

VisualWorks®

Plugin Developer's Guide

P46-0130-04

© 1999–2004 by Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0130-04

Software Release 7.3

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are registered trademarks of Cincom
Systems, Inc., its subsidiaries, or successors and are registered in the United States and
other countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect,
DLL & C Connect, COM Connect, StORE and plugIn are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors. ENVY is a registered trademark of Object Technology
International, Inc. Runtime Packager is a trademark of Advanced Boolean Concepts, Ltd.
All other products or services mentioned herein are trademarks of their respective
companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation © 1999–2004 by Cincom Systems, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior written consent
from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents

About This Book 5

Audience ...5
Conventions ..5

Typographic Conventions ...5
Special Symbols ... 6
Mouse Buttons and Menus .. 6

Getting Help ..7
Commercial Licensees ...7
Non-Commercial Licensees ... 8

Additional Sources of Information ... 9
Online Help ...9

Chapter 1 The VisualWorks Plugin 10

Introduction ...10
ActiveX Control .. 10
Developing VisualWorks Applets ... 10
Using a VisualWorks Applet ... 11

System Requirements ...12
Compatibility ..12

Chapter 2 Getting Started 13

The Plugin Components ..13
Running the VisualWorks Plugin Examples .. 13
The Plugin Development Environment .. 14
Loading Plugin Development Support ... 15

Chapter 3 Developing a Plugin Applet 16

Subclassing AppletModel .. 16
Running an Applet in a Browser ..18
Using the Plugin Debugger ... 19

Starting a Plugin Debug Session ... 19
Plugin Developer’s Guide 3

Contents
What You Can Do in a Debug Session .. 21
Adapting an Existing Application .. 21

Chapter 4 Deploying an Applet 23

Parceling the Applet .. 23
Adding an Application to a Web Page .. 24
Testing the Deployed Applet ... 27

Chapter 5 Building a Custom Plugin Image 28

Building a Custom Image ... 28
Plugin Initialization File ... 30
Security Measures .. 31

Identifying Trusted Sites .. 32
How Sites are Verified ... 32

Chapter 6 Packaging Your Custom Plugin 33

Preparing to Test Your Application .. 33
Installing the VisualWorks Plugin ActiveX Control 33
Removing the VisualWorks Plugin ActiveX Control 34
Building Deployment Files For Your Application .. 35

Building Your Own Plugin Control ... 36
Implementing Object Safety ... 37
Updating DLL Version Information ... 38
Signing the Custom Plugin Control .. 38

Chapter 7 Communicating with a Plugin Application 39

Doing Get/Post Operations ... 39
Using GET Messages .. 40
Using POST Messages ... 40

Returning Focus to the Main Applet Window .. 41

Chapter 8 Plugin Tips and Tricks 43

Launch a Stand-alone Application .. 43
Dynamic Component Update ... 43
Access Files ... 44

Index 45
4 VisualWorks

About This Book

This manual describes the VisualWorks® Plugin Development
Environment (PDE) and how to use it to develop an application for
deployment on a web page.

Audience
This book assumes you are familiar with Smalltalk and VisualWorks. Little
knowledge of programming for the World Wide Web is required, though
some applications will require extensive knowledge of this. Refer to the
VisualWorks manuals for more information about VisualWorks
programming. A large number of books and tutorials are available from
commercial book sellers on programming for the web.

Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.
Plugin Developer’s Guide 5

About This Book
Special Symbols
This book uses the following symbols to designate certain items or
relationships:

Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File New Indicates the name of an item (New) on a menu
(File).

<Return> key

<Select> button

<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

Example Description
6 VisualWorks

Getting Help
These buttons correspond to the following mouse buttons or
combinations:

Note: This is a different arrangement from how VisualWorks used
the middle and right buttons prior to 5i.2.
If you want the old arrangement, toggle the Swap Middle and Right Button
checkbox on the UI Feel page of the Settings Tool.

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

• The version id, which indicates the version of the product you are
using. Choose Help About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>
Plugin Developer’s Guide 7

mailto:supportweb@cincom.com

About This Book
• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to
supportweb@cincom.com.

Web
In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com

Telephone
Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.

Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:

• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu

with the SUBJECT of "subscribe" or "unsubscribe".

• An excellent Smalltalk archive is maintained by faculty and students
at UIUC, who are long-time Smalltalk users and leading lights in the
Smalltalk community, at:
8 VisualWorks

mailto:supportweb@cincom.com
http://supportweb.cincom.com
mailto:vwnc-request@cs.uiuc.edu

Additional Sources of Information
http://st-www.cs.uiuc.edu/

• A Wiki (a user-editable web site) for discussing any and all things
VisualWorks related at:

http://wiki.cs.uiuc.edu/VisualWorks

• A variety of tutorials and other materials specifically on VisualWorks
at:

http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincom.com/smalltalk/documentation

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.

Online Help
When you install the PDE, a help file is added to the VisualWorks online
help system. If you already have help installed in your image, select Help

 Rebuild Help Library to add this help to the system. Otherwise, it is
included automatically when you load help.
Plugin Developer’s Guide 9

http://st-www.cs.uiuc.edu/
http://wiki.cs.uiuc.edu/VisualWorks
http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
news:comp.lang.smalltalk
http://www.cincom.com/smalltalk/documentation

1
The VisualWorks Plugin

Introduction
VisualWorks® has always provided a cross-platform application
environment, allowing you to develop an application on one platform and
deploy it, unchanged, on any other of its supported platforms. This kind of
portability makes VisualWorks an ideal environment for developing web-
based applications, or applets. Using a web-browser as the GUI display
system, the VisualWorks Plugin greatly simplifies the deployment of
many applications.

ActiveX Control
The VisualWorks Plugin for VisualWorks is an ActiveX Control which can
be installed in Internet Explorer (or other fully ActiveX capable browser)
to allow a VisualWorks application to operate inside the web browser
window as an embeded object.

Note: The VisualWorks 7.3 release provides only the ActiveX
Control version of the plugin. A future release will also include a
version of the plugin which implements the new cross-browser NPAPI
and will run in newer versions of NPAPI enabled browsers such as
Netscape, Mozilla, Opera and Firefox.

Developing VisualWorks Applets
The VisualWorks Plugin works in a way that makes developing an
application or applet targeted for deployment in a browser no different
from developing an application for stand-alone deployment. This is
possible because of how the plugin connects the browser and the
VisualWorks runtime environment.
10 VisualWorks

Introduction
The plugin establishes a parent-child relation between the browser
window and the VisualWorks application window, such that when the
application draws to the VisualWorks window, the drawing instructions
are passed through to the browser window. This makes programming an
applet as simple as programming a normal VisualWorks application.

The plugin itself is very small, handling the interface between the
VisualWorks virtual machine (VM) and the web browser to run a
VisualWorks application UI within a browser window. Additional browser
API in VisualWorks further enables the applet to perform specific browser
operations, such as setting the status bar and performing HTTP GET and
POST operations. The applet itself consists of an image installed with the
plugin VM, and a set of installed or downloadable parcels.

Deploying an applet is as simple as referencing it in an OBJECT tag in an
HTML document. The tag specifies the location of a versioned Internet
Component Download CAB deployment file containing the application.
When the page is opened, this file is downloaded and the control is
installed, the VM is launched and the parcel is loaded into the running
image. For large applications, and especially for intranet applications, you
may find it more suitable to build a custom image containing the bulk of
the application code. The downloadable parcels then contain only specific
code for the application.

Using a VisualWorks Applet
The end-user experience of using a VisualWorks Plugin applet is nearly
transparent.

When a web page containing a VisualWorks applet is opened,
VisualWorks starts, the applet parcel is loaded (along with any specified
prerequisite parcels), and then the applet is launched. Because the
applet parcel is typically small, and VisualWorks loads very quickly, the
user experiences only a small delay before the applet is ready for use.

If the VisualWorks Plugin is not already installed when the page is
opened, the plugin is downloaded and installed in accordance with the
security settings of the user’s browser.

When the user leaves the page containing the applet, the applet closes.
When all pages running applets close, the VisualWorks image itself
closes. If the user goes back to a page with a closed applet, the applet
relaunches.
Plugin Developer’s Guide 11

Chapter 1 - The VisualWorks Plugin
System Requirements
The VisualWorks Plugin development environment is a standard
VisualWorks 7.3 development image.

Applets developed for the VisualWorks Plugin can be viewed in the
following:

• Microsoft Internet Explorer 5.0 or higher

The VisualWorks Plugin ActiveX Control requires Unicode support and
therefore is supported on:

• Microsoft Windows NT 4.0, or later

If your plugin applet must support a browser client on a platform which
does not provide Unicode support (Windows 95/Me/98), please consult
the Microsoft documentation concerning the Microsoft Layer for Unicode,
and the instructions for including this translation layer in an ActiveX
Control.

Compatibility
The VisualWorks Plugin ActiveX Control works with VisualWorks 7.3 or
later.

The Plugin parcel for VisualWorks 7.3 and later is not backward
compatible with the old Plugin and PluginBase parcels. The PluginBase
parcel is obsolete. If you have an existing custom Plugin image you must
rebuild the image with the new parcel. You must also compile and test
your application parcel. The plugin API internal to the AppletModel class
has changed very little, so it is likely your application will not need any
modification unless you make significant use of GET and/or POST,
especially POST from a file, which is no longer supported.

Deployment of an ActiveX Control uses Internet Component Download to
install and register the control on the user’s machine. This process is
significantly different from the installation procedures for the previous
VisualWorks Plugin. Refer to Chapter 6, “Packaging Your Custom Plugin”
for information on deploying your applet.
12 VisualWorks

2
Getting Started

The Plugin Components
The main components of the VisualWorks Plugin are:

• The plugin file (a DLL on Windows platforms) that connects
VisualWorks and the web browser

• An external, translatable message resource file

• A generic, platform independent, base image

• A platform specific virtural machine, which is an executable file

To this set of files, you add one or more parcel files containing your
application, and possibly a custom image file to run in place of the
generic image.

Running the VisualWorks Plugin Examples

Note: The generic VisualWorks Plugin is not a signed control, and
because any Smalltalk parcel may be loaded into its image, it cannot
be marked safe for either initialization or scripting. You must set your
browser, at minimum, to prompt you to load an unsigned control and
to initialize and run an unsafe control.

Note: If you have very strict security configured, you will not be able
to download and install the Plugin. If you are using a web server on
your local machine, you can change the security settings for the
Local Intranet Zone only.

To install the generic VisualWorks Plugin ActiveX Control and run the
Plugin Developer’s Guide 13

Chapter 2 - Getting Started
various plugin examples, first create the web server location which will
serve the VisualWorks Plugin CAB deployment file through Internet
Component Download.

1 Create a virtual directory named plugin-install/ on your web
server. The web server can be either local or remote, and it can be
IIS, Apache or any other web server you desire.

2 Copy plugin/deploy/vwpluginax.cab into the physical
directory referenced by your plugin-install virtual directory.

3 Open plugin/examples/index.html in Internet Explorer and
follow the instructions on that page to access the plugin examples.

The VisualWorks Plugin ActiveX Control will be downloaded and installed
the first time you access an HTML page that embeds a VisualWorks
Plugin applet. You will be prompted to install the unsigned control only
once. As you run additional pages containing VisualWorks Plugin applets
you will be prompted about the unsafe control each time the page opens.

When you deploy your own VisualWorks Plugin you will need to consider
signing the control, and you must ensure that your control is truly safe
before you mark it safe for initialization and/or scripting. Please see
Chapter 6, “Packaging Your Custom Plugin” for deployment
considerations.

The Plugin Development Environment
The plugin development environment is a standard VisualWorks
development image into which you load the PluginDev parcel and its
prerequisite, the Plugin parcel. These parcels consist of a set of classes
and tools that simplify developing a VisualWorks applet. Extensions
provide the ability to:

• generate parcels for loading the applet

• generate a custom plugin image for a complete application

• execute a debug image, for normal VisualWorks debugging

• package a custom application image for web delivery

A subclass of ApplicationModel, called AppletModel, invokes plugin API
functions for directly accessing the browser. For applets, create your
application as a subclass of AppletModel.
14 VisualWorks

Loading Plugin Development Support
Loading Plugin Development Support
Installation instructions for VisualWorks are provided in the VisualWorks
Installation Guide. Once VisualWorks is installed, the plugin development
environment must be loaded into the development image. The necessary
features are all contained in the Plugin and PluginDev parcels.

To load the development environment, open the Parcel Manager and
select the Directories page. In the Plugin directory select the PluginDev
parcel, then pick Parcel Load. Both parcels then load (Plugin is a
prerequisite of PluginDev).

At this point, you are ready to begin developing an applet.
Plugin Developer’s Guide 15

3
Developing a Plugin Applet

The process of developing a plugin applet is generally the same as
developing any VisualWorks application, but there are a few differences in
detail.

Subclassing AppletModel
The VisualWorks Plugin parcel adds a subclass of ApplicationModel, called
AppletModel, which adds protocol specifically for interactions between
VisualWorks and the web browser plugin API.

To create your application as a subclass of AppletModel, simply specify
AppletModel as the superclass when installing a new canvas:

1 In the Canvas Tool, click Install.

2 In the Install On Class dialog, enter a name for the class and click OK.

3 In the Class Finder dialog, select Other for the superclass, then click
the browser (magnifying glass) button.

4 In the new Class Finder dialog, select the UI name space, then find
and select the AppletModel class. Click OK to close that dialog and
continue.

5 Back in the first Class Finder dialog, select a name space for your
application and click OK.

The name space can be one of your own or an existing name space,
such as UI, that will be present in the distribution image. If it is your
own, make sure it is defined by the applet parcel by adding its
definition to that parcel.
16 VisualWorks

Subclassing AppletModel
For an existing subclass of ApplicationModel, you can either move it to
AppletModel by changing its superclass, or adapt it to include some of the
plugin API, as described in Adapting an Existing Application below.

AppletModel handles opening your application in the web browser, just as
ApplicationModel opens a normal VisualWorks application. When
launching an applet in a browser, AppletModel responds to the VWOPEN
attribute in the OBJECT HTML tag.

Since AppletModel also responds to the standard VisualWorks opening
protocol, you can open an instance of your application as usual in the
development environment. For early development, this is adequate.
Plugin Developer’s Guide 17

Chapter 3 - Developing a Plugin Applet
Running an Applet in a Browser
To access browser capabilities, such as to perform HTTP GET or POST
operations, the applet needs to run in the web browser context. This
requires creating a sample HTML page containing an OBJECT tag
specifying the applet attributes.

For the full set of attributes supported in the OBJECT tag, refer to
Chapter 4, “Deploying an Applet.”

The plugin/examples directory contains a number of HTML pages
which can be used as templates. For testing purposes you only need a
simple page with a subset of the attributes. The source for your HTML
document might be simply:

<HTML>
<HEAD> </HEAD>
<BODY>
<P>This is just a test.</P>
<OBJECT CLASSID="CLSID:FF48278C-094A-4188-95AA-4B1E03F3163C"

CODEBASE=
"http://mydomain/plugin-install/vwpluginax.cab#version=2,0,X,YYY"

WIDTH="500" HEIGHT="300">
<PARAM NAME="PARCEL" VALUE="MyAppletParcel.pcl">
<PARAM NAME="VWOPEN" VALUE="MyApplet">

</OBJECT>
</BODY>
</HTML>

The CLASSID attribute contains the unique GUID identifier for the
generic VisualWorks Plugin ActiveX Control. It must be specified exactly
as shown.

The CODEBASE attribute references the URL of the versioned CAB
deployment file used to download and install the ActiveX Control. Please
consult the VisualWorks Plugin example file hello-x.html for the
version number of the deployment file distributed with this release. If you
have already installed the generic VisualWorks Plugin by opening a page
containing a VisualWorks Plugin applet, the browser will not install it
again unless the version referenced in the CODEBASE attribute
references a newer version of the CAB deployment file.

The WIDTH and HEIGHT attributes also need to be set for your applet.
18 VisualWorks

Using the Plugin Debugger
The PARAM attributes provide parameters used by the VisualWorks
Plugin. The PARCEL parameter specifies the parcel containing the
applet, MyAppletParcel.pcl in the example. The VWOPEN parameter
specifies the name of the AppletModel subclass that defines the applet,
MyApplet in the example.

Save this HTML file in the same directory with your application parcel
files.

Using the Plugin Debugger
Because you can open an AppletModel application in the development
image just like a normal ApplicationModel application, you can do a great
deal of testing and debugging the same way you do with other
VisualWorks applications. However, when you start developing aspects
that depend on web browser capabilities, you need to run the applet in
the browser.

The plugin Debug Tool allows you to connect to an applet running in a
web browser and do interactive debugging on it, using the development
environment. The applet runs in the development image, giving you full
access to development features. You also have the option to run the
debugger either on the deployed parcel, or on the development parcel
loaded in the development image.

Starting a Plugin Debug Session
Before launching the applet page, open the Debug Tool by selecting Tools

 Plugin Debug Tool in the VisualWorks Launcher. The tool displays
instructions for launching a session in its text panes. In short, the
procedure is:

1 Start the plugin Debug Tool.

2 Click Enable Debug.

3 Open the HTML page containing the applet in a web browser.

4 Click Connect
Plugin Developer’s Guide 19

Chapter 3 - Developing a Plugin Applet
.

The Suppress Loading Plugin Parcels checkbox determines whether the
deployed parcels are loaded when the applet is launched:

• When checked, parcels are not loaded, so the application parcels
need to be loaded before launching the applet. For debugging in a
development session, it is normal to pre-load the development
parcels so source code is available.

• When unchecked, the image attempts to load the deployed version of
the parcel. If the development version is already loaded, you are
notified.

When you click Connect, the development image is connected to the applet
running in the browser. You can now debug and edit the applet’s state as
usual, because it is running in the development image.

When you are finished with a debug session, click Disable Debug. This
resets the debug registry entry, so your applets can start in normal
runtime mode.
20 VisualWorks

Adapting an Existing Application
Note: If you forget to disable debugging before you shut down your
VisualWorks image, the VisualWorks Plugin will not run unless you
have a VisualWorks image open. To restore the debug registry entry
to its normal runtime state, open the Debug Tool, click Connect and
then click Disable Debug.

What You Can Do in a Debug Session
The plugin Debug Tool gives you the power of traditional Smalltalk
interactive development, but on a live applet. Among other things, you
can:

• Press Ctrl-Y in the browser to open a User Interrupt debug window.

• Enter self halt in code to cause breaks in the processing.

• Open inspectors to examine the applet state.

• Change the applet’s state or methods, to change its behavior while
running.

In short, any trick you might play in debugging a VisualWorks application
during development is now available on the applet.

Adapting an Existing Application
If you have an existing application that you want to deploy as an applet,
but do not want to change its subclass to AppletModel, you can do so by
duplicating a subset of the AppletModel protocol in your application class.

The protocol can be added to your class by filing in applet-api.st
from the plugin subdirectory. The essential protocol is:

isAppletModel
Must return true for an instance functioning as an applet model and
open using the VWOPEN attribute.

pluginConnection: anInternetBrowserConnection
Set the connection that is used for communicating with the browser. If
only one connection is used (all that are presently supported), this
method does not need to actually do anything (see pluginConnection).
Plugin Developer’s Guide 21

Chapter 3 - Developing a Plugin Applet
pluginConnection
Answer the connection with the plugIn for this instance. Since only
one plugIn connection is supported the following can be used instead
of saving the value provided in pluginConnection:

^VWPlugin.InternetBrowserConnection current
postBuildWith: aBuilder

Set the damageRepairPolicy to use double-buffering to help reduce
flickering in the plugin.

If your applet opens a VisualWorks child window, and you want to
return focus to the main applet when that window closes (see the
Loan Calculator example), you will also need the following:

pluginConnectionIsOpen
Answer whether the plugin connection is established.

activatePluginWindow
Send a message to the VisualWorks Plugin to return focus to the
main plugin window on the HTML page.
22 VisualWorks

4
Deploying an Applet

 When a web page containing a VisualWorks applet is opened,
VisualWorks starts, the applet parcel is loaded (along with any specified
prerequisite parcels), and then the applet is launched. If the VisualWorks
Plugin is not already installed when the page is opened, the plugin is
downloaded and installed in accordance with the security settings of the
user’s browser.

The standard plugin image (plugin-base.im) contains the runtime
support classes and protocol required for a simple applet. This is the
image that is installed with the generic VisualWorks Plugin. To run an
applet in this image, all applet code must be contained in the parcel or
parcels that download from the web site. Since applets tend to be small,
there is usually only a single, small parcel, and downloading is very quick.

For large applications, you may need to build a custom image that will be
installed as a custom instance of the plugIn. This is described in the next
chapter, Chapter 5, “Building a Custom Plugin Image.”

The plugin\examples directory contains a set of VisualWorks applets
and HTML pages that you may examine as examples for constructing
your applet.

Parceling the Applet
VisualWorks provides several paths to defining and creating parcels. For
example, you can use parcels as your source code storage format, in
which case you define them at the beginning of a project. Or, you may
use the VisualWorks Store Repository for code storage, and only define
parcels at the end of the process.
Plug-in Developer’s Guide 23

Chapter 4 - Deploying an Applet
A deployed plugin application does not generally include source code, but
you do not have to save the parcel any differently for deployment than you
do for development. Save the parcel as normal, but then only upload the
.pcl file to the web server. When uploading parcels to the web server,
treat the parcel files as binary files.

While there are alternatives for adding definitions to parcels, here’s a
standard approach:

1 In a Parcel Browser (or parcel view of the System Browser), select
Parcel New..., and enter a name for the parcel.

The name may be the same as the name for the actual parcel file, but
need not be. Do not include a filename extension.

2 In the browser, find each class used in defining your application, and
select Class Parcel Move to..., and select the parcel.

3 If your application extends classes in the target image, find each
“loose method” in the browser, and select Method Parcel
Move to..., and select the parcel.

Note that if you have put all your loose methods for a class in a
special protocol, you can add the protocol to the parcel instead, and
move all of the methods in a single operation.

4 Select the parcel, and select Parcel Save... .

5 In the parcel saving dialog, enter the file name for the parcel (without
the extension, which will be provided), then click OK.

Adding an Application to a Web Page
You add your application to a web page using the HTML OBJECT tag.
The standard HTML options are supported, plus a a number of tag
parameter attributes specifically for the VisualWorks Plugin.
24 VisualWorks

Adding an Application to a Web Page
For example:

<OBJECT
CLASSID="CLSID:FF48278C-094A-4188-95AA-4B1E03F3163C"
TYPE="application/x-visualworks-parcel"
CODEBASE=

"http://mydomain/plugin-install/vwpluginax.cab#version=2,0,X,YYY"
WIDTH="500" HEIGHT="300">

<PARAM NAME="PARCEL" VALUE="MyApplet.pcl">
<PARAM NAME="VWOPEN" VALUE="MyApplet">
The ActiveX PlugIn was not installed!

</OBJECT>
The relevant tag attributes are:

CLASSID
The unique GUID identifier of the ActiveX Control.

CODEBASE
The URL which can be used to download and install the plugin if it is
not already installed on the user’s machine. Please consult the
VisualWorks Plugin readme.txt file for the current version of the
deployment file for this release.

WIDTH
The width of the applet window.

HEIGHT
The height of the applet window.

TYPE
The MIME type for the plugIn applet (currently application/x-
visualworks-parcel). This is optional for the ActiveX Control.

The supported tag PARAM values are:

PARCEL
The parcel file containing the applet code. This can be an absolute
URL or a file name relative to the location of the page containing the
applet.

VWOPEN
Name of the class, typically a subclass of AppletModel, containing the
window specification to be opened.

VWCODEBASE
URL for the location of additional parcels. Unless specified, the
location is inferred to be the same as that for the PARCEL.
Plug-in Developer’s Guide 25

Chapter 4 - Deploying an Applet
VWPRELOAD
A list of parcel file names, separated by commas, to be loaded into
the image in the specified order before the main PARCEL. Unless
specified as an absolute URL, the location of a preloaded parcel is
inferred to be the VWCODEBASE.

VWAPPL
The application name associating this instance of the plugin with a
specific image.

For the PARCEL or VWCODEBASE tag parameter attributes, you may
also use the special tag $(VWPLUGIN) which indicates the file is relative
to the VisualWorks Plugin installation directory on the local machine. This
allows you to load a parcel from either a remote URL (subject to the
standard ALLOW/DENY configuration criteria) or a parcel file in the
Plugin installation directory (subject to ALLOW/DENY LOCAL
configuration criteria). Compare example.html (in plugin\deploy)
and hello-x.html (in plugin\examples) for the two formats.

The VisualWorks Plugin knows what version of the Plugin parcel (in the
plugin base image) it can talk to. The DLL and the VisualWorks image
must agree on the version before the image will start correctly. There is
no option to specify a version of VisualWorks.

Any text following the PARAM attributes, before the close of the OBJECT
tag, will be displayed in the HTML page if the plugin fails to install
correctly.

The VWOPEN attribute in the OBJECT tag specifies the application to
open:

<OBJECT …
<PARAM NAME="VWOPEN" VALUE =”MyApplet”>

In this tag, MyApplet is the name of the subclass of AppletModel in which
your applet is defined. AppletModel includes protocol specifically for
communicating with the web browser window, and so should be used in
most cases.

In cases where it is not practical to subclass AppletModel, specific protocol
can be added to the class to handle essential browser functions. Refer to
Chapter 5, “Building a Custom Plugin Image” for the specific protocol.
26 VisualWorks

Testing the Deployed Applet
Testing the Deployed Applet
Testing the applet in a debugger session with development parcels
preloaded is powerful, but cannot ensure that parcels load properly in a
deployment environment. For final testing, you must allow the applet to
start up using the deployed parcels.

As long as debugging is disabled (click Disable Debug), VisualWorks will
load the deployment parcels as specified on the OBJECT tag. If the
parcel source file is present, it is loaded as well.

You can also run a debug session with the deployment parcels loaded,
and so debug a parcel loading problem. To do this:

1 Unload all parcels defining the applet from your development image.

2 Start the Plugin Debug Tool.

3 Uncheck Suppress Loading Plugin Parcels.

4 Click Enable Debug.

5 Open the web browser on the page containing the applet.

6 Click Connect.

As the plugin is launched, it loads the deployed parcels and any
dependencies, as specified by the OBJECT tag. You can now debug the
applet as it is currently deployed.
Plug-in Developer’s Guide 27

5
Building a Custom Plugin Image

The standard plugin image (plugin-base.im) contains the runtime
support classes and protocol required for a simple applet. This is the
image that is installed with the generic VisualWorks Plugin.

For a large application, as is more common for applications that are run
over an intranet, downloading the entire application as one or more
parcels each time it is run is inefficient. In this situation it is better to
include much of the application in your CAB deployment file, in either:

• a custom image, or

• as additional parcels (invoked by the VWPRELOAD attribute in the
OBJECT tag) that add functionality to the standard image.

In either case, the image or parcels only need to be downloaded once to
each target machine. The applet parcel that is downloaded can then be
quite small, perhaps containing only the GUI, defined in a subclass of
AppletModel, that displays in the browser window.

In this chapter we describe building a custom instance of the plugin,
based on a custom image.

Building a Custom Image
The standard plugin image (plugin-base.im) is completely generic,
providing a run-time environment for an application that is completely
contained in downloadable parcels. Such an application is fine until the
size of the parcels becomes large enough to be inconvenient to download
at each execution of the applet. For a large application, is is useful to
create a custom base image that contains a significant part of the
application, leaving only a small part for downloading, such as the GUI
and associated logic.
28 VisualWorks

Building a Custom Image
The Runtime Packager, together with a special parameters file
(vwplugin.rtp), prepares the development image for deployment as a
plugin image.

The Runtime Packager “strips” the image, removing development support
facilities such as development tools. Because it is a custom image, only
parcels developed specifically for it should be loaded.

To create the custom plugin image:

1 Start the original visual.im supplied with VisualWorks.

2 Load the following parcels into the image:

• RuntimePackager

• Plugin (or PluginDev, which includes tools that will be removed
during stripping)

3 Load the part of your application code that will be permanent in the
deployed image. This is any of the application code that is not to be
downloaded when the applet is launched.

4 (Optional) Unload parcel XML-Source and any other development
parcels.

Refer to the VisualWorks License Agreement for parcels that may not
be included in a runtime image.

5 In the Settings Tool on the Look and Feel page, set Window placement to
Automatic.

This change, while strictly optional, makes any auxilliary application
window open without the user placing and sizing the window. This is
a more familiar behavior for most users.

6 Select Tools Runtime Packager.

7 In Runtime Packager, select File Load Params, and load
plugin\vwplugin.rtp, the plugin Runtime Packager data file.

8 In Runtime Packager, select Actions Set common options, and change
the Runtime Image Path Name to the directory path and file name (without
the .im suffix) for the deployed image, and click OK.

You will use this image name in the plugin initialization file when
identifying the base image for your application. (See Chapter 4,
“Deploying an Applet” for more information.)

9 In Runtime Packager, select Actions Strip system.
Plugin Developer’s Guide 29

Chapter 5 - Building a Custom Plugin Image
10 When the stripping process completes, launch the created image two
more times as directed by the text windows. After the second launch,
the text window should indicate that the image is ready for use.

Plugin Initialization File
To provide additional configuration information in a cross-platform format,
the VisualWorks Plugin uses a plain text initialization file,
vwplugin.ini. This file is installed in the VisualWorks Plugin
installation directory.

The initialization file allows specific attributes to be set for individual
instances of the plugin, as well as general attributes. When installing a
new instance of the plugin, usually to run a custom image, you may also
need to edit this file, either programmatically or manually, to adjust the
attributes appropriately.

The initialization file uses the following basic attributes:

There are also two security attributes, which are discussed in more detail
below, under “Security Measures”:

Initialization File Attributes

DIRECTORY Names the “current directory” used for launching
the VisualWorks Plugin image

OBJECTENGINE Specifies the path to the executable virtual
machine

BASEIMAGE Specifies the path to the base image. This is
generally needed for custom images.

APPLICATION Specifies a value matching the VWAPPL tag
attribute (see below)

EXTRA Specifies extra information of interest to the
application

Security Attributes

ALLOW Specifies domain locations allowed to supply a
plugin parcel

DENY Specifies domain locations not allowed to supply
a plugin parcel
30 VisualWorks

Security Measures
Path names can be either absolute or relative file names (not URLs).
Relative path names are relative to the value specified for DIRECTORY
or to the VisualWorks Plugin installation directory if DIRECTORY is not
supplied.

Note that the attribute names are not case-sensitive. However, any
unknown attributes will cause an error dialog.

The initialization file can specify options for individual applications as well
as setting global options. To allow this, begin a new section in the
initialization file with the Application attribute, as in:

Application MyApp
The application name must match the name specified in the VWAPPL
option in the OBJECT tag. Following this are attributes for this application
only. For example, mixing general attributes and application specific
attributes, the initialization file could look like this:

BaseImage plugin-win-base.im

Application MyApp
BaseImage myimage.im
Deny all
Allow myhost.com

Application Debug
Directory c:\vw7\image
ObjectEngine ..\bin\vwntdbg.exe
BaseImage mydebug.im
Deny all
Allow local

In this configuration, defaults are accepted for most attributes for the
standard plugin image, but specific attributes are set for MyApp and for
debugging.

Security Measures
The current security measures for the plugin employ a “trusted site”
strategy, enforced by the ALLOW and DENY attributes specified in the
plugin initialization file.
Plugin Developer’s Guide 31

Chapter 5 - Building a Custom Plugin Image
Identifying Trusted Sites
You identify trusted sites by defining a filtering scheme in the initialization
file, using the ALLOW and DENY attributes. The attribute formats are:

ALLOW < all | local | hostID >
DENY < all | local | hostID >

Host IDs can be partial, and can be specified either as IP decimal values
or as names.

IP decimal values specify from the network down, and unspecified levels
match all values. For example, 216, 216.1, 216.1.2, and 216.1.2.3 all
match 216.1.2.3.

Similarly, when specified by name, unspecified levels match all values.
For example, com, cincom.com, and www.cincom.com all match
www.cincom.com.

Allow and deny attributes can be mixed to provide the desired protection.
For example, the following allows all cincom.com and advbool.com, except
for test.advbool.com, and denies all other hosts except for local:

Deny all
Allow local
Allow cincom.com
Allow advbool.com
Deny test.advbool.com

How Sites are Verified
Every time a parcel is requested, the location of the request, whether
specified by the PARCEL or VWCODEBASE parameters in the OBJECT
tag, is compared to the trusted sites set by the ALLOW and DENY
attributes. The parcel is downloaded, only if the site is allowed.

By default, if a site is not listed, it is allowed. To switch this to deny access
to all sites not listed, begin the sequence with DENY ALL.

While the ALLOW and DENY parameters can be specified by decimal
representations, they are checked only if the requested site is also
specified using decimal representation. Translation from text to decimal is
not done in the attempt to verify a site.

HTTP GET and POST requests are also tested for access permission
before the command is issued, and only commands directed to an
allowed site are actually issued.
32 VisualWorks

6
Packaging Your Custom Plugin

For testing purposes, you can use the generic VisualWorks Plugin
ActiveX Control. However, when you deploy your own application, you will
need to address such issues as signing the control and marking your
control safe for initialization and/or scripting, which are not possible using
the generic plugin.

In this chapter we provide general instructions for packaging your applet
which are applicable whether you are packaging a custom image for
testing with the generic plugin control or packaging your own custom
plugin control. We also discuss the process and considerations for the
final step in deploying your VisualWorks Plugin ActiveX Control: building
your own custom control.

Preparing to Test Your Application
To test a basic applet running in the standard VisualWorks Plugin image,
there is no special packaging necessary. You can make the pre-packaged
generic plugin deployment file, plugin\deploy\vwpluginax.cab,
available for download and installation, and reference it and your applet
parcel file in the OBJECT tag on a test HTML page.

If your application requires a custom image, on the other hand, you need
to package it for installation with Internet Component Download by
building your own CAB deployment file for your application.

Before you build your own deployment files to install your custom
application, you should understand the general installation details for the
VisualWorks Plugin ActiveX Control.

Installing the VisualWorks Plugin ActiveX Control
When the browser opens an HTML page which embeds the VisualWorks
Plugin ActiveX Control for the first time, the versioned CAB deployment
Plugin Developer’s Guide 33

Chapter 6 - Packaging Your Custom Plugin
file is downloaded from the URL referenced in the CODEBASE attribute
of the OBJECT tag and installed through Internet Component Download
in accordance with the security settings of the user’s web browser. The
CAB deployment file will normally not be downloaded again unless the
CODEBASE attribute references a newer version of the control.

The VisualWorks Plugin DLL (axvwplugin.dll) is installed and
registered in the ActiveX Cache Folder, (WINNT\Downloaded Program
Files on Windows 2000). The remaining VisualWorks components are
installed under the standard Program Files directory in
VisualWorks\Plugin\2.00.

In addition to registering the ActiveX, the installation makes three entries
in the Windows Registry :

HKLM\SOFTWARE\Cincom Systems,Inc.\VisualWorks\PlugIn\2.00\
VWPluginDebug

HKLM\SOFTWARE\Cincom Systems,Inc.\VisualWorks\PlugIn\2.00\
VWPluginDir

HKLM\SOFTWARE\Cincom Systems, Inc.\VisualWorks\PlugIn\2.00\
VWPluginMsg

Removing the VisualWorks Plugin ActiveX Control
If you have installed the generic plugin you must first remove it from your
machine before you can test your own application which uses a custom
image. This is because the version of a CAB deployment file references
the version of the ActiveX Control DLL it contains. As long as your CAB
deployment file includes the generic VisualWorks Plugin ActiveX Control
DLL, this version is already installed, and the new file, containing your
custom image, will not be downloaded.

To uninstall the VisualWorks Plugin ActiveX Control,

1 Delete the entire Plugin installation folder
VisualWorks\Plugin\2.00 from the Program Files directory.

2 Remove the VWPlugin ActiveX Control from the ActiveX Cache Folder,
WINNT\Downloaded Program Files.

The following registry items can optionally be removed, but this is not
required:
34 VisualWorks

Preparing to Test Your Application
HKEY_CLASSES_ROOT\AppID\{61ADB2B2-BF94-43B4-B04B-
379B3E59BA67}

HKEY_CLASSES_ROOT\AppID\VWPlugin-AX
HKEY_CLASSES_ROOT\CLSID\{FF48278C-094A-4188-95AA-

4B1E03F3163C}
HKEY_CLASSES_ROOT\VWPluginAX.VisualWorksAX
HKEY_CLASSES_ROOT\Interface\{19A5484E-1774-48DB-A119-

840F8A73B5EB}
HKEY_CLASSES_ROOT\TypeLib\{61ADB2B2-BF94-43B4-B04B-

379B3E59BA67}
HKEY_LOCAL_MACHINE\SOFTWARE\Cincom Systems, Inc.\VisualWorks\

PlugIn\2.00
In most cases there is minimal benefit to removing these variables as the
registry key is used only by VisualWorks.

Building Deployment Files For Your Application
To deploy your own application, you will need to build your own CAB
deployment file. This requires the CABARC.EXE utility which is part of the
Microsoft Cabinet Software Development Kit, and can be downloaded
from the Microsoft support site. You must install the Microsoft Cabinet
SDK before you can build your own deployment files.

To build your own CAB deployment file, copy the following files from the
plugin\deploy directory to a work directory.

To this set of files, add your own application parcels and/or replace

Deployment Directory Contents

File name Description

axvwm200.dll VisualWorks Plugin messages resource

axvwplugin.dll VisualWorks Plugin ActiveX Control

mkcabpluginax.bat Command file to generate deployment file

plugin-base.im VisualWorks Plugin image, or replace with your
custom plugin image

vwnt.exe [Required] VisualWorks VM

vwntoe.dll [Required] VisualWorks OE support

vwplugin.inf Secondary INF installation file

vwplugin.ini VisualWorks Plugin configuration file

vwpluginax.inf Primary INF installation file

vwpluginax.osd Main OSD installation file
Plugin Developer’s Guide 35

Chapter 6 - Packaging Your Custom Plugin
plugin-base.im with your custom image file. Make any necessary
changes to the vwplugin.ini configuration file.

When all the necessary pieces of your application are in place, edit the
mkcabpluginax.bat file to reflect the desired content of your CAB
deployment file and edit vwplugin.inf, vwpluginax.inf and
vwpluginax.osd to reflect the same content. It is critical that the
version number is identical wherever it appears in the plugin DLL, the INF
and OSD files. This is the version number which appears in the
CODEBASE attribute of the OBJECT tag. The Microsoft MSDN Library
article “How to Package Components for Internet Distribution” contains a
good introduction to INF and OSD syntax and the parameters for the
CABARC.EXE tool.

If you are building the deployment file for your own custom VisualWorks
Plugin ActiveX Control (see the following section), replace the plugin DLL
(axvwplugin.dll) with your own custom control and again ensure that
all version specifications are identical.

Run the batch file (mkcabpluginax.bat) to create your own CAB
deployment file. If you will be signing your control, insert the digital
signature into your CAB deployment file.

You are now ready to test your plugin. Copy your CAB deployment file to
your web server location and reference it (with the correct version) in the
CODEBASE attribute of an OBJECT tag on your HTML page. If you are
still testing with the generic plugin DLL, make sure you have removed the
original installed version of the generic VisualWorks Plugin ActiveX
Control (see above). When you open the HTML page, the web browser
will download your new CAB deployment file and install your new plugin.

Building Your Own Plugin Control
Our generic VisualWorks Plugin ActiveX Control, as distributed, is not
safe for initialization or safe for scripting. Since a VisualWorks application
has complete access to the user’s machine, we have no way to guarantee
that the generic plugin cannot be used for inappropriate purposes,
however unlikely that might be. It is unfortunate but true in today’s world
that ActiveX Controls, which are normally installed through Internet
Component Download, are responsible for a lot of machine hacking and
virus activity. There is a responsibility associated with marking an ActiveX
Control as safe – you as the developer must ensure that your control
really cannot damage a user's machine.
36 VisualWorks

Building Your Own Plugin Control
To deploy your own VisualWorks Plugin ActiveX Control, you will need
access to the source code for our ActiveX Control. You will need to mark
your control safe at the source level and rebuild the DLL. Since you will
be changing Cincom’s code to construct your own ActiveX Control, you
must also take responsibility for the resulting DLL by

• Replacing the VisualWorks Plugin GUIDs with your own GUID
identifiers

• Changing the DLL’s version information to reference your company’s
name, copyright, etc.

You may not, however, remove the internal copyright information from the
text of our C/C++ code.

The VisualWorks Plugin source code is covered under your VisualWorks
license agreement. Currently you can request this source from
VisualWorks Support through normal support channels. Once we have
completed implementation of the new cross-browser NPAPI Plugin
version which will run in newer versions of NPAPI enabled browsers such
as Netscape, Mozilla, Opera and Firefox, the source will be included on
the distribution CD. Until this work is finished, the plugin source code may
change significantly from release to release.

The VisualWorks Plugin ActiveX Control is an ATL Control, built with the
Microsoft VisualStudio .NET C++ compiler. You will need to purchase and
install a copy of this compiler to build your custom control.

Implementing Object Safety
The VisualWorks Plugin DLL has little potential for damaging a user’s
machine on its own. It is simply the interface to connect the VisualWorks
image and the web browser.

The DLL is responsible for allocating its own context, the contents of any
POST request, plus a shared memory area also used by VisualWorks. It
reads the initialization file and passes GET and POST requests to the
web browser (Internet Explorer), caching the result as a local file when
specified. These are not risk-free, and buffer-overflow is a common
security hole with C/C++ code, but the primary risk potential is in your
Smalltalk code.

The VisualWorks image maintains complete control over loading parcels
as well as implementing the security measures defined by the ALLOW or
DENY attributes of the initialization file. You must ensure that your applet,
Plugin Developer’s Guide 37

Chapter 6 - Packaging Your Custom Plugin
as a combination of the ActiveX Control DLL plus the Smalltalk image
and parcels, was tested in a variety of scenarios and abides by the
following guidelines:

• do not manipulate the file system

• do not manipulate the registry (except to register and to unregister
itself)

• do not overindex arrays or otherwise manipulate memory incorrectly

• validate (and corrects) all input, including initialization, method
parameters, and property set functions

• do not misuse any data that is provided by the user or that is about
that user

After you have completed sufficient testing to ensure that your control
cannot be used to damage the user’s machine, regardless of how it is
intitialized or how it is scripted, the actual work to mark the plugin control
safe for initialization and scripting is quite simple. This involves only a
trivial change to the plugin source code. In short, you need to implement
the IObjectSafety interface for the plugin control.

The plugin source contains a template for the IObjectSafety interface.
See the source files VisualWorksAX.h and VisualWorksAX.cpp.
Simply alter the template per the instructions in these files.

Updating DLL Version Information
The plugin source directory also contains VWPluginReadme.txt which
details the remaining changes required to build a custom version of the
control. These involve updating the version information to reflect your
company’s copyright and obtaining your GUID identifiers for the control.
Follow these instructions, update the project properties to specify the
name of your DLL, and rebuild the project.

Signing the Custom Plugin Control
The Microsoft MSDN Library article “How to Package Components for
Internet Distribution” provides background information and instructions for
adding a digital signature to your CAB deployment file.

Follow the instructions in the previous section to assemble the
components of your application and build your CAB deployment file. Sign
your file using the Microsoft Authenticode Tools. Once your application is
packaged, make the CAB file available for download from your web
server and reference it in the CODEBASE attribute of an OBJECT tag in
your HTML page.
38 VisualWorks

7
Communicating with a Plugin
Application

Only the simplest applets run in a completely stand-alone manner. In
general, an applet needs to communicate with other programs or with the
browser itself.

The VisualWorks Plugin provides several options for allowing a plugIn
application to communicate with other processes and applications.

• AppletModel provides protocol for doing HTTP GET and POST
operations, and for updating the browser status line.

• Socket support is standard in VisualWorks, and can be used by the
plugin.

• VisualWorks add-ins, such as the Database Connects, DST, and
VisualWave are available for extending plugIn operations.

Get and Post operations are covered here, as well as the mechanism
required to return focus to the main applet window after a child window
closes. Other options are discussed in other VisualWorks documentation.

Doing Get/Post Operations
A common communication operation is to do a GET or POST operation in
a browser, to send and receive data to a web server. For information on
using these operations, refer to the W3 website, www.w3.org, or a
publication on internet programming.

AppletModel provides protocol for making these calls from your applet. The
full set of methods is provided in the pluginplugin api method category in
the AppletModel class. To have access to these methods, your applet
Plugin Developer’s Guide 39

http://www.w3.org

Chapter 7 - Communicating with a Plugin Application
needs to be a subclass of AppletModel. The methods are distinguished by
which operation is to be performed, and the format in which data is
presented and received back.

Using GET Messages
HTTP GET messages retrieve whatever data is identified by a URL. GET
messages are also used for many search requests. The data is often an
HTML page, a graphic, or a file.

The VisualWorks plugIn provides several messages to make it simple to
issue a GET command from an applet.

For example, the getURL:target: message retrieves the contents of a URL
and displays it in a targeted browser or frame. So,

self getURL: url target: '_blank'
contacts the site named in the url variable, and displays it in a new
browser window (the _blank keyword is a reserved name in the HTML
spec for this purpose). The target name may also be any named browser
window or frame.

To process the content returned by the URL within the applet, you can
use the message:

self getURLAsString: url
The contents of the URL, typically HTML source, can then be processed
within the applet. For example, you may want to process the input using
the XML support provided in VisualWorks. If a special encoding is
needed, use getURLAsString:encoding:.

Note that if a GET causes the page containing the applet to be replaced
or lost, as would:

self getURL: url target: '_self'
then the plugIn application is closed. Using the browser’s BACK
command does not restore the applet to its prior state, since the applet
will need to be relaunched. When all plugIn applications are closed, the
image itself exits.

Using POST Messages
An HTTP POST message is used for a variety of operations that submit
data to an internet service, such as for:

• Annotating existing documents
40 VisualWorks

Returning Focus to the Main Applet Window
• Posting a message to a bulletin board topic, newsgroup, mailing list,
or similar group of articles

• Adding a file to a directory

• Extending a document during authorship

The VisualWorks Plugin provides several messages to make it simple to
issue a POST command from an applet, distinguished by the type of data
the applet is sending and how the return data is to be handled.

For example, this message transmits data as it would be sent from an
HTML form:

self postToURL: url form: aDictionary
The Dictionary data is presented as key/value pairs, as expected from a
form submission. The returned data is a String.

To post data from a string, use a form of the postToURL:string: message.

Refer to the plugin api message category for a complete set of POST
messages. The message comments also mention special requirements
and differences between MS Internet Explorer and Netscape Navigator.

Posting a String or a Form
When posting a string or a form, the headers are built automatically, if
needed.

Posting Bytes
When posting bytes, you must provided headers as needed and use LF
terminated lines. The ability to post bytes is for applications that need
total control.

Returning Focus to the Main Applet Window
The window in the web browser which contains your running VisualWorks
applet is really two windows working together. The first (parent) window is
the window managed by the VisualWorks Plugin ActiveX Control (the
DLL). The browser acts as a container for this window. The second (child)
window is the window used by VisualWorks in which to display its GUI.
The browser does not manage this window or know anything about its
state.

If your application opens VisualWorks child windows, you need to
explicitly re-activate the plugin control window if you want your main
applet window to get focus after a child window closes.
Plugin Developer’s Guide 41

Chapter 7 - Communicating with a Plugin Application
To ensure that you return focus to the plugin applet correctly you must do
two things:

• Your child window must be implemented using a model which is a
subclass of ApplicationModel, so you can catch the close notification
with an override of noticeOfWindowClose: which contains code to
reactivate the plugin applet.

• Your subclass of ApplicationModel should store its parent (the instance
of the plugin applet) which must be either a subclass of AppletModel or
a subclass of ApplicationModel which implements the necessary plugin
API (from plugin\applet-api.st). See “Adapting an Existing
Application” in Chapter 3, “Developing a Plugin Applet.”

The Loan Calculator example in
plugin\examples\pcl\LoanCalculator.pcl and executed with
plugin\examples\loancalc-x.html demonstrates this
functionality.
42 VisualWorks

8
Plugin Tips and Tricks

There is very little that you can do in VisualWorks that you cannot do with
the plugin as well. In this chapter we will highlight, by way of example, a
variety of effects you can achieve with the plugIn.

Launch a Stand-alone Application
Because you have the full functionality of VisualWorks in the plugin
image, you can launch a separate VisualWorks application from an
applet. The launched application can then run in complete independence
of the browser.

Since the stand-alone application has no dependencies on the browser,
you can create it as a subclass of ApplicationModel. If you have several
such applications already, they can be presented by the applet as a list,
with each list item launching the selected application.

Dynamic Component Update
To update HTML pages, including such items as menu selection lists or
other display items, requires downloading and redisplaying the entire
page. For items that can be based on information at the client, using a
VisualWorks applet is much faster.

For example, an applet could include a Notebook widget and all the
related logic. Changing a notebook page can change the whole look of
the applet. Since the entire change is in VisualWorks, it is much quicker
than loading and drawing a new HTML page.

Lists can also be dynamically updated using data selected in the applet
itself, or items entered in an entry field.
Plugin Developer’s Guide 43

Chapter 8 - Plugin Tips and Tricks
Menu selections can also be defined entirely within the VisualWorks
applet, and so expanded much more quickly than is possible using typical
web-page techniques.

In general, the more you can accomplish within the applet itself, the more
you can do on the client system and accomplish with the speed of
VisualWorks.

Access Files
VisualWorks applets do not impose any of the artificial restrictions
familiar to those who have attempted writing applets under Java. For
example, file read/write access is open in the plugin environment using
the standard VisualWorks file access API.

This facility is very powerful, and is potentially destructive because files
can be overwritten, posing certain security risks. Please use this
capability carefully and responsibly.
44 VisualWorks

Index
A
activatePluginWindow message 22
ALLOW attribute 31
applet

adapting an application 21
adding to a web page 18
create 16
creating 16
deploying 23
file access 44
launching 17, 21
parcel 19
parcelling 23
security 30, 31

applet-api.st fille 21
AppletModel class 16, 17
application attributes 30
ApplicationModel class 16, 43

B
buttons

mouse 6
C
canvas 16
certifying sites 31
compatibility 12
conventions

typographic 5
D
Database Connects 39
debug

Debug Tool 19
start session 19
suppress parcel loading 20

Debug Tool
connect 20
disable 20

DENY attribute 31
deploy

custom plug-in 33
Distributed Smalltalk 39
DST 39

E
electronic mail 8
F
file access 44
fonts 5
G
GET command 39, 40

H
HTTP commands 39

I
initialization file 30
install

new applet canvas 16
isAppletModel message 21

L
launch application 43

M
mail

electronic 8
mouse buttons 6

<Operate> button 6
<Select> button 6
<Window> button 6

N
notational conventions 5
O
OBJECT tag 17, 18

P
packaging 32
parcel hosts 31
parcels

deploying applets 23
Plugin 14
PluginDev 14
preloaded 28

plugIn API 21
plugin API 16
plugin dll 13
Plugin Developer’s Guide 45

Index
Plugin parcel 14, 15, 29
plugin-base.im file 23
pluginConnection message 22
pluginConnection/

message 21
pluginConnectionIsOpen message 22
PluginDev parcel 14, 15, 29
POST command 39, 40
postBuildWith

message 22

Q
qualifying hosts 32
qualifying sites 31

R
Runtime Packager 29

S
security attributes 30
sockets 39
special symbols 5
support, technical

electronic mail 8
World Wide Web 8

symbols used in documentation 5
system requirements 12

T
technical support

electonic mail 8
World Wide Web 8

trusted site 31
typographic conventions 5
V
VisualWave 39
VWOPEN attribute 17, 21
vwplugin.ini file 30
vwplugin.rtp 29
vwpluginax.cab file 33
VWPRELOAD attribute 28

W
web browsers

interaction 16
supported 12

window placement 29
World Wide Web 8
46 VisualWorks

P46-0130-04

FAX
IT!

WE STRIVE FOR QUALITY

Reader Comment Sheet
Name:

Job title/function:

Company name:

Address:

Telephone number: () - Date: / /

How often do you use this product? # Daily # Weekly # Monthly # Less

How long have you been using this product? # Months # Years

Can you find the information you need? # Yes # No

 Please comment.

Is the information easy to understand? # Yes # No

 Please comment.

Is the information adequate to perform your task? # Yes # No

 Please comment.

General comment:

To respond, please fax to Larry Fasse at (513) 612-2000.

	Contents
	About This Book
	Audience
	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information
	Online Help

	The VisualWorks Plugin
	Introduction
	ActiveX Control
	Developing VisualWorks Applets
	Using a VisualWorks Applet

	System Requirements
	Compatibility

	Getting Started
	The Plugin Components
	Running the VisualWorks Plugin Examples
	The Plugin Development Environment
	Loading Plugin Development Support

	Developing a Plugin Applet
	Subclassing AppletModel
	Running an Applet in a Browser
	Using the Plugin Debugger
	Starting a Plugin Debug Session
	What You Can Do in a Debug Session

	Adapting an Existing Application

	Deploying an Applet
	Parceling the Applet
	Adding an Application to a Web Page
	Testing the Deployed Applet

	Building a Custom Plugin Image
	Building a Custom Image
	Plugin Initialization File
	Security Measures
	Identifying Trusted Sites
	How Sites are Verified

	Packaging Your Custom Plugin
	Preparing to Test Your Application
	Installing the VisualWorks Plugin ActiveX Control
	Removing the VisualWorks Plugin ActiveX Control
	Building Deployment Files For Your Application

	Building Your Own Plugin Control
	Implementing Object Safety
	Updating DLL Version Information
	Signing the Custom Plugin Control

	Communicating with a Plugin Application
	Doing Get/Post Operations
	Using GET Messages
	Using POST Messages
	Posting a String or a Form
	Posting Bytes

	Returning Focus to the Main Applet Window

	Plugin Tips and Tricks
	Launch a Stand-alone Application
	Dynamic Component Update
	Access Files

	Index

