
Technical Note

VisualWorks Memory Management

COPYRIGHT: 2003-2009
COPYRIGHT HOLDER: CINCOM SYSTEMS, INC.
CREATION DATE: OCTOBER 2003
REV DATE: APRIL 17, 2009
PRODUCT NAME: VISUALWORKS
VERSION: 7.7

This document describes the memory management strategies used by
the VisualWorks virtual machine (object engine).

This information is helpful when performance tuning certain memory-
intensive applications. It is especially relevant for deploying applications
with large working sets (e.g. one gigabyte or larger).

The facilities and policies described here are subject to change from
release to release, so use this information with caution.

This technical note explores the following topics:

• Memory Layout

• Facilities for Reclaiming Space

• Managing the Object Memory

• Preparing for Deployment

• Implementation Limits

Memory Layout
At start-up, VisualWorks asks the operating system to allocate a portion
of the available address space to house objects, native code and other
resources, and then begins executing. Subsequently, VisualWorks may
grow or shrink its memory usage dynamically.

VisualWorks runs as an operating system process with access to the
full 32-bit address space made available to it by the operating system.
As VisualWorks uses 32-bit pointers for Smalltalk objects, it can use as
much of the 32-bit address space for objects as the host operating

Memory Layout
sytsem will allow, but on 64-bit operating systems only 32 bits of the
address space can be allocated for objects (this limitation may be
removed in a future release).

VisualWorks makes a number of demands upon the address space. For
example, each of the following can consume a fair amount of memory in
the address space:

• Code and static data that belong to the object engine

• Dynamic allocations made by the “C” run-time libraries (such as
stdio buffers)

• Dynamic allocations made by the window-system libraries

• Static and dynamic allocations made by the object engine

This section discusses only the algorithms associated with the last item.

The object engine manages two types of memory space: (1) a set of
fixed-size spaces associated with the object engine and (2) a set of
variable-sized spaces that comprise the Smalltalk object memory.

Fixed-Sized Spaces
The object engine allocates the following fixed-size memory spaces at
system start-up time:

• Compiled Code Cache

• Stack Space

• New Space

• Large Space

• Perm Space

Variable-Sized Spaces
The object engine allocates an initial size for the following variable-
sized spaces at start-up, sufficient to hold the existing old and fixed
space objects, plus a free-space overhead in each.

• Old Space

• Fixed Space

Memory Organization
Each of these fixed- and variable-sized spaces is used by the object
engine to house program elements of a particular type.
VisualWorks Memory Management 2

Memory Layout
The object engine organizes these spaces as shown below:

The diagram shows organization of the address space that belongs to a
VisualWorks process, with code, non-objects, and the fixed portions of
the object memory in the lower portion of the space, and the dynamic
spaces and segments of the object memory above.

Compiled Code Cache
To avoid the overhead of interpreting bytecodes, the object engine
compiles each Smalltalk method into the platform’s machine code
before executing it. The compilation is automatic and transparent to the
user.

When a Smalltalk method is invoked for the first time, the object engine
compiles it and stores the resulting machine-code in the Compiled
Code Cache, so that it can be executed. Once executed, this method’s
machine-code is left in the Compiled Code Cache for subsequent
execution.

As its name suggests, this space is only used as a cache. If the cache
begins to overflow, those methods that have not been executed recently
are flushed from the cache. This approach gives Smalltalk much of the
speed that comes with executing compiled code, most of the space
savings, and all of the portability that come with interpretation.
VisualWorks Memory Management 3

Memory Layout
The size of this cache varies, depending on the density of the platform’s
instruction set. Default sizes are 640 KB for platforms with CISC-based
processors and 1152 KB for RISC platforms. These sizes are large
enough to contain the machine-code working sets of most applications.
The size can be changed at at image startup, as described under
Setting Object Engine Space Sizes (below), to a maximum of 16 MB.

The compiled code cache is also used by the garbage collector to store
the mark stack (for details, see Global Garbage Collector below), and to
decompress compressed virtual image files on start-up.

Stack Space
Each process that is active in the virtual image (VI) is associated with a
chain of contexts. Contexts are stored in two forms: the standard object
format and the frame format.

When a Smalltalk program tries to send a message to or access an
instance variable of a given context, that context must be in standard
object form and housed in object memory. If it is not already in standard
object form, then it is converted. The conversion to and from standard
object format is transparent to the user.

On the other hand, when the method associated with a given context is
actually being executed, that context must be in frame format and
housed in the Stack Space. Once again, the conversion to and from this
form is automatic and transparent to the user. The frame format of the
contexts has been designed to mate well with the typical machine’s
subroutine-call instructions.

The Stack Space is used as a cache. If there isn’t enough room in the
Stack Space to store all of the contexts of all of the active processes,
then the object engine converts some of these contexts to standard
object form and places them in object memory to clear some Stack
Space. When the system needs to execute the methods associated
with these contexts, it converts the contexts back to frame format and
places them back in the Stack Space.

The default size of this space varies from 20 KB to 40 KB, depending
upon whether a given platform handles interrupts in another region of
memory, or whether it needs to handle these interrupts in Stack Space.
The size can be changed at image startup, as described under Setting
Object Engine Space Sizes below. You can reduce the size of the Stack
Space, at the cost of forcing the object engine to convert contexts more
frequently from frame format to standard object format and back again.
Or you can increase its size, at the cost of the additional memory.
VisualWorks Memory Management 4

Memory Layout
New Space
New Space is used to house newly-created objects. It is composed of
three partitions: an Object Creation Space, which we call Eden, and two
Survivor Spaces.

When an object is first created, it is placed in Eden. When Eden starts
to fill up (i.e., when the number of used bytes in Eden exceeds a
threshold known as the scavenge threshold), the system’s scavenging
mechanism is invoked. Objects that are still reachable from the system
roots are placed in whichever Survivor Space happens to be
unoccupied at the time (one is always guaranteed to be unoccupied).
Thereafter, objects that survive each scavenge are shuffled from the
occupied Survivor Space to the unoccupied one. When the occupied
Survivor Space begins to fill up (i.e., when the number of used bytes in
the occupied Survivor Space exceeds a threshold known as the tenure
threshold), the oldest objects in Survivor Space are moved to a special
part of object memory called Old Space. When an object is moved from
New Space to Old Space, it is said to be tenured. Both the scavenge
threshold and the tenure threshold can be set dynamically (see the
class ObjectMemory for details).

The default size of Eden is 300 KB, and each Survivor Space (they are
always identical in size) is 60 KB. These sizes can be changed at at
image startup, as described under Setting Object Engine Space Sizes
(below).

Large Space
Large Space is used to house the data of large byte objects (bitmaps,
strings, byte arrays, uninterpreted bytes, etc.). By “large,” we mean
larger than 1 KB.

When a large byte object is created, its header is placed in Eden and its
data in Large Space. This arrangement permits the scavenger to move
the object’s header from Eden to a Survivor Space without having to
move the object’s data. In fact, the data that is housed in Large Space
is only moved when Large Space is compacted, as part of a
compacting garbage collection or to make room for another large byte
object or in preparation for a snapshot.

Of course, the data of any object can be housed in Large Space, but
small objects and large pointer objects are only placed in Large Space
if there is no other place to house them. The data of large pointer
objects is not housed in Large Space because it would take up valuable
VisualWorks Memory Management 5

Memory Layout
space without saving the scavenger much work. (Since such data is
composed of object pointers, the scavenger has to scan it anyway, and
it’s not expensive to move the data while scanning it.)

If there are too many large objects to fit in Large Space, older ones are
moved to object memory proper.

When the amount of data housed in the Large Space exceeds a
threshold known as the LargeSpaceTenureThreshold, the scavenger is
informed that it should start to tenure the headers of large objects.
During the next scavenge, the headers of the oldest large objects are
tenured to Old Space. However, the data of these large objects will not
be moved from Large Space until the allocator actually runs out of
space in Large Space. Only at that time will the data of these older
large objects be moved to Old Space. The LargeSpaceTenureThreshold
can be set dynamically.

The default size of Large Space is 200 KB. Again, the size can be
changed at image startup, as described under Setting Object Engine
Space Sizes (below).

Perm Space
Perm Space is used to hold all semi-permanent objects. Because they
are rarely ready to die, the objects housed in Perm Space are exempt
from being collected by any of the reclamation facilities other than the
global garbage collector. By removing such objects from Old Space, the
time required to reclaim the garbage that may be present in Old Space
is reduced many times.

In the delivered virtual image, most of the objects in the system are
housed in Perm Space. Newly created objects that are placed in Old
Space by the scavenger are not automatically promoted to Perm
Space.

Developers can move Old Space objects into Perm Space (and thus
improving the efficiency of garbage reclamation) by creating an image
by choosing File fi Perm Save As... in the VisualWorks Launcher window.

For details, see Promoting Objects to Perm Space (below).

Smalltalk Object Memory
In addition to the above fixed-size memory spaces, the object engine
also manages two variable-size spaces known as Old Space and Fixed
Space. These spaces are warehouses for all objects that are not
housed in one of the fixed-size spaces described above.
VisualWorks Memory Management 6

Memory Layout
Old Space
Unlike the above spaces, however, the size of Old Space is not frozen
at startup time. Instead, it is configured at startup time with a default of
1 MB of free space. When Old Space begins to run short of free space,
the system has the option of increasing its size. This growth is
accomplished by means of a primitive that attempts to acquire
additional address space from the operating system.The decisions
regarding when to grow Old Space and by how much are controlled by
an instance of MemoryPolicy. See that class for the default policy.

Although Old Space may be thought of as a single contiguous chunk of
memory, it is implemented as a linked list of segments occupying the
upper portion of the system’s heap. Old Space’s growth capability
dictates this approach because, for example, I/O routines frequently
allocate portions of the heap for their own use, creating intervening
zones that divide Old Space into separate segments. In a growing
system, then, Old Space may be composed of multiple segments.
When these multiple segments are written out at snapshot time, they
are stripped of their free space to conserve disk space. In addition, to
avoid fragmentation, the segments are coalesced into one large
segment when the snapshotted image is loaded back into memory at
startup time.

Each Old Space segment is composed of two parts: an object table
(OT) that is used to house the old objects’ headers, and a data heap
that is used to house the objects’ data. The data heap is housed at the
bottom of the segment and grows upward; the object table is housed at
the top of the segment and grows downward. Both the object table and
the data heap are compacted by the compacting garbage collector.

Since the object table and the data heap grow toward each other
(thereby consuming the same block of contiguous free space from
different directions), the system should never run out of space for new
object headers while still having plenty of space for object data, and
vice versa. Nor is there any arbitrary limit on the total size of Old Space,
the total size of a given Old Space segment, or the number of Old
Space segments that can be acquired. The only memory-related
resource that the system can run out of is address space. On real-
memory machines, this translates to available real memory. On virtual-
memory machines, it corresponds to available swap space.

In addition, the system maintains a threaded list of free object table
entries and a threaded free list of free data chunks. The incremental
garbage collector recycles dead objects by placing their headers and
bodies on these lists, and the Old Space allocator tries to allocate
VisualWorks Memory Management 7

Memory Layout
objects by utilizing the space on these lists before dipping into the free
contiguous space between the object table and the data heap of each
segment. Finally, a certain portion of the free contiguous data is
reserved for use by the object engine to ensure that it can perform at
least one scavenge in extreme low-space conditions, thereby providing
the system with one final opportunity to take the appropriate action.

The default size of Old Space is set to the amount needed to house the
old space objects in the image plus 1 MB of free space "headroom".
The headroom size can be changed at image startup, as described
under Setting Object Engine Space Sizes (below).

Fixed Space
Fixed Space is used to hold data (the body) of byte objects whose data
must not move. This is a requirement for data passed through the
threaded API (THAPI), since threaded calls may be in process
concurrently with a garbage collection. The data does not move during
the object’s life, but the space is reclaimed when the object is garbage
collected.

Since the contents of Fixed Space can’t move, it cannot be compacted,
and so quickly becomes fragmented. Fixed Space is coallesced at
image start-up, so can be compacted by saving the image, quitting, and
then restarting.

New Fixed Space segments are added as needed, like Old Space.
When the image is saved, these multiple segments are stripped of their
free space to save file space. They are then coalesced into one large
segment when the image is loaded back into memory at startup.

Object data ends up in fixed space if it is either:

• allocated explicitly, or

• passed as an argument of a threaded call.

The default size of fixed space is 200 K. Again, the size can be
changed at image startup, as described under Setting Object Engine
Space Sizes (below).

Remembered Tables
Remembered Tables are structures used by the garbage collector to
track references between various spaces. They are housed in Old
Space.
VisualWorks Memory Management 8

Facilities for Reclaiming Space
The remembered table (RT) is a special table that contains one entry
for each object in Old Space or Perm Space that is thought to contain a
reference to an object housed in New Space.

The objects in the remembered table are used as roots by the
scavenger — if an object is not transitively reachable from either the
remembered table or the Stack Space, it will not survive a scavenge.
The remembered table is expanded and shrunk as needed by the
object engine. It is expanded if the object engine tries to store more
entries than the RT can currently house, and it is shrunk during
garbage collections when it has become both large and sparse, which
can occur if a large number of entries were added and subsequently
removed.

The old remembered table (OldRT) is a special table that contains one
entry for each object in Perm Space that is thought to contain a
reference to an object housed in Old Space or Large Space.

The objects in the OldRT are used as roots by the incremental garbage
collector and the compacting garbage collector — if an object is not
transitively reachable from the OldRT, it will not survive a garbage
collection. The OldRT is expanded and shrunk as needed by the OE. It
is expanded if the OE tries to store more entries than the OldRT can
currently house, and it is shrunk during garbage collections when it has
become both large and sparse, which can occur if a large number of
entries were added and subsequently removed.

Facilities for Reclaiming Space
The object engine has several facilities for reclaiming the space
occupied by objects that are no longer accessible from the system
roots:

• Generation scavenger

• Incremental garbage collector

• Compacting garbage collector

• Global garbage collector

• Data compactor

Except for the scavenger, the object engine does not invoke these
facilities directly. Policy decisions such as these are controlled at the
Smalltalk level — see the ObjectMemory and MemoryPolicy classes for
the default policies.
VisualWorks Memory Management 9

Facilities for Reclaiming Space
Generation Scavenger
The primary reclamation system is a generation scavenger. The
scavenger flushes objects that expire while residing in New Space
(which typically applies to more than 95 percent of objects).

Briefly, the scavenger works as follows. Whenever Eden is about to fill
up, the scavenger is invoked. It locates all of the objects in Eden and
the occupied Survivor Space that are reachable from the system roots.
It then copies these objects to the unoccupied Survivor Space. Once
this copying is done, Eden and the formerly occupied Survivor Space
contain only corpses — they are effectively empty and can be reused.
The scavenger uses the objects in the remembered table and the
objects referenced from the Stack Space as roots.

The scavenger’s operation is imperceptible to the user. To ensure that
this is so, the scavenger will start to tenure objects from New Space
and place them in Old Space if the number of survivors starts to slow
down the speed of the scavenger’s operation.

Incremental Garbage Collector
Unlike the scavenger, which only reclaims objects in New Space and
Large Space, the incremental garbage collector (IGC) reclaims objects
in Old Space, New Space and Large Space. It does so incrementally,
recycling dead objects by placing their headers and their bodies on the
appropriate threaded free list.
VisualWorks Memory Management 10

Facilities for Reclaiming Space
The IGC can be made to stop if any kind of interrupt occurs, or it can be
made to ignore all interrupts. In addition, you can specify the amount of
work that you want the IGC to perform, both in terms of the number of
objects scanned or the number of bytes scanned — it will stop as soon
as either condition is satisfied.

The IGC has five distinct phases of operation:

• Resting — the IGC is idle.

• Marking — the IGC is marking live objects.

• Nilling — the IGC is nilling the slots of WeakArrays whose referents
have expired.

• Sweeping — the IGC is sweeping the object table, placing dead
objects on the threaded free lists.

• Unmarking — the IGC is unmarking objects as a result of the mark
phase being aborted, either at the user’s request or because the
IGC ran out of memory to hold its mark stack.

The typical order of operation is:

1 resting

2 marking
VisualWorks Memory Management 11

Facilities for Reclaiming Space
3 nilling

4 sweeping

5 resting

The unmarking phase is only entered if the mark phase is aborted, and
it leaves the IGC in the resting phase when it is finished unmarking all
objects.

With the exception of the nilling phase, each of the above phases is
performed incrementally; that is, each can be interrupted without losing
any of the work performed prior to the interruption. The IGC never
performs more than one phase per invocation, unless the IGC notices
that the marking phase has finished. When this occurs, nilling happens
immediately and atomically to ensure that this is done while the object
marks are current and consistent with the state of the image.

The provision for other phases (e.g., the marking phase) being able to
do work incrementally permits clients to specify different workloads and
different interrupt policies for the different phases. Consequently, clients
will need to wrap their calls to the IGC in a loop if they want it to
complete all of the phases. There is protocol for doing this in the
ObjectMemory class.

The object engine never invokes the IGC directly. Only Smalltalk code
can run it. A typical memory policy might be to run the IGC in the idle
loop, in low-space conditions, and periodically in order to keep up with
the Old Space death rate. See the MemoryPolicy class for the default
policy.

Compacting Garbage Collector
The compacting garbage collector is a mark-and-sweep garbage
collector that compacts both object data and object headers. This
garbage collector marks and sweeps all of the memory that is managed
by the object engine except for Perm Space, whose objects are treated
as roots for the purposes of this collector. This garbage collector is
never invoked directly by the object engine, since the duration of its
operation could be disruptive to the Smalltalk system.

Global Garbage Collector
The global garbage collector is a mark-and-sweep garbage collector
that is identical to the compacting garbage collector except that it marks
and sweeps all of the memory that is managed by the object engine,
VisualWorks Memory Management 12

Memory Policies
including Perm Space. This garbage collector is never invoked directly
by the engine, since the duration of its operation could be disruptive to
the Smalltalk system.

You might want to invoke the global garbage collector when you
suspect that there are many garbage objects in Perm Space. This
would reduce the size of the image file produced by a subsequent File fi
Save As.... It would also reclaim the space occupied by garbage objects
in Old Space, New Space and Large Space that are only kept alive by
references from garbage objects housed in Perm Space.

Since the global garbage collector uses the compiled code cache to
store the mark stack, the default size may be inadequate for large
images. If garbage collection fails due to inadequate memory, change
the size of the compiled code cache at startup, by sending a
sizesAtStartup: message to ObjectMemory. For details, see Setting Object
Engine Space Sizes (below).

Data Compactor
The system also has an Old Space data compactor. Because this
facility does not try to compact the object table, or mark live objects, it
runs considerably faster than either of the two garbage collectors. It
should be invoked when Old Space data is overly fragmented.

For details using the data compactor, see Promoting Objects to Perm
Space (below).

Memory Policies
The object engine only supplies the low-level mechanisms for
managing the object memory, allocation, and garbage collection. It is up
to the Smalltalk memory-management code to utilize these
mechanisms in a judicious manner. The latter belongs to the virtual
image, and is accessible to the application developer.

The object engine provides an interface to the Smalltalk memory-
management code via primitives, which is accessed via the classes
ObjectMemory and MemoryPolicy. Developers wishing to access or modify
the memory policies should use ObjectMemory’s public protocol, or by
creating a subclass of MemoryPolicy.
VisualWorks Memory Management 13

Memory Policies
ObjectMemory
An instance of ObjectMemory represents a snapshot of object memory
as it existed when that instance was created. The information contained
in this object can be used to guide policy decisions for managing object
memory (see the class MemoryPolicy for one such policy). This class
also contains protocol for manipulating the state of object memory.

In general, if you want to access the current state of object memory, you
would create an instance of this class and then send messages to the
instance. If, on the other hand, you want to directly manipulate the state
of object memory (for example, to grow object memory, to compact
object memory, or to reclaim dead objects that exist in object memory),
you would do so by sending a message directly to the class itself.

Because the information contained in this class is implementation
dependent and because it may vary from release to release, it is
recommended that this information only be accessed directly by the
low-level system code that implements the various memory policies.
Such policy objects should provide an adequate set of public messages
that will permit high-level application code to influence memory policy
without resorting to implementation-dependent code.

MemoryPolicy
Class MemoryPolicy implements the system’s standard memory policy.
This policy is composed of two regimes for the object memory: one for
growth and one for reclamation. The growth regime is in force when
memory usage is below the growth regime upper bound, the
reclamation regime is in force whem memory usage is above it.

VisualWorks provides a default value for this upper bound, but it is the
developer’s responsibility to set it appropriately.

In the growth regime, only the scavenger and incremental collectors are
active. The object memory is allowed to grow freely upon demand, up
to the growth regime upper bound, at which point the reclamation
regime is entered.

Under the reclamation regime, the object memory is not allowed to
grow without a garbage collection of Old Space. Since garbage
collection involves more overhead, overall performance is degraded
somewhat during the reclamation regime.The default growth regime
upper bound is 32 MB, which is only suitable for small applications. To
avoid frequent garbage collections when using or deploying your
application, you may need to adjust this setting. For details, Working
with Memory Policies.
VisualWorks Memory Management 14

Memory Policies
When the reclamation regime is in effect, memory will be allowed to
grow if garbage collection fails to make space available up to the
memory upper bound. If the application attempts to grow memory
above the upper bound the system will enter an emergency low space
condition. The default MemoryPolicy response to an emergency low
space condition is to interrupt the current active user process. For
example, since Smalltalk stack frames are represented by Smalltalk
objects, an infinite recursion can cause a low space condition, and the
infinite recursion is interrupted once memory usage has grown up to the
memory upper bound.

The memory upper bound is also adjustable via the Memory Policy
settings (Working with Memory Policies, for details). The default
memory upper bound is 512 MB. On machines with less memory to
devote to VisualWorks, this value is too high, and certainly too small for
machines with more than 512 MB of memory (if you wish to use it for
objects). Machines with less RAM than the VisualWorks upper bound,
the operating system will typically begin paging furiously and thrash
badly once memory usage exceeds the amount of RAM (the symptom
being an error from the operating system that virtual memory has been
exhausted). Consequently, if the memory upper bound is too high, an
infinite recursion may take a long time to interrupt.

Unfortunately, on many platforms supported by VisualWorks there are
no operating system APIs to discover how much free RAM is available.
Hence VisualWorks does not automatically determine a suitable
memory upper bound. Therefore you must choose a suitable memory
upper bound for your installation. For single user development, we
recommend that you set the memory upper bound to be between 75%
and 90% of total system RAM, and that you set the growth regime
upper bound to be about 67% of the memory upper bound.

Free Space Upper Bound
MemoryPolicy grows Old Space and Fixed Space memory using the
growOldSpaceBy: and growFixedSpaceBy: primitives, which, if they are
implemented, employ the operating system's memory mapping
facilities. Consequently, new segments can be returned to the
operating system if the garbage collector can empty them. The
compacting garbage collector compacts across segments and
MemoryPolicy will release empty segments back to the operating system
until the amount of free space is at or below the free memory upper
bound. This upper bound determines how much free Old Space the
system keeps in reserve for new allocations after a garbage collection.
If your application cyclically allocates large amounts of memory and
VisualWorks Memory Management 15

Memory Policies
releases it only to allocate the memory once more, you may find it
profitable to increase the free memory upper bound to reduce the
amount of growth and shrinkage the system performs. For details on
adjusting the free memory upper bound, See Working with Memory
Policies.

By default, the free memory upper bound is 8 MB. This value is
effective as long as it is significantly larger than the default growth
increment, which is 1 MB. The default growth increment, which
determines the minimum size of a newly allocated Old Space segment
(its preferredGrowthIncrement), is adjustable in the initialization method
MemoryPolicy>>setDefaults. Again, this is suitable only for small
applications. Developers of applications with a memory footprint above
256 MB should consider raising this along with the free memory upper
bound.

Default MemoryPolicy Behavior
MemoryPolicy objects are given the opportunity to take action during the
following circumstances:

• During the idle loop

• When the system runs low on space

In addition, memory policy objects are responsible for determining
precisely what constitutes a low-space condition.

An instance of MemoryPolicy takes the following actions in these
circumstances:

idle-loop action

Runs the incremental garbage collector inside the idle loop,
provided that the system has been moderately active since the last
idle-loop garbage collector. Lets the idle-loop garbage collector run
until it is interrupted.

low-space action

Responds to true low-space conditions. If the system is biased
toward growth, then it attempts to grow object memory. If, however,
it is not biased toward growth, or if object memory cannot be grown,
then it tries various ways of reclaiming space. Failing that, it tries
one last time to grow object memory. Failing that, it summons the
low-space notifier.
VisualWorks Memory Management 16

Managing the Object Memory
The most interesting of these steps is the reclamation step. An
instance of this class will perform a full, compacting garbage
collector only if the free entries in the object table are consuming a
significant percent of Old Space. If, on the other hand, a
compacting garbage collector is not needed, the policy object will
try to reclaim space by simply finishing the incremental garbage
collector (if one is currently in progress). If that doesn’t free up
enough space, then the incremental garbage collector is run from
start to finish without interruption. Finally, a data compaction is
performed if Old Space is sufficiently fragmented.

Managing the Object Memory
Several different mechanisms are provided to give application
developers precise control over the object memory and the policies for
managing it:

• Promoting Objects to Perm Space

• Setting Object Engine Space Sizes

• Working with Memory Policies

• Creating a Custom Memory Policy

Promoting Objects to Perm Space
Moving Old Space objects into Perm Space (and thus improving the
efficiency of garbage reclamation) is done by creating an image by
choosing File fi Perm Save As... in the VisualWorks Launcher window.

Creating an image in this way is similar to making a snapshot except
that all of the objects that are currently in Old Space will be promoted to
Perm Space when the new image is loaded back into memory at
startup time. For details on these spaces in the object memory, see
Perm Space and Old Space (above).

Alternately, you can cause all of the objects in Perm Space to be loaded
into Old Space at startup time if you create an image using
File fi Perm Undo As... in the VisualWorks Launcher window.

Note that the current state of object memory is not changed by creating
a new image using Perm Save or Perm Undo. In other words, only the
newly created image will contain a modified Perm Space. For example,
if you use File fi Perm Save As... to create an image and later in that same
session you create a normal snapshot on top of that image, Perm
Space is unaffected.
VisualWorks Memory Management 17

Managing the Object Memory
To place your application code in Perm Space, follow these steps before
deploying an image containing the application:

1 Create an image using the File fi Perm Save As... command. Then
choose File fi Exit VisualWorks... and start the new image. All of the
objects that were formerly in Old Space will be loaded into Perm
Space, including the application code.

2 A number of transient objects will also inhabit Perm Space, such as
those needed to display windows on the screen — to remove them,
perform a global garbage collection.

3 Create a normal snapshot.

4 To make subsequent loads on the same platform even faster, you
may want to load the new image back into memory and perform
one last snapshot.

This last step is useful because the global garbage collector
compacts the objects in Perm Space, which forces the image
loader to relocate these objects at startup time. By performing one
extra snapshot, these objects will not need to be relocated on
subsequent loads, when it is possible for the object engine to load
them into their former locations.

Setting Object Engine Space Sizes
The default object engine memory space sizes are platform specific.
Sizes for the following memory spaces can be adjusted at startup:

1 Eden (Object Creation Space)

2 Survivor Space

3 Large Space

4 Stack Space

5 Compiled Code Cache

6 Old Space Headroom

7 Fixed Space Headroom

To change any of these values, send sizesAtStartup: to the ObjectMemory
class with an array specifying a multiplier for each space, then save and
restart the image. The order of the array elements is as listed above.

Each multiplier must be a floating point 0 x 1000. To get the
requested memory size, the system applies the multiplier to the default
size. A multiplier value of 1.0 yields the default size.
VisualWorks Memory Management 18

Managing the Object Memory
For example, to decrease Stack Space by 1/4 and increase Object
Creation Space (a.k.a., Eden or New Space) by 1/2, while leaving the
others at default sizes, send the message:

ObjectMemory sizesAtStartup: #(1.5 1.0 1.0 0.75 1.0 1.0 1.0)
This sets the size for the image at next startup. To make the new sizes
take effect, save the image, exit VisualWorks and then restart the
image.

These values are recommended values only, and the object engine may
start with a larger size if required to load the image.

Guidelines for Adjusting Memory Spaces
When adjusting memory spaces for most VisualWorks applications, you
should first consider changing Eden (New Space):

All new objects are created in Eden. If this space is too small, then
objects can get tenured in Old Space too quickly. On the other hand, if
New Space is too big, the incremental collector that scans New Space
can begin to impact performance. The "correct" size is generally a
balance between processor speed and application behavior. Generally,
the default setting is acceptable.

Since Old Space is grown automatically, there is no need to manipulate
it using the sizesAtStartup: method. Instead, you may control the size of
Old Space using the growth regime and memory upper bounds (for
details on adjusting these values, Working with Memory Policies).

Working with Memory Policies
Since the default MemoryPolicy is almost always sub-optimal for a
particular application, it is considered good practice to adjust the policy
before deployment. The following discussion explains the various
parameters that are available, and offers some guidelines for adjusting
them to maximuze the performance of your application.

For some applications, you may also want to create your own memory
policy. For details, see Creating a Custom Memory Policy (below).
VisualWorks Memory Management 19

Managing the Object Memory
To examine the default MemoryPolicy settings, open the Settings
Manager and select the Memory Policy page (choose System fi Settings in
the VisualWorks Launcher window):

The default policy allows the object heap to grow unrestricted up to the
Growth Regime upper bound. Attempting to grow the object memory
beyond this bound will invoke the garbage collector to reclaim memory.

The default policy does not allow memory to grow above the Memory
upper bound. Instead, the currently active process is interrupted with a
low-space condition.

The Free Memory upper bound specifies the amount of memory that is
always dedicated to VisualWorks. After a garbage collection, the default
memory policy attempts to return any free memory above this bound to
the operating system.

Guidelines for Adjusting the Basic Settings
While the default MemoryPolicy is generally suitable for application
development, it can almost always be optimized for deployment. The
Growth Regime upper bound, for example, is almost always too large for
small applications, and too small for large applications.

Especially for large applications, the Memory upper bound is almost
always too small. For an application that uses more than a gigabyte of
RAM, it is absolutely necessary to adjust the MemoryPolicy defaults.
VisualWorks Memory Management 20

Managing the Object Memory
The best way to set these parameters is to first measure your
application's memory usage. To get an idea of memory usage, use:

ObjectMemory current dynamicallyAllocatedFootprint
The number returned is the total size (in bytes) of the dynamically
allocated footprint.

When measuring memory usage, it’s important to measure the size of
the object memory at points of high load. Insert test code in the
application to take measurements (perhaps using a log file), and if you
can identify a point of high load, get the system to perform a garbage
collect, making sure to record the dynamicallyAllocatedFootprint both
before and after the garbage collection. If measurements show that no
memory is reclaimed and the application is still functioning, then the
growth regime upper bound is too small.

Use the results to set the MemoryPolicy parameters. The first and most
obvious adjustments can be made to the Growth Regime and Memory
upper bounds. The Growth Regime upper bound should be at or below the
peak usage. This bound must accomodate the maximum expected
working set for your application.

The Growth Regime upper bound should be set to keep the time spent in
garbage collection to an acceptably low interval. Attempts to grow the
object memory beyond this limit cause VisualWorks to garbage collect
before asking for more heap memory from the host OS. If the limit is too
low, the application spends too much time garbage collecting. If it’s too
high, the application wastes memory by not garbage collecting.

The Memory upper bound should be set to the application’s maximum
footprint plus a safety margin. You should keep in mind that since
memory growth is not allowed beyond the upper bound, computations
will be interrupted with a low space error if memory usage ever reaches
the upper bound. The safety margin should accommodate this error.

MemoryPolicy has an availableSpaceSafetyMargin instance variable that
defines the amount of free space to maintain as a safety margin,
ensuring that the low space actions can be performed. By default, this
instance variable is intialized to the sum of
ObjectMemory>>stackZoneFlushBytes and
ObjectMemory>>emergencyDebuggingHeadroom. This suits the default low
space actions. Your application may require a different value (if, for
example, its response to an emergency low space condition would be
to log an error to a log file or across a socket).
VisualWorks Memory Management 21

Managing the Object Memory
The Free Memory limit may need to be raised to a higher number, so that
the application doesn’t release as much free memory after a garbage
collection. While in principle it sounds good to have the application
return memory to the host operating system after garbage collection, in
practice this may degrade performance.

The VisualWorks MemoryPolicy contains a number of other adjustable
parameters, which are not shown in the Settings Manager. To adjust
these, you must create your own custom policy class.

Creating a Custom Memory Policy
For many applications, you can improve performance by using a custom
memory policy. You may can any aspect of the policy, inducling both the
constants and algorithms used to manage the object memory.

The basic steps to create a new policy are:

1 Define a new subclass of MemoryPolicy.

2 Make sure to implement the setDefaults method, invoking the version
in the superclass, and then setting the appropriate variables. E.g.:

setDefaults
super setDefaults.
preferredGrowthIncrement := 10000000.

3 Install the new policy:

ObjectMemory installMemoryPolicy: MyMemoryPolicy new setDefaults

In this example, we have created a new policy that uses a different
growth increment. This is the amount by which the object memory is
grown when an allocation failure occurs during the growth regime.

By default the growth increment is 1,000,000 bytes, which means heap
segments will be at least that big. In an application using more than a
gigabyte of memory, this yields an awful lot of small segments. Setting
the growth increment to something like 1/100 of available RAM might be
better.

For a complete description of the MemoryPolicy API, see its class
comment.
VisualWorks Memory Management 22

Preparing for Deployment
MemoryPolicy Strategies
A custom memory policy might perform application-specific actions,
flushing application caches, making polciy decisions about process
allocation, and so forth. For example, the VisualWorks Application
Server uses VisualWave.ServerMemoryPolicy to assess system load,
expire web existing sessions, and refuse new connections.

Another example of a custom policy would be one that maintains a pre-
specified range of memory usage (suggested by Alex Pikovsky). That
is, if the available memory drops below a lower threshold, the policy
enters the growth regime, and if it reaches an upper threshold, it enters
the reclamation regime.

For the purposes of the example, let’s say the lower threshold is 10Mb,
and the upper threshold is 50Mb. We can implement this in a subclass
of MemoryPolicy that contains the two following methods:

setDefaults
super setDefaults.
maxMemorySize := Core.SmallInteger maxVal * 4.
self

memoryUpperBound: maxMemorySize;
preferredGrowthIncrement: 40000000; "40 MB"
growthRetryDecrement: 1000000; "1 MB"
maxHardLowSpaceLimit: 5000000; "5 MB"
availableSpaceSafetyMargin: 2500000; "2.5 MB"
contiguousSpaceSafetyMargin: 1000000; "1 MB"
threadedDataIncrement: 1000000; "1 MB”
freeMemoryUpperBound: 50000000; "50 MB"
growIfFreeBytesLessThan: 10000000. "10 MB"

favorGrowthOverReclamation
"Answer true if we want to react (at this point in time) to the low-space
condition by growing memory rather than reclaiming memory."
^self memoryStatus availableFreeBytes <= self

growIfFreeBytesLessThan

Preparing for Deployment
The following steps are recommended for deploying a VisualWorks
image:

1 Load application code.

2 Prepare to create a new image, promoting Old Space objects into
Perm Space (in the Launcher window, select File fi Perm Save As...).
VisualWorks Memory Management 23

Implementation Limits
3 Run the Global Garbage Collector (in the Launcher, select System fi
Collect All Garbage).

4 Create a snapshot (in the Launcher, select File fi Save As...).

5 Set MemoryPolicy paramaters correctly (for details, see Working with
Memory Policies, above).

6 Run the Global Garbage Collector (in the Launcher, select System fi
Collect All Garbage).

7 Save the image in a ready-to-run state.

Implementation Limits
The following table gives the size limitations for various aspects of the
VisualWorks system. A limit of “None” implies that no hard limit exists,
though available address space (32 bits) is an upper bound in every
case.

Unit Limit Comment

Number of objects None Objects are limited only by address
space. Average object size is on the
order of 64 bytes, so the maximum
number of objects available is
approximately 232 / 64 = 67108864
when 4 GB of memory is available.

Object size 256 MB for byte
objects 1 GB for
pointer objects

228 bytes for byte objects 228 slots for
pointer objects

Named instance
variables

256 per class Includes inherited instance variables

Method variables 255 Includes arguments, named temporary
variables, unnamed temporary
variables (needed to implement to:do:
loops, etc.). Also includes pushes and
pops, so the effective limit may be a
little less.

Block variables 255 Includes block arguments and
temporaries; in some circumstances, it
also includes arguments and
temporaries from outer scopes to
which the block refers. Also includes
pushes and pops (see above).
VisualWorks Memory Management 24

Implementation Limits
Method literals 256 Includes ordinary literals (strings,
numbers, etc.), message selectors
(other than about 200 of the most
common selectors), static variables
(global, pool and class) that are
referenced, and one for each block.

Block nesting 256 levels

Method branches 1023 bytes,
forward or
backward

This does not limit the length of regular
code. In practice, it means that the
body of an open-compiled loop or
conditional cannot be longer than 1023
bytes.

Unit Limit Comment
VisualWorks Memory Management 25

	VisualWorks Memory Management
	Memory Layout
	Fixed-Sized Spaces
	Variable-Sized Spaces
	Memory Organization
	Compiled Code Cache
	Stack Space
	New Space
	Large Space
	Perm Space

	Smalltalk Object Memory
	Old Space
	Fixed Space
	Remembered Tables

	Facilities for Reclaiming Space
	Generation Scavenger
	Incremental Garbage Collector
	Compacting Garbage Collector
	Global Garbage Collector
	Data Compactor

	Memory Policies
	ObjectMemory
	MemoryPolicy
	Free Space Upper Bound
	Default MemoryPolicy Behavior

	Managing the Object Memory
	Promoting Objects to Perm Space
	Setting Object Engine Space Sizes
	Guidelines for Adjusting Memory Spaces

	Working with Memory Policies
	Guidelines for Adjusting the Basic Settings

	Creating a Custom Memory Policy
	MemoryPolicy Strategies

	Preparing for Deployment
	Implementation Limits

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

