
Cincom Smalltalk™

Source Code
Management Guide

P46-0138-04

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

Copyright © 1993–2009 by Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0138-04

Software Release 7.7

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, and COM Connect are trademarks of Cincom Systems, Inc., its subsidiaries, or
successors. ENVY is a registered trademark of Object Technology International, Inc. All
other products or services mentioned herein are trademarks of their respective
companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation copyright © 1993–2009 by Cincom
Systems, Inc. All rights reserved. No part of it may be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without prior
written consent from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

About This Book

This document is describes how to configure and use Store, the
VisualWorks source control management (SCM) environment. Store is an
add-in to VisualWorks that enhances the development tools with facilities
for partitioning and versioning code components, and storing them in a
database.

For VisualWorks 7.5 this document is still under development, and is
incomplete in several areas. Nonetheless, it is more comprehensive than
the documentation formerly provided in the Application Developer’s
Guide.

Audience

This guide is written for VisualWorks users of any skill level. Since the
interface is primarily tools, little specific knowledge of object oriented
programming is required. Some parts, specifically the installation section,
assume some knowledge of database administration for specific
databases.

Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.
Source Code Management Guide iii

About This Book
Special Symbols
This book uses the following symbols to designate certain items or
relationships:

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File > New Indicates the name of an item (New) on a menu
(File).

<Return> key

<Select> button

<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

Example Description
iv VisualWorks

Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or
combinations:

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
helpna@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>
Source Code Management Guide v

mailto:supportweb@cincom.com

About This Book
• The version id, which indicates the version of the product you are
using. Choose Help > About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help > About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to
helpna@cincom.com.

Web
In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com
Telephone

Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.

Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:
vi VisualWorks

mailto:supportweb@cincom.com
http://supportweb.cincom.com

• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu

with the SUBJECT of "subscribe" or "unsubscribe". You can then
address emails to vwnc@cs.uiuc.edu.

• A Wiki (a user-editable web site) for discussing any and all things
VisualWorks related at:

http://www.cincomsmalltalk.com/CincomSmalltalkWiki

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincomsmalltalk.com/documentation/

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.
Source Code Management Guide vii

mailto:vwnc-request@cs.uiuc.edu
mailto:vwnc@cs.uiuc.edu
http://www.cincomsmalltalk.com/CincomSmalltalkWiki
news:comp.lang.smalltalk
http://www.cincomsmalltalk.com/documentation/

About This Book
viii VisualWorks

Contents
About This Book iii

Audience ...iii
Conventions ..iii

Typographic Conventions ...iii
Special Symbols .. iv
Mouse Buttons and Menus .. v

Getting Help .. v
Commercial Licensees ... v

Before Contacting Technical Support .. v
Contacting Technical Support .. vi

Non-Commercial Licensees .. vi
Additional Sources of Information ..vii

Chapter 1 Introduction 1-1

What is Store? ..1-1
Store Features ...1-1
Code Storage in Store ..1-2
Concurrent Development ...1-3
A Development Methodology ...1-3

Versioning ...1-4
Parallel Development ..1-5
Blessing levels ...1-6
Publishing policies ...1-7

Database limitations ...1-7

Chapter 2 Beginning to Use Store 2-1

A Simple Approach ..2-1
Assumptions ..2-1

Install Store into VisualWorks ..2-2
Install the Store Database Tables ...2-3
Publishing the Base ...2-5
Souce Code Management Guide ix

Contents
Explore the System Contents .. 2-5
Load Application Code .. 2-7

Loading Parceled Code into Store .. 2-7
Publishing Packages ... 2-9

Loading and Reorganizing HotDraw .. 2-11
Build a Bundle .. 2-15
Publish the Bundle .. 2-16

Comparing with Another Repository .. 2-18
Get Open Repository Access ... 2-18
Reconciling to the Repository ... 2-18
Browsing Differences .. 2-19
Adopting a Difference ... 2-22
What we Changed in this Section ... 2-23

Chapter 3 Configuring Store 3-1

Loading Store into VisualWorks ... 3-1
Configuring the Store Database ... 3-2

Oracle Setup ... 3-2
SQL Server Setup .. 3-4
PostgreSQL Setup ... 3-5
DB2 Setup .. 3-7

Publishing the VisualWorks Base .. 3-8
Making Changes to the Base .. 3-10
Updating to a New Base ... 3-10

Team Working Environments ... 3-11
Local and Shared Repositories .. 3-11

Configuring Store Policies ... 3-12
Installing a Policy .. 3-12
Blessing Policy .. 3-12
Merge Policy ... 3-14
Ownership Policy .. 3-14
Package Policy ... 3-15
Prerequisite Policy .. 3-15
Publish Policy .. 3-16
Version Policy ... 3-16

Chapter 4 Organizing Code in Store 4-1

Patterns for Organizing Code .. 4-1
Guidelines for Defining Packages ... 4-1
Guidelines for Defining Bundles ... 4-3

Using Bundles to Organize Projects .. 4-3
x VisualWorks

Contents
Prerequisites and Load Order ..4-4
Suggestions for Setting up Dependencies ..4-5
Suggestions for Setting Dependencies for Deployment4-6
A Simplified Approach ...4-7

Importing Code into Store ..4-7
Packaging Source in the Image ..4-7
Packaging Source from File-outs ..4-7
Packaging Code from Parcels ...4-8

Working with Packages ..4-9
Creating Packages ..4-9
Assigning New Definitions to Packages ..4-9
Moving Definitions to Packages ..4-10
Loading Atomically ..4-10
Package Load and Unload Actions ...4-11
How a Package is Loaded ...4-11

Working with Bundles ...4-12
Creating and Arranging Bundles ...4-12
Editing a Bundle Specification ...4-13
Bundle Load and Unload Actions ..4-14
Including External Files ...4-14

Specifying Prerequisites ...4-14
Specifying a Prerequisite Version ..4-16
Suppress Warnings ...4-16

Publishing Packages and Bundles ...4-17
Basic Publishing ..4-17
Publish Binary ...4-19
Publish Parcel ...4-20

Overriding Definitions ...4-22
Reorganizing Packages ...4-23

Renaming a Package or Bundle ..4-23
Reorganizing Name Spaces ...4-24

Chapter 5 Maintaining Your Store Environment 5-1

Working Connected and Disconnected ..5-2
Connecting to the Database ..5-2
Detaching from the Database ...5-2
Saving Connection Profiles ...5-3

Working Off-line ...5-3
Preparing to Work Off-line ...5-4
Resuming Work with the Database ...5-4

Working with Multiple Databases ...5-5
Reconciling to a Database ..5-6
Souce Code Management Guide xi

Contents
Switching Databases .. 5-7
Removing Database Links .. 5-8
Using a Local Database .. 5-8
Publishing Back to the Team Database .. 5-9

Maintaining your Working Image ... 5-9
Browsing Loaded Packages and Bundles .. 5-9
Examining the Contents of a Bundle .. 5-9
Loading Published Code ... 5-10

Loading a Bundle .. 5-10
Loading a Package ... 5-10

Updating to New Versions .. 5-11
Browsing Packages and Definitions .. 5-12

Browsing Loaded Code ... 5-12
Browsing Unloaded Code .. 5-12
Browsing Shared Variable Definitions .. 5-13

Browsing with Package Changes and Overrides 5-13
Updating Published Source Code ... 5-14
Updating from a Build ... 5-14

Publishing a Component .. 5-15
Pre-publication Checks ... 5-15

Comparing to the Parent Version ... 5-15
Inspecting Changes ... 5-15
Merging with Another Version .. 5-15

Publishing a Bundle .. 5-16
Publishing an Individual Package ... 5-17

Exporting code .. 5-19

Chapter 6 Version Control 6-1

Versions ... 6-1
Package and bundle version strings ... 6-2
Blessing levels .. 6-2

Working with versions and blessings ... 6-4
Browsing a version history .. 6-4
Comparing versions ... 6-4

Package views ... 6-5
Class views .. 6-5
Protocol and method views .. 6-5
Text views .. 6-5

Changing a version’s blessing level .. 6-6
Integrating code versions ... 6-6

Relationships among versions .. 6-7
Conflicting and nonconflicting modifications ... 6-8
xii VisualWorks

Contents
Merging two versions of a package ...6-8
Integrating a set of packages ..6-9
Resolving conflicts ..6-10
Excluding nonconflicting modifications ..6-11
Creating the merged version ...6-11

Chapter 7 Administering Store 7-1

User Administration ..7-1
Adding Store users ..7-1

Table owner accounts ...7-1
Normal user accounts ..7-2

Setting up users and groups ..7-3
Installing user/group management ..7-3
Configuring user groups ..7-5

Add a group ..7-5
Add a user ..7-6
Change group membership ..7-6
Delete a user ..7-6

Assigning privileges ..7-6
Garbage collecting the database ...7-7
Checking consistency ..7-9

Chapter 8 Porting from ENVY/Developer 8-1

Conceptual porting ...8-2
Using file-outs and parcels ...8-3
Store Bridge ...8-4

Compatibility ..8-5
Installing the bridge ..8-6

Installing the Bridge in the ENVY environment ...8-6
Installing the Bridge in the Store environment ...8-7

Exporting an ENVY configuration map ...8-7
Importing and publishing an ENVY configuration map ...8-8

Publishing a converted bundle to the Store repository8-9
Migrating complete version history ...8-10
Known limitations ...8-11

Chapter A Store Setup for DBAs A-1

Set Up Oracle .. A-2
Set Up SQL Server ... A-2
Set Up PostgreSQL ... A-2
Souce Code Management Guide xiii

Contents
Set Up DB2 ..A-3
Set Up Interbase ..A-4

Chapter B Creating a Custom Install Script B-1

Index Index-1
xiv VisualWorks

1

Introduction

What is Store?
Large scale development projects are typically divided among and
developed in parallel by a team of programmers. Individual team
members work on their own part of the project, and periodically
publish their work, making it available to other team members for
integration with their code. At this scale of development, source code
management and control is essential.

Store is an add-in component to VisualWorks that provides source
code version management and team development facilities for the
base development environment. Store provides:

• Source code repository support, retargetable to several common
database backends.

• Tools for versioning units of code, including branching versions
and browsing version histories.

• Tools for merging, comparing changes, and reconciling divergent
lines of development.

• A simple and extensible team development methodology.

Store Features
Store is a source code management and versioning system that is
integrated into the VisualWorks environment. In VisualWorks, class,
method and other definitions are organized into packages and
bundles. When Store is added to the system, these same packages
Souce Code Management Guide 1-1

Introduction
and bundles become versionable storage units in a database.
Changes to the code in a package can then be published with
incremental version identifiers.

The standard VisualWorks browser is extended by Store to simplify
publishing and loading packaged code. Additional tools are provided
for managing the packages in the repository, and performing
operations such as comparing versions in the repository with the
image, browsing version histories, and so on.

Teams coordinate their work by sharing packages via the server-
based code repository. The tool set provides each developer with a
client view of the repository. Unlike repository systems that use a
check-out/check-in mechanism to ensure that only one developer is
modifying code at a time, Store employs a merge mechanism. This
approach allows several developers to “own” their own versions
developed from a common version of the code, and publish their work
simultaneously. At appropriate points in the development process,
any versions that have diverged are merged and published as a
unified version.

In a common process, team members begin by loading code from the
shared repository into their local development image. As the
developer modifies code, Store records a fine-grained version history
in a repository-specific changes log, and marks the packages as
candidates for publishing. The developer periodically publishes the
modified packages, to record the changes and make them available
to other members of the team. As needed, a code “integrator”
reviews the changes, merges divergent versions, and republishes a
new common version.

Code Storage in Store
The Store code repository is implemented using an open,
retargetable, database access strategy, enabling its use with a variety
of popular, commercially available databases systems (e.g., Oracle,
SQLServer, ODBC, PostgreSQL, and DB2). Store interfaces with
standard, well-understood, robust, transactional systems for which
administrative expertise and tools already exist in most companies,
rather than a proprietary repository or flat-file system. Being
retargetable, the tools allow access to several different repositories,
with different database back-ends, during the course of a single
project, from a single image.
1-2 VisualWorks

Concurrent Development
Store supports geographically distributed and mobile teams. The
versioning strategy does not demand a continuous connection to the
code repository. Regardless of whether developers have high-speed
LAN access on site, or slow modem access while travelling, Store’s
architecture enables the entire group to work together smoothly in a
wide-area network environment.

Concurrent Development
Store uses a “publish and merge” model for version control. Under
this model, Store creates a local copy of the code under development
when it is loaded into the developer's image. This copy is known as a
working or child version, as opposed to the parent version in the
repository.

Changes to a working version do not affect the parent version, but
are tracked as “deltas” or “branches” from the parent version. For
increased performance, only these deltas are saved when a
component is published in the repository (unless published “binary,”
as described later). The parent-child relationship between versions
helps to simplify the task of merging multiple lines of development
into a single, consistent version. After publishing a branch, the new
version can be merged at any later time.

This architecture provides two important benefits. First, the model is
well-suited to a transient network environment. Once a version of a
code unit has been loaded, no further network access is needed for
the ordinary activities of development. Under Store, developers only
need to be connected to the repository to load or publish updates.

Second, because there is no need for locking, Store promotes a more
parallel workflow within the development group. The logical
organization of a project can be preserved, allowing developers to
work together closely. In short, the publish and merge design is more
suitable for a high productivity environment like VisualWorks.

A Development Methodology
One of the key benefits of a source control management system is
that it brings a formal methodology to the often confused process of
software development. Store provides a simple but extensible
framework for defining a group development process.
Souce Code Management Guide 1-3

Introduction
Development is organized around the traditional idea of milestones,
such as base-lining, coding, integrating, and releasing. As a project
progresses from one milestone to the next, Store tracks the version
history of its parts. Development groups can either use a set of pre-
defined milestones or define their own.

To simplify the task of managing parallel lines of development, a fine-
granularity versioning technique is employed. During normal
development, all changes are logged locally, and Store records how
they impact the working versions of packages in the local image.

Versioning
Versioning is not merely a way to track the change history of a unit of
code, but a way to provide the needed insulation between different
lines of development. Store provides developers with a versioning
strategy and several powerful tools for managing both simple and
complex version graphs.

When a package or bundle is first published in the repository, a new
thread or line of development is established. A version string is
created (e.g., “1.1“) at this time. The version stored in the repository
is known as the parent version, while the copies created in the local
image during loading are known as the child or working versions.

As work proceeds, the line of development is extended. For example,
the following simple graph shows three successive versions of the
“Parser” component:

When an updated version is published, a new version string is
assigned (e.g., “1.2”), and this version becomes parent of the working
version in the image. The working versions in each developer’s image
only have version numbers assigned when they are published. They
can be tracked and merged because they are all descended from the
same parent.

With Store, complex applications can be versioned easily. When a
new version of a bundle is published in the repository, any changed
sub-bundles or packages contained within the bundle are also
published, creating new versions.
1-4 VisualWorks

A Development Methodology
Parallel Development
If the line of development is completely linear, it is not necessary to
merge different published versions of the same unit of code.
Development in a team setting is seldom linear, however, and a more
complex version graph may have several branches for a single unit,
each representing a parallel thread of development.

In this case, two developers are working simultaneously on the same
package. After they publish their modifications with successive
version numbers (“1.2” and “1.2.1”), it will be necessary to perform a
step of integration.

It is often useful to create a version based upon a change set. Store
supports these “code fragments” as a way to quickly produce small
fixes without republishing an entire application. These fragments are
full-fledged branches in the version graph.

With two or possibly more developers working on the same group of
packages, the task of integration can rapidly become complex. Store
simplifies this step in several ways. First, by representing the version
graph as a series of deltas in a parent-child relationship, it is easier to
pinpoint conflicts between the parallel threads. Second, Store
provides a Merge Tool that largely automates the task of package
integration. The tool can identify and semi-automatically resolve all
points of conflict in an arbitrary n-way merge.

The following version graph illustrates the effect of merging a branch:

When merging two versions of the same package, Store first
identifies any conflicts. If the same definition has been changed in
different ways (e.g., a method has been added or removed from the
same class), a potential conflict is identified. If a change were made
to only one version, or if the changes in both versions are the same,
Store considers the modifications to be nonconflicting.
Souce Code Management Guide 1-5

Introduction
The Merge Tool automates the task of integration by identifying
conflicts and providing a simple mechanism for resolving them in a
new composite version. A list of conflicting definitions is provided,
and the option is given either to select one of the definitions or else
create a new one. By default, nonconflicting modifications are
excluded, but the Merge Tool can audit these as well. Once all
conflicts are resolved, a new version is published.

Blessing levels
As individual parts of a project reach each milestone, they are
approved by the appropriate team members before proceeding. This
practice—often referred to as “promotion management”—has the
virtue of making it easier to coordinate a team around common
development objectives.

Under Store, promotion is structured via a series of blessing levels
that represent the following steps (in fact, Store includes a few more,
but we need only consider the six main ones here):

1 in development

2 published

3 integrated

4 merged

5 tested

6 released

Blessing levels may be thought of as special annotations to
component versions. They provide notations of quality in an
otherwise unstructured version graph. These notations coordinate
work on a component through all stages of development.

Consider, for example, a conventional versioning scheme without
notations of quality. When version numbers alone are used to
indicate quality, later versions are generally assumed to be better
than earlier ones. Of course, in practice this is often not the case,
especially during early stages of development when functionality is
incomplete.

By separating the number of a version from the notation of its quality,
Store helps to eliminate this confusion. Parallel development can
proceed apace, code can be extended through broken or incomplete
phases, and branches can be merged as necessary.
1-6 VisualWorks

Database limitations
Publishing policies
Blessing levels can also be used by the Store tools to enforce certain
rules of process. For example, a development group may decide that
only those packages that have reached a certain level may be
integrated using the Merge Tool.

Publishing in the repository may also be controlled using blessings.
When the repository is configured for user/group management, only
the owner of a package or the repository administrator is allowed to
publish above the normal development levels. Similar rules restrict
the “tested” level to members of the QA group.

Thus, blessings provide several important benefits: first, they facilitate
tighter coordination between team members by indicating when code
is ready to be shared, integrated, tested, etc. They encourage
developers to publish and share intermediate stages of a package.

Second, they enforce rules of process without placing unnecessary
constraints on publishing, and finally, they help shield each member
of the development team from untested packages by providing
“insulation” between parallel lines of work.

For organizations that wish to design their own methodology, Store
provides a simple means for customizing the set of blessing levels.
The name, number, and semantics of the blessing structure may all
be changed by creating new blessing policy classes.

Database limitations
Because Store depends on third-party databases for data storage,
the limitations of those databases apply, and may appear to be
limitations of Store when they are not.

For example, Oracle limits field names to 255 characters. This limit
applies to Store as a limit on the sizes of method, class, name space,
and shared variable names. The limitation applies only to simple
names, not including the (name space) environment, so it is seldom a
problem. Some users have experienced trouble, however, with long
message selectors.
Souce Code Management Guide 1-7

Introduction
1-8 VisualWorks

2

Beginning to Use Store

A Simple Approach
Store is chock full of options and alternatives, with flexibility to put a
burlesque show contortionist to shame.

What we’re going to do in this section is walk through a simplified
scenario of setting up a base image, importing and packaging code,
publishing a couple of versions, and a quick integration. This will not
illustrate all the configuration options of Store, and it won’t answer
specific questions about how to package your code. But, it will show a
way of going through a simple development and release process with
Store. The details are up to you.

Assumptions
For this extended example, we are assuming that you have access to
a database into which you have rights install Store tables. What this
assumption amounts to is that you have:

• a Store-compatible database installed

• rights to create three database users:

• BERN, as the Store table owner

• BaseSystem, a regular user that will be used only for
publishing VisualWorks base packages

• YourID (whatever your database login ID is), a regular user
that you will use for logging in to load and publish your
application code
Source Code Management Guide 2-1

Beginning to Use Store
• You know the database access string for the database, which is
assigned when creating the database

• You know the directory path created for the Store database files

Full instructions for setting up the databases and the requirements for
users are given in Configuring Store. Only the database level
instructions are necessary, because we will install the tables here. If
the tables are already set up, then you can skip that part of this walk
through.

Install Store into VisualWorks
For this section, we’ll assume that you do not have Store already
loaded into a VisualWorks image. If you already have a Store image,
you can skip to the next section. Or you might want to read through
quickly to see what was done.

Store is an add-on to VisualWorks that is installed from parcels.
There are several parcels for Store, but you only need to pick one to
load; the rest are installed automatically.

The parcel you will choose to install is the Store parcel for the kind of
database you have available. At present, the options are:

• StoreForOracle

• StoreForSqlServer

• StoreForPostgreSQL

• StoreForDB2

• StoreForInterbase

• StoreForMSAccess

Oracle and SQLServer are the only two databases officially
supported by Cincom. StoreForMSAccess is provided as a preview.
PostgreSQL, DB2, and Interbase support parcels are included with
VisualWorks as “goodies,” provided and supported by third-party
developers. For more information about these, browse the contibuted/
directories for documentation files.

To install Store into VisualWorks:

1 Launch a clean VisualWorks image (visual.im or visualnc.im).
2-2 VisualWorks

Install the Store Database Tables
2 In the Visual Launcher, select System > Parcel Manager.

3 In the Suggestions list of, select Store Tools.

4 In the list of parcels, select the StoreFor... parcel for your database,
and select the Parcel > Load command.

5 Wait while Store loads.

6 Save the image to a new name, such as: storeOnly (the image file
will be saved as storeOnly.im.)

Install the Store Database Tables
This section assumes your database does not have Store tables
installed already. If you are accessing a database that already has
Store tables installed, skip this section.

The installation here is simple, and suitable for a single-user
database, such as one that you would use as a local repository,
because it does not install the user/group management facility. This is
also suitable for larger groups who are trusting, that is, that process is
Source Code Management Guide 2-3

Beginning to Use Store
not tightly controlled. The following procedure is slanted towards
Oracle. For installing and configuring a controlled, multi-user
environment, refer to Administering Store.

To install the Store tables:

1 Launch your Store image (storeOnly.im from the previous section).

2 In a workspace, enter and evaluate (Do It) this expression:

Store.DbRegistry installDatabaseTables
3 When the Store connection dialog opens, log in as BERN, the

Store table owner (the account name assigned by your database
administrator might be different). You also need to:

• select the connection type and

• enter the database Environment string that you got from your
database administrator (for a local database, you can usually
leave this empty).

• enter the database table owner ID in the Table owner field (for
databases that have table owners, such as Oracle and SQL
Server). This ID will then become the table owner.

4 When prompted Create tablespace?, click Yes.

5 When prompted for the database directory, enter the directory
path name created for Store by the database administrator.

6 When you are prompted for a name for the store database, enter
a name that will uniquely identify this Store database within your
organization, and click OK.

This identifier is used for identifying this database to Store. If you
have only one database to access, you may call it simply “store”.
If you access two more Store databases in your organization,
they must have different names. We suggest embedding the
respective server or domain names in the database identifier.

7 When you are prompted whether to Install management policies?,
click No. Click OK to dismiss the next notifier.

You can always install these later (see Setting up users and
groups.

8 When finished, disconnect from Store (Store > Disconnect from
Repository). You don’t want to work while logged in as the Store
table owner.
2-4 VisualWorks

Publishing the Base
The Store database tables are now installed, and you are ready to
begin publishing.

Publishing the Base
The first thing many Store users do is publish the VisualWorks base
into their Store repository. It isn’t necessary, but does provide some
help in discovering if you have accidentally overwritten a method in
the base, which most application programmers do not need to do.

We’ll skip doing this at this point, but refer to Publishing the
VisualWorks Base.

If you want to publish the base, this is the time to do it, though you
can also do it later. It takes a while, and can make your database files
pretty big, though, so be prepared.

Explore the System Contents
Before going further, let’s take a quick look at the system as it stands
now. Open the System Browser.
Source Code Management Guide 2-5

Beginning to Use Store
This browser is described in the VisualWorks Tools Guide and in the
online Help. So, here we only point out features we’re interested in for
Store.

The top-left pane I’ll call the “package list,” even though it shows both
packages and bundles. Bundles are the expandable ones. Click on
an expansion button ([+]) to expand a bundle, such as Base
VisualWorks, and continue expanding until there are no more
expansions. At the end of the trail are the packages, which contain
the actual code definitions.

If you select any of the bundles, the code definitions in the packages
contained in that bundle, no matter how deep, are shown in the
remaining panes: class, method category, message selector, and
code definition at the bottom.

By selecting either a package or a bundle containing the package,
you can narrow and widen the scope of classes displayed in the
browser.

By providing for nesting of packages within bundles, and possibly
bundles within bundles in this way, packages can be kept quite small
and tightly focused, while allowing an easy way to group chunks of
2-6 VisualWorks

http://www.cincomsmalltalk.com/documentation/current/ToolGuide.pdf

Load Application Code
code for viewing and maintenance. Select packages and bundles up
and down the bundle hierarchy to see how the classes are available
for view.

Selecting the Base VisualWorks bundle, you can browse all of the
familiar base classes. The sub-bundles are named similarly to the
traditional class categories, so this should look familiar as well. An
additional top-level bundle contains Store support, and then there are
several loose packages containing other features.

Note that the packaging of the VisualWorks system classes was done
automatically when you loaded Store. Similar automatic packaging is
done when you load your own code, which we’ll do next.

Load Application Code
In Importing Code into Store we describe several ways for packaging
existing code. And in Porting from ENVY/Developer we cover
techniques specific to bringing code from ENVY.

In this section we will load some existing code from parcels. Goodies
are good for this kind of thing because they are available, and can be
freely edited. Let’s use the HotDraw goodie from John Brant.

Loading Parceled Code into Store
The HotDraw parcels can be loaded using the Parcel Manager. Your
own parceled application code can also be loaded using the Parcel
manager as long as it is in a directory on the VisualWorks parcel
path, though you may have to use the Directories list. Otherwise, you
will have to use alternative methods of loading parcels, as described
in the Application Developer’s Guide.

To load HotDraw, open the Parcel Manager (System > Parcel Manager),
select Graphics on the Suggestions page, select HotDraw, and then pick
Parcel > Load. This one parcel loads all of the other HotDraw parcels,
which it specifies as prerequisites.

When HotDraw has finished loading, it opens up an information
workspace. Go ahead and close that; we won’t be needing it.

Now open a System Browser and browse the results.
Source Code Management Guide 2-7

http://www.cincomsmalltalk.com/documentation/current/AppDevGuide.pdf

Beginning to Use Store
In the browser Package list, scroll down to find the HotDraw packages.
They are all packages at this point.

The first thing to notice is that the HotDraw package names are
exactly the same as the names of the parcels that we loaded. This is
Store’s default way of loading parcels; to create packages exactly
corresponding to the parcels.

Select the top HotDraw package, and notice that there are no classes
in it. It does, however, specify prerequisites, which identify the other
packages. These are directly inherited from the parcel. Click on the
Prerequisites tab to see these.

Since we loaded HotDraw as a parcel, the prerequisites are parcels,
which in Store can be thought of (approximately) as the deployment
counterparts of packages. When you deploy a package, you publish it
as a parcel. As for the original HotDraw parcel, the HotDraw package,
when deployed as a parcel, will make sure all of its prerequisite
parcels are loaded before loading any code it contains (of which there
isn’t any).

Before any further work, we should publish the packages we have
now.
2-8 VisualWorks

Load Application Code
Publishing Packages
The HotDraw packages have never been published, so they are not
yet under version control.

To publish, first we must connect to the Store repository. To connect,
select Store > Connect to Repository... in the Visual Launcher.

Previously, you have only logged in as the table owner (and possibly
as the BaseSystem, if you published the base). Now log on using the
same environment string, but use your own user name and
password.

The Table Owner field may show the table owner, for databases that
define owners (e.g., Oracle and SQL Server). For installations with
more than one Store repository in a single database, the table owner
identifies the specific repository. Enter or select the table owner for
your repository.

With the login information entered, click Connect.

You can save these, and alternative settings, as a Connection Profile.
Click Save and enter a profile name. This is particularly useful if you
frequently connect to alternate databases; you only need to select
the profile next time you want to connect.

Now that you are connected to the repository, return to the system
browser. Select all eight of the HotDraw packages in the package list
(Shift-click to select a range of packages, Ctrl-click to add one more
Source Code Management Guide 2-9

Beginning to Use Store
to the selection). Then select Package > Publish... This opens a
Publishing Package dialog for each of the packages, such as this one
for the HotDraw Framework package:

(You might get one or more confirmation dialogs stating that a parent
version was expected but not found. This occurs if the package
carries a version ID from its source in another database. If these
dialogs display, click Yes to continue.)

You publish each package separately, since they are not grouped in a
bundle. We’ll do that later. For now, publish each package
individually. The version number of 1.0 is fine for now, and leave the
Blessing level at Development.

Change the Blessing comment to indicate that this is published from the
original parcel. We don’t need to do anything with the Parcel Options
page, and we don’t need to bother with the Publish Binary option. So,
click Publish. A progress dialog is displayed while publishing. When
the first package finishes, repeat the process for each of the other
HotDraw packages.
2-10 VisualWorks

Loading and Reorganizing HotDraw
Now we have versions of HotDraw packages in our repository, and
we can begin working with them. To see them in the repository, select
Store > Published Items in the Visual Launcher to display the published
items list.

Exit VisualWorks without saving the image. We will load the
packages into our image from the database.

Loading and Reorganizing HotDraw
We left off after you published the HotDraw packages and exited your
image. Now we need to relaunch the image and load the packages.

1 Launch your storeOnly image.

2 Connect to your Store repository using your normal user ID.

3 Select Store > Published items.

4 Select the HotDraw package, and then the only version of the
package published so far
Source Code Management Guide 2-11

Beginning to Use Store
.

5 Select File > Load (or Load on the <Operate> menu).

After a few moments, the package is loaded. Open a system browser
and take a look.

Notice that only the HotDraw package is displayed. Select it, and it
has no contents. But, the original HotDraw parcel loaded everything!
What happened? Why didn’t it load all the other packages like the
parcel did?

Click on the Prerequisites tab for HotDraw. The prerequisites are all
there, but they are specified as being Applicable for Parcel Only.

What happens is this. If you were to publish this package as a parcel
(which we’ll get to later), you would create a perfect duplicate of the
original, and it would load the other parcels as before. In the case of
HotDraw, though, its prerequisites are set to be applicable only when
loading as a parcel. This corresponds to the difference between
development and deployment that existed in VisualWorks prior to
version 7.7. We’ll explore how to change all of this later.

We could change the Applicability of these prerequisites, but it is better
to organize these packages using a bundle.

Either way, we need to load the other HotDraw packages first.
2-12 VisualWorks

Loading and Reorganizing HotDraw
So, go back to the Published Items list and select the next package,
HotDraw Animated Examples, and load it. A few more “Parent
expected” dialogs and the workspace open. Click OK on the dialogs
and close the workspace. Now, look at the packages in the browser.

We still don’t have all of HotDraw, but three packages are loaded.
However, those dialogs popping up didn’t look right. Select the first of
the newly loaded packages in the browser, HotDraw Animated
Examples, and notice the status bar, and/or look at the Information
property page. It should say something like “(1.0,yourname)” for the
version. Now click on the next package, HotDraw Amination
Framework. It probably says something like “(1.1,brant).” The same
goes for HotDrawFramework.

Those last two are not your packages, which should also say
“(1.0,yourname).” Instead, loading the HotDraw Animated Examples
package loaded two parcels to satisfy its prerequisites!

To see how this happened, first look at HotDraw Animated Examples
in a system browser. Select the Prerequisites tab, place the cursor over
the Current prerequisite, and examine the Applicability setting using the
<Operate> menu. It should be set to Either.

Each prerequisite can specify either Parcel Only or Store Only to satisfy
the prerequisite, or Either indicating that the prerequisite can be met
by either a parcel or a package. In our case, there are both a parcel
(the original) and a package (which we published) available, so how
does Store choose between them?
Source Code Management Guide 2-13

Beginning to Use Store
In the Launcher, select System > Settings, and go to the Prerequisites
page in the Store section.

The top group controls the how packages are selected to satisfy
prerequisites, if packages are used. The default is to ask for the
version of the package. Remember it’s there; you may want to
change the current setting sometime.

The lower group is the one we need right now. By default, Store will
load prerequisites from parcels when the prerequisite says Either, and
often that’s a good choice. However, for work in progress like we’re
pursuing, we want it to satisfy the prerequisites from packages, if
there are any.

But, we’re going to reload the image, so don’t bother checking it now.

Exit the image without saving (we don’t want to save with the parcels
loaded), then restart the storeOnly image. Now, go to System > Settings
and select Search bundles and packages first on the Prerequisites page.
Click OK and close the tool.

Now, go back and connect to your Store repository (Store > Connect to
Repository...), and open the Published Items list. Load the HotDraw
package, as before. Then load the HotDraw Animation Examples
package and load it.
2-14 VisualWorks

Loading and Reorganizing HotDraw
This time, no “Parent expected” dialogs, and three progress bar
dialogs are displayed, one for each of the three packages being
loaded. Check the information property for each to see that they’re
the published versions and not the parcels.

Still, that only loaded three more packages. The rest are not
prerequisites, so need to be loaded.

Fortunately, the Published Items list allows you to select and load
several packages at a time. To load the rest of the packages, use
multiple select to highlight these packages in the left pane:

HotDraw Drawing Inspector HotDraw HotPaint HotDraw PERT Chart
HotDraw Tool Development

Now, in the right pane, multiple-select a version of each (there’s only
one version of each so far, so just pick everything). Then, File > Load
to load them.

Build a Bundle
With all the packages loaded, we can now build a bundle for loading
all of the packages at once. This is a convenient way for loading sets
of packages in the development environment.

1 Open a System Browser.

2 Select Package > New > Bundle..., which opens a Bundle
Specification Editor.
Source Code Management Guide 2-15

Beginning to Use Store
3 For the Bundle name, enter HotDraw.

4 Search down the Available bundles and packages list to find the
HotDraw packages.

5 Click on each HotDraw package, except the one named
“HotDraw,” so there is a check mark next to each.

The HotDraw package itself will do no good in our bundle, but we
will keep it for deployment purposes.

6 Click Add >.

The packages are added to the bundle, and are listed in the order
in which they will load; their “load order.” But, notice that they are
listed in the same order that they were in the Published Items list,
and we know that order caused problems. So, we need to change
the load order.

7 Select the HotDraw Drawing Inspector package in the Bundle
contents list, and click the down arrow to move it to the bottom of
the list. Similarly, move HotDraw Animation Framework and
HotDraw Animation Examples to the bottom of the list. Your
Bundle contents list should now look like this:

HotDraw Framework HotDraw HotPaint HotDraw PERT Chart
HotDraw Tool Development HotDraw Drawing Inspector HotDraw
Animation Framework HotDraw Animation Examples

8 Click Accept.

9 In the system browser, select Browser > Refresh to update the view
and show our new bundle.

The bundle is near the top of the package list, and is expandable.
Expand it to see that the packages have been moved into the bundle.
Look down the package list further to see that only the HotDraw
package is left listed outside of the bundle. We now have both a
bundle and a package named “HotDraw.” That’s no problem.

Publish the Bundle
We now want to save the bundle and check the results.

1 In the system browser, select the HotDraw bundle (not the
package), and select Package > Publish...

Notice that the Publish Bundle dialog shows the bundle and its
contents, but only the bundle is checked. The packages
contained in the HotDraw bundle haven’t changed; adding them
2-16 VisualWorks

Loading and Reorganizing HotDraw
to the bundle makes no change to the package. There is no need
to republish the packages, so they are not checked. If you have a
special reason to publish the packages, such as to keep version
numbers and comments in sync, you can click on them to set
their check marks.

2 Leave the blessing level at Development, and enter a blessing
comment, like “Development load bundle.”

3 Click Publish, and wait while the bundle is published.

Now, let’s check and make sure it loads the whole application as we
want.

1 Exit VisualWorks without saving the image.

2 Relaunch your storeOnly image.

3 Connect to your Store repository.

4 Open the Published Items list.

5 Select and load the HotDraw bundle (not the package).
Source Code Management Guide 2-17

Beginning to Use Store
This time the whole set of HotDraw packages should load correctly.

Comparing with Another Repository
This is an optional exercise, but one that would be useful and
informative.

If you don’t do this, you will need to make a small code change
manually in your image to keep synchronized.

Get Open Repository Access
Cincom maintains a open repository for sharing code. If you are
using VisualWorks Non-Commercial, your image has already been
configured for guest access to the repository, allowing you to browse
and compare already-published code.

To publish code to the repository, you need to obtain an account. For
that, visit the Cincom Smalltalk Developer’s Wiki:

http://www.cincomsmalltalk.com/CincomSmalltalkWikii

and select Access the Open Repository.

Follow the instructions to apply for an account ID on the open
repository.

Reconciling to the Repository
Assuming you have it, let’s try reconciling our published version of
HotDraw (the version that is loaded into our image) with the version
published in the open repository.

1 If it isn’t already, load your published version of HotDraw from
your repository, and disconnect from your repository (Store >
Disconnect from <repository> in the Visual Launcher).

2 Connect to the open repository using your assigned ID.

The instructions for connecting should have been included with
your verification notification. The environment string is:

store.cincomsmalltalk.com:5432_store_public

3 Open the Published Items list (Store > Published Items).

4 Select some version of the HotDraw bundle (pick 1.7.phatch,
since a later version might not show what we want). Then select
Reconcile Image with Selection in the <Operate> menu.
2-18 VisualWorks

http://www.cincomsmalltalk.com/CincomSmalltalkWiki/

Comparing with Another Repository
5 Wait while Store figures out the differences between the image
and the published version.

What happens in a reconcile is that Store assigns the selected
version as the “parent” version of the code in your image for this
repository. (Refer to Reconciling to a Database for more explanation.)

Browsing Differences
Reconciling also creates a change set for this repository for each
package and bundle, and records in it any differences between the
version in the image and the version in the repository. Let’s explore
this a bit right now.

In the system browser, select the HotDraw bundle. First, select
Package > Browse > Change List on Changes, and pick your repository. It
opens on an empty change list, because we have made no changes
to HotDraw since loading it. If you have made any changes, they will
show up here. Close that Change List.

Again, select Package > Browse > Change List on Changes, but this time
pick the open repository (psql_public_cst). This Change List shows
quite a lot of differences.
Source Code Management Guide 2-19

Beginning to Use Store
The change list shows definitions that are changed in the image from
those in the repository, as if the repository version were the parent of
the version in our image. That’s not the actual history, but how it is
represented.

The first item in the list is the bundle structure itself, and it shows the
structure of our bundle, the bundle in the image. To compare it to the
structure of the bundle in the repository, select Show > Show conflicts.
The definitions are shown side-by-side, with the differences
highlighted in red.

What this comparison view shows is the conflicts, or differences,
between the image and its “parent” in the repository. The difference is
that the repository bundle includes the Refactory package while ours
does not. As mentioned before, it is now part of the base system, so
has been removed from HotDraw.

In the same way, you can examine other differences between the
version of HotDraw in your image with that in a repository. Since
we’re browsing the change list for the bundle, the changes for all of
the contained packages are listed. You can browse the changes for a
single package by selecting that package in the system browser, and
browsing the change list for it.
2-20 VisualWorks

Comparing with Another Repository
Looking at changes down the list, many of them are trivial, being only
a change of category in the class definitions. But, there are a few
substantive changes as well. For example, look at the change labeled
Root.Smalltalk.Refactory.HotDraw.DrawingController>>processMenuAt:local:for:.

There are two changes shown here. The first one, if you look closely,
is only a format change, without any real difference in the code, while
the second has a more substantive difference. To confirm this, select
Show > Conflicts > Code differences, which filters out mere formatting and
comment differences. The second change remains highlighted,
though a little differently. Looking closely, the change is that the code
in our image inserts (or the code in the repository removes)

(valueResult isKindOf: MenuItem)
ifTrue: [valueResult := valueResult value].

You can do this comparison with any connected repository, as long as
there is a package or bundle with the same name as the one in your
image. Some of the changes will be important, others trivial.

Store maintains change sets for each repository with which a
package is reconciled, so it is reasonably easy to work with multiple
repositories, even repositories containing different versions of the
Source Code Management Guide 2-21

Beginning to Use Store
same application code. This is important, for example, if you work
with a local database for versioning your work before publishing a
version to the shared database for use by others on your team.

Adopting a Difference
You can edit the code in the image right here, by editing in the left-
hand pane, and then Accept the changes as usual with editing code.

Another option, however, is to adopt the code in the repository,
because it is regarded as the “parent.” To do this, simply select the
definition in the change list, then pick Revert > Selection. Once that’s
done, there is no longer a conflict. This is one way of picking changes
in a published version and applying them in your own version.

Do this for the processMenuAt:local:for: method we were looking at
above. Upon completion, the code in the local image pane is updated
and the repository pane shows no conflict. We have changed the
code in our image to match the repository.

Look over the various other options, and try them out if you want to.
You cannot publish from here, so you can’t do any permanent
damage, though you can make unwanted changes to your image. If
you do, just exit the image and restart, repeat the steps above.
2-22 VisualWorks

Comparing with Another Repository
What we Changed in this Section
Whether you followed the steps in this section or not, there should be
one method changed in your image at this point. The
processMenuAt:local:for: method in class DrawingController should now
be:

processMenuAt: globalPoint local: localPoint for: aFigure
| valueResult |
valueResult := self trackMenu: (aFigure menuAt: localPoint)

at: globalPoint
centered: true.

valueResult isNil ifTrue: [^self].
valueResult isSymbol

ifTrue:
[(self localMenuItem: valueResult)

ifTrue:
[aFigure isDrawing ifFalse: [view selection: aFigure].
view perform: valueResult]

ifFalse:
[(aFigure model notNil and:

[aFigure model respondsTo: valueResult])
ifTrue: [aFigure model perform: valueResult]
ifFalse: [aFigure perform: valueResult]]]

ifFalse: [valueResult value]
The only difference is that the two lines shown in the previous section
have been removed.
Source Code Management Guide 2-23

Beginning to Use Store
2-24 VisualWorks

3

Configuring Store

Store configuration involves, initially, loading Store support into
VisualWorks, and building the Store tables in a database. Building
the tables requires that you have appropriate access to a database
supported by Store, which may require the services of a database
administrator.

In this chapter we assume the database is set up and that you know
the Store administrator ID and password. Information that your DBA
may need to set up the database and account is provided in Store
Setup for DBAs. You can print out those pages and give them to your
database administrator. Those instructions are repeated in the
individual installation sections here.

Loading Store into VisualWorks
Store is provided as an add-in to VisualWorks, and must be loaded in
a VisualWorks image.

For building a baseline image, you may load Store either into a clean
release image, or into an image in which you have code. Usually, it is
better to add Store to a clean image, and then load your code, since
this gives you better control of the package locations of your code. If
your code is simply in an image, then you can load Store into that
image, and Store will automatically package your code.

To install Store, launch a clean image (visual.im) or the image
containing your code. Then, in the Parcel Manager Store Tools section,
select and load the Store support parcel matching your database (for
example, StoreForOracle or StoreForSQLServer).

Loading Store adds a menu and toolbar buttons to the Launcher.
Source Code Management Guide 3-1

Configuring Store
Configuring the Store Database
Store is retargetable to use a variety database back-ends for code
storage. Currently, VisualWorks development supports:

• Oracle 8 or later, except Oracle Lite which is not supported.

• SQL Server version 7 is supported on Windows platforms.

A preview (beta) version Store support for MS Access is available as
StoreForMSAccess. Other back-ends are supported by a variety of
third-parties. Back-ends provided with VisualWorks as goodies
include:

• PostgreSQL

• DB2

• Interbase

Support for the PostgreSQL implementation is provided by the
developer at http://sourceforge.net/projects/st-postgresql/

The following instructions use standard installation scripts, using the
standard file directory paths and table names. If you need to use
custom parameters, you can create a custom installation script. Refer
to Creating a Custom Install Script for instructions.

Oracle Setup
Steps 1 and 2, and the steps to add users, may need to be performed
by a database administrator.

All users must have the Oracle UPDATE right (privilege).

1 Using the database administration tools, create a database
administrator account, with the roles CONNECT and DBA.

We recommend using the default DBA account name, BERN. This
account will be the table owner. If you use another name, you will
have to specify the Table owner in the connection dialog.

Also, you can create multiple Store repositories in the same
physical database, but each must have a different table owner.

2 Create a directory to hold the Store data files.

During installation, Store creates two new table space files,
newbern1 and newbern2, for the Store databases. The files should
3-2 VisualWorks

http://sourceforge.net/projects/st-postgresql/

Configuring the Store Database
be in one of your database data directories, usually where Oracle
data files are stored.

Because these files will need to be accessed by later
VisualWorks installations as well, do not create them in your
VisualWorks installation directories.

3 In VisualWorks, create the Oracle table spaces, by evaluating (Do
It) this expression in a workspace:

Store.DbRegistry installDatabaseTables
4 You will be prompted to connect to the Store database using the

table owner (database administrator) account you created in step
1 (default BERN).

You also need to enter the database Environment string, or
database alias, which you may need to get from your database
administrator. This is the identifier defined in the tnsnames.ora file.

Also enter the ID in the Table owner field, which is the ID you are
logging in with. This sets the table owner ID in the Oracle
database.

5 When you are prompted for the database directory, enter the
directory path name created in step 2.

6 When you are prompted for a database identifier, enter a string
that will uniquely identify this Store database within your
organization.

This identifier is used for identifying this database to Store. If you
have only one database to access, you may call it simply store. If
you access two more Store databases in your organization, they
must have different names. We suggest embedding the
respective server or domain names in the database identifier.

7 You will be prompted whether to install management policies.

User/group management support allows assigning users to
groups and restricting certain publishing activities to members of
specific groups. See Setting up users and groups for details.

Answer Yes to install support for user/group level access
management, or No not to install this support. If you are unsure,
select No, because you can add this later.
Source Code Management Guide 3-3

Configuring Store
8 If you selected to install user/group maintenance, you will be
prompted for the Image Administrator Name.

Only the image administrator is allowed to publish at blessing
levels above normal development levels (i.e., Released), when
user/group maintenance features are installed. Enter the user ID,
which should not be the table owner (and must be pre-defined in
the database).

The Store database is now ready to use. You will need to publish
packages for use by your team.

SQL Server Setup
Steps 1 and 2, and the steps to add users, may need to be performed
by a database administrator. When installing SQL Server, you have a
choice of making it case sensitive or case insensitive. It is important,
for the proper operation of Store, that it be installed case sensitive.

1 Using the SQL Server Manager, create a database owner
account (default: BERN).

2 Create a directory (for example, \visualworks\packages) to hold the
Store data files.

3 Create the SQL Server datasets, the database account and
tables, by evaluating (Do It) this expression in a workspace:

Store.DbRegistry installDatabaseTables.
4 When you are prompted to connect to the Store database,

connect as the table owner (database owner) created in step 1.

Also enter the table owner ID in the Table owner field.

5 When you are prompted for the database directory, enter the
directory path name created in step 2.

6 When you are prompted for a database identifier, enter a string
that will uniquely identify this Store database within your
organization.

This identifier is used for identifying this database to Store. If you
have only one database to access, you may call it simply “store”.
If you access two more Store databases in your organization,
they must have different names. We suggest embedding the
respective server or domain names in the database identifier.
3-4 VisualWorks

Configuring the Store Database
7 You will be prompted whether to create user management tables.

Answer Yes to install support for user/group level access
management, or No not to install this support.

If you install user/group management support, you need to set
ownership policies in each image. See Setting up users and
groups for details.

The Store database is now ready to use. You will need to publish
packages for use by your team.

PostgreSQL Setup
 PostgreSQL support for Store is provided as a goodie and is
supported by its developer. For updated and more complete
information, refer to SourceForge.net.

General documentation for setting up a PostgreSQL database is
available on the project site: http://www.postgresql.org/

Assuming you already have a PostgreSQL database installed and
configured for normal access, use the following steps to set it up for
use with Store:

1 Log on as the PostgreSQL owner (typically user postgres). The
following steps to configure the database may be run from a
command shell, using the postgres superuser.

2 Make sure the PostgreSQL postmaster is running with the TCP/
IP option (-i) set.

StoreForPostgreSQL uses TCP/IP as its connection. If you use
pg_ctl to start the postmaster (as is generally recommended), the
startup command may be:

#> pg_ctl start -o "-i"
3 Create a database table owner account for Store, by executing at

the command prompt:

#> createuser -U postgres -d -a -P <username>
You are now prompted twice for the new password, and then
once for the superuser password for postgres.

The default Store table owner account name is BERN. If you use
another name, set the Table Owner in the Store > Settings before
building the tables. The -d and -a switches allow this user to
create databases and to add users.
Source Code Management Guide 3-5

http://sourceforge.net/projects/st-postgresql/
http://www.postgresql.org/

Configuring Store
You can create additional users at this time as well. In particular,
you will want to add at least one “normal” store user account. If
you plan to install user/group maintenance (not recommended),
you must create an administrator account.

To exclude normal users from adding databases and users, use
this command line:

#> createuser -U postgres -D -A -P <username>
4 Create the database in PostgreSQL, by executing at the

command prompt:

#> createdb -U postgres <dbName>
The parameter <dbName> needs to be the full path to the
database directory.

If the shell/environment setting $PGDATA is defined, you can omit
<dbName>, and the path defaults to the value of $PGDATA. Refer to
the createdb manpage for command details.

5 In your Store VisualWorks image, evaluate (Do It) this expression
in a workspace to create the database tables:

Store.DbRegistry installDatabaseTables
6 When you are prompted to connect to the Store database, log on

as the database owner.

To connect, you must specify an environment string. This is the
machine identifier and database name, in the format
myHost:port_dbName (e.g. 192.168.10.3:5432_storedb). The
machine identifier may also be its network name. The default port
number is 5432. For example, the environment string for the
VisualWorks open repository is:
www.cincomsmalltalk.com:5432_bern.

When you are prompted to confirm installing the tables, click OK.

7 You will be prompted whether to create user management tables.

Generally, this option is discouraged.

You can answer No here, and install user/group support later if
you wish.

Answer Yes to install support for user/group level access
management. If you choose this option, you will be prompted for
the name of an administrative user to manage user/group
3-6 VisualWorks

Configuring the Store Database
support. Refer to Setting up users and groups for additional
information and instructions.

8 Click OK at the last prompt.

The Store database is now ready to use. You will need to publish
packages for use by your team.

DB2 Setup
DB2 support for Store is provided as a goodie, under the terms of the
Cincom Public License (CPL). The database connect supports DB2/
UDB version 7.2.

To perform steps 1-3 (below), and to add users, you may need to
connect as a database administrator. Assuming you already have a
DB2 database installed and configured for normal access, use the
following steps to set it up for use with Store:

1 Log on with SYSDBA authority (for Windows, by default all
members of the Administrators group have this).

All normal Store users require accounts with authority
CONNECT (after installation of Store, the needed rights on
created tables and other database objects will be granted to
PUBLIC).

2 Create a new database instance.

On Windows, execute the following command in a DOS shell:

db2 create database <myStore> on D

The parameter <myStore> is the database name, and D is the
location (e.g., drive D:).

On Linux, execute the following command:

db2 create database <myStore> on /usr/mystore

The parameter <myStore> is the database name, and /usr/
mystore is the path to the directory containing the database files.

3 Change some database parameters:

db2 update db cfg for mystore using APP_CTL_HEAP_SZ 512 LOGSECOND
50

4 Launch VisualWorks, and use the Parcel Manager to load the
StoreForDB2 parcel.

The Store and DB2EXDI parcels will be automatically loaded as
prerequisites.
Source Code Management Guide 3-7

http://www.cincomsmalltalk.com/CincomSmalltalkWiki/CPL

Configuring Store
5 In the VisualWorks image, evaluate (Do It) this expression in a
workspace to create the database tables:

Store.DbRegistry installDatabaseTables
6 Choose appropriate database connection class (i.e.,

DB2Connection or DB2Connection72) and the installation will
proceed.

7 If you wish to perform maintenance services (optional), evaluate
these expressions in a workspace window:

DB2Broker updateStatistics
This updates the statistics for the database tables.

DB2Broker extendTablespaces
This grows the size of the table spaces size. Use this with
repositories that were created using a previous version of
StoreForDB2, as the current version doesn t create table spaces
explicitly.

8 Save and restart the image.

The Store database is now ready to use. You will need to publish
packages for use by your team.

Publishing the VisualWorks Base
We recommend that you publish the VisualWorks base in your Store
repository.

While developing an application, it is easy to modify or add methods
that belong to a base class and have them inadvertently associated
with a base package. If you have published the base packages, you
can clearly see if the base has been modified, because it will be
marked as “dirty.” Noticing that, it is easy to find what was changed
and move the changes to a more appropriate package.

If you do not publish the base, it is easy to overlook such changes,
and you probably won't notice them until you build your application,
and find that it does not work.

Also, when you load a new VisualWorks release and reconcile to the
previously published version, you can easily browse changes in the
areas that interest you. This aids in discovering base definitions you
may have overridden, but no longer need, for example due to bug
fixes, or other system changes that you may need to adapt to.
3-8 VisualWorks

Publishing the VisualWorks Base
Starting with a clean image with only the Store parcels for your
database loaded, do the following:

1 Connect to Store as a special user, such as BaseSystem.

This user ID needs to be defined for the database, with “normal
user” privileges and roles (see Adding Store users). If your
installation uses user/group management, additional privileges
may need to be assigned at that level.

2 Load the DLLCC and LensRuntime parcels.

These are necessary to successfully publish BOSS, which is a
prerequisite for Store.

3 If this is not the first time of publishing the base to this repository,
then reconcile the most recent version in the repository with your
image. In the Published Items dialog, select the Base Image
package and version, then select File > Reconcile Image with
Selection. (See Reconciling to a Database for more information.)

4 In a browser, select the Base VisualWorks bundle, and select
Package > Publish.

5 In the Publish Bundle dialog,

• leave all packages and bundles selected (checked),

• set the Blessing Level to Released,

• set the version string to indicate the base version (e.g., 7.0 for
VisualWorks 7),

• do not check Publish Binary (you will not be loading these
packages, so there’s no need to publish binary),

• optionally, add a Blessing Comment,

• click Set Global Blessing Level and Comment, to set the above to all
base packages.

Then click Publish. These steps assume that you will not be
loading the Base VisualWorks packages from the database, and so
we recommend that you do not publish them as binary. If for
some reason you do need to load them from the database, the
AT Parcer Compiler must be pubished as binary; otherwise,
DLLCC cannot be loaded from the database.
Source Code Management Guide 3-9

Configuring Store
6 (Optional) Repeat step 3 for the StoreBase bundle, the BOSS
package, and all other base bundles and packages.

Very few developers will need to publish StoreBase, since few
extend it. Nonetheless, publishing Store and BOSS does, as for
the rest of the base, provide a mechanism for seeing what has
changed between releases.

7 Load all parcels that you will need for the base, and publish them.

For example, you probably want the UIPainter, and possibly
Advanced Tools.

For some of these packages or bundles, you might also check
Publish Binary. Do so, however, only for packages that you think
you will want to load from the repository rather than from their
distribution parcels. Loading a package that has been published
binary is faster than loading source code, but not faster than
loading its parcel.

8 Disconnect from the Store database, and save the image under a
new name, such as baseImage.

Use this image as your base for all further development.

Having logged in as the special BaseSystem user includes that ID in
the version string for each package and bundle, making it clear that
this is part of the base, and should not be overwritten. Do not use the
special user for anything but publishing updates to the base.

Making Changes to the Base
We strongly recommend that you not modify base code and publish
new versions of base packages, except when you receive a new
version of the base.

Instead, use the Store override capabilities, and version your
modifications in your own packages. Doing so makes it much easier
to preserve your overrides when migrating to a new release.

For instructions on overriding code, whether in the base or other
packages, refer to Overriding Definitions.

Updating to a New Base
When you receive a new VisualWorks distribution, you do not need to
publish the whole base again. Instead, you should reconcile the new
version to your database and publish, which will then only publish the
changes.
3-10 VisualWorks

Team Working Environments
1 Start the new VisualWorks image, and load Store and other
distribution parcels that you have published.

2 Connect to your Store repository.

3 In the Visual Launcher, select Store > Switch Databases. Respond to
prompts as presented.

Switching databases does a bulk reconcile. You can also reconcile
individual packages or bundles if you prefer, by selecting Reconcile
Image with Selection in the Published Items list for your repository.

Team Working Environments

Local and Shared Repositories
In addition to the team’s shared repository, many teams also allow or
encourage individual team members to use their own local
repositories. This is particularly valuable for teams that are
distributed, with several team members working from remote
locations, which can make connecting to the shared repository slow.

Local, private databases are useful because:

• Access is fast.

• The developer can publish locally several intermediate versions
before committing a version to the shared repository.

However, using local databases adds a level of complexity that needs
to be controlled.

• Merge packages in the shared repository regularly; long delays
make merging very difficult.

• Avoid multiple developers developing and versioning the same
package locally; the complexity of merging quickly becomes very
great.

Further, certain critical operations should be done only on the shared
database:

• Renaming of name spaces and superclasses should only be
done in the shared repository, and only after an integration. Then,
the whole team must update to the new integrated version and
resume working.
Source Code Management Guide 3-11

Configuring Store
Configuring Store Policies
Store allows you to customize several usage policies:

• Blessing (BasicBlessingPolicy)

• Merge (BasicMergePolicy)

• Ownership (BasicOwnershipPolicy)

• Package (BasicPackagePolicy)

• Prerequisite (BasicPrerequisitePolicy)

• Publish (BasicPublishPolicy)

• Version (BranchingVersionPolicy)

A policy is defined by a class, with the default policy classes as
shown above. Custom policies are typically subclasses of the basic
policies. A policy is installed as an instance of its defining class, and
held in the Policies shared variable, a singleton of Store.Access.

Installing a Policy
To install a policy, send the appropriate message (blessingPolicy:,
mergePolicy:, etc.,) to Policies. For example, to install the ENVY
blessing policy, EnvyStyleBlessingPolicy, send the message:

Store.Policies blessingPolicy: EnvyStyleBlessingPolicy new.
Note that policies are stored in the image, not in the database, so
need be included in development image setup.

Blessing Policy
A blessing policy specifies blessing levels and any restrictions on who
can publish at specific blessing levels.

BasicBlessingPolicy defines the default blessing policy, and is
appropriate for Store installations that do not use user/group
management (refer to Setting up users and groups). It also contains
the mechanism for displaying available blessing levels in the
publishing dialogs.
3-12 VisualWorks

Configuring Store Policies
The blessing policy specifies the set of blessing levels as an
IdentityDictionary with level names (as symbols) as the keys and
instances of BlessingLevel as values. These are defined in
BasicBlessingPolicy in the initializeBlessings instance method as:

initializeBlessings
blessings := IdentityDictionary new

at: #Broken put:
(BlessingLevel name: 'Broken' level: 10);

at: #WorkInProgress put:
(BlessingLevel name: 'Work In Progress' level: 15);

 at: #Development put:
(BlessingLevel name: 'Development' level: 20);

at: #ToReview put:
(BlessingLevel name: 'To Review' level: 25);

at: #Patch put:
(BlessingLevel name: 'Patch' level: 30);

 at: #IntegrationReady put:
(BlessingLevel name: 'Integration-Ready' level: 40);

at: #Integrated put:
(BlessingLevel name: 'Integrated' level: 50);

at: #ReadyToMerge put:
(BlessingLevel name: 'Ready to Merge' level: 55);

at: #Merged put:
(BlessingLevel name: 'Merged' level: 60);

at: #Tested put:
(BlessingLevel name: 'Tested' level: 70);

at: #InternalRelease put:
(BlessingLevel name: 'Internal Release' level: 80);

at: #Release put:
(BlessingLevel name: 'Released' level: 99);

yourself.
As shown above, each BlessingLevel is created with a name and a
level number, which is an integer. The level number gives a ranking to
each blessing, allowing limiting some actions to versions with a
certain blessing level or above.

You can easily change the set of blessing levels, either reducing the
number of adding others, by redefining initializeBlessings in a subclass
of BasicBlessingPolicy, and then installing the new policy.

Note that if you create a custom blessing policy, you may have to
define other custom policies as well, to ensure consistency. Look in
particular at the merge policy for necessary changes.
Source Code Management Guide 3-13

Configuring Store
The keys used in BasicBlessingPolicy are referenced at several points
in the Store framework, and so should be used to set blessing levels,
even if the BlessingLevel name is different. See EnvyStyleBlessingPolicy
for an example. Also, accessor methods are provided in
BasicBlessingPolicy for retrieving the level at these keys, which should
not be overridden.

In particular, a BlessingLevel should be assigned to the #Development
key, which the framework specifies as the default blessing level (in
the BasicBlessingPolicy initialize method). Alternatively, or if you want
some other level to be the default, override the initialize method and
specify another level.

The keys #Merged, #IntegrationReady, and #Integrated are also relied
upon by BasicMergePolicy, and so should also be represented in a
custom blessing policy.

OwnerBlessingPolicy is the basic policy class for a user/group managed
system (refer to Setting up users and groups). It specifies several
blessing levels as for use by the owner, administrator, or QA only,
restricting publishing to the package owner or to members of the
administrator or QA groups. These are assigned in the initialize
method.

OwnerBlessingPolicy also overrides basicCanPublish:atBlessing:,
replacing the general, open publishing policy with one that
recognizes the restrictions, and the objectionsTo* messages, to
include user/group objections.

To customize blessing, subclass either BasicPublishPolicy or
OwnerPublishPolicy as appropriate, overriding methods as required to
provide the desired behavior.

Merge Policy
The merge policy primarily specifies the minimum blessing level
required for a package to integrated, and the blessing levels to assign
to a package is merged or integrated. These levels are referenced by
the blessing policies at keys #Merged, #IntegrationReady, and
#Integrated via accessor methods.

Ownership Policy
The ownership policy identifies whether the current user has the
publishing rights of the package/bundle owner. Being the owner or
not affects publishing privileges in some cases.
3-14 VisualWorks

Configuring Store Policies
The default ownership policy without user/group management is
BasicOwnershpPolicy, which doesn’t check, but simply grants
ownership privileges to all users.

Part of installing user/group management is to set ownership policy
to OwnerOwnershipPolicy, which checks for the package/bundle to have
been assigned to the current user as its owner, and answers
accordingly.

Package Policy
The package policy primarily specifies what package a new definition
will be placed in.

A default package can be assigned, and set into the alwaysUse
instance variable by sending a forcePackage:while: message to the
policy. This is done by the Package > Make Current menu command in
the system browser.

In the absence of an “alwaysUse” package, several messages
specify policies for the package to use in a variety of contexts (e.g.,
packageForClassSymbol: and packageForNewClassSymbol:). Browse
BasicPackagePolicy, in the package assignment message category, for
additional methods. These methods are sent by PundleAccess.

To create a custom package policy, subclass BasicPackagePolicy and
override the packageFor* methods to specify your new packaging
requirements. Then install the new policy into Policies.

Prerequisite Policy
A prerequisite policy specifies how to select and load development
prerequisites. The policy is controlled by three instance variables:

blessingLevel

The blessing level (an integer) used if #latest is the versionSelection
criteria

searchOrder

Either #parcelsFirst or #pundlesFirst, indicating whether parcels or
bundles/packages are searched first to fulfill prerequisites.

versionSelection

Either #ask or #latest, indicating whether, in the presence of
multiple components satisfying a prerequisite, whether to prompt
for the specific version or to automatically use the latest.
Source Code Management Guide 3-15

Configuring Store
The search order is set in the Store Settings, on the Prerequisite
Loading page, but can be set programmatically by sending a
versionSelection: message to the policy. The actual selection is done
by the getPrereq:from:version:for: message, which is sent by Pundle.
Override this method in a subclass to customize package selection
criteria.

Publish Policy
The publish policy governs whether binary packages can be loaded,
and is a central policy for objections to be raised to the publishing of
packages, bundles, and parcels.

By default, binary packages can be loaded from the repository. To
change the setting, send an allowBinaryLoading: message to the policy.

Objections to publishing defer to the blessing policy controls. For
Store without user/group management, the default is no objections.
For Store with user/group management and OwnerBlessingPolicy (or a
subclass) installed, objections may be raised due to ownership
restrictions. See the implementation of
objectionsToPublishingPundle:atBlessingLevel: in OwnerBlessingPolicy. In
general, to customize publish restrictions you would override this
method in your subclass of OwnerBlessingPolicy.

Version Policy
A version policy specifies how to increment a version number.

BasicVersionPolicy defines a simple policy without branching versions.
It provides the initial version number for a package/bundle, and a
method for incrementing, prompting the user if the incremented
version already is in use.

BranchingVersionPolicy is the default policy. If incrementing a package/
bundle version generates a version that already exists for the
package/bundle, then it creates a branch instead, by appending '.1' to
the current version number, and continues creating a branch in this
way until a new version number is attained.

The work is done in the versionStringForPundle:initialVersion: method,
which you may override in your own policy subclass to customize
versioning behavior.
3-16 VisualWorks

4

Organizing Code in Store

One of the most important, and most difficult, aspects of a version
control system has to do with how to organize the units that are
versioned. In the case of Store, the units are packages and bundles,
and the mechanisms for using them are highly flexible.

Patterns for Organizing Code
Store is very flexible, and teams need to decide how they are going to
organize code for their project. Some teams organize everything by
bundle, while others use packages exclusively and use prerequisites
to ensure proper loading. The important thing is to select a
development pattern and stick with it.

We prefer organizing with bundles, because it is an efficient way to
organize related functionality. We keep packages relatively small, as
the smallest units that make for a completely functional element, and
assembled them into larger units (components) using bundles.

Guidelines for Defining Packages
A good general guideline for package size is, the smallest possible
unit of code that can stand alone. For purposes of team development,
this guideline suggests that packages should represent units that can
be reasonably worked on independently of others. Looking ahead to
deployment, however, this guideline suggests a fully functional
component. These are related goals, but are not always in
agreement.
Source Code Management Guide 4-1

Organizing Code in Store
Practical considerations suggest that packages should be:

• Small enough to be easily comprehensible

• Small enough to be maintained by a single developer

• Large enough to contain a complete piece of functionality

• Not necessarily as large as a complete component, which may
be represented by a bundle of packages

There is a lot of room for judgement, and each team needs to decide
how best to divide the work into packages.

Note, though, that decisions you make now can be changed later.
Code can be moved between packages as needed; large packages
divided into smaller packages; small packages combined into
bundles. Just as refactoring your code is a iterative process, so is
refactoring your storage structures.

When defining packages, consider:

• Which classes belong together in the same package, and which
should be packaged separately?

• Which methods belong with the classes that define them (most
methods do), and which should be packaged as class extensions
(special purpose additions to a class)?

These guidelines suggest, for example, the following:

• Package code that is needed only for development (such as
testing and development tools) separately from code that is
needed by the deployed application. You may, however, bundle
these in some high-level development bundle for convenience.

• Package client code, server code, and code that is shared by the
client and server separately. This structure suggests at least
three packages for client-server applications. Distinct name
spaces can also be helpful to ensure this separation.

• Don't mix inessential (like examples and tests) with essential
code in a single package.

You don’t have to “get it right” the first time. There is plenty of room
for rearranging and refactoring your packages.
4-2 VisualWorks

Patterns for Organizing Code
Guidelines for Defining Bundles
Bundles are a flexible mechanism for grouping packages into larger
units. Bundles guarantee the consistency of the set of packages it
contains, because any dirty packages in the bundle are also marked
as dirty, needing to be published. They also provide a fixed structure
of their contents, by containing only specific versions of contained
packages and bundles.

Bundles provide a mechanism for assembling smaller code units into
any number of larger units. While the bundle contains smaller
packages and bundles, it is itself to be understood as “atomic,” in the
sense that the code contained in it is all intended to be loaded
together in the specified order. While Store allows you to unload
individual packages in a loaded bundle, this is not intended, and can
compromise the functionality of the bundle.

Bundles do not allow or retain overrides between their contained
packages and bundles. This is in keeping with the view that they are
atomic, specifying a single, coherent collection of code definitions.
Accordingly, they are useful for assembling a component, a complete
unit of functionality, out of sub-components.

Using Bundles to Organize Projects
Despite the restriction that overrides are not allowing in a bundle, it
often is useful to build several different bundles that load different
deployment and development configurations. This is possible
because projects should never need to override definitions within the
same project.

With this limitation in view, you may, for a client-server application for
example, make the following bundles:

• A complete deployment server bundle consisting of:

• server-specific packages

• shared application packages

• One or more development server bundles consisting of:

• server-specific packages

• shared application packages

• development packages
Source Code Management Guide 4-3

Organizing Code in Store
• A complete deployment client bundle consisting of:

• client-specific packages

• shared application packages

• One ore more development client bundles consisting of:

• server-specific packages

• shared application packages

• development packages

• A complete bundle that loads everything

Between packages and top-level development and deployment
bundles, there may be several levels of intermediate bundles,
representing increasingly large assemblies.

Prerequisites and Load Order
Loading a code component is frequently dependent upon the
presence of other code. A class extension in one component, for
example, is dependent upon the presence of the class it extends, and
a method that invokes another method requires the presence of that
method. Without the presence of the required code, the component
will either fail to load or fail during execution.

You could, by remembering for each package what other package
needs to be loaded first, carefully load packages in the required
order, and make sure they are all loaded. This is inconvenient, to say
the least.

Instead, Store provides two mechanisms for controlling how
packages are loaded to ensure that dependency conditions are
satisfied: prerequisites and load order.

Prerequisites specify parcels and/or packages that must be present
before the current package (or bundle) is loaded, and loads them if
necessary. As such, a prerequisite is a special kind of pre-load
action; to load a parcel or package. Both packages and bundles can
specify prerequisites.
4-4 VisualWorks

Prerequisites and Load Order
Bundles can also specify the load order of their contents. The load
order is set in the bundle specification, by arranging the bundles in
the order in which they should be loaded. In this way you can make
sure that component packages or bundles that are required by others
are loaded first.

There are no rules for when to use one mechanism rather than the
other, except, of course, that a package can only specify
prerequisites, and a bundle doesn’t support overrides between its
contents. And, there are some differences depending on whether you
are setting up dependencies for development or for deployment. But,
here are some suggestions.

Note that the following are only recommendations, particularly
applicable while you are developing your package and bundle
structure. Your team’s development processes may require
disregarding any of them.

Suggestions for Setting up Dependencies
In your development environment:

• Specify a prerequisite for any unit (package or bundle) that can
reasonably be loaded individually. (Often that is the package
level, but sometimes the package is too small a unit to be
maintainable.)

• Specify as prerequisites any required parcels or packages that
are not part of your application. (For example, VisualWorks add-
in components, components from other vendors, or your own
additional components that are not strictly part of this application,
but required by it.)

• Specify dependency between application packages and bundles
by adding them to a bundle. Set the load order as necessary, to
make sure packages required by other packages are loaded first.

Note that this applies only to the development environment. When it
comes to deploying your application, you may need to review the
prerequisite settings, or move prerequisites defined for constituent
packages and bundles to the bundles that will be used to generate
parcels.

For example, assume your application is decomposed into two
packages, say a package containing client specific code
(ClientCodePkg) and a package containing shared code
(SharedCodePkg, shared with a server component, perhaps). And,
Source Code Management Guide 4-5

Organizing Code in Store
assume that the client code requires the shared code to be loaded.
To load these, use the System Browser to create a bundle
(MyClientApp), and add the two packages to it. Then set the load order
as:

1 SharedCodePkg

2 ClientCodePkg

But, suppose the shared code, which establishes communications
protocols, is dependent upon the Net Clients HTTP support code.
Select the Prerequisites tab for SharedCodePkg, add the HTTP parcel to
the Current list. To specify loading from a parcel, right-click and select
Parcel Only. The HTTP parcel has its own prerequisites, which you don’t
need to deal with.

The rationale for this approach is that for code units that are in your
application, you have full control over their presence, and the order in
which they are loaded. Bundles also ensure the set of packages is
consistent, while prerequisites do not. But, for components that are
outside your application, you are really only requesting a service from
those components, even though their presence is a prerequisite for
the functionality of your application. So, this approach respects
encapsulation.

Suggestions for Setting Dependencies for Deployment
When it comes to configuring packages and/or bundles in preparation
for deploying parcels, the above scheme needs to change a little.

You create parcels by publishing either packages or bundles as
parcels. Which units you publish depends on which units form useful
components. Prerequisites must be specified for the package or
bundle that you will publish as a parcel. If the unit is a bundle, the
bundle does not know about the prerequisites of the packages it
contains, and so package-level prerequisites do not become
prerequisites of that parcel.

This means that you must be more careful in building your
deployment bundles. When you build the bundle, make sure that you
add the prerequisites of the constituent packages to the bundle’s list
of deployment prerequisites. Then, when you publish that bundle as a
parcel, the prerequisites will become the parcel’s prerequisites.

Note that the prerequisites will only be parcels, which may be other
components belonging to the application, VisualWorks add-in
parcels, or third-party add-in parcels.
4-6 VisualWorks

Importing Code into Store
A Simplified Approach
There are many alternatives to the scheme employed above. One
that simplifies the package/bundle/parcel relationship, but at certain
other costs, is the following:

• Create packages that will map one-to-one to your deployment
parcels.

• Use bundles only for convenience of loading packages in the
development environment (but beware of the restriction on
overrides).

• For deployment, publish each package separately as a parcel.

In this scheme, the prerequisites are relevant for deployment, and the
package deployment prerequisites become the parcel prerequisites.

The cost is that your packages will be larger, and you have to design
your deployment parcels by moving code in and out of packages,
rather than by simply arranging packages in bundles.

There are trade-offs. Your team needs to work out a scheme that
works for your development process.

Importing Code into Store

Packaging Source in the Image
Through VisualWorks 7.2, basic class organization was provided by
categories. Loading Store into an image converted categories to
packages. Starting in 7.3, categories were replaced with packages as
the default class organization. Accordingly, loading Store into a base
image no longer changes the class organization scheme.

There are a few issues about how code loaded from parcels and file-
ins is organized into packages.

Packaging Source from File-outs
Traditionally for Smalltalk, source code was saved into external files
by “filing out” the code, and this remains a popular method for saving
code external to the image.
Source Code Management Guide 4-7

Organizing Code in Store
If your code is saved this way, the natural way to import it into Store
would be to:

1 Load Store into a fresh image.

2 Select your file-out in the File List tool, and pick File in on the
<Operate> menu.

This is not an optimal choice, because the default behavior is to load
that code into a special pseudo-package, listed in the browser as
(none). You will then need to define your own package and move this
code to it.

Instead, it is generally better to create a package first for the code
and then file in to that package:

1 In a browser with a package view, select Package > New Package... .

2 Enter a name for the new package and click OK.

3 Select the new package in the package view.

4 Pick Package > File into... and select the file-out to file in.

The entire contents of the file-out is loaded into the selected package.
You might not want it there, but this is a good place to start, and you
can move code to other packages later.

For another file-out, you can create another package or load the code
into the package you have already created. If the separation of code
already present in the separate file-outs represents intentional
modularization, then create another package.

Packaging Code from Parcels
If you store code in parcels, then moving code to Store is very simple.
It really does not matter whether you

• load Store into an image that has your parcels already loaded, or

• load your parcels into an image that already has Store loaded.

In either case, Store creates a package for each parcel, with the
same name as the parcel, and adds the parcel’s source code to the
package.

In addition to moving code into the package, all parcel properties are
added to the package as its properties, including prerequisites.
4-8 VisualWorks

Working with Packages
There is an exception to the package name being the same as the
parcel name. If you are loading a parcel that was created by a system
with Store installed, but the parcel was generated with a different
name than the package, and Store structure was saved with the
parcel, the package name will be the same as it was in the repository.

Note that once the parcel code has been packaged, the parcel
remains in the system, and is listed in the System Browser parcel
view. To unload the parcel, unload the package, instead. As long as
the resulting parcel is empty (nothing has been added to it) and the
parcel unloads cleanly), the parcel is also removed. If the parcel
doesn’t unload, try unloading the parcel first and then unloading the
package.

Working with Packages

Creating Packages
A package is first created in a VisualWorks image, and then created
in the database when it is published. You can create a new package
in several ways, for example:

• In the Loaded Items list (Store > Loaded Items), choose Change >
Add Package..., and specify a name for the new package.

• In the System Browser, choose Package > New Package..., and
specify a name for the new package.

The new package is added to the Loaded Items list. A new package
is represented in the image, and so is saved with the image, but it is
not recorded in the Change List. A package is added to the database
only when it is first published.

Assigning New Definitions to Packages
In general, all new definitions should be assigned to a package. You
can, however, for temporary code, assign it to (none) rather than to a
named package. Except for assigning a package, you create
definitions in the same way as in VisualWorks without Store.
Source Code Management Guide 4-9

Organizing Code in Store
Store provides a flexible mechanism for assigning new definitions to
packages. The mechanism uses two tools:

• The “current” package, set in a list dialog opened by selecting
Store > Current Package in the VisualWorks main window.

• Settings specified in the New Classes, New Methods, and New Shared
pages in the Store Settings tool (Store > Settings).

The Settings tool determines what action to take when you create a
new definition. For example, you can set options to place all new
definitions in the current package or to always prompt for the
package.

Look at these pages in the Settings tool, and set your system to suit
your current needs. While you are learning to work in the Store
environment, it may be a good idea to set all three pages to Always
prompt.

Moving Definitions to Packages
You reorganize the contents of packages by moving individual
definitions from one package to another. You can create a class
extension by moving a method definition out of the package that
contains its defining class.

To reassign a definition to another package:

1 In a Open the System Browser, locate and select the definition
you want to move.

2 Choose Move > to Package... from the <Operate> menu. This
prompts you with a list of packages.

3 Select the name of the destination package from the list.

Loading Atomically
In VisualWorks 7.7 and later, components are loaded atomically by
default. Previously, each component and prerequisite would be
loaded and installed into the system sequentially. If any prerequisite
or package/parcel along the way failed to load, your image would be
left with everything up to that point loaded, that is, in an incomplete
state.
4-10 VisualWorks

Working with Packages
The atomic loader eliminates this problem. It loads all components,
including prerequisites, parcels and packages into a “shadow” name
space, and if it can not compile and load everything, the loader
provides the option to cancel and unwind. If the load is completely
successful, only then is the code installed in your working image.

There are several complications worth noting. First, if the loader
encounters the DLLCC component or any Scanner subclass, it takes all
of the code that has been loaded up until that point, installs it, and
then resumes loading all subsequent packages atomically.

The second exception involves packages that need to binary loaded.
If the loader encounters one, again it installs everything that has been
already loaded, installs the binary package, and then resumes
loading atomically.

Finally, your package can include a special flag to force the loader to
install any pending components. If a package includes a property
named #installBeforeContinuing, the loader will install everything that
has been compiled and loaded, including the package tagged with
this property. The value of the property is not significant, only its
existence.

Package Load and Unload Actions
Action blocks can be set to be evaluated at several stages of loading
and unloading a package: pre-read, pre-load, post-load, pre-unload,
post-load, and pre-save. These are all listed as properties of the
package. For more information, view the Help for each action and
browse the Store bundles for examples.

How a Package is Loaded
Packages, like parcels, provide a mechanism for initializing code after
they are loaded, and for cleaning up code before they are unloaded.

The load sequence of a package is as follows:

1 The package’s pre-read action is performed, if defined.

2 If the package defines the #installBeforeContinuing property, any
pending components are installed.

3 The package’s pre-load action is performed, if defined.

4 The objects in the package are installed into the system.
Source Code Management Guide 4-11

Organizing Code in Store
5 Every class defined in the package is sent the postLoad: message
with the package as argument.

6 The package’s post-load action, if defined, is executed.

A pre-read action determines whether the package contents should
be parsed and loaded, i.e., before parsing. If this action returns false,
the load is aborted.

A pre-load action is used to make any preparations for the code
about to be loaded, such as to initialize any variables required, prior
to its initialization. If the pre-load action returns false, the load is
aborted.

The default behavior of the post-load action is to run the class’s
initialize method, if it has one. The pre-load action block can specify
additional actions.

Package prerequisites, pre-load and post-load actions, and pre- and
post unload actions are defined using the Properties page in the
System Browser. Help text (Help > Help) is linked to each property.

When a package is updated, loading a newer version of a package
that is already in the system, only the pre-unload and post-load
actions are executed. Note that the postLoad: message is not sent to
each class in the package in this case.

Working with Bundles
Bundles are used to collect and organize packages and other
bundles. Bundles are used to make loading packages more
convenient, allowing for flexible configurations, and also for
assembling the contents of deployment parcels out of smaller
packages.

Creating and Arranging Bundles
A bundle provides a convenient way for you and your team to publish,
load, and merge the project packages as a set.

To create a bundle:

1 In the Refactoring Browser package list, select Local Image for a
top-level bundle. For a new sub-bundle, select the parent bundle.

2 Select Package > New Bundle... to open the Bundle Editor.

3 In the editor, enter the name for the new bundle.
4-12 VisualWorks

Working with Bundles
4 Select packages and/or bundles to include in the new bundle,
and click the Add >> button.

5 Arrange the load order of packages.

The Bundle Editor lists bundles and packages in their load order.
If any definition in one package refers to a definition in another
package, then the referring package should be listed first.

To change the load order for an item, select it and move it using
the up and down buttons.

6 Click the Validate button to verify that the specified order will load.

Validating creates a list of packages that the bundle will load, and
verifies that, in the resulting load order, that each name space
and class required by each package is either:

• loaded by the package or a package earlier in the ordering,
or

• not loaded by any package later in the ordering.

If so, then the package is valid. It makes no attempt to validate
definitions that are not loaded by any of the packages, since they
are outside of the bundle’s control.

Make further adjustments as necessary.

7 When the bundle is complete, click Apply.

This creates the bundle in your image. It will be created in the
database when you publish it.

Editing a Bundle Specification
To modify the contents of a bundle, use the Bundle Editor, just as you
did for creating the bundle. To open the editor:

1 Select the bundle in the System Browser package list

2 Select Package > Edit Bundle Specifications...

3 Move packages and bundles into or out of the Bundle contents list.

4 Arrange the load order by selecting a package or bundle and
clicking the Move Up or Move Down button.

5 Click the Validate button to verify that the specified order will load,
to check for conflicts.

6 When the bundle is complete, click Apply.
Source Code Management Guide 4-13

Organizing Code in Store
Bundle Load and Unload Actions
Action blocks can be set to be evaluated at several stages of loading
and unloading parcels or packages by the bundle: preread, preload,
postload, preunload, postload, and presave. These are all listed as
properties of the bundle. View the help for each action for more
information, and browse the Store bundles for examples.

Including External Files
Store has the capability of including arbitrary files in a bundle,
allowing non-code to be included in a bundled project. This is useful,
for example, if a release of a project includes documentation, HTML,
or graphics files.

The publish dialog for bundles includes a Files page on which you
select the files in the bundle to publish with the new version.

Use the <Operate> menu in the publish dialog to add or remove files
that are to be published with the component. Add File... opens a
separate dialog to select a file. Remove File, which is only enabled if a
file is selected, removes the specified file from the list of items to
publish.Adding or removing files does not affect the component if the
dialog is cancelled. Adding a new file automatically marks it for
publishing with the existing check-mark behavior.

Later, when you load a bundle with a file attached, you are prompted
whether to download the file.

Specifying Prerequisites
Prerequisites are parcels, packages, or bundles that must be in the
system before the code unit is loaded. Before loading, a package or
bundle verifies that its prerequisites are loaded and, if not, loads
them.

Package and bundle prerequisites can be specified either from a
Store repository (for development) or from parcels on the local disk
(for deployment), or both.

VisualWoks includes a special mechanism to analyze prerequisite
relations, which you can use to specify them semi-automatically. It is
useful to understand its operation.

To specify prerequisites for a component:

1 Load any components that will be required as prerequisites.
4-14 VisualWorks

Specifying Prerequisites
2 Select the package or bundle in a System Browser and click the
Prerequisites tab.

Prerequisites are listed in three groups:

• Current lists components that have already been specified as
prerequisites.

• Missing lists components that the prerequisite engine
recognizes as defining required functionality, but are not
listed under Current.

• Disregard lists components which, though they provide
required functionality, can be assumed to be present, and so
disregarded by the prerequisite engine. For example, Base
VisualWorks is a prerequisite of everythng, but can be
disregarded.

3 Add or move any components that should be listed as
prerequisites to the Current list. Remove any that are listed as
Current, but are not prerequisites, to the Disregard or Missing list.

4 In the Current list, you can change the load order using drag-and-
drop. For the other lists, order is not important.

5 To specify that a prerequisite applies only when loading from
Store or from a parcel, right-click and select either Store Only or
Parcel Only. (This corresponds to the former distinction between
deployment and development prerequisites).

Edits are saved when you leave the Prerequisites page.

There are several options for moving components between lists:

• Drag-and-drop between lists.

• Click the + icon to add an item to the list (Current or Disregard). A list
of components is displayed to choose from.

• Click the + icon on an item in the Missing list to add the component
to Current.

• Click the x icon to move a component in the Current or Disregard
lists to Missing.

• Right-click and select Add to Current, Remove, or Disregard.
Source Code Management Guide 4-15

Organizing Code in Store
As you mouse over an item, a brief listing of definitions is shown.
These are definitions that the prerequisites engine believes are
required by the component whose prerequisites you are specifying.
For a longer listing, click the expansion icon.

Other indicators, such as a red circle indicating a cyclical reference,
also help you properly organize prerequisites or trace potential
problems.

After you’ve made changes, click the Recompute Relationships button to
make sure changes have not added further prerequisites.

Specifying a Prerequisite Version
You can specify simple or complex version requirements for a
prerequisite using the Prerequisite Version Selection Action property on the
Properties page. The value of the property is a three-argument block in
the form:

[:parcelName :versionString :requiredVersionString |
booleanExpression]

The block arguments are the name of a prerequisite parcel being
loaded, its version string, and the version string specified in the
prerequisite property.

The block should answer true if the version is acceptable, and loading
continues. Otherwise the loader will continue to search for another
parcel of the same name with a different version. For example, this
will load versions greater than the required version:

[:parcelName :versionString :requiredVersionString |
versionString >= requiredVersionString]

Suppress Warnings
A warning suppression action is a one-argument block, where the
argument is the name of a prerequisite. The block suppresses the
absent class warnings, that is, the a warning about an attempt to add
code to a non-existent class. It does so on a per prerequisite basis,
so you can suppress warnings for selected prerequisites.

The block must return true for any prerequisite for which warnings
should be suppressed. For example, to suppress only warnings for
MyPrereq, you could enter:

[:prerequisiteName |
prerequisiteName = ‘MyPrereq’ ifTrue: [true]]
4-16 VisualWorks

Publishing Packages and Bundles
To suppress warnings for additional prerequisites, simply add them to
the test.

The warning suppression block is run before any of the package code
is loaded. Consequently it should not mention any code in the
package.

The mechanism is limited. For example, if a prerequisite loads
another prerequisite that raises warnings, the block will not suppress
those.

Publishing Packages and Bundles
Publishing a package or bundle is the mechanism for committing
code in a working image to the repository. Until code is published, it is
not available to other developers who access the repository.

Normal publishing stores source code only in the database. Initially,
the entire source is published. Subsequent publishing writes only the
differences, or deltas, between a parent version and the new version.

The package and bundle publishing dialogs provide two related
publication options: Publish Binary and Publish Parcel, as described
below.

Basic Publishing
Publishing is a common, daily activity for team members, and so is
described in greater detail later (see Maintaining Your Store
Environment). Here we give a brief account of publishing a bundle.

To publish a bundle, you:

1 Select the bundle in the Refactoring Browser.

2 Choose Package > Publish...
Source Code Management Guide 4-17

Organizing Code in Store
A multi-page dialog lists the bundle and its component packages.

Initially, any package or bundle that has been changed since it
was last published is marked with a check mark, indicating that it
is selected to be published. On the Items to Publish page you can
check other items for publishing, which is sometimes useful, for
example to set consistent version numbers.

3 On the Blessing page specify:

• A blessing Comment,

• A Blessing level for each package or bundle,

• And whether to publish in fast-loading binary format (see
Publish Binary).

4 On the Version Names page, specify the version number for each
package or bundle.

Version numbers are arbitrary strings, but Store automatically
increments a string that ends with a number. See Package and
bundle version strings for more information.
4-18 VisualWorks

Publishing Packages and Bundles
5 On the Items to Publish page, select items to publish in addition to
those already chosen.

6 On the Parcel Options page, set parcel options, if you are publishing
as a parcel.

7 On the File Options page, select any external files that has been
added to the bundle to be published. No change tracking is
available in Store for external files, so you must select these.

8 Click Publish to publish the selected bundles and packages.

Publish Binary
The Publish Binary option, on the Blessing page, includes a parcel-
format binary representation of the package in the database. The
advantage is that loading the package can use the fast loading
features of the parcel technology.

Due to enhancements in the parcel loader, you can both load binary
code initially, and load it for updates. This greatly speeds up the load
process.

However, publishing binary uses a lot of disk space, because each
publish is the whole package rather than just the deltas.

For some packages, it may be necessary to publish binary, such as
ExternalInterface subclasses, but this is unusual.
Source Code Management Guide 4-19

Organizing Code in Store
Publish Parcel
This option, on the Parcel Options page, writes the package or bundle
out as a parcel (including both .pcl and .pst files), in addition to
publishing to the database. The pages differ slightly in the Package
and Bundle Publishers. The Bundle Publisher version looks like this:

To publish as a parcel:

1 Check the Publish Parcel checkbox. This enables the other fields.

2 Enter the parcel path and name in the Parcel Path: field.

Without path information, the parcel will be written to the current
working directory.

3 In the Store options section:

• Check the Include bundle structure checkbox to save structure
information in the parcel, so the structure can be recovered if
the parcel is loaded into an image that has Store installed.

• If you save the structure, you can also check With database links
to restore the links upon loading the parcel. This restores the
code’s reconciliation with the database upon load, and so is
only useful with databases with which it has been reconciled.
4-20 VisualWorks

Publishing Packages and Bundles
4 In the Source options section:

• Check Save source file to write the source code into the parcel
source file (.pst)

• Check Hide source on load to hide the source code once the
code is loaded.

• Uncheck Pad source unless the parcel is huge. (Refer to the
Application Developer’s Guide for more information on
parcels.

5 In the Miscellaneous options section:

• Check Republish if you are publishing a parcel that is already
in the system

• Check Backup to make a backup copy of an existing parcel, if
it is going to be overwritten

• Check Overwrite existing files if the parcel files already exist and
are being updated.

6 When these and the other publishing options are set correctly,
click Publish.

When publishing a package as a parcel, the package load actions get
translated to parcel load actions.

If you save a bundle as a parcel, all the sub-component actions are
saved. However, only the outer-most bundle’s load actions are
performed.

When publishing a bundle in binary form, the bundle and each
contained bundle or package is published, each with its own load
actions. So, when reloading, all load actions are performed.

Saving the bundle structure in the parcel increases the size of the
parcel slightly, but restores the bundle structure when it is loaded into
an image with Store installed. If you save the bundle structure in the
parcel, you may also select to save database links. This may be
useful for using parcels to distribute internal releases. When loading,
Store attempts to match the links to the database. If they don’t match,
you will be asked whether to keep the links.
Source Code Management Guide 4-21

http://www.cincomsmalltalk.com/documentation/current/AppDevGuide.pdf

Organizing Code in Store
Overriding Definitions
The literature on object-oriented language often speaks of a situation
in which a subclass that reimplements a method already defined in a
superclass is said to override that definition. In this sense, overriding
is just polymorphism. In the context of Store packages, bundles, and
parcels, “override” is used in the sense of a temporary replacement
of a definition, while the defining code unit is loaded.

The ability to override definitions already in the image is a necessary
feature for building components. This permits a component to provide
specific behavior that it requires in place of general behavior, but also
to restore previous behavior upon removal of the component.

When you unload a package (or parcel) with overrides, the original,
overridden definition is restored. In this way, the overriding
component can also be unloaded without compromising the system’s
integrity.

It is most common to override individual methods, though class and
name space definitions can also be overridden.

Note that bundles do not recognize or preserve overrides between
their constituent packages and bundles. Overrides are preserved,
however, if a bundle overrides a definition of one of its prerequisites.

To create an override:

1 In a System Browser, select the method, class, or name space
that you want to override.

2 On the item’s <Operate> menu, select Override > in Package... and
select a package to contain the override.

3 Edit the definition as required for your application, an publish the
package.

In case you accidentally modify a definition that should be overridden,
such as a base definition, and want to make it an override, you can
recover as follows:

1 Move the overriding definition into your own package.

2 Publish your package and unload it.

3 Reload the overridden package.

4 Reload your package containing the override.

Now your package is recognized as overriding the base definition.
4-22 VisualWorks

Reorganizing Packages
Reorganizing Packages
Reorganizing the code in packages is essential to refactoring a
system, as you search for the optimal distribution between shared
and exclusive code. However, some rearranging can cause serious
problems for a development team if it is not done carefully. Special
issues arise in a Store environment. This section identifies some of
those issues, and how to deal with them.

Renaming a Package or Bundle
Renaming a package or bundle can have far-reaching implications for
bundles and the teams that use them.

In releases prior to VisualWorks 7.6, renaming a component would
lose version history information, unless the change were made by the
Store administrator in the database. Following 7.6, the Store tools
display both the newer and the older component, with the older
component listed as a parent of the newer one.

To avoid confusion, the recommended practice is to either rename
the component in the database, as described below, or to publish a
version of the component under the old name with a blessing level of
Obsolete and a comment that refers to the new name.

To rename components in the database, there is an administrative
utility: in the Visual Launcher, select Store > Administration > Rename
Package in Database, or Rename Bundle in Database.

This utility prompts to ask whether you want to update all loaded
packages/bundles that have a prerequisite pointing to the component
you are renaming. If you choose this option, all prerequisities pointing
to the “old” name will be updated to the new name.

When a component is renamed, note that all versions in the database
are affected, not just the one being edited.

Even if you are not preserving version histories, you do need to
coordinate this change with all members of your team. If the package
or bundle is a prerequisite for any others, that too must be
coordinated. Make sure all users have published their latest work,
then make the change, and notify team members to load the newly
renamed bundle from the repository.
Source Code Management Guide 4-23

Organizing Code in Store
Reorganizing Name Spaces
Moving definitions to a new name space is sometimes necessary
when refactoring code. However, when the move is made in a
package that is shared by several developers, serious problems can
occur if it is not done carefully.

For example, suppose a framework package Framework 1.0 defines
a class, FWClass, and an application package App 1.0 extends the
class by adding a method. Lara, who is developing the application,
has both Framework 1.0 and App 1.0 loaded. But then Alfred
modifies the Framework package by moving FWClass to another name
space, NewNS, and publishes it as Framework 1.1. Lara naturally
wants the update and loads Framework 1.1. But, now FWClass has
moved to the new name space, and her extension methods in App
are unloaded.

To avoid this situation, Alfred should make his changes only when no
one else is depending on the current name space location of FWClass.
As a recommended procedure for this kind of change, do the
following:

1 Instruct developers to stop work on code that has dependencies
on the framework code, publish their code, and wait till further
notice.

2 Load all packages that will be affected by the name space
changes.

3 Move the classes in the framework code into their new name
spaces.

4 Publish all packages that were marked dirty during the change.

5 Instruct developers to start with a new image, load the new
versions of the packages, and continue working.

If the changes are made without these precautions, there are two
problem situations that could arise:

• If a developer’s current working image contains Framework 1.0
and App 1.0, and updates to Framework 1.1, the update will
remove any methods in App that extended classes moved to new
name spaces.

There is no work around for this situation. Instead, reload as in
the next situation.
4-24 VisualWorks

Reorganizing Packages
• If the developer starts with a new image, loads Framework 1.1
and tries to load App 1.0, an Unloadable Definitions browser
opens containing all extension methods of classes currently not
in the system (due to being moved to the new name space).

In this situation, you can copy and paste all methods from the
Unloadable Definitions list into the right classes. There is no easy
way to restore any lost class definitions.

Alternatively, you can file out App from the Published Items browser.
Then either:

• edit the file-in to renaming the relevant classes, and file it in, or

• load the file into the GHChangeList goodie, set the Target Parcel to
the desired package (create that package, if not present), and
add any substitutions for all class names that have been moved
to another name space. The use Replay All to load the code.

Then reconcile this package with the latest version in the repository
and publish.
Source Code Management Guide 4-25

Organizing Code in Store
4-26 VisualWorks

5

Maintaining Your Store Environment

This chapter addresses the bulk of the daily usage issues for
individual developers working in the Store environment. Accordingly,
this chapter covers common procedures such as publishing and
loading bundles and packages.

Since development teams are increasingly becoming distributed,
commonly working from remote offices and their homes, and since
Store is particularly well suited to this working environment, we also
cover many of the operations entailed by such distributed
environments, such as switching between a private and public
databases.

In some environments, you may be given a base image configured by
an image administrator and imposing certain process structures on
how you work. This chapter, obviously, cannot describe these
processes.

Instead, for purposes of this chapter, we assume that you, the
developer, have responsibility for assembling your own working
image. Individuals and small teams typically work this way, and even
quite large teams can and do.

This presupposes that your working environment does not have the
user/group management feature installed. If it is installed, that image
will impose limits on what you, as a developer, can do. It is a
responsibility of your image administrator to explain any such
restrictions.

Beginning to Use Store runs through installing Store in this sort of
environment, and demonstrates working in it. This chapter provides a
more comprehensive view of these work practices.
Source Code Management Guide 5-1

Maintaining Your Store Environment
Working Connected and Disconnected
Unlike some source control systems, Store does not require that you
be connected to the database in order to work on project code. In
general, you can do most of your work disconnected from the
database, because the code you are working on is in your current
Smalltalk image, on your disk drive.

Connecting to the Database
It is only necessary to be connected to the database when you are
performing database functions, such as publishing and loading
packages. Otherwise, you can work detached from the database.

To connect to the database, select Store > Connect to Repository... in the
VisualWorks Launcher.

Select the database type in the Interface box. Enter the Environment
string, your User Name, and Password, as assigned by the database
administrator (which might be you, if you installed a local database).
To connect to your own local database, rather than a remote
database, you can leave the Environment field blank. If there are
multiple Store repositories in the database, select the Table owner for
the repository you want. Then click Connect.

Detaching from the Database
When you have working versions of the packages you need loaded,
you can detach from the database and work strictly within your
image. You can still perform all programming tasks, including defining
and rearranging packages and bundles, but you cannot perform
database tasks, such as publishing or loading.
5-2 VisualWorks

Working Off-line
To detach from the database, select Store > Disconnected from DB in the
VisualWorks main window.

Saving Connection Profiles
You can save your connection settings, and alternative settings for
other Store repositories, as a Connection Profile. In the Connect to
Database dialog, enter the connection parameters and click Save and
enter a profile name. This is particularly useful if you frequently
connect to alternate databases; you only need to select the profile
next time you want to connect.

Store can hold multiple database connection profiles in the image,
and you can export and import these as a XML file. If you update to a
new version of VisualWorks, or start over from a clean image, you
can import the saved settings from a file.

To save all database connection profiles in your image, use the
<Operate> menu in the lower-right corner of the VisualWorks
Launcher window, and select Export Repositories.... Enter the name of
an XML file to contain the profiles. To load the connection profiles
from this file, use Import Repositories....

You can also save and load connection profiles using the Save Page...
and Load Page... menu items in the Settings tool (select Settings from
the System menu in the Launcher window). Note, however, that these
employ a different XML file format.

Working Off-line
Because your image contains working versions of the packages you
are developing, most of your work can be done while disconnected
from any database. Working off-line allows you to work at home or
another remote site, continue working when your data connection is
down, or any other time when it is not possible or convenient to be
connected.

In a detached image, you can do anything that does not require
database access. That is, you can:

• Browse, modify, and test the working versions of the packages
and bundles in your detached image.

• Create working versions of new packages and bundles.
Source Code Management Guide 5-3

Maintaining Your Store Environment
However, without a database connection, you cannot:

• Open the Published Items list or a Versions list.

• Publish your working versions.

• Load new versions into your image.

• Merge versions.

Of course, if you work on a notebook or other portable computer,
there is nothing to do. Just take the computer along and work as
usual. The following comments only apply if you are actually moving
your work to another computer.

Preparing to Work Off-line
If you are working in an image that is connected to the Store
database and you decide to continue your work off-line, do the
following:

1 Verify that your image contains the correct working versions of all
packages and bundles you want to work on. If necessary, load
the desired versions from the database.

2 Save and exit your image.

3 Take copies of your work to the remote workstation.

If you transport your image using removable media, be sure to
take the .im file and the .cha file associated with your image.

4 Also, copy the directory containing the source files for any
packages you have loaded binary. It is named after your
repository name, in your image/ directory.

Resuming Work with the Database
When you have finished your off-line work, you:

1 Save and exit your detached image.

2 Copy your work back to your normal workstation.

This may be the working image and associated files, or copies of
filed-out or parceled-out code.

3 Start your VisualWorks image.

4 If necessary, file-in or parcel-in your changes.

5 Connect to the Store database.
5-4 VisualWorks

Working with Multiple Databases
You can now resume your normal Store work, with full access to the
Store database.

Working with Multiple Databases
In many working environments you will need to publish and load code
from multiple databases. Many developers, especially in
geographically distributed teams, connect and publish most
frequently to their personal, local database, and less frequently to a
remote, shared database. Then, there is also the Cincom public
database, which is available for code updates and user contributions.
Visit the Cincom Smalltalk Wiki for more information.

There are also utilities available for replicating a repository.
StoreForGlorpReplicationUI is included as a convenience in the
VersionControl page of the Parcel Manager, and is provided as
contributed.

Store makes working with multiple databases easy, by remembering
relationships between the code in your image and the code in each of
the databases, on a package-by-package basis. For each package,
Store maintains a change set of differences between the package in
your image and a “parent” version in a database, one change set for
each database that has been linked to that package in your image.

For example, say you load package Foo from Store repository A. The
version in the repository is the parent of the version loaded into your
image, and Store maintains a change set between the two. Initially,
the change set is empty, because there are no differences. As you
make changes to the package in your image, those changes are
written to the change set.

Now, suppose you connect to another repository, B, that also has
Package Foo. (Let’s assume that the name indicates that the
packages really are the same, except for versions, and not
completely different code that happen to be named the same. That
presents different problems.) You cannot publish or load a version of
this package in repository B, because Store doesn’t know the
relationship between them. To establish the relationship, you
reconcile your image to the repository, as described in Reconciling to
a Database. Once reconciled, Store also has a change set of
differences between Foo in your image and Foo in repository B.
Source Code Management Guide 5-5

http://www.cincomsmalltalk.com/CincomSmalltalkWiki

Maintaining Your Store Environment
The parent remains the version loaded from A, until you publish or
load another version from either repository, at which point the parent
changes and the change sets are updated. With these records of
relationships and differences, it is easy to switch back and forth
between the repositories, and to do code comparisons.

In general, you only have to reconcile a package once to each
database, though occasions arise when you may have to reconcile
again. But, Store will notify you if reconciling is necessary.

This facility makes it easy to use a private, local database for
frequently publishing work in progress, and then to switch to a shared
remote database to publish your stable code for access by the team.
This is a common practice remote developers. Once reconciled to
each of the alternate databases, you simply connect to one of them
and continue working; there is no need to re-reconcile each time.

Reconciling to a Database
To coordinate code in an image with a code base in a Store
repository, the image and the database must be reconciled.
Reconciling compares the sources for packages in your image to the
sources for the same packages in the database, and creates a
change set for each package. The change sets represent the
differences, or “deltas,” between your image and the database. Then,
when you publish to the database, only the deltas need to be
published. Reconciling also sets the “parent” version, so your next
published version will have a history.

Usually you would reconcile to the most recent published version in
the repository, but you can reconcile to any version. You might
reconcile to an older version, for example, if you are developing a
branch or need to create a new branch, possibly to do maintenance
development for a previous release.

To reconcile to a package or bundle to a database:

1 Connect to the database.

2 In a Package Browser, select the package or bundle.

3 Select Package > Reconcile with Database.

4 If there are multiple candidates, a dialog lists them. Select the
version to which to reconcile and click OK.
5-6 VisualWorks

Working with Multiple Databases
In the typical case you should select the most recent version.
Select an older version only if you have a reason to modify or
create a branch.

Switching Databases
Switching databases is essentially one large reconcile. By switching
databases, you are choosing to reconcile all of the packages in your
image to packages in the database. Needless to say, this can take a
long time for a large application. However, once done, you can freely
switch back and forth between databases without having to re-
reconcile.

To switch databases:

1 Connect to the new target database.

2 Select Store > Switch Databases in the Visual Launcher.

3 When prompted, select whether or not to Maintain existing links to
the previous database.

For a database that you will connect to again, you want to
maintain links. Choose to remove links only if you will not be
using it again, or using it only rarely. Once you have removed
links, you will need to reconcile the database again before you
can use it.

You can choose now to retain links, and then delete them later
using Store > Remove Database Links... command, if necessary.

4 When prompted Which should be used to reconcile?, click either:

• Use most recently published - to automatically reconcile the
packages in your image to the most recently published
versions in the new target database that match your code.

• Select published versions - to specify individually the versions in
the new target database to reconcile.

5 If you chose to select versions to reconcile, you will be prompted
with a list of applicable versions when there are more than one
candidates. Select a version and click OK. This may occur several
times, depending on the size of the database you are reconciling.

Once the database has been reconciled to your image you can begin
publishing packages to the database.

From this point on, you seldom need to re-reconcile your image to the
database. Simply connect and continue working.
Source Code Management Guide 5-7

Maintaining Your Store Environment
Removing Database Links
If you are never going to access a particular Store database again,
you may want to remove the links to it. This also releases its change
set. If you change your mind later and want to access this database
again, you need to reconcile your image to it again.

To remove the links:

1 In the Visual Launcher, select Store > Remove Database Links... .

2 Pick the database to unlink from the displayed list.

3 Click OK.

Using a Local Database
It is frequently useful, especially for remote developers, to be able to
version changes they make locally as well as when publishing to the
shared database. Doing so requires using a local database. Using a
local database is just a special case of using multiple databases,
except that a good deal of your local database will be a duplication of
what is on the a remote database.

To connect to a local database, select Store > Connected to DB as usual,
but specify the environment string for the local database. Often,
leaving this field empty defaults to your local database, but depends
on your environment configuration.

The primary issue in working between the local and team databases
is keeping version numbers consistent. Because Store maintains
links to multiple databases, this is not a problem. Once a database
has been reconciled to your image, links and changes are tracked for
each database. You can freely publish your changes to any of your
databases.

To start using a new local database:

1 Load the current versions of your packages from the shared
database.

2 Disconnect from the shared database, and connect to your local
database.

3 Publish your packages.

The version numbers will be different than those in the shared
database, but this is alright. Store maintains links to both, so when
you reconnect to the shared database the versions will be correct.
5-8 VisualWorks

Maintaining your Working Image
Publishing Back to the Team Database
To publish back to the shared team database:

1 If you have not published since last updating from the shared
database, publish to your local database.

2 Disconnect from your local database, and connect to the shared
database.

3 Publish your packages.

Maintaining your Working Image
At the beginning of a project, your baseline image is probably
configured by your project leader. Starting there, you modify the
image by making changes to the code for which you are responsible,
and by loading packages published by other developers on the team.

Store provides several browsers for determining what is loaded into
your image, for comparing your image with published packages, and
for updating your image configuration.

Browsing Loaded Packages and Bundles
To browse all loaded packages, you can simply open the Package
Browser by choosing Store > Browse Packages in the VisualWorks
Launcher.

You can use the Loaded Items list to see which bundle and package
versions your image contains. To do this, choose Store > Loaded Items
in the launcher. The Loaded Items list shows the bundles and
packages for which your image contains working versions, and
indicates (in parentheses) the parent version of each working
version.

Examining the Contents of a Bundle
It is often convenient to have a top-level project bundle that loads all
of the project packages. When this is the case, the Loaded Items list
has entries for the project bundle and its contents, listed
alphabetically among entries for the system packages. To see just the
package versions that are contained in the project bundle:

1 Select the project bundle in the Loaded Items list. (Bundle entries
are listed in alphabetical order preceding package entries).

2 Choose Examine > List Contents in the Loaded Items list.
Source Code Management Guide 5-9

Maintaining Your Store Environment
The Bundle Contents list displays an entry for each component
package or bundle that belongs to the bundle you selected. These
entries are displayed in the order in which the components are
loaded into an image.

Loading Published Code
You can load code from the database either from individual
packages, or from bundles that specify their constituent packages
and versions.

It is generally better to load a bundle than an individual package. You
can still select and load individual packages in the bundle, and the
packages you choose are automatically loaded in the correct order.

Loading a Bundle
To load a particular version of a bundle:

1 Open a Versions list for the bundle and select the desired
version.

2 Choose File > Load..., and confirm that you want to load the
bundle version.

Store loads the bundle’s component versions in order, prompting you
for additional confirmation as needed.

After the operation is complete, your image contains a new working
version of the bundle, whose parent is the bundle version you
selected.

Loading a Package
To load an individual version of a package:

1 Open a Versions List for the package, and select the desired
version.

2 Select File > Load....

If your image already contains a working version of the package, you
must confirm that it is to be replaced with the selected version from
the database. Any unpublished changes in the current working
version will be overwritten, and can only be retrieved from the change
file.
5-10 VisualWorks

Maintaining your Working Image
After loading, your image contains a new working version of the
package. If the package is a component of a bundle that is loaded in
your image, your working version of the bundle is marked as
modified.

Updating to New Versions
Before you load a bundle or package, you need to browse enough of
the database to find what items have been published.

To browse the published bundles and packages, choose Store >
Published Items in the VisualWorks Launcher. To browse only bundles
and packages that were published more recently than those you
already have loaded, choose Store > More Recent Published Items
instead. This opens the Published Items browser.

The Published Items browser displays the names of published
bundles and packages. Bundles are listed first, followed by packages,
each being distinguished by different icons. For long lists, you can
type in part of the name you are searching for into the entry field, top
left, to filter the list, and use * for pattern matching.

The Versions pane lists the versions of the selected package or bundle
that are in the database. These are sorted by the date and time they
were published, with the newest versions shown at the top.
Source Code Management Guide 5-11

Maintaining Your Store Environment
You can also open a dedicated versions browser by selecting Examine
> List Versions, or a graphical representation by selecting Examine >
Graph Versions.

To browse the code definitions for a version of a package, select the
package version in a version list or graph, and select Examine >
Browse. This opens a Package Browser on the selected package
version.

Browsing Packages and Definitions

Browsing Loaded Code
Any packaged code that you have loaded into your image can be
viewed using any of the standard browsers. The browser displays the
current working version of the code, including any changes you have
made, rather than the parent package’s version.

Text formats and other indicators are used in the System Browser to
indicate various states of code with respect to packages. For
example, a bold type face indicates items (class, name space, or
method) that are defined in the selected package. If a package has
changes, a number indicates the number of changes not yet
published. A modification to the icon attached to a package or bundle
may also indicate a state needing attention. In general, the indicator
is fairly self-explanatory, or clear with a little investigation.

When you select a package or bundle in the Package Browser, the
text view shows all of the databases and versions to which it is linked.

Browsing Unloaded Code
To browse the code in a package that is not loaded, or a version of
code as it is in the database, you need to use the Package Browser.

1 Connect to the database.

2 Do either of the following:

• Open the Published Items browser, select the package and
version you want to browse, and select Examine > Browse

• Select the item in the System Browser and select Browse
Versions in the <Operate> menu for the item.

A Package Browser is opened on the selected version.
5-12 VisualWorks

Maintaining your Working Image
Browsing Shared Variable Definitions
You can open a Definition browser on published Namespace and
Class definitions. The browser lists all published versions of the
specified definition, for easy comparison.

To open the Definition browser, select Store > Browse Definitions, and
then either NameSpace named... or Class named... . A prompter asks for
the name of the definition. Enter the definition name (case-sensitive),
and click OK. The definition browser opens on the published versions
of that definition, if any.

Browsing with Package Changes and Overrides
Store maintains a change set for each package for each database,
without you having to set it up.

Tools to browse these change sets are available on the Package >
Browse menu in the Package Browser. Select the package to browse,
then select Package > Browse > <command> (or Browse > <command> on
the <Operate> menu). The options are:

Changed methods

Opens a method browser on methods changed in this package
since it’s last publication.

Change set

Displays a list of linked databases containing the definition, and
opens the Change Set inspector on the change set for the
database you select.

Change list on changes

Opens a Change List on the changes to this package

Overrides of others

Opens an Override Browser on definitions in this package that
override definitions of others, showing the overridden definition.

Overridden by others

Opens an Override Browser on definitions in this package that
are overridden by definitions in others, showing the overridden
definition.
Source Code Management Guide 5-13

Maintaining Your Store Environment
Note that overrides are suppressed from these change sets, so
loading a package B that overrides package A will not show up in
package A’s change set or the changes list. They will, of course,
show up in the relevant overrides/overridden tools.

Updating Published Source Code
During development, members of the team will periodically publish
their updates to the shared database. Some of these you will want to
use to update your image, so you can take advantage of those
changes. Which packages you update will depend on your team’s
development practices and policies, and the parts of the system you
are yourself working on.

To update from a published version of a package:

1 Connect to the shared database and load the updated packages.

2 Disconnect from the shared database.

3 If necessary, connect to your local database and publish the
updated packages.

Updating from a Build
During an extended project, a number of “builds” might be created,
each build consisting of a new image built from a set of packages in
the shared database. Rather than update all the packages yourself, it
is often convenient to pick up this new build image and make it your
new baseline image. This is particularly true if areas of the system
are updated that you do not normally work with yourself.

The build image already has links to the shared database. To begin
using it with your local database, you need to reconcile it with your
local database. The easiest way to do this is by using the Switch
Database command, as follows:

1 Save a copy of the build image as your new network image.

2 Launch it and connect to your local database.

3 Select Store > Switch Database to reconcile the image with your
local database.

4 Publish the packages locally.
5-14 VisualWorks

Publishing a Component
Publishing a Component
When you have developed a package to a point where you are ready
to make your work available to the team, you publish the package or
a bundle containing it. This writes your new version to the Store
database, and makes it publicly available.

All components are published using a UTC timestamp obtained from
the database server. If your database does not support this feature
(e.g., MS Access), then Store uses the local image’s current UTC
time.

Pre-publication Checks
To save the headaches of needlessly publishing bad versions,
perform the following pre-publication checks.

Comparing to the Parent Version
Before publishing, you may want to run a comparison check with the
parent version, to evaluate the changes you are about to publish. To
perform the comparison, either:

• Select the package in the Loaded Items list or Bundle Contents
list, and choose Examine > Compare with Parent, or

• Select the package in a Versions List, and choose Examine >
Compare with Image.

This opens a Difference Browser on your working version and its
parent.

Inspecting Changes
You can review the changes you have made to your working version
of a package (changes from the working version’s parent). To do this,
select the package in the Package Browser, and choose:

• Package > inspect changes, to inspect all definition changes, or

• Package > browse changed methods, to examine only changed
methods.

Merging with Another Version
It is possible that while you were making changes to your working
version, another developer has published a new version of the same
package. If so, you may want to merge your working version and then
publish the integrated version. Refer to Integrating code versions for
more information.
Source Code Management Guide 5-15

Maintaining Your Store Environment
Publishing a Bundle
If your project uses bundles, you normally publish bundles rather than
individual packages. Publishing a bundle automatically publishes all
component packages whose working versions have been modified in
your image.

To publish a bundle, you:

1 Select the bundle in the Package Browser or in the Loaded Items
list.

2 Choose Package > Publish... .

A multi-page dialog lists the bundle and its component packages.

Initially, any package or bundle that has been changed since it
was last published is marked with a check mark, indicating that it
is selected to be published. On the Publishing Options page you can
include or other items.
5-16 VisualWorks

Publishing a Component
3 On the Blessing page specify:

• Whether to publish in fast-loading binary format (see Publish
Binary). If checked, all packages and bundles will be
published in binary format.

• A blessing version for each package or bundle.

• A blessing comment, giving additional information, for each
package or bundle.

4 On the Version Names page, specify the version number for each
package or bundle.

Version numbers are arbitrary strings, but Store automatically
increments a string that ends with a number, based on the
version currently in your image and other published versions in
the database. See Package and bundle version strings for more
information.

5 On the Items to Publish page, select items to publish in addition to
those already chosen.

6 On the Parcel Options page, set parcel options, if you are publishing
as a parcel.

7 On the File Options page, select any external files already added to
the bundle to be published (see Including External Files). No
change tracking is available in Store for external files, so you
must select these.

8 Click Publish to publish the selected bundles and packages.

Publishing an Individual Package
If your project does not use bundles, you must publish your packages
individually.

Even if you do use bundles, sometimes you only want to update a
single package. Note, however, that no bundle will contain that
version of the package, so that it will not be loaded with the bundle.

The Package Publisher dialog is an abbreviated version of the Bundle
Publisher.

To publish a package, you:

1 Select the package in the Package Browser or in the Loaded
Items list.
Source Code Management Guide 5-17

Maintaining Your Store Environment
2 Choose Package > Publish... (File > Publish... in the Loaded Items
list).

A multi-page notebook dialog lists the bundle and its component
packages.

3 On the Version Name and Blessing page specify:

• The version number for the package, in the Version field

• A blessing level for the package

• A blessing comment, giving additional information, for the
package

• Whether to publish in fast-loading binary format (see Publish
Binary). If checked, the package will be published in binary
format.

4 On the Parcel Options page, set the parcel settings.

Refer to Publish Parcel below for more information. This page
allows you to save your code in parcel files (.pcl and .pst) at the
same time as you publish the bundle to the database. The
options are the same as for saving parcels in general.

5 Click Publish to publish the selected bundles and packages.
5-18 VisualWorks

Exporting code
Exporting code
For various reasons, including code sharing with a developer who
does not have access to the database, you may need to file out your
code. File out options are provided for bundles and packages, on the
<Operate> menu of the Package Browser package list, and in the
Packages menu.

When filing out, no package or bundle structure is preserved, so
Store is not needed in the image it is filed into.

If a package has overridden code, filing out the package includes the
overridden code, not the overriding code. Note that in versions 5i.2
and earlier, overridden code was excluded from the file-out, but it is
now included.
Source Code Management Guide 5-19

Maintaining Your Store Environment
5-20 VisualWorks

6

Version Control

Under Store, individual team members develop and update
components called packages. At integration time, appropriate
versions are merged for each package in the project to produce a
new project baseline.

Versions
The first time a package is published to a database, Store creates an
initial version string and stores the source code for definitions in the
package.

When you load a package into your image, you load a copy, or
working version, of the package. You can modify this copy in your
image without affecting the parent version, the version in the
database.

When you publish your working version, you create in the database a
new version, with a new version string, that stores only those
definitions that have changed (“deltas”) from the parent version.

Bundles are also versioned in this way. When a bundle is created, its
specification identifies the current working versions of its component
packages and bundles.

When you load a bundle, the specified version of each of its
components is loaded. The operation is recursive on nested bundles,
so that all contained packages are loaded.

When you publish a bundle, Store automatically publishes any
component whose working version has been modified, and creates a
new version of the bundle that specifies the current component
Source Code Management Guide 6-1

Version Control
versions. A working version of a bundle is considered modified
whenever you edit the bundle’s specification or modify any of the
working versions of its components.

Package and bundle version strings
Whenever a package or bundle is published, it is assigned a new
version string to identify it. A version string is any arbitrary string,
such as “1.0” or “Experiment”.

Although Store supplies simple version strings as defaults, your
development group may need a more detailed version identification
scheme. If the version string ends with a number, Store automatically
increments it when you publish. You need to approve the increment. If
the string does not end with a number, Store will append a number
(.1), again subject to your approval.

Note that the publishing developer’s name is automatically appended
to the version string, so user names may be omitted from your
naming convention.

Blessing levels
Most development processes call for publishing components at
various stages of completion, from early prototyping to final customer
product. In Store, you specify a blessing level, plus comments, to
indicate where a version is in the development cycle.The standard
blessing levels and some suggested uses are:

Blessing Level Suggested Use

Broken Version has known defects; should not be used until
fixed.

Work in Progress Code is unfinished and functionality is incomplete.

Development Interim version; code may be unfinished and
functionality is incomplete.

Patch An update to a previous release, but on a separate
development branch.

Integration-Ready Version is ready for merging with versions developed
by other team members.

Obsolete A component that is no longer in use or have been
renamed.

Replication Notice A blessing added to versions that were replicated,
noting when each was replicated, by whom, and the
name of the source and target databases.
6-2 VisualWorks

Versions
A version’s initial blessing level is normally set by the developer who
publishes the version. As the version progresses through the test and
review cycle, various authorized team members change the blessing
level as appropriate. The Merge Tool uses the Integration-Ready,
Integrated, and Merged levels.

Your policy for blessing levels should determine the following:

• How many levels are relevant to your process?

• What should the levels be called?

• What does each level mean?

• What kind of information should appear in the associated
comment?

• For each blessing level, who is authorized to set it?

• For each blessing level, who is authorized to load a version at
that level?

The standard blessing levels provided with VisualWorks can be
changed to fit your development process:

1 Subclass Store.BasicBlessingPolicy or Store.OwnerBlessingPolicy, and
define the new blessing levels by overriding the initializeBlessings
method.

2 Set the new blessing levels as the policy by sending:

Store.Policies blessingPolicy: MyBlessingPolicy new.

Using OwnerBlessingPolicy allows enforcing user/group rules for
blessing policies. For example, you might allow only the owner to set
Integrated and Ready to Merge blessings, or only QA to set the Tested
blessing. Browse the default code to see how to set the restrictions.

Integrated Version has been successfully merged with other
integration-ready versions.

Merged Version is the result of merging multiple integration-
ready versions.

Tested Version has been tested and is ready for general
release.

Internal Release Released but only for internal deployment.

Released Version is available for all users and customers.

Blessing Level Suggested Use
Source Code Management Guide 6-3

Version Control
Working with versions and blessings

Browsing a version history
When you load a version of a package into your image with new
versions of packages, you may notice that individual definitions have
been changed. To find out more about these changes, you can
browse the definition’s change history. To browse the history of a
definition, you:

1 Select the definition in any VisualWorks browser or in a Package
Browser.

2 Choose Versions from the <Operate> menu in the class or method
view. This opens a Version Browser. Each listed entry contains
the definition’s selector followed by the version string of the
containing package version.

3 In the Version Browser, select the entry of the version you want to
examine. The definition version appears below it.

Comparing versions
Comparing past versions of a definition shows what changes have
been made to produce the final version. To compare versions of a
class or method definition, you:

1 Select the definition from any source browser.

2 Choose Store > Compare with... from the <Operate> menu in the
class or method view to launch the Version Browser on the
selected definition.

3 Select the version to compare, and the Differences Browser
opens.

The Differences Browser lists the class and method definitions that
differ between two versions. The definitions are grouped
hierarchically by class and protocol.

The Differences Browser displays its information in pairs of vertically-
stacked views, where the upper member of each pair displays
information from one version, and the lower member displays
information from the other.
6-4 VisualWorks

Working with versions and blessings
You can switch the view between showing differences in code (View >
Show code differences) and differences in source (View > Show source
differences). Source differences show differences in the way the source
is written, such as formatting differences, whereas code differences
show actual differences in the code.

Package views
At the top of the Differences Browser, a pair of package views
displays the names and version strings of the compared packages.
The version string of the working version ends in a plus sign (+) if the
version contains unpublished changes. The version string ends in an
equals sign (=) if the working version is identical to its published
parent version.

Class views
Below the package views, a pair of class views lists the differing
classes in each of the compared versions:

• Classes listed in bold are classes whose class definitions or class
comments differ. Each class name is followed by a string
indicating when the definition was published and by whom.

• Classes listed in the normal font are classes whose methods
differ.

• Classes listed in italic are classes whose extensions differ. That
is, these classes contain method definitions that are part of the
package, although the classes themselves are not; the
differences exist in these methods.

Protocol and method views
The protocol views list the protocols in each version that contain
differing methods. When you select a protocol for a version, the
corresponding method view displays the names and versions strings
of the method definitions that differ between the compared package
versions.

Text views
At the bottom of the Differences Browser is a pair of text views, where
you inspect the contents of a selected class or method definition. If
the selected definition exists in both package versions, the text views
provide a line-by-line comparison, emphasizing the lines that contain
differences by displaying them in bold.
Source Code Management Guide 6-5

Version Control
If nothing is selected in any class, protocol, or method views, then the
text view displays the package comment, initialization string, and
finalization string.

Changing a version’s blessing level
An initial blessing level for a version is set when the version is
published. As the version progresses through a verification and
approval cycle, its blessing level needs to be changed without
changing the version string. For example, a version initially published
with a “Development” blessing level may need to be advanced to
“Integration-ready” or demoted to “Broken.”

Usually, a team policy determines who can set specific blessing
levels.

To change the blessing level for a published version of a package or
bundle:

1 Select the package or bundle from any list (for example, the
Loaded Items list or Bundle Contents list)

2 Choose Examine > List Versions. This brings up a Versions list that
shows the item’s versions.

3 In the Versions list, select the version whose blessing level you
want to change.

4 Choose File > Set Blessing Level, to open the Blessing Level dialog.

5 Select the new blessing level, enter a comment, and click Accept.

Integrating code versions
Application development is not typically linear. In the process of team
development, several developers may make changes or additions to
the same classes and the packages that contain them. Periodically
during development, and especially near project completion, these
different pieces of work must be integrated, or merged together and
made consistent.

The Store Merge Tool assists in this integration process. The Merge
Tool examines the parent-child relationships among published
versions of a package, identifying the modifications that differentiate
two or more related versions from their latest common ancestor. It
then combines user-selected modifications into a new working
version of a designated base version.
6-6 VisualWorks

Integrating code versions
Relationships among versions
In general, a package’s published versions bear parent-child
relationships to each other in a family tree rooted in a common
ancestor. In this tree, each branch represents a divergent line of
development.

A line of development starts when you load a working version into
your image from a published version of a package (say, version 1.1).
You make modifications to your working version. It has no version
number at this point, but the Version Browser will show that it is from
a particular version.

When you publish this package, a new version (1.2) is created in the
database. This new version is now the parent of the working version
in the image, and is also the child of the original version 1.1. This
continues each time you publish. The version tree is completely
linear, and may look like this:

There’s no need for integration in a linear version tree.

Another team member may also start a line of development based on
any of these published versions, and may publish changes. Suppose
this line is started from version 1.2, and is published as 1.2.1 (The
version numbering is determined by your team’s publishing
conventions.) The version tree is no longer linear, and might look like
this:
Source Code Management Guide 6-7

Version Control
Clearly, this can become arbitrarily complex. At some point, these
divergent lines of development will need to be brought back together,
or integrated.

Conflicting and nonconflicting modifications
Each published version will contain some modifications. These
modifications may or may not cause conflicts when the versions are
merged.

Conflicting modifications exist when the same definition has been
changed in different ways in two or more of the versions being
merged. For example, a conflict would exist if different expressions
have been added to the same method in each of two versions being
merged. A conflict would also occur if a method has been changed in
one version and removed entirely in another.

In contrast, a nonconflicting modification exists in either of the
following cases:

• A change has been made to a definition in only one of the
versions being merged.

• A change has been made to a definition in more than one version
being merged, but all of the changes are exactly the same.

Merging two versions of a package
You may often only need to merge two versions of a single package,
for example, if you and another team member have each modified the
same package. To do this:

1 Both team members must publish their working versions.

The Merge Tool only examines published versions of packages.
Unpublished modifications in your working version may be
overwritten in the merge process.

2 Load the version of the package that is to become the main
stream version.

This procedure merges one version into the currently loaded
version.

3 Open the Version List for the package whose versions are to be
merged (Store > Browse Versions in the Loaded Items list).

4 In the Version List, select the version to be merged into your
image and choose Package > Merge Into Image. This starts the
Merge Tool.
6-8 VisualWorks

Integrating code versions
5 In the Merge Tool, identify which versions of the modifications to
include in the new version.

6 Choose Resolution > Apply Resolution to apply all resolved
modifications to the current image. To apply all resolutions in
bulk, select Resolution > Apply All Resolutions.

7 Choose Packages > Publish Packages... to publish the merged
version of the package.

Integrating a set of packages
To integrate multiple versions:

1 Publish all versions to be included in the integration.

The Merge Tool only examines published versions of packages.
Unpublished modifications in your working version may be
overwritten in the merge process.

2 Set the blessing level of all versions to be merged to Integration-
Ready.

The Merge Tool will display only packages marked Integration-
Ready for merging.

3 Start the integration base image.

This may be a special integration image, such as the image
created by the last integration, or an ordinary working image
which contains base versions of each package to be merged.

4 Choose Store > Merge Tool from the VisualWorks Launcher window
to start the Merge Tool.

5 In the Merge Tool, choose Package > Select Packages....

This opens a dialog that displays all the packages in the
database that have at least one Integration-Ready version.

6 Select all the packages that you want to integrate.

The Merge Tool then displays modifications for all the Integration-
Ready versions of the packages you selected.

7 In the Merge Tool, identify which versions of the modifications to
include in the new version.

8 Choose Resolution > Apply Resolved to apply all resolved
modifications to the current image.
Source Code Management Guide 6-9

Version Control
9 Choose Packages > Publish Packages... to publish the merged
version of the package.

10 Save the image, if desired, for use as the next integration image.

Resolving conflicts
When conflicting modifications exist among the versions you are
merging, you must choose a resolution for each conflict. You may
resolve the conflict by selecting any one of the existing modifications,
or you may create a new modification in the Merge Tool. The
resolution you choose will be included in the new composite version.

To choose a resolution from existing alternatives:

1 In the modification view, select the name of the definition or
comment that has the conflict to be resolved.

2 In the version view, select the version that contains the
alternative you want.

3 Choose Resolution > Select as Resolution. The square icon next to
the definition or comment name is filled with an X to indicate that
the conflict for this item has been resolved.

If none of the alternative modifications is appropriate as a resolution,
you can create a new modification.

1 In the modification view, select the name of the definition or
comment that has the conflict to be resolved.

2 In the version view, select the version whose modification is
closest to the one you want.

3 Edit the contents of the modification in the code view.

4 Choose Accept from the code view’s <Operate> menu.

This creates a new alternative modification, selects it as the
resolution, and immediately applies it to the working version in the
image.

As you resolve more and more conflicts, you may wish to eliminate
them from the display. Choose View > Show Unresolved to filter out
resolved conflicts.
6-10 VisualWorks

Integrating code versions
Excluding nonconflicting modifications
By default, the Merge Tool assumes that all non-conflicting
modifications are to be included in the composite version, and
automatically marks each non-conflicting modification as a resolution.

If, upon inspection, you decide that certain non-conflicting
modifications are unwanted, you can exclude them. For example, one
version may contain a new method called cut, while the other
contains a method called cutToClipboard. These methods are reported
as non-conflicting modifications, even though they do the same thing.
You probably want to exclude one of these modifications from the
merged version.

To exclude a non-conflicting modification, choose the base version
(which does not include the modification) as the resolution:

1 Choose View > Show All, if necessary, to display non-conflicting
modifications.

2 In the modification view, select the base version.

3 Choose Resolution > Select as Resolution.

Creating the merged version
After you have chosen the desired modifications, you apply them to
the working version of the base version, and publish the results as
the new merged version:

1 Choose Resolution > Apply Resolution.

Every modification marked as resolved (both conflicting and non-
conflicting) is applied to the working version in your image,
adding, replacing, or removing existing definitions and comments
as necessary.

In the modification view, a solid square icon indicates the
modifications that have been applied.

2 Choose Packages > Publish Packages... to publish the merged
version of the package. In the resulting dialog, fill in the version
string and the blessing level for the new version.
Source Code Management Guide 6-11

Version Control
6-12 VisualWorks

7

Administering Store

User Administration
Users who will publish to and load code from the Store database, as
well as users who might only have administration responsibilities,
must be assigned a login account for the host database. These
accounts are normally created by the database administrator, using
database administration facilities. The Store user then enters the
account name and password, if applicable, in the Store connection
dialog to access the repository.

In addition to the database user accounts, if user/group management
is installed, users also have to be defined in Store in order to take
advantage of the privilege control features. Adding and specifying
access rights at this level is all done within Store.

Adding Store users
There are two general classes of Store user: the Store table owner,
that you created for installing the Store tables into the database, and
“normal” Store users. Both kinds of users are created using host
database administratiom facilities.

Table owner accounts
The Store table owner, by default BERN, needs the fullest
capabilities. This user needs sufficient privilege to physically modify
the database structure.

For Oracle, the table owner needs to be created with these roles and
privileges:
Source Code Management Guide 7-1

Administering Store
For SQL Server, the table owner needs these permissions:

For PostgreSQL, the table owner needs to be able to create the
database, so the command line must include the -d switch. It is useful
for the user to be able to add users, too, indicated by the -a switch, to
the command to create this user is:

#> createuser -a -d -P <username>
For other databases, equivalent permission sets should be assigned
to this user.

Normal user accounts
Normal user accounts need slightly fewer permissions, since their
activities only involve reading and updating the database table
records.

The required permissions for Oracle are:

Roles: CONNECT

RESOURCE

Privileges: EXECUTE ANY PROCEDURE

INSERT ANY TABLE

SELECT ANY SEQUENCE

SELECT ANY TABLE

UNLIMITED TABLESPACE

UPDATE ANY TABLE

Object Permissions SELECT

INSERT

UPDATE

EXECUTE

Statement Permissions CREATE DATABASE

CREATE TABLE
7-2 VisualWorks

Setting up users and groups
For SQL Server, the user needs these permissions:

For PostgreSQL, the user doesn’t need to be able to create the
database, and doesn’t need to add users, so the command line can
include the -D and -A switches. Accordingly, the command to create
this user is:

#> createuser -A -D -P <username>
Again, for other databases the specific permissions be different, but
equivalent.

Setting up users and groups
User groups provide Store with a mechanism for controlling which
users can publish at various blessing levels, and for assigning
package owners and access. Accordingly, it is a mechanism in which
a team can enforce some level of its development processes.

Installing user/group management
Store can optionally enforce user and group access restrictions. To
configure this option:

Roles: CONNECT

RESOURCE

Privileges: SELECT ANY SEQUENCE

SELECT ANY TABLE

UNLIMITED TABLESPACE

UPDATE ANY TABLE

Object Permissions SELECT

INSERT

UPDATE

Statement Permissions (none)
Source Code Management Guide 7-3

Administering Store
1 If you did not install user management while setting up Store,
evaluate this expression to add management support to the
Oracle database:

Store.Privileges installUserManagement
2 When prompted, log on as the table owner (such as BERN).

3 When prompted for an image administrator, enter a user name.

You must enter a name different than the table owner/database
administrator you are logged on as. The user should have normal
user privileges (not table owner), but will be assigned to the
ADMINISTRATOR group.

The two additional tables, TW_DBUserGroup and
TW_DBPundlePrivileges, are then created in the database.

4 In each image, or in the baseline image to be distributed to users,
evaluate these expressions:

Store.Policies blessingPolicy: OwnerBlessingPolicy new.
Store.Policies ownershipPolicy: OwnerOwnershipPolicy new.

You may substitute your own policy methods, overriding these
methods. See Configuring Store Policies for information.

5 Create Store users (see ”Add a user”) corresponding to the
database users you have created (using database utilities), and
assign them to groups.
7-4 VisualWorks

Setting up users and groups
Configuring user groups
User group configuration is done using the User Groups tool. To open
the tool, connect to the repository as the image administrator, then
select Store > Administration > User/Group Management. Initially there are
two default groups, ADMINISTRATOR and QA, and one user, the
image administrator (“integrator” in this example):

The ADMINISTRATOR group is special, in that members of this
group have access to the administration utilities, including User/
Group Management. The image administrator named when installing
User/Group Management is in this group.

Group memberships are shown in a graph. Select one or more
groups and/or users to see the graph.

Add a group
To create a new group, click New Group... Enter a group name, such
as “DEVELOPERS,” in the prompter, and click OK.

You cannot remove groups in this tool, but can do so in the database
table itself using database administration tools.
Source Code Management Guide 7-5

Administering Store
Add a user
To add a user, select the group or groups to which the user will
belong, and click New User... Enter the user name in the prompter and
click OK. The user is added to Store as belonging to the selected
groups.

The user name should be the same as a defined user ID, so the two
can be associated and controlled properly.

Change group membership
To add a user to a group, select the user and the group and click Add.

To remove a user from a group, select the user and the group and
click Remove.

Delete a user
When a user has been removed from all groups, the user is also
removed from the user list when the tool is closed.

Assigning privileges
Ownership, and read and publish privileges can be restricted by
assigning these to users or to groups. Use the User/Group Privileges
tool to assign these access rights. To open the tool, connect to the
repository as the image administrator, and select Store > Administration
> Package Ownership:
7-6 VisualWorks

Garbage collecting the database
To assign a privilege, select the package and the user or group. Then
click Make Owner, Grant Read, or Grant Publish privilege.

Garbage collecting the database
At the end of a project you will have accumulated a lot of versions of
packages and bundles in your database that are not useful for
continued development. Under normal conditions, since Store
employs a versioning database, nothing is ever deleted. The Store
garbage collector gives the database administrator a way to clear out
versions of objects that are no longer needed.

During garbage collection, Store identifies definitions required by
versions that are not being removed, and assigns them to versions
that are remaining in the database. In this way, although versions
only store “deltas,” all required definitions are preserved.

You must be connected as the database administrator to start this
utility. Also, because this is an administrative utility, you need to
inform users of what you are doing, and advise them to reconcile
their images with the database, if required. Reconciling will be
necessary for any image that has a version loaded that has been
garbage collected.

Note that if a version is currently loaded in the image from which
garbage collection is being run, that version cannot be garbage
collected. Doing so would cause the image to be inconsistent.

Garbage collection is a very slow process, and so would normally be
done at the end of a project, and after the source has been archived
for future retrieval. Unnecessary legacy versions can then be cleared
out before further development is done.
Source Code Management Guide 7-7

Administering Store
To open the Store Garbage Collector, choose Store > Administration >
Garbage Collection in the Visual Launcher.

The packages published in the database are listed in the left pane.
Select items to garbage collect, and click Add to garbage to move them
to the Garbage list. Only packages in the Garbage list are checked and
garbage collected.

You may also set two conditions for garbage collection:

• Before Date: specifies that only package versions published before
this date will be garbage collected.

• Highest Blessing: specifies that only package versions at this
blessing level or lower will be garbage collected.

Once you have selected packages and collection criteria, click Accept
to proceed.

The Garbage Collector then scans all the definitions in those
packages for methods and other objects that are not referenced in
any remaining packages, and removes them from the database. If a
removal would invalidate a bundle, a prompter verifies the removal
before proceeding.

To garbage college (remove) a bundle, garbage collect all of its
contents. The bundle is removed when it has no contents.
7-8 VisualWorks

Checking consistency
Checking consistency
It is occasionally valuable to verify the consistency between package
contents and the image. This is done by selecting Store > Check
Consistency in the Visual Launcher. The command will either inform
you that the image is consistent, or issue a warning of errors.

The check is an internal model consistency check, verifying, for
example, that all classes and methods in packages actually exist in
the image, and that there is no confusion about which package owns
a class definition.

If errors are discovered, you may need to execute:

Store.Registry makeConsistent
which attempts to correct several errors.
Source Code Management Guide 7-9

Administering Store
7-10 VisualWorks

8

Porting from ENVY/Developer

A large number of VisualWorks users have used ENVY/Developer as
their source code management system for many years. Since ENVY
is no longer being developed and supported for VisualWorks, it is
essential to move code from the old ENVY database into Store, to
continue taking advantage of advancements in VisualWorks.

ENVY and Store are based on different component models. ENVY
employs a hierarchical model of four different types of components:
configuration maps, applications, subapplications, classes and class
extensions. Store employs a hierarchical model consisting of only two
types of components: bundles and packages.

There are essentially two approaches to moving code from and
ENVY environment into a Store environment:

• use the Store Bridge

• file-out or parcel-out code, and load into a Store image

The Store Bridge provides the advantages that it:

• automatically transfers application structure

• is designed specifically for porting from ENVY 5i to Store

• supports porting ENVY 4.0 to VisualWorks 3.x

However, you cannot use the Store Bridge for:

• porting system changes

• porting from VisualWorks 2.5.x
Source Code Management Guide 8-1

Porting from ENVY/Developer
Since the Bridge is an automated tool, you are should not use the
bridge if you need to, or think you should observe methods and
classes as they are being loaded.

Note that ENVY-based applications often use ENVY specific
methods. You must treat these methods like system changes.

Conceptual porting
One major stumbling block for ENVY users moving to Store has been
in mapping the ENVY conceptual model to the Store conceptual
model.

ENVY structures applications as applications and subapplications,
and imposes a number of restrictions on subapplications. A
“snapshot” of an application consists of an archived set of specific
versions of applications and subapplications.

It is tempting, at first look, to think of packages as analogous to
ENVY applications, and bundles as analogous to configuration maps.
There is enough to the analogies to lead to deeper confusion, but it is
not quite right and will lead to frustration before long. These
analogies are tempting because packages contain code while
bundles contain only packages and other bundles. The analogy
breaks down because thinking in terms of the entities that actually
hold the code is not as important in Store as it is in ENVY, and
bundles do not behave sufficiently like configuration maps.

It would be nearer to think of packages as analogous to applications,
when there are no subapplications, and bundles analogous to
applications when there are subapplications. In ENVY, when an
application became too complex, the practice was to pull out parts
into subapplications, but the application continues holding some of
the code. In Store, the factoring goes differently. You might start
developing in packages, as with applications. But then, when the
package becomes more complex and you need to break it up, you
divide all the code among simpler packages and unite them in a
bundle; you add a higher-level structure rather than just split out
smaller substructures.

While it is true that the code is actually in the package, rather than
the bundle, bundles behave as if they contain the code. For example,
if two packages in a bundle both define the same method, so that one
8-2 VisualWorks

Using file-outs and parcels
would, if the packages were loaded individually, override the other, if
they are bundled they do not behave this way. Instead, the code in
the package loaded later would simply overwrite the earlier.

Bundles are partially analogous to ENVY configuration maps, but not
near enough. A configuration should be a collection of specific
versions of individual components. A bundle, however, itself behaves
as one of those components. As described elsewhere in this
document, there are contexts in which it is safe to treat bundles as
configurations of components (packages), but there are limitations. A
true configuration entity will be introduced for Store in a future
release.

Using file-outs and parcels
ENVY environments support both the file-out and parceling
mechanisms in VisualWorks, so provide a straight-forward approach
to porting code from an ENVY environment. You can use this
approach either to porting your entire application, or for porting just
that code, such as system overrides, that cannot be ported using the
Store Bridge.

The basic procedure is to:

1 Either:

• file out code from your ENVY environment into .st files, or

• create parcels in your ENVY environment, move your code
into them, and save the parcels.

2 Load the file-outs or parcels into a Store environment.

Because there is nothing in this approach that automatically
preserves the structure of your ENVY application, you should create
the file-outs or parcels in such a way that will simplify recovering that
structure in Store.

For the fileout approach, you need to set Fileout Format to Standard,
and evaluate:

System genericFormat: true.
A simple approach that will serve as a first approximation, at least, is:
Source Code Management Guide 8-3

Porting from ENVY/Developer
1 In the ENVY environment, save each application and
subapplication into its own file-out.

2 In the Store environment, create a new package for each file-out.

3 File-in each file-out into the package you created for it.

You can do the equivalent with parcels, though parcels can involve a
little more work to create in the first place.

You cannot represent an ENVY Configuration Map with file-outs or
parcels. The nearest correlation to a configuration map in Store is
currently the bundle, which you can create later, after you have
moved your code into Store packages.

Once your code has been moved into Store packages, you can begin
building bundles, defining prerequisites, and imposing other structure
on the components.

Initialization code also is not preserved, and must be recreated for
Store packages.

Store Bridge
The Store Bridge greatly simplifies the task of migrating applications
between ENVY/Developer and Store. The Bridge is a VisualWorks
add-on component that assists in translating between the different
component and versioning models used by ENVY and Store.

During the conversion, the Bridge provides two principle functions.
First, it assists by converting the organization of a project, preserving
the hierarchical composition of its components; and second, it
provides precise control over how the version history of a project is
migrated.

The Store Bridge manages the conversion between these two
models while preserving the “shape” of a project as it would be
represented in each environment.

Thus, when migrating from ENVY to Store, a configuration map is
converted into a bundle, while applications and subapplications are
converted into either bundles or packages, depending upon the
nesting of subapplications. Since subapplications can be nested in
ENVY, the Bridge uses bundles (which can also be nested) to
represent the structure of a configuration map.
8-4 VisualWorks

Store Bridge
To simplify the conversion process, the Bridge only translates
between the highest-level components in each environment, i.e.,
ENVY configuration maps and Store bundles. For example, when
migrating a project from ENVY to Store, it must be exported as a
configuration map in order to translate the entire structure of the
project.

The Bridge makes use of VisualWorks parcels when transporting
projects. The component structure of the project is preserved using
special properties in the parcel. Parcels provide the flexibility of a
shared medium for transporting components between the two
environments.

The following pages describe the process of exporting a project from
ENVY, importing it into Store, and finally, publishing the project in the
Store repository.

Compatibility
The Store Bridge can be used to port project code from both ENVY/
Developer R4.0 (the ENVY version for VisualWorks 3.0) and R5i.1
(the ENVY version for VisualWorks 5i.x) to VisualWorks 5i.x.

When moving projects between ENVY R4.0 and VisualWorks 3.x,
there will be general porting issues relating to the use of the new
language features added in VisualWorks 5i and subsequent releases.
For example, in VisualWorks 5i, global variables, class variables, and
pool variables are replaced by shared variables, and the monolithic
Smalltalk pool is broken up into name spaces. For details on such
changes, refer to the Application Developer’s Guide.

Environment Migration Options

ENVY/Developer R4.0 Export configuration maps with version history

ENVY/Developer R5i.2 Export configuration maps with version history

VisualWorks 5i.x Import configuration maps with version history
Source Code Management Guide 8-5

http://www.cincomsmalltalk.com/documentation/current/AppDevGuide.pdf

Porting from ENVY/Developer
Installing the bridge
The Store Bridge is delivered as two code components. The first is an
ENVY DAT file (Bridge.dat), while the second is a VisualWorks 5i
parcel (Store-Bridge.pcl). The Store Bridge is installed by loading the
DAT file into the ENVY environment, and then loading the parcel into
the Store environment. Both of these components are located in the
store subdirectory of the standard release of VisualWorks.

Installing the Bridge in the ENVY environment
To install the Store Bridge, you must first import a DAT file into a
running ENVY/Developer image:

1 Copy the Bridge.dat file to where your ENVY library resides (see
your ENVY library supervisor if you need assistance).

2 Open a Configuration Maps browser (by selecting ENVY >
Browse Configuration Maps in the Launcher window).

3 In the left-hand pane of the Configuration Maps browser, select
import... from the <Operate> menu.

4 Enter Bridge.dat (provide the path, if necessary).

5 Select the following configuration map and version to import into
the current library:

VisualWorks Store Bridge
To actually choose the configuration map, click on the >> button
and then click on OK.

The VisualWorks Store Bridge should now be visible in the Names
list of the Configuration Maps browser.

6 To load the Store Bridge, select the name of the configuration
map, the version number in the Editions and Versions view (1.0), and
the name of the application in the right-hand view (StoreBridge
0.21). Then, select load from the <Operate> menu in the
Applications view.

The Store Bridge may now be used to export configuration maps.

Before proceeding, you should save your ENVY/Developer image.
8-6 VisualWorks

Exporting an ENVY configuration map
Installing the Bridge in the Store environment
To complete the installation of the Store Bridge, launch a
VisualWorks team development image (VisualWorks with Store
loaded). Next, load the Store Bridge parcel into the running image:

• In the Launcher window, select Tools > Load Parcel Named... and
enter StoreBridge at the prompt.

Once the parcel has loaded, the menu item Convert Configuration Map...
should appear on the Launcher window’s Store menu.

If you wish to use the Store Bridge a number of times, you may want
to save the image now.

Exporting an ENVY configuration map
To export a Configuration map from an ENVY/Developer image,
perform the following steps:

1 With Store Bridge loaded, use the ENVY Configuration Maps
browser to load the version of the configuration map that you
want to export.

2 Open the Store Packager (select Tools > Open StorePackager... in
the Launcher window).

The Store Packager Tool opens.

3 A list of loaded configuration maps is displayed in the upper part
of the tool. Pick the one that you want to export. A list of
prerequisites for the selected configuration map will appear.

4 To specify a different name for the exported bundle, change
Bundle Name.

5 To export the configuration map, click on Save Parcel. A parcel
save dialog will appear, prompting you for various options (for
details on these options, see the Application Developer’s Guide).

The configuration map is saved as a parcel file.
Source Code Management Guide 8-7

http://www.cincomsmalltalk.com/documentation/current/AppDevGuide.pdf

Porting from ENVY/Developer
Importing and publishing an ENVY configuration map
To import an ENVY configuration map into a running Store image:

1 In the Launcher window, select Tools > Load Parcel Named... and
enter the name of the parcel that contains the exported
configuration map.

2 Once the parcel has loaded, select Store >
Convert Configuration Map... in the Launcher window.

The Conversion Tool opens as shown below:

The list of candidate parcels should display the one that you just
loaded in step 1.

3 Select the parcel that you want to import.

4 Select the appropriate conversion options.

To remove the special package properties added by the Store
packager, select Remove Packager Properties when converting to a
bundle. By default, this should be selected.

To remove the empty package that remains after the parcel has
been converted to a bundle, select Remove Empty Packages. By
default, this should be selected.

To preserve the same version identifiers used in the ENVY
environment, select Use Store Version Names. This must be selected
if you plan to use Publish Former Configuration Map in the Package
Browser.
8-8 VisualWorks

Importing and publishing an ENVY configuration map
When the conversion is complete, the configuration map appears as
a new bundle. The original structure of the ENVY configuration map
is accurately represented by the shape of the Store bundle.

You may use the Store Loaded Items List to examine the new bundle
(select Store > Loaded Items in the Launcher window).

Publishing a converted bundle to the Store repository
Before publishing the converted bundle to the Store repository, you
should first reconcile it to check if a different version has already been
published.

Reconciling a bundle with the repository assigns the version already
published as the parent of the version in the local image. This allows
Store to establish the appropriate relations and version numbers
when you publish.

If another version has previously been published, the reconcile
function will allow you to choose the version that you want to keep in
the repository, and will establish a proper relation with the parent
version.

1 To reconcile a package, first open a Package Browser (select
Store > Browse Packages in the Launcher window).

2 Highlight the package in the upper-left-hand view of the Package
Browser, and select Reconcile with Database from the <Operate>
menu.

Note: You may skip this step if you know the bundle and all of its
elements have never been previously published; however, to
establish proper version history it is best to check by reconciling
first.

3 To publish the package in the repository, highlight the package in
the upper-left-hand view of the Package Browser, and select
Publish... from the <Operate> menu.

The Store Publishing dialog window will open, allowing you to set
the version identifier, blessing level, and blessing comment.

You may also preserve the ENVY version identifier when
publishing the converted project by selecting
Publish Former Configuration Map... from the <Operate> menu.To
preserve the ENVY version identifiers, you must have selected
Use Store Version Names in Conversion Tool.
Source Code Management Guide 8-9

Porting from ENVY/Developer
Migrating complete version history
The Store Bridge enables the migration of the complete version
history of a project. A series of project versions may be imported and
published in the code repository of the target environment.

This version history can only be exported from the ENVY
environment and imported into Store. Each version of the project
must be transferred as a separate parcel.

To migrate a series of versions from ENVY to Store:

1 Launch the ENVY image and ensure that the Store packager has
been loaded.

2 Beginning with the oldest version you wish to migrate, follow the
steps described for Exporting an ENVY configuration map

3 Repeat step 2 for each version that you wish to migrate, creating
a different parcel for each version.

4 Exit the ENVY environment and start the Store image with the
Bridge parcel loaded.

5 Beginning with the oldest version you wish to migrate, follow the
steps described in Importing and publishing an ENVY
configuration map

Before loading each subsequent version of the project, it is
necessary to unload the currently loaded version. This can be
accomplished either by unloading the bundle (select the bundle
in the Package Browser, and then choose Unload... from the
<Operate> menu in the upper-left-hand view), or by simply quitting
and restarting the image.

6 Import the next version of the project, but when publishing it
make sure to reconcile it, selecting the previously published
version as the parent (see Publishing a converted bundle to the
Store repositoryabove, for details).

When performing a reconcile, Store will establish a proper
relation with the parent version, only publishing the deltas
between the two subsequent versions.

7 Repeat step 6 for each version that you wish to migrate,
publishing each with a distinct version number.
8-10 VisualWorks

Known limitations
Known limitations
The Store Bridge works with ENVY configuration maps and the
applications and subapplications contained within. ENVY provides
native support for exporting individual applications as parcels, but any
subapplications contained within the applications will not be
exported.

In porting from ENVY 4.0, some information that is tagged on
methods in the ENVY environment is not exported, in particular “user
fields.”
Source Code Management Guide 8-11

Porting from ENVY/Developer
8-12 VisualWorks

A

Store Setup for DBAs

Store can use several database back-ends for code storage.

Currently, we support:

• Any Oracle 7 or later database, except Oracle Lite which is not
supported.

• SQL Server version 7 is supported on Windows platforms.

In addition, third-party supported backends are available for

• PostgreSQL

• DB2

• InterBase

There is generally little setup required for the database backend itself,
beyond having the database itself installed and a user account
defined to be used by the Store administrator. The instructions
provided in this appendix summarize only the steps that may need to
be performed by the database administrator, prior to the Store
administrator’s installing the database tables.

For full Store installation instructions, see Configuring Store.
Source Code Management Guide A-1

Store Setup for DBAs
Set Up Oracle
1 Using the database administration tools, create a database

administrator account, with the roles CONNECT and DBA.

The default DBA account name is BERN. If you use another
name, set the Database table owner in Store > Settings to that name
before building the tables in step 3.

2 Create a directory to hold the Store data files.

Set Up SQL Server
When installing SQL Server, you have a choice of making it case
sensitive or case insensitive. It is important, for the proper operation
of Store, that it be installed case sensitive.

1 (Optional) Using the SQL Server Enterprise Manager, create a
database owner account.

The default database owner account name is BERN. To use
another name, set the Database table owner in the Store > Settings to
that name before building the tables in step 3.

2 Create a directory (for example, \visualworks\packages) to hold the
Store data files.

Set Up PostgreSQL
PostgreSQL support for Store is provided as a goodie and is
supported by its developer. For updated and more complete
information, refer to http://sourceforge.net/projects/st-postgresql/.

Assuming you already have a PostgreSQL database installed and
configured for normal access, do the following to set up Store:

1 Log on as the PostgreSQL owner.

2 Create a database owner account for Store, by executing at the
command prompt:

#> createuser -d -a -P <username>
The default Store database owner account name is BERN. To
use another name, the table owner will have to set the Database
table owner in the Store > Settings in VisualWorks before building
the tables.
A-2 VisualWorks

http://sourceforge.net/projects/st-postgresql/

Set Up DB2
3 Create the database in PostgreSQL, by executing at the
command prompt:

#> createdb <dbname>
This creates the database in the directory set in $PGDATA, usually
/var/lib/pgsql, but may differ for your installation. To create it in a
different directory, use the -D switch:

#> createdb -D <dbpath> <dbname>
Refer to the createdb manpage for command details.

Set Up DB2
These instructions are extracted from the instructions provided by the
developer (goodies/other/db2/doc/db2connect.pdf).

1 Create new DB2 database

Example below: On Windows run “DB2 Command Window” and
then execute:

db2 create database myStore on D
where myStore is the database name, and D is the location (drive
D:).

On Linux execute:

db2 create database myStore on /usr/mystore
where /usr/mystore path to database files.

2 Change some database parameters:

Execute (it’s single command):

db2 update db cfg for mystore using
APP_CTL_HEAP_SZ 512 LOGSECOND 50
Source Code Management Guide A-3

Store Setup for DBAs
Set Up Interbase
These instructions are extracted from the instructions provided by the
developer (goodies/other/InterBase/doc/ibusing.html).

Interbase and Firebird databases and instructions for their installation
are available at http://ibphoenix.com/.

Now you can:

• create database

• add new user account;

• test of connection;
A-4 VisualWorks

http://ibphoenix.com/

B

Creating a Custom Install Script

You can create a custom installation script for special purposes. The
script allows you to change the directory path and the tablespace
names, and customize table access rights. The resulting script can
be executed from within VisualWorks, or saved as a file and executed
as an SQL script by a database administrator.

This script option is particularly important for tightly controlled
database environments, in which the database administrator carefully
controls how tables are created and access is granted. The script,
which contains SQL, can be submitted for review, modification, and
execution.

To create the script, evaluate in a workspace:

Store.DbRegistry createInstallScript
This opens Log Window. You will be prompted to enter the table
space directory path, which is the directory where the Store database
files will be created. Enter the directory path and click OK.
Source Code Management Guide B-1

Creating a Custom Install Script
The script to create the files and build the tables is created in the Log
Window.

Edit this script as needed.

To execute the script within VisualWorks, select Execute SQL > Execute
all. After the tables have been installed, select PostInstallation > Run,
which will prompt you for a database name. Enter a name that will
uniquely identify this Store repository and click OK.

If the script must be run outside of VisualWorks by a DBA, save the
script using File > Save As. When the script is executed, no database
name is specified. The first person to attempt to connect to the
repository will be prompted for the database name. Enter the name
and click OK.
B-2 VisualWorks

Index
B
blessing level

changing 6-6
bundles

browse in Store 5-9
load from repository 5-10
publish 5-16

C
change set

Store 5-13

E
external files 4-14

I
indicators 5-12

L
limitations 1-7

O
override

defined 4-22

P
packages

browse in Store 5-9
browser markers 5-12
create 4-9
guidelines 4-1
initialize code 4-11
load from repository 5-10
load sequence 4-11
properties 4-12
publish 5-15
state indicators 5-12

pad source 4-21
PostgreSQL 3-5
Published Items browser 5-11

R
reconcile 2-19
reconcile to database 5-6
repository

garbage collection 7-7
local 5-8

purge 7-7
set owner 3-2, 3-4, 3-5, A-2
set up 3-2
switching 5-7

repository owner
setting A-2

S
Steps 3-4
Store

add user 7-1
create package 4-9
group management 7-3
initialize package code 4-11
integrate versions 6-6
Merge Tool 6-9
owner 3-2
select package 4-10
set owner 3-4, 3-5
set up repository 3-2
user account 7-1
user management 7-3
working off-line 5-3

U
users

adding 7-1

V
versions

browse 6-4
browsing and comparing 6-4
change blessing level 6-6
compare 6-4
defined 6-1
integrating 6-6
parent 6-1
Souce Code Management Guide Index-1

Index
Index-2 VisualWorks

	About This Book
	Audience
	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information

	Introduction
	What is Store?
	Store Features
	Code Storage in Store
	Concurrent Development
	A Development Methodology
	Versioning
	Parallel Development
	Blessing levels
	Publishing policies

	Database limitations

	Beginning to Use Store
	A Simple Approach
	Assumptions

	Install Store into VisualWorks
	Install the Store Database Tables
	Publishing the Base
	Explore the System Contents
	Load Application Code
	Loading Parceled Code into Store
	Publishing Packages

	Loading and Reorganizing HotDraw
	Build a Bundle
	Publish the Bundle

	Comparing with Another Repository
	Get Open Repository Access
	Reconciling to the Repository
	Browsing Differences
	Adopting a Difference
	What we Changed in this Section

	Configuring Store
	Loading Store into VisualWorks
	Configuring the Store Database
	Oracle Setup
	SQL Server Setup
	PostgreSQL Setup
	DB2 Setup

	Publishing the VisualWorks Base
	Making Changes to the Base
	Updating to a New Base

	Team Working Environments
	Local and Shared Repositories

	Configuring Store Policies
	Installing a Policy
	Blessing Policy
	Merge Policy
	Ownership Policy
	Package Policy
	Prerequisite Policy
	Publish Policy
	Version Policy

	Organizing Code in Store
	Patterns for Organizing Code
	Guidelines for Defining Packages
	Guidelines for Defining Bundles
	Using Bundles to Organize Projects

	Prerequisites and Load Order
	Suggestions for Setting up Dependencies
	Suggestions for Setting Dependencies for Deployment
	A Simplified Approach

	Importing Code into Store
	Packaging Source in the Image
	Packaging Source from File-outs
	Packaging Code from Parcels

	Working with Packages
	Creating Packages
	Assigning New Definitions to Packages
	Moving Definitions to Packages
	Loading Atomically
	Package Load and Unload Actions
	How a Package is Loaded

	Working with Bundles
	Creating and Arranging Bundles
	Editing a Bundle Specification
	Bundle Load and Unload Actions
	Including External Files

	Specifying Prerequisites
	Specifying a Prerequisite Version
	Suppress Warnings

	Publishing Packages and Bundles
	Basic Publishing
	Publish Binary
	Publish Parcel

	Overriding Definitions
	Reorganizing Packages
	Renaming a Package or Bundle
	Reorganizing Name Spaces

	Maintaining Your Store Environment
	Working Connected and Disconnected
	Connecting to the Database
	Detaching from the Database
	Saving Connection Profiles

	Working Off-line
	Preparing to Work Off-line
	Resuming Work with the Database

	Working with Multiple Databases
	Reconciling to a Database
	Switching Databases
	Removing Database Links
	Using a Local Database
	Publishing Back to the Team Database

	Maintaining your Working Image
	Browsing Loaded Packages and Bundles
	Examining the Contents of a Bundle
	Loading Published Code
	Loading a Bundle
	Loading a Package

	Updating to New Versions
	Browsing Packages and Definitions
	Browsing Loaded Code
	Browsing Unloaded Code
	Browsing Shared Variable Definitions

	Browsing with Package Changes and Overrides
	Updating Published Source Code
	Updating from a Build

	Publishing a Component
	Pre-publication Checks
	Comparing to the Parent Version
	Inspecting Changes
	Merging with Another Version

	Publishing a Bundle
	Publishing an Individual Package

	Exporting code

	Version Control
	Versions
	Package and bundle version strings
	Blessing levels

	Working with versions and blessings
	Browsing a version history
	Comparing versions
	Package views
	Class views
	Protocol and method views
	Text views

	Changing a version’s blessing level

	Integrating code versions
	Relationships among versions
	Conflicting and nonconflicting modifications
	Merging two versions of a package
	Integrating a set of packages
	Resolving conflicts
	Excluding nonconflicting modifications
	Creating the merged version

	Administering Store
	User Administration
	Adding Store users
	Table owner accounts
	Normal user accounts

	Setting up users and groups
	Installing user/group management
	Configuring user groups
	Add a group
	Add a user
	Change group membership
	Delete a user

	Assigning privileges

	Garbage collecting the database
	Checking consistency

	Porting from ENVY/Developer
	Conceptual porting
	Using file-outs and parcels
	Store Bridge
	Compatibility

	Installing the bridge
	Installing the Bridge in the ENVY environment
	Installing the Bridge in the Store environment

	Exporting an ENVY configuration map
	Importing and publishing an ENVY configuration map
	Publishing a converted bundle to the Store repository

	Migrating complete version history
	Known limitations

	Store Setup for DBAs
	Set Up Oracle
	Set Up SQL Server
	Set Up PostgreSQL
	Set Up DB2
	Set Up Interbase

	Creating a Custom Install Script
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

