
Cincom Smalltalk™

Security Guide

P46-0143-03

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

Copyright © 2003-2008 Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0143-03

Software Release 7.6

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, COM Connect, and StORE are trademarks of Cincom Systems, Inc., its
subsidiaries, or successors. ENVY is a registered trademark of Object Technology
International, Inc. GemStone is a registered trademark of GemStone Systems, Inc. All
other products or services mentioned herein are trademarks of their respective
companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation copyright © 2003-2008 by Cincom
Systems, Inc. All rights reserved. No part of it may be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without prior
written consent from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

www.cincom.com

Contents

About This Book vii

Overview .. vii
Audience ... vii
Organization.. vii

Conventions .. viii
Typographic Conventions ... viii
Special Symbols.. ix
Mouse Buttons and Menus ... ix

Getting Help .. x
Commercial Licensees... x
Non-Commercial Licensees .. xi

Additional Sources of Information .. xii
Books on Computer Security .. xii
Specifications .. xii

Chapter 1 Introduction to Security

Overview ..1-1
Symmetric-key Encryption ..1-2
Public-key Cryptography ...1-2

Loading Security Components ...1-2
Importing Security Components into a Name Space ...1-3

Chapter 2 Hashes and Message Digests

Overview ..2-1
Hash Algorithms ...2-1

MD5 ...2-2
SHA ...2-2
SHA-256 ..2-2

Working with Hashes ...2-2
Hash Methods ...2-2
Hashing a Data Collection ...2-3
Hashing a Complete Data Stream ..2-4
Security Guide iii

Contents
Hashing a Data Stream Incrementally .. 2-4
Comparing to a Known Hash Value .. 2-5

HMAC Message Digests .. 2-6
Key Selection .. 2-6
Generating an HMAC ... 2-6
Validating a Message using HMAC ... 2-7

Chapter 3 Random Number Generators

DSSRandom .. 3-2
Initializing a DSSRandom Generator .. 3-2
Constraining the range of values .. 3-3
Using Autogenerated Seeds ... 3-3
Reusing the Generator ... 3-4
Reseeding a Generator .. 3-5
Default Generator ... 3-6

Reseeding the Default Generator .. 3-7
Generating a Good Random .. 3-8

Selecting a Seed .. 3-8
Primality Testing .. 3-9

Configuring Miller-Rabin Testing ... 3-9
Configuring Prime Sieve Testing ... 3-10

Chapter 4 Symmetric-key Cryptography

Overview .. 4-1
Generating Keys .. 4-1
Symmetric-key Cipher General API ... 4-3

Instance Creation ... 4-3
Encryption/Decryption Messages ... 4-3

Block Ciphers ... 4-4
Block Cipher Implementations .. 4-4

AES ... 4-4
Blowfish ... 4-5
DES ... 4-5

General API .. 4-5
Cipher Modes .. 4-5
Padding Options .. 4-7
Triple-key EDE Encryption ... 4-8
Instance Creation Methods .. 4-8

Encrypting and Decrypting with Block Ciphers ... 4-9
Providing Custom Padding .. 4-10

Stream Ciphers .. 4-11
ARC4 .. 4-11
iv VisualWorks

Contents
Password-based Encryption and Authentication ..4-12
Loading PKCS Support ...4-12
PKCS Encryption ..4-12
Message Authentication ..4-14

Chapter 5 Public Key Cryptography

Digital signatures ..5-2
Generating Keys ...5-2

Exporting and Importing Keys ...5-3
RSA ..5-3

Creating a Digital Envelope ...5-4
Digitally Signing with RSA ...5-5

Using a Custom Hash ..5-5
DSA ..5-7

Generating DSA key pairs ...5-7
Digitally Signing with DSA ...5-7
Verifying a DSA signature ...5-8

Diffie-Hellman key agreement ..5-8
Basic DH Shared Secret Generation ...5-8
Using the Shared Secret for Encryption ..5-9
Using pre-defined parameter values ...5-10
Controlling Parameter Generation ...5-11

Chapter 6 Secure Socket Layer

Limitations ..6-1
Usage ...6-2
SSL Exceptions ..6-4
Handshake and Certificates ...6-4

Certificate Subject Validation ..6-7
Client Authentication ...6-8
Certificates for Signing ..6-8

Diffie-Hellman Key Exchange ...6-9
Anonymous Handshake ...6-10
Session Renegotiation ...6-11
Session Resumption ..6-11

Chapter 7 ASN.1

Overview ..7-1
ASN.1 ...7-1

ASN.1 Fundamental Types ...7-2
ASN.1 Modules ..7-3
Security Guide v

Contents
ASN.1’s Constructed Types ... 7-3
ASN.1’s OID ... 7-3

Type Definition in ASN.1 ... 7-4
ASN.1 Constraints ... 7-5

ASN.1 Type Tags .. 7-5
ASN.1 Encoding Rules ... 7-7

Packaging .. 7-8
Design of the ASN.1 Implementation ... 7-8

Outline .. 7-9
The ASN.1 Type System ... 7-9

The Types .. 7-9
The Type Extension Machinery ... 7-10
The Constraint Specification Machinery 7-11

The Mapping of Smalltalk Classes to the ASN.1 Type System 7-11
One-To-One Base Type Mappings ... 7-11
Many-To-One Base Type Mappings, Encoding Policies, and Type

Wrappers ... 7-12
Constructed Type Mappings, Structs, and User-Defined Mappings ...

7-13
Imported Type Mappings ... 7-13
SMINode .. 7-14

The Encoding Rules ... 7-14
Using the ASN.1 Implementation .. 7-16

Getting the Encoded Bytes ... 7-16
Type-Agnostic Marshaling ... 7-18
Defining ASN.1 Types ... 7-19

Module Creation .. 7-19
Type Definitions ... 7-19

Type-In Hand Marshaling .. 7-22
Debugging Tips and Error Types ... 7-22
Known Limitations ... 7-22

Index Index-1
vi VisualWorks

About This Book

Overview
This document describes the VisualWorks libraries and frameworks for
employing encryption and related security features in Smalltalk
applications.

Audience
This document is intended for experienced developers, who already know
VisualWorks and Smalltalk development. It further assumes familiarity
with the requirements for secure communications. It is beyond the scope
of this document to fully describe the issues around and solutions to
problems of security, for which you are referred to the many publications
that can cover this topic in a comprehensive manner.

It is assumed that you have at least a beginning knowledge of
programming in a Smalltalk environment, though not necessarily with
VisualWorks. For introductory level information, the on-line VisualWorks
Tutorial (available at http://www.cincom.com/smalltalk/tutorial), and the
Application Developer’s Guide.

Organization
This document begins with a general, and brief, introduction to software
security and the problems it address. The subsequent chapters introduce
specific support for security technologies within VisualWorks and their
use.

The chapters are:

Chapter 1, “Introduction to Security.” A very basic introduction to the
issues of software security addressed by the VisualWorks libraries, types
of security supported, and how to load security support.

Chapter 2, “Hashes and Message Digests.” Describes hashing algorithms
in general, and the algorithms implemented in VisualWorks and their use,
particularly for creating message digests.
Security Guide vii

http://www.cincom.com/smalltalk/tutorial

About This Book
Chapter 3, “Random Number Generators.” Describes the role of pseudo-
random number generators in providing software security, the generators
provided by VisualWorks, and how to use them to maximize their
effectiveness for secure applications.

Chapter 4, “Symmetric-key Cryptography.” Describes the support in
VisualWorks for symmetric-key ciphers, including how to generate a key
and the algorithms for using a key to encrypt and decrypt data.

Chapter 5, “Public Key Cryptography.” Describes the support in
VisualWorks for public-key encryption, including how to generate keys,
and their use for encryping and/or digitally signing data.

Chapter 6, “Secure Socket Layer.” Describes the implementation and use
of Netscape’s SSL 3.0 implementation within VisualWorks.

Chapter 7, “ASN.1.” Describes ASN.1 and the design of the VisualWorks
ASN.1 implementation.

Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.
viii VisualWorks

Conventions
Special Symbols
This book uses the following symbols to designate certain items or
relationships:

Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or
combinations:

Examples Description

File New Indicates the name of an item (New) on a menu
(File).

<Return> key

<Select> button

<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button
Security Guide ix

About This Book
Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

• The version id, which indicates the version of the product you are
using. Choose Help About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to:

supportweb@cincom.com.

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>

3-Button 2-Button 1-Button
x VisualWorks

mailto:supportweb@cincom.com
mailto:supportweb@cincom.com

Getting Help
Web
In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com
Telephone

Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.

Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:

• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu
with the SUBJECT of "subscribe" or "unsubscribe".

• An excellent Smalltalk archive is maintained by faculty and students
at UIUC, who are long-time Smalltalk users and leading lights in the
Smalltalk community, at:

http://st-www.cs.uiuc.edu/
• A Wiki (a user-editable web site) for discussing any and all things

VisualWorks related at:

http://wiki.cs.uiuc.edu/VisualWorks
• A variety of tutorials and other materials specifically on VisualWorks

at:

http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.
Security Guide xi

http://supportweb.cincom.com
mailto:vwnc-request@cs.uiuc.edu
http://st-www.cs.uiuc.edu/
http://wiki.cs.uiuc.edu/VisualWorks
http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
news:comp.lang.smalltalk

About This Book
Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincomsmalltalk.com/documentation
is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.

Books on Computer Security
The following is a short list of books that the development team has found
helpful in understanding the issues of security and cryptography in the
course of developing these libraries.

Burnett, Steve and Paine, Stephen. RSA Security’s Offical Guide to
Cryptography. McGraw-Hill Osborne Media (March 29, 2001).

Menezes, Alfred J., van Oorschot, Paul C., and Vanstone, Scott A.
Handbook Of Applied Cryptography. CRC Press (October 16, 1996)

Rescorla, Eric. SSL and TLS: Designing and Building Secure Systems.

Schneier, Bruce. Applied Cryptography. Addison-Wesley Pub Co.
(October 13, 2000)

Ferguson, Niels and Schneier, Bruce. Practical Cryptography. John Wiley
& Sons (March 28, 2003)

Specifications
Specific definitions of various security measures are contained in several
specifications, which are available on the web. The following is a sample:

Secure Random Numbers RFC 1750

Secure Hashes & MACS

MD5 RFC 1321

SHA FIPS180-1

SHA-1,256,384,512 FIPS180-2

HMAC RFC 2104, FIPS198a

Encryption Algorithms

Symmetric Key Algorithms
xii VisualWorks

http://www.cincomsmalltalk.com/documentation

Additional Sources of Information
DES FIPS46-3

Blowfish http://www.counterpane.com/blowfish.html]

AES FIPS197

Public Key Alorithms

Diffie-Hellman RFC2631

DSA FIPS186-2

RSA PKCS#1, RFC 2437

Keys & Certificates

X509 Algorithms RFC3279, Certificates RFC
3280, Attribute Certificates RFC 3281

Password Based Cryptography PKCS#5, RFC 2898

Private-Key Information Syntax PKCS#8

Personal Information Exchange
Syntax

 PKCS#12

Secure Protocols

SSL & TLS RFC2246

HTTPS RFC2818
Security Guide xiii

About This Book

xiv VisualWorks

1
Introduction to Security

Overview
Providing security features for computing systems has been a standard
practice. For example, an operating system typically protects access to
the system, and restricts access to parts of the system and its files, by
granting permissions via a password scheme. With the advent of the
internet, firewall mechanisms have been used to limit access to systems.

Increasingly, software developers are required to add security features to
their software. Not all data can be kept behind “locked doors,” but must be
held in areas that are subject to public access, or transported across the
internet, and so susceptible to access by unauthorized users.

Cryptography goes a long way toward meeting the needs of securing
access to private data, and a wide variety of mechanisms have been
provided by software developers. This document describes those
mechanisms that have been implemented within VisualWorks, and gives
guidelines for employing them within your Smalltalk application.

Cryptography provides a way to convert intelligible data into unintelligible
gibberish, and then convert it back to the original intelligible data. Simple
versions of cryptography have been used for centuries to send secret
messages. Computers have facilitated the task of breaking such codes,
but at the same time provide the ability to create codes that are virtually
uncrackable by the same or improved computers.

Encryption algorithms work based on a key, which is used to convert data
into apparently random bits. Either the same key (symmetric-key
encryption) or another key (asymmetric-key encryption) is used to restore
the encrypted data to its original form.
Security Guide 1-1

Introduction to Security
Used in combination, possibly together with hashing algorithms, provides
the several styles of encryption security in current use.

Symmetric-key Encryption
With symmetric-key cryptography, the same key is used for encrypting
and decrypting the data, just like a standard code book. Accordingly, the
key must be known to all persons who are authorized to decode and view
the data, whether this is one or several people. The supported
symmetric-key ciphers are described in Chapter 4, “Symmetric-key
Cryptography.”

Keeping the key secret from unauthorized users, yet known to authorized
users, is its own security issue. There are a variety of schemes for
sharing symmetric keys, descriptions of which a outside the scope of this
document, with the exception of public-key cryptographic methods

Public-key Cryptography
Public, or asymmetric, key algorithms provide a solution to the key
sharing problem of symmetric keys. These algorithms use a pair of keys,
one public and the other private, that are used together in several ways.
For example, RSA is used to encrypt a symmetric session key, DSA uses
keys exclusively for digitally signing a document and verifying the
signature, and Diffie-Hellman uses the keys to agree on a session key.
These methods are described in Chapter 5, “Public Key Cryptography.”

Loading Security Components
Security support is provided in a collection of parcels. In general, each
parcel contains support for a single security feature, such as a cipher
algorithm or hash. Using the Parcel Manager, they are listed in the
Security folder. The parcels are as follows.

Symmetric key ciphers:

• AES - Advanced Encryption Standard, the National Institute of
Standards (NIST) block cipher

• ARC4 - “alleged RC4,” a popular public domain algorithm that is
claimed by its original presenter to be the RC4 algorithm, which is
proprietary to RSA Security

• Blowfish - a symmetric block cipher designed in 1993 by Bruce
Schneier as a fast, free alternative to existing encryption algorithms
1-2 VisualWorks

Importing Security Components into a Name Space
• DES - Digital Encryption Standard (DES) was the most common
encryption during the 1980s

Public key ciphers:

• DSA - Digital Signing Algorithm, a public key algorithm that does not
encrypt data but is used only for digital signatures

• DH - the Diffie-Hellman key agreement algorithm variant described in
RFC 2631

• RSA - the RSA encryption algorithm

Hashes:

• MD5 - the MD5 hashing algorithm

• SHA - Secure Hash Algorithm

• SHA-256 - 256-bit SHA

• HMAC - Hashed Message Authentication Checksum

Secure Sockets:

• SSL - Secure Socket Layer support

A few other parcels are loaded by these as prerequisites.

Importing Security Components into a Name Space
All Security support classes are defined in the Smalltalk.Security name
space. Application code that uses these facilities should include this
name space by a general import.

You can import the Security name space either into your own name space,
making these resources available to every class in that name space, or
into individual classes that need to use Security features.

To import the Security name space, include this line in the imports: line in
either the class or the name space definition:

private Security.*
For example, you may have a network client application that uses many
or all of the Security support classes. A class definition, with the Security.*
import, might look something like this:
Security Guide 1-3

Introduction to Security
Smalltalk.MyNamespace defineClass: #MyNetClientApp
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: 'user mailAddress proxy'
classInstanceVariableNames: ''
imports: 'private Security.*'
category: 'Tools-Mail'

Because your application is defined in your own name space, and
possibly only few of your classes require access to the security classes, it
would be inappropriate to import Security into your name space. If, on the
other hand, your application security code were defined in its own sub-
name space, then importing Security to that name space might be
appropriate.
1-4 VisualWorks

2
Hashes and Message Digests

Overview
Secure hash algorithms are used in several ways in cryptographic
security. For example, a hash to verify file integrity, by storing a hash of
the file and periodically rehashing the file and comparing the digests; a
different hash indicates that the file has changed. Hashes are also
commonly used to generate a message digest for message
authentication. Finally, hashes are frequently used as part of the
combining of several random data elements to generate the seed for a
(pseudo) random number generator.

In this chapter we describe the hash algorithms implemented in
VisualWorks and their use. Also, we cover the HMAC message
authentication.

Hash Algorithms
VisualWorks provides implementations of the popular MD5 and SHA
hash algorithms, in the classes MD5, SHA (implementing SHA-1) and
SHA256 (implementing 256-bit SHA).

Most of the functionality of these classes is provided by their two
superclasses, MessageDigest and Hash. MessageDigest in particular
provides the services protocol that you most typically use to produce a
message digest using a hash algorithm. Hash then provides the basic
services, the lower-level implementations used by the services protocol,
that are basic to MD5 and SHA.
Security Guide 2-1

Hashes and Message Digests
MD5
Class MD5 implements the MD5 algorithm, which produces a 16-byte
(128-bit) message digest, and is reasonably fast and secure. While there
are some known internal weaknesses, and so a potential that it will
someday be broken, it remains secure, and so is generally safe to use.

SHA
Class SHA implements the SHA-1 algorithm, which produces a 160-bit
message digest. It is a stronger algorithm than MD5, and is highly
recommended in the cryptography community.

SHA-256
Class SHA-256 implements the SHA-256 hashing algorithm. Compared to
SHA-1, it further reduces the chance of collisions by extending the size of
the digest to 256 bits. It is, however, significantly slower.

Working with Hashes
There is generally little to do with hashes except to create them and to
compare them.

Hash Methods
The following methods are defined in the services protocol.

hash: aByteArray
Returns a digest of the entire aByteArray.

hash: aByteArray from: start to: end
Returns a digest of the segment of aByteArray specified by the start
and end integer values, indicating byte or character locations.

hashFrom: aReadStream
Returns a digest of the entire contents of aReadStream, which must be
a byte stream, not a character stream.

hashNext: anInteger from: aReadStream
Returns a digest of the next anInteger bytes from aReadStream.

For convenience, these are defined as class methods as well as instance
methods.

The above service messages invoke more basic (lower level) service
methods. These methods are useful in more complex circumstances.
2-2 VisualWorks

Working with Hashes
updateFrom: aReadStream
Updates the hash function block from all the available data on
aReadStream.

updateWith: aByteArray
Updates the hash function block from all of the data in aByteArray.

updateWith: aByteArray from: start to: end
Updates the hash function block from the range of data in aByteArray
starting at start up to and including end.

updateWithNext: count from: aReadStream
Updates the hash function block from the next count bytes of data
available on aReadStream.

Unlike the hash methods, the update methods do not return a digest. To
create the digest, you need to send a digest message to the hash
algorithm once the data is accumulated:

digest
Returns a digest generated from the hash function’s data block.

You can also reuse the hash class instance to generate a new digest, but
you need to reset it first:

reset
Resets the hash function to its initial state.

The use of several of these messages is described in “Hashing a Data
Stream Incrementally” below.

Hashing a Data Collection
The simple case of generating a digest of on a body of data assumes that
all of the data is available at once. This data, represented as a ByteArray,
is provided as an argument to one of the hash messages, and sent to an
instance of a hash algorithm class.

The simplest message is hash:, which simply hands the data to the
generator:

MD5 new hash: 'This is a test' asByteArray.
Since hash: is also defined as a class method, this can be shortened to
the following, using hash: as an instance creator:

MD5 hash: 'This is a test' asByteArray
Security Guide 2-3

Hashes and Message Digests
The hash: message is appropriate for generating a hash from any
ByteArray. For example, you might have the contents of a file in a ByteArray,
in which case you can generate a hash for the file as follows:

ba := '..\readme.txt' asFilename readStream binary contents.
MD5 hash: ba.

It is necessary for the read stream to be set to binary, for the reasons
described for hashFrom: below.

If you have reason to hash a segment of a ByteArray, use hash:from:to:. For
example, you could generate the hash of two characters:

MD5 hash: 'This is a test' asByteArray from: 6 to: 7.

Hashing a Complete Data Stream
To digest the complete contents of a data stream, send a hashFrom:
message, with the stream as argument. The complete contents of the
stream must be available for these methods to work. To generate the
digest, send a hashFrom: message to the generator with the read stream
as argument:

MD5 hashFrom: '..\readme.txt' asFilename readStream binary
The binary message ensures that character encoding does not affect the
result, and also produces a ByteArray as the result, as required by the
message. The pattern is the same for a binary file:

MD5 hashFrom: '\program files\PINs\PINs.exe' asFilename readStream binary
You can also generate a hash from a specified number of bytes from the
stream.

MD5 hashNext: 64
from: '\program files\PINs\PINs.exe' asFilename readStream binary

You can set the position in the stream as usual. For example, to skip
some initial bytes you can do:

rs := '\program files\PINs\PINs.exe' asFilename readStream binary.
rs next: 16.
MD5 hashNext: 64 from: rs.

Hashing a Data Stream Incrementally
In some circumstances, a data stream is not available all at once, but is
received in blocks. To generate a digest of the contents of such a stream,
you generate it partially, then progressively update the digest until the
entire stream has been received and hashed. The basic services are
required to do this.
2-4 VisualWorks

Working with Hashes
The specific requirements will differ based on the source of the stream
data, which might involve a high-level connection protocol FTP or HTTP,
or a low-level raw socket connection. Here we demonstrate the general
approach, simulating an incremental hash using a reading data from
several files.

hash := MD5 new.
hash updateFrom: '..\doc\WalkThrough.pdf' asFilename readStream binary.
hash updateFrom: '..\examples\Adapt4.pcl' asFilename readStream binary.
hash updateFrom: '..\readme.txt' asFilename readStream binary.
^hash digest.

This example accumulates the hash data from three sources, by
successive update messages. When all of the data is accumulated, the
digest is finally generated by sending a digest message to the hash
instance.

The alternative update messages can be used for accumulating the block
from a ByteArray, or from segments of a ByteArray or Stream. We will adapt
this example later, for seeding random number generators.

Comparing to a Known Hash Value
Hashes are typically used for verification of data integrity. Consequently,
a hash needs to be generated, stored, and then used for comparison with
a newly generated digest.

The message asHexString, which is added to ByteArray by the security
base parcel, provides the necessary conversion to a usable string. The
resulting string can be stored for later comparison.

To verify the integrity of the data, such as a file, for which there is a known
hash (in this case an MD5 hash), simply generate the digest and sent
asHexString to the result, and then check for equality with the known
hash value string:

(MD5 hashFrom: '\program files\PINs\PINs.exe' asFilename
readStream binary) asHexString =

'E83A28DCB4F653F3189B520F16025C7B'
Security Guide 2-5

Hashes and Message Digests
HMAC Message Digests
MACs (Message Authentication Codes) are a mechanism for validating
the integrity of a message using a shared secret key. The message
originator calculates a value from the message and a shared key, and
sends that value along with the message. The message receiver also
calculates a value from the message and key, and compares the values.
If the values are the same, the message is authenticated. HMAC is a
specific hash-based MAC algorithm.

Except for specifying the key, which is required, the protocol for
generating a HMAC digest is the same as for hashes.

HMAC can be used with any hashing algorithm. In VisualWorks, HMAC is
implemented to use either MD5 or SHA-1.

Key Selection
The HMAC specification recommends a random (or cryptographically
secure pseudo-random) key or length between the output length and the
block length of the hash algorithm employed.

• MD5 - between 16 bytes and 64 bytes, inclusive

• SHA-1 - between 20 bytes and 64 bytes, inclusive

If the key is longer than the maximum, the algorithm calls for hashing it,
which reduces its length to the minimum.

For directions on generating a cryptographically secure random value,
see “Generating a Good Random”.

Generating an HMAC
Generating the HMAC for a message is nearly as simple as generating
the hash, except that you need a secret key shared between the
message originator and its validator. In this example we simply us a
DSSRandom:

secretKey := DSSRandom default next.
Then, the HMAC instance is created. Helper methods are provided for the
common hash algorithms MD5 and SHA-1:

hmac := HMAC MD5.
To use SHA-1, this would be:

hmac := HMAC SHA.
2-6 VisualWorks

HMAC Message Digests
You can use any hash algorithm, however, such as SHA-256 by sending
the hash: instance creation method instead, with an instance of the
algorithm as the argument:

hmac := HMAC hash: SHA256 new
Then we set the key, which must be a ByteArray. For the example, we
simply take the next DSSRandom value:

hmac setKey: secretKey asByteArray.
We could combine the instance creation and random value setting using
the alternate instance creation methods, MD5: and SHA:, for example:

hmac := HMAC MD5: DSSRandom default next asByteArray.
Finally, we generate the hash of the message, using any of the hashing
methods described earlier:

validationCode := hmac hash: 'this is a test' asByteArray.
The returned value is a ByteArray. In general, it is more useful to provide
the HMAC value as a string, which can be produced using the asHexString
message:

(mac hash: 'this is a test' asByteArray) asHexString.

Validating a Message using HMAC
The message recipient will receive both the original message and the
HMAC value. To validate the message, the recipient regenerates the
HMAC value from the message. This requires that the recipient also has
the shared secret key, which is generally shared using a separate, and
secure, method.

The validation is then accomplished by comparing the regenerated
validation code and comparing it to the value provided with the message.
For example:

hmac := HMAC MD5.
hmac setKey: secretKey asByteArray.
(hmac hash: 'this is a test' asByteArray) asHexString =

'559B7BCC7523C7ACDD8D4265529F5140'
If the message is valid, this will evaluate to true.
Security Guide 2-7

Hashes and Message Digests

2-8 VisualWorks

3
Random Number Generators

Many operations involved in providing cryptographic security rely on
using good, secure, random values. For example, generating secure keys
for symmetric and public key ciphers relies on a computational process
requiring seeding of high quality random number generators (RNG) or
pseudo random number generator (PRNG). The quality of the generators
and their seeding has a significant and direct impact on the security of
generated keys.

VisualWorks provides a several PRNGs, but not all of them are
satisfactory for use in security applications (refer to the description of
Random in the Application Developer’s Guide). DSSRandom, which
implements the algorithm specified in the DSS standard (FIPS 186-2),
does meet the standards for random number generation for secure
applications. Its implementation conforms to the Random protocol by
responding to the standard #seed: and #next messages. It extends the API
to allow more flexibility and control over the range of values generated.

Note: Note well that proper seeding of the random generators is a
critical requirement for any application with serious security
requirements. Relying on any kind of computed seeding, including
the default seeding used in this framework, is generally considered to
be a serious security risk, and should not be relied upon in
applications where security is a serious concern.

This chapter describes the use of DSSRandom, including suggestions for
its seeding, that will help you maximize the security provided by this
RNG. It also describes how to test a generated value for primality, for
cases when a random prime is required.
Security Guide 3-1

Random Number Generators
DSSRandom
DSSRandom provides an implementation of the random number generator
for the Digital Signature Algorithm (DSA). This is a cryptographically
strong PRNG, suitable for use in secure applications. Note, however, that
it still needs to be used carefully to ensure security.

Note: The PRNG algorithm implemented in DSSRandom conforms
with the requirements of FIPS 186-2, Appendix 3, as revised in the
change notice October 5, 2001. Accordingly, the number of
signatures generated using a key pair does not need to be restricted,
as described in the change notice.

Initializing a DSSRandom Generator
The DSSRandom is intended to be seeded with a value. Consequently,
unlike Random, the seed cannot be left implicit.

Several instance creation methods are defined for DSSRandom, providing
options for setting the seed and other parameters.

b: seedBitSize
Specifies the bit size of the seed, which is then computationally
generated.

q: upperBound b: seedBitSize
Specifies the upper bound of pseudo-random integers to be
generated, and seeds the generator with a computed value of size
seedBitSize.

q: upperBound seed: seedInteger
Specifies the upper bound of pseudo-random integers to be
generated, and seeds the generator with the specified seed value.

seed: seedInteger
Seeds the generator with the specified seed value.

You can also create an instance of DSSRandom by sending new, and then
set the parameters using the equivalent instance initialization messages.

Selecting a good seed and upper bound values can be complicated, and
is discussed in the following section, Generating a Good Random.

For simple cases, including testing during development, instead of
generating your own seed value, the b: message generates a seed
integer with the specified bit size:
3-2 VisualWorks

DSSRandom
rand := DSSRandom b: 160.
rand next.

The bit size must be at least 160, as required for DSS compliance.

The seed is generated from various system state data. While this may be
good enough for many purposes, you need to ensure that it is adequate
for your security needs, or provide a better seed.

Constraining the range of values
The q:b: and q:seed: messages constrain the range of integers within
which random values can occur. If a values is specified, only random
values lower than that will be generated. For example, setting the upper
bound to 5 constrains the values returned to be from 0 to 4.

rand := DSSRandom q: 5 b: 160.
rand next.

The upper bound, if set at all, is typically much larger than that. The DSS
standard expects it to be a large prime number, and it is typically the
same as the q value used in generating DSA or DH keys.

Using Autogenerated Seeds
The b: and q:b: initialization and instance creation methods invoke the
automatic seed generator. A good seed requires that the generator itself
be seeded with random data. Without that random data, the generated
seed may not be adeqate for a secure application. Accordingly, you
should use caution when relying on this seed generator.

To ensure a good seed, wherever available the seed generator uses
randomness sources provided by the operating system. Specifically it
attempts to access the CryptGenRandom facility on MS Windows
platforms and the /dev/urandom on Unix platforms (see DSSRandom
class>>osGeneratedSeed). If it succeeds, the generated seed is reasonably
assured to be good.

If the OS randomness source cannot be accessed, the seed generator
resorts to its internal algorithm for generating a seed. Because the
“random” data used by the generator in this case is not good enough for
DSS security, it raises an AutogeneratedSeed warning. The purpose of the
warning is to alert the user that the quality of the seeding may not satisfy
application security requirements, in terms of the DSS standard.

The warning can be disruptive if the OS facilities fail, which is its purpose.
To deal with the warning, developers have the following options:
Security Guide 3-3

Random Number Generators
• Seed the generator explicitly before using it (see class comments).
This circumvents the autogenerated seed mechanism.

• Handle the AutogeneratedSeed warning. This is a proceedable warning,
and so you can capture the warning and continue operation.

• Turn the warning off globally with:

DSSRandom seedWarning: false.
Note that turning off or proceeding the warning does not solve the issue
of using a low quality seed, and so the security of the application is
compromised. However, for some applications this might be acceptable.

Reusing the Generator
The strength of a secure PRNG resides in its capability to generate
extremely long, unpredictable sequences of random numbers, given
proper, truly random, seeding. Given the difficulty of ensuring quality
seeding, it is desirable to keep and reuse a PRNG, rather than creating
and seeding a new PRNG after getting only a few random numbers out of
a previous one.

To take full advantage of the strength of DSSRandom, you should create
an instance with a good seed, as described above, and keep it as a live
object for use in generating later random values. This can be done in
several ways, but a simple way would be to assign a DSSRandom to a
shared variable, then reference it each time a new random is required.

For example, this shared variable definition defines MyPRNG with an
instance of DSSRandom which, once initialized, can be referenced each
time a new random is needed:

Security.DSSRandom defineSharedVariable: #MyPRNG
private: false
constant: false
category: 'generators'
initializer: 'DSSRandom seed: (SHA hash: ''this is a test'')

asLargePositiveInteger'
Clearly the seeding needs to be better, and so you would probably use an
initialization method instead of an initializer expression, as described in
the Application Developer’s Guide (refer to chapter 3, “Syntax,”
subsection “Shared Variables”). Also, as described below (see
“Reseeding a Generator”), you should implement a scheme for reseeding
the generator upon image startup.
3-4 VisualWorks

DSSRandom
Reseeding a Generator
At times you should reseed a PRNG generator. For instance:

• Every PRNG repeats itself eventually, so if you use the same
generator for many numbers, it should periodically be reseeded.

• If you do not save your image at each shut down, then you should
reseed the generator so that it does not repeat a sequence each time
the image is launched.

To reseed the generator, send a seed: message to the generator, with the
new seed integer value as argument. The seed can be provided from a
variety of sources. Many UNIX and Linux systems run a /dev/urandom
daemon. Seed data can be collected from it by evaluating this
expression:

MyPRNG seed:
('/dev/urandom' asFilename readStream binary; next: 20)

asLargePositiveInteger
On any system, you can write a file with the next random and then read it
back to reseed the generator. For example, to write the file, evaluate:

'seed' asFilename writeStream binary;
nextPutAll: (MyPRNG next changeClassTo: ByteArray);
close

and to read it back evaluate:

MyPRNG seed: 'seed' asFilename readStream binary contents
asLargePositiveInteger

Using the file approach, the file should be written before every image
shutdown to ensure maximum randomness of the system state data that
is collected, and then used to reseed the generator at system startup. A
simple way to update the seed is to create a Subsystem subclass, and
define setUp and tearDown methods. For example, create a subclass of
UserApplication (a subclass of Subsystem) called MyPRNGSubsystem.
Security Guide 3-5

Random Number Generators
To use the urandom daemon you only need the setUp method:

setUp
DSSRandom.MyPRNG seed:

('/dev/urandom' asFilename readStream binary; next: 20)
asLargePositiveInteger

Then save the image. The next time you launch the image, the generator
will be seeded from urandom.

For the file approach, you need both setUp and tearDown methods:

setUp
DSSRandom.MyPRNG seed: 'seed' asFilename readStream binary

contents asLargePositiveInteger

tearDown
'seed' asFilename writeStream binary;

nextPutAll: (DSSRandom.MyPRNG default next
changeClassTo: ByteArray);

close
Save the image, and evaluate

MyPRNGSubsystem activate
to activate the subsystem. When you exit, the seed file should be written.
The setUp method is executed and reseeds the generator when you next
launch the image.

Exclude the seed file from any backup routines, since you should not
restore it. Restoring the file will cause a repetition of the sequence
starting with that seed value.

Default Generator
It is common to create a PRNG, use it to generate one or a few values,
and then destroy it. While this is fine in some cases, it is not a good use
of a cryptographically strong generator, such as DSSRandom, in security
applications. Creating a new generator instance for each required random
reduces the security provided to the quality of the seed value, and
generating a good seed can be a time consuming operation.

To facilitate better reuse of a DSSRandom, and so to make better use of its
capabilities, DSSRandom holds a default instance in its default class
instance variable. To access the instance, send a default message to the
class. Generally this would be used to get the next random value from the
generator:

DSSRandom default next
3-6 VisualWorks

DSSRandom
When it is first invoked, because there is no default instance (it is lazy
initialized), one is created and stored to the class instance variable.
Subsequent evaluations of this expression continue to use the same
generator instance, making full use of its strength.

The generator is flushed at each image launch, to prevent restarting with
the same seed. To ensure a good seeding of the generator, you should
employ a seeding strategy such as described in the next section,
“Reseeding a Generator”.

Note that the automatic seeding method used for creating the default
generator expects that the image has been running for a while and that it
has been used heavily in an unpredictable manner. The seeding method
distills the seed out of the more volatile parameters of ObjectMemory,
therefore it is desirable to let object memory drift away from its initial
startup state as much as possible. Since this cannot be counted on in a
security sensitive production system, it is highly recommended that you
use a more reliable, external seeding instead (see “Generating a Good
Random” below).

Reseeding the Default Generator
To reseed the default generator, send a resetDefault or a resetDefaultFrom:
message to the class.

The quality of the seed used by resetDefault assumes that the image has
been up for a significant period of time and that it has been used heavily
in an unpredictable manner, as mentioned above.

The resetDefaultFrom: message allows you to specify a seed source. You
can use methods similar to those described for DSSRandom instances
generally, although the parameter is slightly different.

To use the value provided by the /dev/urandom daemon, set the seed
by evaluating this expression:

DSSRandom resetDefaultFrom:
('/dev/urandom' asFilename readStream binary; next: 20) readStream

To use the seed file approach, you can write the file with by evaluating:

'seed' asFilename writeStream binary;
nextPutAll: (DSSRandom default next changeClassTo: ByteArray);
close

Then read it back by evaluating:

DSSRandom resetDefaultFrom: 'seed' asFilename readStream binary
Using the file approach, the file should be written before every image
shutdown, and then used to reseed the generator at system startup.
Security Guide 3-7

Random Number Generators
You can define a Subsystem to set the seed upon startup, as described
above (see “Reseeding a Generator”).

Generating a Good Random
Having a good PRNG, such as DSSRandom, is important, but not
necessarily sufficient. The PRNG algorithm implemented in DSSRandom is
secure, but can still produce good random numbers only if used properly.

Selecting a Seed
While a good PRNG produces a good, unpredictable series of values, its
value in providing security in an application depends on the security of its
initial seed value.

In practical terms, here is the problem you need to overcome. Your
adversary will know your PRNG algorithm, or even the precise generator
(that is, DSSRandom). If your seed can also be discovered, the series of
numbers generated can be reproduced. Security is effectively broken if
that occurs. The solution is to use a good seed value that cannot
practically be discovered.

The general approach to finding such a value is to collect data from
several sources and combine them using a hash function, such as MD5
or SHA-1. The data sources should themselves produce random data.

There are several sources of random data available:

• Commercial or free sources, such as Random.org, LavaRand, or
HotBits

• Collect time between keystrokes as the user types a block of text, or
between mouse move events as the user moves the mouse, using a
millisecond clock.

• Collect data on volatile system state, such as memory usage, while a
process is running.

Refer to the available literature for additional and more specific
suggestions.

When collecting data from user or system activity, not all of the data
collected is equally valuable. For example, while Time microsecondClock
may return 64 bits of data, only 24 bits or less is sufficiently volatile to
useful; the rest can be easily guessed or determined.
3-8 VisualWorks

Primality Testing
For DSSRandom, because the seed must be at least 160 bits, a SHA-1
digest of a collection of data is appropriate. Assuming data collected from
three sources, you can hash the data as follows:

hash := SHA new.
hash updateFrom: hotBitsData.
hash updateFrom: keyboardEntryData.
hash updateFrom: systemMemoryStateData.
^hash digest.

You will need to create the data collection procedures and ensure that
they return suitably random values.

Primality Testing
In some contexts a random value is expected also to be a prime number.
For these contexts, VisualWorks provides two primality test classes:
MillerRabin and PrimeSieve.

The Miller-Rabin primality test is a statistical test, returning a “probably
prime” result. By iterating the test several times, the probability of being
really prime is increased. Testing in this way is much faster than doing
exhaustive verification for large numbers.

While Miller-Rabin is pretty fast, it can be sped up by first passing the
candidate prime through a prime sieve. This tests the candidate number
for divisibility by some number of known primes, such as primes less than
100. This eliminates a large number of candidates. Candidates that pass
through the sieve are then subjected to additional testing, such as Miller-
Rabin.

Configuring Miller-Rabin Testing
MillerRabin requires a random number generator, which it uses for
generating values to use in testing, and a number of iterations to perform
in verifying primality. Instead of specifying a random number generator,
you can specify an upper bound for values to check for primality, and a
default random number generator is created. These four instance
creation methods provide these requirements:

max:upperBound
Creates an instance with a default instance of DSSRandom to
generate values no larger than upperBound, and set to run 50
iterations.
Security Guide 3-9

Random Number Generators
random: aPRNG
Creates an instance with aPRNG as the random number generator,
and set to run 50 iterations.

t: iterations max: upperBound
Creates an instance with a default instance of DSSRandom to
generate values no larger than upperBound, and set to run iterations
iterations.

t: iterations random: aPRNG
Creates an instance with aPRNG as the random number generator,
and set to run iterations iterations.

The upperBound value will typically be used in the context of DSA or Diffie-
Hellman key generation, in which case it will be the same as the q value
specified in those contexts.

The default value for t: is 50, and is typically adequate. The value can be
increased for added testing, or reduced for increased speed.

A simple instance can be created by specifying a simple PRNG, such as:

mr := MillerRabin random: (DSSRandom b: 160).
Once the tester is created, send it a value: message with the value to be
tested for primality. The return value is a Boolean, either true if the value
tests as prime, or false otherwise. To generate a random prime value, you
can combine testing with random number generating, for example:

mr := MillerRabin random: (DSSRandom b: 160).
gen := DSSRandom seed: aSeedValue.
[candidate:= gen next.

mr value: candidate] whileFalse.
^ candidate

The value retuned is a generated random number that the test verifies as
prime.

Configuring Prime Sieve Testing
Testing successive randomly generated values in search of a large prime
can take a significant amount of time. PrimeSieve implements a technique
for speeding up the process by quickly eliminating values that are
divisible by a known set of prime numbers. Candidate values that pass
through the sieve are then subjected to additional testing, such as that
provided by a MillerRabin test instance.

An instance of PrimeSieve is created with either of these methods:
3-10 VisualWorks

Primality Testing
on: aPrimalityTest
Creates a PrimeSieve test that submits values that pass through the
sieve to further testing by aPrimalityTest.

on: aPrimalityTest boundedBy: upperBound
Same as on: but rejects (fails) all values greater than upperBound.

Because the only other primality test provided is MillerRabin, an instance
of that class would be used to create the PrimeSieve instance. For
example:

ps := PrimeSieve on: (MillerRabin random: (DSSRandom b: 160)).
As for Miller-Rabin testing, the tese is performed by sending a value:
message to the tester with the value to be tested. Again, included with a
PRNG for generating a large prime, this can be done as follows:

mr := MillerRabin random: (DSSRandom b: 160).
ps := PrimeSieve on: mr.
gen := DSSRandom seed: aSeedValue.
[candidate:= gen next.

ps value: candidate] whileFalse.
^ candidate

By default, PrimeSieve tests against the primes under 100, which are held
in the Primes shared variable.
Security Guide 3-11

Random Number Generators
3-12 VisualWorks

4
Symmetric-key Cryptography

Overview
Symmetric-key cryptography uses the same key value for both encrypting
and decrypting data.

There are two types of symmetric-key ciphers: block and stream. Block
ciphers encrypt a full, fixed-size block at a time. Since the block is fixed-
size, a final block must be padded if it is smaller than that size. A Stream
cipher encrypts one byte at a time.

Implemented block ciphers are:

• AES

• Blowfish

• DES

Implemented stream ciphers are:

• ARC4 (“alleged” RC4)

Generating Keys
A random number is usually used as one-time session keys for the
encryption of communication channels. The problem is getting a good
random number for the key.

One possibility is to acquire a random number from a source, such as
random.org or lavarand.com. Such sources provide a source of random
numbers, and can be useful if you need one infrequently.
Security Guide 4-1

http://www.lavarand.com/
http://www.random.org/

Symmetric-key Cryptography
Any cryptographically secure random number generator (RNG), such as
the one provided by the DSSRandom class, is a good source of symmetric
encryption keys, provided the generator is properly seeded and properly
used. When a key is needed just extract required number of bytes from
the generator and use that as a key.

Note, however, that even using a RNG to generate session keys, it is
easy to generate keys that are relatively easy to discover. RFC 1750
discusses many of the issues and provides some recommendations, as
do also several books and articles on security. Because of the
complicated issues, it is generally recommended that you seek
assistance from an encryption expert, if security is a serious requirement.

One major concern is that the RNG be seeded with sufficient
unguessable material. Using the time, for example, is usually insufficient
because it, at best, has very few unguessable bits of information. At least
two, and usually several, sources of seeding material should be collected
and then mixed. Browse the DSSRandom class method systemStateSeed for
one example. You might also use a hashing algorithm, such as MD5, for
the mixing.

Also, once created and seeded, recreating a generator circumvents the
randomness built into it, again compromising security. It is recommended
that you create a secure RNG, and store it in a shared variable, and
reuse it whenever you need another random number. For example, in
MySecureApp class, define an RNGInstance shared variable holding a
DSSRandom instance:

Smalltalk.MySecureApp defineSharedVariable: #RNGInstance
private: false
constant: false
category: 'RNG'
initializer: 'Security.DSSRandom seed:

Security.DSSRandom systemStateSeed'
(In the initialization, you will want to seed the RNG appropriately, and
possibly set the number of bits returned. Refer to the DSSRandom class
comment for details.)

Then, initialize the shared variable (Method Shared Variable Initialize).
Now, each time a new random is required, retrieve one as usual:

MySecureApp.RNGInstance next.
Doing this makes good use of the randomizing quality of the generator,
enhancing the security of the key.
4-2 VisualWorks

http://www.faqs.org/rfcs/rfc1750.html

Symmetric-key Cipher General API
Arbitrary random keys are often impractical, however, when you will need
to use the key at a later time to decrypt the encrypted data. The
alternatives are to try to remember the random sequences of bytes,
which is difficult, or to record the key somewhere, which is a security risk.
Various key derivation schemes are employed to help with that, such as
the scheme based on textual passwords described in
PKSC#5/RFC#2898. Security of such keys is of course lower but, still
yields much better results then trying to force random passwords on
users.

Symmetric-key Cipher General API
Class SymmetricCipher is an abstract class for both block and stream
symmetric-key ciphers, but provides the general API for these ciphers.

Instance Creation
Because all ciphers work with a key, the basic instance creation message
is:

key: aByteArray
Creates a new instance of the cipher class and sets its key to
aByteArray. The key must be the right size, as determined by the
specific cipher subclass.

For example, to create a bare instance of the AES cipher, get a key as a
ByteArray and send key: to the class (note that the key is an obviously poor
choice):

| key |
key := #[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16].
^AES key: key.

An alternative is to send new to the class, then set the key using the
setKey: instance method. Setting the key in this way is necessary when
using some of the instance creation methods defined in subclasses (for
example, see the BlockCipher instance creation methods):

| key |
key := #[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16].
^AES new setKey: key.

Encryption/Decryption Messages
The standard encryption and decryption messages are defined in
SymmetricCipher, although several are reimplemented in subclasses.
Security Guide 4-3

http://www.faqs.org/rfcs/rfc2898.html

Symmetric-key Cryptography
decrypt: aByteArray
Decrypts aByteArray, returning a copy containing the decrypted bytes,
leaving the original ByteArray unchanged.

decryptInPlace: aByteArray
Decrypts aByteArray in the same ByteArray instead of a copy.

decryptInPlace: aByteArray from: start to: end
Decrypts a range of bytes in aByteArray, starting at start byte. Returns
the index of the last data byte decrypted.

encrypt: aByteArray
Encrypts aByteArray, returning a copy containing the encrypted bytes,
leaving the original ByteArray unchanged.

encryptInPlace: aByteArray
Encrypts aByteArray in the same ByteArray instead of a copy.

encryptInPlace: aByteArray from: start to: end
Encrypts a range of bytes in aByteArray, starting at start byte. Returns
the index of the last data byte encrypted.

The methods encrypt:, decrypt:, encryptInPlace:, and decryptInPlace: are the
most usual methods to use. encryptInPlace:from:to: and
decryptInPlace:from:to: are seldom used, but would be useful, for example,
in encrypting a section of larger message.

Because the various encryption mechanisms have specific requirements
(such as for block alignment and padding), refer to the discussions of the
particular ciphers below for examples.

Block Ciphers
Block ciphers operate on blocks of data, with the size of the block varying
depending on the encryption mechanism. To provide a common basic
API, block ciphers are implemented as subclasses of BlockCipher.

Block Cipher Implementations
VisualWorks provides implementations of three standard block ciphers.

AES
Advanced Encryption Standard (AES) is a the National Institute of
Standards (NIST) cipher (FIPS 197) that was introduced in October,
2000, based on the Rijndael algorithm. It is intended as a replacement for
the aging DES standard (FIPS 46). AES encrypts 16-byte blocks. Its key
is either 16, 24, or 32 bytes long.
4-4 VisualWorks

Block Ciphers
Blowfish
Blowfish is a symmetric block cipher designed in 1993 by Bruce Schneier
as a fast, free alternative to existing encryption algorithms. Blowfish was
designed to work as a drop-in replacement for DES and IDEA encryption.
Blowfish encrypts 8-byte blocks. It takes a variable-length key, from 32
bits to 448 bits, making it ideal for both domestic and exportable use.

DES
Digital Encryption Standard (DES) was the most common encryption
during the 1980s, but with the increasing speed of computers and
discovery of weaknesses in the algorithm has been increasingly
supplanted by newer encryption schemes, such as AES and Blowfish.
Nonetheless, it remains a common encryption scheme. DES encrypts
8-byte blocks. It takes a 56-bit (7-byte) key.

The algorithm itself is specified with 8 byte key input, with every eighth bit
used for key integrity checking. Those bits are eventually dropped to
produce the actual 7-byte key. Our implementation follows the suite so
the byte array argument of setKey: should be 8 bytes long.

Note: It is generally recommend to avoid DES for new applications
today. It is used mostly for backward compatibility with legacy
protocols and applications.

General API
Class BlockCipher provides some general API to all block cipher
subclasses. The instance creation selector names indicate the cipher
mode, the padding option and whether to use Triple-key EDE encryption.

Cipher Modes
Cipher modes describe ways in which an encryption algorithm is applied
to produce the cipher text. The various modes are necessary in order to
increase the difficulty of breaking an encryption.

CBC
Cipher block chaining. A feedback mode in which each block of plain
text is XORed with the previous encrypted block, and the result is
encrypted. The first block is XORed with an initialization vector.

ECB
Electronic code book. Each block is encrypted individually. This mode
provides no security beyond that of the underlying cipher. Repeated
blocks of plain text produce identical cipher text.
Security Guide 4-5

Symmetric-key Cryptography
CFB
Cipher feedback. The previous block of cipher text is encrypted then
XORed with the current block of plain text. This mode is as secure as
the underlying encryption. CFB mode can use feedback less than a
full block. The first block is XORed with an initialization vector.

OFB
Output feedback. Similar to CFB, except that the quantity XORed with
the plan text is generated independently of both the cipher text and
the plain text.

The selection of a cipher modes is very important, and the importance
grows with the amount of data being encrypted. The more ciphertext the
attacker collects the easier it is to crypto-analyze it.

ECB is rarely used because it is the weakest encryption mode. ECB
mode exposes too much of the larger structure of the plaintext; identical
chunks of plaintext produce identical chunks of ciphertext. Accordingly,
ECB is not recommended unless you are encrypting very small amount
of data, 10-20 bytes at most, and never when encrypting text.

CBC is the usual choice, because it hides such repetitions in the
plaintext. CFB and OFB have additional interesting properties that might
be desirable in certain applications (for example, they do not require the
data to be padded to the block size).

All the non-ECB modes require an initialization vector (IV), which is a
block worth of data that is used to start the mode. Like the key, the same
IV must be used to decrypt encrypted data, but unlike the key the IV does
not need to be kept secret. Often the IV is simply prepended to the
ciphertext.

The following is an example of using CBC mode:

plaintext := 'This is the end ...' asByteArray.
key := #[1 2 3 4 5 6 7 8].
iv := #[8 7 6 5 4 3 2 1].
alice := DES newBP_CBC.
alice setKey: key;

setIV: iv copy.
ciphertext := alice encrypt: plaintext.

bob := DES newBP_CBC.
bob setKey: key;

setIV: iv copy.
(bob decrypt: ciphertext) asString
4-6 VisualWorks

Block Ciphers
Modes are implemented as wrappers. They support the same protocols
as ciphers do, so they can be used inter-changeably; you can use a
cipher in some mode anywhere where you can use bare cipher. ECB
mode is represented by a bare cipher instance, that is, there is no
wrapper for it. You can mix and match ciphers and modes (and paddings)
arbitrarily, although some modes do not need padding (CFB, OFB). (Note
that padding must always be the outermost wrapper).

This example illustrates using the CFB mode:

(CipherFeedback on: Blowfish new)
setKey: #[1 2 3 4];
setIV: #[8 7 6 5 4 3 2 1] copy;
encrypt: 'hello' asByteArray

Padding Options
Block ciphers specify a block size, and encrypt/decrypt only complete
blocks. Frequently, however, the data to be encrypted is not block aligned,
and so must be padded to make it aligned.

VisualWorks provides two mechanisms for padding a plaintext: Block
Padding (BP) and Ciphertext Stealing (CS), and instance creation
methods to create appropriate cipher instances, as described above.
Block Padding employs a popular scheme of padding the last block with a
byte value equal to the number of padding bytes, so when encrypting that
many bytes are removed. Ciphertext Stealing uses a technique that
allows the ciphertext to be the same length as the plaintext.

Block padding is provided by wrapping the cipher instance in an instance
of a subclass of BlockCipherPadding. The wrappers provide and extended
API for encrypting/decrypting to take advantage of the padding strategy.

BP
Pads the last block. If the data isn’t block aligned, padding is used to
fill the block. If the data is block aligned, a full block of padding is
appended. Padding is a byte value equal to the number of pad bytes.
The cipher instance is wrapped in a BlockPadding.

CS
Ciphertext stealing. This is a padding method that allows returning a
cipher the same size as the unpadded plain text. The cipher instance
is wrapped in a CBCCiphertextStealing or ECBCiphertextStealing instance.

Unpadded
If one of the padding, BP or CS, instance creation method is not
selected, padding must be provided by the application, unless the
data is ensured to be block aligned.
Security Guide 4-7

Symmetric-key Cryptography
Triple-key EDE Encryption
Another encryption option is triple-key encryption. Encryption is done in
three passes using three keys. The first pass encrypts using the first key,
the second pass decrypts the result using the second key, and the third
pass encrypts that result using the third key. Accordingly, this pattern is
referred to as 3EDE.

The main purpose of 3EDE is to strengthen the underlying cipher by
effectively extending its key. For example, DES 3EDE has a key size of 21
bytes and appears to be significantly harder to break than a single DES
key. 3EDE has been used mostly to strengthen DES when there were no
good alternatives. Presently, AES is generally preferred because it allows
both longer keys and is significantly faster than DES.

Instance Creation Methods
The following instance creation methods create block ciphers with the
indicated cipher mode and padding option. These messages are sent to
the appropriate encryption class (DES, AES

new3EDE_CBC
Creates a new block cipher using triple EDE encryption in outer CBC
mode, without padding.

newBP_3EDE_CBC
Creates a new block cipher using triple EDE encryption in outer CBC
mode, with block padding.

newBP_CBC
Creates a new block cipher in CBC mode, with block padding.

newBP_ECB
Creates a new block cipher in ECB mode, with block padding.

newCBC
Creates a new block cipher in CBC mode, without block padding.

newCFB
Creates a new block cipher in CFB mode, without block padding.

newCS_3EDE_CBC
Creates a new block cipher using triple EDE encryption in outer CBC
mode, with ciphertext stealing.

newCS_CBC
Creates a new block cipher in CBC mode, using ciphertext stealing.

newCS_ECB
Creates a new block cipher in ECB mode, using ciphertext stealing.
4-8 VisualWorks

Block Ciphers
newECB
Creates a new block cipher in ECB mode, without block padding.

newOFB
Creates a new block cipher in OFB mode, without block padding.

Besides instance creation methods, BlockCipher provides a few instance
methods.

Since the block size varies with the encryption method, this method is
useful:

blockSize
Returns the block size, as specified by the specific cipher class.

The following methods are reimplemented in BlockCipher to account for
block requirements.

decryptInPlace: aByteArray from: start to: end
Decrypts a range of bytes in aByteArray, starting at start byte. Blocks
are decrypted up to and including the block containing end. The range
is expected to be a multiple of blockSize. Returns the index of the last
data byte.

encryptInPlace: aByteArray from: start to: end
Encrypts a range of bytes in aByteArray, starting at start byte. Blocks
are encrypted up to and including the block containing end. The range
is expected to be a multiple of blockSize. Returns the index of the last
data byte.

Encrypting and Decrypting with Block Ciphers
An instance of a block cipher class, such as AES, can be created using
any of the BlockCipher instance creation messages. Creating with block
padding is generally the simplest and most common approach. Then set
the key value (this is a poor key choice, used for illustration only).

| text key cipher ciphertext |
text := (Filename named: '..\readme.txt') asLogicalFileSpecification

readStream contents asByteArray.
key := #[1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16].
cipher := AES newBP_ECB.
cipher setKey: key.

Then, to encrypt the text, send either an encrypt: or an encryptInPlace:
message to the cipher with the text as argument. To encrypt the text in a
new ByteArray, leaving the original unchanged, use encrypt::

ciphertext := cipher encrypt: text
Security Guide 4-9

Symmetric-key Cryptography
To replace the text in the original ByteArray with the encrypted text, use
encryptInPlace::

cipher encryptInPlace: text
Decrypting is done the same way, only using either decrypt: or
decryptInPlace:. For example, given a ciphertext:

| key cipher plaintext |
key := #[1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16].
cipher := AES newBP_ECB.
cipher setKey: key.
^plaintext := cipher decrypt: ciphertext

Providing Custom Padding
Instead of using one of the provided padding methods, you can provide
your own. The main problem is to know what to remove when decrypting,
to ensure that the plaintext is restored properly.

A simple technique is to pad with a byte value that you know will not
occur in the plaintext. For example, if the plaintext contains only printable
text characters, you can be sure that byte value 0 does not occur. Use
that value as your padding character, and then strip it upon decrypting.

| plaintext paddedtext ciphertext decipheredtext key cipher size newsize |

plaintext := 'This is only a test.' asByteArray.
size := plaintext size.

"configure cipher"
key := #[1 2 3 4].
cipher := Blowfish newECB.
cipher setKey: key.

"create new ByteArray to padded size with padding char"
newsize := (size // cipher blockSize) + 1 * cipher blockSize.
paddedtext := ByteArray new: newsize withAll: 0.

"create padded plaintext and encrypt"
paddedtext replaceFrom: 1 to: size with: plaintext startingAt: 1.
ciphertext := cipher encrypt: paddedtext.

"decrypt and strip padding"
decipheredtext := cipher decrypt: ciphertext.
decipheredtext := decipheredtext copyUpTo: 0.
4-10 VisualWorks

Stream Ciphers
Stream Ciphers
Stream ciphers operate on a single byte at a time. Using a key as seed, a
RNG creates a key stream, which is then used to encrypt. From the key
and the RNG, the same key stream is generated to decrypt the stream.

ARC4
The RC4 algorithm is a trade secret of RSA Security. ARC4, or “alleged
RC4,” is in the public domain, originally presented anonymously as the
RC4 algorithm (hence “alleged”).

ARC4 uses a variable length key, up to 256 bytes. Beyond that, additional
bytes are ignored. The algorithm generates a key stream from the key,
which is then used for encryption/decryption by XORing a byte on the
stream with a byte from the key. The stream must be restarted for
decryption.

Typically, a stream cipher key will be used only once to encrypt and
decrypt data. Reusing the key compromises the security of the cipher,
and reusing the key for different data completely destroys security of any
stream cipher, because of the basic nature of XOR:

(a xor b) xor (a xor c) = (b xor c)
So, given two pieces of data that have been encrypted with the same key,
XORing them together effectively removes encryption provided by the
key, and leaves a simple XOR of the two plaintexts, which is fairly simple
to break. Therefore even though a stream cipher like ARC4 is a very
attractive tool for its ease of use and speed, one must be very careful
when using it.

To encrypt a plaintext, create the cipher, set the key, and send a encrypt:
message to the cipher with the text as argument:

| plaintext key cipher ciphertext |
plaintext := 'This is only a test.' asByteArray.

key := #[1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16].

cipher := ARC4 key: key.
ciphertext := cipher encrypt: plaintext

Because encryption/decryption is symmetric, using by XORing text with
the key stream, the stream must be reset, which is done by regenerating
the key stream by creating a new instance of the cipher. Given the key,
the process is the same, only sending decrypt: instead of encrypt:.
Security Guide 4-11

Symmetric-key Cryptography
| plaintext key cipher ciphertext |
ciphertext := aCipherText.

key := #[1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16].

cipher := ARC4 key: key.
plaintext := cipher decrypt: ciphertext

Password-based Encryption and Authentication
In many applications use passwords as part of their security system.
Passwords alone are vulnerable to a variety of attacks, because they are
usually chosen from a relatively small space. Also, passwords are not
usually directly applicable to the usual cryptographic systems. So, some
further processing of passwords is necessary to make the usable and to
provide the desired security.

PKCS #5 is the RSA recommendation for a password-based encryption
standard. This recommendation is implemented in VisualWorks in the
PBC class.

PKCS5 combines “salt” and interaction count methods with passwords to
form the basis of password-based key generation. The salt effectively
prevents precomputation of the encryption key, and so prevents a
dictionary attack. The iteration count specifies the number of times the
key generation function is applied, and is usually at least 1000. While the
additional cost of generating an individual key is minimal, the cost for
mounting an attack is very high.

The PKCS #5 recommendation applies to both message encryption and
message authentication. The VisualWorksimplementation includes both
encryption and message authentication, and implements both version 1
and version 2 of the recommendation. Version 1 is recommended only for
compatibility with old applications; version 2 is recommended for all new
applications.

Loading PKCS Support
To load PKCS support, load the PKCS5 parcel, in the Security group in the
Parcel Manager.

PKCS Encryption
PKCS #5 recommendations apply to symmetric key encryption schemes.
VisualWorks implements several encryption schemes for password-
based encryption, making it simple to use these facilities.
4-12 VisualWorks

Password-based Encryption and Authentication
In general, you create an instance of PBC configured for the desired
encryption scheme. Then, set the necessary parameters and request the
encryption.

The following instance creation methods create a PBC instance with
specific encryption specifications:

pbes2WithHMAC_SHA1AndDES_CBC
Creates a PBC instance configured to encrypt according to PKCS #5
version 2 (PBES2), using HMAC-SHA1 for random number
generation, and encrypting using DES with cipher block chaining.

pbes2WithHMAC_SHA1AndDES_EDE3_CBC
Creates a PBC instance configured to encrypt according to PKCS #5
version 2 (PBES2), using HMAC-SHA1 for random number
generation, and encrypting using DES with cipher block chaining and
triple key encryption.

pbeWithMD5AndDES_CBC
Creates a PBC instance configured to encrypt according to PKCS #5
version 1.5 (PBES1), MD5 for key generation, and encrypting using
DES with cipher block chaining. This is recommended only for
compatibility with existing applications.

pbeWithSHA1AndDES_CBC
Creates a PBC instance configured to encrypt according to PKCS #5
version 1.5 (PBES1), SHA-1 for key generation, and encrypting using
DES with cipher block chaining. This is recommended only for
compatibility with existing applications.

Send one of these messages to the PBC class to create and instance of
the encryptor. For example:

pbc := PBC pbes2WithHMAC_SHA1AndDES_EDE3_CBC.
Unless changed, the encryption uses the default 1000 iterations. To
change the number of iterations, send a count: message to the generator:

pbc count: 1500
The minimum iteration count is recommended to be 1000.

To encrypt a message, send one of these messages to the generator:

encrypt: msgByteArray password: pwdByteArray
Return a ciphertext of a msgByteArray encrypted using pwdByteArray
and a default salt.

encrypt: msgByteArray password: pwdByteArray salt: saltByteArray
Return a ciphertext of a msgByteArray encrypted using pwdByteArray
and saltByteArray.
Security Guide 4-13

Symmetric-key Cryptography
For example:

pwd := ‘a well-kept secret’ asByteArray.
salt := DSSRandom default next asByteArray.
msg := 'Message in a Bottle' asByteArray.

ciphertext := pbc encrypt: msg password: pwd salt: salt.
To decrypt a message, send this message to a PBC instance with the
same configuration:

decrypt: cipherByteArray password: pwdByteArray salt: saltByteArray
Return a plaintext of cipherByteArray.

For example:

pbc := PBC pbes2WithHMAC_SHA1AndDES_EDE3_CBC.
pwd := 'a well-kept secret' asByteArray.
salt := DSSRandom default next asByteArray.

message := pbc decrypt: ciphertext password: pwd salt: salt.

Message Authentication
PBC also implements the PKCS #5 recommendation for message
authentication. VisualWorks provides an implementation of the
recommended schemes.

The authentication scheme is based on a password, a salt, and an
iteration count, from which are produced a key. The key is then used to
generate the digest.

As for password-based encryption, you create a correctly configured
instance of PBC, set the necessary parameters, then create the signature.
The message authentication key is derived from the password and other
information.

One instance creation method is available for creating and configuring the
PBC instance:

pbmac1WithHMAC_SHA1AndHMAC_SHA1
Creates a PBC instance configured to use HMAC for both key
generation and digest generation.

Given the PBC instance, there are three messages for producing the
message authentication code.

sign: msgByteArray password: pwdByteArray
Returns an association with a generated salt as key and the message
signature as value. The salt is generated deterministically as
specified in PKCS #5 version 2.
4-14 VisualWorks

Password-based Encryption and Authentication
sign: msgByteArray password: pwdByteArray salt: saltByteArray
Returns a message signature generated from msgByteArray,
pwdByteArray and saltByteArray. The derived key length is determined
by the key length requirement of the underlying hash function.

sign: msgByteArray password: pwdByteArray salt: saltByteArray
keyLength: length

Returns a message signature generated from msgByteArray,
pwdByteArray and saltByteArray. The key length is the desired length of
the derived key.

To verify a message from its signature, use the following corresponding
messages:

verify: sigByteArray of: msgByteArray password: pwdByteArray
Returns a Boolean indicating whether sigByteArray matches the
signature generated from msgByteArray and pwdByteArray with a
deterministically computed salt.

verify: sigByteArray of: msgByteArray password: pwdByteArray
salt: saltByteArray

Returns a Boolean indicating whether sigByteArray matches the
signature generated from msgByteArray, pwdByteArray and saltByteArray.

verify: sigByteArray of: msgByteArray password: pwdByteArray
salt: saltByteArray keyLength: length

Returns a Boolean indicating whether sigByteArray matches the
signature generated from msgByteArray, pwdByteArray and saltByteArray,
with the derived key of size length.

For example, using the first method,

pwd := 'my secret password' asByteArray.
msg := 'Message in a bottle'.
pbc := PBC pbmac1WithHMAC_SHA1AndHMAC_SHA1.

saltAndSignature := pbc sign: msg password: pwd.
Because this approach generates the salt, you may need to be able to
retrieve both the salt and the signature:

salt := saltAndSignature key.
signature := saltAndSignature value.

To verify a signature you have the option of either generating a salt, or
using the previously generated salt. You must have the password. The
first for the first approach, evaluate:

pbc verify: signature of: msg password: pwd
If the salt is provided along with the signature and message, you can use:
Security Guide 4-15

Symmetric-key Cryptography
pbc verify: signature of: msg password: pwd salt: salt.
Rather than use the deterministically computed salt, you can provide your
own, in which case it must be known to the verifier. For example:

pwd := 'my secret password' asByteArray.
salt := DSSRandom default next asByteArray.
msg := 'Message in a bottle'.
pbc := PBC pbmac1WithHMAC_SHA1AndHMAC_SHA1.

signature := pbc sign: msg password: pwd salt: salt.
Provided the message, signature and salt, and knowing the password,
the receiver can verify the messages by evaluating:

pbc := PBC pbmac1WithHMAC_SHA1AndHMAC_SHA1.

verify: signature of: message password: password salt: salt
4-16 VisualWorks

5
Public Key Cryptography

While symmetric-key encryption can keep your data safe, if you need to
share the key there is the risk of the key falling into the wrong hands, thus
again compromising security. Various measures can be taken to protect a
key that you distribute, but they can be difficult to implement.

Public-key, or asymmetric-key, cryptography uses two keys, a private and
a public key, to partially solve the key-distribution problem. One key is
used to encrypt data, and the other is used to decrypt it. By distributing
the public key but keeping the private key private, a message encrypted
with the public can be sent, and only the holder of the private key can
read it. In this way, the public key can be freely distributed, without
concern about it falling into the wrong hands.

In the other direction, a message encrypted with the private key but
decrypted with the public key, security concerns are the same as for
symmetric key; anyone who has the public key can decrypt the
messages. However, in this direction, public-key encryption has use in
digitally signing a document, since only the private-key holder could
encrypt data that can be decrypted with the public key. This is discussed
more in “Digital signatures” below and in the sections for each cipher.

Because public-key encryption algorithms are much slower than
symmetric-key algorithms, public-key cryptography is not generally used
for bulk data. Instead, bulk encryption is done using symmetric-key
encryption, and public-key mechanisms are used to form a digital
envelope that wraps the bulk data (possibly encrypted) together with an
encrypted session key, where the session key is the key for decrypting
the bulk data.
Security Guide 5-1

Public Key Cryptography
Digital signatures
A digital signature employs public-key cryptography to validate the source
of a document, providing both authentication and nonrepudiation
protection; the presence of data encrypted using a private key verifies
that it was generated by the hold of that key. The verification
authenticates the data as from the claimed source, but also makes it very
difficult for the source to deny having originated it.

Digitally signing does not require encryption. DSA, for example, does not
encrypt anything, but can be used to sign either encrypted or
unencrypted data.

Generally speaking, a digital signature involves a fixed-size digest,
consisting of the data, a private key, and possibly some other data, which
are then combined in some way, usually a hash, that can be used to
verify that the data was unchanged and originated from the putative
source. The details differ for the various mechanisms, and will each be
described more fully under the sections RSA, DSA, and DH.

Generating Keys
Public/private key pairs are generated by subclasses of KeyGenerator. Key
generator classes are implemented for RSA and DSA. The output from
these generators are subclasses of EncryptionKey specific to the
algorithm.

To generate keys, create an instance of the appropriate key generator
class by sending a variant of keySize:random:primalityTest: to the class. The
minimal instance creation requires specifying the key size, for example:

rsaKeyGen := RSAKeyGenerator keySize: 1024.
where the argument is the key size in bits.

In this form, a default random number generator and primality test is
used. Note that this form is only suitable for use during development or
for personal use, and that in a production application you should
instantiate a good random number generator and seed it with a good,
random seed value. (Refer to Chapter 3, “Random Number Generators.”)

The above method uses default seeding for the DSSRandom PRNG. To
provide your own seed value, you need to explicitly provide a random
number generator, and possibly primality testing, by sending either
keySize:random: or keySize:random:primalityTest:. For example:
5-2 VisualWorks

RSA
rsaKeyGen := RSAKeyGenerator keySize: 1024
random: (DSSRandom seed: aSeedValue)
primalityTest: (MillerRabin random: (DSSRandom b: 160))

Given a generator, generate the keys by sending a privateKey or publicKey
message to the generator:

privateKey := rsaKeyGen privateKey.
publicKey := rsakeyGen publicKey.

Either key can be requested first, upon which the calculation is
performed. Both keys are then cached in the generator for access using
these accessor methods.

Because the generator caches the keys, to generate a new set of keys
with the same generator instance, send #flush to the generator to flush
the generated keys and parameters. Then request the new keys:

rsaKeyGen flush.
newPublicKey := rsaKeyGen publicKey.
newPrivateKey := rsaKeyGen privateKey.

Generating keys is a computationally demanding process and the time it
takes is proportional to the size of the keys being generated. To facilitate
user feedback during generation, the generator signals various object
events through the various stages of the process. The class method
#eventsTriggered lists the kinds of events that are signaled.

Exporting and Importing Keys
There are currently no automatic general mechanisms for exporting or
importing keys between VisualWorks and non-VisualWorks
environments. Rather, given the component values for a key, you can
create an instance of that key by providing the values to the relevant
instance creation method, such as for DSAPublicKey or DSAPrivateKey.
Browse the instance creation methods for these classes for the required
parameters. Instance variable names follow the conventions in the
relevant specifications.

RSA
RSA is a public-key algorithm for encrypting data. Because the RSA
algorithm is quite slow compared with symmetric key encryption
algorithms, RSA is seldom used to encrypt bulk data. Instead, RSA is
used to encrypt a session key, which is then used by a symmetric
algorithm to decrypt data. The encrypted data and encrypted session key
comprise a “digital envelope.”
Security Guide 5-3

Public Key Cryptography
Basic encryption and decryption involved creating an instance of RSA
and setting its key, then sending an encrypt: or decrypt: message to the
RSA instance with the data as argument. The data must be a ByteArray.

For keeping data secret, the public key is used to encrypt:

rsa := RSA new.
rsa publicKey: anRSAPublicKey.
anEncryptedByteArray := rsa encrypt: aByteArray

Then the data can only be decrypted by the holder of the private key:

rsa := RSA new.
rsa privateKey: anRSAPrivateKey.
aByteArray := rsa decrypt: anEncryptedByteArray

Creating a Digital Envelope
A digital envelope consists of two pieces of information: the data
encrypted with a symmetric cipher and a session key, and an encrypted
version of the session key. A new session key should be generated for
each exchange.

| text sessionKey cipher ciphertext rsaCipher cipherkey |
text := (Filename named: '..\readme.txt') asLogicalFileSpecification

readStream contents asByteArray.
sessionKey := #[1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16].
cipher := AES newBP_ECB.
cipher setKey: sessionKey.
ciphertext := cipher encrypt: text.
rsaCipher := RSA new publicKey: aPublicKey.
cipherkey := rsaCipher encrypt: sessionKey.
envelope := (Array with: ciphertext with: cipherkey).

How the two parts, the encrypted data and encrypted session key, are
stored or transmitted as a unit is up to you. For the example, an Array is
convenient, which is held in the workspace variable envelope.

Upon receiving this message, the recipient uses the matching private key
to recover the session key and decrypt the data:

| sessionKey cipher plaintext rsaCipher |
rsaCipher := RSA new privateKey: aPrivateKey.
sessionKey := rsaCipher decrypt: (envelope at: 2).
cipher := AES newBP_ECB.
cipher setKey: sessionKey.
^plaintext := (cipher decrypt: (envelope at: 1)) asByteString
5-4 VisualWorks

RSA
Digitally Signing with RSA
A message encrypted with a private key constitutes a “digital signature,”
because only the holder of that private key could have produced that
encrypted message (assuming the key has been kept secure).

Because RSA is a fairly slow algorithm, you seldom encrypt an entire
message to form the digital signature. Instead, you encrypt a digest of the
message, which is a relatively small, fixed sized hash of the message.
Class RSA provides a simple API for generating creating and verifying a
signature for a message.

The RSA signature consists of the encrypted hash. To verify the
signature, it is first decrypted, leaving the digest of the message. Then
the message is itself digested, and the two digests are compared. If they
are identical, then the signature is verified.

To sign a message, which must be a ByteArray, create an instance of RSA,
assign the private key, and set the hash algorithm. Two methods, useMD5
and useSHA, specify the hash algorithm used as MD5 or SHA-1,
respectively. Then send a sign: message to the RSA instance with the text
to sign as argument:

| text rsaCipher |
text := (Filename named: '..\readme.txt') asLogicalFileSpecification

readStream contents asByteArray.
rsaCipher := RSA new privateKey: aPrivateKey.
rsaCipher useMD5.
^signature := rsaCipher sign: text.

The signature is returned as a ByteArray.

To verify a signature, again create an RSA instance, but set the public
key, and the hash algorithm. Then send a verify:of: message to the RSA
instance with the signature and the signed message as arguments. The
message returns a Boolean: true if the signature is verified, false otherwise.

| text rsaCipher |
text := (Filename named: '..\readme.txt') asLogicalFileSpecification

readStream contents asByteArray.
rsaCipher := RSA new publicKey: aPublicKey.
rsaCipher useMD5.
^rsaCipher verify: signature of: text.

Using a Custom Hash
The approach illustrated above employs either MD5 or SHA-1, as
specified in the RSA instance by sending useMD5 or useSHA. Other hash
algorithms are available, such as SHA256, and you can implement your
own.
Security Guide 5-5

Public Key Cryptography
There are two ways to use an alternate hash algorithm to create the
digest.

First, send a hashAlgorithm: message to the RSA instance with an
instance of the algorithm. For example:

| text rsaCipher |
text := (Filename named: '..\readme.txt') asLogicalFileSpecification

readStream contents asByteArray.
rsaCipher := RSA new privateKey: aPrivateKey.
rsaCipher hashAlgorithm: SHA256 new.
^signature := rsaCipher sign: text.

There is a restriction on this approach, that the hash class must
implement a derEncodedDigestInfo method that returns a ByteArray with the
Distinguished Encoding Rules (DER) information, as prescribed by RSA
(PKCS#1/RFC#2437).

Note that SHA256 does not implement this method, and so the above
example raises an exception.

An alternative is to digest the message separately, and then use that to
create the signature. To do this, leave the hash algorithm unspecified, or
set it to nil (rsaCipher hashAlgorithm: nil). If the hash algorithm is not
specified, RSA assumes the message is already digested.

| text hash rsaCipher |
text := (Filename named: '..\readme.txt') asLogicalFileSpecification

readStream contents asByteArray.
hash := SHA256 new hash: text.
rsaCipher := RSA new privateKey: aPrivateKey.
^signature := rsaCipher sign: hash.

Verifying the signature goes as before, except that the signature is
verified against the hash:

| text hash rsaCipher |
text := (Filename named: '..\readme.txt') asLogicalFileSpecification

readStream contents asByteArray.
hash := SHA256 new hash: text.
rsaCipher := RSA new publicKey: aPublicKey.
^rsaCipher verify: signature of: hash.
5-6 VisualWorks

DSA
DSA
Digital Signature Algorithm (DSA) is a public-key algorithm only for
creating digital signatures. It does not encrypt or decrypt a message.
Instead, it combines a SHA-1 digest of the message with a random value
and the private key, to produce two values, referred to as r and s, which
are the signature.

To verify the signature, a SHA-1 digest of the message created, which is
then combined with the public key and the s value. The result is a value,
referred to as v. The signature is verified if v is equal to r; otherwise not.

The DSA class hides most of this complexity, providing an easy way to
create and verify a DSA signature.

Generating DSA key pairs
Generating a DSA key pair follows the general pattern shown above
(“Generating Keys”). Create an instance of DSAKeyGenerator with an
appropriate key size, which must be a multiple of 64 between 512 and
1024. Then request the public and/or private key.

dsagen := DSAKeyGenerator keySize: 1024.
aPublicKey := dsagen publicKey.
aPrivateKey := dsagen privateKey.

The keys are cached in the DSAKeyGenerator instance. To use the same
generator to produce another key pair, you must flush the cache first:

dsagen flush.
Only the keys are cleared, leaving the key size unchanged.

Digitally Signing with DSA
To digitally sign a message with DSA, all you need to do is create a DSA
instance, set the private key, and send a sign: message with the message
to be signed as argument:

| text dsa |
text := (Filename named: '..\readme.txt') asLogicalFileSpecification

readStream contents asByteArray.
dsa := DSA new privateKey: aPrivateKey.
^signature := dsa sign: text

Because DSA uses only SHA-1 for the message digest, there is no need
to specify the hash.

The signature returned is an instance of DSASignature, which holds two
LargePositiveIntegers, r and s.
Security Guide 5-7

Public Key Cryptography
Verifying a DSA signature
Verifying the signature is similar: create a DSA instance with the public
key, then send is a verify:of: message with the signature and signed
message as arguments.

You will need to construct a DSASignature instance from the r and s values
which you have received as the DSA signature. This is done by sending
the class an r:s: instance creation method.

| text dsa signature |
text := (Filename named: '..\readme.txt') asLogicalFileSpecification

readStream contents asByteArray.
"create the DSASignature from r and s"
signature := DSASignature r: r s: s.
" verify the signature "
dsa := DSA new publicKey: aPublicKey.
^dsa verify: signature of: text.

Diffie-Hellman key agreement
Diffie-Hellman is a different kind of public key algorithm, in that it neither
encrypts nor signs a message. Instead, it allows remote parties to
establish a shared secret value over an unprotected channel by
exchanging public information. From that shared secret value, the two
parties each create a symmetric session key to use for
encrypting/decrypting a message.

The VisualWorks implementation is based on the shared secret
generation algorithm as described in RFC 2631. In this variant of DH, the
generator, public/private key pairs, and shared secret are derived using
two large primes, p and q. These do not need to be secret, and often are
precomputed to be appropriate sizes, as described below. The second
prime, q, is added to the basic DH algorithm to increase security, as
described in RFC 2631.

Basic DH Shared Secret Generation
Suppose Alice and Bob need to exchange a message in a secure
fashion. Neither has a public key or a symmetric session key to
exchange, so they are starting from the beginning. VisualWorks makes it
simple to generate and share the necessary information and generate the
shared secret and keys from which they can create a session key.
5-8 VisualWorks

Diffie-Hellman key agreement
They need two large primes, referred to as q and p, and a generator, g,
which is a large integer. The simple approach is for one party to generate
the required values and for the other to accept them. To generate the
values, one party, say Alice, creates an instance of the DH algorithm by:

aliceDH := DH new
which generates all three values. Alice extracts p and g and provides
them to Bob:

p := aliceDH p.
q := aliceDH q.
g := aliceDH g.

Bob then uses the parameters to create his own instance of DH:

bobDH := DH p: p q: q g: g.
Note that it is important that the right parameters are assigned. In
particular, p and g are the same size, but cannot be exchanged.

The secret value is established in two phases. First both parties generate
their own private/public key pairs:

aPublicValue := aliceDH PublicValue.
bPublicValue := bobDH PublicValue.

The private key can usually stay hidden inside the algorithm instance.

Alice and Bob now exchange the public keys, which can be done over an
unprotected communication channel, then continue with second phase in
which they compute the shared secret value using the other party's public
key:

aSharedSecret := aliceDH sharedSecretUsing: bPublicValue.
bSharedSecret := bobDH sharedSecretUsing: aPublicValue.

The shared secrets are both the same value, and it is computationally
infeasible to produce them without knowing one of the private keys.

Note that the public value and the shared secret are the same size as the
value p, which should be at least 512 bits, and the size of the private
value is up to the size of q, which should be at least 160 bits. This
example, using DH new, sets the sizes of p and q to these sizes by default.
To set larger sizes, refer to “Controlling Parameter Generation” below.

Using the Shared Secret for Encryption
As said before, Diffie-Hellman is not itself used for encryption or signing.
Instead, the secret value generated and shared by the communicating
parties is used as key material; a symmetric session key has to be
created from it.
Security Guide 5-9

Public Key Cryptography
Since the shared secret value is the same size as the p value, which
should be a minimum of 512 bits, it is too large to use as the key for most
symmetric ciphers. The parties must agree in advance on a method for
creating a suitable key from the secret value. To maintain security, the
algorithm is often very elaborate, and is left to your own imagination
(referred to below simply as (CryptoClass genDHKey:).

| plaintext cipher key |
plaintext := (Filename named: '..\readme.txt') asLogicalFileSpecification

readStream contents asByteArray.
cipher := AES newBP_ECB.
key := CryptoClass genDHKey: aSecret.
cipher setKey: key.
ciphertext := cipher encrypt: plaintext.
ciphertext asByteString inspect

For example, browse the implementation of the SSL 3.0 algorithm in
nextChunkOfMaterialFor: in the SSLConnection class. It is generally
recommended to have a security expert develop your algorithm.

Using pre-defined parameter values
Instead of beginning by generating the p, q, and g parameters using
DH new, as described above, there are several reasons to use values that
were previously generated. Alice might already have a DH public/private
key pair that she wants to reuse. Or, she might generate the p, q, and g
(and the keys) separately, setting specific size requirements (see
“Controlling Parameter Generation” below) or using facilities other than
those provided by VisualWorks.

In any case, the scenario is very much the same as described above.
She still must provide Bob with the p, q, and g values so he can generate
his own key pair. She might also have to do this, if she only has the
parameters but not a key pair produced using them.

As shown above, Bob and Alice can create instances of DH using the
instance creation method p:q:g: as follows:

aliceDH := DH new p: p q: q g: g.
bobDH := DH new p: p q: q g: g.

Not all Diffie-Hellman implementation use the q parameter, which was
added to the original algorithm by the variant described in RFC 2631, to
correct a weakness in the original. If the q parameter is not available, the
DH instances can be created using the p:g: instance creation method
instead:
5-10 VisualWorks

Diffie-Hellman key agreement
aliceDH := DH new p: p g: g.
bobDH := DH new p: p g: g.

Then the key pairs can be generated and exchanged, and the shared
secret produced, as described above.

Controlling Parameter Generation
Using DH new to generate the p, q, and g parameters creates them with
default sizes of 512 bits for p and g (g is created as the same size as p),
and 160 bits for q. These are recommended minimal sizes. As computers
become faster, it becomes necessary for parameter sizes to grow to
maintain a reasonable level of security. To generate parameters with
specified sizes, use an instance of DHParameterGenerator.

Required parameters are bit-lengths of q and p referred to as m and l,
respectively. So, for example to set the parameter sizes slightly higher
than the defaults:

m := 172.
l := 520.
pg := DHParameterGenerator m: m l: l.

With the generator created, the p and q values are generated upon first
access:

p := pg p.
q := pg q.

Use these values to create a new DH instance as shown above “Using
pre-defined parameter values”).

You can generate the values without accessing them by sending a
generateP message to the generator:

pg generateP.
To generate a new set of parameters with the same generator, it has to
be flushed using the message #flush. You can then generate new values:

pg flush.
pg generateP.

Similar to the key generators mentioned earlier, it can be created with a
pre-existing instances of a random generator.

Events, specified by the #eventsTriggered method, allow you to monitor the
progress of generation.
Security Guide 5-11

Public Key Cryptography

5-12 VisualWorks

6
Secure Socket Layer

The SSL parcel provides implementation of Netscape's SSL protocol
version 3.0.

Limitations
We now support most of the relevant SSL 3.0 cipher suites. We do not
support the one cipher suite based on IDEA, the three cipher suites
based on of Fortezza, nor the “exportable” variants of the strong cipher
suites. This brings the list of supported cipher suites to the following:

SSL_RSA_WITH_NULL_MD5
SSL_RSA_WITH_NULL_SHA
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC4_128_SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DH_anon_WITH_RC4_128_MD5
SSL_DH_anon_WITH_DES_CBC_SHA
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

We do not support DH certificates, i.e., certificates with Diffie-Hellman
parameters, however both RSA and DSA certificates are now fully
supported.
Security Gudie 6-1

Secure Socket Layer
With client authentication we ignore the list of acceptable certificate
authority names provided by the server in the CertificateRequest
message and pass whatever certificate compatible with specified
certificate types is available. It is up to the server to accept or reject it.

Usage
The main components of the public API are SSLContext, SSLSession and
SSLConnection.

SSLContext represents a server/client context maintaining a collection of
fairly static preconfigured communication parameters and options, like
supported cipher suites, various certificate registries, etc. It is also
responsible for maintaining the collection of resumable sessions for SSL
servers.

SSLContext is a root component used by an application to create a
suitable environment for SSL communication. Once specific parameters
and options are set up an instance of SSLContext builds instances of
SSLConnection upon request.

SSLConnection implements an actual connection between two parties. It is
responsible for encryption/decryption of SSL records (basic units of SSL
communication) and maintenance of negotiated encryption parameters. It
provides the bulk of the public API: connecting, accepting connection,
closing connection, secure data streams. As such it is the component that
is most exposed to an SSL application.

SSLSession is usually hidden from the application, except in case where
an application wants to use several connections with the same party. It is
much faster to “resume” an existing session for a new connection and use
previously negotiated encryption parameters than renegotiating a new
parameter suite for each new connection. So for the cases when an
application wants to resume an existing session, it has to maintain the
SSLSession and hand it to the handshake API when connecting a new
connection.

The usual usage pattern goes something like this. First an instance of a
context has to be created and initialized with supported cipher suites:

context := SSLContext newWithSecureCipherSuites.
Note that the collection of cipher suites can be specified explicitly using
the SSLContext class method suites:.
6-2 VisualWorks

Usage
Then an instance of a connection is built around an input-output binary
stream. This is a stream provided by the lower level communication layer,
usually a stream built from a TCP socket (Note that SSL is explicitly
designed for connection-oriented protocols). So given a connected socket
the stream can be built like this:

ioStream := (aSocketAccessor asExternalConnection
withEncoding: #binary) readAppendStream.

The connection is then created by the context as follows:

connection := context connectionFor: ioStream.
Now we are ready to perform an SSL handshake. Each SSL connection
connects a client with a server, playing two very different roles in the SSL
handshake. To get a connection to handshake as a server send it
message accept. To get a connection to handshake as a client use
message connect.

connection connect.
Once the handshake finishes we are almost ready to transfer data
securely. All we need is to get a secure data stream from the connection.
The protocol is the same as the one used for ExternalConnection (the ones
used for creating socket streams), accepting the appendStream,
readStream, and readAppendStream messages, returning a stream using
default encoding, or a specific encoding can be ordered with the
withEncoding: message, as in the following example.

stream := (connection withEncoding: #binary) readAppendStream.
Note that SSL is not designed to transport application data on its own.
Instead it is to be used for tunneling an application specific protocol used
on top of it. It can be a completely custom proprietary protocol specifically
designed for a given application or it can be protocol well known like
HTTP for example. An important requirement on the application protocol
is that it has to be self-delimiting, i.e., it has to be able to determine the
start and end of it's messages without any hints from SSL.

An important thing to remember is that to force the data written into a
stream to leave SSL buffers and be sent to the other party the stream has
to be explicitly flushed (same as with a normal socket stream).

stream nextPutAll: #[1 2 3 4 5].
stream flush.
data := stream next: 5.
Transcript show: data printString.

To close a connection send message #close to the data stream.

stream close.
Security Gudie 6-3

Secure Socket Layer
SSL specification requires connections to be properly closed with a
close_notify alert sent to the other party. If there are circumstances in
which it is not desirable to do that, message shutdown can be sent to the
SSLConnection to skip the notification. Note that close is the preferred way
though, because missing close_notification creates a vulnerability to a
truncation attack.

SSL Exceptions
An essential requirement for security technologies is being able to detect
and stay in control when things go wrong. Therefore it is important to
know how are these situations captured by the SSL framework.
Exceptions are an obvious implementation choice.

SSL exceptions are all subclassed from a generic SSLException class.
They are divided into 2 categories, SSLErrors and SSLWarnings. SSLErrors
are fatal exceptions, i.e., if an SSLError occurs the operation in progress
cannot complete and has to be aborted, usually rendering the SSL
connection itself unusable.

SSLWarnings are resumable exceptions, they are meant to warn the user
that there was a problem and it is up to the user (or the application) to
decide if the operation should be completed or not. If the warning is a
problem serious enough given the circumstances, just return from the
exception handler and the operation will be aborted, otherwise resume
the exception to proceed with the operation. Keep in mind that most of
the warnings report serious security issues though, so think twice before
ignoring a warning.

Handshake and Certificates
The example as presented above would actually fail. The reason is that
the context was not set up quite right. The default context settings are
tuned to provide a secure connection and this cannot be achieved without
authenticating the server party. (Servers usually do not care about a
client's identity so clients are not required to authenticate, by default).

Authentication is performed using X.509 certificates. Without going into
detail, it is enough to know that a certificate is a digitally signed data
structure containing information identifying:

• the entity that the certificate was issued for, called the subject

• a public key for a specific public key algorithm (like RSA), usually
referred to as the subject public key
6-4 VisualWorks

Handshake and Certificates
• identification of the entity that issued the certificate, the issuer.

The signature of the certificate is generated by the issuer, and is there to
prevent modification of the certificate contents. Since a signature can
only be verified using the public key of the issuer, the issuer usually also
has its own public key certificate.

A set of certificates related by the subject-issuer relationship forms a
certificate chain. The last certificate in the chain usually belongs to a well
known certificate authority (CA). If a party that needs to be authenticated
(usually the server) provides a certificate chain to another party (the
client) that knows the certificate of the CA of the chain, then the client can
verify the authenticity of the whole chain. If the server further proves
possession of the private key corresponding to the subject certificate of
the chain, the client can be reasonably assured of the authenticity of the
server (provided that the private keys of the chain certificates were not
compromised). These are the basic ideas behind the certificate-based
authentication used by SSL. (For details on X.509 certificates, refer to
RFC 2459).

In order to perform server authentication the client needs to be set up
with a collection of “trusted” certificate authority certificates. This
collection is maintained in an instance of X509Registry.

It is absolutely essential that an X509Registry is initialized with true
certificates of trusted CAs. The X.509 framework does nothing to ensure
this; it is the sole responsibility of the user of the framework to obtain CA
certificates from a trusted source and ensure that they are not
compromised in the process. The level of precautions necessary to
protect this process depends on the level of security required by the
application. Specific procedures are outside of the scope of this
document, and would likely need to be tailored for specific circumstances,
especially for applications with higher security requirements. However, we
can provide a few suggestions that might be acceptable for applications
where the threat level is relatively low.

One potential source of CA certificates are web browsers. They also
need a CA certificate registry and usually have a fairly extensive set of
those bundled with them. Some browsers provide a way to export the
bundled certificates. In Microsoft Internet Explorer version 6, for example,
open Internet Options, select the Content tab, and click the Certificates ...
button. Select the Trusted Root Certification Authorities tab for a listing of CA
certificates. Select any of them and click the Export button. The export
wizard offers several export formats; select Base-64 encoded X.509 format,
then specify a file name, such as test.cer. You can use the following
code to read the certificate in and to add it to an X509Registry:
Security Gudie 6-5

Secure Socket Layer
| certificate registry |
registry := Security.X509.X509Registry new.
certificate := Security.X509.Certificate fromFile: 'test.cer'.
registry addCertificate: certificate.

There are also other applications that need access to CA certificates and
might be bundling them as well. On most Linux distributions you can often
find CA certificates in a file named ca-bundle.crt. The OpenSSL
library on RedHat systems usually maintains this file in directory
/usr/share/ssl/certs. You can directly import the contents of this
file as follows:

| certificates registry |
registry := Security.X509.X509Registry new.
certificates := Security.X509.CertificateFileReader

readFromFile: 'ca-bundle.crt'.
registry addCertificates: certificates.

It is wise to review the contents of the certificate bundle and only import
those certificates that your application actually needs. Adding a CA
certificate to your registry is deceivingly simple and does not convey the
degree of trust actually involved in that action. Be sure to understand
what it is you are trusting a CA to do and ensure that it matches the
security requirements of your application.

In general, the contents of the registry is maintained using messages
addCertificate:, certificateFor:, and removeCertificate:. SSLContext needs to be
linked to an instance of registry when created:

registry := X509Registry new addCertificate: anX509Certificate.
ctx := SSLContext newWithAllCipherSuitesUsing: registry.

Note that the context creation methods without the registry parameter
use 'X509Registry default' for the registry.

A server has to have both its own certificate chain and the corresponding
private key registered with its SSLContext. Therefore, these are registered
with the context as a pair, an array with first item being a certificate chain
and second item being the corresponding private key. The message to
use to set up the context depends on the certificate type. The simplest
case is an RSA certificate for encryption. This kind of certificate is
registered using rsaCertificatePair:

chainKeyPair := Array with: anArrayOfX509Certificates
with: anRSAPrivateKey.

ctx rsaCertificatePair: chainKeyPair.
6-6 VisualWorks

Handshake and Certificates
The server presents its certificate chain to the client during SSL
handshake. The client then validates the chain using its certificate
registry. If the validation fails the client signals with a SSLBadCertificate
warning. Other certificate related warnings are SSLCertificateExpired,
SSLCertificateRevoked, SSLCertificateUnknown, and SSLUnsupportedCertificate.

A simpler variant of client certificate setup can be used if the client can
obtain the server certificate via some other reliable means, such as by
using a HTTPS-enabled web browser to obtain the certificate of an
HTTPS server. In this case the party that is validating a certificate
received from the other party can maintain a list of certificates that it
considers valid and match any incoming certificate with the list. If there is
a bit-equivalent certificate found in the list, then the certificate is valid.
The list of “valid” certificates is maintained by the SSLContext. The list of
valid certificates can be maintained using messages addValidCertificate:,
validCertificateFor:, and removeValidCertificate:.

certificate := X509Certificate fromString: X509RSAPrivateKey
example1TestCertificate.

context addValidCertificate: certificate
With the contexts set up, the handshake has a good chance of
succeeding.

Certificate Subject Validation
SSL can do most of the validation by itself, but there is one check that
only the application (or the user) can perform reliably: certificate subject
validation. The purpose of this check is to determine that the certificate
belongs to the party that the application is actually trying to reach.
Without this check an impostor can present his own perfectly valid
certificate and impersonate the other party.

This check is done by analyzing the subject's distinguished name
embedded in the certificate to see that it is the name of the other party.
This is the task of the subject validation block that should be provided by
the application when the handshake is initiated. This block is passed as a
parameter to connectSubject:, which is a variant of connect. For a server
wishing to authenticate its clients the accept variant is acceptSubject:. The
validation block takes one argument and it will be evaluated with a
dictionary representing subject's distinguished name. The keys in the
dictionary are so called attribute names and values are attribute values.
For example web browsers are relying on a convention that the subject
name attribute called “commonName” or also just “CN” contains a DNS
name of the server site that the certificate was issued for. The block has
Security Gudie 6-7

Secure Socket Layer
to return a Boolean, indicating validity of the subject name. If the block
returns false, an SSLBadCertificate warning will be signaled. Here is an
example subject validation block:

connection connectSubject:
[:dnd | (dnd at: 'CN') = 'www.thesecureserver.com']

This states the requirement that the certificate presented by the server
during the handshake has to have the specified value for the
commonName attribute of the subject distinguished name.

Client Authentication
Some servers may need to authenticate its clients. In this case the server
should use acceptSubject: instead of accept. For the client to pass the
authentication it has to have a proper certificate and a corresponding
private key set in its SSLContext. The server will validate the client
certificate with its certificate registry and the subject validation block
provided with the acceptSubject: message.

Note that SSL has provisions for a client to refuse to authenticate. In this
case it is up to the server to decide if it allows the handshake to proceed
without the client authentication. Obviously this kind of decision has to be
made at the application level. Therefore, when the client refuses to
authenticate, the server connection will signal an SSLNoCertificate warning.
The application should resume the warning if it wants to proceed, or
return the warning if it wants to break the handshake off.

[connection acceptSubject: [:dnd |
((dnd at: 'O') = 'TrustMe Inc') & ('*Purchasing*' match: (dnd at: 'OU'))]

] on: SSLNoCertificate do: [:ex | ex resume]

Certificates for Signing
Certificates can have different purposes. SSL distinguishes between
certificates that can be used for signing and those that can be used for
encryption or key exchange. (A certificate should never be used for both,
even though it may be technically possible). Certificates discussed
previously would have to be encryption/key exchange certificates, for
example encryption RSA certificates. However, SSL can accommodate
signing certificates as well. We support both RSA signing certificates and
DSA signing certificates.

To register such certificate with SSLContext use rsaSigningCertificatePair: or
dsaCertificatePair: message.

Clients always authenticate with a signing certificate. Just register the
certificate pair with the client's SSLContext.
6-8 VisualWorks

Diffie-Hellman Key Exchange
A signing certificate has to be registered with the context as a signing
certificate. If it is a certificate for RSA signing, the message
rsaSigningCertificatePair: should be used. In case of DSS signing it should
be a dssCertificatePair: message. (DSS certificates are only used for
signing).

Apart from the signing certficate which will be used for authentication, a
server also needs a pair of public/private encryption keys to be able to
exchange a “secret” value with the client during the handshake. If such
encryption key pair is not associated with server's certificate, a pair of
“temporary” keys will have to be used. The type of keys obviously
depends on the type of selected cipher suite.

As with the certificate pair, the key pair has to be registered with the
SSLContext. In case of RSA cipher suite, message rsaKeyPair: should be
used. With this setup the certificate will be used to authenticate the
server. The private key of the certificate will be used to sign the
temporary public key to prove to the client that the server really owns the
private key for the certificate. The temporary public key will be sent to the
client which will use the key to encrypt the “secret” value for the server.
The server then uses the temporary private key to decrypt the secret
value. An example server setup for this situation would look something
like this:

certificate := X509Certificate fromString: X509RSAPrivateKey
example1TestCertificate.

privateKey := (X509RSAPrivateKey fromString: X509RSAPrivateKey
example1) getKey.

context signingCertificatePair: (Array with: (Array with: certificate)
with: privateKey).

context rsaKeyPair: RSAEncryptionKey example1024BitKeyPair reverse
Because the type and specific properties of the certificate are all
captured in the certificate itself, it is possible to use a much simpler API.
You can send a certificate:key: message to SSLContext, which does the
right thing.

Diffie-Hellman Key Exchange
Because of the nature of Diffie-Hellman key exchange, there are several
options how to use temporary keys for DHE cipher suites (Refer to “Diffie-
Hellman key agreement” on page 5-8 for the details on the meaning of
the various parameters mentioned below):

• Both keys are precomputed and registered with the context using
dhKeyPair: message. In this case the first element of the pair is a 3-
Security Gudie 6-9

Secure Socket Layer
element array containing the group parameters p and g, and the
public key y, in that order. The second element of the pair is a
standalone private value x.

• Just the group parameters are registered with the context and a fresh
pair of the private/public values x/y are generated for each
handshake. In this case the parameters are registered using
dhParameters: message as an (Array with: p with: g).

• If nothing is registered with the context an SSLNoDHParameters
exception is signaled. However if the exception is resumed, SSL will
generate whole DH parameter suite on the fly and proceed the
handshake with those. Note however that generation of the
parameter p is time consuming and the delay caused by that may not
be acceptable. In that case we recommend pregenerating the p and g
parameters and dhParameters: as described above.

Anonymous Handshake
By now you're probably wondering if you always have to deal with this
messy certificate stuff. The answer is usually yes, unless you're in a
situation when you don't need to authenticate the other party because
you are certain that you know who the other party is. In this situation you
can do a so-called anonymous handshake. Keep in mind that this type of
handshake is strongly discouraged though, because dropping
authentication means dropping prevention of man-in-the-middle attacks.

A client-side handshake is anonymous by default. Therefore, an
anonymous handshake, in SSL terms, is the case when the server does
not authenticate, either. To setup a context for anonymous handshake
there's no need to do any of the certificate registration mentioned above.
To complete the handshake the server still needs a pair of public/private
encryption keys for protection of the shared “secret.” The key pair has to
be registered with the server's SSLContext for the handshake to complete
successfully. In SSL, anonymity of the handshake is dictated by the
selected cipher suite. SSL 3.0 defines only a few of those, they have
DH_anon in the name and are all based on Diffie-Hellman key exchange.
There is no anonymous cipher suite defined for the RSA key exchange,
and the SSLConnection will signal an SSLNoServerCertificate warning if the
server doesn't have a suitable certificate. However, this warning is again
resumable, so if the handshake proceeds, the server will skip the
authentication and send a temporary RSA key instead, allowing an
6-10 VisualWorks

Session Renegotiation
anonymous handshake even though the cipher suite is not an
anonymous. Getting the server to perform an anonymous RSA
handshake would look like following.

context := SSLContext new initializeSuites:
(Array with: SSLCipherSuite SSL_RSA_WITH_DES_CBC_SHA).

context rsaKeyPair: (Array with: anRSAPublicKey with: anRSAPrivateKey).
connection := context connectionFor: ioStream.
[connection accept
] on: SSLNoServerCertificate do: [:ex | ex resume]

The client will refuse to handshake a non-anonymous cipher suite if the
server doesn't authenticate. That is unless the connect message is used
(instead of connectSubject:). Omitting the subject validation block is
considered an indication that the client is not interested to authenticate
the server and thus allowing an anonymous handshake regardless of the
chosen cipher suite.

Session Renegotiation
Occasionally, when an SSL connection is maintained for an extended
time period, it might be desirable to renegotiate a new set of security
parameters. SSL does have provisions to do that without rebuilding the
connection from scratch. Renegotiation has to be initiated from the server
side by sending message renegotiate to the SSLConnection. This invokes a
full SSL handshake. The client side SSLConnection handles renegotiation
on its own; it is completely transparent for the client application.

Session Resumption
The last topic that we will cover here is session resumption. Negotiation
of security parameters is expensive. Therefore it is often desirable to
reuse the previously negotiated security parameters for additional
connections to the same party. The results of the negotiation are
captured in an instance of SSLSession. To get a new connection to reuse
previously negotiated parameters it has to be built around the session
that captures the parameters using method connectionFor:using: instead of
the previously mentioned connectionFor:, for example:
Security Gudie 6-11

Secure Socket Layer
session := previousConnection session.
newConnection := context connectionFor: aNewIOStream using: session.
newConnection connect.

There's no need to use connectSubject: for session resumption, because
the session caches the previously specified subject validation block.
Ultimately it is up to the server to decide if it allows to resume a session.
If resumption is refused the handshake will automatically fallback to full
negotiation. A session has to be resumable to resume successfully (i.e.
without doing the full negotiation). Session resumability can be tested
with isResumable message. A server context does not allow session
resumption by default, therefore the sessions it creates will be non-
resumable. To get the server context to create resumable sessions it has
to receive allowResumableSessions message. Any session can be explicitly
made non-resumable using message beNonResumable.
6-12 VisualWorks

Overview
7
ASN.1

Overview

SSL certificates are defined by the X.509 (see “Handshake and
Certificates” on page 6-4) specification using ASN.1. Thus, X.509
certificate support requires ASN.1 support. This chapter briefly describes
ASN.1 and the design of the VisualWorks ASN.1 implementation. It
concludes in a short walkthrough describing the steps involved in setting
up and using an ASN.1 decoder, and a list of known limitations.

Readers requiring more information about ASN.1 should consult either
the several ISO/IEC specifications that define ASN.1 or Olivier
Dubuisson’s ASN.1: Communication Between Heterogeneous Systems.
The latter is very highly recommended.

This section presumes a modest awareness of the issues and distinctions
involved in marshalers and type systems, a good knowledge of Smalltalk
coding conventions, and a willingness to browse the code discussed.

ASN.1
ASN.1 is an abstract syntax notation. It is used to specify the abstract
syntax of the data and message types used to transfer data between
communicating applications. ASN.1 is used in many of the RFCs that
define Internet protocols. For example, the types used in data transfers by
SNMP, LDAP, and Kerberos, and the certificates exchanged in SSL, are
defined in ASN.1.

Any abstract data transfer syntax defined in ASN.1 may have a different
concrete syntax in each communicating application. For example, a type
defined in ASN.1 may be concretely manifested in one application as a C
Security Guide 7-1

ASN.1
structure and in another as a Smalltalk class. This is expected. The
ultimate purpose of an abstract syntax notation is to support clear
specification of a transfer syntax: of the representation of its abstract data
and message types on the wire between the communicating applications.
That encoding must be independent of the concrete syntax used by any
communication endpoint. To establish that independence, ASN.1 is
accompanied by a set of encoding rules that specify how any abstract
type defined in ASN.1 is to be linearized as a collection of bits. There are
several such sets of encoding rules. BER (Basic Encoding Rules), DER
(Distinguished Encoding Rules), and XER (XML Encoding Rules) are
among the best known and most frequently used.

Thus, whenever ASN.1 is used to specify a transfer syntax, two things
must be specified:

• the particular abstract data and message types used in the transfer

• the encoding rule set used to linearize those types.

The X.509 specification follows this requirement. It both defines the type
Certificate and the types of a certificate’s several components, and
specifies that DER is to be used to encode and decode certificates.

In summary, ASN.1 is a language for defining types and messages, that,
in conjunction with one of the ASN.1 encoding rule sets, will possess a
well-defined bit-level representation in communication.

The ASN.1 specification, unlike that of CORBA, does not include
language-specific mapping specifications, which detail the mapping of
ASN.1 abstract types to the concrete, native types of particular computer
language. Instead, that mapping is defined through a language-specific
ASN.1 implementation, implemented by a language vendor. That fact
underlines the importance of the following documentation.

ASN.1 Fundamental Types
ASN.1 defines several abstract, fundamental types. These fundamental
types provide the basis upon which the users of ASN.1 may define the
derived subtypes useful for their needs. These fundamental types
include:

• a comparatively standard set of basic types, like BOOLEAN, INTEGER,
NULL, REAL, and ENUMERATED

• a large set of (sometimes outmoded) character types, like
NumericString, PrintableString, IA5String, and VideoTexString
7-2 VisualWorks

ASN.1
• two constructed types containing elements of the same type,
SEQUENCE OF and SET OF, usually mapped to concrete, language-
specific collection types

• two constructed types containing elements of different types,
SEQUENCE and SET, usually mapped to classes in languages like
Smalltalk and to structures in languages like C

• additional notions common to most type systems, like CHOICE,
ENUMERATED, and ANY

• other miscellaneous types, some specific to ASN.1, particularly
OBJECT IDENTIFIER, but including types like UTCTime and
GeneralizedTime

ASN.1 Modules
Like CORBA, ASN.1 also defines the notion of a MODULE, an object that
contains a set of related type definitions. All ASN1. type declarations
must occur within the scope of a module, and a module is the basic unit
of ASN.1 compilation. ASN.1 modules may both import and export
module elements.

ASN.1’s Constructed Types
It is important to note that an ASN.1 SET or SET OF has no relation to the
set of mathematics. The ASN.1 specification is strongly targeted toward
the problems of data transfer. A SEQUENCE or a SEQUENCE OF guarantees
the transmission order of its elements, while a SET or a SET OF does not.
That is the only significant difference between a SEQUENCE and a SET, or a
SEQUENCE OF and a SET OF. Thus, unlike a mathematical set, an ASN.1
SET or SET OF may have several elements of the same value and type.
But, you cannot know which one of them you will get first when a SET or
SET OF is transmitted. Recognizing the problematic nature of this notion,
the ASN.1 community does not now recommend the use of SET or SET OF
types in any circumstance where a SEQUENCE or SEQUENCE OF type may
reasonably serve instead.

ASN.1’s OID
An ASN.1 OBJECT IDENTIFIER is a node in a single public registration tree.
This tree is used solely for the registration of persistent objects that
require an identifier which is universally unambiguous and available
world-wide. The graph is managed by the OSI. It may include, among its
registered objects, any well defined piece of information, definition, or
specification that requires a name to identify it during communication. For
example, it includes attributes of distinguished names, and the objects
managed under SNMP.
Security Guide 7-3

ASN.1
In a registration tree each node can be unambiguously identified by the
path, from the tree’s root, that is taken to reach it. Each node in the
registration tree has an arbitrary number of ordered and numbered
subnodes, as well as a unique, scoped name. Consequently, each node
can be unambiguously identified either by a series of names, a series of
integers, or both. For example, the following five path specifications refer
to the same node in the OSI registration tree:

2.1.2.0
joint-iso-itu-t.asn1.ber-derived.canonical-encoding
joint-iso-itu-t.1.ber-derived.canonical-encoding
2.asn1.2.canonical-encoding
2.asn1.2.0

ASN.1 OIDs make up the bulk of the data traffic in applications like
SNMP, where nearly all of the objects in data exchanges are registered
objects. Hence, any implementation of ASN.1 must optimize the encoding
and decoding of ASN.1 OIDs, and implement a mechanism for translating
between the implementation’s optimized representation and the various,
alpha-numeric representations shown above.

Type Definition in ASN.1
ASN.1 implements several constructs for type definition and this section
can do no more than address the basics. Consult Dubuisson’s ASN.1:
Communication between Heterogeneous Systems for more details.

A new ASN.1 type, called a subtype, must be defined within an ASN.1
module. Every module in ASN.1 must comply with the following minimal
form:

ModuleName DEFINITIONS ::=
BEGIN

assignments
END

Within the scope of the module, a new type is defined by assigning a type
specification to a type name. The following is simple subtype definition:

Age := INTEGER
The new type named Age is defined as being a subtype of INTEGER.

Similarly, a constructed type is defined by naming and specifying the type
of each constituent element, as in the following:
7-4 VisualWorks

ASN.1
Person ::= SEQUENCE {
first IA5String
lastI IA5String
age AGE

}
Here, a new type named Person is defined as a SEQUENCE of three
elements, named first, last, and age. The first two elements are IA5Strings.
The last element is of type Age, defined previously as a subtype of
INTEGER.

ASN.1 Constraints
To further specify types, ASN.1 also supports constructs for expressing
type constraints and type constraint combinations. The latter include
unions and intersections of constraints. A few illustrative examples will
show how type ASN.1 constraints are expressed:

Age ::= INTEGER (0..120)
Exactlty32Bits ::= BIT STRING (SIZE (32))
NoSs ::= IA5String (FROM (ALL EXCEPT (“s” | “S”)))

In the first example, Age is constrained to the range of positive integers
between 0 and 120 inclusive. In the second, Exactlty32Bits is constrained
to be a bit string of size 32. In the last, NoSs is constrained to be an
IA5String including all elements of the IA5 character set excluding ‘s’ and
‘S’.

This is only a sample of the several constraint constructs supported in
ASN.1.

ASN.1 Type Tags
ASN.1 associates what it calls a UNIVERSAL type tag—a default, numeric
type identifier—with each of its fundamental types. For example, the
UNIVERSAL tag for a BOOLEAN is 1, and the UNIVERSAL tag for an INTEGER
is 2. Any subtype of an ASN.1 type inherits the UNIVERSAL tag of its
parent type.

UNIVERSAL tags are one of the several tag classes supported by ASN.1.
Since the use of some tag classes has been discouraged by the ASN.1
community since 1994, we will not dwell on the semantics and import of
all the various tag classes here. But one class of tags, the class of
context-specific tags, is important, and requires explanation.

Type tags are critical in the encoding and decoding of ASN.1 data traffic.
In an ASN.1 encoded byte stream, a numeric type tag is usually encoded
prior to the value. Thus a decoder, passing over an encoded byte stream,
Security Guide 7-5

ASN.1
is informed of the type of each value coming over the wire before it
encounters the value itself. This significantly aids decoding and
eliminates the need for backtracking.

However, in order to disambiguate the decoding of some types, ASN.1
also supports the use of context-specific tags within SEQUENCEs,
SETS, CHOICEs, and other constructed types.

Consider the following SET, remembering that an ASN.1 SET does not
guarantee the order of transmission of its elements:

Id ::= SET {
ssn NumericString
employeeId IA5String
}

In this case, whether an encoder writes out the bytes for the ssn or the
employeeId first, the receiving decoder will not be confused about which
element it is decoding, because each value will be preceded by a
distinguishing UNIVERSAL type tag (18 for the NumericString, 22 for the
IA5String). This happy state of affairs breaks down if a SET contains
multiple elements of the same type, or a SEQUENCE contains multiple
elements of the same type, some of which are optional. To take the
simplest case, consider the following invalid SET definition:

Id ::= SET {
ssn NumericString
employeeId NumericString
}

In this case, a decoder, because SETs do not guarantee order of
transmission, could not know, when it encounters the type tag for a
NumericString, whether the following value was the ssn or the employeeId
element of the set. This sort of ambiguity is not allowed in ASN.1, and is
averted by overriding the use of UNIVERSAL tags within the scope of the
SET declaration. The following example shows how the previous example
can be corrected using a context-specific tag:

Id ::= SET {
ssn [0] NumericString
employeeId NumericString
}

The bracketed 0 in the code above instructs any ASN.1 encoder to
replace the UNIVERSAL tag for ssn, an 18, indicating a NumericString, with
a 0 followed by an 18. As a result, any ASN.1 decoder, with knowledge of
how this SET subtype was defined, can unambiguously tell which element
it is decoding, because the ssn value will be preceded by a 0 and a 18
while the employeeID value will be preceded by only an 18. However, if the
7-6 VisualWorks

ASN.1
marshaler does not have such type information, it will be unable to
properly decode an ssn. The tag 0 is not associated with an ASN.1
fundamental type, and the decoder will fail.

If the context-specific tagging in the above is deemed too costly or
verbose, the declaration can replace the EXPLICIT context-specific tag in
the previous case with an IMPLICIT context-specific tag, as in the
following:

Id ::= SET {
ssn [0] IMPLICIT NumericString
employeeId NumericString
}

In this case the UNIVERSAL tag 18 will be replaced, while encoding the
ssn element, with only a 0 rather than with a 0 followed by 18 as it is when
an EXPLICIT context-specific tag is used.

Considerations such as these, very particular to the lower levels of
encoding and decoding, should arguably not be reflected at the level of
an abstract syntax. But this is how ASN.1 works, and it is important to
know that.

There are many other subtleties in ASN.1’s tagging and type definition
system, to which Dubuisson’s book is the best available introduction.

ASN.1 Encoding Rules
ASN.1 supports over a half-dozen sets of encoding rules. Each set
specifies the manner in which each of the types defined in the ASN.1
specification is to be represented in bits. Every user-defined subtype
inherits the encoding rules that apply to its parent type.

The various sets of encoding rules supported by ASN.1 differ by virtue of
the requirements they were designed to meet. BER (Basic Encoding
Rules) was the first conceived, and is the most commonly used. It is far
from compact. It does not guarantee a unique encoding for all values.
But, it is relatively easy to decode. CER (Canonical Encoding Rules) and
DER (Distinguished Encoding Rules) are both derived from BER, but
guarantee that each value of each type will have one and only one proper
encoding. Thus, a BER marshaler can always decode a CER or DER
encoded byte stream, but not vice versa. PER (Packed Encoding Rules)
strives for compactness above all else, and is extremely difficult to write
marshalers for. In PER, the value of an INTEGER type that may have only
two values, say, 213457634 and 213457635 will be encoded by exactly
one bit, indicating whether it is the first or the second of the two values
that is being transmitted.
Security Guide 7-7

ASN.1
The most commonly used ASN.1 encoding rules, BER and DER, are
triplet encodings. Each value is transmitted as a triplet consisting of a
type tag (T), a length (L), and a value (V). These are more specifically
called TLV encodings.

Those interested in a more complete description of the various ASN.1
encoding rules should consult Dubuisson.

Packaging
The VisualWorks ASN.1 implementation is delivered in the net\
subdirectory of the VisualWorks installation. The implementation consists
of four parcels that should be loaded in the order shown below:

ASN1-Support
This parcel defines several ideas basic to ASN.1, like the notions of a
Module and an ObjectIdentifier. It also defines SMINode, a class used to
implement trees of ASN.1 ObjectIdentifiers, and Encoding, the class
used to optionally store the original encoding of an object.

ASN1-Constraints
This parcel contains a VisualWorks implementation of the ASN.1
constraint system.

ASN1-Types
This parcel contains definitions of the ASN.1 fundamental types. It
also implements part of the machinery for retaining the original
encoding of an object.

ASN1
This parcel implements the read-write streams that encode or
decode according to the two sets of encoding rules supported by the
implementation, BER and DER. Extensions to the several ASN.1
fundamental types, the methods invoked in support of encoding and
decoding, are also implemented here.

Design of the ASN.1 Implementation
The intent of this section is to expose the organization of the present
VisualWorks ASN.1 implementation. After reading this section, you
should be aware of the function of the major class hierarchies present in
the implementation, and of the principles used to design the
implementation’s architecture. All of the critical class hierarchies in the
ASN.1 implementation are well documented, but this section should
provide you with an overview that integrates the comments in the code.
7-8 VisualWorks

Design of the ASN.1 Implementation
Outline
The current VisualWorks ASN.1 implementation is the successor of
several previous ones. It improves upon them by more cleanly isolating
the required components of a marshaler based on a foreign, abstract type
system, like ASN.1. In the following we will describe each of the required
components and point to the Smalltalk classes that implement it.

The list of the required components in an ASN.1 implementation falls out
naturally from what is involved in marshaling using a foreign type system
with multiple sets of encoding rules. When encoding—translating a
Smalltalk object into bytes—the marshaler must discover or infer what
ASN.1 type the Smalltalk object is mapped to, and then employ
knowledge, both of that type and of the encoding rules in effect for that
type, to produce the correct bytes. When decoding—translating bytes into
Smalltalk objects—the marshaler must discover or infer the encoded
ASN.1 type, and then use knowledge, both of that type and the decoding
rules in effect for that type, to produce the correct Smalltalk object. So,
the components needed in an ASN.1 implementation are:

• a full representation of the foreign, ASN.1 type system

• a bi-directional mapping between Smalltalk classes and ASN.1 types

• a representation of the several sets of encoding and decoding rules
used to marshal ASN.1 types

Each of these involve other, ancillary components as described below

The ASN.1 Type System

The Types
A marshaler based on a foreign, abstract type system requires a
representation of that type system in order to use, operate upon, and
reason about it. This representation captures the high-level
characteristics of each abstract type. It should be largely independent of
what native Smalltalk class any ASN.1 abstract type is mapped to, and of
the encoding rules used to marshal the abstract type. This representation
captures, for example, the fact that an ASN.1 SEQUENCE possesses
elements and may have extensions.

The abstract type system is implemented in the ASN1.Entity hierarchy.
Though methods used in encoding and decoding are implemented in the
abstract type hierarchy, they all dispatch directly to a marshaler and are
effectively contentless.
Security Guide 7-9

ASN.1
The Type Extension Machinery
An abstract type system is useful only if it can be extended to create new
subtypes. The subtype creation API should be one that an ASN.1
compiler could easily make use of. (An ASN.1 compiler reads an ASN.1
text file and produces Smalltalk objects that represent the types
described.)

The type extension API is implemented in class ASN1.Module in the
latter’s definitions protocol. It thereby enforces fidelity to the idea that
ASN.1 subtypes should be created only within modules. The API requires
that a Module be defined before a subtype is created, and it uses methods
named after the involved parent type in order to register newly defined
subtypes, as in the following:

| module |
module := ASN1.Module new: #Temporary.
module INTEGER: #Age.

This code creates a subtype of INTEGER named Age in the module named
Temporary. A supplementary API that does the same is shown below:

| module |
module := ASN1.Module new: #Temporary.
INTEGER named: #Age in: module.

All ASN.1 type classes understand the message named:in:.

Module reimplements doesNotUnderstand: in order to allow the lookup of
already defined subtypes by name, as in the following:

| module |
module := ASN1.Module new: #Temporary.
INTEGER named: #Age in: module.
module Age: #AnotherAge

This creates a subtype of Age named AnotherAge. The subtype creation
machinery is also implemented so that reference may be made to an as
yet undefined subtype in the specification of a new subtype. This allows a
user to ignore the order of the definition of types when defining several
mutually implicated types. Support for references to as yet undefined
types is implemented in ASN1.TypeReference.

All subtypes are created as instances of their parent type class.

Other methods used in type definition are implemented on the instance
side in the ASN1.Entity hierarchy or in the ASN1.AbstractElement hierarchy.
For example, the methods used to record or access the tagging mode—
UNIVERSAL, EXPLICIT, or IMPLICIT—of the elements of an ASN.1
constructed type are implemented in ASN1.ChoiceElement.
7-10 VisualWorks

Design of the ASN.1 Implementation
The Constraint Specification Machinery
Since ASN.1 subtype definition usually involves the specification of
constraints, the ASN.1 constraint system must also be represented in
Smalltalk. Constraints, and constraint combinations, are implemented in
the ASN1.Constraint hierarchy. ASN1.Type has a constraint instance variable,
and any type instance can be asked whether an object satisfies its
constraints using permits: anObject. The following example illustrates the
specification of a simple range constraint:

| module |
module := ASN1.Module new: #Temporary.
(module INTEGER: #Age) constraint: (Constraint from: 0 to: 120).

Age now permits only integral values between 0 and 120 inclusive.

The APIs of the type definition and the constraint specification machinery
are intended for use by an ASN.1 compiler, but can be and are used to
define new subtypes directly.

The Mapping of Smalltalk Classes to the ASN.1 Type System
Marshaling in the presence of an abstract type system presupposes a
mapping between

• the abstract types that regulate marshaling and

• the concrete types that are the input for encoding and the output of
decoding.

In defining this mapping, we will inevitably discuss some topics that
encroach upon the design and API of the marshalers, also discussed in
the following major section.

One-To-One Base Type Mappings
Most ASN.1 base types are mapped, one-to-one, to the closest available
Smalltalk native type. For example, ASN.1 type BOOLEAN is mapped to
Boolean, and ASN.1 type INTEGER is mapped to Integer. For encoding,
these mapping are accomplished by implementing the two methods
encodeASN1With: aMarshaler and tagBER in the involved Smalltalk classes.
Please examine the implementors of these methods. For decoding the
mapping is effected in the low-level decoding rules used by marshalers.
Examine, for example, the implementors of decodeBOOLEAN: and
decodeINTEGER:.
Security Guide 7-11

ASN.1
Many-To-One Base Type Mappings, Encoding Policies, and Type
Wrappers
One-to-one mappings are not always possible, even for simple types.
Both ASN1.GeneralizedTime and ASN1.UTCTime are properly mapped, by
default, to Timestamp. Many of the several ASN.1 string types are properly
mapped, by default, to ByteArray. These are all many-to-one mappings,
and many-to-one mappings create a problem. When an ASN.1 type
involved in a many-to-one Smalltalk mapping is decoded into a native
Smalltalk type, the associated ASN.1 type information is lost in the
translation. Smalltalk cannot reliably re-encode the decoded object in the
way that it was originally encoded. In most applications this is not a worry,
but whenever it becomes one, it would be useful, when decoding, to
retain the original ASN.1 encoding, or knowledge of the original ASN.1
type, or both. This is accomplished using the VisualWorks framework for
encoding policies.

All marshalers have a default encoding policy. Encoding policies are
implemented in the EncodingPolicy hierarchy and a marshaler’s is set
using the method encodingPolicy:. The two most important are
RetrainEncodings and RetainAllEncodings. But, there are three in all:

• The first, RetainEncodings, the default encoding policy, will retain
original encodings and type information, if and only if the ASN.1 type
being decoded has its retainEncoding instance variable set to true. That
value is set using the method retainEncoding: aBoolean, implemented in
class ASN1.Type. By default, the value of retainEncoding is set to false.

• The second important policy, RetainAllEncodings, will always retain
original encodings and type information in the marshaler’s output,
irrespective of the value of the retainEncoding instance variable in any
ASN.1 subtype.

• The third policy, PrettyPrint, prints decoded entities onto a ByteString,
and is useful in debugging decoding problems.

If RetainEncodings or RetainAllEncodings are used, the original encoding and
ASN.1 abstract type of a base type are retained by wrapping the decoded
value in an instance of ASN1.TypeWrapper. That class declares instance
variables for both type and encoding. It stores encodings in an instance of
class ASN1.Encoding.

All values within type wrappers are guaranteed to be re-encoded in the
same manner in which they were originally encoded, within the degree of
play allowed by the decoding rules in effect. This means that some
7-12 VisualWorks

Design of the ASN.1 Implementation
difference might be observed under BER (because it does not strictly
enforce a unique encoding for each ASN.1 value), but no difference will
be seen under DER (which does enforce unique encoding).

Constructed Type Mappings, Structs, and User-Defined Mappings
In the absence of ASN.1 type information, marshalers map, the ASN.1
SEQUENCE, SEQUENCE OF, SET, and SET OF types to class OrderedCollection.

However, if ASN.1 type information is available, two of these types,
SEQUENCE and SET—the only two ASN.1 types that it makes sense to
map to something like a Smalltalk application class—are, by default,
mapped to instances of class ASN1.Struct.

Class Struct is a variant of class Dictionary. It implements the machinery
needed to allow its instances to act like the instances of an ordinary
Smalltalk class. If a Struct had #ssn as one of its keys, it will appropriately
respond to the accessors ssn: and ssn. A Struct also records the order in
which its associations were added. The later is critical for re-encoding
those Structs that were decoded from ASN.1 SEQUENCE subtypes,
because a SEQUENCE must guarantee the order in which its elements are
encoded or transmitted. If encodings are being retained, the encodings
are stored in the Struct’s encoding instance variable. The original ASN.1
type is stored in the Struct’s name instance variable.

However, ASN.1 SEQUENCEs and SETs may also be mapped to user-
created Smalltalk classes by setting the mapping instance variable of a
SEQUENCE or SET subtype using mapping: aClass. User-defined Smalltalk
classes mapped to ASN.1 SEQUENCE or SET types must declare instance
variables for all of the ASN.1 types elements, with the same name as the
element name, and with the usual accessors. The user-defined class
must also respond to new. If the user-defined class will be expected to
retain encodings, its declaration must also include an encoding instance
variable.

Imported Type Mappings
Nearly any foreign type system will define types that are not paralleled in
Smalltalk. For example, though an ASN.1 BOOLEAN should obviously be
decoded as a Smalltalk Boolean, there is no obvious mapping for an
ASN.1 OBJECT IDENTIFIER, an ASN.1 ENUMERATOR, or an ASN.1 BIT
STRING, which has semantics involving the notion of unused bits, a
notion not found in any native Smalltalk string class. In such cases, a new
concrete class must be created in Smalltalk to represent these types.
They are, for the cases mentioned, ASN1.ObjectIdentifier, ASN1.Enumeration,
and ASN1.BitString respectively. They are all subclasses of either
ASN1.Imported or ASN1.TypeWrapper.
Security Guide 7-13

ASN.1
Note, that such imported concrete types are distinct, and should be kept
distinct, from the representation of their corresponding abstract types that
they are mapped to. For example, class ASN1.OBJECT_IDENTIFIER
represents an ASN.1 abstract type, while class ASN1.ObjectIdentifier
represents that abstract type’s manifestation as a Smalltalk-specific
concrete type.

Note that ASN1.ObjectIdentifiers, unlike all other objects in the
implementation, are designed to always retain or cache their encodings.
This is an optimization required by ASN.1’s use in SNMP, where ASN.1
OBJECT IDENTIFIERs usually make up more than 40% of the data traffic
and frequently recur. Any failure to cache the encoding of these OIDs
would be alarming in its cost.

SMINode
Instances of class ASN1.SMINode represent the nodes of the OSI object
registration tree. The class also supports the task of converting the
default representation of ASN1.ObjectIdentifiers as ByteArrays into the
various alpha-numeric representations that an object identifier may go by.
Class SMINode declares currently unused instance variables that will not
become significant until the current ASN.1 implementation is integrated
with the release’s preview SNMP implementation.

The Encoding Rules
Marshalers perform the brute work of turning byte streams into Smalltalk
objects and vice versa. They are represented in Smalltalk as subtypes of
Stream and they implement the sets of low-level encoding rules that
complement the ASN.1 specification.

The VisualWorks implementation of ASN.1 now supports only the most
two frequently used sets of encoding rules, BER and DER. These are
both triplet encodings in which each value is encoded as a triplet
consisting of a type tag, a length in bytes, and a value. Thus, all of the
supported ASN.1 marshaling streams are subclasses of TLVStream. The
hierarchy is shown below:

TLVStream
BERStreamBasic

BERStreamDefinite
DERStream

TLVStream is a generic superclass for ASN.1 triplet marshalers. Its
subclasses accommodate the most common ways in which tags and
lengths may be encoded. BERStreamBasic is intended to be the superclass
for SNMP marshaling streams. It assumes that lengths will always be
encoded in three bytes and that tags will always be encoded in one byte.
7-14 VisualWorks

Design of the ASN.1 Implementation
(Both of these conventions are standard practice in SNMP.)
BERStreamDefinite assumes that lengths are encoded in the fewest
possible number of bytes and that tags may be encoded in more than one
byte. (The latter liberty may be required in marshaling subtype systems
more complex than those used in SNMP.) BERStreamDefinite is thus a
perfect superclass for DERStream. DERStream overrides, when necessary,
those low-level marshaling rules, implemented in its superclasses, that
allow a non-unique encoding for a given ASN.1 type and value pair. In
general, the DER encoding rules eliminate the several encoding options
permitted under BER, for example, the option of encoding the length 2 in
one, two, or three bytes. Under DER the length 2 is always encoded in a
single byte

All of the ASN.1 marshaling streams support a uniform set of entry points
for encoding and decoding. The API consists of the following four
methods:

unmarshalObjectType: anAsn1Type
Decodes the current contents of the marshaling stream into an
object, using the type information provided in anAsn1Type.

unmarshalObject
Decodes the current contents of the marshaling stream into an
object, in the absence of type information.

marshalObject: anObject withType: anAsn1Type
Encodes an object onto the marshaling stream, using the type
information provided in anAsn1Type.

marshalObject: anObject
Encodes an object onto the marshaling stream, in the absence of
type information.

There are two decoding methods and two encoding methods. In each
case, one of the methods has knowledge of the ASN.1 type to be
encoded or decoded, and the other does not. In other words, one is type-
agnostic and the other is type-aware. Both methods are supported
because, with an ASN.1 triplet encoding, it is often possible, to correctly
marshal without detailed type information. This is a consequence of two
facts.

• First, type-agnostic encoding is often possible because several
Smalltalk classes are supplied with a default mapping to a basic
ASN.1 type through the method encodeASN1With:. Thus, if you attempt
to marshal an instance of one of these mapped classes, using
marshalObject:, all will go well. However, marshaling will fail with an
instance of an unmapped class, that is, with one that does not
Security Guide 7-15

ASN.1
implement encodeASN1With:. All the Smalltalk classes that map
naturally to an ASN.1 fundamental type implement encodeASN1With:.

• Second, type-agnostic decoding is possible because all ASN.1
fundamental types have a default, UNIVERSAL tag, and a default
encoding under any set of encoding rules. Because all user-defined
ASN.1 subtypes are derived from the basic types through the
application of constraints, and because such derivation does not
always entail a tag change, it is often possible to decode correctly on
the basis of the tag alone, without any additional knowledge about
the encoded type. However, this strategy breaks down whenever the
user-defined type involves use of the context-specific tags discussed
above. Such tags are commonly used in the definition of ASN.1
constructed types, like SEQUENCE or SET. Constructed types may
have optional elements of the same simple type, and, if so, elements
must be uniquely tagged within the scope of the SEQUENCE or SET
to remove ambiguity.

Because type-agnostic decoding often works, it is worth supporting. It is
often useful in the initial examination a DER or BER encoded data,
allowing a developer to get an idea of what the data looks like before
going to the trouble of defining ASN.1 type information, that would
optimize decoding. If type-agnostic encoding fails, the involved ASN.1
subtypes must be defined in Smalltalk, to allow decoding at all.

Using the ASN.1 Implementation
At the moment, ASN.1 is primarily used in VisualWorks to decode
incoming bytes, and the best example of its use is found in the code of
the X509 parcel. The following section is a brief walk through, describing
the initial steps a knowledgeable developer might take in working up an
X.509 certificate decoder. Please load and examine the shipped X.509
code while reading this section.

Getting the Encoded Bytes
The first step in devising an ASN.1 decoder is writing the API that will
deliver up the encoded data. A DER-encoded X.509 certificate as a good
example of such data. Certificates are readily accessible on most
systems. Please refer to your system’s documentation for instruction on
how to obtain certificates if you run on an OS other than Windows XP.
Most systems also have a certificate inspector that parses and displays a
certificate, and you can use that tool to check the VisualWorks decoding.
7-16 VisualWorks

Using the ASN.1 Implementation
To get a raw certificate on a Windows XP system, open the Windows
Internet Explorer and select Tools Internet Options... to open the
Internet Options window. Then select the Content tab. Then left-click on
the Certificates... button near the center of the window. On the resulting
Certificates window, select Trusted Root Certification Authorities.
Then select any one of the authorities listed and left-click on Export....
Follow through the various screens of the Certificate Export Wizard, and
export the certificate to a file, ensuring that you select the format named
‘DER encoded binary X.509’. Other operating systems have similar
facilities.

Once you have a certificate file, and have created the corresponding
Smalltalk Filename, the following code will answer the relevant ByteArray:

aFilename contentsOfEntireBinaryFile asByteArray
In a real application, you may have to write something more complex to
deliver up your data, and there are several examples of such code in the
X.509 parcel. Look at class Security.X509.Certificate’s class-side instance
creation protocol.

When you print the ByteArray answered by the code shown above to a
Transcript, you will see an array like the following:

#[48 130 3 123 48 130 2 99 160 3 2 1 2 2 16 196 187 216 192 202 255 86
165 17 211 86 150 97 153 34 48 48 13 6 9 42 134 72 134 247 13 1 1 4 5 0
48 29 49 27...etc...]

As mentioned above, ASN.1 BER and DER encodings are both triplet
encodings. Such encodings result in a very typical patterning of nested
and serial triplets, and, once you become familiar with ASN.1 (learning,
for example, that 48 is one of the type tags for an ASN.1 SEQUENCE),
you will be able to perform a high-level parse on an ASN.1 ByteArray by
eye. For example, the first few bytes of the preceding array may be
resolved into the following triplets:
Security Guide 7-17

ASN.1
T: 48
L: 130 3 123 (a three-byte length)
V:

T: 48
L: 130 2 99 (a three-byte length)
V:

T: 160
L: 3 (a one-byte length)
V: 2 1 2
T: 2
L: 16 a one-byte length)
V: 196 187 216 192 202 255 86 165 17 211 86 150 97 153 34 48
T: 48
L: 13 (a one-byte length)
V: 6 9 42 134 72 134 247 13 1 1 4 5 0
T: 48
L: 29 (a one-byte length)
V: 49 27...etc...

But, however impressive a parse by eye might be—and this might not be
the right one—the aim is to get the machine to do it for you, in a way that
is both more definitive and far more illuminating

Type-Agnostic Marshaling
To decode this ByteArray, you need to use a marshaling stream. Because
type-agnostic decoding often works, it is worth trying it in this case, even
though it is clear that this stream includes a number of SEQUENCE’s,
any of which may have used the EXPLICIT or IMPLICIT tagging modes,
confounding the default association between type tags and value. If you
wished to attempt a type-agnostic decoding of a sample certificate, you
would try code like the following:

(ASN1.DERStream with: aFilename contentsOfEntireBinaryFile asByteArray)
reset;
unmarshalObject.

In this code, a DER marshaling stream is created with our DER-encoded
ByteArray. Then the stream is reset and sent unmarshalObject, rather than
unmarshalObjectType: anAsn1Type.

Sadly, this approach will not work in the case of certificates, because
certificates do include SEQUENCEs that reassign type tags. If the code
above is executed, a TagUnknown error will raised. This is a a nearly
certain indication that the marshaling stream requires full type information
in order to decode a certificate correctly.
7-18 VisualWorks

Using the ASN.1 Implementation
Defining ASN.1 Types
To define the ASN.1 types needed to decode a certificate, you must refer
to the X.509 specification, and in it find the ASN.1 code that defines a
certificate and its components. Then you must write the corresponding
Smalltalk code to define those types. This step would be unnecessary if
the VisualWorks implementation included an ASN.1 compiler, but it does
not, as yet.

There are two basic steps in defining the types:

• creating a module to hold type definitions

• defining and registering new types in the module

Module Creation
A module serves to organize related type definitions into a single, named
entity.

A module for the X.509 certificate types may be created thus:

ASN1.Module new: ‘X509’.
In the X509 code, examine the shared variable ASN1Module in class
X509Object, and the methods that support its initialization.

Type Definitions
Adding ASN.1 type definition is a matter of translating the ASN.1 text in
the relevant specification into the Smalltalk used to define ASN.1 abstract
types. Several examples of type definition are provided in the X509 code
by the many implementors of the method initializeAsn1Types. We will
discuss only two examples. All of these methods contain non-executable
comments with the text of the source ASN.1 type definition in the X.509
specification. Thus, this set of methods provides you with a good range of
examples for producing Smalltalk ASN.1 type definition code from ASN.1
source text. The first example, implemented in class
Security.X509.Certificate, reads as follows:
Security Guide 7-19

ASN.1
initializeAsn1Types
"

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,
signatureValue BIT STRING }

"
(ASN1Module SEQUENCE: self asn1TypeName)

addElement: #tbsCertificate type: #TBSCertificate;
addElement: #signatureAlgorithm type: #AlgorithmIdentifier;
addElement: #signatureValue type: #BIT_STRING;
mapping: self;
retainEncoding: true

The ASN.1 text defines a Certificate as a SEQUENCE consisting of three
elements. The corresponding Smalltalk code does the same, and also
specifies that a Certificate is to retain its original encoding and map itself to
the Smalltalk class in which this method is implemented,
Security.X509.Certificate. As is required to support both this mapping and
the retention of encodings, the definition of class Security.X509.Certificate
declares the instance variables tbsCertificate, signatureAlgorithm,
signatureValue, and encoding, with the usual accessing methods. If the line

mapping:self;
was removed from the method above, an ASN.1 Certificate would instead
be decoded as a Struct, because it is a SEQUENCE, rather than a
SEQUENCE OF, a SET OF, or an ASN.1 base type or imported type.

The second example is excerpted from the implementation of
initializeAsn1Types in class Security.X509.TBSCertificate.
7-20 VisualWorks

Using the ASN.1 Implementation
"
TBSCertificate ::= SEQUENCE {

version [0] EXPLICIT Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version MUST be v2 or v3
subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version MUST be v2 or v3
extensions [3] EXPLICIT Extensions OPTIONAL

 -- If present, version MUST be v3 }
"

(ASN1Module SEQUENCE: self asn1TypeName)
addElement: #version type: #Version tag: 0 tagging: #explicit

default: 0;
addElement: #serialNumber type: #CertificateSerialNumber;
addElement: #signature type: #AlgorithmIdentifier;
addElement: #issuer type: #Name;
addElement: #validity type: #Validity;
addElement: #subject type: #Name;
addElement: #subjectPublicKeyInfo type: #SubjectPublicKeyInfo;
addOptionalElement: #issuerUniqueID type: #UniqueIdentifier tag: 1

tagging: #implicit;
addOptionalElement: #subjectUniqueID type: #UniqueIdentifier tag: 2

tagging: #implicit;
addOptionalElement: #extensions type: #Extensions tag: 3 tagging:

#explicit;
mapping: self;
retainEncoding: true.

This is a more complex case, but is still straightforward. Note the protocol
used to add optional elements, to set default values, to identify the
context-specific tags, and to mark them as either IMPLICIT or EXPLICIT
tags. The only tricky bit, in this case, is that knowledge of another part of
the specification was used to set the default value of version to 0, the
value used to identify ‘v1’.
Security Guide 7-21

ASN.1
Type-In Hand Marshaling
Once you have defined the ASN.1 subtypes relevant to the ByteString you
wish to decode—irrespective of whether you have mapped ASN.1
SEQUENCEs or SETs to Smalltalk, user-defined classes by using mapping:
aClass—you can attempt type-in-hand rather than type-agnostic decoding.
Code like the following will do for Certificate:

(ASN1.DERStream with: aFilename contentsOfEntireBinaryFile asByteArray)
reset;
unmarshalObjectType: (aModule find: #Certificate)

Code like this will be found in the class-side instance creation methods of
Security.X509.Certificate.

Debugging Tips and Error Types
In general, stepping through the code from a marshaler’s entry points—
unmarshalObjectType:, unmarshalObject, marshalObject:withType:, or
marshalObject: —is your best approach to solving a decoding or encoding
problem.

The various subclasses of ASN1.Asn1Error have been designed to identify
the most usual ways in which decoding, encoding, or ASN.1 type
definition may go astray. It may pay to cruise through the ASN1.Asn1Error
class hierarchy, browsing all the methods in which those classes are
referenced, to get a grip on what those ways are.

Known Limitations
The ASN.1 implementation has several known limitations, though none of
them are known to significantly restrict the implementation’s use in
support of either X.509 or SNMP. The limitations are:

• Modules do not yet support importing and exporting or global
tagging.

• Constraint extensibility, and some ASN.1 constraint types are not
supported. These unsupported constraint types are:

• regular expression constraints

• the WITH COMPONENTS constrait for constructed types,

• the OCTET STRING constraints ENCODED BY and CONTAINING
ENCODED BY

• user defined CONSTRAINED BY constraints
7-22 VisualWorks

Known Limitations
• Some ASN.1 fundamental types and type definition constructs are
not supported, for example, EXTERNAL, EMBEDDED PDV, RELATIVE OID,
and REAL.

• Exception markers are not supported.

• Tags encoded in multiple bytes may cause decoding problems.

• Some valid, but infrequently used, BER encodings, like indefinite
length, are not supported.
Security Guide 7-23

ASN.1
7-24 VisualWorks

Index
Symbols
<Operate> button ix
<Select> button ix
<Window> button ix
A
AES 4-4
ARC4 4-11
ASN.1 7-1
asymmetric-key, see publick-key

cryptography

B
BER 7-2, 7-7, 7-13, 7-14
block cipher 4-1
block ciphers 4-4
block padding 4-7
BlockCipher class 4-4
BlockCipher instance creation 4-5
blockSize method 4-9
Blowfish 4-5
BP 4-7
buttons

mouse ix
C
CBC 4-5
CER 7-7
certificate authority 6-5
certificates

handshake and 6-4
signing 6-8

CFB 4-6
cipher block chaining 4-5
cipher feedback 4-6
cipher modes 4-5
ciphertext stealing 4-7
constructed types 7-3
context-specific tags 7-16
conventions

typographic viii
CORBA 7-2, 7-3
CS 4-7

D
decrypt: method 4-4

decryptInPlace: method 4-4
decryptInPlace:from:to: method 4-4, 4-9
decryption

block cipher 4-7
RSA 5-3
stream cipher 4-11
symmetric-key 4-3

DER 7-2, 7-7, 7-13, 7-14
derEncodedDigestInfo method 5-6
DES 4-5
Diffie-Hellman 5-8
digital envelope 5-4
digital signature 5-1, 5-2

DSA 5-7
RSA 5-5

DSA 5-2, 5-7
DSSRandom class 3-1
Dubuisson 7-1, 7-4, 7-7, 7-8

E
ECB 4-5
electronic code book 4-5
encoding rules 7-7
EncodingPolicy 7-12
encrypt: method 4-4
encryptInPlace: method 4-4
encryptInPlace:from:to: method 4-4, 4-9
encryption

block cipher 4-9
public-key 5-1
RSA 5-3
stream cipher 4-11
symmetric-key 4-3

encyrption
block cipher 4-7

F
flush method 5-3
fonts viii

G
generate key pair 5-3
getting help x
H
hashAlgorithm: method 5-6
Security Guide Index-1

I
imported types 7-13

K
Kerberos 7-1
key: method 4-3
KeyGenerator class 5-2
keySize: method 5-2

L
LDAP 7-1

M
MODULE 7-3
module 7-4
mouse buttons ix

<Operate> button ix
<Select> button ix
<Window> button ix

N
name space 1-3
Name Space, importing Net Clients into 1-3
Net Clients

importing into a Name Space 1-3
notational conventions viii

O
OBJECT IDENTIFIER 7-3
OFB 4-6
output feedback 4-6

P
parcels 1-2
PER 7-7
privateKey method 5-3
public/private key pair 5-2, 5-8
public-key cryptography 1-2, 5-1
publicKey method 5-3

R
RC4 4-11
resetDefault message 3-7
resetDefaultFrom: message 3-7
RSA 5-2

S
Secure Socket Layer. See SSL.
SEQUENCE 7-3
SEQUENCE OF 7-3
session, SSL

renegotiation 6-11
resumption 6-11

SET 7-3

SET OF 7-3
shared secret 5-8
sign: method 5-5, 5-7
SMINode 7-14
SNMP 7-1, 7-3, 7-14, 7-15
special symbols viii
SSL

anonymous handshake 6-10
certificate 6-4
certificate chain 6-5
client authentication 6-8
exceptions 6-4
handshake and certificates 6-4
introduction 6-1
limitations in implementation 6-1
session

renegotiation 6-11
resumption 6-11

signing certificates 6-8
using 6-2

SSLConnection class 6-2
SSLContext class 6-2, 6-6
SSLError class 6-4
SSLException class 6-4
SSLSession class 6-2
SSLWarning class 6-4
stream cipher 4-1, 4-11
Struct 7-13
symbols used in documentation viii
symmetric-key cryptography 1-2, 4-1

T
technical support x
TLV encoding 7-8
triple-key encryption 4-8
triplet encoding 7-8, 7-14
type mapping 7-11
type tags 7-5
TypeWrapper 7-12
typographic conventions viii

U
useMD5 method 5-5
useSHA method 5-5

V
verify:of: method 5-5, 5-8

X
X509Registry 6-5
XER 7-2
Index-2 VisualWorks

	Contents
	About This Book
	Overview
	Audience
	Organization

	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information
	Books on Computer Security
	Specifications

	Introduction to Security
	Overview
	Symmetric-key Encryption
	Public-key Cryptography

	Loading Security Components
	Importing Security Components into a Name Space

	Hashes and Message Digests
	Overview
	Hash Algorithms
	MD5
	SHA
	SHA-256

	Working with Hashes
	Hash Methods
	Hashing a Data Collection
	Hashing a Complete Data Stream
	Hashing a Data Stream Incrementally
	Comparing to a Known Hash Value

	HMAC Message Digests
	Key Selection
	Generating an HMAC
	Validating a Message using HMAC

	Random Number Generators
	DSSRandom
	Initializing a DSSRandom Generator
	Constraining the range of values
	Using Autogenerated Seeds
	Reusing the Generator
	Reseeding a Generator
	Default Generator
	Reseeding the Default Generator

	Generating a Good Random
	Selecting a Seed

	Primality Testing
	Configuring Miller-Rabin Testing
	Configuring Prime Sieve Testing

	Symmetric-key Cryptography
	Overview
	Generating Keys
	Symmetric-key Cipher General API
	Instance Creation
	Encryption/Decryption Messages

	Block Ciphers
	Block Cipher Implementations
	AES
	Blowfish
	DES

	General API
	Cipher Modes
	Padding Options
	Triple-key EDE Encryption
	Instance Creation Methods

	Encrypting and Decrypting with Block Ciphers
	Providing Custom Padding

	Stream Ciphers
	ARC4

	Password-based Encryption and Authentication
	Loading PKCS Support
	PKCS Encryption
	Message Authentication

	Public Key Cryptography
	Digital signatures
	Generating Keys
	Exporting and Importing Keys

	RSA
	Creating a Digital Envelope
	Digitally Signing with RSA
	Using a Custom Hash

	DSA
	Generating DSA key pairs
	Digitally Signing with DSA
	Verifying a DSA signature

	Diffie-Hellman key agreement
	Basic DH Shared Secret Generation
	Using the Shared Secret for Encryption
	Using pre-defined parameter values
	Controlling Parameter Generation

	Secure Socket Layer
	Limitations
	Usage
	SSL Exceptions
	Handshake and Certificates
	Certificate Subject Validation
	Client Authentication
	Certificates for Signing

	Diffie-Hellman Key Exchange
	Anonymous Handshake
	Session Renegotiation
	Session Resumption

	ASN.1
	Overview
	ASN.1
	ASN.1 Fundamental Types
	ASN.1 Modules
	ASN.1’s Constructed Types
	ASN.1’s OID

	Type Definition in ASN.1
	ASN.1 Constraints

	ASN.1 Type Tags
	ASN.1 Encoding Rules

	Packaging
	Design of the ASN.1 Implementation
	Outline
	The ASN.1 Type System
	The Types
	The Type Extension Machinery
	The Constraint Specification Machinery

	The Mapping of Smalltalk Classes to the ASN.1 Type System
	One-To-One Base Type Mappings
	Many-To-One Base Type Mappings, Encoding Policies, and Type Wrappers
	Constructed Type Mappings, Structs, and User-Defined Mappings
	Imported Type Mappings
	SMINode

	The Encoding Rules

	Using the ASN.1 Implementation
	Getting the Encoded Bytes
	Type-Agnostic Marshaling
	Defining ASN.1 Types
	Module Creation
	Type Definitions

	Type-In Hand Marshaling

	Debugging Tips and Error Types
	Known Limitations

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

