows:

^((LBServerConfiguration test)
loadMonitor:((LoadMonitorConfiguration withBalancer)

balancerAddress:
(IPSocketAddress hostAddress:

(LBComponent balancerForcedHostAddress)
Opentalk Communication Layer Developer’s Guide 8-45

Opentalk Load Balancing
port: LBComponent defaultBalancerDataPort);
balancerOID: LBComponent defaultBalancerOID;

yourself);
yourself) new

Of course, default values are used heavily here.Note that the
balancer data port, not the balancer request port, is used in
configuring a monitor’s balancer address. A monitor must not send
any messages to the balancer’s request port, which is reserved for
client use. This is critically important.

Note: Note that if you configure a balancer to “receive” load
data, you must configure the load monitors to push it; if you do
not, no load data will be transferred. Similarly, if you configure
balancers to pull load data, you should not configure monitors to
push it, because then the data would be sent twice.

The following is an example of a slightly more complex configuration
where monitors are explicitly configured to push load data on each
change in load:

^((LBServerConfiguration test)
loadMonitor:

((LoadMonitorConfiguration withBalancer)
balancerAddress:

(IPSocketAddress
hostAddress:

(LBComponent balancerForcedHostAddress)
port: LBComponent defaultBalancerDataPort);
balancerOID: LBComponent defaultBalancerOID;
dataTransferType: #pushOnChange;
 yourself);

yourself) new
This monitor configuration is the one appropriate for the last balancer
configuration above. The monitor does not push data, but does issue
heartbeats.

^((LBServerConfiguration test)
loadMonitor:

((LoadMonitorConfiguration withBalancer)
balancerAddress:

(IPSocketAddress
hostAddress:

(LBComponent balancerForcedHostAddress)
port: LBComponent defaultBalancerDataPort);
balancerOID: LBComponent defaultBalancerOID;
8-46 VisualWorks

Opentalk Load Balancing Configuration
dataTransferType: #noData;
serverGroupUpdateType: #onHeartbeat;
cyclePeriod: 10007;
cyclePriority: RequestTransport listenerPriority + 1;
yourself);

yourself) new

The “Balancer Sometimes, With Loads” Architecture
As in the case of the previous “Balancer Sometimes” architecture,
this architecture differs from the previous one only in having a client
that maintain a current server reference as well as a balancer
reference. See The “Balancer Sometimes, Without Loads”
Architecture above for the configuration of an appropriate client.

The “Balancer Always, With Holds” Architecture
This architecture has the same client as the “Balancer Always, With
Loads” architecture, but differs from it in requiring slightly different
balancer and server configurations. The difference is a product of
these facts:

• Different balancer and monitor classes, which support the server
hold protocol, must be used.

• There are additional options, relating to server holds.

The same warnings about coordinating balancer and monitor
configurations apply.

Balancer Configuration
A simple balancer for this architecture may be configured and created
by executing the following code:

| sa ma |
sa := Array new: 3.
0 to: 2 do: [:x | sa

at: x
put: (IPSocketAddress

hostAddress: (LBComponent serverForcedHostAddress)
port: LBComponent defaultServerRequestPort + x)].

ma := Array new: 3.
0 to: 2 do: [:x | ma

at: x
put: (IPSocketAddress

hostAddress: (LBComponent serverForcedHostAddress)
port: LBConfiguration defaultMonitorDataPort + x)].

^((LoadBalancerConfiguration withHolds)
Opentalk Communication Layer Developer’s Guide 8-47

Opentalk Load Balancing
serverRefManager:
((ServerRefManagerConfiguration standard)

serverAddresses: sa;
serverOID: LBComponent defaultServerOID;
monitorAddresses: ma;
monitorOID: LoadComponent defaultMonitorOID;
yourself);

yourself) new
The simplest configuration that does not use defaults, and explicitly
configures the simplest hold strategy is shown below. In this example,
we set the hold type to that using a fixed millisecond interval; we set
that interval, and; and we set the frequency at which holds are
applied. Note that the hold policy and period are set at the level of the
balancer, but the period at which holds are applied is set in the server
reference mananger using cyclePeriod:.

| sa ma |
sa := Array new: 3.
0 to: 2 do: [:x | sa

at: x
 put: (IPSocketAddress

hostAddress: (LBComponent serverForcedHostAddress)
 port: LBComponent defaultServerRequestPort + x)].

ma := Array new: 3.
0 to: 2 do: [:x | ma

at: x
put: (IPSocketAddress

hostAddress: (LBComponent serverForcedHostAddress)
port: LBConfiguration defaultMonitorDataPort + x)].

^((LoadBalancerConfiguration withHolds)
dataTransferType: #receive;
distributionType: #underMedianLoad;
holdPeriod: 1033;
holdType: #holdMostLoadedForPeriod;
serverRefManager:

((ServerRefManagerConfiguration standard)
cyclePeriod: 1609;
serverAddresses: sa;
serverOID: LBComponent defaultServerOID;
monitorAddresses: ma;
monitorOID: LoadComponent defaultMonitorOID;
yourself);

yourself) new
All other hold types are configured similarly.
8-48 VisualWorks

Opentalk Load Balancing Configuration
Server Configuration
Nothing special need be done on the server side, except to specify a
monitor class that responds to the server hold protocol, as follows, for
the simplest case:

^((LBServerConfiguration test)
loadMonitor:

((LoadMonitorConfiguration withBalancerWithHolds)
balancerAddress:

(IPSocketAddress
hostAddress:

(LBComponent balancerForcedHostAddress)
port: LBComponent defaultBalancerDataPort);

balancerOID: LBComponent defaultBalancerOID;
yourself);

yourself) new

The “Balancer Sometimes, With Holds” Architecture
Again, as in the case of the previous “Balancer Sometimes”
architecture, this architecture differs from the previous one only in
having a client that maintains a current server reference as well as a
balancer reference. See The “Balancer Sometimes, Without Loads”
Architecture above for the configuration of an appropriate client.

The “No Balancer” Architecture
In the “No Balancer” architecture there is no balancer configuration.
But, client load references must be of the kind that record multiple
server references, and each load monitor should know the addresses
of all of the other monitors and servers. A data transfer type must be
established, shared by all monitors. Furthermore, slightly different
parameters are used to configure the distribution type. Within the
bounds of these differences, the configuration of this architecture is a
simple extension of what you have seen so far.

Client Configuration
You can configure a appropriate client with only one server reference
as follows:

| sa |
sa := (Array with:

(IPSocketAddress
hostAddress: (LBComponent serverForcedHostAddress)
port: LBComponent defaultServerRequestPort));

^((LBClientConfiguration test)
loadRef: ((LoadRefConfiguration serversRef)
Opentalk Communication Layer Developer’s Guide 8-49

Opentalk Load Balancing
serverAddresses: sa;
serverOID: LBServer defaultOID;
yourself);

yourself) new
However, it is better to provide as client with as many server
addresses as you can guarantee at startup.

Server Configuration
The simplest server configuration reads thus:

| sa ma |
sa := Array new: 3.
0 to: 2 do: [:x | sa

at: x
put: (IPSocketAddress

hostAddress: LBComponent serverForcedHostAddress
port: LBComponent defaultServerRequestPort + x)].

ma := Array new: 3.
0 to: 2 do: [:x | ma

at: x
put: (IPSocketAddress

hostAddress: LBComponent serverForcedHostAddress
port: LBComponent defaultMonitorDataPort + x)].^((

LBServerConfiguration test)loadMonitor:((LoadMonitorConfiguration
sansBalancer)serverRefManager:((ServerRefManagerConfiguration
standard) serverAddresses: sa;serverOID: LBComponent
defaultServerOID;monitorAddresses: ma;monitorOID: LBComponent
defaultMonitorOID;yourself);yourself);yourself) new

Note the discrimination between the use of request ports and data
ports.

Again, this configuration relies heavily on default settings. A more
exacting configuration might read:

| sa ma |
sa := Array new: 3.
0 to: 2 do: [:x | sa

at: x
put: (IPSocketAddress

hostAddress: LBComponent serverForcedHostAddress
port: LBComponent defaultServerRequestPort + x)].

ma := Array new: 3.
0 to: 2 do: [:x | ma

at: x
put: (IPSocketAddress

hostAddress: LBComponent serverForcedHostAddress
port: LBComponent defaultMonitorDataPort + x)].
8-50 VisualWorks

Opentalk Load Balancing Configuration
^((LBServerConfiguration test)
loadMonitor:

((LoadMonitorConfiguration sansBalancer)
serverRefManager:

((ServerRefManagerConfiguration standard)
serverAddresses: sa;
serverOID: LBComponent defaultServerOID;
monitorAddresses: ma;
monitorOID: LBComponent defaultMonitorOID;
yourself);

yourself);
cyclePeriod: 5527;
cyclePriority: RequestTransport listenerPriority + 1;
dataTransferType: #pushOnInterval;
distributionType: #notMostLoaded:;
yourself) new

This configures a monitor to push load data to all other monitors at a
period of 5527 milliseconds, sets the cycle period priority, and sets
the distribution strategy to #notMostLoaded:. Note that the Symbols that
specify a distribution type in this architecture have an appended
colon, as compared to the parameters used in all other architectures.
These method selectors take an argument, the server that is co-
located with the load monitor, and entail a redirect only of some other
server, known to the load monitor, is better suited to handle the
request under the specified request distribution regime.

Multiple Balancer Architectures
In multiple balancer architectures, both clients and load monitors, if
they exist, must be provided with the identical set of balancer
references, wrapped in a LoadRefWithBackups.

Client Configuration
The simplest configuration looks like this:

| ba |
ba := Array new: 3.
0 to: 2 do: [:x | ba

at: x
put: (IPSocketAddress

hostAddress: LBComponent balancerForcedHostAddress
port: LBComponent defaultBalancerRequestPort + x)].

^((LBClientConfiguration test)
loadRef:

((LoadRefConfiguration multipleBalancersRef)
loadRef:
Opentalk Communication Layer Developer’s Guide 8-51

Opentalk Load Balancing
((LoadRefConfiguration withBackups)
serviceAddresses: ba;
serviceOID: LBComponent defaultBalancerOID;
yourself));

yourself) new
Note that you can use multiple balancers only with “Balancer
Sometimes” architectures. This is a known, unnecessary limitation.

Server Configuration
A simple server configuration, corresponding to that of the preceding
client, reads:

| ba |
ba := Array new: 3.
0 to: 2 do: [:x | ba

at: x
put: (IPSocketAddress

hostAddress: LBComponent balancerForcedHostAddress
port: LBComponent defaultBalancerDataPort + x)].

^((LBServerConfiguration test)
loadMonitor:

((LoadMonitorConfiguration withMultipleBalancers)
loadRef:

((LoadRefConfiguration withBackups)
serviceAddresses: ba;
serviceOID: LBComponent defaultBalancerOID);
yourself);

yourself) new

Monitoring and Operation

Monitoring
Monitoring is supported by the several events issued by every
LBComponent. To discover what events an LBComponent may issue,
examine its implemented and inherited class-side “event” protocol.

Events may be subscribed to using the methods in the instance-side
“events api” protocol. Instances of Opentalk.EventCollector are designed
to be useful event receivers.
8-52 VisualWorks

Known Limitations
Operation
After configuration, when starting up a load balancing application, it is
best to start clients last. If servers have monitors that push load data
to balancers, start balancers before servers. If balancers pull load
data from monitors, start servers before balancers. The shutdown
order should be the reverse of the start order.

Known Limitations
The current implementation has the following known limitations or
issues in approximate order of severity:

• As presently implemented the redirection of a client request
involves a re-marshaling of that request. For the moment, the
higher-level, less intrusive, generic approach seemed best.

• The current load balancing code is restricted to use with the
Opentalk-STST protocol. It should be extended to work with IIOP.

• Real use of this facility would be promoted by our completion of
the VW Opentalk SNMP protocol and an integration of this
framework into SNMP so that load balancers, monitors, and
servers could be managed in the usual way.

• The load balancing components fully support architectures with
one balancer or zero balancers, but provide only conditional
support for architectures with more than one balancer. The
implementation of a full-bore, primary-backup state replication
and fail-over facility is the best way to address this.

• All clients that use multiple balancers are clients built for the
“Balancer Sometimes” architecture. The “Balancer Always”
architecture does not support multiple balancers. This is an
unnecessary limitation.

• The LoadRefs, used to wrap client-side references inherit from
Object rather than nil. This means that clients cannot used
methods implemented by a concrete subclass of LoadRef or that
class' superclasses without adding overrides to the LoadRef
hierarchy. For the moment, this seems better than the “initial
underbar” protocol found in Proxy and RemoteObject.

• The load balancing components require complex configuration.
This is largely inescapable. The configurable defaults ease the
problem.
Opentalk Communication Layer Developer’s Guide 8-53

Opentalk Load Balancing
• The configuration scheme does not provide automatic checks for
mismatched configurations. For example, if you configure a load
balancer to passively receive load data from monitors, and
configure monitors to passively wait for balancers to poll for load
data, nothing but the poor operation of your architecture will tell
you that you blew it. However, an initial round of communication
between clients, balancers, and monitors, for hand-shaking and
configuration-checking seemed too costly.

• It is considered good design practice for a load balancing system
to have negligible impact on the client side. LoadRefs may seem,
to some, more than negligibly intrusive. However, since they have
no impact on the structure of client code beyond wrapping
references that a client must acquire in any case, and also relieve
the client of implementing retry logic, this is not a compelling
complaint. Developers who wish to implement client-side retry,
redirection, reference maintenance, and initial reference
acquisition logic of their own may do so.

• The load definition strategy supplied by the implementation,
LoadIsServerChannelBacklog, will count, as contributing to server-
side load, those methods that are redirected, by either a server
under hold or a server operating in a “no balancer” architecture.
In such cases, the total number of messages addressed to the
server is not equivalent to the number of processed requests.
Some will see this as a simple and obvious consequence of the
balancing scheme in play. Others may object to the fact that this
aspect of the load definition includes part of the cost of balancing
in the balancing, in an architecture-dependent manner.

• Many load balancing configuration options are set using Symbols.
Many would prefer explicit strategy classes. There are tradeoffs
in either case. On one hand, you may have a dozen distribution
strategies implemented in a single class, with one method for
each, where adding a new strategy entails adding a new method
to that class or a subclass of it. On the other hand, you may have
a dozen strategy classes, each with one method. Either the
strategy classes will have additional instance variables or their
implementation of the required method will have more
parameters than are present in the former case. And there will be
a thirteenth abstract class that all the concrete ones inherit from.

• The configuration of many server hold types requires that two
parameters be set in the balancer and one parameter be set in
8-54 VisualWorks

Known Limitations
that balancer's server reference manager. This is apt to entail
some confusion.

• The external API for adding or deleting servers from
ServerRefManagers is less than perfectly transparent.

Given resources and interest, these issues will be addressed in
future releases.
Opentalk Communication Layer Developer’s Guide 8-55

Opentalk Load Balancing
8-56 VisualWorks

A

Opentalk, Distributed Smalltalk, and I3

Users of DST will notice similarities between Opentalk and the
Implicit Invocation Interface (I3) present in Distributed Smalltalk
(DST), and be concerned about the relationship between these two
products.

Opentalk is not intended to be a long-term replacement for I3.

I3 is an alternative marshaler, built into the DST marshaling
framework. It uses the IIOP protocol, and allows DST users working
in a homogeneous environment to prototype a DST application
without writing IDL. Since such prototypes will often be ported to
heterogeneous environments, DST uses the standard DST marshaler
if an applicable IDL interface declaration is present, even when I3 is
turned on. This allows a DST developer, who is porting an I3
prototype to a heterogeneous environment, to test IDL code
incrementally in a homogeneous one.

In the long term, IIOP and DST will be reimplemented under the
Opentalk Base. At that time, the motivations for a DST facility like I3
will still exist. I3 will remain, but will be reimplemented to accord with
the then current DST marshaling framework.
Opentalk Communication Layer Developer’s Guide A-1

Opentalk, Distributed Smalltalk, and I3
A-2 VisualWorks

B

Annotated References

The following collection of annotated references is organized by topic.
The topics are arranged alphabetically. The annotations express the
evaluations of the authors of this manual.

Communication Protocols
Pete Loshin. TCP/IP Clearly Explained. Third Edition. Morgan
Kaufmann, San Diego, California, 1997. ISBN 0-12-455826-7.

This is perhaps the most accessible introductory text on TCP/IP and
UDP. It is an excellent base upon which to approach more complete
treatments.

W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols.
Addison-Wesley, Reading, Massachusetts, 1994. ISBN 0-201-63346-
9.

This is a voluminous work. It has no excuse for omitting anything, and
does not. It is the best of its several rivals.

Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated, Volume
2: The Implementation. Addison-Wesley, Reading, Massachusetts,
1995. ISBN 0-201-63354-X.

This is the implementation-level companion of the previously
mentioned work mentioned. It has the same virtues.
Opentalk Communication Layer Developer’s Guide B-1

Annotated References
Computer Networks
Douglas E. Comer. Computer Networks and Internets. Second
Edition. Prentice Hall, Upper Saddle River, New Jersey, 1999. ISBN
0-13-083617-6.

This is a standard text.

Andrew S. Tannenbaum. Computer Networks. Third Edition. Prentice
Hall PTR, Upper Saddle River, New Jersey, 1996. ISBN 0-13-
349945-6.

This is another standard text. It gives more space than does Comer
to ATM, and is arguably superior in other respects as well.

Distributed Agents
Jacques Farber. Multi-Agent Systems: An Introduction to Distributed
Artificial Intelligence. Addison-Wesley, Harlow, England, 1999. ISBN
0-201-36048-9.

This is an available, complete discussion of the area. It now has no
serious current competitors as a general survey that begins at an
accessible level. This evaluation is likely to be overturned by
forthcoming publications.

Distributed Algorithms
Valmir C. Barbosa. An Introduction to Distributed Algorithms. The
MIT Press, Cambridge, Massachusetts, 1996. ISBN 0-262-02412-8.

This work is more narrowly focused on specific problem areas, and
less compendious than Lynch.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers, Inc., San Francisco, California, 1996. ISBN 1-55860-348-
4.

This is the current, standard collection, and superior to the available
contenders.
B-2 VisualWorks

Distributed Systems
Distributed Systems
Prabhat K. Andleigh and Michael R. Gretzinger. Distributed Object-
Oriented Data-Systems Design. PRT Prentice Hall, Englewood Cliffs,
New Jersey, 1992. ISBN 0-13-174913-7.

This is an older and somewhat dated text. It is nevertheless a useful
treatment of distributed system design, as it was understood before
the full advent of the current object models, which obscured the
importance of some earlier work.

George Couloris, Jean Dollimore, and Tim Kindeberg. Distributed
Systems: Concepts and Design. Third Edition. Addison-Wesley,
Harlow, England, 2000. ISBN 0-201-61918-0.

This is an excellent and highly recommended text.

Sape Mullender, editor. Distributed Systems. Second Edition.
Addisson-Wesley, Wokingham, England, 1993. ISBN 0-201-62427-3.
Andrew S. Tannenbaum. Computer Networks. Third Edition. Prentice
Hall PTR, Upper Saddle River, New Jersey, 1996. ISBN 0-13-
349945-6.

This text is weaker than Coloris, Dollimore, and Kindberg on
multicast, and suffers from being a collection of papers rather than a
single work. It is still excellent, and highly recommended.

CORBA and Smalltalk ORBs
Thomas J. Mowbray and Raphael C. Malveau. CORBA Design
Patterns. John Wiley and Sons, Inc., New York, New York, 1997.
ISBN 0-471-15882-8.

This is a collection and description of a few of the common design
patterns present in networked rather than distributed systems. It is
spotty: you are likely to find no more than twenty pages of immediate
practical use.

Ron Ben-Natan. CORBA: A Guide to the Common Request Broker
Architecture. McGraw-Hill, New York, New York, 1995. ISBN 0-07-
005427-4.

This is an older work about a fast-changing specification, but it is one
of the few works on the CORBA architecture to devote substantial
attention to Distributed Smalltalk.
Opentalk Communication Layer Developer’s Guide B-3

Annotated References
Terry Montlick. The Distributed Smalltalk Survival Guide. Cambridge
University Press, Cambridge, United Kingdom, 1999. ISBN 0-521-
64552-2.

This book’s observations about the comparative merits of the several
available distributed Smalltalk implementations are already dated, but
it is the only available, recent survey of its field.

Group Multicast
Kenneth P. Birman and Robbert van Renesse. Reliable Distributed
Computing with the Isis Toolkit. IEEE Computer Society Press, Los
Alamitos, CA, 1994. ISBN 0-8186-5342-6

This book is mandatory reading for anyone who would rather not
reinvent the wheel in multicast group support.

Thomas A. Maufer. Deploying IP Multicast in the Enterprise. Prentice
Hall PTR, Upper Saddle River, New Jersey, 1998. ISBN 0-13-
897687-2.

This book addresses the qualities of several multicast
implementations, at the levels below the transport layer, and provides
information not readily available elsewhere.

Peer-To-Peer
Andy Oram, ed. Peer-to-Peer: Harnessing the Power of Disruptive
Technologies. O’Reilly and Associates, Inc., Sebastopol, California,
2001. ISBN 0-596-00110-X.

This is the best current overview of peer-to-peer technology.

Performance Analysis
Raj Jain. The Art of Computer System Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation, and
Modeling. John Wiley and Sons, Inc., New York, New York, 1991.
ISBN 0-471-50336-3.

This is an excellent and comprehensive text on one of the most
important aspects of distributed system evaluation and design.
B-4 VisualWorks

Index
A
accessPoint: 3-15, 5-11
adaptor: 5-11
addRelay: 3-13
asPassedByName 4-20
asPassedByOID 4-20
asPassedByRef 3-9, 4-20
asPassedByValue 3-8, 4-20, 4-21
autoRestart: 5-10

B
BasicBrokerConfiguration 5-6
BcastTransportConfiguration 5-7
BcastTransportConfiguration class 3-15
bind:to: 3-12
broadcast

limited 3-14
net-directed 3-14
subnet-directed 3-14

broker configuration 5-1
bidirectional 5-21
firewall 5-20

bufferSize: 5-14, 5-16

C
CGITransportConfiguration 5-7
CHTTPClientTransport 5-7
clearRelays 3-13
component classes 5-4
Configuration 5-3
configuration classes 5-3
connectingTimeout: 5-12
connectionLess 5-7
connectionOriented 5-7
connectionTimeout: 5-13
CyclicSchedulingPolicy 5-9

D
defaultRequestTimeout 7-6
discriminationBlock: 5-17
dispatchFor: 4-4
doesNotUnderstand: 4-10

E
echo: 3-9
environmentAt:put: 4-7

evaluateFor: 4-4, 4-6
export: 4-13
export:oid: 3-6, 4-13

F
findOrCreateRemoteObject: 4-12

G
GenericProtocol class 5-19
groupById: 3-15

H
handlingIncomingMessage 4-4
HighLowRequestDispatcherConfiguration

5-9
highPriority: 5-17
HostAddress 5-19
hostAddress: 5-20
hostAddressByName 5-19
HostAddresses 5-19
hostAddresses: 5-20
HTTPSTransportConfiguration 5-8
HTTPTransportConfiguration 5-8

I
id: 5-10
IIOPTransportConfiguration 5-8
inspectorClass 4-20
inspectorClassName 4-20
interceptor 3-4
IP address

obtaining 5-19
setting 5-19

isBiDirectional 5-22
isPassedByValue 4-19

L
listenerBacklog 4-6
listenerBacklog: 5-13
listenerPriority 4-6
listenerPriority: 5-13
load balancing 8-1
loopBack: 5-16
LotterySchedulingPolicy 5-9
lowerConnectionLimit: 5-13
Opentalk Communication Layer Developer’s Guide Index-1

M
marshaler: 5-14
marshalObject: 4-9
marshalWith: 4-10
maxAcceptDelay: 5-14
mcastAddress: 5-16
McastTransportConfiguration 5-8
message interceptor 3-4

N
namingService 3-12
netmask: 5-15
networkDirected: 3-15
networkDirectedWithNetmask: 3-15
networkDirectedWithNetmaskWidth: 3-15
newStstTcpAt: 5-2
nextDouble 4-7
nextFloat 4-7
nextLong 4-7
nextPutObjectInstVars: 4-20

O
objectByOID: 4-13
objectByRef: 4-11
objectGroups 5-7
OpentalkSystem 5-20, 6-2

P
pass-by-reference

firewall configuration 5-20
passInstVars 4-20
PoolRequestDispatcherConfiguration 5-9
processingPolicy: 5-12
processNumber: 5-17

R
registerService:id: 4-14
registerService:name: 3-10
remoteObjectToHost:port:oid: 3-7
removeRelay: 3-13
request broker 3-2
requestDispatcher: 5-11
requestTimeout: 5-11
resolve: 3-12
resolve:ifAbsent: 3-12

S
scheduling 6-1
sendAllEventsTo: 3-4
sendAndWaitForReply: 4-6
sender: 3-17
sendErrorEventsTo: 3-4
sendMessage:to: 3-6

sendOperationalEventsTo: 3-4
sendRequest:to: 4-4, 4-14
sendRequest:to:timeout: 4-14
serverPriority: 5-14
serviceById: 4-14
serviceIds 4-14
SOAPMarshalerConfiguration 5-8
soReuseAddr: 5-15
StandardBrokerConfiguration 5-6
StandardRequestDispatcherConfiguration

5-9
start 3-3
stop 3-3
STSTMarshalerConfiguration 5-8
subsystem 6-2
swap 4-7

T
TCPTransportConfiguration 5-8
transport: 5-11
ttl: 5-16

U
UDPTransportConfiguration 5-8
unbind: 3-12
unmarshalObject 4-9
upperConnectionLimit: 5-13

W
workerPriority 4-6
workerPriority: 5-16

X
XMLMarshalerConfiguration 5-8
Index-2 VisualWorks

	About This Book
	Audience
	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information

	Opentalk Communication Layer
	Installation
	Parcels Contents

	Opentalk Tools

	Basic Opentalk Concepts
	Distributed Systems
	Stand-alone Systems
	Communicating systems
	Networked Systems
	Client-Server Systems
	Peer-to-Peer Systems
	Distributed Systems

	Summary

	Channels
	Protocols
	Transfer Protocols
	Connection-Oriented Transport Protocols
	Connectionless Transport Protocols
	Summary

	Synchronization
	Patterns of Communication
	Remote Invocation
	Synchronous RPCs
	Asynchronous RPCs

	Remote Execution
	Group Multicast

	Using the Opentalk Communication Layer
	Using a Broker
	Creating and Configuring a Broker
	Starting and Stopping a Broker
	Using Broker Events
	Message Interceptors

	Remote Objects
	Object Passing Modes
	Remote API of a Broker
	Broker Services
	Opentalk Service

	Using NamingService
	Using UcastEventService
	Using a Broadcasting RequestBroker
	Using a Multicasting RequestBroker
	Using McastEventService

	Some Components of Opentalk
	Message Format
	Message Header
	TransportPackageBytes

	Message Body
	RemoteMessage and its Subclasses

	Logical Message State Machines
	Methods sendRequest:to and evaluateFor:

	Server-Side Message Dispatch
	The Methods handlingIncomingMessage and dispatchFor:

	Process Environments
	Process Priorities
	The serviceContext Instance Variable

	Endianness
	The byteOrder and swap Instance Variables

	Encodings
	Character value: self nextLong

	Marshaling and Unmarshaling
	STSTStream

	Object References
	ObjRef

	Transparent Forwarding
	Proxy
	RemoteObject

	Object Reference Equality
	BasicRequestBroker’s remoteObjectRegistry

	Object Tables
	ObjectTable

	Request Brokers
	Object Adaptors
	Transports
	Pass Modes
	Pass Mode Control
	SpecialTypeDispatchTable and TagDispatchTable
	isPassedByValue
	asPassedBy methods
	PassModeWrapper
	passInstVars and PassModeTable
	inspectorClassName
	Special Implementation of Behavior class>asPassedByValue

	Exceptions
	OtException
	OtSystemException and its Subclasses
	Catching Broker Errors

	Session Layers
	STSTRequest

	Broker Configuration
	What is a Configuration?
	Standard Broker Creation Methods
	Broker Configuration Components

	The Configuration Classes
	The Class Hierarchy
	Configuration Instance Variables
	Configuration Specification

	The Component Classes
	Component Instance Variables
	Configuration Defaults
	Default Accessing

	Configuration Types
	BrokerConfiguration
	AdaptorConfiguration
	TransportConfiguration
	MarshalerConfiguration
	RequestDispatcherConfiguration
	SchedulingPolicyConfiguration

	Configuration Parameters
	RestartProtocolConfiguration
	BrokerConfiguration
	AdaptorConfiguration
	ConnectionAdaptorConfiguration
	TransportConfiguration
	DatagramTransportConfiguration
	BcastTransportConfiguration
	McastTransportConfiguration
	MarshalerConfiguration
	RequestDispatcherConfiguration
	HighLowRequestDispatcherConfiguration
	PoolRequestDispatcherConfiguration
	PriorityLevelSchedulerConfiguration
	LotterySchedulingPolicyConfiguration

	Network Configuration
	Set Host IP
	STST and Firewalls
	Bidirectional Support
	Special Note about Client Configuration

	Processes, Connections, and Scheduling
	OS Processes, Threads, and Smalltalk Processes
	Opentalk Subsystem
	Opentalk-Specific Issues
	Connection Request Overload
	Message Request Overload
	Message Processing Order
	Benefits of Order
	Bi-Modal Message Streams
	Opentalk Schedulers
	Cautions

	Hints for Distributed System Design
	Shared Objects
	Problem
	Solution
	Observation

	Garbage Collection
	Problem
	Solution
	Solution Components
	Repository
	Factory
	Resource Manager

	Time, Synchronous Systems, and Time-outs
	Observation 1
	Observation 2

	Reference, Broker, and Communication Errors
	Problem
	Solutions
	Solution Components
	Service Brokers
	Request Distributors and Load Balancers

	Observation

	Scalability and Single Points of Failure
	Observation 1
	Observation 2
	Observation 3

	Remote Message Number
	Observation

	Variable Latency of Remote Messages
	Observation

	Remote Object Representation
	Using a Direct Reference to an Application Object
	Using a Direct Reference to a Service Provider
	Using a Copy or Replicate
	Using a Faulting Proxy or Stub
	Using a Reference to a Server Mask
	Using a Client Mask Around a Reference
	Using a Shadow With a Direct Object Reference
	Using a Shadow with a Reference to an Object Manager
	Using Both Client and Server Masks

	Remote Object Number
	Observation

	Remote Object Alteration
	Send it a Message
	Replace It
	Ship Over the Modifying Code
	Create an Agent Which Copies Itself Over and Does the Work

	Replication Rate and Replication Delay
	Observation

	Initial Reference Acquisition
	Problem
	Solutions
	Observation

	Encapsulation and Transparency
	Problem
	No Single Solution
	Observation 1
	Observation 2
	Observation 3

	Opentalk Load Balancing
	Packaging and Installation
	Synchronous Unicast Load Balancing
	Load Balancing
	Redirection
	Distribution Strategies
	Load Monitors
	Load Definition
	Load Data Transfer Strategy
	Server Group Update Strategy
	Multiple Load Balancers and Fault-Tolerance

	Load Balancing Options
	Client-Side Options
	Client with a Balancer Reference
	Client with a Balancer and Current Server References
	Client With Server References

	Balancer Options
	Balancer Without Load Data
	Balancer With Load Data
	Balancer With Holds

	Server-Side Options
	No Monitor
	Monitor With Balancer
	Monitor With Server Hold Protocol
	Monitor Without a Balancer

	Multiple Balancers and Fault-Tolerance

	Possible Load Balancing Architectures
	The “Balancer Always, Without Loads” Architecture
	The “Balancer Sometimes, Without Loads” Architecture
	The “Balancer Always, With Loads” Architecture
	The “Balancer Sometimes, With Loads” Architecture
	The “Balancer Always, With Holds” Architecture
	The “Balancer Sometimes, With Holds” Architecture
	The “No Balancer” Architecture

	Opentalk Load Balancing Implementation
	Component Configuration and Creation Machinery
	Initial Reference Acquisition
	Default Values
	Runtime Reconfiguration
	Exceptions
	LBComponent
	Generic Client
	Client-Side Reference Wrappers
	Load Balancers
	Server Reference Managers
	Distribution Types
	Static Distribution Types
	Dynamic Distribution Types

	Server Hold Types
	Generic Server
	Load Monitors
	Load Definitions
	Server Group Update
	Manual Server Group Update
	Automatic Subtractive Server Group Update
	Automatic Additive Server Group Update

	Multiple Balancer Support

	Opentalk Load Balancing Configuration
	Scenario Description
	The “Balancer Always, Without Loads” Architecture
	Client Configuration
	Balancer Configuration
	Server Configuration

	The “Balancer Sometimes, Without Loads” Architecture
	Client Configuration

	The “Balancer Always, With Loads” Architecture
	Balancer Configuration
	Server Configuration

	The “Balancer Sometimes, With Loads” Architecture
	The “Balancer Always, With Holds” Architecture
	Balancer Configuration
	Server Configuration

	The “Balancer Sometimes, With Holds” Architecture
	The “No Balancer” Architecture
	Client Configuration
	Server Configuration

	Multiple Balancer Architectures
	Client Configuration
	Server Configuration

	Monitoring and Operation
	Monitoring
	Operation

	Known Limitations

	Opentalk, Distributed Smalltalk, and I3
	Annotated References
	Communication Protocols
	Computer Networks
	Distributed Agents
	Distributed Algorithms
	Distributed Systems
	CORBA and Smalltalk ORBs
	Group Multicast
	Peer-To-Peer
	Performance Analysis

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

