
Cincom Smalltalk™

VisualWorks 7.7
Release Notes
P46-0106-15

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

© 1999 – 2009 by Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0106-15

Software Release 7.7

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, COM Connect, and StORE are trademarks of Cincom Systems, Inc., its
subsidiaries, or successors. ENVY is a registered trademark of Object Technology
International, Inc. All other products or services mentioned herein are trademarks of their
respective companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation © 1999 – 2009 by Cincom Systems, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior written consent
from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents
Chapter 1 Introduction to VisualWorks 7.7 1-1

Product Support ..1-1
Support Status ..1-1
Product Patches ..1-2

ARs Resolved in this Release ..1-2
Items of Special Note ...1-2

VisualWorks on Vista or Windows 7 ..1-2
Known Limitations ..1-3

Alt Shortcuts inactive for buttons and label mnemonics1-3

Chapter 2 VW 7.7 New and Enhanced Features 2-1

Virtual Machine ..2-1
Ephemerons, Weak Objects and Garbage Collection2-1
New Mirror Primitive ..2-2
Semaphore Primitive Behavior Changed ..2-3
Improved Mouse Scroll Wheel Events ...2-3
64-Bit VM Limitations ..2-3
Large Pixmap Performance on OS X ..2-3

Base Image ..2-4
64-Bit Support ...2-4
Floating Point Arithmetic ...2-5
New Time Zone API: SystemTimeZone ..2-5
Durations ...2-9
Support for Timers and Timer-Based Delays ..2-9
Evaluable Symbols ..2-15
Binary Selectors Longer than Two Characters ..2-15
Deprecation Support ...2-17
Object>>initialize Added ...2-18
ExternalReadAppendStream>>flush ..2-18
BOSS and 64-Bit Support ...2-19
BOSS Performance of Writing Single Objects ..2-20
Using BOSS to Write Compiled Methods ..2-20
Release Notes iii

Compiler Changes .. 2-20
API for Formatting Selectors ... 2-21
Custom Memory Policies .. 2-21
Resolution of Font Issues under Fedora ... 2-25
ExternalInterface Classes in Store ... 2-26

GUI .. 2-27
MenuItem label API .. 2-27
List Modernization/Improvements ... 2-28
Focused Widget Handles Shortcuts First (Not ApplicationModel) 2-28
Rearchitect ProtocolItemNavigatorPart>>iconFor: 2-29
Keyboard Shortcut Changes ... 2-29
Removal of Alt/Meta Key Shortcuts for Text Editor 2-29
Character Position Tab Stops ... 2-30
Application Labels .. 2-30

Tools .. 2-30
Updated Icons .. 2-30
Minimized Windows under OS X .. 2-31
New Prerequisites Interface .. 2-31
Inspector Enhancements (Bulletproofing and Proxies) 2-32
Browser Enhancements .. 2-32
UIPainter Auto-loaded from Browser Edit Button 2-33
MiniChangeSetManager Removed as Default Item in Launcher 2-33
Store Progress Dialogs ... 2-33
Initial Database Links .. 2-33
Refactoring Interaction Changes .. 2-33
Restore Original RBFormatter .. 2-34
Format on View and Format on Save Options .. 2-34
MethodDefinition>>toolListIcons is Now Extensible 2-35
Browser List of Instance Variables is Consistent with Inspector 2-35
One-Shot Breakpoints .. 2-35
Refactoring Browser Menu Caching Removed ... 2-35
Changes to Browser Package Name Annotations 2-35
Better Detection of Embedded URLs in Text Editors 2-36
Inspector IEEE Floating Point Decomposition .. 2-36
Source Files Manager ... 2-36
Known Limitations of the ImageWriter .. 2-36
Advanced Tools Profilers and Stack Spills .. 2-37
Menu UI Compatibility ... 2-38

Database ... 2-39
Oracle EXDI: Statement Caching ... 2-39
Oracle EXDI: Adjustable Buffering for LOBs ... 2-40
Support for OEM Encoding ... 2-41
ODBC EXDI: Enhanced Data Type Support ... 2-42
iv VisualWorks

ODBC EXDI: Improved Connection Reliability ..2-42
ODBC EXDI: Support for Multiple Active Result Sets (MARS)2-42
MySQL EXDI: Refactored Connection and Session Classes2-44
DB2 EXDI: Default LOB Size can be Specified ...2-44
DB2 EXDI: Fetch Multiple LOBs in One Execution2-45

Store ...2-47
A Bit of Detail ..2-48
Atomic Loading and Early Install ...2-49
The Future Looks Bright ..2-50
Repository Indexing ..2-51
Table Spaces Settings ...2-51
Settings Reorganized ..2-52

WebServices ..2-52
WSDL: Support for Empty <import/> Elements ...2-52
Type Validation for Serialization and Deserialization Blocks2-53
Support for XML Union Types ...2-54

Internationalization ...2-55
Enhanced UTF-8 Support ...2-56
CLDR-based Locales ..2-56
Locale-driven Formatting of Date/Time/Timestamp Values2-60
Add-on Support Parcels ..2-61

Net Clients ..2-62
Custom MIME Handlers ..2-62
Streaming of Generated Content ..2-64

Glorp ..2-69
Logins and Store Connection Profiles ...2-69
Active Record ..2-70
Migrations ..2-70
Information Schemas ..2-71

WebSphere MQ Interface ...2-71
Seaside Support ..2-71

Seaside 3.0alpha5 ..2-71
Default Encoding now UTF-8 ..2-71
jQuery Support ..2-71
Comet Support ..2-72

DLLCC ...2-72
Browser Support to Identify and Stub Missing DLLCC Definitions2-72
Solaris and the C Heap ...2-72
Flag to Ignore ExternalErrorNoThreadFound ..2-73
Objective-C Runtime Support ...2-73
Objective-C Utility APIs ...2-76

Documentation ...2-77
Basic Libraries Guide ..2-77
Release Notes v

Tool Guide ... 2-77
Application Developer’s Guide .. 2-77
COM Connect Guide .. 2-77
Database Application Developer’s Guide .. 2-77
DLL and C Connect Guide .. 2-78
DotNETConnect User’s Guide .. 2-78
DST Application Developer’s Guide .. 2-78
GUI Developer’s Guide ... 2-78
Internationalization Guide ... 2-78
Internet Client Developer’s Guide ... 2-78
Opentalk Communication Layer Developer's Guide 2-78
Plugin Developer’s Guide ... 2-78
Security Guide .. 2-78
Source Code Management Guide .. 2-78
Walk Through ... 2-78
Web Application Developer’s Guide .. 2-78
Web GUI Developer’s Guide ... 2-79
Web Server Configuration Guide .. 2-79
Web Service Developer’s Guide ... 2-79

Chapter 3 Deprecated Features 3-1

Virtual Machine .. 3-1
WinCE Engines Dropped .. 3-1
SGI IRIX Engines Dropped ... 3-1

Base Image ... 3-2
IEEE Math .. 3-2
OS/2 and MacOS 9.x Platform Support Removed 3-2

GUI .. 3-2
NotebookWidget gone .. 3-2
Subcanvas Obsolesced .. 3-2
MacOS 9 Look and Feel Removed ... 3-2

Tools .. 3-3
RBSmallDictionary Gone .. 3-3

Net Clients ... 3-3
Class SimpleSMTPClient Obsolesced .. 3-3

Opentalk .. 3-3
SNMP ... 3-3
Opentalk-Remote-Testing ... 3-3

Plugin ... 3-3
Plugin Obsolesced .. 3-3

Application Server ... 3-4
WebServerStartup .. 3-4
vi VisualWorks

Chapter 4 Preview Components 4-1

Universal Start Up Script (for Unix based platforms) ..4-1
Base Image for Packaging ...4-2
DB2 Support ..4-2
BOSS 32 vs. BOSS 64 ...4-2
64-bit Image Conversion ..4-3
Tools ...4-4
Cairo ...4-4

Overview ...4-4
What is Cairo? ...4-4
Drawing with Cairo ..4-5

Getting a Cairo Context ..4-5
Setting the Source ..4-6
Defining Shapes ...4-7
Filling and Stroking Shapes ...4-8
Additional Operators ..4-8
Affine Transformations ..4-8
The Context Stack ..4-9
Grouping Operations ..4-10

Deploying VisualWorks with Cairo Support ...4-10
MS-Windows ..4-10
Mac OS X ...4-10

Ongoing Work ...4-10
Smalltalk Archives ..4-11
WriteBarriers ..4-12
Sparing Scrollbars ..4-14
Multithreaded COM ..4-14
COM User Defined Type (UDT) Support ..4-15
Grid ..4-15
Store Previews ...4-16

Store for Access ..4-16
Store for Supra ..4-16

StoreForSupra installation instructions ...4-17
Security ..4-18

OpenSSL cryptographic function wrapper ..4-18
Opentalk ...4-20

Opentalk HTTPS ..4-20
Distributed Profiler ...4-23

Installing the Opentalk Profiler in a Target Image4-23
Installing the Opentalk Profiler in a Client Image4-23

Opentalk Remote Debugger ...4-24
Release Notes vii

Opentalk CORBA .. 4-24
Examples .. 4-27

Remote Stream Access ... 4-27
Locate API ... 4-28
Transparent Request Forwarding ... 4-29
Listing contents of a Java Naming Service 4-29
List Initial DST Services ... 4-30

International Domain Names in Applications (IDNA) 4-30
Limitations .. 4-31
Usage .. 4-31

Polycephaly ... 4-32
viii VisualWorks

1

Introduction to VisualWorks 7.7

These release notes outline the changes made in the version 7.7
release of VisualWorks. Both Commercial and Non-Commercial
releases are covered. These notes are not intended to be a
comprehensive explanation of new features and functionality nor are
they intended to be used in lieu of the product documentation. Refer
to the VisualWorks documentation set for more information.

Release notes for 7.0 and later releases are included in the doc/
directory (7.2.1 release notes cover 7.2 as well).

For late-breaking information on VisualWorks, check the Cincom
Smalltalk website at:

http://www.cincom.com/smalltalk
For a growing collection of recent, trouble-shooting tips, visit:

http://www.cincomsmalltalk.com/CincomSmalltalkWiki/Trouble+Shooter

Product Support

Support Status
Basic support policies for the current release are described in the
licensing agreement. As a product ages, its support status changes.
To find the support status for any version of VisualWorks and Object
Studio, refer to this web page:

http://www.cincomsmalltalk.com/CincomSmalltalkWiki/
Cincom+Smalltalk+Platform+Support+Guide
Release Notes 1-1

../Welcome.pdf
http://www.cincom.com/smalltalk
http://www.cincomsmalltalk.com/CincomSmalltalkWiki/Trouble+Shooter
http://www.cincomsmalltalk.com/CincomSmalltalkWiki/Cincom+Smalltalk+Platform+Support+Guide
http://www.cincomsmalltalk.com/CincomSmalltalkWiki/Cincom+Smalltalk+Platform+Support+Guide

Introduction to VisualWorks 7.7
Product Patches
Fixes to known problems may become available for this release, and
will be posted at this web site:

http://www.cincomsmalltalk.com/CincomSmalltalkWiki/VW+Patches

ARs Resolved in this Release
The Action Requests (ARs) resolved in this release are listed in doc/
fixed_ars.txt.

Additional ARs may be discussed in individual sections of these
release notes.

Outstanding ARs and limitations are noted throughout these release
notes, as appropriate.

Items of Special Note

VisualWorks on Vista or Windows 7
Microsoft Vista and Windows 7 operating systems impose additional
restrictions on file permissions and applications. Accordingly, there
are a few special considerations when using Windows.

Installing VisualWorks

You can install VisualWorks either as a regular user or an
administrator, but only users belonging to the administrator group
have write acess to the Program Files directory. Note that you can
always install VisualWorks to other directories without
complication.

When installing as an administrator, Windows will open a slightly
cryptic prompt to confirm whether to run the Installer. Simply click
Continue to proceed.

Note also that, when installing on 64-bit Windows 7, a dialog may
display noting that the program might not have installed correctly.
Our experience has been that the installation is correct, so click
the option “This program installed correctly,” unless you know
otherwise.
1-2 VisualWorks

http://www.cincomsmalltalk.com/CincomSmalltalkWiki/VW+Patches

Known Limitations
Uninstalling VisualWorks

If you installed VisualWorks to the Program Files directory, the
install-uninstall shortcut in the Start menu will not work correctly.
In this case, the Installer on the VisualWorks distribution CD must
be used to uninstall the product.

Saving your Work

Since all directories under Program Files are write-protected, when
working as a non-administrative user, your VisualWorks image
files must be saved somewhere you have write privileges, such
as your own My Documents directory.

Known Limitations
While a large number of ARs (Action Requests) have been
addressed in this release, a number remain outstanding.

Known Limitations sections are provided throughout this document,
pertaining to specific product areas.

Alt Shortcuts inactive for buttons and label mnemonics
A bug discovered late in the release makes keyboard shortcuts
defined by label mnemonics inactive.

If an ActionButton, GroupBox, or Label has a mnemonic defined by
an ampersand (&) character in its label, then pressing the keyboard
shortcut for the mnemonic will not activate the labeled widget. For
example, if an action button is labeled I&tem, then pressing <Alt>-<t>
will not perform the button action. Likewise, focus will not move to the
widget associated with the label mmenonic of a group box or label.

A patch to fix this is available from technical support.
Release Notes 1-3

Introduction to VisualWorks 7.7
1-4 VisualWorks

2

VW 7.7 New and Enhanced Features

This section describes the major changes in this release.

Virtual Machine

Ephemerons, Weak Objects and Garbage Collection
In releases prior to VisualWorks 7.7, it was generally not safe to send
isActiveEphemeron: or isWeakContainer: to change the ephemerality or
weakness of an object while the IGC w as marking objects. For
VisualWorks 7.7, the IGC has been improved to recognize this
condition and treat such objects accordingly.

For the purposes of this discussion, objects are distinguished into
three mutually-exclusive categories:

• Strong objects

• Weak objects: these have strong instance variables, but weak
indexed slots.

• Ephemerons: their instance variables are strong, except the first
one.

a Using primitive 468, isActiveEphemeron:.

This primitive can be used to re-arm an ephemeron, with two
restrictions.

First, do not re-arm an ephemeron that answers false to
isActiveEphemeron (primitive 466) before it receives mourn. If
the ephemeron is re-armed in this state, the following two ill-
effects may occur, depending on the state of the IGC and the
finalization queue: (1) the ephemeron may receive mourn
Release Notes 2-1

VW 7.7 New and Enhanced Features
after it is re-armed with a strong key, leading to incorrect
ephemeron behavior; (2) the ephemeron may receive mourn
twice.

Second, do not change an object's class to toggle its
ephemerality while the IGC is marking objects.

b The VM implementation of the isWeakContainer: primitive
assumes that applications will require flipping the weakness
of a comparatively large object, e.g.: a one-million slot weak
array. If high performance is a concern, applications should
avoid flipping the weakness of numerous, tiny weak objects
while the IGC is marking.

c Due to inherent race conditions arising from the interaction
between the IGC and the finalization queue, it is possible for
weak objects to be added to the finalization queue more than
once. The net result is that, when the second occurrence of a
weak object in the finalization queue is processed, the
implementation of mourn may not find any tombstoned slots.

Therefore, weak collections must provide an implementation
of mourn that tolerates the lack of tombstoned slots.

In the current VM implementation of the finalization queue,
ensuring there are no weak object duplicates in the queue
would require an onerous amount of computation. Since
weak object duplicates in the finalization queue should
happen sporadically at worst, implementing mourn so that it
does not fail in the absence of tombstoned slots is the more
efficient way to address duplicates in the queue.

New Mirror Primitive
Several improvements were made to numOopsNumBytes in class
ObjectMemory so that it works in the presence of objects that typically
do not implement messages like class or basicSize in the usual manner
(e.g.: proxies). Moreover, a new mirror version primitive for nextObject
was added to class ObjectMemory. Primitive 163, nextObjectAfter:,
works like nextObject (primitive 531) but instead of answering the
object after the receiver it answers the next object after the argument.
2-2 VisualWorks

Virtual Machine
Semaphore Primitive Behavior Changed
In the past, the primitive setSem:forWrite: (primitive 685) would never
fail on Windows. This has been amended in VisualWorks 7.7, so that
if the primitive cannot register any given I/O semaphore associated
with a file or socket descriptor, the primitive will fail with an allocation
error return code.

Improved Mouse Scroll Wheel Events
Previous versions of the VisualWorks virtual machine for Windows
operating systems reported the wrong value for mouse coordinates in
the event array. The array is supposed to contain 4 values: x and y
values of the mouse relative to the window origin, and those same x
and y values, but relative to the screen. However, what the Windows
VM really reported were the screen values in place of the window
origin values, and where the screen values ought to have been, the
result of adding the two together. The Mac OS X VM had been
written to match this. The X11 VM had the correct values. Code
existed in the image to extract the window coordinates from the
screen slot. And specifically, to note when the VM was X11, and
replace the screen values with those of the window.

In 7.7, this was all fixed. The VMs now do the correct thing, and the
various "adjustments" in the image were able to be removed.

The only negative fallout of this, is that a 7.6 image running on a 7.7
VM will have the wrong understanding between the two of where the
values in the event array are at. In this situation, the parcel
ScrollWheelEventsFor7-7VMs may be loaded into older images to adjust
the code so it is consistent with the values reported by a 7.7 VM.

64-Bit VM Limitations
The current 64-bit VMs do not support perm space objects.
Moreover, 64-bit VMs will refuse to create images with perm space
objects (the snapshot primitive, index 405, will fail with a bad
arguments error). Attempting to load a 64-bit image with perm space
objects, or to promote old space objects into perm space, is not
currently supported.

Large Pixmap Performance on OS X
In release 7.7 (and prior releases to some extent as well), it has been
noted that drawing a pixmap in a window graphics context, is quite a
bit slower on Mac OS X than other operating systems with
Release Notes 2-3

VW 7.7 New and Enhanced Features
comparably-equipped hardware. For very small pixmaps, the speed
is comparable, but as pixmaps get larger (e.g. 500 x 500 pixels),
drawing speed may be as much as 50 times slower.

Drawing time is not influenced by the actual area being drawn, but
rather by the base size of the Pixmap being drawn. In other words,
drawing a 100 x 100 Pixmap is not the same thing as drawing a 100 x
100 region (e.g. through clipping) of a 500 x 500 Pixmap. The second
operation will be markedly slower.

In the event of performance issues, application programmers, may
need to consider their usage of any larger Pixmap in drawing
operations. The use of DoubleBufferingWindowDisplayPolicy is one such
case. For some applications (the IDE's Merge tool for example),
usage of DoubleBufferingWindowDisplayPolicy is generally not noticable.
Other applications that do many frequent updates to the window
(such as the open source BottomFeeder RSS Client), may encounter
a marked performance degradation.

Cincom plans to address this issue in a future release.

Base Image

64-Bit Support
Beginning with release 7.7, a 64-bit version of the base image is
included in the /image subdirectory. This is now the preferred way to
run the 64-bit version of VisualWorks.

It is still possible to use the ImageWriter to produce 64-bit images,
but Cincom recommends using the base images included in the
distribution.

Note that the 64-bit VMs do not currently support the reading or
writing (snapshot) of perm space objects.

Appropriate memory policy settings for 64-bit may be different from
those for 32-bit. You may need to experiment with size values.

Also, there is a known issue with the shipped 64-bit images, that they
have a 0.0 for the initial size of large space (see
ObjectMemory sizesAtStartup). You may want to increase this, and then
save and restart the image.
2-4 VisualWorks

Base Image
Floating Point Arithmetic
With this release, VisualWorks is now able to process IEEE special
values such as NaN and INF by default. This means that the IEEE
Math parcel is no longer needed when such values will appear in the
image, regardless of whether NaN or INF are coming from the VM
when it is configured to produce such values, or from external library
calls such as via DLLCC. As a result, the IEEE Math parcel is now
obsolete.

Furthermore, the underlying floating point arithmetic implementation
has been carefully reviewed for all platforms. To the extent that it has
been tested, the virtual machines for this release have consistent
behavior across all implementations, with only two platform-specific
exceptions. They are:

1 On HPUX, floorLog10 of really small numbers such as 10 raisedTo:
-306 may be off by one. This effect is due to the platform's math
library.

2 Depending on the platform, comparison of IEEE special values
may offer different answers. For example, while NaN <= NaN is
usually false, the AIX platform answers true for some of these
comparisons.

Note that expressions which are expected to return NaNs may
answer positive or negative NaNs. While this depends on the
platform, the IEEE-754 standard does not interpret the meaning of
the sign of a NaN, and therefore this is deemed to be IEEE-754
conformant behavior.

New Time Zone API: SystemTimeZone
Release 7.7 includes a new timezone class, SystemTimeZone, which
invokes operating system facilities to perform its tasks. These include
conversion of timestamps between local and universal time, and
conversion of timestamps to/from counts of seconds since the
beginning of SmalltalkEpoch (1/1/1900). Using the OS facilities implies
that the SystemTimeZone mirrors the current OS time zone
configuration. Consequently, using SystemTimeZone as the default
timezone in VW applications eliminates the need for specific time
zone configuration, the applications will simply reflect any host
system changes/updates automatically. For this reason we have also
changed the default timezone setup in release image to use
SystemTimeZone.
Release Notes 2-5

VW 7.7 New and Enhanced Features
SystemTimeZone also motivated some general changes in the
TimeZone API. The old APIs revolved around GMT, which was
reflected in many of the selectors. However, time zone facilities
across our supported platforms operate in terms of UTC. The primary
difference between GMT and UTC is that UTC takes into account
leap seconds (a corrective measure that was started in 1972)
whereas GMT does not. Consequently we have deprecated the GMT-
based selectors and added replacement selectors to avoid confusion.
The new selectors are also aimed at making their function clearer
and more convenient, e.g. by accepting Timestamps rather than
second counts. This is especially relevant since correct conversion
from Timestamps to second counts is non-trivial and best left to class
TimeZone in the first place.

If you have an image build script you use to set the correct time zone,
you can now remove that.

New Methods

universalToLocal: aTimestamp

Convert aTimestamp in UTC to a timestamp in the local time
zone

localToUniversal: aTimestamp

Convert aTimestamp in the local timezone to a timestamp in UTC

timestampToSeconds: aTimestamp

Convert a UTC timestamp to universal seconds since the
Smalltalk Epoch

secondsToTimestamp: seconds

Convert universal seconds since the Smalltalk Epoch to a UTC
timestamp

secondsFromUTC

compute the UTC offset right now

secondsFromUTCAtLocal: aTimestamp

Compute the UTC offset at aTimestamp in the local time zone
2-6 VisualWorks

Base Image
Deprecated Methods

convertGMT: seconds do: aDateTimeBlock

convertToGMT: seconds do: aDateTimeBlock

convertGMTSecondsToLocal: seconds

convertLocalSecondsToGMT: seconds

secondsFromGMT

secondsFromGMTAtLocal: aTimestamp

These deprecated methods are still available, though we highly
recommend switching to the new API to avoid timestamp-to-seconds
conversion errors. The old methods generally call the new ones
described above.

Note that using the new API on the old TimeZone implementations
doesn't provide UTC precision, you'll still get the imprecise GMT-
based computations as before. However, they still may be useful if an
application needs to perform computations in several different time
zones. Depending on the operating system, the SystemTimeZone may
not be flexible enough to support that.

Incompatibilities

When using SystemTimeZone, the deprecated APIs compute using
universal seconds, not GMT seconds. Conversely, when using
TimeZone, the new API computes using GMT seconds. The algorithm
for converting timestamps to seconds and back again is defined by
the operating system facilities. It is not the same as the algorithm that
was previously defined in Timestamp>>asSeconds. The old algorithm is
still available in the old TimeZone class.

When a Timestamp is outside the range of the operating system's time
zone facilities, an Error is raised when attempting to do a conversion.
This does not happen when using TimeZone or CompositeTimeZone,
only when using SystemTimeZone. The ranges vary between operating
systems, and the details can be found below in the discussion of
limitations.

Timestamp>>nowUTC sets the milliseconds on the timestamp object as
well (it did not do this before). Timestamps marshaled by converting
them to seconds using the old algorithm may not match universal
seconds and therefore data migration may be necessary before
Release Notes 2-7

VW 7.7 New and Enhanced Features
switching to SystemTimeZone. If possible, it is better to marshal
Timestamps using their individual components, instead of converting
them to seconds.

Limitations

Operating system time zone facilities are often limited in the range of
timestamps that they can accept. These limits could be an issue for
an application that needs to work with timestamps out of the range of
the target operating system and that needs to convert the timestamps
between time zones (including to/from UTC). In this case, the
application may need to handle the Errors raised by the
SystemTimeZone and take a corrective action. Unfortunately it is
difficult to provide transparent fail-over to the old TimeZone facilities in
sufficiently generic manner. There is also the issue of potential
precision loss in the fail-over case, which may or may not be
acceptable depending on circumstances.

A list of specific limits (that we are aware of) follows:

All Platforms

Time zone definitions are perpetually updated and
SystemTimeZone is only as precise as your underlying platform is.
If time zone information of the underlying OS is not up to date
then time zone conversions may also be incorrect. For example
there was a recent change in US DST rules in 2007, if the OS is
not up to date, then Timestamps around the DST change times
after 2007 may be off by an hour.

MS-Windows

Timestamp years before 1601 and after 30827 are not supported
by 32-bit Windows. We are not aware of any changes in 64-bit
Windows.

Unix (32-bit)

Timestamps before December 13, 1901 20:45:52 and after
January 19, 2038 3:14:07 are out of range (because the second
count at the OS API level is limited to 32-bits). The upper bound,
especially, may be a fairly severe limitation. Our preliminary tests
on 64-bit Linux show that these limits are eliminated (the count
goes to 64 bits, extending the limits to few billion years in each
direction), so moving to 64-bits could be a viable work-around for
some.
2-8 VisualWorks

Base Image
HP-UX 11, Solaris 10

SystemTimeZone needs function timegm() for its operation. This
function is not available on some systems (especially older
versions). SystemTimeZone fails over to an officially recommended
work-around (see the man pages for details), which uses
mktime() while setting the TZ variable to UTC temporarily. Since
setting the TZ variable has image wide impact, this workaround is
protected by a mutex at the Smalltalk level, however it still has
the potential to cause trouble when concurrent threaded DLL
calls are involved. This is just a conjecture at this point though
and may be highly platform dependent.

AIX 5.1, Solaris 8

These platforms lack even the calls required to set the TZ
variable, consequently the above work-around isn't applicable. In
this case, we have yet another fall-back where we take a
difference between a local timestamp and its UTC equivalent to
compute the UTC offset and apply that manually. This may
potentially miss a leap second for timestamps right around the
DST change-over.

AIX 5.2

In addition to the 32-bit Unix limitations noted above, we have
observed that this platform refused timestamps before 1970. This
limitation is documented but unexplained.

Durations
Durations have been added to the core libraries. For details, see the
Dates and Times chapter of the Base Libraries guide.

Support for Timers and Timer-Based Delays
VisualWorks 7.7 includes the new class Kernel.Timer and a timer-
based implementation of class Delay. Class Timer provides optional,
image-level support for operating system timers.

Issues with the Previous Implementation

Our classic Delay implementation employs a queue of Delay objects
and realizes them one at a time using available OS facilities. The
Delay that is supposed to expire earliest is taken off the queue and an
OS timer is set to fire at that time. When the timer fires the process
waiting on the Delay is signaled and next Delay is taken off the queue.
The Delays in the queue need to be sorted according to their
Release Notes 2-9

VW 7.7 New and Enhanced Features
expiration time, so their duration is converted to an absolute time
(Time now + duration) when they are activated (Delay>>wait) so that they
can be queued up properly. The expiration time is then used again
when a Delay's turn comes to be realized with an OS timer.

The problem is that if there is a system clock change after the
expiration time is first computed (i.e. after the Delay is queued up), the
Delay will be realized with incorrect expiration time. The resulting
inaccuracy of the Delay directly corresponds to the magnitude of the
clock change. There's also a potential issue with the currently active
Delay, because we need the underlying OS timer to cope with the
clock change correctly as well. So the underlying OS facility itself
needs to be able to handle the system clock change as well. To
compensate for the clock change for the queued Delays we would
need following bits of functionality provided by the OS:

1 Be notified when the clock changes, so that we can correct all
Delays queued up before the clock change

2 Be able to determine the actual clock change so that we know
how to correct the queued up Delays. Assuming the currently
active timer can fire correctly despite the clock change, we could
try to infer that information with some level of accuracy (modulo
any timer overruns and other overhead), by comparing the actual
clock value when the timer fires with the target clock value of the
active Delay.

There is another issue with this approach requiring additional support
from the underlying OS. When there is a new Delay scheduled which
would expire before the current active Delay, the active Delay timer
needs to be cancelled and the Delay re-queued. For proper re-
queueing we need to be able to determine the remaining time of an
active Timer. Trying to compute this value from the clock exposes us
again to the same sort of "clock change" issues.

An alternative queueing strategy using relative instead of absolute
times is also possible, however it still requires the ability to get the
"remaining time" of an active timer. Moreover this strategy has a new
problem of accumulating overrun errors with Delays that are
scheduled concurrently as it is unable to detect the overruns (unless
the OS provides that facility as well). The accumulated overrun clears
up at any point when the queue is emptied and there's no active or
scheduled Delay, but any overlap between Delays propagates and
increases the error.
2-10 VisualWorks

Base Image
Most of the recent OS versions provide timing services which can
cope with system clock changes however they differ in terms of
capabilities provided via their respective APIs. Consequently it is
difficult to correct the behavior of the Delay queues outlined above,
because at least one of the necessary capabilities is missing on most
of our supported platforms. Moreover some of the platforms (e.g.
Windows Vista and later) provide the equivalent of the Delay queues
implemented at the OS level without any of the issues discussed
above.

New Class: Kernel.Timer

In view of the various limitations with the previous implementation of
class Delay, in release 7.7 we have decided to expose the underlying
OS facilities to enable their direct use. A unified protocol reflecting the
functional overlap of native timers across platforms is captured by a
new class, Kernel.Timer. Timer runs an action every period after an
initial period of waiting. The initial period can be a timestamp
(absolute timer) or a duration (relative timer). A timer action can fork
blocks, resume suspended processes or signal semaphores when it
fires. The metaphor is this:

• #do: creates a new Process every time the Timer fires,

• #resume: resumes an existing (presumably suspended) process
and,

• #signal: resumes an existing processes waiting on a provided
semaphore.

If given a repeat period (#every:) a timer will keep firing indefinitely
after the initial wait period. If a timer does not repeat, it stops itself
after the first iteration.

Note that active (i.e. scheduled) timers can get garbage collected if
not held strongly. In this case they will be de-scheduled when they
finalize. However, traditionally, active Delays were held strongly. To
mimic the same behavior, Timers that are initialized with Semaphores
and Processes are automatically registered to prevent their garbage
collection as well. Therefore the following timer will not be reclaimed
until the action is performed:

Timer
after: 10 seconds
resume: [Transcript cr; show: 'Time is up!'] newProcess
Release Notes 2-11

VW 7.7 New and Enhanced Features
However, this is not the case for the more general, block-based
actions. This allows to take advantage of automatic reclamation when
desired.

| timer |
timer := Timer every: 0.2 seconds do: [Transcript nextPut: $.; flush].
3 seconds wait.
timer := nil

Finally, Timers can be realized using either the classic VM facilities
that were traditionally used to implement Delays, or they can be
realized using native OS facilities if they are available. These facilities
have different and platform-specific strengths and limitations (more
detailed discussion of these can be found in the class comment of
TimerSystem). Both kinds of timers can be used simultaneously. The
default choice can be configured on the TimerSystem, however due to
the number of limitations across all supported platforms (discussed
below) we are currently keeping the default set to classic facilities.
Specific choice for a given timer can be forced before the timer is
activated (see #useNativeInterface and #useClassicInterface).

Summary of Changes

• New Timer class that can run off the classic delay primitives
(default) or off native OS timers (where available).

• Delay remains API compatible (with some API deprecations),
however internally it was re-implemented in terms of Timers. Any
extensions to this class may need to be revisited in a future
release.

• New convenient Timestamp>>wait

• new subsystem, TimerSystem, replaces the DelaySystem.
Subsystems should not require DelaySystem as a prerequisite
anymore, or they will not activate again on image startup.
TimerSystem starts after EarlySystemInstallation (DelaySystem used
to start before).

• (private) ClassicTimerSupport implements the "classic" delay
primitive based alternative to the native OSSystemSupport calls for
native timers.

Known Limitations

A "time-shift" can occur on all operating system when the system
clock changes for any reason (e.g. NTP clock adjustments). Timers
created using absolute time should reflect the system correction,
whereas relative timers should not. Whether the above assumptions
2-12 VisualWorks

Base Image
can be satisfied depends on the capabilities of the underlying
operating system. Most recent operating systems can compensate
for system-clock changes, so timers backed up by the native facilities
should fire correctly. This was the primary motivation to develop the
ability to use native timers.

On the other hand native timers are subject to OS limits, whereas the
"classic" timers are practically unlimited (subject to available
memory). Some observed, platform-specific limitations follow,
however anyone considering to use native timers under strict timing
requirements should consult the documentation (or the vendor) about
the limitations of their specific version of the OS, hardware, etc. Our
primary focus during development was Windows, Linux and OS X,
however we were not able to come up with a suitable native solution
for Mac OS X. It seems that at this point OS X does not officially
support POSIX timers and whatever else we tried just was not good
enough.

On Windows we use two separate APIs: TimerQueues on Windows
XP and prior versions, and Threadpool Timers on Windows Vista and
later versions. In our ad-hoc tests we were able to push both kinds of
timers up to tens of thousands of concurrently active timers. However
the TimerQueue timers exhibited the "overrun accumulation" error
discussed above in the context of the delay queues. Consequently
we don't recommend using native timers as the default timer type on
Windows XP and earlier to avoid the overrun issue. The accumulated
overrun error is directly proportional to the number of overlapping
timers and it doesn't go away until such moment that there are no
active timers. Another observed anomaly with TimerQueue timers were
timer under-runs, i.e. timers firing a some millisecond earlier than
they should (as far as we could measure). These were small enough
to be potentially just a side-effect of timers with coarser resolution on
given platform (Windows XP). The Threadpool timers don't seem to
exhibit any of these problems.

On Linux we use the POSIX APIs. These timers seem to be robust
however we weren't able to take it much above a thousand
concurrently active timers (in both 32 and 64 bits) at least on the Red
Hat (RHEL) platforms we use internally. It might be possible to tune
these limits with some kernel parameters.
Release Notes 2-13

VW 7.7 New and Enhanced Features
Other Unix platforms (Solaris, HPUX, AIX) do support POSIX timers,
however they do not support callback based even delivery (they
require using Unix signals instead). We intend to look into signal
based solution in future releases to extend our native timer support to
these platforms as well.

Furthermore, current implementation of the native timers is also
affected by a VM limitation regarding concurrent foreign callbacks.
Current foreign callback implementation in the VM ignores foreign
callbacks if:

1 There aren't any unused thread info structures available in the
VM's thread pool and

2 the internal structures used to record the foreign thread's
associated Semaphore and Process objects are full and need to
be extended.

In practical terms this means that you can lose foreign thread
callbacks when you have many timers firing at once. This does not
mean you cannot have many active timers, they just cannot all fire at
once.

As a workaround, it is possible to increase the thread pool size using
the existing #primGetThreadLevels, #primSetThreadLimit:lowTide:
methods of ProcessorScheduler (see DLLCC documentation, page 5-
15). Note however that thread slots cannot be "reserved" just for
timers, they have to be shared with any other threaded activity, thapi
calls, database callbacks, etc. Therefore overall thread requirements
need to be considered when configuring the limits for a specific
application. Another complication is that after a thread limit change
the VM won't pre-allocate all the required space until it is actually
needed. However the new slots can only be allocated by the main VM
thread which cannot synchronize with foreign callbacks. So, to make
the workaround effective, a corresponding number of real OS threads
has to be actually attached to that many smalltalk processes
simultaneously (Process>>attachToThread) to create the pressure to
actually allocate the slots. After this initial push the processes and
threads can be released.

Finally, when the image is saved with active timers in progress, the
timers are susceptible to time-shifts regardless of their underlying
infrastructure. This is because the time that passed between the
image save and subsequent restart has to be extrapolated from the
startup time and a timestamp saved during the snapshot. This
elapsed down-time is then required for rescheduling of active timers
2-14 VisualWorks

Base Image
on startup. Any discrepancy caused by intervening system-clock
adjustments will necessarily be reflected in the newly scheduled
timers. For example if the image is saved with a timer waiting for 1
hour and the operating system clock is then shifted forward by 30
minutes, then 25 minutes later the image is resumed, the timer in
question will fire in 5 minutes instead of the expected 35 minutes.
Another variation of this problem is if the system clock is shifted
backward by 30 minutes, the timer is not extended by an extra 30
minutes, it will continue to count down its remaining 35 minutes.

Evaluable Symbols
Known sometimes as the "SymbolValue" add-on, VisualWorks 7.7
includes support for using unary symbols as shortcuts for
BlockClosures which send the related message to a given object.
Consider the following expressions:

(1 to: 4) select: [:each | each odd]
#('Fred' 'George' 'Ginny') collect: [:each | each size]
a := (4 + 3) ifNotNil: [:value | value negated]

Each block closure is of the form that it takes one argument, and the
block sends a single unary message to one argument and returns
that value. In this common case, these may be replaced with the
symbol of the selector. The three previous expressions can now be
written as:

(1 to: 4) select: #odd
#('Fred' 'George' 'Ginny') collect: #size
a := (4 + 3) ifNotNil: #negated

This change does not involve any changes to the compiler. It is
simply that Symbol now implements the value: method, which allows it
to be used in the same places where a BlockClosure would be sent the
value: method.

Class Symbol also understands cull: for further BlockClosure
compatibility, with the same interpretation as value:.

Binary Selectors Longer than Two Characters
In conformance with the ANSI Smalltalk specification, VisualWorks
7.7 allows binary selectors of more than two characters. This can
also change the interpretation of certain code constructs. The most
common case where this shows up is with literal negative numbers.

For example, consider the case of:

3--4
Release Notes 2-15

VW 7.7 New and Enhanced Features
In the current VisualWorks, this is parsed as 3 - -4, with the result of
7. But with extended binary selectors, it might be possible to define a
#-- binary selector, and we have no way of telling what was intended.
ANSI says that in such cases, the leading - on a negative number
literal must be preceded with whitespace.

The most realistic case where this can arise is with point
construction. 3--4 is unusual. 1@-1 is not. With the new system, this
would need to be written with a space, as 1@ -1.

If these changes cause problems for your code, you have a number
of options. One is to fix the code. Using the rewrite editor in the
Refactoring Browser, you can detect all such constructs in code and
have them changed automatically. In fact, simply running the
formatter on code, in any version, will insert the spaces after binary
selectors. An example that runs the rewrite rule is also listed below.

Another option is to define binary messages that match the possible
problem selectors. For example, we can define:

Number>>@- aNumber
"Return a Point constructed by interpreting the receiver as the x value and
the argument aNumber as the negated y value."

^Point x: self y: aNumber negated
Now 3@-4 will be parsed as 3 @- 4, rather than 3 @ -4. But the end
result will be the same.

An example to find these problems, expressed as an SUnit test is:

testBinaryMessageSeperation
| aLintRule environment |
aLintRule := Refactory.Browser.ParseTreeLintRule

createParseTreeRule: (Array
with: '(``@a `p: `#l) `{:node | | arg |node selector isInfix

and:ortcut[arg := node arguments first. node selectorParts first stop + 1 =
arg start and: [(arg source at: arg start) = $-]]}')

method: false
name: ''.

environment := Refactory.Browser.PundleEnvironment
onEnvironment: Refactory.Browser.BrowserEnvironment new
pundles: (List

with: (Store.Registry bundleNamed: '***PROJECT TOP
BUNDLE***')).

(Refactory.Browser.SmalllintChecker new)
rule: aLintRule;
environment: environment;
methodBlock: [];
run.
2-16 VisualWorks

Base Image
"aLintRule problemCount isZero ifFalse: [aLintRule openEditor].
self assert: aLintRule problemCount isZero

If such methods are found, they could be manually formatted, or you
could also use the System Browser’s rewrite tool, with the following
search rule:

(``@a `p: `#l) `{:node | | arg |
node selector isInfix and: [arg := node arguments first.
 node selectorParts first stop + 1 = arg start and: [(arg source at: arg
start) = $-]]}

And this replace rule:

``@a `p: `{``@a stop + 1 = `#l parent selectorParts first start ifTrue: [
 `#l addReplacement: (RBStringReplacement
 replaceFrom: ``@a stop + 1
 to: ``@a stop
 with: ' ')].
 `#l addReplacement: (RBStringReplacement
 replaceFrom: `#l start
 to: `#l start - 1
 with: ' ').
 `#l}

Deprecation Support
A framework to note deprecation of methods has been added to the
core system. There is no tool support for actually deprecating
methods or querying them, other than through programming them
explicitly. One does so by adding:

self deprecated: #(...).
to the method, usually as the first statement. What goes in the
argument array is arbitrary, but is intended to be a literal array of key-
value strings. For example:

self deprecated: #(#version '5' #sunset '9' #use 'anotherMethod').
Using an array of simple values here, allows tools which search for
given deprecation patterns to be written, and also allows different
intents to be communicated.

What happens when a deprecated: message is sent is determined by
the shared variables defined in the Deprecated class.
Release Notes 2-17

VW 7.7 New and Enhanced Features
Object>>initialize Added
An empty #initialize method has been added to class Object.
Subclasses may now call:

super initialize
without worrying if they are the hierarchy uppermost implementation
or not. Subclasses must still implement a new (or other instance
creation method) which actually invokes initialize.

ExternalReadAppendStream>>flush
ExternalReadAppendStream on sockets and pipes does not flush on
read anymore.

Previously, reading from an ExternalReadAppendStream (ERAS) on a
socket would first flush any pending writes into the socket before
continuing with the read operation. This behavior was largely
inherited from ERAS on a file where it is actually useful, to allow
ERAS on a file read what it itself previously wrote. For example, if a
read tries to read 4000 bytes, and there are only 1000 bytes in the
file, but the write stream has 3000 bytes pending to be written, then
those 3000 should be flushed so that the read can read them. But if
the ERAS is on a socket, then the read and write "pipes" are
completely independent, i.e. flushing 3000 bytes from the write
stream will not automatically make them available to the read stream.

In fact this hidden interaction of the read and write side of the ERAS
can be outright harmful in a very common socket streaming scenario
where applications use separate processes for reading and writing a
socket stream. Concurrent use of the ERAS often left the stream in
an inconsistent state. Commonly seen symptoms of these issues
were spurious data integrity failures on an SSL wrapped socket
stream, caused by the SSL layer detecting the stream inconsistency
thanks to its built-in integrity protection mechanisms. Another
observed manifestation of this issue was spurious duplication of data
written into the socket stream, caused by the reader process
interrupting the writer process during a flush. Consequently the same
data ends up being flushed twice, once by the reader process and
once by the writer process.

Since there isn't a compelling reason to flush on read in the case of
socket (or pipe) streams, this behavior was removed to make the
streams behave better in the above mentioned common scenarios.
Note, that this however does not make the stream "thread-safe" in an
2-18 VisualWorks

Base Image
absolute sense. An application may still need to protect an ERAS
with a mutex in a more complicated scenario involving multiple-
processes (e.g. multiple concurrent writer processes).

A consequence of this change is that applications now cannot rely on
the socket stream being flushed by a read operation. An explicit
#flush (or #close) is now required for any pending data to move from
the write buffer into the socket. A missing flush is likely to manifest
itself with the application getting "stuck" waiting for incoming data,
simply because a previously written data that triggers the response is
still sitting in the outgoing buffer waiting to be flushed.

One possible way to detect these cases is to override senders of
#readsCanOverlapWrites in ERAS replacing the following line:

ioBuffer readsCanOverlapWrites ifTrue: [self flush].
with something like:

ioBuffer readsCanOverlapWrites
ifTrue: [self flush]
ifFalse: [writeStream position isZero

ifFalse: [DebuggerService interruptAllUserProcesses]].
This would freeze all processes when an ERAS read (or position
seek) detects un-flushed data on the write side, which might be a
case of missing flush. Of course such situation isn't necessarily
always an issue if there are separate processes reading and writing
concurrently. You may choose a less draconian action as well,
however the above might be necessary if you need to analyze a more
complex situation involving multiple processes.

BOSS and 64-Bit Support
In order to make BOSS maintenance easier, the current
implementation has been heavily refactored. All application entry
points into BOSS remain the same.

In addition, boss32 (version 7) has been made compatible with 64-bit
images, and runs bit-identically to the old implementation running on
32 bit images.

Since 32-bit images have different SmallInteger sizes, and do not have
SmallDoubles at all, these 64-bit objects must be handled with care.
This is done by converting SmallDoubles and some SmallIntegers to
their 32-bit Double and LargeInteger counterparts while writing. Since
SmallIntegers and SmallDoubles with equal values would be
Release Notes 2-19

VW 7.7 New and Enhanced Features
identically equal on 64-bit images, the conversion process keeps
track of individual values and replaces them with a single converted
value when writing 32-bit BOSS streams.

There is an analogous counterpart to this arrangement when a 64-bit
image reads a 32-bit BOSS stream. Since there is a mandate that
any integer that can be represented as a small integer must be
expressed so, the 32-bit BOSS reader for 64-bit converts incoming
LargeIntegers to SmallIntegers when appropriate. An equivalent
process is applied to Doubles so that they become SmallDoubles
when possible.

BOSS Performance of Writing Single Objects
When writing one object at a time, performance can be dominated by
two global object lookups for Smalltalk and Processor. A switch has
been added to the class side of AbstractBinaryObjectStorage to control
whether these lookups should be cached or not. The default is not to
cache, which is the old behavior. The switch is called
shouldUpdateRegistryObjects. Tests of this facility suggests that their run
time has been reduced by a factor of two.

Using BOSS to Write Compiled Methods
Previously, a failure to retrieve source code when writing methods
with BOSS would result in notifiers from class SourceFileManager
stating errors such as "the parcel folder is invalid" or "the sources file
is invalid". These warnings have been turned into an exception by AR
55940, and now BOSS squelches such warnings while writing
objects.

Compiler Changes
In release 7.7, the compiler has been modified to no longer generate
the short compiled code form.

Short compiled code was an optimization which allowed to encode
bytecodes of a method (or a block) as one or two SmallIntegers
instead of a normal ByteArray instance, assuming the entire body of
the bytecodes would fit into those. There's a reasonably large number
of compiled code instances in an average image that fit the criteria
(on the order of tens of thousands of those). Consequently this form
of encoding provided memory savings that were significant enough
back when short compiled code was introduced that the cost of
increased complexity in various parts of the system that this causes
was worth it. With the increasing abundance of memory in today's
2-20 VisualWorks

Base Image
computers the space saving argument is growing weaker. At the
same time the SmallInteger-based representation is getting more
complicated with the arrival of 64-bit platforms. Therefore we decided
to abandon the short compiled code form. We have done the
following to achieve that:

• Converted all the existing short compiled code instances in the
shipping images to normal form (using a ByteArray).

• The compiler does not produce short compiled code anymore.

• Any short compiled code stored in parcels (or binary published
versions in Store) will be converted on load.

Based on some informal polls and measurements we've conducted
the average increase of the memory footprint of an image seems to
be somewhere between 1.5% to 2% of the original image size. It also
seems that most of the increase could be clawed back by sharing
identical bytecode arrays among the compiled code instances and we
are considering providing the option to do so in some form in the
future. In the meantime it's worth noting that RuntimePackager
already provides the ability to do that as part of the packaging
process.

API for Formatting Selectors
The typo 'formating' was fixed in the following three selectors:

InputFieldView>>shouldUseFullFormating
PrintConverter>>hasSpecialFormating
InputFieldView>>renderTextFor:useFullFormating:

In release 7.7, these have been renamed as:

useFullFormatting:
hasSpecialFormatting
renderTextFor:useFullFormatting:

Application code that uses this API needs to be changed.

Custom Memory Policies
The standard installed MemoryPolicy is set so that memory is
requested from the operating system in 1 MB blocks. If an application
regularly creates objects that are larger than 1 MB, it is possible for
memory fragmentation to develop if an application runs over an
extended period of time. The result is that the virtual machine may
Release Notes 2-21

VW 7.7 New and Enhanced Features
refuse to instantiate a moderately large object (e.g. a 1 MB string)
even though there seems to be enough free memory to allocate the
object.

A custom memory policy can be made to ensure that the blocks of
memory requested from the operating system are larger than the
application’s largest objects.

While these modifications can be made directly to the
MemoryPolicy>>setDefaults method, or by executing code in a
workspace, the preferred approach is to create your own subclass of
MemoryPolicy that overrides setDefaults and has new settings in it after
calling the super version of the method.

For details, see “Creating a Custom Memory Policy” in the
VisualWorks Memory Management technical note, /doc/
TechNotes/vwMemoryMgmt.pdf.

The code below is an example of setting the block size requests to be
16 MB via workspace code:

ObjectMemory
installMemoryPolicy:

(MemoryPolicy new setDefaults;
preferredGrowthIncrement: (2 ** 24);
growthRetryDecrement: (2 ** 15);
freeMemoryUpperBound: (2 ** 25)).

The call to installMemoryPolicy: is critical to ensure that the old
MemoryPolicy is removed from the system and the new one is hooked
in. If you make changes to MemoryPolicy>>setDefaults, then a new
instance of MemoryPolicy should be passed to ObjectMemory
class>>installMemoryPolicy:. If you take the preferred approach of
creating your own subclass of MemoryPolicy, then an instance of your
subclass should be passed in. In the latter case, the setting of
preferredGrowthIncrement, growthRetryDecrement, and
freeMemoryUpperBound shown above will be unneeded if you have
those values set in your subclass's implementation of setDefaults.

If testing shows that the errors go away after changing the setting of
the installed MemoryPolicy, the changes should be included and
installed during your application's start-up. Alternately, the changes
could be installed in a base image of your application via workspace
code, and the image saved.

In images that create objects of sizes less than 16 MB, it may be
better to set ObjectMemory currentMemoryPolicy
preferredGrowthIncrement to 16 megabytes by modifying
2-22 VisualWorks

Base Image
MemoryPolicy>>setDefaults. This change will create larger old space
segments, and thus fragmentation will be addressed more effectively
by the compacting garbage collection.

Unfortunately, the current memory monitoring tools make it difficult to
see all the (at times subtle) interactions between the variables
referenced in MemoryPolicy>>setDefaults. For instance, if
preferredGrowthIncrement is 16 MB, then growthRetryDecrement should
probably be larger than ten thousand. In addition, the
freeMemoryUpperBound amount should be roughly twice as large as
preferredGrowthIncrement. This modification makes it much more
difficult for the image to enter into a tight “get more memory” then
“release the memory just allocated” cycle. Avoiding this situation may
be important because the memory policy could decide to do a
garbage collection before each grow, resulting in stiff performance
penalties. There may be other such interactions that may need to be
monitored to ensure optimal performance.

For the sake of illustration, and assuming no other values need to be
changed, the values in MemoryPolicy>>setDefaults could be modified
like this:

preferredGrowthIncrement := 2 ** 24.
growthRetryDecrement := 2 ** 15.
..
freeMemoryUpperBound := preferredGrowthIncrement * 2.

To install the new memory policy, evaluate:

ObjectMemory installMemoryPolicy: MemoryPolicy new setDefaults
The workspace code below was used to test these new settings.
Before the changes, a No space available exception is raised because of
memory fragmentation. After the changes, the workspace code will
still fail, but the cause will be because VisualWorks is truly out of
memory.

There is a technical explanation after the following code that explains
the test failure when the standard VisualWorks MemoryPolicy is
installed:

mutex := Semaphore forMutualExclusion.
garbage := OrderedCollection new.
ObjectMemory garbageCollect.
maxGarbage := ObjectMemory currentMemoryPolicy
memoryUpperBound

- ObjectMemory current oldDataBytes
- ObjectMemory current permDataBytes
bitShift: -20.
Release Notes 2-23

VW 7.7 New and Enhanced Features
threadA := [
[

| litter |
[garbage size > maxGarbage] whileTrue:

[mutex critical: [garbage removeFirst]].
litter := ByteArray new: 524288.
mutex critical: [garbage add: litter]

] repeat
] forkAt: 40.
threadB := [

[
| litter |
[garbage size > maxGarbage] whileTrue:

[mutex critical: [garbage removeFirst]].
litter := ByteArray new: 1048576.
mutex critical: [garbage add: litter]

] repeat
] forkAt: 40.
threadK := [

[mutex critical: [garbage size = maxGarbage]] whileFalse:
[(Delay forSeconds: 1) wait].

threadA terminate
] fork

Note that after a bit, threadB fails. At that point, in the particular
evaluation, a compacting garbage collection was done after which
there was about 200 MB of free space. Apparently, there is no 1 MB
memory chunk anywhere because:

ObjectMemory current availableContiguousOldSpace
evaluated to 69592. Note that, even though:

ObjectMemory current oldDataBytes
evaluates to 337028888 (meaning about 200 MB of free space),

ObjectMemory current oldBytes
evaluates to 501426932. In other words, there is free space, it
appears to be really fragmented, and the image cannot grow any
further. These values can be use as a discriminating factor to
diagnose memory fragmentation problems.

As an additional note, during testing you may find that:

ObjectMemory current oldDataBytes
returns a value that is smaller than:

ObjectMemory current availableContiguousOldSpace
2-24 VisualWorks

Base Image
This is because oldDataBytes answers the number of bytes used in old
space, as opposed to the size of old space. For the size of old space,
execute:

ObjectMemory current oldBytes
Now, as stated above, the above workspace code will always fail, but
the reasons change depending on the settings of the installed
MemoryPolicy. The following data was collected after evaluating the
workspace. The first run used the standard VisualWorks
MemoryPolicy. The second run was done after restarting the image,
and then making the suggested changes to the settings of the
MemoryPolicy. It was gathered after the workspace failed, but before
closing the error walkback window.

Without any changes to the MemoryPolicy:

ObjectMemory current availableContiguousOldSpace. 69,592
ObjectMemory current oldDataBytes. 406,396,476
ObjectMemory current oldBytes. 517,991,652

With the suggested changes to the MemoryPolicy:

ObjectMemory current availableContiguousOldSpace. 413,612
ObjectMemory current oldDataBytes. 516,494,976
ObjectMemory current oldBytes. 519,015,292

Using the standard VisualWorks configuration, less oldDataBytes is
used up, in part, because there is less availableContiguousOldSpace.
This is because memory fragmentation has become a significant
problem. If the suggested changes are made to the MemoryPolicy,
then more of the oldDataBytes is used, and there is more
availableContiguousOldSpace.

Finally, if you have not directly modified the values in
MemoryPolicy>>setDefaults, you can reset the installed MemoryPolicy to
use the system defaults by executing the following code:

ObjectMemory installMemoryPolicy: MemoryPolicy new setDefaults

Resolution of Font Issues under Fedora
Fedora 11 does not, by default, install the X.org fonts, and thus
doesn't have any of the fonts which VisualWorks wants to use for
system fonts (in particular: Helvetica).

To resolve this issue, the 7.7 release of VisualWorks includes
changes to the TextAttributes class methods, to add the name of a font
that is included in the Fedora distribution. Installing the X.org fonts
will provide the missing fonts as well.
Release Notes 2-25

VW 7.7 New and Enhanced Features
ExternalInterface Classes in Store
Release 7.7 includes a number of changes in the way ExternalInterface
classes are handled by Store. Previously, ExternalInterface classes
made loaded packages appear unreconciled to their versions in Store
in the following cases:

• Each ExternalInterface subclass imports an associated shared
variable, named by appending 'Dictionary' to the class' name. All
ExternalInterface dictionaries are now imported privately on all
routes of creation and loading. Previously, it was possible for the
private modifier to be flipped in some cases, creating a spurious
non-reconciliation.

• Previously, these shared variables were generated into the
package containing the namespace of the owning class. Thus
loading a package with an ExternalInterface subclass could make
another package, containing the namespace of that class, look
dirty. In VW7.7, these dictionaries are generated into their
classes' packages.

• Once generated, these shared variables are saved to Store on
publish, just like other shared variables. There is no requirement
to upgrade existing code to relocate these shared variables to
match the new defaults. The following remarks will help you
upgrade if and when you decide to do so.

• If you have saved ExternalInterface subclasses with non-private
imports of their shared variables, you will see that changed to
private when you next have occasion to publish the package.

• If you have already moved a shared variable from its
namespace's package to its class' package (the logical place for
it) then you will no longer see spurious overrides of it between its
name space's package and its class' package. (No upgrade is
needed.)

• If you have previously saved a shared variable in its name
space's package (the easiest option until now), then, since the
name space's package is loaded before the class' package, no
new shared variable is generated. There is no need for you to
change any such existing code until and unless you wish to do
so. At any point you can move such a shared variable from the
package of its name space to the package of its class and
publish.
2-26 VisualWorks

GUI
• If the move is between two top-level packages, you can load the
new versions into other images whether or not you are loading
over old versions.

• If you publish a move between two packages in a bundle and you
then load the new version into another image that has the old
version loaded, you must load the later package, then the earlier,
before loading the whole bundle. (Otherwise the atomic load of
the bundle would not recognise that the delete of the shared
variable in the earlier package had any obligation to relink its data
to the shared variable added in the later package. Nor would it
regard the class as having changed, so it would not repopulate
the externals dictionary by recompiling the class' methods.)

GUI

MenuItem label API
MenuItem>>label is no longer constrained to return a String object, but
may return a Text object, if a Text has been set as the label. This is
particularly important for VisualPart subclasses that may use MenuItem
instances to compose their labels, so that any emphasis provided to
the MenuItem label will not be lost.

Creating MenuItems with Text labels can only be accomplished
programmatically, not through the UI Painter tools.

An application which programmatically may have set Text objects as
the labels of MenuItems and then expected to query the asString
equivalent, would no longer get a String.

Customers should examine their code to ensure that any tests to
MenuItem>>label such as

aMenuItem label = 'Some string'
are changed to

aMenuItem label asString = 'Some string'
or similar to ensure their tests continue to work. MenuItems may have
their label set programmatically to an instance of Text but a MenuEditor
cannot as yet open, set, or install a resource with an item containing
a Text label.
Release Notes 2-27

VW 7.7 New and Enhanced Features
List Modernization/Improvements
A number of updates have been done to the list widget, in an attempt
to "modernize" its appearance and interaction behavior:

• List widgets have had their default lineGrid increased slightly

• They now show (and allow selection of) the lower most item in
the list, even if it is only partly visible due to clipping

• List widgets no longer toggle selection when selecting an already
selected item. The item will remain selected unless the control
key is pressed (command key on Mac OS X) when selecting, in
which case it may be toggled off. This behavior does not apply to
lists which have been configured using the UIPainter to disable
the Use Modifier Keys for Multi Select

• A right-button click which opens a menu on a list, will first select
the item below the mouse pointer first

• When a programatic change is made to the selection(s) of a
(Multi)SelectionInList, the associated view will attempt to make at
least one of the new selections visible if none currently is.

Focused Widget Handles Shortcuts First (Not ApplicationModel)
In VisualWorks 7.6 and previous releases, it's been the case that we
don't resolve "shortcut keys" in the proper order. They enter the
scope of the window, and are instantly siphoned off into the menu
bar. If the menu bar does not handle them, they are then passed to
the current keyboard consumer.

We now believe this is incorrect (and think other widget kits bear us
out, e.g <http://devworld.apple.com/documentation/Cocoa/Conceptual/
EventOverview/EventArchitecture/EventArchitecture.html#//apple_ref/doc/uid/
10000060i-CH3-SW11>), that the resolution goes first to the current
keyboard consumer and then is passed back up the widget tree.

In 7.7, the keyboard handling has been updated to be done like
mouse events. The current keyboard consumer is asked for its
handlerForKeyboardEvent: (analogous to handlerForMouseEvent:), and on
a non-nil return, it is asked to handleKeyboardEvent: (analagous to
handleMouseEvent:). And then the menu bar (if appropriate) is
negotiated the same way. Finally, so that old keyboard consumers
continue to work, even though they haven't implemented a proper
handlerForKeyboardEvent: yet, they are dispatched again. The very
focused result is that when you press Ctrl-D or any text editor bound
shortcut in the debugger, it will go to the text editor first.
2-28 VisualWorks

GUI
As a result of this, we found that Ctrl keys really need, when being
bound to a DispatchTable to include the #(#control) modifiers array.

Rearchitect ProtocolItemNavigatorPart>>iconFor:
In release 7.7, ProtocolItemNavigatorPart>>iconFor: has been reworked
to use toolListIcon and to be more pluggable.

The iconFor: method has been frequently patched by customers, in
order to make their own tools work properly. To simplify this, the
method has been changed to use a <method tag> based
mechanism.

If your tools patch iconFor:, you may want to consider removing the
patch, and using the new mechanism.

Keyboard Shortcut Changes
In an attempt to make the VisualWorks text editors more standards
compliant, some default key mappings have been changed:

• Ctrl-F is no longer mapped as "insert ifFalse:" but instead invokes
the Find dialog

• Ctrl-L which used to invoke the Find dialog, no longer does

• Ctrl-T is no longer mapped as "insert ifTrue:"

• Ctrl-G is no longer mapped as "insert :=", but instead invokes the
Find again operation

• Ctrl-Shift-G invokes the Find previous again operation

• Ctrl-Shift-F now inserts ifFalse:

• Ctrl-Shift-T now inserts ifTrue:

The VisualWorks distribution includes the unsupported goodie
MagicKeys which you can use to add to these changes, or restore
your old favourites if you wish.

Removal of Alt/Meta Key Shortcuts for Text Editor
Text editor had default Alt and Meta key shortcut mappings which
paralleled many of the common control-key commands. For example,
Alt-C, Alt-X, and Alt-V were mapped the same as Ctrl-C, Ctrl-X, and
Ctrl-V (copy, cut, and paste). These have been removed.

Applications that still want these extra short cuts may load the
EdtingWithAltAndMetaKeys parcel to restore the functionality.
Release Notes 2-29

VW 7.7 New and Enhanced Features
Character Position Tab Stops
Tab stops may now be set by character position from the left margin
rather than by pixel distance. Text alignment by character position
within document margins is much more useful and common in
typesetting.

Set character position tabs by sending the message #useTabPositions:
in place of #useTabs: to the instance of TextAttributes or
VariableTextAttributes used to define formatting for your ComposedText
object. Similarly, if you wish to define character position tabs for a
Document send #useTabPositions: in place of #useTabs:. Specify an
array of character positions for each tab.

Application Labels
Application labels may now be obtained from an instance based
accessor method. If you select Supplied by Application in the Painter Tool
and provide a selector name in the Message field, the content of the
label will now be obtained at runtime from an instance accessor
method in your application, if any is defined. If an instance accessor
method is not defined the label content will be still be obtained by the
usual means from a class accessor method in your application, if it is
defined, a definition appearing in the UIBuilder labels dictionary, or the
ApplicationModel’s DefaultLabels shared variable.

Tools

Updated Icons
Many of the VisualWorks IDE icons have been updated to be modern
alpha blended icons. Unfortunately, not everything in the IDE has
been updated, but most of the more prominent tools have. Parts of
the IDE that have been updates include:

• Main application icon

• Error notifier icon

• Main launcher icons (some older tools that place icons in the
launcher dynamically may place older icons there)

• Code Browser

• Inspector

• Workspace
2-30 VisualWorks

Tools
• Debugger

• Store Merge Tool

• Store Published Items

• Store Publish Dialogs

• Object icons that show up in the Inspector and Code Browser
(browse the package Tools-IDE-ListIcons too see these gathered
in one spot)

Minimized Windows under OS X
On Mac OS X, windows that have been minimized to the dock no
longer show a magnified application icon in the dock; rather they do
the "standard" thing by showing a miniaturized version of the window
contents with a small application icon superscripted to it. This is done
by simply ignoring the icon installation primitive on the OS X platform.
Applications that wish to have the old behavior, need to arrange for
the primitive to be called. See the methods Window>>setIcon:mask:
and Icon>>installOn:.

New Prerequisites Interface
The IDE tools for viewing and manipulating package prerequisites
have been completely redone. The new functionality is discussed in
the “Specifying Prerequisites” section of the “Organizing Code in
Store” chapter of the Source Code Management Guide.

Because the new IDE provides a WYSIWYG interface for
manipulating component prerequisites, it exposed a number of long
standing issues in the legacy model of prerequisites. Historically,
these were kept in two seperate property vectors, one called
#developmentPrerequisites (used when loading from Store) and
#deploymentPrerequisites (used when loading via Parcel or when
loading binary from Store). VisualWorks 7.7 now stores this
information in a single property called #prerequisiteDescriptions. This is
a sequence of arrays, where each array is 2n list of key-value pairs.
This scheme allows us to specify richer information and to support
future enhancements (or for customers to add their own data to a
PrerequisiteDescription). First-class PrerequisiteDescription objects are
synthesized from these property arrays.

This new scheme is mostly backwards compatible, with one caveat:
when an older package is encountered with no
#prerequisiteDescriptions, the information is inferred from the former
two properties (#deploymentPrerequisites and
Release Notes 2-31

VW 7.7 New and Enhanced Features
#developmentPrerequisites). Unless, a change is actually made to the
prerequisites via the tools, no #prerequisiteDescriptions will be added.
This means that pre-7.7 components with the #prerequisiteDescriptions
property may safely be loaded.

When a change is made to #prerequisiteDescriptions, the old values are
updated accordingly. This means that edits made to the prerequisites
of a component, will be seen when loading the component into older
vesions of VisualWorks.

The single caveat is that if changes are made to the prerequisites of
a component using 7.7, and then the package is loaded into 7.6 or
earlier and further changes to the prerequisites are made there, then
the two prerequisites specifications will be out of sync.

Inspector Enhancements (Bulletproofing and Proxies)
Various interactions between object and inspector have been refined
to be safer, in particular to allow proxy objects to live more robustly
within the inspector, and to avoid malformed objects from wrecking
the inspector.

Much of this is accomplished via the new tool API
aBlockClosure>>toolSafeIn: aDuration else: anAlternativeBlock. This method
allows a BlockClosure to be evaluated with an upper limit of aDuration
before it is interrupted and anAlternativeBlock's value is used. Further
aBlockClosure's evaluation has all errors trapped, and for good
measure, the process doing the computation is watched for what
looks like infinite recursion.

Browser Enhancements
In release 7.7, the System Browser's code editing pane includes an
additional right-click menu item, Add method, which appears when the
cursor is positioned inside the name of a method that the browser
knows to be unimplemented for the receiver, and when the receiver is
something that we can reasonably infer. If the receiver is a literal, or
self, super, or a class name, the menu item will open a new code
editing pane in the appropriate receiver to allow you to define that
new method.

Note that this menu item only appears when the cursor is inside the
relevant method name and not when you simply right-click on the
name if the cursor is elsewhere.
2-32 VisualWorks

Tools
UIPainter Auto-loaded from Browser Edit Button
When a developer attempts to Edit a UI resource (window spec,
image, menu), a confirmation dialog confirms it is OK to load the
UIPainter package so that editing may take place, rather than simply
informing them it isn't loaded.

MiniChangeSetManager Removed as Default Item in Launcher
MiniChangeSetManager is no longer placed by default in visual.im as a
dock item in the Launcher window. A parcel by the same name exists
and may be loaded by those who wish to use MiniChangeSetManager
as a dock item from the Launcher.

Store Progress Dialogs
Uses of the NotifierDialog that opens to show progress during Store-
related transactions have been removed. Rather than opening a
separate window, an "in window" widget is now temporarily added to
the originating window to give feedback to the Store load, reconcile,
and publish operations.

See references to StoreProgressOverlay for examples of how to include
Store feedback in your own tools.

Initial Database Links
Our core parcels and Base VisualWorks packages no longer have
database links to Cincom's internal databases embedded in them.
(Some contributed parcels are supplied with links to the Cincom
Open repository or other public databases, since you can access
these databases and so links to them have some information value to
you.)

Thus, if your process of preparing base images for your own use
includes publishing the base to your local repository, the base
packages in your reconciled images will show links only to your own
database(s).

Refactoring Interaction Changes
Some changes have been made to various code browser refactoring
options:

• Remove and Safe Remove menu options coerced into one menu
option. If the item removal has no system effects, it is removed
directly. If there are references to the removed item, these are
Release Notes 2-33

VW 7.7 New and Enhanced Features
noted in a confirmation dialog, which also allows the references
to be browsed.

• Renaming a method, for which there are all multiple
implementations of the same name, will now raise a confirm
dialog that allows the developer to edit the changes, so that they
can a) rename none (Cancel) b) rename all c) rename some by
tuning the change set with the show changes dialog. Also, the
new method name dialog, allows the developer to reorder
arguments by drag and drop as well as use the arrow buttons at
the right.

• Add and Remove Parameter dialogs now allow the developer to
modify the new method selector. Additionally, they may reorder
the arguments. They provide additional warnings and information
about the target selector (such as if it affects polymorphic
signatures, etc).

Restore Original RBFormatter
In VisualWorks 7.6, the original RBFormatter was replaced as the
default formatter by the RBConfigurableFormatter. 7.7 reverses this and
makes the RBFormatter once again the default formatter. This
formatter has been found to be nearly the same as the formatting
style described by Kent Beck in "Smalltalk Best Practice Patterns". It
is also faster than the configurable variant.

The RBFormatter now has some limited settings for the most
commonly found formatting preferences. It allows developers to set:

• the frequency of periods (minimal, or at the end of the methods,
or even at the end of blocks)

• the number of blank lines (minimal, or below method comments,
or even more)

• the amount of white space (minimal, or after parentheses, or
even more)

A separate parcel, RBConfigurableFormatter, provides the
RBConfigurableFormatter for those wishing to use it.

Format on View and Format on Save Options
The browser code editing panes may now be set to format on save
(accept) or even format when viewing. Set the options in the Settings
tool under the formatting section. This setting does not yet extend to
code edits made in the debugger.
2-34 VisualWorks

Tools
MethodDefinition>>toolListIcons is Now Extensible
In addition to adding your own class side toolListIcon methods for your
own classes, to give them icons in the code browser and inspector,
you can now add icons that show up conditionally for methods in the
method list pane.

Add a method to MethodDefinition which returns either nil or a
VisualComponent (preferably of 16x16 size). Include the method tag
<icon: N> where N is a number that gives the precedence of your
conditional icon. For examples, look in the icons method category of
MethodDefinition.

Browser List of Instance Variables is Consistent with Inspector
In 7.6, the inspector was changed to show instance variables in
alphabetical order, with bold emphasis applied to those values that
were defined in the receiver's class. This same scheme is now used
in the browser for the Inst Var list.

One-Shot Breakpoints
There is now a menu option to add "single shot" breakpoints. These
act as a breakpoint on the first invocation, and then return to normal
code execution. They remain inserted after the first invocation, but
are disabled. You may reenable them for further single shot
breakpoints.

Customers who use the ExtraEmphasis goodie will see new icons for
breakpoints as well.

Refactoring Browser Menu Caching Removed
Refactoring Browser menus are always computed dynamically now.
Tools that extend those menus no longer need to send flushMenus.
Additionally, 20+ browser menu actions have been moved from menu
specs to tagged method implementations.

Changes to Browser Package Name Annotations
Package name annotations in the System Browser such as +, -, and *
have been removed. The + annotation on the package icon shows if
the package (or bundle) has changes that would be lost if it is not
published in one or more repositories, regardless of which
repositories it is reconciled against.
Release Notes 2-35

VW 7.7 New and Enhanced Features
Package names are also annotated with a number (displayed in
orange) indicating a change count. That is, the sum of "deltas"
against the original version, where a delta can be a change, an add,
a removal, a rename, etc.

Better Detection of Embedded URLs in Text Editors
Various HTTP escape sequences are now better handled by the
automatic link highlighter.

Inspector IEEE Floating Point Decomposition
Inspectors of floating point objects (Float, Double, SmallDouble), now
have a pseudo attribute that shows the IEEE-754 fraction
decomposition of the receiver.

Source Files Manager
In the past, class SourceFileManager could open warning windows
when either parcels or the source file could not be accessed. In
release 7.7, this mechanism has been changed so that the warnings
are opened via a new subclass of Warning, SourceFileManagerWarning.
BOSS has been changed to handle this warning so that writing
compiled methods for which no source code is available does not
result in several warnings coming up.

Known Limitations of the ImageWriter
Beginning with release 7.7, a 64-bit version of the base image is
included in the /image subdirectory of the standard distribution. This is
now the preferred way to run the 64-bit version of VisualWorks.

Using the ImageWriter, it is also possible to convert an existing 32-bit
into a 64-bit image. Currently, this process has a number of
limitations, including:

• Object identity is subject to change. For example, Doubles may
become SmallDoubles and LargeIntegers may become
SmallIntegers.

• Object hashing is subject to change too. For example, a set of
large integers may become a set of small integers. Since
SmallInteger>>hash returns self, then such collections need to be
rehashed. This is done during image startup, but reading
collections via BOSS may require special handling. Furthermore,
instances of HandleRegistry are assumed to contain objects the
2-36 VisualWorks

Tools
hash values of which do not depend on identityHash values being
constant across the conversion.

Currently, the ImageWriter will not rehash instances of
HandleRegistry or any of its subclasses. This means that a newly
created 64-bit image will have to be able to clean out any of the
handle registries upon startup. Since HandleRegistry is a hashed
collection based on equality, and since identityHash changes
between 32- and 64-bit images, leaving handle registries as they
were on a 32-bit image assumes that no handles are sending the
message identityHash for the purposes of calculating their hash
values.

Advanced Tools Profilers and Stack Spills
The profilers in the Advanced Tools parcels have been updated to
provide statistics about the number of stack spills observed during
execution.

To explain, recall that the VisualWorks' VM uses a native stack to
execute Smalltalk processes. When the space allocated to this stack
runs out, however, the VM allocates stack frames inside the image as
would happen in Smalltalk-80. This is not done in order to continue
execution from the image space. Instead, the goal is to make room in
the native stack space to resume execution there.

When native stack spills occur frequently, it leads to significant
inefficiencies because allocation of execution frames is very
expensive compared to allocation in the native stack space.
Furthermore, an additional side effect is that when numerous stack
spills occur the VM will have to garbage collect the many allocated
stack frames when they become unused.

The amount of memory the VM will allocate to the native stack can be
tuned at startup. This is done via a float multiplier stored at index 4 of
this array:

ObjectMemory sizesAtStartup
The default value is 1.0, meaning 20kb. However, measurement
results obtained with an SUnit benchmark suite indicate that, for
processes that have an average stack depth of between 20 and 50, it
is much better to set this multiplier to the maximum amount of
concurrent Smalltalk processes // 5.
Release Notes 2-37

VW 7.7 New and Enhanced Features
In other words, if you have 1000 concurrent processes that are
expected to execute simultaneously, the native stack size multiplier
should be set to 200.0. To make the change become effective,
evaluate:

ObjectMemory sizesAtStartup: modifiedArray
then save the image and restart it. The performance improvement
factor can easily reach 10x. However, the multiplier should not be
increased too liberally because it will slowly become
counterproductive due to the management associated with it.

As always, measuring is a good thing. To make the evaluation of this
multiplier easier, the profilers in the Advanced Tools parcels have
been updated to notify the number of stack spills observed during the
measurement. Note that a few spills are generally harmless, and that
it is their excessive occurrence what harms performance the most.

Two other figures are also available in the profilers. The first one is
the count of mark stack overflows. This informs the number of times
that the new space was not large enough to hold the mark stack
during a mark and sweep garbage collection pass. When this
happens, the garbage collection goes through the equivalent of
finishing a portion of the job and then restarting from where it left.
Depending on the application this can lead to slower garbage
collection operation. If justified by measurements, the size of the new
space should be adjusted by increasing indices 1 and 2 of the
sizesAtStartup array.

Finally, there is also a count for weak object list overflows. When
these occur, the native code cache space is not enough to hold weak
objects and ephemerons during a mark and sweep garbage
collection pass, and as a result some of them will not be queued for
finalization. The value of this figure is the number of objects that
could not be added to the list, and it can be used to drive the tuning
of the native code space size when necessary.

Menu UI Compatibility
In VisualWorks 7.3, an optional MenuUICompatibility parcel was
introduced to address incompatibilities of VisualWorks menu bar
menus with host OS menu feel requirements. With release 7.7, this
functionality has been integrated and the parcel removed.

The compatible behavior integrated from MenuUICompatibility includes:
2-38 VisualWorks

Database
• On Windows, a mouse drag (i.e., mouse button hold and move)
to a menu item with a submenu will not close the menu or
submenu upon button release.

• On Windows only, menus highlight disabled menu items; other
platforms skip past disabled menu items entirely.

• MacOS X menus will not wrap highlight of menu items for key up/
down navigation.

• Unix platforms do not highlight menu items while moving the
mouse cursor over an item; the mouse button must be down to
do this.

• Except on Unix, submenus open after about a 0.3 second delay
when the mouse cursor rests on their parent item.

• For the Motif and Windows look, a menu and its submenu should
remain open after a mouse click and release on a menu item that
opens a submenu.

• On Mac platforms, moving the mouse outside a menu to the right
should not close all submenus open.

• On Mac OS X, <Tab> and <Shift><Tab> navigate and open
menus right and left in the menu bar.

• On Mac OS X, a menu and all its submenus will not close
prematurely if the up or down arrow keys are used to navigate to
a menu item with an unopened submenu.

• For MS Windows and Motif menus, a menu item that opens a
submenu cannot become a selection itself and then close; only a
menu item without a submenu may be the menu selection.

Database

Oracle EXDI: Statement Caching
The OracleEXDI now supports statement caching. This feature is
useful when you execute the same SQL statement multiple times.
When statement caching is enabled, an existing prepared statement
handle will be reused, thus improving performance.

By default, statement caching is disabled. This feature was added in
Oracle 9.0.0 and later. The VisualWorks EXDI for Oracle is
compatible with both pre-9.0.0 versions and later.
Release Notes 2-39

VW 7.7 New and Enhanced Features
To enable and use statement caching:

| conn sess |
conn := OracleConnection new.
“Check to see whether statement caching is supported by the installed
Oracle client.”
conn supportStatementCaching

ifFalse: [self error: 'Does not support caching.'].
“Enable statement caching.”
conn useStatementCaching: true.
conn environment: 'oracleDB';

username: 'username';
connect: 'password'.

“Set the size of the statement cache.
conn setStatementCacheSize: 30.
sess := conn getSession.
 1 to: 20 do: [:i|

sess prepare: 'INSERT INTO testtb VALUES(?, ''test'')'.
sess bindInput: (Array with: i).
sess execute.
ansStrm := sess answer].

Oracle EXDI: Adjustable Buffering for LOBs
When reading/writing LOBs, the size of the buffer is now settable
from an instance of OracleSession. You can adjust the buffer size
based upon the lengths of LOB you are handling.

For example:

| conn sess |
conn := OracleConnection new.
conn username: 'userid';

password: 'pwd';
environment: 'OracleDB'.

conn connect.
conn begin.
sess := conn getSession.
"Better set this, otherwise the returned LOBs will have the default size:
4000 bytes."
sess defaultDisplayLobSize: 1130729.
"Use the default lobBufferSize 32768."
sess answerLobAsValue.
sess prepare: 'select * from testlob'.
sess execute.
ansStrm := sess answer upToEnd.
"Increase the buffer size, it will improve performance for Large LOBs."
sess lobBufferSize: 524288.
2-40 VisualWorks

Database

sess prepare: 'select * from testlob'.
sess execute.
ansStrm := sess answer upToEnd.
sess disconnect.

conn rollback.

Support for OEM Encoding
In release 7.7, support for OEM code pages has been included in the
Oracle, ODBC, MySQL, and CTLib EXDIs. These code pages are
most often used under MS-DOS-like operating systems. Examples
include: 437 - The original IBM PC code page; 737 - Greek; and 775 -
Estonian, Lithuanian and Latvian.

OEM encoding must be explicitly enabledvia the connection object.
Thus, this addition to the Oracle EXDI has no effect on existing
customer code.

For example, to use OEM encoding with an Oracle database:

| conn sess |
conn := OracleConnection new.
conn username: 'username';
 password: 'password';
 environment: 'env'.
conn connect.
"Drop the test table."
sess := conn getSession.
sess prepare: 'drop table test_umlauts';
 execute;
 answer.
"Create a test table."
sess prepare: 'create table test_umlauts (cid number, cname
varchar2(50))';
 execute;
 answer.

"Turn on OEM encoding."
conn turnOnOEMEncoding.

"Insert test data using OEM encoding."
sess prepare: 'insert into test_umlauts values(10, ''ä, ö, and ü'')';
 execute;
 answer.

"Turn off OEM encoding."
Release Notes 2-41

VW 7.7 New and Enhanced Features
conn turnOffOEMEncoding.

"Insert test data using normal encoding based upon NLS_LANG."
sess prepare: 'insert into test_umlauts values(11, ''ä, ö, and ü'')';
 execute;
 answer.

"Turn on OEM encoding."
conn turnOnOEMEncoding.

"Retrieve the test data, record with cid=10 will be displayed correctly."
sess prepare: 'select * from test_umlauts' ;
 execute.
ans := sess answer.
ans upToEnd.

"Turn off OEM encoding."
conn turnOffOEMEncoding.

"Retrieve the test data, record with cid=11 will be displayed correctly."
sess prepare: 'select * from test_umlauts' ;
 execute.
ans := sess answer.
ans upToEnd.

ODBC EXDI: Enhanced Data Type Support
In release 7.7, the new SQL Server data types varchar(max),
nvarchar(max) and varbinary(max) are supported.

ODBC EXDI: Improved Connection Reliability
In this release, the handling (setting/getting) of connection options is
improved.

ODBC EXDI: Support for Multiple Active Result Sets (MARS)
When using older SQL Server ODBC drivers, sharing a connection
among multiple sessions has long been an issue. Attempting to do
this causes problems for multi-thread applications.

The native SQL client provided with SQL Server 2005 seems to
provide a way to get around it: MARS (Multiple Active Result Sets).

MARS is available for use if you set a connection attribute
SQL_COPT_SS_MARS_ENABLED to be SQL_MARS_ENABLED_YES. Note
that attribute must be set before connecting to a data source.
2-42 VisualWorks

Database
With a multi-threaded (multi-session) application that shares the
same connection, MARS is supported through interleaving. With
multiple connections and a single session on each connection,
MARS is supported via parallel execution.

For example:

| sem rc xif conn b1 b2 b3 |
"Multiple sessions sharing one connection."
sem:= Semaphore forMutualExclusion.
conn := ODBCThreadedConnection new.
"Getting the interface."
xif := conn class xif.
"Setting the attribue before connecting."
rc := conn setConnectionOption: #SQL_COPT_SS_MARS_ENABLED
value: (xif SQL_MARS_ENABLED_YES).
"Getting the attribue to verify."
rc := conn getConnectionOption: #SQL_COPT_SS_MARS_ENABLED.
"Connecting to a data source."
conn username: 'username';

password: 'password';
environment: 'DSN'.

conn connect.
"Creating a Block."
aBlock := [:tableName || sess ansStrm |
sess := conn getSession.
sess prepare: 'select * from ', tableName.
sess execute.
ansStrm := sess answer.
(ansStrm == #noMoreAnswers) ifFalse: [
[ansStrm atEnd] whileFalse: [|row|
row := ansStrm next.
sem critical:

[Transcript show: tableName,': '.
Transcript show: row printString; cr.]]].

].
"Run the Block in multiple threads."
b1 := aBlock newProcessWithArguments: #('dept').
b2 := aBlock newProcessWithArguments: #('emp').
b3 := aBlock newProcessWithArguments: #('curtest').
b1 priority: 30.
b2 priority: 30.
b3 priority: 30.
b1 resume.
b2 resume.
b3 resume.
Release Notes 2-43

VW 7.7 New and Enhanced Features
MySQL EXDI: Refactored Connection and Session Classes
Prior to VisualWorks 7.7, there were 3 connection classes in the
MySQL EXDI: MySQLAdminConnection, MySQLHybridConnection and
MySQLConnection, and 3 session classes: MySQLAdminSession,
MySQLHybridSession and MySQLSession.

With the current release, these have been refactored such that there
are now only one of each: MySQLConnection and MySQLSession. This is
simpler and easier to use; it is also consistent with the architecture of
the other EXDIs.

DB2 EXDI: Default LOB Size can be Specified
Prior to release 7.7, the DB2 EXDI used a shared variable to specify
the size to retrieve LOB values, and the default value was 16M. There
were several problems with this implementation:

1 The default value is too big. The ideal way to handle LOBs is to
use their locators. We can set the default size to 4000 bytes as
we did to OracleEXDI, users can reset it to a bigger value based
upon their needs.

2 Once the shared variable is reset, it will affect all of the sessions,
it will be better if each session can set its own retrieval LOB size.

3 In a multi-thread environment, resetting the shared variable may
cause problems if without protection.

After the change, default LOB size can be set for each session. The
following is an example of usage:

| connection session ans res clob blob clobLength blobLength |
connection := DB2Connection new environment: 'env';
 username: 'username';
 password: 'pwd';
 connect.

"Create the test table."
session := connection getSession.
session prepare: 'CREATE TABLE TestLob (a CLOB(2m), b BLOB(2m), c
INT)'.
session execute.
session answer.

"Input test data."
connection begin.
session := connection getSession.
session prepare: 'INSERT INTO TestLob (a, b, c) VALUES (?, ?,
2-44 VisualWorks

Database
?)'.clobLength := 1130720.
blobLength := 1130720.
clob := String new: clobLength withAll: $a.
blob := ByteArray new: blobLength withAll: 1.
session bindInput: (Array with: clob readStream with: blob readStream
with: 2).
session execute.
session answer.
connection commit.

connection begin.

"Retrieve 4000 bytes of data."
session := connection getSession.
session answerLOBAsValues.
session prepare: 'select * from TestLob'.
session execute.
ans := session answer.
res := ans upToEnd.
clob := (res at: 1) at: 1.
clob size.

blob := (res at: 1) at: 2.
blob size.

"Retrieve the values of the whole LOBs."
session1 := connection getSession.
session1 maxLongData: 2000000.
session1 answerLOBAsValues.
session1 prepare: 'select * from TestLob'.
session1 execute.
ans := session1 answer.
res := ans upToEnd.
clob := (res at: 1) at: 1.
clob size.

blob := (res at: 1) at: 2.
blob size.

connection rollback.

DB2 EXDI: Fetch Multiple LOBs in One Execution
In release 7.7, it is now possible to retrieve multiple LOB files at once.

For example, let’s assume that we have a folder called Test, which
contains a text file called LOBFileReference.test and a binary file calc.exe
which is the Windows calculator. In the example code shown below,
Release Notes 2-45

VW 7.7 New and Enhanced Features
these two files are inserted into the LOB columns of a DB2 table, and
then retrieved to the same folder using different file names. By
comparing the files, you will find that the retrieved files are identical to
the ones we inserted.

| aConnection aSession clobFileRef blobFileRef |
aConnection := DB2Connection new environment: 'env';
username: 'username';
password: 'pwd';
connect.
aSession := aConnection getSession.

"Create a test table."
aSession prepare: 'CREATE TABLE TestLOBFileRef (a CLOB(32k), b
BLOB(1M), c INT)'.
aSession execute.
aSession answer.

"Inserting the files into the test table."
aConnection begin.
aSession prepare:'INSERT INTO TestLOBFileRef (a, b, c) VALUES (?, ?,
?)'.
clobFileRef := DB2LOBFileReference forCLOB:
'C:\Test\LOBFileReference.test'.
blobFileRef := DB2LOBFileReference forBLOB: 'C:\Test\calc.exe'.
aSession bindInput: (Array with: clobFileRef with: blobFileRef with: 1).
aSession execute.
aSession answer.
aConnection commit.

"Retrieve the LOB files to the same folder using different file names."
aConnection begin.
clobFileRef := (DB2LOBFileReference for:
'C:\Test\LOBFileRefOutputFile.test') overwriteFile.
blobFileRef := (DB2LOBFileReference for: 'C:\Test\calcOutput.exe')
overwriteFile.
aSession := aConnection getSession.
answer := aSession prepare: 'select a, b from TestLOBFileRef where c=1';
answerLOBAsFileRef: (Array with: clobFileRef with: blobFileRef);
execute;
answer.
answer upToEnd.
aConnection rollback.
2-46 VisualWorks

Store
Store
VisualWorks 7.7 includes the first phase of Store modernization. The
main goal for the VisualWorks engineering team with regard to Store
in release 7.7 was to make it faster and amenable to future extension.

We researched many of the possible ways of accomplishing this, and
in doing so, realized that a fundamental problem was that Store had
created its own database interface built directly upon EXDI, making it
impossible to take advantage of any database specific optimizations
while remaining portable across database platforms.

Instead of trying to create a more abstract, optimization capable
interface, we chose to re-host the Store database interface on the
existing open source Glorp framework. Glorp already knows how to
do optimized queries and supports a large number of databases. This
decision brought with it the advantages of Glorp, and as it continues
to grow, Glorp support of underlying database specific optimizations
that it adopts are automatically gained by our Store interface.

Fortunately, the Glorp community had already done a large amount
of preliminary work to interface Store to Glorp. That work was the
starting point of our Store work.

In release 7.7, we have exploited the two most important speed up
opportunities enabled by Glorp: reading/loading code from a
repository, and writing to a repository.

By basing our Loading system on Glorp we were able to add a
project that was already underway: the "atomic" loading of code,
which is already a feature of parcels. Thus, we took an already well-
understood and progressing atomic loading system and added Glorp
access to it. The result is the new Store/Glorp Atomic Loader, which
we refer to simply as the Atomic loader.

VisualWorks 7.7 includes new settings for Store, that allow you to
control and even turn off the Atomic loader. By default it is turned on.
If you turn it off, you will then invoke the previous loader, which does
not use Glorp, nor have any optimizations. Internally, the whole
VisualWorks engineering team has used the Atomic loader since
January of 2009. In our and our testers’ experience, this new loader
can actually load code that the old loader could not. Of course, it
doesn't hurt that it will do so faster than its predecessor.
Release Notes 2-47

VW 7.7 New and Enhanced Features
For the general Store user moving to 7.7, the difference under the
hood for Store access will be invisible. For those users that have
extended Store in ways that have changed the underlying Store
schema, the code that they use will need to be ported to the new
Store code base so it can take advantage of Glorp. For those who
may have hand coded non-schema based optimizations, we suggest
using the new loader. We expect that such optimization changes may
no longer be needed.

A Bit of Detail
For those who want to understand how the Atomic loader works, the
following discussion may be of interest.

The old loader simply took an ordered, one-thing-at-a-time approach
to loading code from a repository. First, for a given package, either
standalone or in a bundle, it would gather up any name spaces,
compile them directly into the image, then move on to classes, then
on to shared variables, and finally methods. Each individual item
changed the image as soon as it was brought in. If the loader had a
problem resolving something, it pretty much gave up, often leaving
your image in an intermediate and barely useful state.

The Atomic loader instead takes the approach of splitting the
compiling and installing of code into two distinct phases: compile, and
load.

In the first phase, compiling, the Atomic Loader compiles units
(packages or bundles) of code into what we have come to call a
shadow environment. While it still follows the same order of battle as
the old loader, by putting compiled objects into a shadow
environment, no meaningless or uncompilable code becomes the
current definition of any class, method, shared, or name space in
your image.

Once the loader has successfully compiled all the code, it then goes
into the second phase: installing. The loader iterates over the shadow
environment, installing the code in an ordered fashion from the
shadow environment into the image, which for contrast with shadow,
we sometimes call sunshine. The biggest gain we get here is if the
loader determines that it can not cleanly install all the code in your
load request, it will (optionally, under settings control) ask you if you
want it to continue. This gives you the opportunity to say "no, don't
possibly corrupt the image" with the problem code. New settings
allow you to choose to be notified, to just always go ahead, or abort
the load without changing the image.
2-48 VisualWorks

Store
Atomic Loading and Early Install
The new loader often can load a whole bundle atomically. There are
some things that you should be aware of with regard to the
"atomicity" of the new Atomic Loader.

Even using the old loader, some considerations were needed. For
instance, if you created a new parser or scanner using the AT Parser
Scanner utility, the package in which your new scanner or parser is
defined must be separate from a package that has code that uses it.
This has not changed for the Atomic Loader. In fact, when the Atomic
Loader sees such code, it will compile it, but before continuing with
other dependent packages, it does what we call an early install.
When this happens, it finishes compiling the package, then goes into
an install phase for everything compiled but that hasn't been installed
up until then, including the package that triggered the early install. It
then returns to Atomic behavior for any remaining packages or
bundles.

Why is this being done? Well, our shadow environment is not what is
commonly called a sandbox. It is not possible without a sandbox to
execute code that lives in the shadow environment. In a shadow
environment we can do a lot of cool things, such as looking up and
reflecting upon objects in the shadow environment. A sandbox
provides an independent execution environment for objects in a
shadow world. Without the addition of a sandbox though, we can not
ask any of our objects in the shadow environment to execute.
Creating a sandbox for VisualWorks is an interesting idea, but way
beyond the scope of the Store loading system and therefore the early
install behavior became an essential behavior of the Atomic Loader.

Besides the parser or scanner situation just described, there are a
few other cases that can cause an early install.

Parcels are loaded in their own separate Atomic fashion. Any parcel
which might be a prerequisite of a bundle or package will cause an
early install of any package or bundle prerequisite that has up to that
point been compiled but not yet loaded.

A package that is saved binary will cause an early install when it is
found as part of a bundle or as a prerequisite package. In effect, a
package saved binary is loaded by Store using the parcel loader.

Finally, if you add an extension method to ExternalInterface, we detect
that fact and do an early install. Note that if you need to add a method
directly to the ExternalInterface class instead of on one of your own
Release Notes 2-49

VW 7.7 New and Enhanced Features
subclasses, it needs to be in a package that does not have code that
uses the method you are adding. Again, without a sandbox, one can
not execute code in the shadow environment.

If you encounter a situation where you believe that you need to force
an early install, we hope you will document it and send us that
information. You aren't stuck though. You can force any package or
bundle to install early by adding a property to that bundle or package
named: #installBeforeContinuing. The value for that property is ignored
by the loader, the presence of the property is all that matters. Thus, it
is not dynamic based on the value of the property. If the property is
there, early install will take place. The value of the property, if any, is
completely ignored. You might choose to make it a string with a brief
description of why it is needed, and to be sure to remove the property
should it no longer be required.

The Future Looks Bright
In upcoming releases of VisualWorks, we will extend the use of Glorp
objects until all uses of the old hand-crafted Store database objects
are no longer being made.

One of the things we have planned for the next release is the ability
for the loader to, if needed, load objects that are in the shadow
environment in an order different from that in which they were seen.
Where both the old loader and current Atomic Loader installs one
package at a time, thus making a bundle's structure into a hard-
coded prerequisite order, in the future the loader will detect "out of
order" objects in the shadow world, and install them without regard to
the order of packages in the bundle, but of course into the correct
packages. This will remove the need to validate the order of
packages and sub-bundles within an atomically loadable bundle.

Also planned for the next release is a whole new package and bundle
comparison interface using only Glorp-based Store objects. Faster
meaner and leaner, you will also be able to browse repository
packages and bundle versions using a new Refactoring Browser
based user interface.

The old hand-crafted Store database classes will not be removed
from the system until after all existing Store behaviors are moved to
Glorp over upcoming releases of VisualWorks. There will be plenty of
time for you to migrate any extensions of the old system to the new
Glorp-based design, but you are encouraged to begin to do so now.
2-50 VisualWorks

Store
One of the existing features of Glorp we will take advantage of in the
future is its ability to detect schema versions, and fallback to old
schema behavior or, on command, migrate a database to a new
schema, all the while with careful coding on our part to not prevent
existing users with non-Glorp images from accessing and updating a
Store database which may or may not have schema changes.

Once the whole Store system is moved to Glorp, we intend to move
Store forward as a whole, incorporating robust improvements such as
Configuration and Security systems. We fully plan to implement these
systems as extensions, allowing the detection and fallback to the
current schema without adversely affecting users who choose to take
their time updating, or who may choose not to use such systems at
all.

Repository Indexing
With this release, Store now automatically creates indexes for all
appropriate tables in the Store schema when a new Store database
is created.

In order to install these indexes in an existing Store database, first be
sure that any existing database indexes on all of the Store tables are
removed. You may need to have your database administrator do this
for you. Then you (or your database administrator) can execute:

Store.DbRegistry update77
This will then create the new indexes.

If you have existing indexes in your Store database, and do not
remove the existing indexes before executing this update, you are
likely to create duplicates, with different names, but possibly the
same index values. This isn't harmful, but it may reduce the
effectiveness of the new indexes.

Table Spaces Settings
Table Spaces are now settings instead of being hard coded.
Changing these should only be done before creating the physical
database table spaces. Changing them after the actual tables and
spaces are created will cause data to be unavailable.

Note also that this information is global and is not tied to a single
database connection. Thus changing these values will cause the
system to expect the same table space names to be used across all
connections.
Release Notes 2-51

VW 7.7 New and Enhanced Features
Settings Reorganized
In this release, a number of elements on the Store Settings page have
been changed:

• We removed the StoreII page.

• We removed the setting (but not the code) for Debug Store II

• We renamed the Connection page to Loading Policies

• We moved the Load Atomic setting from the main Store page to the
Loading Policies sub page

• We moved the Reconnect After Start setting to the main Store page

• We made the main Store page show as Radio buttons instead of
a Drop Down List

• We moved the Create Overrides in Bundles setting to the Loading
Policies sub page

• We moved the How Should Load Errors be Handled setting to the
Loading Policies sub page.

• We moved the Copy Load Transcript setting to the Loading Policies sub
page.

• We moved the Allow Binary Loading setting to the Loading Policies sub
page.

WebServices

WSDL: Support for Empty <import/> Elements
According to XML Schema (http://www.w3.org/TR/xmlschema-0/
#import) both the namespace and schemaLocation attributes in an
<import> element are optional. This is why a bare <import />
information item is allowed. This simply allows unqualified reference
to foreign components with no target namespace without giving any
hints as to where to find them. It is up to the application to interpret
those references however it sees fit. Consequently our
implementation interprets these references as ones to be resolved in
any accompanying schemas that do not specify their target
namespace.

We will collect all schemas without the target namespace in a WSDL
document and use those to resolve unqualified types in schemas with
<import> element without namespace declaration. We will create
2-52 VisualWorks

WebServices
XMLObjectBindings from these schemas with target namespace set
to nil, but these bindings won't be registered in the global
XMLObjectBinding registry. However these bindings will be part of the
document's #importedBindings. Unqualified references will be resolved
using the first binding with unspecified target namespace from the
#importedBindings collection that has a node with the same type as the
type of the unqualified reference.

Type Validation for Serialization and Deserialization Blocks
During the process of encoding/decoding, a value may fail some
simple validation rules. In this event, the following resumable
exceptions are now raised.

XMLDecodingError

Raised while decoding XML strings into objects (simple types:
arithmetic, boolean, date, time, url, byte) if there is a problem to
decode an XML string into a corresponding Smalltalk object.

XMLEncodingError

Raised while encoding objects (simple types: arithmetic, boolean,
date, time, URL, byte) into XML strings if an object type is
different than an XML schema type.

DecodedIntegerOutOfRange

Raised if an XML string decoded into an integer that is out of the
expected XML datatype range. The default action for
DecodedIntegerOutOfRange returns a parameter which is an XML
string with encoded integer value and the decoded integer value.

EncodingIntegerOutOfRange

Raised if the integer value to be encoded is outside of the range
of the expected XML datatype. The default action for
EncodingIntegerOutOfRange returns an integer encoded as an XML
string.

DecodedInvalidString

Raised if a decoded string has invalid characters (violating the
restrictions of the XML string type). The error is resumable and
the default action returns the XML string as it was received.
Release Notes 2-53

VW 7.7 New and Enhanced Features
EncodingInvalidString

Raised if a string to be encoded includes invalid characters
(violating the restrictions of the XML string datatype). The error is
resumable and expects a corrected string as the resumption
value.

Support for XML Union Types
The 7.7 release includes support for creating XML to Object binding
specifications for <xsd:union> elements, and for marshaling/
unmarshaling the union elements in to a proper simple type.

The UnionMarshaler holds union member type marshalers, and tries to
use them in the order in which they appear in the definition until a
match is found. The evaluation order can be overridden by using
xsi:type.

Example:

schema := '<?xml version="1.0" encoding="utf-8" ?>
 <xsd:types xmlns:xsd="http://www.w3.org/2001/XMLSchema" >
<xsd:schema xmlns:s0="http://www.xignite.com/services/union"
targetNamespace="http://www.xignite.com/services/union">
 <xsd:element name="Coat">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="size" type="s0:size" />
 <xsd:element name="color" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:simpleType name="size">
 <xsd:union>
 <xsd:simpleType>

<xsd:restriction base="xsd:integer"/></xsd:simpleType>
 <xsd:simpleType>

 <xsd:restriction base="xsd:token">
 <xsd:enumeration value="small"/>

 <xsd:enumeration value="medium"/>
 <xsd:enumeration value="large"/>

 </xsd:restriction>
 </xsd:simpleType>

 </xsd:union>
 </xsd:simpleType>
</xsd:schema>
</xsd:types>'.
2-54 VisualWorks

Internationalization
To create a XML to Object binding:

bindingSpec := XMLTypesParser readFrom: schema readStream.
The binding specification will include union type as:

'...
<union name="size">

<simple baseType="xsd:integer"/>
<simple baseType="xsd:token">

<enumeration value="small"/>
<enumeration value="medium"/>
<enumeration value="large"/>

</simple>
</union>

..'.
binding := BindingBuilder

loadFrom: bindingSpec canonicalPrintString readStream.
To marshal an object with a union type:

manager := XMLObjectMarshalingManager on: binding.
manager useInlineType: true.
coatMarshaler := b marshalers

detect: [:mx | mx tag type = 'Coat'] ifNone: [self assert: false].
struct := Struct new.
struct

size: 6;
color: 'red'.

xml := manager marshal: struct with: coatMarshaler.
xml:
'<ns:Coat xsi:type="ns:Coat" xmlns:ns="http://www.xignite.com/services/
union" xmlns:ns0="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<ns:size xsi:type="ns0:integer">6</ns:size>
<ns:color xsi:type="ns0:string">red</ns:color>

</ns:Coat>'
To unmarshal XML into an object:

object := manager unmarshal: xml with: coatMarshaler.

Internationalization
VisualWorks 7.7 includes an extensive Locale system based upon
CLDR (Unicode Consortium's Common Locale Data Repository)
locales. From the set of 15 locales included with VisualWorks 7.6 (the
so-called "legacy locales"), coverage has been extended to include
Release Notes 2-55

VW 7.7 New and Enhanced Features
more than 400 locales based upon data contained in CLDR 1.6.1 (the
"CLDR locales"). In addition, VisualWorks 7.7 includes greatly
expanded Unicode support, especially for Windows platforms.

Enhanced UTF-8 Support
VisualWorks 7.7 includes enhanced support for UTF-8 locales and
character input.

However, some limitations still exist with copy and paste on Linux
platforms. More specifically, the VisualWorks paste buffer is now in
'default' encoding, but the VM still treats it as ISO-8859-1 regardless
of the current locale setting. This can cause problems when pasting
non-ISO-8859-1 text to another application or vice versa, unless
VisualWorks is running in an ISO-8859-1 locale (which is now pretty
uncommon).

CLDR-based Locales
In VisualWorks 7.7, care has been taken to allow both the CLDR and
legacy locale systems to exist in the same image, with the caveat that
only one of them may be active at a time. By default, the CLDR
Locales are active in the 7.7 image.

Using the Legacy Locale System

The general steps are: change Locale.LocalePoolType. Set its value to
be #vwlegacy to use the old locales, and #vwcldr to use the new
locales. For example:

Locale.LocalePoolType := #vwlegacy.
Locale initLocaleSubsystems.
Locale initialHookup.

Note: this is a fairly invasive change to the running VisualWorks
image. It is not recommended that applications do this dynamically as
part of normal operations. Rather, it is suggested that the image be
prepared and saved with the needed locale system active and
initialized.

Locale API

Legacy locales are represented by instances of class Locale, while
CLDR locales are represented by instances of class CompositeLocale
(which themselves hold instances of LocaleLocalizationComponent and
LocaleEncodingComponent).
2-56 VisualWorks

Internationalization
To make the transition between legacy and CLDR locales easier, the
class side of Locale remains the point to which to direct messages
that address the general locale API. When using CLDR locales,
messages are forwarded by class Locale to class CompositeLocale
for execution. Some deprecated methods (see below) answer self
shouldNotImplement in a CLDR locale environment.

The following Locale class methods are safe to use with either legacy
or CLDR locales, and for CLDR locales represent the recommended
way to set and inquire about locales, both system and per-process:

availableLocales
current current:
named:
preferredLocaleName
setDefault setSystemLocaleTo:

The method Locale class>>current will answer either the Locale set for
the current process, or if no locale has been set for the process, will
answer the global system locale (Locale.CurrentLocale). The current
locale of a process may be changed by sending the desired instance
of Process the message locale: aLocaleThing (where aLocaleThing is
either an instance of Locale or CompositeLocale, depending upon
whether legacy or CLDR locales are active). To change the locale of
the currently running process, use Locale current: aLocaleThing.

To change the overall system locale, use Locale setSystemLocaleTo:
localeNameSymbol.

The implementation of class Locale provides the flexibility for new
processes to inherit your current locale setting or to control the
setting of a process' locale on a process-by-process basis.

General Considerations

The following points should be considered when working with locales:

• Legacy locales should work as usual if that is the user's choice,
at least through the 7.7 release cycle. Eventually they may be
phased out, but there is no firm timeframe for this at present.

• Customer applications should not mix locales of both types in
one running image. Hence, the system has not been coded to
reset the locale subsystem type dynamically while running.

• Although not specifically included in the CLDR, we have included
a #C locale equivalent to the #C locale present in the legacy
locales. This is for continuity (many people use this as their
standard locale, for differing reasons), and also because some
Release Notes 2-57

VW 7.7 New and Enhanced Features
internal facilities store timestamps, times and dates using the
formatting of the #C locale so as to be culturally-independent of
the actual locale in use.

• The image should allocate a reasonable default locale for you,
based on the setting in your operating system.

• The locale names in the CLDR set are more extensive and more
like what you will see in your operating system's list of locales. In
most cases the name of your default locale will change. For
example, the US locale in the legacy set is #us and in the CLDR
set, it's #en_US (for English, anyway. Spanish in the USA would
be #es_US, for example).

• There are now (again, in the CLDR set of locales) both culturally-
specific (or territory-specific, if you will) locales, such as #en_US,
and culturally-neutral, or language-only, locales such as #en.

• CLDR locales are represented by instances of class
CompositeLocale, which is composed of a
LocaleLocalizationComponent and a LocaleEncodingComponent. They
are somewhat more opaque than before, in the sense that there
is no API currently provided to play with subcomponents of a
locale, such as overriding the TimePolicy with an arbitrary one.
You are encouraged to create custom locales if you need them.

• Locales in the CLDR environment are created dynamically, rather
than all being instantiated at once and held by the system. That
was trivial with 15 locales and not so much now.

• For now, the API continues to rely on class Locale. E.g., even if
you are using CLDR locales, your code can still send Locale
availableLocales to receive a list of the locales available. Note that
the list will differ between locale subsystems, as you would
expect. Locales may be retrieved with Locale named: as before.

• Timestamp, Time, and Date displays in textual format will now use
native characters and formats. Russian timestamps now show in
Cyrillic, for example. There are some limitations in this version,
for example there is not yet extensive East Asian (the so-called
CJKL) character set support.

• The characters you can display have a lot more to do with font
selection than code pages, as code pages aren't used with native
Unicode apps, in Windows anyway. Some naming of locales may
change in the near future, specifically the Windows ones that still
reference the vestigial code pages in their names, because this
2-58 VisualWorks

Internationalization
may be misleading, causing you to think you are limited to the
character code points in the named codepage.

• For the locales #de, #el, #es, #fi, #fr, #nl, #pt, and #se there are
instances by that name in both the Legacy and CLDR sets. This
is yet another reason why it is not intended that both kinds of
locales be concurrently instantiated. Also note, that although the
names are the same, the locales represented by those names
differ in the two environments. In the Legacy environment, these
are actually a combination of language and territory, while in the
CLDR environment, the locales by these names are culturally-
neutral, or language-only, locales.

Deprecated Locale API

When using CLDR locales, the following methods on the class side of
Locale will answer self shouldNotImplement:

listLocaleNamesFor:
localeMap
mapLocaleName:
set:

These methods are deprecated because they deal with facilities in
the legacy locale set that have been changed in the CLDR locale set,
viz., setting or changing the system locale or working with the
mapping of names between OS locale names and image locale
names, which is accomplished differently when using CLDR locales.

CLDR Locale Per-process Locale Inheritance

When using CLDR locales, starting a new process will cause that
process' locale setting to be set to that of the process that created it.
If there is no per-process locale set when the new process is created,
it will be created with its locale set to nil, which will cause Locale
current to answer the global system locale.

This means that an application may effectively set the locale to one
different from the locale answered by the operating system (which is
used to set the global system locale and encoding). With the addition
of CLDR locales, a new primitive has been introduced to the VM that
reports more accurately than before as to the language, territory and
encoding set within the operating system's active locale.

More comprehensive handling of per-process locales with regard to
dependency notification to processes when the root locale from
which the processes inherited their locale setting has changed is
planned for a future release.
Release Notes 2-59

VW 7.7 New and Enhanced Features
If the system locale has been changed with setSystemLocaleTo:,
dependents (fonts, etc.) will be notified when the locale is changed
using either legacy or CLDR locales.

Testing Locales For Equality

When using legacy locales, all 15 locales are instantiated and held in
the active image, regardless of which locale you are using. When a
Locale instance is retrieved using Locale named:, an object reference is
returned to one of these locales. obtaining an additional reference by
again using Locale named: will yield instances which compare as the
same object with ==.

When using CLDR locales, the same scenario will yield two distinct
object references to instances of CompositeLocale which do not
compare as the same object with ==. (The instances of
LocaleLocalizationComponent and LocaleEncodingComponent held by the
CompositeLocales would test as the same objects with ==, however.)
For this reason, instances of CompositeLocale implement the =
method, which should be used instead.

As always, Cincom welcomes your feedback and comments.
Comments regarding the facilities that have been made available with
this phase of the project will be given priority in consideration over
requesting extended facilities beyond those provided in this round.
Naturally, though, we are open to suggestions for features you wish to
see in VisualWorks 7.8. Development on this framework is ongoing,
and we'd like to know what matters most in your use of locales.

Locale-driven Formatting of Date/Time/Timestamp Values
Since the addition of Locales to VisualWorks, an unintended use of
the formatting policies in TimestampPrintPolicy, often through the use
of PrintConverter, has become established. This is the use of a textual
representation of a Date, Time, or Timestamp object as intermediate
storage, with the intention that an object may eventually be recreated
from the information contained in the textual representation.

This did not pose any particular issues in VisualWorks prior to the
inclusion of Locales based upon the CLDR. This is because the
legacy locales all include milliseconds in their print policy formats, so
that there was never any mismatch in the formats between a format
(typically #long or #medium) used to create a textual representation
and the format (either #editing or #timeEditing) used to interpret that
same textual representation in a UI canvas input field, for example.
2-60 VisualWorks

Internationalization
Thus creating a textual representation of a timestamp would yield a
string that could be read back to create a timestamp with the same
time values down to and including the milliseconds field.

CLDR formatting is intended to produce textual representations for
culturally-appropriate display and does not pay any particular
attention to the parallel need to sometimes create a textual
representation that can be used to create a time thing (object) with
the same resolution as the original object from which the textual
representation was created.

So if you take a Timestamp and print it out using the #editing format,
and read it back, the milliseconds are not preserved when using
CLDR-based locales.

For programmatic use, the preferred pattern would be this (using the
#C locale rather than "Locale current"),

| timestamp converter string result |
timestamp := Timestamp now.
converter := Locale named: #C.
string := converter printAsTime: timestamp policyNamed: #medium.
result := converter readTimestampFrom: string readStream.
self assert: result = timestamp.

Enhancements in future versions of VisualWorks will address the
need to functionally separate these two somewhat different uses for
textual representations of Time objects.

Add-on Support Parcels
Changes to the Locale system in VisualWorks 7.7 have required
changes to the set of add-on support parcels for internationalization
features, and these impact their usage. The affected parcels are:

AllEncodings

This parcel is now obsolete and has been removed from the
distribution for VisualWorks 7.7. Most of the functionality has
been rolled into CLDR locales. Some features may operate
slightly differently in VisualWorks 7.7 compared to 7.6. Customer
applications that specify AllEncodings as a prerequisite should be
able to remove the prerequisite when using CLDR locales.

JapaneseLocale

Provides customizations of the environment to enable a more
usable environment for Japanese language contexts. Usable
both with CLDR locales and legacy locales.
Release Notes 2-61

VW 7.7 New and Enhanced Features
JapaneseEncodings

Supplies Japanese encodings. Usable both with CLDR locales
and legacy locales.

Internationalization-Asia

Used with legacy locales only. Not used with CLDR locales, but
not known to be harmful.

Internationalization-Encodings

Supplies Chinese and Korean encodings that are too large to be
included in images that don't need them. Usable both with CLDR
locales and legacy locales.

Net Clients

Custom MIME Handlers
When processing a complex multipart message there are number of
different things that you may want to do with individual parts. The
default behavior is to read all part bodies and create internal streams
out of them, unless the part is an attachment in which case you can
choose to store it directly into an external file instead (see the
saveAttachmentsAsFiles option). But what if you need a more
sophisticated decision process, or what if you don't want either of
those to happen and you just want to skip and ignore certain types of
parts, MimeParserHandlers (reading) and MimeDispatcherHandlers
(writing) are structured in a way that allows easy overriding of the
default behavior in custom subclasses. And if the existing structure of
the parsing/writing process doesn't fit, you can subclass the Parser/
Dispatcher as well, and redefine the process completely.

The only difficulty with this setup is that builders/parsers and writers/
dispatchers are highly transient, they generally exist to process a
single message only and then discarded. Consequently they are
often hidden inside higher level components handling entire
conversations. For example, HttpClient may need to exchange several
messages with the server to arrive at the final response to an HTTP
GET and therefore creates handlers on the fly. The handlers are now
created according to a blue-print provided by "options".
DispatcherHandlers are built from WritingOptions and
ParserHandlers are built from ReadingOptions. All the various
options relevant to reading/writing of messages (previously scattered
around various classes) are now gathered in corresponding Options
2-62 VisualWorks

Net Clients
classes. The options also define which class of WriteHandler/
BuildHandler should be used, in fact the options object is used as a
factory for handlers, allowing it to pre-configure the handler according
to its various settings. HttpClient provides access to its options through
the #writingOptions and #readingOptions accessors. Various option
setting methods are still provided for backward compatibility.

As an example, let's create a custom build handler that will simply
skip any attachments that are not *.txt files (instead of saving them
into files or internal streams). We'll make a new
AttachmentFilteringHandler sub-classing HttpBuildHandler and redefine
the following method:

processAttachment: aBody from: aStream
| fn |

fn := aBody parent fileName.
('*.txt' match: fn)

ifTrue: [^super processAttachment: aBody from: aStream].
"We still need to read the part contents even if we intend to discard it,
so that any following parts can be processed properly"
aStream binary.

[[aStream atEnd] whileFalse: [aStream next].
] on: Error

do: [:ex | self handleStartBody: aBody exception: ex].
aStream text.
"And we need to give the dummy part some content."
aBody parent removeFieldAt: 'Content-type'.
aBody source: 'Attached file was discarded.' readStream.

To test the new handler let's pretend we're receiving an HTTP
response with two attachments:

| sent received pipe |
(sent := HttpResponse code: '200')

contents: 'downloading files';
addFileAttachment: (Filename fromComponents: ('$(VISUALWORKS)/

net/SMTPS.pcl' tokensBasedOn: $/)) asFilename;
addFileAttachment: (Filename fromComponents: ('$(VISUALWORKS)/

readme.txt' tokensBasedOn: $/)) asFilename.
pipe := ByteArray new writeStream.
sent writeOn: pipe.
pipe := pipe contents readStream.
received :=

AttachmentFilteringHandler new
saveAttachmentsAsFiles: false;
readFrom: pipe.

received parts
Release Notes 2-63

VW 7.7 New and Enhanced Features
The result should be 3 parts. The second should be the one for
SMTPS.pcl with its contents discarded. The third one should have its
full contents since it is a *.txt file. To be able to use the new handler
with HttpClient or the Opentalk HTTP server a corresponding
ReadingOptions subclass has to be created as well, since both of these
facilities use the options object as a factory for the builder. The
simplest variant in this case is to subclass HttpReadingOptions as
AttachmentFilteringOptions and add a single method:

newBuilder
^AttachmentFilteringHandler with: self

The new class is then used as the argument for the #readingOptions:
message, for example:

HttpClient new
readingOptions: AttachmentFilteringOptions new
get: 'http://....'

Note that for more complex customization the custom options class is
meant to serve as the holder of any additional parameters that the
customized process might require. Custom write handlers and writing
options can be used analogously.

Streaming of Generated Content
The groundwork for being able to stream MIME message/part bodies
from sources of unknown (potentially large) size has already been
included in previous releases. Among other things it allows
VisualWorks to process arbitrarily large file attachments efficiently.
The underlying assumption was that these externalized sources/
targets are represented by streams of various kinds. This works well
for static, pre-existing data, however it is not so suitable for
information that has to be generated on the fly.

In the 7.7 release, we have extended the capabilities of the MIME
framework to allow creating MIME entities using blocks as their
bodies. The block embodies the content computation process. It
takes one argument which will be the fully set up stream stack
(chunking, zipping, boundaries, etc.) on top of the output stream
(socket, file, etc) when the block is evaluated. The block is expected
to write the body contents directly into that stream. Obviously this has
to happen after any preceding headers and content (in case of
multipart messages) is already written.
2-64 VisualWorks

Net Clients
Here's an example:

| output |
output := String new writeStream.
Net.MimeEntity new

contents: [:stream | stream nextPutAll: 'Hello'];
writeOn: output.

output contents
This produces the following output:

Content-type: text/plain;charset=utf-8
Hello

By the time the block runs producing the “Hello” content of the body,
the header has already been written in to the output stream. Notice
that by default entity with block contents will be set up for textual
content (specifically content-type: text/plain;charset=utf-8). For any other
content type the entity has to be set up with corresponding content-
type values before it is written. The stream that the block receives will
be set up according to the content-type value.

Here is an example with generated binary content:

| output |
output := String new writeStream.
Net.MimeEntity new

contentType: 'application/octet-stream';
contents: [:stream | stream nextPutAll: #[1 2 3 4 5 6 7]];
writeOn: output.

output contents
yielding:

Content-type: application/octet-stream
Content-transfer-encoding: base64
AQIDBAUGBw==

The block-based solution scales up to multipart messages as well.
There can be parts with static content before or after the dynamically
generated part. Or several parts of a single multipart message can
be expressed as blocks which are then evaluated in sequence when
their turn in the structure of the message comes.

To accommodate the new type of body contents and to make it easier
to work with some previously supported body types we decided to
extended the capabilities of MimeEntity>>contents:. The extended
method makes it significantly more convenient to create complex
messages. It can now handle following types of arguments:
Release Notes 2-65

VW 7.7 New and Enhanced Features
• String - as before allows you to specify textual content, defaulting
to content-type: text/plain;charset=utf-8 (MimeEntity
class>>defaultTextCharset)

• ByteArray - allows to specify binary content, defaulting to content-
type:application/octet-stream (will be base64 encoded for transfer)

• BlockClosure - content is generated by the block when the
message is being written, defaults to textual content type

• (readable) Stream - content is read from the stream when the
message is being written, content type depends on stream's
response to isByteStream

• and SequenceableCollection of an arbitrary mix of these types to
allow creating multipart bodies

Note that the contents: method only attempts to set content-type if it
was not previously set, allowing to override the defaults that way.

With these changes it is fairly easy to build complex MIME messages,
for example the following:

| output |
output := String new writeStream.
Net.RFC822Message new

contents: (Array “multipart message”
with: #[1 2 3 4]
"simple binary content"
with: [:stream | stream nextPutAll: 'Hello']"generated text"
with: (Array “nested multipart entity”

with: [:stream | stream nextPutAll: 'and one more']
"more generated text"

with: 'and some streamed text' readStream
with: (ByteArray withAll: (50 to: 100)) readStream)

 "and some streamed bytes"
with: 'Hello' "simple text content");

writeOn: output.
output contents

yields:

Content-type: multipart/mixed;boundary="=_vw0.22176418836311d_="
This message is in Mime format
--=_vw0.22176418836311d_=
Content-type: application/octet-stream
Content-transfer-encoding: base64
AQIDBA==
--=_vw0.22176418836311d_=
Content-type: text/plain;charset=utf-8
2-66 VisualWorks

Net Clients
Hello
--=_vw0.22176418836311d_=
Content-type: multipart/mixed;boundary=”=_vw0.60014504874132d_=”
--=_vw0.60014504874132d_=
Content-type: text/plain;charset=utf-8
And one more
--=_vw0.60014504874132d_=
Content-type: text/plain;charset=utf-8
And some streamed text
--=_vw0.60014504874132d_=
Content-type: application/octet-stream
Content-transfer-encoding: base64
MjM0NTY3ODk6Ozw9Pj9AQUJDREVGR0hJSktMTU5PUFFSU1RVVldYW
VpbXF1eX2BhYmNk
--=_vw0.60014504874132d_=--
--=_vw0.22176418836311d_=
Content-type: text/plain;charset=utf-8
Hello
--=_vw0.22176418836311d_=--

Block-based bodies also allow full control over transmission of the
generated content. The next chunk of what has been written so far
can be pushed out by simply flushing the provided stream. Note that
a chunk is also pushed out when the written content reaches the pre-
configured chunkSize without flushing.

This may be illustrated in the following example:

| output |
output := String new writeStream.
(Net.HttpResponse code: '200')

contents: [:stream |
(31 to: 40)

inject: 30 factorial
into: [:factorial :next |

stream flush.
factorial * next

printOn: stream;
yourself]];

writeOn: output.
output contents

which yields (highly useful) part of the factorial sequence, where
each value is packaged up and pushed out in its own chunk:

HTTP/1.1 200 OK
Content-type: text/plain;charset=utf-8
Transfer-encoding: chunked
22
Release Notes 2-67

VW 7.7 New and Enhanced Features
8222838654177922817725562880000000
24
263130836933693530167218012160000000
25
8683317618811886495518194401280000000
27
295232799039604140847618609643520000000
29
10333147966386144929666651337523200000000
2A
371993326789901217467999448150835200000000
2C
13763753091226345046315979581580902400000000
2D
523022617466601111760007224100074291200000000
2F
20397882081197443358640281739902897356800000000
30
815915283247897734345611269596115894272000000000
0

We can use this example to demonstrate a "Comet style" (in web
parlance) web application using the contributed Opentalk-Web. Simply
load the parcel and inspect the result of the following bit of code:

| action |
action := [:req | [:stream || query from to |

query := req httpRequest urlEncodedDataFrom: req url query.
from := (query detect: [:asc | asc key = 'from'] ifNone: ['from' -> '1'])

value asNumber.
to := (query detect: [:asc | asc key = 'to'] ifNone: ['to' -> '50']) value

asNumber.
(from to: to)

inject: (from - 1 max: 1) factorial
into: [:factorial :next |

stream flush; cr.
0.25 seconds wait.
factorial * next

printOn: stream;
yourself]]].

((WebAdaptorConfiguration new
addExecutor:

(WebDo
if: [:req | req path last = 'factorial']
do: action);

transport: (HTTPTransportConfiguration new
marshaler: WebMarshalerConfiguration new);

soReuseAddr: true
2-68 VisualWorks

Glorp
) newAtPort: 4242
) start

If you then point your web browser at http://localhost:4242/
factorial?from=50&to=100 and if the web browser is able to process
incoming chunks as they come, you should see factorial results
popping up on the web page at a rate of four lines per second, i.e. the
page shows the partial results while the rest are still being computed
on the server. This is a moral equivalent of Comet (without any
Javascript or even HTML involved). Note that the adaptor should be
stopped before closing the inspector (using the <Operate> menu on
self in the inspector).

Glorp
VisualWorks 7.7 includes a number of additions and enhancements
to Glorp. Almost 50 ARs have been incorporated in this component,
ranging from simple bug fixes to significant additions. For example,
Active Record and the new migration features offer developers an
easier way to analyze and upgrade their databases. Both are used in
Cincom's new WebVelocity product.

Notably, Glorp now powers VisualWorks' own source code control
tool, Store. There is increased platform support for Oracle, SQLite,
SQLServer, MySQL, Postgres, and DB2 support is now available (in
preview).

Logins and Store Connection Profiles
Store connection profiles (the entries in the Store > Connect to... dialog)
now set up Glorp logins when they connect to Store databases.

These logins are configured to suit database performance for Store
on the various supported platforms: in particular, all Store database
platforms that return true to supportsBinding

• Also set useBinding: true, except for PostgreSQL

• Also set reusePreparedStatements: true, except for SQLServer and
InterBase / Firebird

These settings are not guaranteed to be in force if you use Glorp to
connect to these databases for any other purpose. Therefore, if you
use the same database platform for Store support and for your
Release Notes 2-69

VW 7.7 New and Enhanced Features
application, be sure to set these same values (or other values if your
application prefers them) when you create your application's Glorp
logins.

Active Record
In release 7.7, Glorp includes support for Active Record. In particular,
the API for persisting objects has changed.

In several popular implementations of Active Record, a save method
is used to persist objects. Without Active Record, the usual method
for saving objects with Glorp is to use register: inside a unit of work.
With Active Record, you should send bePersistent directly to the
domain object, followed by commitUnitOfWork. This sequence will
produce the expected behavior.

Migrations
Release 7.7 includes support for migrating database schemas. This
is necessary when you need to change your application’s domain
model during the course of development.

The migration API is intended for use with Active Record designs.
While Active Record does not require that developers build their own
descriptor systems, for migration it may be necessary to explicitly
specify the descriptor system using a method in the domain model
class.

Generally, you begin by cloning your schema class. For each class/
table in your schema, there will be a method that describes it (e.g.
tableForMYTABLE:). When migrating, you’ll have two separate
descriptor classes, each with its own tableForMYTABLE: method.

Glorp provides a mechanism to analyze the differences between two
versions of a table, and to generate a migration script. This may be
turned into a single method which contains Glorp code to alter the
first version of the table so that it matches the second version of the
table. The conversion methods can be generated for both directions
of conversion (upgrade or revert).

A migration is initiated by:
DescriptorSystem>>createMigrationChangeSetFor:. This generates the
conversion script from one descriptor system to the other. Rather
than requiring that the developer write the script manually, Glorp
performs this step automatically. For complex schemas, though, it
may be necessary to tune the script by hand.
2-70 VisualWorks

WebSphere MQ Interface
Information Schemas
In release 7.7, Glorp now includes support for reading a database
vendor’s “information schema”. This is required by Active Record,
and makes it possible to create a meta-analysis of an entire
database.

Information schemas are somewhat vendor specific, but Glorp now
supports this feature for Oracle, SQL Server, Postgres, MySQL, and
DB2 (the last is currently in preview). To afford this capability,
numerous small enhancements were made to the platform-specific
code in Glorp.

For a minor example, the MySQL TIMESTAMP column type turned out
to be more limited than the DATETIME type, which then became the
new Glorp default column type for Smalltalk Timestamp objects. (Eg.,
the range of a TIMESTAMP is 1970-2038 AD, whereas DATETIME
range is 1000-9999 AD.)

WebSphere MQ Interface
None submitted in this release.

Seaside Support

Seaside 3.0alpha5
Release 7.7 of VisualWorks includes Seaside 3.0a5, upgraded from
Seaside 2.8 in the previous release.

Default Encoding now UTF-8
In VisualWorks 7.7, the codec is set to UTF-8 instead of the default
NULL used in Squeak/Pharo. This may be incompatible with
applications written for Seaside 2.8 or written for Seaside ported from
Squeak/Pharo.

To make your application work correctly, do not encode strings as
UTF-8 in your application code; Seaside will now do this for you when
writing to a web page and reading requests from a web browser.

jQuery Support
In this release, support for jQuery is provided as a separate library.
Release Notes 2-71

VW 7.7 New and Enhanced Features
Comet Support
Release 7.7 of VisualWorks includes support for Comet.

DLLCC

Browser Support to Identify and Stub Missing DLLCC Definitions
Historically, when you compile a method like:

<C: MyReturnType someFunc() >
if there was no method that defines MyReturnType it would add a
MyReturnType method that typedef'ed MyReturnType as void* (or as an
empty struct or enum if it was declared so). This "feature" has caused
headaches for some time. One doesn't always want this helpful
feature being invoked from the bowels of the compilation process.
This behavior has been removed.

The Code Browser now has a class menu option -- Generate Missing
Type Definitions -- that shows up on ExternalInterfaces when they
indeed are missing these messages. It can be used to then generate
them.

Solaris and the C Heap
When using the external C heap to allocate memory, it is the usual
expectation that freeing such memory explicitly or implicitly via the
gcMalloc: mechanism will result in memory being returned to the
operating system. This is not so in Solaris. According to the manual
page for the function free(), freed memory blocks will be still reserved
for the application and will not be returned to the operating system.

This has practical consequences, particularly when using the
gcMalloc: mechanism. Consider an application that makes heavy use
of garbage collectable pointers to the external heap. Since significant
time may elapse between GC invocations, there is the potential for a
buildup of such garbage collectable pointers. Solaris happily
accomodates this by increasing the amount of memory allocated to
the virtual machine. After the GC runs and collects the garbage
collectable pointers, however, Solaris will keep all the necessary
memory reserved for the virtual machine.

If the C heap has managed to grow past the amount of virtual
memory still available, then trying to execute an external process
from the image will be no longer possible. This is because fork()
makes a copy of the invoking process, and since the (now mostly
2-72 VisualWorks

DLLCC
empty) C heap makes the footprint of the virtual machine too large to
fit in the amount of available virtual memory, the attempt to copy the
virtual machine process fails.

This is a known issue for Solaris, and there exist a number of
workarounds such as the ones described here.

http://www.steubentech.com/~talon/dlmalloc.html

http://g.oswego.edu/dl/html/malloc.html

Note that Cincom does not necessarily endorse nor recommend any
such workaround. Customers are advised to use caution with regards
to this matter.

Flag to Ignore ExternalErrorNoThreadFound
In release 7.7, a global flag has been added that can be used to
ignore ExternalErrorNoThreadFound.

ExternalErrorNoThreadFound can occur if an external thread that
invoked a CCallback and into which the callback attempts to return to
no longer exists. This can happen if an image is saved while the
callback is in progress. When the image is restarted the CCallback
attempts to return to the external thread, which results in an
unhandled exception in the foreign callback process.

Because this all happens in a background system process that
developers normally cannot control, it is difficult to handle the
resulting unhandled exception. That's why we have added a guard
clause in #primReturnToThread:for: which allows suppressing this
particular exception.

This behavior can be set via the IgnoreExternalErrorNoThreadFound
shared variable in class CCallback. The default is to suppress the
exception. Setting the value of the shared variable to false will restore
the previous behavior, allowing the exception to bring up an error
notifier.

Objective-C Runtime Support
Release 7.7 of VisualWorks includes support for interfacing to an
Objective-C runtime (versions 1 & 2). This provided as a set of
ExternalInterface classes in the OS-MacOSX package. The API is
packaged in class AbstractObjectiveCRuntime.
Release Notes 2-73

VW 7.7 New and Enhanced Features
Most entry points in this API are the same between versions 1.0 and
2.0. In the common cases where some difference exists, class
AbstractObjectiveCRuntime provides an API to swap between the two
implementations, e.g.: #getClassName:, #getMethodName:,
#getAllClasses, #getAllMethodsForClass:, #getSuperclass:.

For examples of use, see the comment for AbstractObjectiveCRuntime.

Another package, ObjectiveCConnect, is not finished yet but is in /
contributed for release 7.7. ObjectiveCConnect does automatic interface
generation (as required), similar to DLLCC, except better in the
respect that it doesn't actually install classes that you need to publish.

Memory Management

When using this API, your application must take charge of memory
management, and adhere closely to its invariants.

Objective-C includes garbage collection, but the VisualWorks
ExternalInterface does not currently enable it. At present, there is no
mechanism for maintaining strong references to objects until the
VisualWorks garbage collector is done with them.

If your application calls an object with 'alloc' 'new' or 'copy' in its name,
then the object is your responsibility. You must #release it when you're
done with it. (You do not have to #retain it).

Any message you send that returns an object may be an object that
was created just for you, but is managed by the object you called
from. The API doesn’t make it explicit whether this has happened or
not. For example, an object is made for you when you send
#objectEnumerator, but not #sharedApplication.

What happens is this: since the object you're calling the message on
"owns" what it made, it is also response for releasing it. Often this
simply means the object is placed in to an autorelease pool. Every
running thread must have an autorelease pool. Without it, the
application will crash. The VisualWorks VM sets up an autorelease
pool for the Smalltalk thread on startup. But this is not enough,
because we neither have a way nor an appropriate time to send
#drain to it.

An object ends up in the autorelease pool by sending #autorelease to
it. In a regular Cocoa application, the main thread’s event loop drains
the pool between events. When you wish to optimize the creation/
destruction of objects you can create your own autorelease pool.
2-74 VisualWorks

DLLCC
Since our VM runs on a thread that is not the main thread, there is no
event loop to drain the autorelease pool. Consequently, if you do not
set up and drain your own release pool, you'll be leaking memory.

The method autoreleaseWhile: will create an NSAutoreleasePool and
drain it when the block has finished executing, handling the most
common case of memory management for Objective-C.

Setting up and draining an autorelease pool is easy:

pool := NSAutoreleasePool alloc init.
"do stuff"
pool drain.

When you create an autorelease pool, it "nests" inside the existing
autorelease pool. This is important, because it strongly warns us that
we cannot have multiple Smalltalk green threads talking to Objective-
C at the same time in any way shape or form.

Things like Open/Save dialogs are safe because they only deal with
singletons. A message like #focusedWindow is safe because it only
deals with objects that already exist.

Code that might be interrupted by another Smalltalk green thread that
could create its own autorelease pool or call #autorelease -- this must
be placed inside a critical section.

Limitations

The Objective-C runtime facilities require some initialization when an
image is started. In release 7.7, this occurs later than it really needs
to. Thus, it is possible to invoke code at startup time which, if it
accesses the ObjectiveCRuntime shared variable, can find that it is not
yet initialized. Any code that runs before the SystemEventInterest
#returnFromSnapshot may encounter this situation. Command line
options such as -doit, -filein, etc., are evaluated after that point, so
those are safe. This limitation will be resolved as early as possible in
in the next release.

Q & A

When do I need to send #retain:?

If you have received an object from Objective-C and intend to
hold on to it beyond the autorelease pools existance.

When do I need to send #release:?

To any object you have #retained or any object you created; when
you are done with it.
Release Notes 2-75

VW 7.7 New and Enhanced Features
When do I need to create/drain an autorelease pool?

Any time you're interacting with Objective-C in a non-trivial way
(e.g.: almost always).

When do I need to become uninterruptable?

Any time you've created an autorelease pool, for the period until
you have #drained the autorelease pool.

How do I tell if a particular method uses #autorelease and therefore I need
an autorelease pool?

Send #retainCount to the object you get back, then do it again and
see if it goes up by 1.

Can't I just throw #retain everywhere instead of dealing with autorelease
pools?

No, if the object is in an autorelease pool, retaining does not take
it out of the autorelease pool.

Can't I just throw #release everywhere and cross my fingers?

Yes, if your goal is to crash the runtime.

Objective-C Utility APIs
The following utility APIs have been added for sending messages to
Objective-C objects:

object:perform:

object:perform:with:

object:perform:with:with:

object:perform:with:with:with:

object:perform:withArguments:

The following utility APIs are used to end messages to Objective-C
objects to be run in the main thread:
2-76 VisualWorks

Documentation
object:performOnMainThread:

object:performOnMainThread:with:

object:performOnMainThread:with:with:

object:performOnMainThread:with:with:with:

object:performOnMainThread:withArguments:

Documentation
This section provides a summary of the main documentation
changes.

Note that we changed the documentation source format in 7.7. While
we have attempted not to lose any content or formatting, some errors
have nearly certainly occurred. Please notify us of serious lapses.

Basic Libraries Guide
• The “Dates and Times” chapter has changed to “Chronology.”

• Added discussion of new classes Duration and Timer.

• TimeZone discussion has been updated.

• Timestamp has been expanded.

Tool Guide
• Updates to System Browser for new package/bundle system.

• Update and expanded Unit Testing chapter.

Application Developer’s Guide
• Rewrite of the Weakness and Finalization section.

• Updates to System Browser for new package/bundle system.

• Corrections to the BOSS discussion

COM Connect Guide
Miscellaneous updates and corrections.

Database Application Developer’s Guide
Miscellaneous updates and corrections.
Release Notes 2-77

VW 7.7 New and Enhanced Features
DLL and C Connect Guide
No changes.

DotNETConnect User’s Guide
Miscellaneous updates and corrections.

DST Application Developer’s Guide
No changes

GUI Developer’s Guide
Minor updates.

Internationalization Guide
This guide is significantly out of date, and will be updated for the next
release. In the meantime, refer to the release notes for changes in
7.7.

Internet Client Developer’s Guide
Significant updates and corrections, particularly relating to
refactorings and improvments to MIME and mail support.

Opentalk Communication Layer Developer's Guide
Updated for 7.7.

Plugin Developer’s Guide
No changes.

Security Guide
No changes.

Source Code Management Guide
Miscellaneous updates and corrections.

Walk Through
Updated for 7.7

Web Application Developer’s Guide
No changes.
2-78 VisualWorks

Documentation
Web GUI Developer’s Guide
No changes.

Web Server Configuration Guide
Minor updates.

Web Service Developer’s Guide
Removed discussion of UDDI, no longer supported.
Release Notes 2-79

VW 7.7 New and Enhanced Features
2-80 VisualWorks

3

Deprecated Features

By deprecating certain features, we remove them from the system.
These are made available for a limited time as parcels in the obsolete/
directory, to provide you the opportunity to port applications away
from using the features before they are removed altogether. This
directory is on the default parcel path.

Virtual Machine

WinCE Engines Dropped
In release 7.7, the WinCE virtual machines for both ARM and x86
platforms are no longer supported. The VisualWorks Installer no
longer includes an installation option for these engines, and their
corresponding READMEs have been removed as well. If this
presents an issue for your development effort, please contact
Cincom.

SGI IRIX Engines Dropped
In release 7.7, the virtual machines for the Silicon Graphics IRIX
platform is no longer supported. The VisualWorks Installer no longer
includes an installation option for this engine, and its corresponding
README has been removed as well. If this presents an issue for
your development effort, please contact Cincom.
Release Notes 3-1

Deprecated Features
Base Image

IEEE Math
With this release, VisualWorks is now able to process IEEE special
values such as NaN and INF by default. This means that the IEEE
Math parcel is no longer needed when such values will appear in the
image, regardless of whether NaN or INF are coming from the VM
when it is configured to produce such values, or from external library
calls such as via DLLCC. As a result, the IEEE Math parcel is now
obsolete.

For details, see: Floating Point Arithmetic.

OS/2 and MacOS 9.x Platform Support Removed
Platform-specific code for filenames, sockets, fonts, and OS
interfacing, specific to Macintosh (pre-MacOS X) and OS/2 have
been removed from the base image.

GUI

NotebookWidget gone
The Notebook widget has been removed from the system. Parcels
Obsolete-Notebook and Obsolete-UIPainter-Notebook provide the
deprecated functionality.

Subcanvas Obsolesced
The class Subcanvas is obsolete. It is left as an empty stub class in the
image for backwards compatibility reasons, but its new method has
been modified to return an instance of its CompositePart superclass.

MacOS 9 Look and Feel Removed
The legacy MacOS Look and Feel classes were removed. They may
be loaded and used still using the UILooks-Mac parcel.
3-2 VisualWorks

Tools
Tools

RBSmallDictionary Gone
RBSmallDictionary, a Dictionary implementation optimized for small
sets, has been replaced by the system CompactDictionary.

Net Clients

Class SimpleSMTPClient Obsolesced
Class SimpleSMTPClient has been marked as obsolete since release
7.5 of VisualWorks. In this release, it has been removed from the Net
Clients class library, and its functionality is superceded by class
SMTPClient.

Opentalk

SNMP
The SNMP parcels included in prior releases no longer work in this
release, and so have been removed. No further work on SNMP is
currently planned.

Opentalk-Remote-Testing
The Opentalk-Remote-Testing package has been removed from this
release, and there are no plans to develop it in the future.

Plugin

Plugin Obsolesced
The socket-based Plugin has been withdrawn from future
consideration and those interested in developing VisualWorks
applications for a web browser should look instead at WebVelocity.
Release Notes 3-3

Deprecated Features
Application Server

WebServerStartup
The WebServerStartup class has been deprecated. It has been moved
to the /obsolete directory (Wave-Base-Obsolete parcel) for this release if
you still need it.

Please consider using a subsystem or startup configuration file to
configure your servers, if you are currently using this class.
3-4 VisualWorks

4

Preview Components

Several features are included in a preview/ and available on a “beta
test,” or even pre-beta test, basis, allowing us to provide early access
to forthcoming features. Several are described in the following
sections. Browse the directory contents for last minute inclusions.

Universal Start Up Script (for Unix based platforms)
This release includes a preview of new VW loader that runs on all
Unix and Linux platforms. This loader selects the correct object
engine for an image, based on the image version stamp. Formerly,
the only loader of this sort was for Windows.

The loader consists of two files and a readme in preview/bin.
Installation and configuration information is provided in the readme.

This loader is written as a standard shell script which allows it to be
used to launch VW on virtually any Unix based platform. This opens
up the possibility of having a centrally managed site-wide installation
of an arbitrary set of VW versions allowing users to simply run their
images as executables without any user specific setup required. The
loader figures out which version of VW and which specific VM is
needed to run the image being launched, using information provided
in the INI file).

For installations using only final releases (not development build
releases), a single entry line in the INI file for each VW version will
suffice to serve any Unix based platform for which a VM is available
at the specified location.
Release Notes 4-1

Preview Components
Base Image for Packaging
/preview/packaging/base.im is a new image file to be used for
deployment. This image does not include any of the standard
VisualWorks programming tools loaded. The image is intended for
use as a starting point into which you load deployment parcels. Then
strip the image with the runtime packager, as usual.

DB2 Support
Updated support for Glorp for DB2 is available in the /preview/glorp
directory. EXDI support for DB2 is now supported product.

BOSS 32 vs. BOSS 64
The current implementation of BOSS (boss32, version 7), does not
accomodate 64-bit small integers and small doubles natively. Also, it
does not support extremely large objects that are outside the
implementation limits for 32 bits. Furthermore, since the
implementation of identityHash is not equal in 32 and 64 bit images,
identity based collections may require special handling when moving
them across images of different bit size.

A preview implementation of boss64 (version 8) has been
implemented for this purpose. This implementation is an addition to
the existing BOSS parcel, and is called BOSS64.

The new BOSS implementation has been structured so that there is a
new factory class that takes care of choosing the proper reader for
either boss32 or boss64 without user intervention, and a similar
factory arrangement that chooses either boss32 or boss64 as the
output format depending on the image BOSS is running on.

More concretely, until now application code would have referred to
BinaryObjectStorage to write BOSS streams in boss32 format:

BinaryObjectStorage onNew: aStream
Referencing the class BinaryObjectStorage64 instead will result in
BOSS streams in boss64 format:

BinaryObjectStorage64 onNew: aStream
4-2 VisualWorks

64-bit Image Conversion
Finally, referencing AbstractBinaryObjectStorage will choose either
boss32 or boss64 depending on the image in which the code is
running:

AbstractBinaryObjectStorage onNew: aStream
Moreover, referencing the abstract factory class for reading,

AbstractBinaryObjectStorage onOld: aStream
will automatically determine the format of the stream and choose the
appropriate reader accordingly:

Execution environment Selected reader

32-bit image, 32-bit BOSS stream BOSSReader

64-bit image, 32-bit BOSS stream BOSSReader32

64-bit BOSS stream BOSSReader64

Existing code making reference to classes already present before
these changes will not be affected, and they will still rely on existing
boss32 behavior.

Also, although boss64 streams can be written by 32 bit images, 32 bit
images should write BOSS streams in 32 bit format because 64 bit
images can read these BOSS streams while doing all the necessary
conversions.

64-bit Image Conversion
The ImageWriter parcel is still capable of converting arbitrary 32- bit
images to 64-bit images. However, due to an unresolved race
condition, occasionally it may create an image that brings up one or
more error windows. These windows can safely be closed, and if the
64- bit image is saved again, they will not return.

However, they may be problematic in a headless image or an image
that has been produced by the Runtime Packager. For such cases,
re-saving or recreating the original 32-bit image, and then converting
it again may avoid the race condition. Alternatively, converting the
image to 64 bits before applying the Runtime Packager or making the
image headless may also be helpful.

ImageWriter empties all instances of HandleRegistry or its subclasses.
Since these classes have traditionally been used to register objects
which must be discarded on startup, emptying them during the image
Release Notes 4-3

Preview Components
write is safe. But if your code is using HandleRegistry or a subclass to
hold objects which are intended to survive across snapshots,
ImageWriter may disrupt your code. Running ImageWriter before
initializing your registries may solve this problem. We would also like
to know more about how you use HandleRegistry, in order to improve
ImageWriter's ability to transform images without breaking them.

Tools
With the Trippy basic inspector now being much more robust, work
was done on integrating this with the debugger. It has not been
finished yet, but may be loaded. At this writing, this causes the
inspectors located in the bottom of the debugger (the receiver and
context fields inspectors) to be basic trippy inspectors (not the entire
diving/previewing inspector, just the basic tab). This makes
operations between the two the same, and provides the icon
feedback in the debugger. The stack list of the debugger also shows
the receiver type icons.

Cairo

Overview
VisualWorks 7.7 includes ready-to-use Cairo libraries for use on MS-
Windows (Windows 2000 and newer) and Apple Mac OS X (10.4 and
newer, PowerPC or Intel processors). The prebuilt libraries are built
from 1.8.8 stable release sources. It also includes version 7.7 - 1 of
the Smalltalk CairoGraphics parcel which binds to said libraries.

Developers on MS-Windows and Mac OS X, should be able to simply
load the CairoGraphics parcel and begin using Cairo.

Developers on X11 platforms may also use the CairoGraphics parcel,
but will need to make sure VisualWorks have libcairo.so available in
their library path. Most up to date Linux versions ship with Cairo
binaries.

What is Cairo?
The main project page found at http://cairographics.org/ states:

Cairo is a 2D graphics library with support for multiple output
devices.Currently supported output targets include the X Window
System, Quartz, Win32, image buffers, PostScript, PDF, and SVG file
output.
4-4 VisualWorks

Cairo
Cairo is designed to produce consistent output on all output media while
taking advantage of display hardware acceleration when available (e.g.
through the X Render Extension).

The cairo API provides operations similar to the drawing operators of
PostScript and PDF. Operations in cairo including stroking and filling
cubic Bézier splines, transforming and compositing translucent images,
and antialiased text rendering. All drawing operations can be
transformed by any affine transformation (scale, rotation, shear, etc.).

Cairo is implemented as a library written in the C programming
language, but bindings are available for several different programming
languages.

Cairo is free software and is available to be redistributed and/or modified
under the terms of either the GNU Lesser General Public License
(LGPL) version 2.1 or the Mozilla Public License (MPL) version 1.1 at
your option.

The CairoGaphics parcel is a VisualWorks bridge to the Cairo graphics
library. It is maintained as an open source project, hosted in the
Cincom Public Repository.

Drawing with Cairo
This section describes a simple overview of drawing with Cairo with
VisualWorks. It is not exhaustive, but rather demonstrative.

Getting a Cairo Context
A Cairo context is the object which defines transactions that draw
things on a given surface. Cairo may be used to draw on 3 different
types of VisualWorks surfaces: Windows, Pixmaps, and Images. For
the first two one usually has a VisualWorks GraphicsContext object in
play for the surface. To help manage resources efficiently, we use a
while: aBlock pattern to create Cairo interface objects and release
them efficiently.

aVWWindowGC
newCairoContextWhile: [:cr | “...cairo work goes here...”].

aVWPixmapGC
newCairoContextWhile: [:cr | “...cairo work goes here...”].

aVWImage
newCairoContextWhile: [:cr: | “...cairo work goes here...”].

By convention, in the Cairo community in large, as well as in
VisualWorks code, a Cairo context variable is always called a cr.
Using this convention increases the likelihood that other Cairo
programmers (both Smalltalk and for other language bindings) will
Release Notes 4-5

Preview Components
understand your code.Cairo also has its own built in Surface type
called an ImageSurface. These are like VisualWorks Pixmaps, but are
managed by Cairo. They are created with a format code and an extent.

cairoImage := ImageSurface
format: CairoFormat argb32
extent: 100@100.

cairoImage
newCairoContextWhile: [:cr | “...cairo work goes here...”].

Warning: the dual-threaded VMs for 10.5 and 10.6 are not
compatible with the CairoGraphics on OS X. The problem
involves drawing on Pixmaps. On 10.6, the Pixmaps are blank, and
on 10.5, this operation with quickly crash the image.

Setting the Source
In VisualWorks parlance, the source is somewhat analogous to the
paint of a GraphicsContext. Cairo operators will draw pixels from the
source onto the target surface. Sources may be simple color values,
linear and radial gradients, and other cairo surfaces.

Setting a simple ColorValue

cr source: ColorValue red

Setting an alpha channel weighted color

cr source: (ColorBlend red: 0.9 green: 0.2 blue: 0.3 alpha: 0.5).

Setting a vertical green to blue linear gradient

gradient := LinearGradient from: 0 @ 0 to: 0 @ 10.
gradient addStopAt: 0 colorBlend: ColorValue green.
gradient addStopAt: 1 colorBlend: ColorValue blue.
cr source: gradient.

Setting a radial translucent orange to yellow gradient

gradient := RadialGradient
from: 0 @ 0
radius: 0
to: 0 @ 0
radius: 100.

gradient addStopAt: 0 colorBlend: (ColorBlend orange alpha: 0.5).
gradient addStopAt: 1 colorBlend: (ColorValue yellow alpha: 0.2).
cr source: gradient.
4-6 VisualWorks

Cairo
Setting the file background.png as the soruce

surface := ImageSurface pngPath: 'background.png'.
cr source: surface.

Defining Shapes
Shapes in Cairo are defined by paths. A path is more than a simple
polyline. A path is composed of a series of move, line, bezier curve, and
close commands. They do not need to be contiguous. Defining a path
does not actually cause it to be rendered to the context.

The following examples are a sample of the path creation methods
found in the paths and handy paths method protocols of the CairoContext
object.

Simple line from 0,0 to 40,50

cr
moveTo: Point zero;
lineTo: 40 @ 50.

Two disjoint rectangles

cr
rectangle: (10 @ 20 corner: 30 @ 40);
rectangle: (110 @ 120 extent: 40 @ 40).

Closed right triangle with leg length of 30

cr
moveTo: 5 @ 5;
relativeLineToX: 0 y: 30;
relativeLineToX: 30 y: 0;
closePath.

Cincom Logo in unit coordinate space

cr
moveTo: -1 @ 0;
arcRotationStart: 0

sweep: 0.75
center: 0 @ 0
radius: 1;

relativeLineTo: 0 @ -2;
arcRotationStart: 0.5

sweep: 0.25
center: 1 @ 0
radius: 1;

lineTo: 1 @ 0.
Release Notes 4-7

Preview Components
Filling and Stroking Shapes
With a source set and a path defined, you can stroke and/or fill the
shape. The messages stroke and fill can be sent to a cr. In both
cases, the path is reset by the call. The messages strokePreserve and
fillPreserve, cause the path to remain in effect even after the
operation.The stroke width may be set with the strokeWidth: aNumber
method. Stroking is a solid line unless a dashes: anArrayOfLengths
offset: aNumber is set.

Draw a blue rectangle with a thick dashed red outline

cr
rectangle: (10 @ 10 extent: 40 @ 40);
source: ColorValue blue;
fillPreserve;
source: ColorValue red;
strokeWidth: 3;
dashes: #(1 2 3 4) offset: 0;
stroke.

Additional Operators
Stroke and fill are the most common operators performed on a
context. There are others that may be used:

paint

Like fill, but requires no path. Simply fills the entire clip region.

paintAlpha: aNumber

Like paint, but applies a uniform alpha adjustment during the
operation.

maskSurface: aSurface

Paints the current source using the alpha channel of aSurface.

clip

Renders nothing, but intersects the current clip with the current
path and clears the path. Use clipPreserve if path resetting is not
desired.

Affine Transformations
Cairo uses a transfomation matrix at all levels of drawing. The matrix
is described as:
4-8 VisualWorks

Cairo
XX XY Xo
YX YY Yo
Given two input values, Xi and Yi, the new values Xn and Yn are
computed as follows:

Xn = Xi•XX + Yi•XY + Xo
Yn = Xi•YX + Yi•YY + Yo
The easist way to manipulate the matrix of a context is to use the
modifyMatrix: method which takes a single argument block as its
argument. For example, to adjust the matrix to be a centered unit
coordinate space of the receiver view:

cr modifyMatrix:
[:matrix |
matrix

scale: self bounds extent;
translate: 0.5 asPoint].

Matrices may be modified with methods such as translate:, rotate:,
scale:, etc. See the transformations method category of class Matrix.
Any of these modifications are cumulative to the receiver.

Individual elements may be set as well using accessors such as xx:.
The matrix can be returned to an initial unity state by sending
initIdentity to it.

Patterns (source surfaces, gradients, etc) have their own matrices as
well and also respond to the modifyMatrix: method. It is important to
remember when using a pattern's matrix to modify its appearance,
the matrix is applied on the source side, where as the context matrix
is applied on the target side. In other words, pixels are extracted from
the source pattern through the inverse of the matrix. One might
translate: 10@20 a cr context to cause things to shift to the right 10,
and down 20. But to achieve the same end result by modifying the
source's matrix, and leaving the cr's untouched, one would use a
translate: -10@-20. Use the reciprocal of any scaling factors in the
same way.

The Context Stack
Cairo supports a drawing context stack. This allows one to take a
“snapshot” of the current context stake, make changes for further
operations, and then at some point “rollback” to the snapshot. The
API used is saveWhile: aBlock. These may be nested.
Release Notes 4-9

Preview Components
They are particular useful with transformation operations. Consider
the following example, which decides a 12-sided equilateral polygon
centered around the point 50,50.

cr translate: 50 @ 50.
0 to: 1

by: 1 / 12
do: [:rotation | cr saveWhile:

[cr
rotation: rotation;
lineTo: 50 @ 0]].

cr closePath

Grouping Operations
A final pattern of interest is the groupWhile: aBlock pattern. A group in
Cairo terminology refers logically to a series of operations that are
buffered to a temporary surface, which then may be used as source
for a one time paint operation. This can be used to implement “double
buffering” but may also may be used to assemble complex graphis
that require multiple surfaces to piece together (e.g. two overlapping
linear gradients, one in the vertical direction, one in the horizontal
direction).

Deploying VisualWorks with Cairo Support

MS-Windows
The Cairo library is contained in a single cairo.dll file which is placed
alongside the VisualWorks virtual machine. Simply include this dll
along with your virtual machine executable, and you should have
access to the Cairo library.

Mac OS X
Cairo is embedded in the application bundle. It is a set of 3 dylib's
placed in a Frameworks directory which is coresident with the MacOS
directory found in the application bundle directory structure. If you
simply deploy the visual.app application bundle, you shouldn't need to
do anything. If you assemble your own application bundle, you will
need to ensure that the Frameworks directory contains the 3 dylibs
and is a parallel directory to whatever directory the virtual machine
executable exists in.

Ongoing Work
The CairoGraphics package is an ongoing work. It is maintained in the
Cincom Public Repository. If you find bugs or want to provide
enhancements, please do so, publishing your work on a branch
4-10 VisualWorks

Smalltalk Archives
version.In the future, Cincom hopes to be able to support Cairo
prebuilt libraries on all of its various supported platforms, making it a
true piece of the VisualWorks cross-platform strategy, and allowing
the VisualWorks IDE to begin to take advantage of the possibilities
Cairo offers.Cairo is a 2D vector graphics library. It has rudimentary
support for rendering character glyphs from platform fontsets. But it
does not pretend to offer any of the higher level CairoGraphics preview
services one usually needs to work with text (layout, measuring, etc).
A sister project to Cairo called Pango is under investigation by
Cincom engineers to also be used in a cross platform fashion, in the
same way Cairo is being considered.

Smalltalk Archives
Even though Smalltalk Archives are a supported feature of
ObjectStudio 8, they are supported only in preview for VisualWorks at
this time.

A Smalltalk Archive is a file containing a collection of parcels,
compressed (using tar). The archive specifies a load order for the
parcels, and supports override behavior.

Unlike publishing a bundle as a parcel, a Smalltalk Archive preserves
package (and parcel) override behavior and package load order.
Accordingly, Smalltalk Archives are a good alternative to publishing a
bundle, in some circumstances.

Smalltalk archive files have a .store filename extension.

To load an archive, use the File Browser to locate the file, then right-
click on it and select Load.

The archive loads with the parcel and bundle structure it had when it
was saved. Database links might or might not be preserved,
depending on the settings at the time it was saved.

To publish a Smalltalk Archive, select the bundle (or package) in the
System Brower, the select Package > Publish as Parcel… The options in
the publish dialog are the standard publish options, except for the
Store options section. Because you want to save as a Smalltalk
Archive, leave that checkbox selected. If you are using the Smalltalk
Archive for deployment, and so do not need the database links,
uncheck the With database links checkbox; otherwise, leave it checked.
Release Notes 4-11

Preview Components
The archive is published, by default, in the current directory, typically
the image directory. The file name is the bundle name with a .store
filename extension.

WriteBarriers
The immutability mechanism in VW can be used to detect any
attempts to modify an object. All it takes is marking the object as
immutable and hooking into the code raising the NoModificationError.
The ability to track changes to objects can be useful for number of
different purposes, e.g., transparent database updates for persistent
objects, change logging, debugging, etc. While the mechanism itself
is relatively simple, it is difficult to share it as is between multiple
independently developed frameworks.

WriteBarriers (loadable from preview/parcels/WriteBarriers.pcl) allow
multiple frameworks to monitor immutability exceptions at the same
time. This framework makes object change tracking pluggable
through subclasses of Tracker. A Tracker must implement a couple of
methods:

isTracking: anObject

Answer true if the tracker is tracking anObject

privateTrack: anObject

Register and remember anObject

privateUntrack: anObject

Forget about the object you were tracking

applyModificationTo: anObject selector: selector index: index
value: value

We've accepted that we are tracking the object and a change has
been made to it, what do we want to do? The default behavior is
to apply the change to the object.

Note that the framework does not provide a mechanism for keeping
track of which objects each tracker is managing. Instead, it leaves the
options open. Frameworks may already have a registry of objects that
they want to track (e.g., a persistency framework will likely cache all
persitent objects to maintain their identity) in which case a separate
registry for the corresponding tracker would waste memory
unnecessarily.
4-12 VisualWorks

WriteBarriers
A deliberate limitation of WriteBarriers is that they will refuse to track
any previously immutable objects. Trackers can decide to not apply
the modification and emulate the original immutability that way, and
refusing to track immutable objects reduces complexity of the
solution.

Here's a sketch of a tracker that will announce a Modified
announcement for any modification that occurs. Let's assume that
this AnnouncingTracker will have its own registry for tracked objects in
the form of an IdentitySet (inst var. objects). The first three required
methods are fairly obvious:

privateTrack: anObject
objects add: anObject

privateUntrack: anObject
objects remove: anObject ifAbsent: []

isTracking: anObject
^objects includes: anObject

The modification callback needs to call super so that the modification
is actually applied, but in addition makes the announcement as well.
Note that Tracker subclasses Announcer to make Announcement use
easy.

applyModificationTo: anObject selector: selector index: index value: value

super applyModificationTo: anObject selector: selector
index: index value: value.

self announce: (Modified subject: anObject)
To make use of the tracker, it has to be instantiated, which
automatically registers it in the global registry, Tracker.Trackers. Any
objects to be tracked by it have to be explicitly registered with it using
the #track: message.

tracker := AnnouncingTracker new.
tracker when: Modified do: [:ann | Transcript space; print: ann subject]
string := 'Hello' copy.
tracker track: string.
string at: 1 put: $Y.
Release Notes 4-13

Preview Components
The last statement will trigger the Transcript logging block. To stop
tracking an object use the #untrack: message.

tracker untrack: string
And to deactivate the tracker altogether use the #release message.

tracker release

Sparing Scrollbars
Sparing Scrollbars extends VisualWorks widgets to optionally set
scrollbars to be dynamic and only appear when necessary. When
loaded on top of the UIPainter, the dataset, list, table, tree, text editor,
hierarchical view, or view holder widgets, or the window itself may be
specified to use this feature in the Details page of the UIPainter tool.
Sparing Scrollbars includes some test and sample classes which
demonstrate the usage of this new behavior.

The Sparing Scrollbars component can be loaded from the parcel
preview/SparingScrollbars.pcl.

Multithreaded COM
Composed of a DLL and three parcels, the multithreaded COM
option for COM Connect introduces the ability to perform non-
blocking COM calls in VisualWorks. This improves responsiveness of
COM servers implemented in VisualWorks using COM Connect. It
currently operates for VisualWorks versions 7.3 to 7.6 on Window XP
platforms with 32Bit Intel Architecture.

This option changes the threading model of an existing VisualWorks
to free-threaded, but synchronization is still performed via
VisualWorks DLLCC mechanisms. Threaded COM call-outs and all
in-bound calls will be routed through the multithreaded COM
interface. Non-threaded callouts will still go through the original COM
primitives provided by the VisualWorks virtual machine.

Additional notes and usage instructions appear in /preview/
multithreaded com/DLLCOM.pdf.
4-14 VisualWorks

COM User Defined Type (UDT) Support
COM User Defined Type (UDT) Support
Prior to this release, COM Connect was unable to call COM functions
that use user-defined parameter types (structures). The COM UDT
Support preview component adds support for such data types for 7.6.

The COM UDT support component consists the parcel files and a
PDF file in preview/com udt support/.

Grid
A Grid widget combines elements of the Table and Dataset widgets
for a simpler and more flexible interface of viewing and editing
tabulated forms. This release includes a preview of a new Grid,
based on the Grid from the Widgetry project. It currently supports the
following features:

• Multiple row sort by column with or without a UI

• Multiple and single selection options by row or individual cell

• Interactive row or column resize

• Scroll and align column, row, or cell to a particular pane position
(e.g., center, left, right top, bottom)

• UIBuilder canvas support

Planned features include:

• A SelectionInGrid model. Currently one may directly access, add,
remove, and change elements of the Grid. Direct access will
always be available.

• Drag-and-drop rows or columns to add, remove, or sort elements

• A tree column

• Completion of announcements, trigger events, or callbacks

• Specific OS look support for column headers. Currently only a
default look is supported.

• The column and row headers may be set to not scroll with the
Grid.

Further information on usage and supporting classes with examples
appears in /preview/Grid/grid.htm.
Release Notes 4-15

Preview Components
Store Previews

Store for Access
The StoreForAccess parcel, formerly in “goodies,” has been enhanced
by Cincom and moved into preview. It is now called StoreForMSAccess,
to distinguish it from the former parcel.

The enhancements include:

• A schema identical that for the supported Store databases.

• Ability to upgrade the schema with new Cincom releases (e.g.,
running DbRegistry update74).

• Ability to create the database and install the tables all from within
Smalltalk, as described in the documentation.

• No need to use the Windows Control Panel to create the Data
Source Name.

The original parcel is no longer compatible with VW 7.4, because it
does not have the same schema and ignores the newer Store
features.

While MS Access is very useful for personal repositories, for multi-
user environments we recommend using a more powerful database.

Store for Supra
In order to allow Store to use Supra SQL as the repository, the
StoreForSupra package provides a slightly modified version of the
Supra EXDI, and implements circumventions for the limitations and
restrictions of Supra SQL which are exposed by Store. The Store
version of Supra EXDI does not modify/override anything in the base
SupraEXDI package. Instead, modifications to the Supra EXDI are
achieved by subclassify the Supra EXDI classes.

Circumventions are implemented by catching error codes produced
when attempting SQL constructs that are unsupported by Supra SQL
and inserting one or more specifically modified SQL requests. The
Supra SQL limitations that are circumvented are:

• Blob data (i.e. LONGVARCHAR column) is returned as null when
accessed through a view.

• INSERT statement may not be combined with a SELECT on the
same table (CSWK7025)
4-16 VisualWorks

Store Previews
• UPDATE statement may not update any portion of the primary
KEY (CSWK7042)

• DELETE statement may not have a WHERE... IN (...) clause with
lots of values (CSWK1101, CSWK1103)

• When blob data (i.e. LONGVARCHAR column) is retrieved from
the data base, the maximum length is returned rather than the
actual length

• Supra SQL does not have SEQUENCE

StoreForSupra requires Supra SQL 2.9 or newer, with the following
tuning parameters:

SQLLONGVARCHAR = Y
SQLMAXRESULTSETS = 256

StoreForSupra installation instructions
1 Install Supra SQL

2 Create a Supra database

3 Use XPARAM under Windows to set the following

• set Password Case Conversion = Mixed

• set Supra tuning variable SQLLONGVARCHAR = Y

• set Supra tuning variable SQLMAXRESULTSETS = 256

4 Start the Supra database

5 From the SUPERDBA user, create the Store administration user
with DBA privileges.

• User ID BERN is recommended, password is your own
choice.

• Sample SQL for creating the Store administration use:

create user BERN password BERN DBA not exclusive

6 Load the StoreForSupra parcel.

7 To create the Store tables in the Supra database, run the
following Smalltalk code from a workspace (You will be prompted
for the Supra database name, the Supra administration user id
and password.)
Release Notes 4-17

Preview Components
Store.DbRegistry goOffLine installDatabaseTables.
8 To remove the Store tables from the Supra database, run the

following Smalltalk code from a workspace

Store.DbRegistry goOffLine deinstallDatabaseTables.

Security

OpenSSL cryptographic function wrapper
The OpenSSL-EVP package provides access to most of the
cryptographic functions of the popular OpenSSL library (http://
www.openssl.org). The functions currently available include

• symmetric ciphers: ARC4, AES, DES and Blowfish

• hash functions: MD5, SHA, SHA256, SHA512

• public ciphers: RSA, DSA

The API of this wrapper is modelled after the native Smalltalk
cryptography classes so that they can be polymorphically substituted
where necessary. Since these classes use the same name they have
to live in their own namespace, Security.OpenSSL. The intent is that
each set of classes can be used interchangably with minimal
modification of existing user code.

Along these lines, you can instantiate an instance of an OpenSSL
algorithm same way as the native ones. For example:

| des ciphertext plaintext |
des := Security.OpenSSL.DES newBP_CBC

setKey: '12345678' asByteArray;
setIV: '87654321' asByteArray;
yourself.

ciphertext := des encrypt: ('Hello World!' asByteArrayEncoding: #utf_8).
plaintext := (des decrypt: ciphertext) asStringEncoding: #utf_8

An alternative way to configure an algorithm instance is using cipher
wrappers. The equivalent of the #newBP_CBC method shown above
would be the following.

des := Security.OpenSSL.BlockPadding on: (
Security.OpenSSL.CipherBlockChaining on:

Security.OpenSSL.DES new).
4-18 VisualWorks

Security
Note that while the APIs look the same the two implementations have
different underlying architectures, so generally their components
should not be mixed. That is, OpenSSL wrappers merely call the
OpenSSL library with some additional "flags", whereas the Smalltalk
versions augment the calculations. In general, it won't work properly
to use a Smalltalk cipher mode wrapper class around an OpenSSL
algorithm and vice versa.

The only thing that is different with hash functions is that the
OpenSSL version does not support cloning, so #copy will raise an
error. Consequently, it is currently hard to use them with HMAC,
which uses cloning internally. We have yet to modify the HMAC
implementation to avoid that. However the wrapper already provides
SHA512 which is not yet available with the Smalltalk library.

The wrapper also supports 2 public key algorithms, RSA and DSA.
The keys for these algorithms are more complex than the simple byte
sequences used with symmetric ciphers. However, the wrapper is
written so that the API uses the exact same kind of objects for both
the Smalltalk version and the OpenSSL version. Similarly for DSA
signatures, both versions use DSASignature instances. Here's an
example.

| message keys dsa signature |
message := 'This is the end of the world as we know it ...' asByteArray.
keys := Security.DSAKeyGenerator keySize: 512.
dsa := Security.OpenSSL.DSA new.
dsa privateKey: keys privateKey.
signature := dsa sign: message.
dsa publicKey: keys publicKey.
dsa verify: signature of: message

The current version of the wrapper should support usual OpenSSL
installations on Windows and Linux and various Unixes out of the
box. There is only one interface class, with platform specific library
file and directory specifications in it. If you get a LibraryNotFoundError
when trying to use this package, you may need to change or add
these entries for your specific platform. You need to find out what is
the correct name of the OpenSSL cryptographic library on your
platform and where is it located, and update the #libraryFiles: and
#libraryDirectories: attributes of the OpenSSLInterface class accordingly.
More information can be found in the DLL and C Connect User's
Guide (p.51). To obtain the shared library for your platform, see http://
www.openssl.org/source. Note that the library is usually included with
many of the popular Linux distributions, in many cases this package
should just work.
Release Notes 4-19

Preview Components
A note about HP platforms. If your version of the openssl library
doesn't contain (export) the requested function, the image can hang.
On Windows, an exception is thrown instead (object not found). The
workaround is to verify that your version of the library has the
functions you need. For example, the "CFB" encryption facility wasn't
available until version 0.9.7.e. And the sha256 and sha512 are only
available after 0.9.8 and higher.

Also, on all platforms, remember that the openssl library uses
pointers to memory areas which are valid only while the image is still
running. After an image shutdown, all pointers are invalid. Your code
should therefore discard OpenSSL objects, and generate new ones
with each image restart. Even though your old objects will be alive at
startup, (a return from snapshot), the pointers are invalid, and the
openssl library no longer remembers any of its own state information
from the previous session.

Opentalk
The Opentalk preview provides extensions to 7.2 and the Opentalk
Communication Layer. It includes a preview implementation of SNMP,
a remote debugger and a distributed profiler. The load balancing
components formerly shipped as preview components in 7.0 is now
part of the Opentalk release.

For installation and usage information, see the readme.txt files and
the parcel comments.

Opentalk HTTPS
This release includes a preview of HTTPS support for Opentalk.
HTTPS is normal HTTP protocol tunneled through an SSL protected
socket connection. Similar to Opentalk-HTTP, the package Opentalk-
HTTPS only provides the transport level infrastructure and needs to be
combined with application level protocol like Opentalk-XML or Opentalk-
SOAP.

An HTTPS broker must be configured with a SSLContext for the role
that it will be playing in the SSL connections, i.e., #serverContext: for
server roles and #clientContext: for client roles. Also, the authenticating
side (which is almost always the client) needs to have a
corresponding validator block set as well. The client broker will
usually need to have the #serverValidator: block set to validate server
certificates. The server broker will only have its #clientValidator: block
4-20 VisualWorks

Opentalk
set if it wishes to authenticate the clients. Note that the presence or
absence of the #clientValidator: block is interpreted as a trigger for
client authentication.

Here's the full list of all HTTPSTransportConfiguration parameters:

clientContext

The context used for connections where we act as a client.

serverContext

The context used for connections where we act as a server.

clientValidator

The subject validation block used by the server to validate client
certificates.

serverValidator

The subject validation block used by the client to validate server
certificates.

Note that the same broker instance can be set up to play both client
and server roles, so all 4 parameters can be present in a broker
configuration. For more information on setting up SSLContext for
clients or servers please refer to the relevant chapters of the Security
Guide.

This example shows how to set up a secure Web Services broker as
a client:

context := Security.SSLContext newWithSecureCipherSuites.
broker :=

(BasicBrokerConfiguration new
adaptor: (

ConnectionAdaptorConfiguration new
isBiDirectional: false;
transport: (

HTTPSTransportConfiguration new
clientContext: context;
serverValidator:

[:name | name commonName = 'Test Server'];
marshaler: (

SOAPMarshalerConfiguration new
binding: aWsdlBinding)))

) newAtPort: 4242.
Release Notes 4-21

Preview Components
This example shows how to set up a secure Web Services broker as
a server:

context := Security.SSLContext newWithSecureCipherSuites.
"Servers almost always need a certificate and private key, clients only
when
client authetication is required."
"Assume the server certificate is stored in a binary (DER) format."
file := 'certificate.cer' asFilename readStream binary.
[certificate := Security.X509.Certificate readFrom: file] ensure: [file
close].
"Assume the private key is stored in a standard, password encrypted
PKCS8
format"
file := 'key.pk8' asFilename readStream binary.
[key := Security.PKCS8 readKeyFrom: file password: 'password']
ensure:

[file close].
context certificate: certificate key: key.
broker :=

(BasicBrokerConfiguration new
adaptor: (

ConnectionAdaptorConfiguration new
isBiDirectional: false;
transport: (

HTTPSTransportConfiguration new
serverContext: server;
marshaler: (

SOAPMarshalerConfiguration new
binding: aWsdlBinding)))

) newAtPort: 4242.
4-22 VisualWorks

Opentalk
This release also includes a toy web server built on top of Opentalk
as contributed code, and is not supported by Cincom. It is, however,
quite handy for testing the HTTP/HTTPS transports without having
other complex infrastructure involved. So here is another example
how to set up a simple secure web server as well:

| resource ctx |
resource := Security.X509.RegistryTestResource new setUp.
ctx := Security.SSLContext

suites: (Array with: Security.SSLCipherSuite
SSL_RSA_WITH_RC4_128_MD5)

registry: resource asRegistry.
ctx rsaCertificatePair: resource fullChainKeyPair.
(Opentalk.AdaptorConfiguration webServer

addExecutor: (Opentalk.WebFileServer prefix: #('picture')
directory: '$(HOME)\photo\web' asFilename);

addExecutor: (Opentalk.WebFileServer prefix: #('ws')
directory: '..\ws' asFilename);

addExecutor: Opentalk.WebHello new;
addExecutor: Opentalk.WebEcho new;
transport: (Opentalk.TransportConfiguration https

serverContext: ctx;
marshaler: Opentalk.MarshalerConfiguration web)

) newAtPort: 4433
Once the server is started, it should be accessible using a web
browser, for example https://localhost:4433/hello.

Distributed Profiler
The profiler has not changed since the last release and works only
with the old AT Profiler, shipped in the obsolete/ directory.

Installing the Opentalk Profiler in a Target Image
If you want to install only the code needed for images, potentially
headless, that are targets of remote profiling, install the following
parcel:

• Opentalk-Profiler-Core

Installing the Opentalk Profiler in a Client Image
To create an image that contains the entire Opentalk profiler install
the following parcels in the order shown:

• Opentalk-Profiler-Core

• Opentalk-Profiler-Tool
Release Notes 4-23

Preview Components
Opentalk Remote Debugger
This release includes an early preview of the Remote Debugger. Its
functionality is seriously limited when compared to the Base
debugger, however its basic capabilities are good enough to be
useful in many cases. The limitations are mostly related to actions
that open other tools. For those to work, we have yet to make the
other tools remotable as well.

The remote debugger is contained in two parcels.

The Opentalk-Debugger-Remote-Monitor parcel loads support for the
image that will run the remote debugger interface. The monitor is
started by sending:

RemoteDebuggerClient startMonitor
Once the monitor is started, other images can “attach” to it. The
monitor will host the debuggers for any unhandled exceptions in the
attached images.

To shutdown a monitor image, all the attached images should be
detached first and then the monitor should be stopped, by sending:

RemoteDebuggerClient stopMonitor
The Opentalk-Debugger-Remote-Target parcel loads support for the
image that is expected to be debugged remotely. To enable remote
debugging this image has to be “attached” to a monitor, i.e., to the
image that runs the remote debugger UI. Attaching is performed with
one of the “attach*' messages defined on the class side of
RemoteDebuggerService. Use detachMonitor to stop forwarding of
unhandled exceptions to the remote monitor image.

A packaged (possibly headless) image can be converted into a
“target” during startup by loading the Opentalk-Debugger-Remote-
Target parcel using the -pcl command line option. Additionally it can
be immediately attached to a monitor image using an -attach
[host][:port] option on the same command line. It is assumed that the
Base debugger is in the image (hasn't been stripped out) and that the
prerequisite Opentalk parcels are also available on the parcel path of
the image.

Opentalk CORBA
This release includes an early preview of our OpentalkCORBA
initiative. Though our ultimate goal is to replace DST, DST will remain
a supported product until OpentalkCORBA matches all its relevant
4-24 VisualWorks

Opentalk CORBA
capabilities and we provide a reasonable migration path for current
DST users. So, we would very much like to hear from our DST users,
about the features and tools they would like us to carry over into
OpentalkCORBA.

For example, we do not intend to port any of the presentation-
semantic split framework, or any of the UIs that essentially depend
upon it, unless there is strong user demand. Please contact Support,
and ask them to forward your concerns and needs to the VW
Protocol and Distribution Team.

This version of OpentalkCORBA combines the standard Opentalk
broker architecture with DST's IDL marshaling infrastructure to
provide IIOP support for Opentalk. OpentalkCORBA has its own
clone of the IDL infrastructure residing in the Opentalk namespace so
that changes made for Opentalk do not destabilize DST. The two
frameworks are almost capable of running side by side in the same
image. The standard base class extensions, however, like
'CORBAName' can only work for one framework, usually the one that
was loaded last. Therefore, if you want to load both and be sure that
DST is unaffected, make sure it is loaded after OpentalkCORBA, not
before.

This version of OpentalkCORBA already offers a few improvements
over DST. In particular, it supports the newer versions of IIOP, though
there is no support for value types yet. A short list of interesting
features and limitations follows:

• supports IIOP 1.0, 1.1, 1.2

• defaults to IIOP 1.2

• does not support value types

• does not support Bi-Directional IIOP

• doesn't support the NEEDS_ADDRESSING_MODE reply status

• system exceptions are currently raised as
Opentalk.SystemExceptions

• user exceptions are currently raised as Error on the client side

• supports LocateRequest/LocateReply

• does not support CancelRequest

• does not support message fragmenting
Release Notes 4-25

Preview Components
• the general IOR infrastructure is fleshed out (IOPTaggedProfiles,
IOPTaggedComponents, IOPServiceContexts) and adding new kinds
of these components amounts to adding new subclasses and
writing corresponding read/write/print methods

• the supported profiles are IIOPProfile and
IOPMultipleComponentProfile, and anything else is treated as an
IOPUnknownProfile

• the only supported service context is CodeSet, and anything else
is treated as an IOPUnknownContext

• however it does not support the codeset negotiation algorithm
yet; correct character encoders for both char and wchar types
can be set manually on the CDRStream class

• the supported tagged components are CodeSets, ORBType and
AlternateAddress, and anything else is treated as an
IOPUnknownComponent

IIOP has the following impact on the standard Opentalk architecture
and APIs:

• there is a new IIOPTransport and CDRMarshaler with corresponding
configuration classes

• these transport and marshaler configurations must be included in
the configuration of an IIOP broker in the usual way

• the new broker creation API consists of the following methods

• #newCdrIIOPAt:

• #newCdrIIOPAt:minorVersion:

• #newCdrIIOPAtPort:

• #newCdrIIOPAtPort:minorVersion:

• IIOP proxies are created using
Broker>>remoteObjectAt:oid:interfaceId:

• there is an extended object reference class named IIOPObjRef

• the LocateRequest capabilities are accessible via

• Broker>>locate: anIIOPObjRef

• RemoteObject>>_locate

• LocateRequests are handled transparently on the server side.
4-26 VisualWorks

Opentalk CORBA
• A location forward is achieved by exporting a remote object on
the server side (see the example below)

Examples

Remote Stream Access
The following example illustrates basic messaging capability by
accessing a stream remotely. The example takes advantage of the
IDL definitions in the SmalltakTypes IDL module:

| broker stream proxy oid |
broker := Opentalk.BasicRequestBroker newCdrIiopAtPort: 4242.
broker start.
[oid := 'stream' asByteArray.

stream := 'Hello World' asByteArray readStream.
broker objectAdaptor export: stream oid: oid.
proxy := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 4242)

oid: oid
 interfaceId: 'IDL:SmalltalkTypes/Stream:1.0'.

proxy next: 5.
] ensure: [broker stop]
Release Notes 4-27

Preview Components
Locate API
This example demonstrates the behavior of the “locate” API:

| broker |
broker := Opentalk.BasicRequestBroker newCdrIiopAtPort: 4242.
broker start.
[| result stream oid proxy found |

found := OrderedCollection new.

"Try to locate a non-existent remote object"
oid := 'stream' asByteArray.
proxy := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 4242)

oid: oid
interfaceId: 'IDL:SmalltalkTypes/Stream:1.0'.

result := proxy _locate.
found add: result.

"Now try to locate an existing remote object"
stream := 'Hello World' asByteArray readStream.
broker objectAdaptor export: stream oid: oid.
result := proxy _locate.
found add: result.
found

] ensure: [broker stop]
4-28 VisualWorks

Opentalk CORBA
Transparent Request Forwarding
This example shows how to set up location forward on the server side
and demonstrates that it is handled transparently by the client.

| broker |
broker := Opentalk.BasicRequestBroker newCdrIiopAtPort: 4242.
broker start.
[| result stream proxy oid fproxy foid|

oid := 'stream' asByteArray.
stream := 'Hello World' asByteArray readStream.
broker objectAdaptor export: stream oid: oid.
proxy := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 4242)

oid: oid
interfaceId: 'IDL:SmalltalkTypes/Stream:1.0'.

foid := 'forwarder' asByteArray.
broker objectAdaptor export: proxy oid: foid.
fproxy := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 4242)

oid: foid
interfaceId: 'IDL:SmalltalkTypes/Stream:1.0'.

fproxy next: 5.
] ensure: [broker stop]

Listing contents of a Java Naming Service
This example provides the code for listing the contents of a running
Java JDK 1.4 naming service. It presumes that you have Opentalk-
COS-Naming loaded. To run the Java naming service, just invoke
'orbd -ORBInitialPort 1050' on a machine with JDK 1.4 installed.
Release Notes 4-29

Preview Components
Note that this example also exercises the LOCATION_FORWARD
reply status, the broker transparently forwards the request to the true
address of the Java naming service received in response to the
pseudo reference 'NameService'.

| broker context list iterator |
broker := Opentalk.BasicRequestBroker newCdrIiopAtPort: 4242.
broker passErrors; start.
[context := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 1050)

oid: 'NameService' asByteArray
interfaceId: 'IDL:CosNaming/NamingContextExt:1.0'.

list := nil asCORBAParameter.
iterator := nil asCORBAParameter.
context

listContext: 10
bindingList: list
bindingIterator: iterator.

list value
] ensure: [broker stop]

List Initial DST Services
This is how you can list initial services of a running DST ORB. Note
that we're explicitly setting IIOP version to 1.0.

| broker dst |
broker := Opentalk.BasicRequestBroker

newCdrIiopAtPort: 4242
minorVersion: 0.

broker start.
[dst := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 3460)

oid: #[0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0]
interfaceId: 'IDL:CORBA/ORB:1.0'.

dst listInitialServices
] ensure: [broker stop]

International Domain Names in Applications (IDNA)
RFC 3490 “defines internationalized domain names (IDNs) and a
mechanism called Internationalizing Domain Names in Applications
(IDNA) which provide a standard method for domain names to use
4-30 VisualWorks

Opentalk CORBA
characters outside the ASCII repertoire. IDNs use characters drawn
from a large repertoire (Unicode), but IDNA allows the non-ASCII
characters to be represented using only the ASCII characters already
allowed in so- called host names today. This backward-compatible
representation is required in existing protocols like DNS, so that IDNs
can be introduced with no changes to the existing infrastructure.
IDNA is only meant for processing domain names, not free text” (from
the RFC 3490 Abstract).

Limitations
The current implementation in VisualWorks

• doesn't do NAMEPREP preprocessing of strings (currently we
just convert all labels to lowercase)

• doesn't properly implement all punycode failure modes

• needs exceptions instead of Errors

• needs I18N of messages

Usage
You can convert an IDN using the IDNAEncoder as follows:

IDNAEncoder new encode: 'www.cincom.com'
 "result: www.cincom.com"

or

IDNAEncoder new encode: 'www.cìncòm.com'
"result: www.xn--cncm-qpa2b.com"

and decode with

IDNAEncoder new decode: 'www.xn--cncm-qpa2b.com'
"result: www.cìncòm.com"

This package also overrides the low level DNS access facilities to
encode/decode the hostnames when necessary. Here's an example
invocation including a Japanese web site.

host := (String with: 16r6c5f asCharacter with: 16r6238 asCharacter),
'.jp'.
address := IPSocketAddress hostAddressByName: host.

"result: [65 99 223 191]"
The host name that is actually sent out to the DNS call is:

IDNAEncoder new encode: host
"result: xn--0ouw9t.jp"
Release Notes 4-31

Preview Components
A reverse lookup should also work, however I wasn't able to find an
IP address that would successfully resolve to an IDN, so I wasn't able
to test it. Even our example gives me only the numeric result:

IPSocketAddress hostNameByAddress: address
"result: 65.99.223.191"

Polycephaly
This package provides simple mechanisms for spawning multiple
running copies of the image and using those to perform various tasks
in parallel. This is primarily useful when attempting to utilize hosts
with multi-core CPUs. The images are spawned headless and are
connected with the main controlling image through their standard I/O
streams, which are wrapped with BOSS so that arbitrary objects can
be sent through.

The spawned images (drones) are represented by instances of
VirtualMachine. The primary API are the variations of the #do:
message which take an action expressed either as a String
containing valid Smalltalk code

[:vm | [vm do: '3 + 4'] ensure: [vm release]]
value: VirtualMachine new

or an instance of "clean" BlockClosure (one that does not reference
any variables, including globals, outside of its scope)

| vm |
vm := VirtualMachine new.
[vm do: [3 + 4]
] ensure: [vm release].

Optional arguments can be attached as well.

| vm |
vm := VirtualMachine new.
[vm do: [:a :b | a + b] with: 3 with: 4
] ensure: [vm release].

Note that the arguments will be "BOSS-ed out" for transport, so
anything in the scope of objects they reference (transitively) will be
included as well. Avoid including things like classes or external
resources. For more complex cases where the clean block with
arguments is hard to achieve, or when the action needs to hook into
the objects in the drone image, the String based action is more
suitable. Its advantage is that the code will be compiled in the Drone
and can therefore reference classes and globals available in that
4-32 VisualWorks

Polycephaly
image. In this case any arguments are referenced in the code as
named variables and has to be passed in as a dictionary mapping the
variable names to values. They will be included in the compilation
scope as other shared variable bindings.

| vm |vm := VirtualMachine new.[vm do: 'a + b' environment: (Dictionary
new at: #a put: 3;

at: #b put: 4;
yourself)

] ensure: [vm release].
Note that a VM instance can be reused multiple times.

| vm |
vm := VirtualMachine new.
[(1 to: 5) collect: [:i | vm do: '3 + 4']
] ensure: [vm release].

Consequently it needs to be explicitly shut down with the #release
message when no longer needed.For cases when multiple VMs are
needed to execute the same action in parallel, VirtualMachines class
allows to maintain the whole set of machines as one.

| vm |
vm := VirtualMachines new: 2.
[vm do: '3 + 4'
] ensure: [vm release].
Release Notes 4-33

	Introduction to VisualWorks 7.7
	Product Support
	Support Status
	Product Patches

	ARs Resolved in this Release
	Items of Special Note
	VisualWorks on Vista or Windows 7

	Known Limitations
	Alt Shortcuts inactive for buttons and label mnemonics

	VW 7.7 New and Enhanced Features
	Virtual Machine
	Ephemerons, Weak Objects and Garbage Collection
	New Mirror Primitive
	Semaphore Primitive Behavior Changed
	Improved Mouse Scroll Wheel Events
	64-Bit VM Limitations
	Large Pixmap Performance on OS X

	Base Image
	64-Bit Support
	Floating Point Arithmetic
	New Time Zone API: SystemTimeZone
	Durations
	Support for Timers and Timer-Based Delays
	Evaluable Symbols
	Binary Selectors Longer than Two Characters
	Deprecation Support
	Object>>initialize Added
	ExternalReadAppendStream>>flush
	BOSS and 64-Bit Support
	BOSS Performance of Writing Single Objects
	Using BOSS to Write Compiled Methods
	Compiler Changes
	API for Formatting Selectors
	Custom Memory Policies
	Resolution of Font Issues under Fedora
	ExternalInterface Classes in Store

	GUI
	MenuItem label API
	List Modernization/Improvements
	Focused Widget Handles Shortcuts First (Not ApplicationModel)
	Rearchitect ProtocolItemNavigatorPart>>iconFor:
	Keyboard Shortcut Changes
	Removal of Alt/Meta Key Shortcuts for Text Editor
	Character Position Tab Stops
	Application Labels

	Tools
	Updated Icons
	Minimized Windows under OS X
	New Prerequisites Interface
	Inspector Enhancements (Bulletproofing and Proxies)
	Browser Enhancements
	UIPainter Auto-loaded from Browser Edit Button
	MiniChangeSetManager Removed as Default Item in Launcher
	Store Progress Dialogs
	Initial Database Links
	Refactoring Interaction Changes
	Restore Original RBFormatter
	Format on View and Format on Save Options
	MethodDefinition>>toolListIcons is Now Extensible
	Browser List of Instance Variables is Consistent with Inspector
	One-Shot Breakpoints
	Refactoring Browser Menu Caching Removed
	Changes to Browser Package Name Annotations
	Better Detection of Embedded URLs in Text Editors
	Inspector IEEE Floating Point Decomposition
	Source Files Manager
	Known Limitations of the ImageWriter
	Advanced Tools Profilers and Stack Spills
	Menu UI Compatibility

	Database
	Oracle EXDI: Statement Caching
	Oracle EXDI: Adjustable Buffering for LOBs
	Support for OEM Encoding
	ODBC EXDI: Enhanced Data Type Support
	ODBC EXDI: Improved Connection Reliability
	ODBC EXDI: Support for Multiple Active Result Sets (MARS)
	MySQL EXDI: Refactored Connection and Session Classes
	DB2 EXDI: Default LOB Size can be Specified
	DB2 EXDI: Fetch Multiple LOBs in One Execution

	Store
	A Bit of Detail
	Atomic Loading and Early Install
	The Future Looks Bright
	Repository Indexing
	Table Spaces Settings
	Settings Reorganized

	WebServices
	WSDL: Support for Empty <import/> Elements
	Type Validation for Serialization and Deserialization Blocks
	Support for XML Union Types

	Internationalization
	Enhanced UTF-8 Support
	CLDR-based Locales
	Locale-driven Formatting of Date/Time/Timestamp Values
	Add-on Support Parcels

	Net Clients
	Custom MIME Handlers
	Streaming of Generated Content

	Glorp
	Logins and Store Connection Profiles
	Active Record
	Migrations
	Information Schemas

	WebSphere MQ Interface
	Seaside Support
	Seaside 3.0alpha5
	Default Encoding now UTF-8
	jQuery Support
	Comet Support

	DLLCC
	Browser Support to Identify and Stub Missing DLLCC Definitions
	Solaris and the C Heap
	Flag to Ignore ExternalErrorNoThreadFound
	Objective-C Runtime Support
	Objective-C Utility APIs

	Documentation
	Basic Libraries Guide
	Tool Guide
	Application Developer’s Guide
	COM Connect Guide
	Database Application Developer’s Guide
	DLL and C Connect Guide
	DotNETConnect User’s Guide
	DST Application Developer’s Guide
	GUI Developer’s Guide
	Internationalization Guide
	Internet Client Developer’s Guide
	Opentalk Communication Layer Developer's Guide
	Plugin Developer’s Guide
	Security Guide
	Source Code Management Guide
	Walk Through
	Web Application Developer’s Guide
	Web GUI Developer’s Guide
	Web Server Configuration Guide
	Web Service Developer’s Guide

	Deprecated Features
	Virtual Machine
	WinCE Engines Dropped
	SGI IRIX Engines Dropped

	Base Image
	IEEE Math
	OS/2 and MacOS 9.x Platform Support Removed

	GUI
	NotebookWidget gone
	Subcanvas Obsolesced
	MacOS 9 Look and Feel Removed

	Tools
	RBSmallDictionary Gone

	Net Clients
	Class SimpleSMTPClient Obsolesced

	Opentalk
	SNMP
	Opentalk-Remote-Testing

	Plugin
	Plugin Obsolesced

	Application Server
	WebServerStartup

	Preview Components
	Universal Start Up Script (for Unix based platforms)
	Base Image for Packaging
	DB2 Support
	BOSS 32 vs. BOSS 64
	64-bit Image Conversion
	Tools
	Cairo
	Overview
	What is Cairo?
	Drawing with Cairo
	Getting a Cairo Context
	Setting the Source
	Defining Shapes
	Filling and Stroking Shapes
	Additional Operators
	Affine Transformations
	The Context Stack
	Grouping Operations

	Deploying VisualWorks with Cairo Support
	MS-Windows
	Mac OS X

	Ongoing Work

	Smalltalk Archives
	WriteBarriers
	Sparing Scrollbars
	Multithreaded COM
	COM User Defined Type (UDT) Support
	Grid
	Store Previews
	Store for Access
	Store for Supra
	StoreForSupra installation instructions

	Security
	OpenSSL cryptographic function wrapper

	Opentalk
	Opentalk HTTPS
	Distributed Profiler
	Installing the Opentalk Profiler in a Target Image
	Installing the Opentalk Profiler in a Client Image

	Opentalk Remote Debugger

	Opentalk CORBA
	Examples
	Remote Stream Access
	Locate API
	Transparent Request Forwarding
	Listing contents of a Java Naming Service
	List Initial DST Services

	International Domain Names in Applications (IDNA)
	Limitations
	Usage

	Polycephaly

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

