

VisualWorks®

7.1 Release Notes

P46-0106-06

© 1999–2003 by Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0106-06

Software Release 7.1

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, COM Connect, and StORE are trademarks of Cincom Systems, Inc., its
subsidiaries, or successors. ENVY is a registered trademark of Object Technology
International, Inc. All other products or services mentioned herein are trademarks of their
respective companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation © 1999–2003 by Cincom Systems, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior written consent
from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents

Chapter 1 Introduction to VisualWorks 7.1 7

Product Support .. 7
Support Status ... 7
Product Patches ... 7

ARs Resolved in this Release ... 8
Items Of Special Note ...8

Multi-process UI support .. 8
Professional Debugger ... 8
Keyboard Binding changes .. 9

Known Limitations ... 9
Initializing Shared Variables ... 9
Limitations listed in other sections ...10

Chapter 2 VW 7.1 New and Enhanced Features 11

Base system ..11
Deploying without sources ...11

Virtual Machine ...11
Headless UNIX Engines ...11
New Platforms ..12
bin/ Directory Organization ...13
New Windows command switch ...13
Large Cursor support ...13

GUI Development ..13
Multiproc UI ..13

Highlights ..14
Backward Compatibility ...14
Deferred and Background UI Actions ..15
Additional GUI Behavior ..16
Usage changes ...17

Debugging in a the MultiprocUI environment ...18
Tools development in the MultiProcUI environment21
New mouse events ...21
Release Notes 3

Contents
New Look Policies .. 22
Widget enhancements ... 22

Dataset ... 22
TreeView ... 22
Input field .. 22

New widget layout option ... 22
Menu enhancements ... 22
UIPainter .. 23
Retract ValueModel support for TriggerEvents .. 23
Known Limitations .. 23

Sawfish and MultiProcUI ... 23
Tools development .. 23
System unresponsive after closing a window 24

Headless support ... 24
Tools ... 25

Keyboard bindings ... 25
Please Wait... ... 26
Tools development in the MultiProcUI environment 26
Professional Debug Package (PDP) .. 27
New Settings framework .. 27

Advanced Tools .. 28
Profiling .. 28

WebService enhancements .. 29
Separated from NetClients .. 29
WebService Tool .. 29

Net Clients .. 29
Renamed #beCurrentDirectory: ... 29
Moved #defaultPortNumber ... 29
User Agent support .. 29

Security ... 30
Public key algorithm APIs .. 30
Key generators, random generators & primality tests 31
Diffie-Hellman key exchange ... 32
Diffie-Hellman cipher suites in SSL ... 33
AES ... 34

Database .. 35
Exception handling updated .. 35
CLOB/BLOB support ... 35
Oracle element size corrected ... 37

Application Server .. 37
New ISAPI Gateway .. 37
IIS Virtual Directories ... 38
4 VisualWorks 7.1

Contents
Opentalk ..38
Opentalk STST Marshaling ..38

Pass-By-Name ..38
Pass-By-OID ...39

Opentalk Pass Mode Control ...39
Opentalk Tools ...40

DST ...40
Documentation consolidation ...40
Immutability supported ...40
Other changes ..40

Application Server ...40
New ISAPI Gateway ...40
Significant Changes ...41

Repartitioning of VisualWave Components and Infrastructure41
VisualWave Namespace No Longer Imported41
Renaming of Headless Files ...41
Logging Changes ..41
Virtual Directories ..42
NSAPI Gateway Removed from Distribution42
Changed Memory and Network Parameters42
Changes to Command Line Handling ...42

Enhancements and Bug Fixes ...42
Load Balancer on Opentalk ...42
Production/Debug Toggle ..43
Startup Events ...43
Buffering ..43
Multipart forms and File Upload ..43
Web Toolkit Session Extensions ...43
New and Enhanced Gateways ..43
Cache Control headers For Proxy Servers44
Widget Enhanced for HTML 4.0 Compliance in VisualWave44
Better Handling of Encodings ..44
Robustness ...44
Various ..44

Known Limitations ..45
“Out of Memory” Error When Packaging ...45

Documentation ..46

Chapter 3 Deprecated Features 48

Advanced Tools ...48
Profiler ..48
Release Notes 5

Contents
Base System .. 48
TimeZone reference time ... 48

GUI ... 49
ScheduledControllers .. 49
ForkedUI .. 49

Net Clients .. 49
Deprecated messages ... 49
FTPClient>>beCurrentDirectory: ... 49

Advanced Tools .. 49
VisualWave ... 50

Chapter 4 Preview Components 51

New GUI Framework (Pollock), Beta 2 ... 51
High Level Goals ... 52
Pollock ... 52

Pollock Requirements ... 53
Loading tests .. 54

The New Metaphor: Panes with frames, agents, and artists 54
Other notes of interest ... 56
So, What Now? .. 56

Opentalk SNMP .. 57
Usage .. 57

Initial Configuration ... 57
Broker or Engine Creation and Configuration 57
Engine Use ... 59

Entity Configuration ... 60
MIBs .. 60
Limitations ... 61

Port 161 and the AGENTX MIB .. 61
Opentalk ... 61
SocratesEXDI and SocratesThapiEXDI .. 62

Installation ... 62
SocratesXML 1.2.0 ... 62
MindSpeed 5.1 .. 62

Data Interchange ... 63
Reference Support .. 64
Object Support ... 64
GLOs ... 64

Virtual Machine ... 65
IEEE floating point ... 65
OE Profiler ... 65
6 VisualWorks 7.1

1
Introduction to VisualWorks 7.1

These release notes outline the changes made in the version 7.1 release
of VisualWorks. Both Commercial and Non-Commercial releases are
covered. These notes are not intended to be a comprehensive
explanation of new features and functionality nor are they intended to be
used in lieu of the product documentation. Refer to the VisualWorks
documentation set for more information.

For late-breaking information on VisualWorks, check the Cincom
Smalltalk website at http://www.cincom.com/smalltalk. For a growing
collection of recent, trouble-shooting tips, visit
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/
Trouble+Shooter.

Product Support

Support Status
Basic support policies for the current release are described in the
licensing agreement. As a product ages, its support status changes. To
find the support status for any version of VisualWorks and Object Studio,
refer to this web page:

http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/
Cincom+Smalltalk+Platform+Support+Guide

Product Patches
Fixes to known problems may become available for this release, and will
be posted at this web site:

http://www.cincomsmalltalk.com/CincomSmalltalkWiki/VW+Patches
Release Notes 7

http://www.cincom.com/smalltalk
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/Trouble+Shooter
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/Trouble+Shooter
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/Cincom+Smalltalk+Platform+Support+Guide
http://www.cincomsmalltalk.com/CincomSmalltalkWiki/VW+Patches

Introduction to VisualWorks 7.1
ARs Resolved in this Release
The Action Requests (ARs) resolved in this release are listed in:
fixed_ars.txt.

Additional ARs may be discussed in individual sections of these release
notes.

Outstanding ARs and limitations are noted throughout these release
notes, as appropriate.

Items Of Special Note

Multi-process UI support
UI processes used to be on a single thread, and to fork an additional UI
thread required loading the ForkedUI goodie. With this release, multiple
UI process support is native to VisualWorks.

Using multiple UI process is described in the Application Developer’s
Guide.

Additional changes to windows have been required by this support.
Conversion instructions are provided later in this document.

Professional Debugger
The Professional Debugger Package, from Crafted Smalltalk, is now the
system debugging package. It provides many enhancements over the
previous system debugger.

Notably, instead of inserting self halt into a method to cause a break, you
can now insert “probes” to monitor a program’s state. Breakpoints break
program execution and display a debug window, as did self halt. In
addition, watchpoints provide a mechanism for displaying status
messages in a watch window.

The familiar Step commands are changed somewhat. The new
commands are:

Step Into
Steps into message sends (things you don't see). This is the former
"send” command.

Step
Steps through the visible source only, stepping into blocks. This is the
former "Step into block" command.
8 VisualWorks 7.1

Known Limitations
Step Over
Steps through the visible source, stepping over block. This is the
former “Step” command.

These three commands, in the above order, are bound to F5-F7 keys.

For additional information about the debugging facilities, refer to the
Application Developer’s Guide, chapter 9, “Debugging Techniques.”

Keyboard Binding changes
A number of changes have been made to the shortcut key bindings, as
described in “Keyboard bindings” later in this document. This change
affects a number of old familiar shortcuts.

In particular note that the composition key combination has changed to
Ctrl+K, from the former Ctrl+Q. Documentation has been updated to
reflect this and other changes.

Known Limitations
While a large number of ARs (Action Requests) have been addressed in
this release, a number remain outstanding.

Known Limitations sections are provided throughout this document,
pertaining to specific product areas.

Initializing Shared Variables
There are a number of inconsistencies known in how classes and shared
variables are initialized when loading code from the several storage
options. The following table summarizes cases where loading is correct
(!) and incorrect (✗).

Parcel Package Class

Save FileOut Source Binary FileOut FileOut

New class with initialize method ! ! ! ! ✗ !

Existing class with new initialize method ✗ ! ! ✗ ✗ !

Overridden class initializer ! ! ✗ ✗ !

Shared variable in class with initializer ! ✗ ! ! ! !

Shared variable in namespace with
initializer

! ✗ ! ! ! !
Release Notes 9

Introduction to VisualWorks 7.1
The columns describe a method of saving code, respectively (by System
Browser menu command):

• Parcel # Save

• Parcel # File Out As

• Package # Publish

• Package # Publish As Parcel

• Package # File Out # Pacakge

• Class # File Out As

The problem is that the results are not consisten for loading code saved
using these various methods.

This problem is recognized, and will be corrected in the next release.

Limitations listed in other sections
• GUI: Known Limitations

• Application Server: Known Limitations
10 VisualWorks 7.1

2
VW 7.1 New and Enhanced Features

This section describes the major changes in this release.

Base system

Deploying without sources
We have redefined removeFileAt: in SourceFileManager to use
discardSourceAt:, and have added a removeAllSources. These methods
provide two idioms for deploying without sources:

SourceFileManager default removeAllSources.
and

SourceFileManager default removeFileAt: 2
This change provides the solution to three ARs: 43549 (Need a method in
SourceFileManager for deploying with no changes file), 43318 (Don't log
parcels for runtime image), and 43372 (Can't create classes in plugin).
The latter two were rejected in favor of the first, and all three resolved
together.

Virtual Machine

Headless UNIX Engines
Most of the Unix platforms now provide a headless engine. These
engines exclude the GUI and window management primitives,
dynamically loading them as required from a shared library.

The all-in-one, “headful” engines are still provided.
Release Notes 11

VW 7.1 New and Enhanced Features
The platforms supporting headless engines are:

• Compaq True64 Unix

• Linux x86

• Linux PowerPC

• Linux SPARC

• Silicon Gaphics IRIX

• Sun Solaris.

Each headless engine automatically searches for an associated GUI
shared library when a GUI primitive is first invoked. Engines look for a
shared library of the same name as the engine with "gui.so" appended.
For example, the vwlinux86 engine is headless, and will search for
linux86gui.so if a GUI primitive is invoked. Headful engines have
“gui” appended to their name, to the corresponding headful engine is
vwlinux86gui.

These engines support two new command-line switches:

-gui:
Load default GUI subsystem shared library on startup.

-guilib guilib.so:
Load specified GUI subsystem shared library on startup.

The headless GUI engines currently do not support Input Management
when used with their GUI library. This is a bug we will fix in a subsequent
release. For now I18N users who want to use headful applications should
use the all-in-one engines.

New Platforms
Three new platforms have been provided this release:

• the MacOS X platform, which previously was in beta, but is now fully
supported.

• linuxSPARC for Linux on SPARC processors.

• linuxPPC for Linux on PowerPC/RS6000 processors.

The two new Linux platforms are unsupported. But they are, as far as we
know, fully functional, and at least the LinuxPPC platform is in daily use
by some members of VisualWorks engineering.
12 VisualWorks 7.1

GUI Development
bin/ Directory Organization
The bin/ directory has been reorganized in an attempt to make things a
little less confusing. Extra engines for assert checking and debugging are
in extras/ subdirectories of each bin/ directory. Further, to save space
on the CD, their contents has been compressed. We apologies for this
inconvenience and hope you'll still unpack these engines if you need to
diagnose potential engine problems.

New Windows command switch
The Windows platform now provides an extra command-line switch,
-walltime, which makes the engine derive its 64-bit microsecond clock
from SystemTimeAsFileTime. This is more accurate over long periods of
time, but has much lower resolution and is much slower to compute than
the default. The default scheme, which is derived from the performance
counter and synchronised with SystemTimeAsFileTime at startup, may drift
from the system's time by a few seconds every day so. For many
applications the higher resolution and performance is preferrable.

Large Cursor support
All platforms except MacOS 9 now support 32x32 cursors, although we
do not as yet take advantage of this in the image, precisely because
MacOS 9 only supports 16x16 cursors.

GUI Development

Multiproc UI
Prior to the introduction of the multiprocess UI, VisualWorks has had a
number of longstanding problems, including:

• A dialog window for one window blocks all windows in the image. This
restricted a developer's ability to use a single image to implement
multiple applications.

• When an application waits on a semaphore all windows are blocked.
This made it more difficult for a developer to use a single image to
implement multiple applications that communicate externally.

• The designs of InputState, ControlManager, and the window sensor still
had polling remnants that are actively used.

• Overly complex technique for background process to update a
window (ForkedUI).
Release Notes 13

VW 7.1 New and Enhanced Features
With the introduction of multiprocess UI, we have made the following
Improvements:

• Dialog windows block only windows managed by same window
manager.

• An application waiting on a semaphore does not block windows using
a different window manager.

• Applications can run with different priorities.

• Design is more fully event driven. Elimination all calls to the polling
loop in ControlManager.

• Improves non-user interface (background) process debugging.

Highlights
• The WindowManager class now does the job the ControlManager class

used to do.

• Each WindowManager has its own event queue, which manages itself
and the windows under its control. In the ControlManager, each
window had its own event queue, but the global ControlManager
(ScheduledControllers) centrally managed kicking each window into
action.

• Each time you open a window, the window may be set to be
managed by its parent window's WindowManager, or it can be set to be
managed by its own new WindowManager.

• When a UI process is being debugged, no events are processed by
the associated window manager. This also means that all the
windows managed by that window manager are frozen. While this
can be disconcerting for IDE tools like browsers this guarantees that
an application being debugged does not inadvertently change state
due to an event.

• Ctrl-\ opens a Process Manager, where all user and UI processes
(and optionally all system processes), are listed. From this list of
processes, you have a choice of many different actions, including
debugging a process, inspecting a process, dumping the stack on a
process, terminating a process, etc.

• All of the WindowManager code is tied into the new PDP Debugger.

Backward Compatibility
The ControlManager class and its associated global, ScheduledControllers,
still exist in the system, although they are now obsolete and deprecated.
14 VisualWorks 7.1

GUI Development
All common code that is written to talk to the ScheduledControllers global
will still work, because ControlManager has been rewritten to forward these
methods to a WindowManager.

While your old code will still work, there are some circumstances where
the resulting behavior may be unexpected. This is because the
forwarding code in ControlManager sometimes has to guess which
WindowManager to send the message to.

Therefore, wherever you have code that reads:

ScheduledControllers checkForEvents
we suggest that you rewrite it to talk to the current WindowManager:

myWindow windowManager checkForEvents

Deferred and Background UI Actions
The old ForkedUI goodie code is now obsolete, and is totally incompatible
with the new Multiprocess UI.

Multiprocess UI has added four new messages for blocks allowing you to
perform the block deferred with or without waiting for the answer.

The uiEvent and uiEventFor: messages put the receiver block onto the
event queue and do not wait for an answer. The difference between the
two methods is that uiEvent assumes that the method should be
performed by the currently active window, at which it can only do a best
guess at finding, while uiEventFor: takes a specific window as the
argumetn. uiEventFor: is the preferred method.

The uiEventNow and uiEventNowFor: messages put the receiver block onto
the event queue and then, without blocking the window, separately waits
for the result of the block being evaluated. Again, uiEventNow will make a
best guess at which window's manager is to execute the block, while
uiEventNowFor:, the preferred version, allows you to specify the window.

This new behavior is all written around a new event: DeferrableAction.
DeferrableAction is designed to encapsulate a message send, that can be
put on a window manager's event queue to be executed. DeferrableAction
has a rich API that allows you to create complex actions that can be
executed in the UI process.

The class side has two creation methods that allow you to easily create
new instances of DeferrableAction. These methods have the same
message signatures as the Trigger Event system: send:to: and
send:to:with:.
Release Notes 15

VW 7.1 New and Enhanced Features
The send: parameter is a symbol for the selector that you wish send, and
the to: parameter is the receiver for that selector. The with: version allows
you to specify a collection of parameters for keyword selectors.

An instance of DeferrableAction allows you to specify the window (by
sending it a window: message, inherited from Event) for which you want to
have the action taken.

An instance of DeferrableAction can be invoked by sending it either an
activate or waitForResult message. activate simply puts the action on the
queue of the window, while waitForResult does the same but waits for the
result of the message it encapsulates.

If a window is not specified when the action is invoked, it makes a best
guess attempt to find the current window, like its uiEvent cousins.

DeferrableAction has four class side methods that allow you to create AND
invoke the action. send:to:for: and send:to:with:for: allow you to create and
specify the target window, and invoke the action without waiting for a
result. sendNow:to:for: and sendNow:to:with:for: do the same, except they
wait for the result of sending the message.

Additional GUI Behavior
Events now have an extra instance variable: window. This allows an event
to dispatch itself (also note the new dispatch method in Event).

There is a new method on the class side of ApplicationModel, called
raiseSingleInstance. This provides a simpler way to ensure that only one
instance of an ApplicationModel is active at one time. An example is in
UISettings class side open method, which you can use on your own
application:

open
self raiseSingleInstance isNil ifTrue: [^super open]

There is now an accessor on Process, called windowManager, which you
can use to access the windowManager associated with a process. Of
course, the value will be nil for non UI processes.

There is a new test method in Window and its subclasses, called isInvalid.
This is used by the WindowManager to clear out dead/closed windows that
otherwise might be zombies, and can be used by you to find out if a
window has died.
16 VisualWorks 7.1

GUI Development
Usage changes
• Any code that needs to maintain control but still process events

should do the following:

myWindow windowManager processNextEvent
• Non-UI processes should communicate to UI processes using

DeferrableAction.

• Communicating applications managed by different window managers
must use interprocess communication techniques, such as
DeferrableAction. This includes update notifications between the
various source code management tools in the IDE.

• Windows now need to schedule themselves differently. Where the
system sent a map message, it now sends a scheduleWindow message
before it sends map. This is important. Without the scheduleWindow in
the new system, no manager will be managing it.

• Places that used to read

ScheduledControllers scheduledControllers do:
have been rewritten to read

Screen default allScheduledControllersDo:
or, if they really just wanted to work on the windows,

Screen default allScheduledWindowsDo:
Your code should do the same.

• Places that used to read

ScheduledControllers activeController
now call

Window activeController
Your code should do the same.

• Places that used to read

ScheduledControllers checkForEvents
should now read

windowManager checkForEvents
• Places that used to read

ScheduledControllers unschedule: self
should now read
Release Notes 17

VW 7.1 New and Enhanced Features
view close
view unscheduleWindow

• Places that used to read:

controller := (ScheduledControllers activeController).
window := c view.

should now read

Window := Window currentWindow

Debugging in a the MultiprocUI environment
The debugging environment has been enhanced for multi-process UI.

Whenever you press Ctrl-\, all UI processes are paused. You can see that
in the Process Monitor for the state column. You can select a process
from the process monitor, the select an action from the Process menu.

The processes there are named by way of either the label or class name
of one of the windows under control of that process (more on that in a
moment). Thus, you might see one named Workspace, and another
named "VisualWorks ...<yourpath>".
18 VisualWorks 7.1

GUI Development
Now let’s do some exploring. Select the File Editor process and select the
debug menu item from the Process menu. The stack you see in the
debugger looks like:

Notice the WindowManager entry, rather than a window. This is due to
replacing the class ControlManager with the class WindowManager. As
explained above, all of the important messages you typically send to the
ScheduledControllers global are forwarded to a WindowManager.

Before we go on, let's discuss how things have changed. The old
ControlManager, of which there "should" have been only one instance, in
the ScheduledControllers global, managed controllers. It was the single
place, and had a single process for serving events to various controllers.
It did this through its activeControllerLoop method.

Here is how the old way events were processed: A platform event would
come into the image from the VM, and the VM would signal the image
that there is an event waiting. The InputState run method would get that
signal, and then send that raw event array to its process: method, which
would then convert that into an Event subclass, and dispatch that event to
the target window's sensor.

After that, each window, having it's own event queue in its sensor, would
add that event to it's event queue, and then in effect kick the
ControlManager (though the ScheduledControllers global) to process the
event on its behest.

Finally, the window is told to process the event, and it either sends the
event to itself or its dispatcher (which can send events to the sub-
components and other things).

In the multiprocess UI world, instead of each window having its own local
active event queue, each WindowManager has a single event queue for all
windows it manages. A WindowManager can have just one window, or it
Release Notes 19

VW 7.1 New and Enhanced Features
can have a whole bunch. This is controlled by the process environment's
new WindowManagerUsagePolicy. You can set an individual window to have
one of these policies:

• MakeNewWindowManagerUsagePolicy

• UseParentWindowManagerUsagePolicy

If the former is in place for a window's process, then every new window
opened will have its own WindowManager created for it. If the latter is in
place, then every new window will share the window manager with the
window's process that caused the new window to open.

By default the UseParentWindowMangerUsagePolicy is in place.

For example, the VisualLauncher has MakeNewWindowManagerUsagePolicy
set. Thus, when you open the File Browser from the Launcher, and then
do a Ctrl-\ to open the process monitor, you'll notice that there is a new
process for the File Browser.

Another example: Open up a Browser, which creates a new process. In
that browser, open an implementors or senders of something (#yourself
maybe). Now, if you press Ctrl-\, and debug on the Browser (it is named
after its first open window, so it should be the title of the browser). Go
down the stack to the WindowManager>>processNextEvent, and inspect the
WindowManager instance. The windows instance variable will have two
windows in there. One is the browser, and the other is the second window
you opened.

To change the new process behavior for a window, do something like this.
In your postOpenWith: method, add the following:

builder window windowManager activeControllerProcess
environmentAt: #WindowManagerUsagePolicy
put: MakeNewWindowManagerUsagePolicy new.

As before, a window has its own local sensor, an event queue, but it no
longer collects events! Instead of putting an event into the local queue
and telling the ControlManager to kick it into play, the event is sent to the
WindowManager for that window. From there, the WindowManager passes
along events to the window.

In the single-process world, InputState had a pollForActivity method that
was called from activeControllerLoop in ControlManager. What this attempted
to do was allow each window a chance to process events. Because it
never worked quite right, we had to come up with the ForkedUI goodie.
But, it had serious limitations. Additionally, because VW itself sends
20 VisualWorks 7.1

GUI Development
Smalltalk events to itself from time to time, the whole thing had a
heartbeat loop of 10hz (100hz if ForkedUI was loaded) to make sure that
those events would get served.

In the new world, each WindowManager simply waits for something to
show up in its queue. No more pollForActivity calls, and thus, no more
activeControllerLoop horror. The result is a more responsive UI.

Tools development in the MultiProcUI environment
Multiprocess UI causes some complication for tools developers,
particularly when it would be possible and problematic for two processes
to be modifying the system at the same time. For example, connection
problems occured in if trying to browse published items while loading
from or publishing to a Store repository. Similar issues arise for parcel
and file-in operations.

In a number of cases in the IDE, the solution has been to wrap some
operations in Notice show:while: blocks, to prevent other windows from
grabbing control while these operations are running. Notice, its signals,
and its instance creation API, have been moved out of Store and into the
UI namespace and Interface-Support category. The creation methods
have been modified to grab mouse input. NoticeSystemController has been
created to make sure mouse input isn’t ungrabbed when clicking on
another window.

When developing tools that similarly affect the environment, you may
need to wrap some operations in Notice show:while: blocks. Browse
references to Notice for examples in the system tools.

By default, all user applications run in a single UI process, unless they set
the policy of a window to be MakeNewWindowManagerUsagePolicy.
Therefore, you will only have to worry about conflicts in two cases:

• You fork processes that update the UI.

• You use the MakeNewWindowManagerUsagePolicy in your windows.

New mouse events
Two new mouse events have been added to the system: MouseEnterEvent
and MouseExitEvent.

MouseEnterEvent fires whenever you pass the mouse into the visible area
of a VisualWorks window. Note, this only happens if you are NOT
dragging the mouse with a mouse button pressed.
Release Notes 21

VW 7.1 New and Enhanced Features
MouseExitEvent fires whenever you pass the mouse out of the visible area
of a VisualWorks window. Again, this only happens if you are NOT
dragging the mouse with a mouse button pressed.

The messages that your controller or window can override to trap these
events are mouseEnter: and mouseExit: respectively.

New Look Policies
• Windows XP look is provided in the WinXPLookPolicy class.

• MacOSX Aqua look is provided in the MacOSXLookPolicy class.
Keyboard support is also improved.

Widget enhancements

Dataset
The Basics page of the Dataset properties now allows you to set a size for
the row, in pixels. Accessor methods in DataSetSpec, rowSize and rowSize:,
allow programmatic access to the row size.

TreeView
ARs: 43698, 44893

You can now optimize building a tree of items by defining a hasChildren
block, and can use the many new methods to access collections of tree
node parents or children.

Input field
AR 45238.

Input field widgets now vertically center their entries.

New widget layout option
In addition to bounded and unbounded layout options, a new fixed-size
widget layout, Origin + Width and Height, was added in VW7, but not noted or
documented.

This new layout allows you to specify the origin (top left) of a widget in the
usual proportion and offset. The size of the widget is then set by
specifying its width and height in pixels.

The new option is available on the Position page of the GUI Painter Tool.

Menu enhancements
ARs: 44957, 45000, 45011, 45014, 45175, 45178.
22 VisualWorks 7.1

GUI Development
• Tool bar buttons will now appear depressed if their indication is on.

• Menu and tool bars now update their enablement, visibility, or
indication based on a change to their defining MenuItem.

• Menu and tool bars support exclusion or one-of-n selection groups.

• New pragmas add shortcut keys, enablement or indication accessors,
and help text to menus.

• New menu and tool bar examples demonstrate the features above.

UIPainter
• A widget interior to a composite or group of widgets may now be

selected in the canvas by holding down the Alt key. Additional interior
widgets may be selected by holding down the Shift key as well (AR
42974).

• Widget layout in the GUI Painter Tool for composites and multiple
selections has been corrected (AR 45544, 45186, 45180, 45026).

Retract ValueModel support for TriggerEvents
AR: 45370

The modification to Object>>changed:with: in VW7 to participate with the
TriggerEvent #when:send: mechanism has been retracted due to
performance issues.

Known Limitations

Sawfish and MultiProcUI
We have seen a problem with a window regaining focus, when running
under the Sawfish window manager on Linux. There is no known work-
around, other than selecting the window.

Tools development
Tools developers need to be aware that it is a bad idea for two tools to be
modifying the system at the same time, but is possible with MultiProc UI.
We have modified our tools so that, for example, other windows cannot
grab control while code is loading. You may need to do similarly. Refer to
“Tools development in the MultiProcUI environment” below, under Tools,
for more information.
Release Notes 23

VW 7.1 New and Enhanced Features
System unresponsive after closing a window
If an application opens a dialog, and the application’s window is closed
before the process using the dialog is completed, the system freezes to
mouse and keyboard input. This occurs, for example, if you are unloading
a parcel using the Parcel Manager, and close the Parcel Manager window
before the parcel is fully unloaded. Or, as simple an application as a
windows with an action button with the action:

Dialog warn: 'Hello'.
(Delay forSeconds: 5) wait.
Dialog warn: 'Hello'.

In this last case, closing the application window before the second dialog
opens will freeze the system.

Opening the Debugger with Ctrl+Y and then closing the Debugger
unfreezes the system.

Headless support
There were 3 obscure file names being used in HeadlessImage: hlst_dbg
(image), hlstrc.st (startup), and hlst.tr (transcript).

The text string for these names has been extracted to instance methods,
and the file names have been changed as follows:

defaultDebugImageName
^ 'headless-debug'.

defaultStartupFilename
^ 'headless-startup.st'

defaultTranscriptFilename
^ 'headless-transcript.log'

The change in the default name for the startup file may impact users who
have existing startup files and were simply using the default file name for
that file.
24 VisualWorks 7.1

Tools
Tools

Keyboard bindings
We have redefined the default keyboard bindings to make them more
consistent and, in some casses, “standard.” The following is a summary
of the changes.

Key sequence Current meaning Old meaning

Ctrl+A Select All in all text views FindAgain

Ctrl+B Debug It in all code views.

Ctrl+D Do It in code views;
insert Date in non-code views

Insert date

Ctrl+Shift+D Insert Date

Ctrl+E Explain in code views.

Ctrl+F Insert ifFalse: in code views;
Find in non-code views

Ctrl+G Insert := in code views;
Find Again in non-code views

Ctrl+J Select text just typed F1

Ctrl+K Compose characters

Ctrl+L Find in all views

Ctrl+Shift+L Find Again

Ctrl+P Print It

Ctrl+Q Inspect It Compose characters

Ctrl+R Replace

Ctrl+Shift+R Replace Again Browse references, in
System Bowser

Ctrl+S Accept in all text views Find

Ctrl+T Insert ifTrue: in code views

Ctrl+Shift+V Paste from list Inspect variable, in
Visual Launcher

Ctrl+X Cut
Release Notes 25

VW 7.1 New and Enhanced Features
The traditional binding for Ctrl+J was F1, but F1 is now over-shadowed by
Help menu shortcut in most windows.

Note that Ctrl+Shift+R in the System Browser (Refactoring Browser), to
browse references to a variable, has been changed to Ctrl+F5, and
Ctrl+Shift+V in the Launcher, to inspect a variable, has been changed to
Alt+F5, to allow those key combinations to be made consistent with the
new scheme.

Please Wait...
The introduction of MultiProc UI brought along some complications in the
tools. One that will be evident the first time you load a parcel or package,
or file in some code is a progress dialog labeled “Please Wait.”
Unfortunately, there is no progress bar or other indication of degree of
progress. This will be addressed in the next release.

Tools development in the MultiProcUI environment
Multiprocess UI causes some complication for tools developers,
particularly when it would be possible and problematic for two processes
to be modifying the system at the same time. For example, connection
problems occured if trying to browse published items while loading from
or publishing to a Store repository. Similar issues arise for parcel and file-
in operations.

In a number of cases in the IDE, the solution has been to wrap some
operations in Notice show:while: blocks, to prevent other windows from
grabbing control while these operations are running. Notice, its signals,
and its instance creation API, have been moved out of Store and into the

Ctrl+Z Undo

F3 Find Again

Ctrl+F5 Browse references to instance
variable, in Browser and Launcher

Alt+F5 Inspect variable, in Browser and
Launcher

Ctrl+F6 Browse senders, in Browser and
Launcher

Ctrl+F7 Browse implementors, in Browser
and Launcher

Key sequence Current meaning Old meaning
26 VisualWorks 7.1

Tools
UI namespace and Interface-Support category. The creation methods
have been modified to grab mouse input. NoticeSystemController has been
created to make sure mouse input isn’t ungrabbed when clicking on
another window.

When developing tools that similarly affect the environment, you may
need to wrap some operations in Notice show:while: blocks. Browse
references to Notice for examples in the system tools.

By default, all user applications run in a single UI process, unless they set
the policy of a window to be MakeNewWindowManagerUsagePolicy.
Therefore, you will only have to worry about conflicts in two cases:

• You fork processes that update the UI.

• You use the MakeNewWindowManagerUsagePolicy in your windows.

Professional Debug Package (PDP)
The Professional Debug Package, by Crafted Smalltalk, is now the default
system debugger tool. It provides several much needed enhancements,
notably the ability to set break points and watch points, and a view of the
viriable stack.

The PDP is unloadable, by unloading the parcels that define it. The
resulting system returns to the old debugger.

Refer to chapter 9, “Debugging Techniques,” in the Application
Developer’s Guide for a full description and guidelines for using these
new facilities.

New Settings framework
The Settings Tool has been replaced with a new tool and framework.

The Settings Manager window consists of the three main parts: a tree of
settings pages on the left, with the currently selected page displayed on
the right.

The framework simplifies and expands the capabilities of adding new
pages to the Settings tool. This is useful for add-ons and applications that
need special settings.

The Application Developer’s Guide has not yet been updated for this new
framework, so that part of chapter 14 is out of date. This will be corrected
in a future release.
Release Notes 27

VW 7.1 New and Enhanced Features
For a description of the framework and how to add pages, refer to this
page on the Cincom Smalltalk Wiki:

http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/DOWNLOAD/vb/
visualworks_settings_framework.htm

Advanced Tools

Profiling
The ATProfiling parcel in advanced/ has been replaced by two new
parcels, ATProfilingCore and ATProfilingUI. These new parcels include
the functionality previously shipped as ATProfilingEnhancements in the
goodies/ directory. They also segregate profiling functionality into
“core” and “user interface” components. This is a prelude to shipping
“attach-and-profile” and “distributed process” profiling in some later
release. Only the “core” components needs to be loaded into a remotely
profiled, and possibly headless, image.

The new parcels support single-process as well as multi-process
profiling. Users are urged to remember that all the profilers rely upon a
statistical sampling heuristic to estimate, rather than on instrumentation
to directly measure, the resources consumed by a process. Multiprocess
profilers distribute the probes used to estimate resource consumption
over several processes, rather than one, and the distribution may be
uneven. Also, running multiprocess profilers does cause garbage
collection and other maintenance processes to run more frequently than
otherwise. These facts should be kept firmly in view when setting up
multiprocess profiling runs and when estimating the reliability of their
results. Within these limitations, multiprocess profilers have proven useful
in tuning web applications involving many hundreds of processes.

In these new parcels, the pre-existing public profiling API has been
preserved. The primitive lists have been revised. The Profile Outline
Browser is no longer limited to a maximum of three reports. The profiling
user interfaces, by default, now open showing new advisory text and
multiple examples. To make these user interfaces show code templates
instead, evaluate

Profiler showTemplates: true
The old profiling parcel, ATProfiling is still shipped in the obsolete/
directory, because other obsolete and preview parcels list it as a
prerequisite. If appropriate, users should explicitly update the
prerequisites of their parcels to list the new profiling parcels rather than
28 VisualWorks 7.1

http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/DOWNLOAD/vb/visualworks_settings_framework.htm

WebService enhancements
the old one. Note that the old ATProfiling parcel is incompatible with the
new set of parcels, and vice versa. They should not both be loaded into
the same image.

Note also that the Advanced Tools User’s Guide has not been updated for
this change in time for release.

WebService enhancements

Separated from NetClients
Web Service support is now in its own parcel, and its own name space,
and its own document (Web Service Developer’s Guide).

WebService Tool
A WSDL tool has been added to generate client, service, and server
classes from a schema, and for generating a schema from classes. Refer
to the Web Service Developer’s Guide for instructions.

The schema generating tool is subject to substantial enhancement in
future releases. In particular, an editor to provide pragma definitions is
intended.

Net Clients

Renamed #beCurrentDirectory:
FTPClient method beCurrentDirectory: has been renamed to
setCurrentDirectory:. The old message has been deprecated.

Moved #defaultPortNumber
This message, implemented in several client classes, has been moved to
the class side.

User Agent support
Accessor methods for the HTTP user agent field. Some servers refuse
access without this information. The accessor methods are:

userAgent
Returns the user agent field value.

userAgent: aString
Sets the user agent field to aString.
Release Notes 29

VW 7.1 New and Enhanced Features
Security
Public key algorithms were the focus of this release cycle. This allows us
to further extend the suite of supported algorithms in SSL.

Public key algorithm APIs
The public key ciphers were refactored to make their APIs simpler and
more uniform. Generally one is expected to create an instance of the
algorithm, set any required parameters, set the key and then invoke a
signing or encryption operation. An instance of the algorithm can be
reused to perform multiple operations.

Encrypting a ByteArray with RSA goes like this:

rsa := RSA new.
rsa publicKey: anRSAPublicKey.
anEncryptedByteArray := rsa encrypt: aByteArray

Note that the size of the ByteArray cannot exceed the byte size of the
modulus 'n' of the private key. If you need to encrypt more data, use
symmetric cipher, which is a lot faster. Here's how to decrypt the
encrypted ByteArray:

rsa privateKey: anRSAPrivateKey.
aByteArray := rsa decrypt: anEncryptedByteArray

Signing with RSA algorithm is similar but requires an additional step
specifying the hash function to generate the digest of the data to be
signed (#useMD5, #useSHA or #hashAlgorithm:). If digest is not specified
before invoking a signing operation, the data is expected to be already
digested. This is used in SSL for example.

rsa := RSA new.
rsa useMD5.
rsa privateKey: anRSAPrivateKey.
aSignatureByteArray := rsa sign: aByteArray

Here's how to verify a signature.

rsa publicKey: anRSAPublicKey.
rsa verify: aSignatureByteArray of: aByteArray

The result of the #verify:of: message is a Boolean indicating whether the
signature is valid.

Signing with DSA algorithm is almost the same, except that there is no
hash function setting, because DSA must use SHA. To sign, do:
30 VisualWorks 7.1

Security
dsa := DSA new.
dsa privateKey: aDSAPrivateKey.
aDSASignature := dsa sign: aByteArray.

and to verify, do:

dsa publicKey: aDSAPublicKey
dsa verify: aDSASignature of: aByteArray

Key generators, random generators & primality tests
In contrast with the symmetric ciphers, for which the keys can be fairly
arbitrary byte arrays, the keys used by public key ciphers are more
complex, generally involving large integers with special properties.
Generation of such key pairs is a computationally heavy process
employing random generation of large integers, and testing large integers
for primality.

The selection and seeding of high quality random generators and robust
primality tests has a significant and direct impact on the security of
generated keys. For this reason, these algorithms are reified into objects,
to enhance pluggability and to allow for easier customization. The
previously released CrpRandom generator has been replaced by a
refactored version of it, now called DSSRandom to reflect the fact that it is
derived from the DSS standard. The new version is more in line with the
Random hierarchy, by responding to the standard #seed: and #next
messages, and the API allows a bit more flexibility (refer to the class and
method comments for the details). The primality tests have been reified
into a PrimalityTest hierarchy, to facilitate instance reuse and
customization.

Default initialization and seeding of most of the algorithms should suffice
for an average, personal use. However, the security of a solution can be
increased significantly with careful management, reuse, and sharing of
the random generator instances, exploiting the quality and extent of the
generators themselves rather than just the quality of the seeding
algorithm.

Note well that truly random seeding of the random generators is a critical
requirement for any serious application. Relying on any kind of
"computed" seeding (including the ones that our framework uses as a
default) is generally considered to be a serious security risk.

RSAKeyGenerator has one required parameter, bitLength, which determines
the size of the keys to be generated. In accordance with the motivations
outlined above, there are variants of the instance creation methods
Release Notes 31

VW 7.1 New and Enhanced Features
allowing initializing the generator with pre-existing instances of random
generator and primality test. Here's a code sample creating a generator
for 1024 bit keys:

kg := RSAKeyGenerator size: 1024.
After this the key generation can be triggered using the key accessors
#privateKey and #publicKey. To generate a new set of keys with the same
generator instance, send #flush to the generator to flush the generated
keys and parameters.

As was mentioned earlier, generation is a computationally demanding
process and the time it takes is proportional to the size of the keys being
generated. To facilitate user feedback during generation, the generator
signals various object events through the various stages of the process.
As usual, the class method #eventsTriggered lists the kinds of events that
are signaled.

DSAKeyGenerator is used in very much the same way and most of what
was said above applies. The key size parameter is referred to as “l”, to
follow the terminology of the standard:

kg := DSAKeyGenerator l: 512.
private := kg privateKey.
public := kg publicKey.
kg flush.
anotherPrivate := kg privateKey.
anotherPublic := kg publicKey.

Diffie-Hellman key exchange
Our implementation follows the description in RFC2631, though only the
part about generation of the shared secret, and not the rest of the key
agreement specified there. DH is a different kind of public key algorithm,
in that it does not encrypt or sign, but rather allows remote parties to
establish a shared secret value over an unprotected channel.

Before invoking the algorithm the parties need to agree on two large
primes, p and g. These do not need to be secret, and often are
precomputed. In this case an instance of the algorithm can be created as
follows:

DH p: p g: g
These parameters can also be generated on the fly, with one party
generating them and the other party accepting them as such. In this
case, the first party creates the algorithm as
32 VisualWorks 7.1

Security
dh1 := DH new
and the second party will use the parameters generated by the first one

dh2 := DH p: dh1 p g: dh1 g
The secret value is established in two phases. First both parties generate
their own private/public key pairs, usually referred to as x and y:

y1 := dh1 computePublicKey
y2 := dh2 computePublicKey

The private key x can usually stay hidden inside the algorithm instance.

After this the parties exchange the public keys (usually over an
unprotected communication channel), and continue with second phase in
which they compute the shared secret value using the other party's public
key:

s1 := dh1 computeSharedSecretUsing: y2.
s2 := dh2 computeSharedSecretUsing: y1.

The values s1 and s2 are the same and it is computationally infeasible to
produce them without knowing one of the private keys.

Note that the size of of the public key y and the size of the shared secret
is the size of p, which should be at least 512 bits, and the size of the
private key x is up to the size of q, which should be at least 160 bits. So,
the key lengths can be tuned by using appropriately sized p and q
parameters.

Parameters p and q can be generated by an instance of
DHParameterGenerator. Similar to the key generators mentioned earlier, it
can be configured with pre-existing instances of random generator and
primality test. Required parameters are bit-lenghts of q and p referred to
as m and l, respectively (following the RFC 2631 conventions).

pg := DHParameterGenerator m: m l: l.
p := pg generateP.
q := pg generateQ.

To generate a new set of parameters with the same generator, it has to
be flushed using the message #flush.

Again, the events specified by the #eventsTriggered method allow to
monitor the progress of generation.

Diffie-Hellman cipher suites in SSL
Adding support for DH algorithm almost doubles the number of SSL
cipher suites that we can handle. The newly added cipher suites are:
Release Notes 33

VW 7.1 New and Enhanced Features
SSL_DHE_RSA_WITH_DES_CBC_SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DH_anon_WITH_DES_CBC_SHA
SSL_DH_anon_WITH_RC4_128_MD5
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

Because of the nature of Diffie-Hellman key exchange, there are several
options for use of temporary keys for DHE cipher suites (Refer to the
comment of the DH class for the details on the meaning of the various
parameters mentioned below):

A. Both keys can be precomputed and registered with the context using
#dhKeyPair: message. In this case the first element of the pair is a
3-element array containing the group parameters p and g, and the
public key y, in that order. The second element of the pair is a
standalone private value x.

B. It is also possible to register with the context just the group
parameters and a fresh pair of the private/public values x/y will be
generated for each handshake. In this case the parameters are
registered using #dhParameters: message as an (Array with: p with: g).

C. If nothing is registered with the context an SSLNoDHParameters
exception is signaled. However if the exception is resumed, SSL will
generate a whole DH parameter suite on the fly and proceed the
handshake with those. Note however that generation of the
parameter p is time consuming and the delay caused by that may not
be acceptable. If it is not, then we recommend pregenerating the p
and g parameters and use variant B above.

AES
AES is a new NIST standard (FIPS 197) that is aimed at replacing the
aging DES standard (FIPS 46). More information can be found at
http://csrc.nist.gov/encryption/aes.

It is a block cipher and therefore it complies with the BlockCipher API, i.e.
an instance of AES can be created with the #key: instance creation
method (or with #new followed by #setKey:). The argument is the secret
key which is expected to be a ByteArray of size 16, 24 or 32. An AES
instance can be used to both encrypt and decrypt 16 byte blocks
arbitrarily.
34 VisualWorks 7.1

http://csrc.nist.gov/encryption/aes

Database
Database

Exception handling updated
The EXDI exception handling architecture has changed, by replacing the
Signal mechanism with class-based Exception subclasses. Existing code
is expected to function as before, so no conversion is expected to be
required. We added resumable and non-resumable exceptions
descending from the common Exception and Error classes. This
architecture is consistent with the previous scheme, but more up to date.

CLOB/BLOB support
LOB (Large Object) support has been added to the OracleEXDI. Both
CLOB (Character LOB) and BLOB (Binary LOB) data is supported.

We do not differentiate the Lob columns from longs and others when
doing binding. Accordingly, any limitations of different Oracle versions on
binding LOBs will apply.

When retrieving LOBs, you can choose whether to get values or LOB
proxies. Getting values limits the size of the values to 4000 bytes. Getting
proxies returns a LOB proxy, which contains the LOB locator and
necessary methods to do LOB writes and reads. Using LOB proxies is
the recommended way to deal with large LOBs.

The following sample demonstrates binding:

| aConnection aSession clob blob clobLength blobLength |
aConnection := OracleConnection new.
aConnection username: 'name';

password: 'passw';
environment: 'env'.

aConnection connect.
aConnection begin.
aSession := aConnection getSession.
aSession prepare: 'INSERT INTO TestLob (a, b, c) VALUES (?, ?, ?)'.
clobLength := 1048576. "1M"
blobLength := 1048576. "1M"
clob := String new: clobLength withAll: $a.
blob := ByteArray new: blobLength withAll: 1.
aSession bindInput: (Array with: clob with: blob with: 1).
aSession execute.
aSession answer.
aConnection commit.
Release Notes 35

VW 7.1 New and Enhanced Features
The following sample demonstrates Lob writing:

| aConnection aSession clobProxy blobProxy clob blob clobLength
blobLength ansStrm res |

aConnection := OracleConnection new.
aConnection username: 'name';

password: 'passw';
environment: 'env'.

aConnection connect.
aConnection begin.
aSession := aConnection getSession.
aSession prepare: 'SELECT a, b FROM TestLob WHERE c = 1

FOR UPDATE'.
aSession answerLobAsProxy.
aSession execute.
ansStrm := aSession answer.
res := ansStrm upToEnd.
clobLength := 1048576.
blobLength := 1048576.
clob := String new: clobLength withAll: $e.
blob := ByteArray new: blobLength withAll: 0.
clobProxy := (res at: 1) at: 1.
clobProxy writeFrom: 1 with: clob asByteArray.
blobProxy := (res at: 1) at: 2.
blobProxy writeFrom: 1 with: blob.
aConnection commit.

The following sample extends the above examples specifically for
Oracle_8 users, showing how to avoid restrictions against multiple
LONGs on a single INSERT, insert empty Lobs, and update values later.

The comments explain the intentions:
36 VisualWorks 7.1

Application Server
"CREATE TABLE TestLob (A CLOB, B BLOB, C INTEGER)"

| aConnection aSession |
aConnection := OracleConnection new.
aConnection username: 'name';
password: 'passw';
environment: 'env'.
aConnection connect.
aConnection begin.
aSession := aConnection getSession.
aSession prepare: 'INSERT INTO TestLob (a, b, c)

VALUES (EMPTY_CLOB(), EMPTY_BLOB(), ?)'.
aSession bindInput: (Array with: 1).
aSession execute.
aSession answer.
aConnection commit.

Oracle element size corrected
In the old OCI 7 interface, the elementSize parameter when binding a
parameter need to be -1 for buffers size > 65k, because the elementSize
parameter was a short. In the new OCI 8 this is no longer needed and, in
fact, Oracle will complain that it doesn't accept -1 anymore. The
OracleBuffer>>boundedElementSize method has been updated for this
change.

Application Server

New ISAPI Gateway
This release provides a new ISAPI Gateway, including both a release and
a debug version of the DLL. In addition, we are going back to the
hostmap form of configuration, which means that we have eliminated the
isapi.ini file.

The DLLs are in:

$(VISUALWORKS)\waveserver\waverelays\isapi\nt
isapi2vw.dll
isapi2vw-debug.dll

We are also releasing the source code for this module, in the form of a
Visual C++ project, in

$(VISUALWORKS)\waveserver\waverelays\isapi\source
See the readme.txt file in this directory for additional information.
Release Notes 37

VW 7.1 New and Enhanced Features
IIS Virtual Directories
This release of the VisualWorks Application Server enhances support for
IIS virtual directories. It is now possible to use a virtual directory and hide
the /scripts/host@port.dll/ that formerly appeared in the URL.

Named virtual directories may now be specified in the Server Console.
For details, refer to chapter 5 of the Web Server Configuration Guide.

Opentalk

Opentalk STST Marshaling
In the Opentalk 7.1 release, the version number of the Opentalk STST
protocol changes from 1.0 to 2.0. This change, in the major version
integer, indicates that Opentalk STST backward compatibility is broken in
7.1. That break is a consequence of a revision of the Opentalk STST type
tagging scheme.

The number of class-specific type tags used in STST marshaling has
been increased to allow optimized marshaling of several commonly-used
classes. Several blocks of type tags are also reserved for customer use,
so that customers may implement and test application- and class-specific
marshaling optimizations of their own. We do not assume any
responsibility for conflicts in the use of the tag values within those
reserved blocks.

The new type tagging scheme also supports two new pass modes,
described below.

Pass-By-Name
Classes, NameSpaces, NameSpacesOfClasses, BindingReferences,
LiteralBindingReferences, and Signals may be passed by name using, for
example,

#{Object.DependentsFields} asPassedByName.
On receipt, a passed-by-name object will resolve to either (a) the local
object that bears the passed name, or (b) an exception if there is no such
object. The default pass mode for the six classes mentioned remains
#reference. This is because use of pass-by-name should be explicit; pass-
by-name is reliable and straightforward to debug only when identity (or
scrupulously calculated divergence) or implementation is ensured.
38 VisualWorks 7.1

Opentalk
Pass-By-OID
To improve efficiency, some distributed applications pre-replicate selected
objects to all involved locales. In such cases, if a replicated object is an
argument to a remotely invoked operation, it is a waste of resources to
pass the replicate by either reference or value. Pass-by-reference entails
remote message sends; pass-by-value entails the marshaling of a
complete copy. In contrast, pass-by-OID allows pre-replicated objects to
be passed by no more than the object identifier (OID) under which they
were pre-registered in the object tables of both the sending and the
receiving object adaptors. A passed-by-OID object, on receipt, resolves
to either (a) its local replicate, or (b) an exception if the passed OID has
not been pre-registered at both sending and receiving locales. You may
think of pass-by-OID as a species of 'pass-by-name' for domain class
instances.

Opentalk Pass Mode Control
In the past, when there were only two available pass modes—by value
and by reference—the method isPassedByValue was overridden to affect
the default pass mode of an object. This is no longer true. Current
Opentalk users should pay special attention to this fact. Unmodified user
implementations of isPassedByValue may not have their intended effect in
the new version of the STST protocol. The methods

isPassedByValue
isPassedByReference
isPassedByName
isPassedByOID

are now used only to test the pass mode of an object or a
PassModeWrapper. An object's default pass mode is now changed by
overriding the method passMode.

A particular instance's pass default mode may be superseded by folding
the instance in a PassModeWrapper. This is accomplished by sending the
instance any one of the following messages:

asPassedByValue
asPassedByReference
asPassedByName
asPassedByOID

If an instance already sent by value is sent asPassedByValue, the instance
rather than a PassModeWrapper is returned. The same holds for the other
three methods. If an instance's default pass mode cannot legally be
superseded by the desired pass mode, a pass mode exception is raised.
Release Notes 39

VW 7.1 New and Enhanced Features
Opentalk Tools
Two lightweight tools have been added to the Opentalk release.

• The OpentalkConsole supports the configuration, creation, and
registration of all release-quality request brokers.

• The OpentalkMonitor supports inspection of and registration for all the
events generated by release-quality brokers and object adaptors.

DST

Documentation consolidation
Rather than four documents dealing with DST, there is now only one, the
Distributed Smalltalk Application Developer’s Guide. This allowed us to
eliminate a great deal of redundancy, but also simplifies the problem of
finding relevant information about DST, and will facilitate further updates.
In addition, we have recovered and included important information that
had been lost when the old DST User’s Guide was discontinued.

Immutability supported
It is no longer necessary to alter the default immutability settings to use
DST.

Other changes
The range of <type_name>OrNil declarations in the IDL SmalltalkTypes
module has been extended, and other minor bugs were addressed.

Application Server
The VisualWorks Application Server (formerly referred to as the
VisualWave Server) has been enhanced.

New ISAPI Gateway
We have a new ISAPI Gateway, which is being provided as both a release
and a debug version of the DLL. In addition, we are going back to the
hostmap form of configuration, so the isapi.ini file has been
eliminated.

Sources for this module are also provided in the form of a Visual C++
project (Microsoft-only).

Refer to the Web Server Configuration Guide for more information.
40 VisualWorks 7.1

Application Server
Significant Changes
Changes noted in this section include things that might affect the way
existing applications function.

Repartitioning of VisualWave Components and Infrastructure
There is no longer a distinction between VisualWave Developer and
VisualWave Server, only a single VisualWave parcel. The appropriate
parcels to load are now VisualWave and/or Web Toolkit. The web
infrastructure portion is shared between these two, but neither requires
the presence of the other. For details, see chapter 3 of the Web Server
Configuration Guide."

VisualWave Namespace No Longer Imported
The VisualWave namespace is no longer imported automatically into the
Smalltalk namespace. It may be necessary to change some of your code
to import this namespace, individual classes, or (more rarely) use
qualified names to refer to classes in these namespaces.

Renaming of Headless Files
The files associated with headless images have been renamed to be
more indicative of their function, and no longer required to conform to 8.3
file naming conventions. In particular:

• hlst.tr is now headless-transcript.log

• hlstrc.st is now headless-startup.st

• hlst-dbg.im is now headless-debug.im

If no headless-startup.st file is found, the image will look under the
old name (hlstrc.st).

For details, see chapter 13 of the Application Developer's Guide.

Logging Changes
There have been a number of changes to Web Toolkit's file logging. Most
visibly, there is now a toggle on the launcher's Web menu to
enable/disable logging. Note that logging is off by default in production
mode. This is because we do not at present have a mechanism to roll
over logs automatically, and so logs can grow indefinitely. This could be
dangerous in a production system. If you are confident you have enough
disk space, or a mechanism in place to prevent indefinite log growth, you
can enable logging by editing the webtools.ini file and setting
logging=on. For details, see chapter 3 of the Web Application Developer's
Guide.
Release Notes 41

VW 7.1 New and Enhanced Features
Virtual Directories
You may now specify "virtual directories" in the server console. These are
useful when you have an external web server as a front end, and need to
specify portions of the path that are used by the front-end web server and
to be ignored by Smalltalk. For example, if you had an IIS virtual directory
or an Apache location directive set up to forward requests of the form
http://host/smalltalk/ to the Smalltalk server, the "smalltalk" portion of the
path would still be passed along, and the application server would
attempt to treat this as part of a file or servlet path. By specifying this in
Smalltalk, we tell Smalltalk to ignore that portion of the path. For details,
see chapter 5 of the Web Server Configuration Guide."

NSAPI Gateway Removed from Distribution
The NSAPI gateway has been removed from the distribution, and is likely
to become unsupported in a future release. The code is still available
from Cincom by individual request. See the readme.txt in the
$(VISUALWORKS)/waveserver/waverelays/nsapi directory.

Changed Memory and Network Parameters
Version 7.1 includes changes to some of the default network and memory
parameters. The server sockets will by default use the option to re-use
addresses, so when a server crashes it can immediately be restarted. In
addition, the #listenFor: parameter has been increased to 128. Finally, the
default maximum memory has been increased to 150MB, and the
growthRegimeUpperBound changed to default to 2/3 of the memory upper
bound.

Changes to Command Line Handling
The startup command line options options -pcl and -cnf (which are
enabled by running Runtime Packager on an image) no longer cause
errors when used with the VisualWorks Application Server. Notifiers and
dialogs encountered when loading parcels no longer cause the image to
exit due to headlessness errors, but are logged to the transcript. This also
applies when doing a server reset on the Web Toolkit.

Enhancements and Bug Fixes

Load Balancer on Opentalk
The load balancing functionality now uses the Opentalk Smalltalk-to-
Smalltalk communication facilities as its underlying mechanism, rather
than DST and CORBA. For details, see chapter 6 of the Web Server
Configuration Guide."
42 VisualWorks 7.1

Application Server
Production/Debug Toggle
There is also a toggle for switching between production and debug mode
from the Launcher window. This has the same effect as evaluating
ProcessEnvironment isDevelopingOverride: true/false.

Startup Events
There is an additional startup event available: #finishedServerConfiguration.
This can be used to perform initialization activities after the server
configuration has been completely read.

Buffering
Servlets and Server Pages now support response buffering, and buffering
is enabled by default. This offers some performance benefits, and also
makes it possible to set header values anywhere in a server page, rather
than only at the very beginning. For details, see chapter 5 of the Web
Application Developer's Guide.

Multipart forms and File Upload
Multipart forms and uploaded files are now recognized and automatically
handled. Since there is no clear API spec for handling these, we
materialize them using the Net Connectivity mechanism — effectively as
a dictionary of parts.

Web Toolkit Session Extensions
There are a number of changes to Web Toolkit session handling. Each
web site now has its own independent session registry. Session which
have timed out will be automatically recreated (empty) if a request comes
in which uses its session key. Web Toolkit and VisualWave also use
separate cookie names for the session key, preventing conflicts when
running both on the same host.

New and Enhanced Gateways
The CGI relay is more robust when the configuration is missing or
incorrect. In addition, the ISAPI gateway has been thoroughly redone,
addressing a number of issues, and more tightly integrating with IIS
facilities. Finally, there is a Perl gateway which can be used either as a
CGI or with Apache's mod_perl. This can be easier to configure and
debug than the other gateways, and can perform quite competitively,
especially if used with mod_perl. Note that there is still some
inconsistency in configuration. The CGI and FastCGI gateways use the
.INI file located in %SystemRoot%/VisualWave. The ISAPI relay
currently does not support the same level of file logging, and reads the
hostmap file from the same place. Our intent is to make it interface
directly to the IIS logging mechanisms rather than writing its own files.
Release Notes 43

VW 7.1 New and Enhanced Features
The perl relay does not read any configuration file, but rather has the
configuration information directly in the script. For details, see chapter 5
of the Web Server Configuration Guide."

Cache Control headers For Proxy Servers
VisualWave now includes cache control headers for use with proxy
servers.

Widget Enhanced for HTML 4.0 Compliance in VisualWave
Table cells and action buttons now include attributes so that their size can
be specified. These may be set either using the UI Painter, or
programmatically. Note that these changes should not affect existing
client code since they are additions.

Better Handling of Encodings
Handling of internationalization has been improved in number of areas.
Form data is now handled correctly, regardless of encoding. The output
stream for servlets and server pages now defaults according to the locale
for that session (which now defaults to a special "web" locale).
Characters which cannot be represented in the output encoding will be
printed as escaped unicode values.

Robustness
There have been a number of improvements to robustness. Previous
versions could crash the server when running out of file descriptors, or
encountering the upper limit of 1024 simultaneous open sockets in a
process in some operating systems (most notably Linux). These errors
are now handled. Server responsiveness under very heavy loads should
also be improved, and under heavy load shorter session expiration times
will be used, overriding the values specified by the sessions themselves.

Various
• Web hit time is now logged in UTC, in accordance with the W3C

specs.

• Treatment of host names is improved. When constructing links, the
TinyHttpServer will now respect the host to which the request was
sent, rather than always using the hostname set up in the server
configuration GUI.

• URLs generated with #linkNamed: can use other protocols than http:
(https, ftp, etc.).

• Class RequestDispatcher now correctly forwards/includes URLs that
include query parameters
44 VisualWorks 7.1

Application Server
• Request>>queryString now actually returns a string rather than a
parsed dictionary of query data. To get the parsed form, use
Request>>query

• The authorization policy was changed to allow more flexibility,
particularly authorization policies that vary by site

• Setting a cookie in a redirect response is problematic -- many
browsers will not pass back the cookie in the next request. This now
issues a transcript warning when in development mode.

• Some bugs in parsing JSP tags were corrected (incorrect case in our
implementation of standard bean tags, setProperty checking wrong
parameter)

• Fixed intermittent errors in #purgeExpires, showing up as an attempt
to subtract from nil.

• The issue of VisualWave not automatically loading the Wave UI
Painter Tools has been resolved as part of the repartitioning of the
VisualWave packages.

• Various issues with VisualWave preview functionality were fixed.

• Turning off visual error display in the VisualWave Settings now stops
visual error display.

• Javascript in VisualWave subcanvases now runs.

Known Limitations

“Out of Memory” Error When Packaging
When packaging a Web Toolkit runtime, it is possible to get an
intermittent error in which the VM crashes with an “out of memory” error
message, during the first save of the three-step save process. Sometimes
retrying the operation will succeed, but if the error recurs, you can work
around this by removing the call to rehash the symbol table, which is not
necessary for producing a runtime image. To do this, load the Runtime
Packager, go to the method RuntimeManagerStripper
class>>createFinalImage, and comment out the line near the end with
"Symbol rehash".
Release Notes 45

VW 7.1 New and Enhanced Features
Documentation
This section provides a summary of the main documentation changes.

Advanced Tools Guide
No changes.

Application Developer’s Guide

• Restored Signal hierarchy.

• Replaced old debugger with PDP .

• Added brief comments about MultiProc UI (see GUI Developer’s
Guide for more).

• Improved/corrected graphics for composed characters.

COM Connect Guide
No changes.

Database Application Developer’s Guide
No changes.

DLL and C Connect Guide
No changes.

DST Application Developer’s Guide

• Merged in documentation from the DST Programmer’s
Reference, DST Configuration Guide, and IDL Programmer’s
Reference (those documents are now discontinued).

• Restored information from the old DST User’s Guide.

• Updated installation instructions.

• Updated tutorial.

• Added new data types.

• Miscellaneous updates and corrections.

GUI Developer’s Guide

• Added MultiProc UI information

• Updated Menu Editor doc

• Updated TreeView doc

Internationalization Guide
No changes.
46 VisualWorks 7.1

Documentation
Internet Client Developer’s Guide

• Spun out SOAP, WSDL, and UDDI doc into Web Service
Developer’s Guide.

Opentalk Communication Layer Developer's Guide

• Moved Opentalk-SOAP chapter to Web Service Developer’s
Guide

Plugin Developer’s Guide
No changes.

Source Code Management Guide

• Added information on PostgreSQL configuration

• Other minor additions

Walk Through

• Revised throughout for 7.1

Web Application Developer’s Guide

• New chapter on support for SSP tag libraries

• Discussion of cookie support improved

• Numerous minor enhancements

Web GUI Developer’s Guide
No changes.

Web Server Configuration Guide

• Documentation for ISAPI relays completely revised

• Numerous minor enhancements

Web Service Developer’s Guide

• New document.

• Added WSDL Tool documentation.

• Updates to Web Service Servers section.
Release Notes 47

3
Deprecated Features

By deprecating certain features, we remove them from the system. These
are made available for a limited time as parcels in the obsolete/
directory, to provide you the opportunity to port applications away from
using the features before they are removed altogether. This directory is
on the default parcel path.

Advanced Tools

Profiler
The ATProfiling parcel in advanced/ has been replaced by two new
parcels, ATProfilingCore and ATProfilingUI. See Chapter 2, “Advanced
Tools” of the release notes for more information.

Base System

TimeZone reference time
ReferenceTimeZone was introduced in VW 3.0 specifically to cache the
proper time zone for those platforms (NT and Mac) whereon
DefaultTimeZone was nulled out. It allowed the image to automatically
revert to the correct value when restarted on a non-null-TimeZone
platform (Win95, Unix). Now that there are no longer any such null-
TimeZone platforms, ReferenceTimeZone is no longer needed and has
been removed from the system. This compatability method is temporarily
provided to allow time to change user code to send #default instead of
#reference when querying the currently installed TimeZone.

Documentation does not yet reflect this change.
48 VisualWorks 7.1

GUI
GUI

ScheduledControllers
The ControlManager class and its associated global, ScheduledControllers,
still exist in the system, although they are now obsolete and deprecated.
UI process control is now managed by WindowManager instances. Refer to
“Multiproc UI” for further details.

ForkedUI
Because of the introduction of the multiprocess UI, the old ForkedUI
goodie code is now obsolete, and is totally incompatible with the new
Multi-Process UI.

Net Clients

Deprecated messages
Several messages introduced in the first release of NetClients have since
been deprecated. These messages are now fully deprecated:

IMAPCommand>>completedSuccessfully

SMTPClient>>sendMailMessage:

Net.MimeEntity>>scanFieldsFrom:do:

Net.MimeEntity>>scanFieldFrom: rfc822Scanner do: aBlock

NetworkAddressDescriptor>>printAsWords:on:separatedBy:

FTPClient>>beCurrentDirectory:
The Net.FTPClient>>beCurrentDirectory: method was poorly named, and has
been renamed to setCurrentDirectory:. The old method remains in the
system, but in commented as “obsolete.”

The Net Clients document has not been updated, and refers to the old
method on pages 66 and 69.

Advanced Tools
The ATProfiling parcel is now obsolete, and is placed in the obsolete/
directory. It is retained because it is required by the obsolete DST
parcels.
Release Notes 49

Deprecated Features
VisualWave
Effective in release 7.1 of the VisualWorks Application Server, support for
NSAPI relays has been removed from the shipped product. The existing
NSAPI code for HP, MS-Windows, and Sun platforms is still supported
through version 7.0, and is henceforth available from Cincom by
individual request.
50 VisualWorks 7.1

4
Preview Components

Several features are included in a preview/ and available on a “beta
test” basis. This is a renaming of the directory from prior releases, and
reflects looser criteria for inclusion, allowing us to provide pre-beta
quality, early access to forthcoming features. Several are described in the
following sections. Browse the directory contents for last minute
inclusions.

New GUI Framework (Pollock), Beta 2
Pollock remains in preview in 7.1.

Over the last several years, we have become increasingly dissatisfied
with both the speed and structure of our GUI Frameworks. In that time, it
has become obvious that the current GUI Frameworks have reached a
plateau in terms of flexibility. Our list of GUI enhancements is long,
supplemented as it has been by comments from the larger VisualWorks
communities on comp.lang.smalltalk and the VWNC list. There is nothing
we would like more than to be able to provide every enhancement on that
list, and more.

But, the current GUI Frameworks aren't up to the job of providing the
enhancements we all want and need, and still remain maintainable. In
fact, we are actually beyond the point of our current GUI frameworks
being reasonably maintainable.

This is not in any way meant to denigrate the outstanding work of those
who created and maintained the current GUI system in the past. Quite
the opposite, we admire the fact that the existing frameworks, now over a
decade old, have been able to show the flexibility and capability that have
allowed us to reach as far as we have.
Release Notes 51

Preview Components
However, the time has come to move on. As time has passed, and new
capabilities have been added to VisualWorks, the decisions of the past no
longer hold up as well as they once did.

Over the past several decades, our GUI Project Leader, Samuel S.
Shuster, has studied the work of other GUI Framework tools including,
VisualWorks, VisualAge Smalltalk, Smalltalk/X, Dolphin, VisualSmalltalk,
Smalltalk MT, PARTS, WindowBuilder, Delphi, OS/2, CUI, Windows,
MFC, X11, MacOS. He has also been lucky enough to have been privy to
the “private” code bases and been able to have discussions with
developers of such projects as WindowBuilder, Jigsaw, Van Gogh and
PARTS.

Even with that background, we have realized that we have nothing new to
say on the subject of GUI Frameworks. We have no new ideas. What we
do have is the tremendous body of information that comes from the
successes and failures of those who came before us.

With that background, we intend to build a new GUI Framework.

High Level Goals
The goals of the new Framework are really quite simple. Make a GUI
Framework that maintains all of the goals of the current VisualWorks GUI
and is flexible and capable enough to see us forward for at least the next
decade.

We add must add additional, less concrete goals too:

• The new GUI Framework must be more accessible to both novice
and expert developers.

• The new GUI Framework must be more modular.

• The new GUI Framework must be more adaptable to new looks and
feels.

• The new GUI Framework must have comprehensive unit tests.

Finally, and most importantly:

• The new GUI Framework must be developed out in the open.

Pollock
The name for this new Framework has been “code named” Pollock after
the painter Jackson Pollock. It's not a secret code name. We came up
with the name during our review of other VisualWorks GUI frameworks,
most directly, Van Gogh. It's just our way of saying we need a new,
modern abstraction.
52 VisualWorks 7.1

New GUI Framework (Pollock), Beta 2
Pollock Requirements
The high level goals lead to a number of design decisions and
requirements. These include:

No Wrappers
The whole structure of the current GUI is complicated by the
wrappers. We have Spec wrappers, and Border wrappers, and
Widget wrappers, and Bounded wrappers and more. There is no
doubt that they all work, but learning and understanding how they
work has always been difficult. Over the years, the wrappers have
had to take on more and more ugly code in order to support needed
enhancements such as mouse wheel support. Pollock will instead
build the knowledge of how to deal with all of these right into the
widgets.

No UIBuilder at runtime
The UIBuilder has taken on a huge rule. Not only does it build your
user interface from the specification you give it, it then hangs around
and acts as a widget inventory. Pollock will break these behaviors in
two, with two separate mechanisms; a UI Builder for building and a
Widget Inventory for runtime access to widgets and other important
information in your user interface.

New Drag/Drop Framework
The current Drag/Drop is limited and hard to work with. It also doesn't
respect platform mouse feel aspects, nor does it cleanly support
multiple window drag drop. Pollock will redo the Drag/Drop framework
as a state machine. It will also use the trigger event system instead of
the change / update system of the current framework. Finally, it will
be more configurable to follow platform feels, as well as developer
extensions.

The Default/Smalltalk look is dead
We will have at the minimum the following looks and feels: Win95/NT,
Win98/2K, MacOSX and Motif. We will provide a Win2K look soon
after the first production version of Pollock.

Better hotkey mapping
Roel Wuyts has been kind enough to give permission allowing us to
use his MagicKeys hot key mapping tool and adapt it for inclusion in
the base product. Thank you Roel.

XML Specs
We will be providing both traditional, array-based, and XML based
spec support, but our main format for the specifications will be XML.
We will provide a DTD and tools to translate old array specifications
Release Notes 53

Preview Components
to and from the new XML format. Additionally, in Pollock, the specs
will be able to be saved to disk, as well as loaded from disk at
runtime.

Conversion Tools
With the release of the first production version of the Pollock UI
Framework, we will also produce tools that will allow you to convert
existing applications to the new framework. These tools will be in the
form of refactorings that can be used in conjunction with the
Refactoring tools that are now a integral part of VisualWorks, as well
as other tools and documentation to ease the developer in
transitioning to the new framework.

Unit Tests
Pollock will and already does, have a large suite of unit tests. These
will help maintain the quality of the Pollock framework as it evolves.

New Metaphor
The Pollock framework is based on a guiding metaphor; “Panes with
Frames, with Agents and Artists.” More on that below.

Automatic look and feel adaptation
In the current UI framework, when you change the look and/or feel,
not all of your windows will update themselves to the new look or feel.
In Pollock, all widgets will know how to automatically adapt
themselves to new looks and feels without special code having to be
supplied by the developer. This comes “free” with the new “Panes
with Frames, with Agents and Artists” metaphor.

Loading tests
Pollock includes an SUnit test suite, in the PollockTesting parcel. To load
this parcel, you must have the Pollock and SUnit parcels loaded.

The New Metaphor: Panes with frames, agents, and artists
In Pollock, a Pane at its simplest is akin to the existing VisualComponent.
A Pane may have subpanes. There will be an AbstractPane class. The
Window is also a kind of Pane, but because we don't plan to re-write the
whole world, it will remain in it's own hierarchy. Also, the Screen becomes
in effect the outermost Pane. Other than that, all panes (widgets) will be
subclassed in one way or another from the AbstractPane.

The Frame has a couple of pieces, but in general can be thought of as
that which surrounds a pane. One part of a Frame is its layout. That is like
our existing layout classes, that which defines where it sits in the pane
that encloses it. It optionally may have information about where it resides
in relation to sibling panes (and their Frames).
54 VisualWorks 7.1

New GUI Framework (Pollock), Beta 2
A border or scroll bar in the pane may “clip” the view inside the Pane. In
this case, the Frame also works as the view port into the pane. As such, a
pane may be actually larger than its Frame, and the Frame then could
provide the scrolling offsets into the view of the Pane. The old bounds
and preferred bounds terminology is gone, and replaced by two new,
more consistent terms: visible bounds and displayable bounds. The
visible bounds represents is the whole outer bounds of the pane. The
displayable bounds represents that area inside the pane that is allowed to
be displayed on by any subpane. For example, a button typically has a
border. The visible bounds is the whole outer bounds of the pane, while
the displayable bounds will represent that area that is not “clipped” by the
border.

Another example is a text editor pane. The pane itself has a border, and
typically has scroll bars. The visible bounds are the outer bounds of the
pane, and the displayable bounds are the inner area of the text editor
pane that the text inside it can be displayed in. The text that is displayed
in a text editor, may have its own calculated visible bounds that is larger
than the displayable bounds of the text editor pane. In this case, the
Frame of the text editor pane will interact with the scroll bars and the
position of the text inside the pane to show a view of the text.

Artists are objects that do the drawing Pane contents. Note: No longer
does the “view” handle all of the drawing. All of the displayOn: messages
simply get re-routed to the Artist for the Pane. This allows plugging
different Artists into the same Pane. For instance, a Text Pane could have
a separate Artist for drawing word-wrapped and non-word-wrapped text.
A “Composed Text Pane” could have a separate artist for viewing the text
composed, as well as maybe in XML format. Additionally, the plug and
play ability of the Artist allows for the automatic updating of panes when
the underlying look changes. No longer will there be multiple versions of
views or controllers, one for each look or feel. Instead, the Artists and
Agents will, when needed, be able to be plugged directly into the pane.

Agents are that which interact with the Artist and the Pane on behalf of
the user. Now, if this sounds like a replacement of the Controller, you're
partially correct. In the Pollock framework, the Controllers will have much
less “view” related behavior. Instead, they will simply be the distributor of
events to the Agent via the Pane. This means that our Controllers, while
they'll still be there, will be much more stupid, and thus, able to be much
less complex and less coupled to the Pane. Like the Artist, the Agent is
pluggable. Thus, a TextPane may have a read-only Agent, which doesn't
allow modifying the model.
Release Notes 55

Preview Components
Other notes of interest
The Change/Update mechanism will be taking a back seat to the
TriggerEvent mechanism. The ValueModel will still remain, and Pollock
will be adding a set of TriggerEvent based subclasses that will have
changed, value: and value events. Internal to the Pollock GUI, there simply
will not be a single place where components will communicate with each
other via the change/update mechanism as they do today. While they will
continue to talk to the Model in the usual way, there will be much less
chatty change/update noise going on.

The ApplicationModel in name is gone. It was never really a model, nor
did it typically represent an application. Instead, a new class named
UserInteface replaces it. This new class will know how to do all things
Pollock. Conversion tools will take existing ApplicationModel subclasses
and make UserInterface subclasses.

A new ScheduledWindow class (in the Pollock namespace) with two
subclasses: ApplicationWindow and DialogWindow. The
ScheduledWindow will be a full-fledged handler of all events, not just
mouse events like the current ScheduledWindow. The ApplicationWindow
will be allowed to have menus and toolbars, the ScheduledWindow and
DialogWindow will not. The ApplicationWindow and DialogWindow will
know how to build and open UserInterface specifications, the
ScheduledWindow will not. Conversely the UserInterface will only create
instances of ApplicationWindow and DialogWindow.

So, What Now?
The work on Pollock has already started. In the VisualWorks 7
distribution, we provided a very basic beta framework. The goal of the
first beta was very simple: a window that has a label and an icon, and a
button that has a label and an icon.

The next milestone is Beta 2 in VisualWorks 7.1. For that, we have
several of the basic widgets done: InputField, TextEdit, CheckBox,
RadioButton and ListBox.

Following that will be Beta 3 in VisualWorks 7.2. For that, the following
widgets are planned: DropDownList, Menu, Grid (Table/Dataset
combination), DialogWindow, Toolbar, TreeView and TabControl.
Additionally, an initial GUI Painter tool and all of the basic supporting
builders to create windows with these widgets.
56 VisualWorks 7.1

Opentalk SNMP
The first Production release is scheduled for VisualWorks 7.3. For that, all
of the remaining widgets will be done and complete. All of the tools
completed. Additionally, tools and utilities will be provided for converting
existing GUIs to run on Pollock. Pollock will co-reside in the image along
side the existing GUI framework.

After that, it's on to migrating our own tools and browsers to Pollock.
Followed in time by the obsoleting of the old GUI framework to a
compatibility parcel.

Opentalk SNMP
SNMP is a widely deployed protocol that is commonly used to monitor,
configure, and manage network devices such as routers and hosts.
SNMP uses ASN.1 BER as its wire encoding and it is specified in several
IETF RFCs.

The Opentalk SNMP preview partially implements two of the three
versions of the SNMP protocol: SNMPv1 and SNMPv2. It does so in the
context of a framework that both derives from the Opentalk
Communication Layer and maintains large-scale fidelity to the
recommended SNMPv3 implementation architecture specified in IETF
RFC 2571.

Usage

Initial Configuration
Opentalk SNMP cares about the location of one DTD file and several MIB
XML files. So, before you start to experiment, be sure to modify
'SNMPContext>>mibDirectories' if you have relocated the Opentalk
SNMP directories.

Broker or Engine Creation and Configuration
In SNMPv3 parlance a broker is called an “engine”. An engine has more
components that a typical Opentalk broker. In addition to a single
transport mapping, a single marshaler, and so on, it must have or be able
to have

• several transport mappings,

• a PDU dispatcher,

• several possible security systems,

• several possible access control subsystems,

• a logically distinct marshaler for each SNMP dialect, plus
Release Notes 57

Preview Components
• an attached MIB module for recording data about its own
performance.

So, under the hood, SNMP engine configuration is more complex than
the usual Opentalk broker configuration. You can create a simple SNMP
engine with

SNMPEngine newUDPAtPort: 161.
But, this is implemented in terms of the more complex method below.
Note that, for the moment, within the code SNMP protocol versions are
distinguished by the integer used to identify them on the wire.

newUdpAtPorts: aSet
| oacs |

oacs := aSet collect: [:pn |
AdaptorConfiguration snmpUDP

accessPointPort: pn;
transport: (TransportConfiguration snmpUDP

 marshaler: (SNMPMarshalerConfiguration snmp))].

^((SNMPEngineConfiguration snmp)
accessControl: (SNMPAccessControlSystemConfiguration snmp

accessControlModels: (Set
with: SNMPAccessControlModelConfiguration snmpv0
with: SNMPAccessControlModelConfiguration snmpv1));

instrumentation: (SNMPInstrumentationConfiguration snmp
contexts: (Set with: (

SNMPContextConfiguration snmp
name: SNMP.DefaultContextName;
values: (Set with: 'SNMPv2-MIB'))));

securitySystem: (SNMPSecuritySystemConfiguration snmp
securityModels: (Set

with: SNMPSecurityModelConfiguration snmpv0
with: SNMPSecurityModelConfiguration snmpv1));

adaptors: oacs;
yourself

) new
As you can see, it is a bit more complex, and the creation method makes
several assumptions about just how you want your engine configured,
which, of course, you may change.
58 VisualWorks 7.1

Opentalk SNMP
Engine Use
Engines are useful in themselves only as lightweight SNMP clients. You
can use an engine to send a message and get a response in two ways.
The Opentalk SNMP Preview now supports an object-reference based
usage style, as well as a lower-level API.

OR-Style Usage

If you play the object reference game, you get back an Association or a
Dictionary of ASN.1 OIDs and the objects associated with them. For
example, the port 3161 broker sets up its request using an object
reference:

| broker3161 broker3162 oid ref return |

broker3161 := SNMPEngine newUdpAtPort: 3161.
broker3162 := self snmpv0CommandResponderAt: 3162.
broker3161 start.
broker3162 start.
oid := CanonicalAsn1OID symbol: #'sysDescr.0'.
ref := RemoteObject

newOnOID: oid
hostName: <aHostname>
port: 3162
requestBroker: broker3161.

^return := ref get.
This expression returns:

Asn1OBJECTIDENTIFIER(CanonicalAsn1OID(#'1.3.6.1.2.1.1.1.0'))->
Asn1OCTETSTRING('VisualWorks®, Pre-Release 7 godot
mar02.3 of March 20, 2002')

Object references with ASN.1 OIDs respond to get, set:, and so forth.
These are translated into the corresponding SNMP PDU type, for
example, a GetRequest and a SetRequest PDU in the two cases
mentioned.

Explicit Style Usage

You can do the same thing more explicitly the following way, in which case
you will get back a whole message:
Release Notes 59

Preview Components
| oid broker1 entity2 msg returnMsg |

oid := CanonicalAsn1OID symbol: #'1.3.6.1.2.1.1.1.0'.
broker1 := SNMPEngine newUdpAtPort: 161.
entity2 := self snmpv1CommandResponderAt: 162.
broker1 start.
entity2 start.
msg := SNMPAbstractMessage getRequest.
msg version: 1.
msg destTransportAddress: (IPSocketAddress hostName: self

localHostName port: 162).
msg pdu addPduBindingKey: (Asn1OBJECTIDENTIFIER value: oid).
returnMsg := broker1 send: msg.

which returns:

SNMPAbstractMessage:GetResponse[1]
Note that in this example, you must explicitly create a request with the
appropriate PDU and explicitly add bindings to the message's binding list.

Entity Configuration
In the SNMPv3 architecture, an engine does not amount to much. It must
be connected to several SNMP 'applications' in order to do useful work.
And 'entity' is an engine conjoined with a set of applications. Applications
are things like command generators, command responders, notification
originators, and so on. There are several methods that create the usually
useful kinds of SNMP entities, like

SNMP snmpv0CommandResponderAt: anInteger
Again, this invokes a method of greater complexity, but with a standard
and easily modifiable pattern. There as several examples in the code.

MIBs
Opentalk SNMP comes with a small selection MIBS that define a subtree
for Cincom-specific managed objects. So far, we only provide MIBs for
reading or writing a few ObjectMemory and MemoryPolicy parameters. A
set of standard MIBS is also provided. Note that MIBs are provided in
both text and XML format. The Opentalk SNMP MIB parser required
MIBS in XML format.

If you need to create an XML version of a MIB that is not provided, use
the 'snmpdump' utility. It is a part of the 'libsmi' package produced by the
Institute of Operating Systems and Computer Networks, TU
60 VisualWorks 7.1

Opentalk
Braunschweig. The package is available for download through
http://www.ibr.cs.tu-bs.de/projects/libsmi/index.html, and at
http://rpmfind.net.

Limitations
The Opentalk SNMP Preview is raw and has several limitations. Despite
them, the current code allows a user, using the SNMPv2 protocol, to
modify and examine a running VW image with a standard SNMP tool like
ucd-snmp. However, one constraint should be especially noted.

Port 161 and the AGENTX MIB
SNMP is a protocol used for talking to devices, not applications, and by
default SNMP uses a UDP socket at port 161. This means that in the
absence of coordination between co-located SNMP agents, they will
conflict over ownership of port 161. This problem is partially addressed by
the AGENTX MIB, which specifies an SNMP inter-agent protocol.
Opentalk SNMP does not yet support the AGENTX MIB. This means that
an Opentalk SNMP agent for a VisualWorks application (only a virtual
device) must either displace the host level SNMP agent on port 161, or
run on some other port. Opentalk SNMP can run on any port, however
many commercial SNMP management applications are hard-wired to
communicate only on port 161. This places limitations on the extent to
which existing SNMP management applications can now be used to
manage VisualWorks images.

Opentalk
The Opentalk preview is extension to VisualWorks 7.1 and the Opentalk
Communication Layer, and provides tools for remote profiling.
Communications using the SNMP protocol are described in the previous
section.

The preview/opentalk/ directory has been emptied of some of its
former contents. Nearly all of the preview components in that directory
were affected by the new additions of this release. In a future release, a
new Opentalk remote debugger will be implemented under PDP and
other former Opentalk preview components will be revised.

For installation and usage information, see the readme.txt file in the
Opentalk preview directory.
Release Notes 61

Preview Components
SocratesEXDI and SocratesThapiEXDI
SocratesXML support at the EXDI level is included with this release in the
preview/database/ directory, in the SocratesEXDI and
SocratesThapiEXDI parcels. The code is still under study and
development for full release at a later time.

Currently this code supports:

• Supports MindSpeed 5.1 and SocratesXML 1.2.0 across Windows,
Solaris and HPUX platforms.

• The SocratesXML API allows threaded calls, through thread safe
drivers.

• All SocratesXML types (except MONETARY), collections and object
references (OID) supported.

• Both placed and named input parameter binding is supported though
SocratesXML only supports placed input binding.

Installation

SocratesXML 1.2.0
To install under Solaris and HPUX, simply load the SocratesEXDI parcel.

For Windows you must manually install the 1880.016.map file. Do this
by executing the external interface initialization code below and selecting
the 1880.016.map file:

SocratesInterface userInitialize
SocratesThapiInterface userInitialize

The class instance variable build defines the current build of the external
interface classes on Windows platforms and can be ignored for the other
platforms. The default value is set to 1881.016 on parcel loading.

MindSpeed 5.1
To install under Solaris and HPUX, simply load the SocratesEXDI parcel.

For Windows you must manually install the 1690.014.map file. Do this by
executing the external interface initialization code below and selecting the
1690.014.map file when prompted:
62 VisualWorks 7.1

SocratesEXDI and SocratesThapiEXDI
SocratesInterface userInitialize
SocratesThapiInterface userInitialize

The class instance variable build defines the current build of the external
interface classes on Windows platforms and can be ignored for the other
platforms. The default value is set to '1881.016' on parcel loading.

Data Interchange
The Socrates database type to Smalltalk class mapping is given in table 1
below. Table 2 defines the mapping for database collection types.

The Socrates EXDI automatically converts Socrates database types
to/from instances of concrete Smalltalk classes. Database bit types (BIT,
VARBIT) are mapped to a new Smalltalk class BitArray. This class
provides efficient uni-dimensional access to a collection of bits.

Table 1 - Socrates scalar type to Smalltalk class mappings

Socrates Data type Smalltalk Class

BIT, VARBIT BitArray

CHAR, NCHAR, VARCHAR (STRING),
VARNCHAR

String

DATE Date

DOUBLE Double

FLOAT Float

INTEGER, SHORT, SMALLINT Integer

NULL UndefinedObject

NUMERIC FixedPoint, LargeInteger

TIME Time

TIMESTAMP Timestamp

Table 2 - Socrates collection type to Smalltalk class mappings

Socrates Collection Data type Smalltalk Collection Class

LIST, SEQUENCE OrderedCollection

MULTISET Array

SET Set
Release Notes 63

Preview Components
Socrates support for heterogeneous collection maps naturally onto
Smalltalk collections and is fully supported within in the limits defined by
the SocratesXML C API.

For this release collections will be fetched and written in their entirety.

Reference Support
The Socrates EXDI provides transparent support for database object
references, Socrates OIDs (similar to the SQL Ref data type).

A Socrates OID is represented by a lightweight Smalltalk object (class
SocratesOID) that contains sufficient information to uniquely identify the
database object across all accessible database servers. SocratesOID
instances are not related to active database connections and so can exist
outside the normal database server connection scope. SocratesOIDs can
be instantiated back into live database objects (represented by instances
of class SocratesObject) via an appropriate active connection i.e. one
connected to the original database server.

Object Support
The Socrates EXDI provides access to raw Socrates database objects
through instances of class SocratesObject. SocratesObject instances are
intimately connected to the Socrates database server and so their scope
is that of the underlying database connection.

A key feature of SocratesObject is high-level support for server side method
(function) invocation. Simple server methods can be supported directly;
methods with multiple or non-standard return values must be explicitly
coded by the developer using in-build method invocation support
methods. This typically involves defining a Smalltalk class (as a subclass
of SocratesObject) to represent the target server class. This new class will
be the place holder for both class and instance server method wrappers.
All Smalltalk wrapper methods are defined as instance methods
irrespective of whether they represent class or instance methods in the
server. The Smalltalk wrapper methods are coded to extract the returned
value(s) from the original method argument list, free any resources and
returning the extracted value(s). The Smalltalk GLO hierarchy provides
numerous examples of simple and complex wrapper methods.

GLOs
The Socrates EXDI supports LOB as a subset of the capabilities provided
by SocratesXML GLOs. The Socrates EXDI implements the LOB
interface through the SocratesGLO class hierarchy. SocratesGLOs provide a
stream-like access to GLO data. All GLO subclasses have been
64 VisualWorks 7.1

Virtual Machine
modeled, i.e. audio, image and mm_root hierarchies. Each modeled
subclass implements the majority of class and instance server side
methods as Smalltalk methods. The user can easily add/extend this
functionality by modeling any user-defined subclasses and server side
methods.

The initial release of Socrates EXDI supports read-only support for
Socrates GLOs.

Virtual Machine

IEEE floating point
The engine now supports IEEE floating-point primitives. The old system
used IEEE floats, but would fail primitives that would have answered an
IEEE Inf or NaN value. The new engine does likewise but can run in a
mode where the primitives return Infs and NaNs rather than fail.

Again due to time constraints the system has not been changed to use
this new scheme and we intend to move to it in the next release. In the
interim, candidate code is provided as a goodie, and the engine can be
put in the new mode by a -ieee command line option.

OE Profiler
The OEProfiler, an engine-level pc-sampling profiler now supports
profiling native methods in the nmethod zone. The image-level code
(goodies/parc/OEProfiler.pcl) is still only goodie quality but we
hope to integrate properly these facilities with the Advanced Tools
profilers soon.
Release Notes 65

P46-0106-06

FAX
IT!

WE STRIVE FOR QUALITY

Reader Comment Sheet
Name:

Job title/function:

Company name:

Address:

Telephone number: () - Date: / /

How often do you use this product? # Daily # Weekly # Monthly # Less

How long have you been using this product? # Months # Years

Can you find the information you need? # Yes # No

 Please comment.

Is the information easy to understand? # Yes # No

 Please comment.

Is the information adequate to perform your task? # Yes # No

 Please comment.

General comment:

To respond, please fax to Larry Fasse at (513) 612-2000.

	Introduction to VisualWorks 7.1
	Product Support
	Support Status
	Product Patches

	ARs Resolved in this Release
	Items Of Special Note
	Multi-process UI support
	Professional Debugger
	Keyboard Binding changes

	Known Limitations
	Initializing Shared Variables
	Limitations listed in other sections

	VW 7.1 New and Enhanced Features
	Base system
	Deploying without sources

	Virtual Machine
	Headless UNIX Engines
	New Platforms
	bin/ Directory Organization
	New Windows command switch
	Large Cursor support

	GUI Development
	Multiproc UI
	Highlights
	Backward Compatibility
	Deferred and Background UI Actions
	Additional GUI Behavior
	Usage changes

	Debugging in a the MultiprocUI environment
	Tools development in the MultiProcUI environment
	New mouse events
	New Look Policies
	Widget enhancements
	Dataset
	TreeView
	Input field

	New widget layout option
	Menu enhancements
	UIPainter
	Retract ValueModel support for TriggerEvents
	Known Limitations
	Sawfish and MultiProcUI
	Tools development
	System unresponsive after closing a window

	Headless support
	Tools
	Keyboard bindings
	Please Wait...
	Tools development in the MultiProcUI environment
	Professional Debug Package (PDP)
	New Settings framework

	Advanced Tools
	Profiling

	WebService enhancements
	Separated from NetClients
	WebService Tool

	Net Clients
	Renamed #beCurrentDirectory:
	Moved #defaultPortNumber
	User Agent support

	Security
	Public key algorithm APIs
	Key generators, random generators & primality tests
	Diffie-Hellman key exchange
	Diffie-Hellman cipher suites in SSL
	AES

	Database
	Exception handling updated
	CLOB/BLOB support
	Oracle element size corrected

	Application Server
	New ISAPI Gateway
	IIS Virtual Directories

	Opentalk
	Opentalk STST Marshaling
	Pass-By-Name
	Pass-By-OID

	Opentalk Pass Mode Control
	Opentalk Tools

	DST
	Documentation consolidation
	Immutability supported
	Other changes

	Application Server
	New ISAPI Gateway
	Significant Changes
	Repartitioning of VisualWave Components and Infrastructure
	VisualWave Namespace No Longer Imported
	Renaming of Headless Files
	Logging Changes
	Virtual Directories
	NSAPI Gateway Removed from Distribution
	Changed Memory and Network Parameters
	Changes to Command Line Handling

	Enhancements and Bug Fixes
	Load Balancer on Opentalk
	Production/Debug Toggle
	Startup Events
	Buffering
	Multipart forms and File Upload
	Web Toolkit Session Extensions
	New and Enhanced Gateways
	Cache Control headers For Proxy Servers
	Widget Enhanced for HTML 4.0 Compliance in VisualWave
	Better Handling of Encodings
	Robustness
	Various

	Known Limitations
	“Out of Memory” Error When Packaging

	Documentation

	Deprecated Features
	Advanced Tools
	Profiler

	Base System
	TimeZone reference time

	GUI
	ScheduledControllers
	ForkedUI

	Net Clients
	Deprecated messages
	FTPClient>>beCurrentDirectory:

	Advanced Tools
	VisualWave

	Preview Components
	New GUI Framework (Pollock), Beta 2
	High Level Goals
	Pollock
	Pollock Requirements
	Loading tests

	The New Metaphor: Panes with frames, agents, and artists
	Other notes of interest
	So, What Now?

	Opentalk SNMP
	Usage
	Initial Configuration
	Broker or Engine Creation and Configuration
	Engine Use

	Entity Configuration
	MIBs
	Limitations
	Port 161 and the AGENTX MIB

	Opentalk
	SocratesEXDI and SocratesThapiEXDI
	Installation
	SocratesXML 1.2.0
	MindSpeed 5.1

	Data Interchange
	Reference Support
	Object Support
	GLOs

	Virtual Machine
	IEEE floating point
	OE Profiler

