
Cincom Smalltalk™

Tool Guide

P46-0147-02

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

Copyright © 1995–2009 by Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0147-02

Software Release 7.7

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, the Cincom logo and Cincom Smalltalk logo are
registered trademarks of Cincom Systems, Inc. ParcPlace and VisualWorks are
trademarks of Cincom Systems, Inc., its subsidiaries, or successors and are registered in
the United States and other countries. ObjectLens, ObjectSupport, Cincom Smalltalk,
Database Connect, DLL & C Connect, COM Connect, and StORE are trademarks of
Cincom Systems, Inc., its subsidiaries, or successors. ENVY is a registered trademark of
Object Technology International, Inc. All other products or services mentioned herein are
trademarks of their respective companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation copyright © 1995–2009 by Cincom
Systems, Inc. All rights reserved. No part of it may be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without prior
written consent from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents
About This Book ix

Overview .. ix
Audience ... ix

Conventions ... ix
Typographic Conventions ... x
Special Symbols ... x
Mouse Buttons and Menus ... xi

Getting Help ... xi
Commercial Licensees .. xi

Before Contacting Technical Support ... xi
Contacting Technical Support ..xii

Non-Commercial Licensees ..xii
Additional Sources of Information ...xiii

Online Help ..xiii
VisualWorks FAQ ...xiii
News Groups ...xiii
VisualWorks Wiki ...xiv
Commercial Publications ..xiv

Chapter 1 System Browser 1-1

Browser Navigator ..1-3
Package View ..1-3
Hierarchy View ..1-3
Class / Name Space View ...1-3
Instance, Class, and Variable Views ...1-4
Icons in the Navigator ..1-4

Working with the Browser ...1-4
Editing Source Code ...1-5

Missing Source Code ...1-5
Source Code Formatting ..1-5

Searching ..1-6
Drag and Drop ...1-6
Tools Guide iii

Contents
Controlling Visibility of Methods .. 1-6
Using Multiple Views ... 1-7

Chapter 2 Code Rewrite Editor 2-1

Transformation Rules ... 2-2
Using Meta-variables and Modifiers ... 2-2

Rewriting Methods ... 2-4
Replacing Whole Methods ... 2-5

Chapter 3 Override Editor 3-1

Reviewing Overrides .. 3-1
Selecting Overrides .. 3-2
Restoring an Overridden Definition ... 3-3
Removing an Overridden Definition .. 3-3

Publishing Parcels and Packages with Overrides .. 3-3

Chapter 4 Change Sets 4-1

Change Set Manager .. 4-2
Selecting a Current Change Set ... 4-2
Creating a New Change Set ... 4-2
Exploring Changes ... 4-3

Browse Methods .. 4-3
Edit .. 4-4
Inspect ... 4-5
Updating the Changes Display .. 4-5

Saving Changes ... 4-5
Creating Install and Remove Scripts ... 4-5
Change Initialization Ordering ... 4-6
Clearing a Change Set .. 4-6

Chapter 5 Change List 5-1

The Change List Tool ... 5-1
Using the Change List ... 5-3

Browsing a Change List .. 5-3
Reordering Items in the Change List .. 5-3
Removing Items from the Change List ... 5-4
Resolving Conflicts with the System ... 5-4

Using the Conflicts Filter .. 5-5
Managing Conflicts .. 5-5

Change/Change Back Changes ... 5-6
iv VisualWorks

Contents
Reverting to a Prior Version ..5-7
Recovering from a Crash ..5-7
Recovering Changes to a Clean Image ..5-8
Condensing the Change List File ..5-9
Changing the Change List File Name ...5-9
Filing Out a Set of Changes ..5-10

Chapter 6 Code Critic 6-1

Using the Code Critic ...6-1
Filtering Results ..6-2
Applying Transformation Rules ..6-3
Limitations of the Code Critic ..6-3

Code Critic Rules ...6-3
Bugs ..6-4
Possible Bugs ..6-5
Unnecessary Code ...6-7
Intention Revealing ..6-8
Miscellaneous ...6-9

Code Transformations ..6-11

Chapter 7 Unit Testing 7-1

Overview ..7-1
SUnit Framework Classes ...7-2

Writing and Running SUnit Tests in VisualWorks ...7-3
Loading SUnit Support ..7-3
Creating a Test Case ...7-3

Writing Assertions in Test Methods ..7-3
Defining Test Resources ..7-5

Running Test Cases ..7-6
Strategies for Writing and Using SUnit Tests ...7-7

Extensions and Variants of SUnit in VisualWorks7-8

Chapter 8 Object Inspector 8-1

Basic Inspecting ...8-1
Inspection Views ...8-2

Expression Evaluator ...8-3
Editing Objects ...8-4

Editing Variable Values ..8-4
Copy and Paste ...8-5
Add and Remove ...8-5
Undoing an Edit ...8-6
Tools Guide v

Contents
Editing with Drag-Drop .. 8-6
Protected Variables ... 8-7

Exploring Objects .. 8-8
Diving into Object References .. 8-8
Exploring Object Relationships ... 8-9

Siblings .. 8-9
Parts .. 8-10
History Views ... 8-10
Exploring a Window ... 8-11
Previewing a Visual Part .. 8-11
Exploring an Object Hierarchy ... 8-11
Viewing Related Objects .. 8-12

Customizing the Inspector ... 8-13
Define the Object printOn: Representation ... 8-13
Add Displayed Attributes ... 8-13
Add Menu Actions ... 8-13
Identify Hierarchies ... 8-14
Add an Inspector Page ... 8-14
Provide Custom Object Views .. 8-14

Prototype-based Programming .. 8-14

Chapter 9 System Profilers 9-1

Loading the Profilers .. 9-1
Opening a Profiler Window .. 9-2
Profiling a Block of Code ... 9-2

Adjusting the Sample Size .. 9-4
Multi-process Profiling .. 9-5

Analyzing the Profiler Report ... 9-5
Tree Report View .. 9-6
Totals Report View .. 9-7
Adjusting the Cutoff Percentage ... 9-7
Contracting and Expanding the List .. 9-8
Spawning a Method Browser .. 9-9

Profiler Programmatic Interface ... 9-9

Chapter 10 Benchmarks 10-1

Using the Benchmark Interface ... 10-2
Assembling the Test Suite .. 10-2
Selection Techniques .. 10-2
Setting the Report’s Granularity .. 10-3

Raw Measurements ... 10-3
vi VisualWorks

Contents
Benchmark Results ..10-4
Overall Suite Statistics ...10-5

Choosing Types of Statistics ...10-5
Setting the Report Destination ..10-6
Setting the Number of Iterations ..10-6

Creating a Benchmark Subclass ..10-7
Benchmark Superclass ...10-7
SystemBenchmark Subclass ..10-7
BenchmakTable Class ...10-8
BenchDecompilerTestClass Class ..10-8

Chapter 11 Class Reports 11-1

Creating Class Reports ..11-2
Selecting the Target Classes ...11-2

Locating Coding Errors ..11-3
Messages Sent but Not Implemented ...11-4
Messages Implemented but Not Sent ...11-4
Method Consistency ...11-5
Subclass Responsibilities Not Implemented ...11-5
Undeclared References ..11-5
Instance Variables Not Referenced ...11-5
Check Comment ...11-5
Backward Compatibility Message Sends ..11-7
Indefinite Backward Compatibility Message Sends11-7
Backward Compatibility Class References ...11-7

Estimating Memory Requirements ...11-7
Documenting Your Code ..11-8

Index Index-1
Tools Guide vii

Contents
viii VisualWorks

About This Book

Overview
VisualWorks documentation is designed to help both new and
experienced application developers create application programs
effectively using the VisualWorks® application frameworks, tools, and
libraries.

This document, the VisualWorks Tool Guide, provides detailed
information about the development tools and how to get the most
functionality out of them.

Audience

The Tool Guide makes very few assumptions about your level of
knowledge about object-oriented programming, but does assume you
have a basic knowledge of computer programming in some environment.

For additional help, a large number of books and tutorials are available
from commercial book sellers and on the world-wide web. In addition,
Cincom and some of its partners provide VisualWorks training classes.
See “Additional Sources of Information” below for a listing of some of
these resources.

Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.
Tool Guide ix

About This Book
Typographic Conventions
The following fonts are used to indicate special terms:

Special Symbols
This book uses the following symbols to designate certain items or
relationships:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File > New Indicates the name of an item (New) on a menu
(File).

<Return> key
<Select> button

<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.
x VisualWorks

Getting Help
Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or
combinations:

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>
Tool Guide xi

mailto:supportweb@cincom.com

About This Book
• The version id, which indicates the version of the product you are
using. Choose Help > About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help > About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to
supportweb@cincom.com.

Web
In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com
Telephone

Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.

Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:
xii VisualWorks

mailto:supportweb@cincom.com
http://supportweb.cincom.com

Additional Sources of Information
• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu

with the SUBJECT of "subscribe" or "unsubscribe". You can then
address emails to vwnc@cs.uiuc.edu.

• A Wiki (a user-editable web site) for discussing any and all things
VisualWorks related at:

http://www.cincomsmalltalk.com/CincomSmalltalkWiki

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincomsmalltalk.com/documentation/

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.

Online Help
VisualWorks includes an online help system. To display the online
documentation browser, open the Help pull-down menu from the
VisualWorks main menu bar and select one of the help options.

VisualWorks FAQ
An accumulating set of answers to frequently asked questions about
VisualWorks is being compiled in the VisualWorks FAQ, which
accompanies this release and is available from the Cincom Smalltalk
documentation site.

News Groups
The Smalltalk community is actively present on the internet, and willing to
offer helpful advice. A common meeting place is the comp.lang.smalltalk
news group. Discussion of VisualWorks and solutions to programming
issues are common.
Tool Guide xiii

mailto:vwnc-request@cs.uiuc.edu
mailto:vwnc@cs.uiuc.edu
http://www.cincomsmalltalk.com/CincomSmalltalkWiki
news:comp.lang.smalltalk
http://www.cincomsmalltalk.com/documentation/

About This Book
VisualWorks Wiki
A wiki server for VisualWorks is running and can be accessed at:

http://wiki.cs.uiuc.edu:8080/VisualWorks
This is becoming an active place for exchanges of information about
VisualWorks. You can ask questions and, in most cases, get a reply in a
couple of days.

Commercial Publications
Smalltalk in general, and VisualWorks in particular, is supported by a
large library of documents published by major publishing houses. Check
your favorite technical bookstore or online book seller.
xiv VisualWorks

http://wiki.cs.uiuc.edu:8080/VisualWorks.1

1

System Browser

The principal programming tool in VisualWorks is the System
Browser. You use it for “browsing” the code library, writing, editing,
organizing, and other source code related operations. The browser
also provides special-purpose tools for refactoring, rewriting,
checking, and testing code, some of which are described in other
chapters.

To open a browser, choose Browse > System or click on the Browser
icon in the VisualWorks Launcher.

The System Browser provides both a Package and a Hierarchy view.
To change the primary view for a browser, click the tab for that view.
Tools Guide 1-1

System Browser
Depending on the current view, the various lists show different items.
It will take some experimentation and experience to get comfortable
with the browser, but the following comments will guide your learning.

The browser window is composed of a navigator and a set of code
tools. You select a view in the navigator by clicking on upper row of
tab control buttons. Code tools are selected using the lower row of
tab controls. The tab label indicates which view or tool it selects, and
its current focus.

The VisualWorks system is organized as a class library. Classes are
defined in an inheritance hierarchy, which you can browse by
selecting the navigator’s Hierarchy tab.

For organizational purposes, classes are grouped into packages, and
packages can be grouped into bundles. Packages and bundles can
be saved, or “published,” as parcels, which are essentially a external
file based representation of a package or bundle. This organization is
described more fully in “Managing Smalltalk Source Code” in the
Application Developer’s Guide.

You use the navigator to traverse the VisualWorks class library,
viewing definitions for classes, namespaces, methods, and variables.

The Package and Hierarchy views each has its own <Operate>
menu, offering commands that are appropriate to its contents. Many
of the commands are obvious. Specific commands are explained
1-2 VisualWorks

AppDevGuide.pdf

Browser Navigator
throughout this document as the operation is discussed. For details
on individual menu functions, view the online help available from the
browser’s Help menu.

Browser Navigator
The different parts of the browser’s navigator provide different views
of the system. Here is a brief summary of their function and use:

Package View
The VisualWorks library is organized into packages and bundles.
Each code definition is contained in a package, and can be viewed by
selecting the package. Packages can also be grouped into bundles
and the contained definitions browsed. The browser displays
packages when Package tab is selected in the Browser.

When Store is loaded, packages and bundles support code
revisioning and related mechanisms to assist in source code
management. For information about working with packages, refer to
the VisualWorks Source Code Management Guide.

Note that the use of packages has now replaced the use of class
categories and parcels as units of organization, as they were used in
previous versions.

Hierarchy View
Occasionally it is useful to explore a class in terms of the other
classes from which it inherits behavior, or that inherit behavior from it.
The navigator allows you to do this by displaying the hierarchy of the
selected class.

To view the entire class hierarchy, start by selecting class Object. You
can then find and browse a class by navigating through the hierarchy
to it. Although this is seldom very useful, it can be instructive.

Class / Name Space View
Classes and name spaces are defined in packages, so the contents
of the Class / Name space view depend upon the selected Package.

In addition to having a superclass, each class is defined in a name
space. A name space is a name resolution scope for name space,
class, and shared variable names. Typically, you create your own
name space and then create your applications within that name
space.
Tools Guide 1-3

SourceCodeMgmtGuide.pdf

System Browser
When the class hierarchy view is selected, this view shows the
containing package for the selected item.

Instance, Class, and Variable Views
The Instance, Class, Shared Variable and Instance Variable tabs toggle the
contents of the method category and method/variable views,
selecting whether the categories and definitions of instance methods,
class methods, shared or instance variables are shown. In some
situations, such as when a namespace is selected that has only
shared variables defined in it, only one of the buttons, in this case
Shared Variables, is shown. Usually, any of the buttons can be selected,
even though there may be no entries for that view.

Icons in the Navigator
The browser’s navigator uses a number of special icons to distinguish
code components, special system classes, as well as the condition of
individual methods. The following table offers a brief summary:

Working with the Browser
The System Browser separates code tools from the navigator so that
a variety of code tools may be used with each navigator. Generally,
you use the Source tool to examine class, namespace and variable
definitions, and to browse and edit source code.

Icon Description

Package

Bundle

Name space

Subclass of Model

Subclass of ApplicationModel

Subclass of Collection

Subclass of Exception

Method redefined by at least one superclass.

Method redefined by at least one subclass.
1-4 VisualWorks

Working with the Browser
The browser includes features for automated code refactoring (refer
to “Refactoring,” in the Application Developer’s Guide, for details). For
advanced development, the browser also provides special tools for
code checking, rewriting, and unit testing, which are described in
other chapters.

To encourage learning and experimentation, each operation in the
browser can be reversed with the Undo function (on the Browser menu).

Editing Source Code
The Source code tool in a System Browser is where you do most
writing and editing of your application’s class and method definitions.
Common editing operations, such as cut, paste, find and replace, are
available on the <Operate> menu for this pane.

When you select a package but no class, a class definition template
is displayed. Similarly, when you select a protocol but no method, a
method definition template is displayed. To create a new class or
method, edit the template with the appropriate definition. When you
have edited a definition, you need to save, or accept, your changes.
Select Accept from the code pane <Operate> menu.

Missing Source Code
Your Smalltalk image is associated with a sources file, as described
in the Application Developer’s Guide. If the sources file is not
correctly identified in the Settings Tool, or your VisualWorks home
directory is not correctly set, or if the sources simply are not
available, you may see code in the browser with a comment
explaining that it is decompiled code. If you see this comment, set the
home directory and/or edit the Source Files page of the Settings Tool,
making sure the .sou file name agrees with the image name. (To open
the Settings Tool, choose System > Settings in the Launcher window.)

Source Code Formatting
To format a method using the browser’s integrated code formatter,
select Format from the source code tool’s <Operate> menu.

Many of the browser’s refactoring commands also invoke the code
formatter, so you should expect a formatting change any time you
refactor a method.
Tools Guide 1-5

./AppDevGuide.pdf
./AppDevGuide.pdf

System Browser
The formatting rules are user-accessible and may be changed. The
rules are located in class RBConfigurableFormatter, and they may be
changed using a special tool. To set the browser to use the
configurable formatter by default, evaluate:

RBProgramNode formatterClass: RBConfigurableFormatter
To open configuration the tool, evaluate:

FormatterConfigurationTool open
The Configuration Tool presents about 20 separate rules. When
changing a rule, you must Accept the changed value using the
<Operate> menu in the value’s input field. To examine the effects of
the rules on a test method, click on the tool’s embedded Format
button. To save any changes you make to the rules, click on the OK
button.

Method source in the browsers may also be color coded. To enable
color coding, load the RBCodeHighlighting parcel (it can be found in the
Parcel Manager’s Environment Enhancements category).

Searching
The navigator tool bar includes an entry field to do a quick search by
name for classes, variables, or methods:

To find a class, simply enter its name and select Accept from the
<Operate> menu, or press the <Return> key. To find a method, enter
its name, preceded by the # (pound) character. Wildcard searches
are possible using the * (asterisk) character.

Drag and Drop
To reorganize code, you can drag and drop methods on classes or
protocols; protocols on other classes or on protocols; classes on
other categories; and categories on other categories.

Controlling Visibility of Methods
By default, the browser’s method list only displays those methods
belonging to the currently selected class and protocol. Several
options are provided for controlling and expanding the visibility of
methods.
1-6 VisualWorks

Working with the Browser
When a class is selected, the browser may optionally be set to show
all methods in the class when no protocol is selected. To enable this
option, select Show all Methods when No Protocols Selected on the Browser
page of the Settings Tool.

Just as it is often useful to see class inheritance using the Hierarchy
view, so too it is often useful to see inherited methods. To expand the
visibility of the Method List to include inherited methods located in a
superclass, select the name of the superclass from the Method >
Visibility menu. This setting remains active until you navigate to
another class.

To fix the initial visibility setting so that it remains active while viewing
different classes, select Show All Inherited or
Show All Inherited Except for Object. To disable the expanded visibility,
choose Show No Inherited.

Using Multiple Views
The System Browser can have with multiple active “views” on a
method. For example, while editing one method, you can switch to a
new view to look up some value in another method, and then return
back to your edited method without opening a new browser.

To create a new view, use View > New or corresponding icon in the
browser’s tool bar. Select the entries on the View menu to toggle
rapidly between the different views you’ve created. Use View >
Remove to delete the current view.
Tools Guide 1-7

System Browser
1-8 VisualWorks

2

Code Rewrite Editor

The rewrite rule editor, which is integrated into the System Browser,
enables you to create search and replace patterns that work at the
method’s structural level. Unlike simple string matching, these
patterns are applied to the method’s parse tree.

The rewrite tool uses a special syntax to specify a transformation
rule. When a transformation rule is applied, it affects the method(s)
selected in the browser’s navigator. You may specify a single method,
or any number of methods, protocols, or classes as the target of a
single transformation.

The rewrite editor is available whenever you select the Rewrite tab of
the browser’s code tool. Specify a search pattern in the upper input
area of the tool, and a replacement pattern in the lower area.

Use the Search... button to locate all occurrences of the search pattern
in the method, protocol, or classes selected in the browser navigator.
Results are displayed in a new browser. No code is changed.
Tools Guide 2-1

Code Rewrite Editor
Use the Replace... button to locate all occurrences of the search
pattern in the specified code, and then open a transformation editor
on all matching methods. The transformation editor allows you to
apply the rewrite rule.

The rewrite editor enables you to write your own transformation rules.
A set of pre-defined transformation rules are also available, but as
part of the Code Critic.

Transformation Rules
A transformation rule is specified using a pattern that is iteratively
applied to each expression in each method this is selected for
rewriting.

Pattern-matching is performed against each node in the method’s
parse tree. When the rewrite editor finds a node in the method’s
parse tree that matches the node specified in the parse tree
generated from the search pattern, it applies a transformation.

You may also specify a pattern for a whole method, rather than just a
single node (for details, see Replacing Whole Methods).

When the rewrite tool scans for parse nodes that match the search
pattern, it first converts the pattern into a collection of meta-variables.
Each meta-variable is identified in the search pattern using a `
character.

Meta-variables allow pattern matching without having to specify
specific variable names. In general, a meta-variable is specified by
one or more special characters followed by a valid variable name. For
example:

`receiver printOn: `variable
specifies a pattern with two meta-variables named receiver and
variable. This pattern would match the expression:

super printOn: aStream

Using Meta-variables and Modifiers
The ` character for specifying a meta-variable may be accompanied
by other special characters called “modifiers” that are used to specify
the type of node that the meta-variable can match. Modifiers are
entered immediately after the ` character.
2-2 VisualWorks

Transformation Rules
For example, since it is often impractical to specify every possible
match exactly, the modifier @ may be added after the ` character to
specify a match for any type of node in the method’s parse-tree.

Suppose, to sustain the example, we want to replace every
occurrence of the message printOn: with the message print:. Using
@, we can specify a general pattern:

`@receiver printOn: `@variable
would now match the expression:

self name printOn: aStream
Slight variations of this pattern can be used to replace keyword
messages with several arguments. Messages taking block arguments
can be easily manipulated in this manner.

For example, to change:

maybeNil isNil ifTrue: [trueBlock] ifFalse: [falseBlock]
to:

maybeNil ifNil: [trueBlock] ifNotNil: [falseBlock]
We would use the following rules for search and replace:

`@maybeNil isNil ifTrue: `@trueBlock ifFalse: `@falseBlock
`@maybeNil ifNil: `@trueBlock ifNotNil: `@falseBlock

Note that the @ modifier is polymorphic, i.e., it matches any subtree
in the node. Depending upon where it appears in the pattern, it can
specify anything from an individual node to a collection of statements.

Similarly, a list of temporary variables can be matched with `@Temps,
e.g.:

| `@Temps |
When a match is found, it is often necessary to search inside the
node for more matches. The ` character may be used twice (e.g.,
``@variable) to specify this pattern-matching behavior.

The . (period) character may be used to match a statement node,
thus a list of statements may be matched by using ``@.Statements.

Four different modifiers are currently supported by the rewrite editor:
Tools Guide 2-3

Code Rewrite Editor
Rewriting Methods
To rewrite methods using a transformation rule:

1 Select the method or methods you wish to rewrite in the
browser’s navigator and then open the rewrite editor by clicking
on the code tool’s Rewrite tab.

2 Enter a search pattern in the upper input field of the rewrite
editor.

3 Enter a replacement pattern in the lower input field.

4 To browse a list of methods that match the search pattern, click
on the Search... button.

5 Open a list of methods that are ready to be transformed, by
clicking on the Replace.. button. A transformation editor appears,
showing a list of methods and highlighting the code that will be
transformed.

Character Type Comment Examples

‘ recurse into Whenever a match is
found, look inside this
matched node for more
matches.

"``@object foo" — matches
foo sent to any object, plus
for each match found look
for more matches in the
``@object part

. statement Matches a statement in
a sequence node.

 "`.Statement" — matches
a single statement

literal Matches only literal
objects.

"`#literal" — matches any
literal (#(), #foo, 1, etc.)

@ list When applied to a
variable node, this will
match a literal, variable,
or a sequence of
messages sent to a
literal or variable.When
applied to a keyword in a
message, it will match a
list of keyword
messages (i.e., any
message send).When
applied with a statement
character, it will match a
list of statements.

"| `@Temps | …" —
matches list of temporary
variables.
"`@.Statements" —
matches list of
statements"`@object" —
matches any message
node, literal node or block
node
"foo `@message: `@args"
— matches any message
sent to foo
2-4 VisualWorks

Replacing Whole Methods
6 To actually transform the method(s) that match the search
pattern, select Execute or Execute All from the <Operate> menu in
the transformation editor.

Replacing Whole Methods
The rewrite tool also allows you to match and replace an entire
method, not just single expressions. To enable entire-method
transformations, select the Method check-box.

For example, you can search for methods that just return a super
message, use the following pattern:

`@msg: `@args
^super `@msg: `@args

To eliminate ifTrue: guard clauses, you might use this search pattern:

`@methodName: `@methodArgs
| `@Temps |
`@Condition ifTrue:

[`.Stmt1.
`.Stmt2.
`@.Statements]

with this replacement pattern:

`@methodName: `@methodArgs
| `@Temps |
`@Condition ifFalse: [^self].
`.Stmt1.
`.Stmt2.
`@.Statements
Tools Guide 2-5

Code Rewrite Editor
2-6 VisualWorks

3

Override Editor

The Override List tool provides a view on overrides in the system. It is
very much like the Change List tool, and most of the operations the
same, so will not be repeated here (refer to Change List). There are
differences, however, in command behavior that we will cover.

Reviewing Overrides
To open the an Override List showing only the overridden definitions,
select Changes > Open Override List or Changes > Browse System Overrides
from the System menu in the Launcher. Browse System Overrides opens a
list of all overrides currently in the system. Open Override List opens an
empty list to which you can selectively add parcels and/or packages
containing overridden definitions.

To compare the overridden and overriding definitions, select the
package to check in a browser and select:

• Package > Browse > Overrides of others, to browse method definitions
that have been overridden, or

• Package > Browse > Overridden by others, to browse any methods
defined in the package that have been overridden by another
parcel or package.
Tools Guide 3-1

Override Editor
These options open comparison browser versions of the Override
List, putting the overridden and overriding definitions side-by-side for
easy comparison.

Selecting Overrides
You can select which overrides are displayed, by selecting the
relevant parcels and packages. To list overrides related to a specific
parcel or package, select File > Display Parcel... or File > Display Package...
in the Override List. Then select the parcel or package to display in
the displayed list and click OK.

To list all overrides in the system, select File > Display System Overrides.
All definitions overridden by a parcel or package are then included in
the list.

The check boxes at the right provide filters on the list, to help focus
on specific sets of conflicts. With all boxes unchecked, all conflicts
are shown. When any boxes are checked, only the items checked are
shown.
3-2 VisualWorks

Publishing Parcels and Packages with Overrides
To show conflicts, select Show > Show Conflicts. The different versions of
the selected item are then shown in separate panes, with conflicting
code shown in red.

Restoring an Overridden Definition
If a definition has been overridden, and you want to restore it as the
current definition in the system, use the Replay menu options. You
have the option to replay a single definition, all displayed definitions,
or all from the selected definition to the end of the list.

Once restored, the overridden package/parcel now “owns” the current
definition, and competing definitions are removed from all the
overbidding components. The parcels can now be saved, without the
conflicts blocking the operation.

Removing an Overridden Definition
Alternatively, the overridden definition may be the one that should be
removed.

To remove a single overridden definition from a parcel or package,
and so to remove the conflict between defining parcels or packages,
select the definition in the list and choose Forget > Purge selection. The
overrider now owns the definition, and the components can be saved.
Note that if the overriding parcel/package is unloaded, the overridden
definition will not be restored.

Other options are available for purging blocks of definitions. For
example, marking definitions using the Remove menu items, and then
selecting Forget > Purge these removes all of the selected definitions
from their components.

Publishing Parcels and Packages with Overrides
Parcels and packages behave differently when publishing with
overrides. The issue is how to publish code that has been overridden.
What happens is:

• If a parcel contains an overridden definition, an attempt to publish
will fail, and a notifier is displayed.

• If a package contains an overridden definition, an attempt to
publish will succeed, although publishing binary is not allowed,
and the package will include its overridden code.
Tools Guide 3-3

Override Editor
In a parcel, the result would be to publish the overriding code, and the
overridden code would be lost. Rather than publish under these
conditions, the operation is cancelled. To republish the parcel, you
must remove the override condition, either by removing the
overridden definition from the parcel, or by copying or moving the
overriding definition into the parcel.

In a package, the mechanism allows keeping the overridden and the
overriding code separate, and so the package can be published while
retaining its original (overridden) code. To keep the original code,
simply publish the package. To update the package with the
overriding code, you must copy or move the code into the package.

Since publishing a package in binary creates a parcel format file,
which cannot contain overridden definitions, the binary option is
disabled if the code contains an overridden definition.

Due to differences in how parcels are constructed, this difference is
unlikely to be removed in the future.
3-4 VisualWorks

4

Change Sets

Named change sets (or simply change sets) provide a “project-
based” view of changes you make to the system. By using multiple
change sets, you can keep the changes made for different
applications or subsystems separate, while maintaining a single
development environment. This is particularly useful if you work on
multiple small projects as the same time, but do not want to maintain
separate images for each.

Change set entries represent either new or changed class definitions
and their methods, or individual methods that you create or change
without modifying the class itself. These define a set of definitions
that you can then file out as a group.

Unlike the Change List (see Change List), change sets do not record
the evolution of those changes. Instead, a change set contains only
the current definitions of changes assigned to the set.
Tools Guide 4-1

Change Sets
Change Set Manager
You manage change sets by using the Change Sets Manager. In this
tool, you set the current change set and access operations on
change sets, using the menu options. To open the Manager, select
System • Changes • Change Sets in the VisualWorks Launcher.

In addition to the list of change set names:

• The Classes column lists the number of classes in each change
set that have changes to the class definition itself; filing out will
include all methods.

• The Methods column indicates the number of loose methods that
will be included when filing out (methods changed without
changes to their classes).

Selecting a Current Change Set
The Change Set Manager always has the Default change set, plus any
change sets that are defined in the image. If no change set is
selected, or if Default is selected, all changes go to the default change
set. Otherwise, they go to the selected change set.

To make a change set active or current, double-click on the name in
the change set list, or select it and pick Set • Make Current. All changes
you make to the system will then be saved in that change set.

You can also change the current change set by clicking on the
change set icon on the status bar of the Launcher.

Creating a New Change Set
To add a new change set, select Set • New, or select New in the change
set list <Operate> menu. Enter a name for the change set in the
prompter, and click OK.
4-2 VisualWorks

Change Set Manager
To make this the current change set, double-click on its name.

Alternatively, click on the change set icon on the status bar of the
Launcher, and select New Change Set.

Exploring Changes
Having made changes that are assigned to a change set you can
review them. Three menu options in the Change Set Manager Set (or
<Operate>) menu to allow you to review your change set’s contents.

Change sets do not separately report changes to methods when the
class that contains them is already in the change set. When you file
out the new class, its methods are included. However, if you empty
the change set or “forget” the class addition, successive method
changes are recorded.

Browse Methods
This menu pick opens a Method Browser on methods changed and
recorded in the change set.
Tools Guide 4-3

Change Sets
Edit
This menu pick opens an editor browser on the current change set.
You can change the selected change set in the Change Set List, and
the editor will update to show the changes for that change set.

The top-left pane lists classes that either have changed or contain
loose methods that have changed, recorded in this change set. The
top-right pane lists the named change sets, for information only; it is
inactive.

The top center pane lists methods that have changed for the selected
class, if any are recorded. Methods for classes whose definitions are
in the change set are not listed, since a file-out will include them
anyway.

You can edit the definitions in this editor, but the edits do not survive,
either in the system or in the change set. To edit a definition, select it
and then pick Browse or Spawn in the <Operate> menus to open a
browser on the item. To remove just the one item from the change
set, select Forget in its <Operate> menu.

The check boxes and radio buttons (depending on what is selected)
at the bottom of the window indicate the kind of change recorded.
You can change these annotations, and they are saved with the
change set, but there is little value in doing so in most cases.
4-4 VisualWorks

Creating Install and Remove Scripts
Inspect
This menu option opens an inspector on the change set. Here you
can perform the usual inspector options.

Updating the Changes Display
To update an open Change Set browser after making a change to the
system, select update in the <Operate> menu for a browser pane.

Saving Changes
Change sets are typically used to identify sets of changes that can
then be distributed as file-out format files. Change sets are saved in
source code format, and so can be browsed in the Changes List.

To write out all the changes in a change set, select the change set
and select File • File Out... . You will be prompted for a file name.

As a shortcut, to file out all save sets, select File • File out All... . You
will be prompted for a directory name. The directory will be created, if
necessary, and a separate file-out file for each change set is written
to it.

You can file out a single method by selecting it in the Change Set
Editor (ChangeSet • Edit), then selecting File out as... in the <Operate>
menu.

Note that, when filing out a change set that includes defining a class,
all subsequent changes made to methods in that class are also
(implicitly) assigned to the change set. This is true even if a different
change set is “current” when those method changes are made. A file-
out the first change set will include the method definitions.

Creating Install and Remove Scripts
To assist in installing and removing the code filed-out from a change
set, you can create import and removal scripts. Simply select the
change set in the Change Set List, and select either ChangeSet •
Import Script or ChangeSet • Remove Script.

To be effective, the scripts must be created from the change set while
it is exactly the same as when the file-out was created.
Tools Guide 4-5

Change Sets
Change Initialization Ordering
Change Sets have an initializationOrder instance variable which can be
used to override the default class initialization ordering derived from
the class hierarchy. This is useful in some complex change sets
where initialization order is important.

Clearing a Change Set
When a particular change or collection of changes is secure, so that
you do not need to continue to hold it in the change set, you can
remove it. For example, after filing-out a set of changes, you can
purge the whole set, since you can restore them from the file-out file.

To empty all changes from the Change Set for the active project,
select ChangeSet • Empty in the Change Set List.

To remove a single change from the change set, select the change in
the Change Set Editor, and select forget in the item’s <Operate>
menu.
4-6 VisualWorks

5

Change List

VisualWorks maintains and records a running list of changes made to
the system, in the changes file. By default, the file has the same
name as your image but with a .cha extension. The changes file is
saved in source-code format.

The changes file records anything that changes the state of the
system, such as: changes resulting from loading parcels and filing in
code; added and modified class and method definitions; special doIts
and related operations.

Changes are recorded as they are made, preserving a record of
changes even if you exit VisualWorks without saving or if the system
crashes. For this reason, the changes file provides a sure way of
recovering lost work.

To work with the changes file, VisualWorks has a Change List Tool
that allows you to build and manipulate a change list, which is based
on the contents of the changes file, change sets, and other file-in
format files containing descriptions of changes.

The Change List Tool
The Change List tool allows you to work with a change list. It provides
a wide variety of operations for reading changes files, comparing the
contents of files to the system, filtering the display, and installing
changes into the system.
Tools Guide 5-1

Change List
To open the Change List tool, select Tools • Change List in the Launcher
window.

The Change List window has three views. The view at top left
displays a list of the changes. Entries in the Change List generally
identify the affected object and the nature of the change, such as
NotifierController menu (add). When you select an entry, the affected
class or method displays in the text view as it existed after the
change.

The top right-hand view provides on/off switches for filtering the
contents of the change list. Any combination of filter switches can be
selected. The switches filter the list based on the currently selected
list item. The filters have no effect if no item is selected, and so
cannot be selected.

For example, to display only changes that affect the same class as
the one affected by the currently selected change list entry, click on
the class switch. To further restrict the listing to identical entries, such
as NotifierController menu, click on the same switch.

Several operations using the Change List are described in this
section. For descriptions of menu items not covered here, refer to the
online VisualWorks Tools help.
5-2 VisualWorks

Using the Change List
Using the Change List

Browsing a Change List
The Change List Browser is initially empty when it opens. This allows
you to select what set of changes you want to view, whether in the
current changes file or in some other file. To display changes, use
one of the following options in the File menu:

Read File/Directory

This option reads into the browser the contents of a changes file
you specify, or from all changes files in a directory you specify. If
you specify a directory, the contents are added to the browser in
the order read. To add files in a specific order, read them
individually.

Recover Last Changes

This option reads in to the Change List Browser all changes to
the system since the last image save. Use this option to recover
lost work, such as from a a system crash.

Display System Changes

This option appends any changes in the current Change Set
(project) to the list of changes in the browser. Unlike the Change
Set browser, which displays only a summary, this shows the
history of changes.

Display All System Changes

This option adds all changes in all Change Sets to the browser
display.

Parcels

This option adds changes from a given parcel that is present in
the system. This can be used to examine a parcel's unloaded
code and its overridden extension methods as well as normal
code.

Reordering Items in the Change List
Some errors may be caused by the order in which changes were
made in the system. For example, one operation may require that an
object be initialized to a state, but the initialization was neglected or
Tools Guide 5-3

Change List
performed too late. Rather than repeat the series of operations
manually, the Change List can be used to reorder and then replay the
operations.

To change the order of operations, display system changes. Select
an operation item to move, click and hold it using the <Select> button,
drag the item up or down in the list to an appropriate position, then
release (drop) it.

You can now replay the operations to execute them in the new order.

Removing Items from the Change List
The Remove and Forget menus provide a large number of options for
selectively excluding items in the Change List for processing. For
brief descriptions of each of these, refer to the VisualWorks Tools
help topics.

The Remove options mark items for removal from the current list of
changes. Marked items are shown in strike-out type style. Options
allow you to mark either individual items or large groups of items.

Once a collection of items are marked for removal, you can remove
them from the list. In the Forget menu, select either Forget these or
Forget all, to remove the marked items from the change list. The
difference is that Forget all removes even any marked items that are
not showing at the moment due to the filtering selections; Forget these
only removes those currently showing.

To clear removal markings, use the Restore... menu items in the Forget
menu.

Note that removing items only removes them from the current change
list, not from the change list file. You can always get back by re-
reading the changes file.

Resolving Conflicts with the System
Several options in the Change List tool help you assess the impact of
a set of file-ins on the current system. These facilities filter changes
based on their similarity or dissimilarity to the current system.

A major use of the conflicts view is to merge changes made by a
collection of files, and so construct a single file containing only the
desired changes. It can also be an aid in crash recovery, by filtering
older changes from a changes file.
5-4 VisualWorks

Using the Change List
Using the Conflicts Filter
Selecting the Show • Show conflicts splits the lower text view into two
adjacent text views (vertically or horizontally, set by Show•Conflicts•
Vertical view or Horizontal view). The left-hand or upper view shows the
text for the selected change. The right-hand or lower view shows the
text of the corresponding system entity (method or class definition,
class comment or organization, etc.) or an explanatory message if
this doesn't exist.

The differences between the two texts are high-lighted. This gives
you a quick, graphic indication or what would be changed by filing-in
a specific change.

Turning off the show conflicts filter hides the conflict text view and
returns the change list view to its usual appearance.

Managing Conflicts
Several items on the Conflicts menu allow adding or otherwise
processing conflicts between the changes list and the system. The
full set of menu items are briefly described in the VisualWorks Tools
Help. Here we comment on a few of the more interesting options.
Tools Guide 5-5

Change List
Add system conflicts

For each displayed change that has a version in the system with
which it conflicts, this option adds the corresponding system
version of the change to the change list.

Add original versions

This option scans the system's source files (excluding the current
changes file) and, for each displayed change for which a
corresponding change exists in the sources file, add the sources
file version to the change list. This is useful comparing your
changes against the original sources.

Add to change set/Remove from change set

These options update the current change set to include or
exclude the changes in the change list, without filing in the
changes. This is useful when you have an old file-in representing
a component that you wish to extract from the system. This can
be used together with the System Browser's
Parcel • Build • Add Changes and Parcel • Build • Remove Changes
options.

Change/Change Back Changes
Method changes check to see if they're filing in from the sources files.
If so, they set the new compiled method's source pointer to the
sources file, and remove the method from the current change set.
This enables a technique for working with methods that you
frequently change and then change back.

To revert changed-then-changed-back methods do the following:

1 Once you have a set of system changes, use Add originals to pull-
in all corresponding changes from the sources files. These
appear after the current changes.

2 While holding down the Shift key, choose Remove • Exact Duplicates
to remove the changes in the sources files that are duplicates of
the changes further up the list. Holding the Shift key down
causes removal to happen at the end of the list rather than at the
beginning.

3 Choose Remove • Exchange removed to select the set of source file
changes that match the current system.

4 Select Forget • Forget these, and turn on Show • Show conflicts and
Show • Show file to make sure that these changes are indeed on
5-6 VisualWorks

Using the Change List
the sources files and identical to the current versions in the
system.

5 Select Replay • All from the top, and watch the transcript to see that
each filed-in method change says “in sources file.”

Reverting to a Prior Version
During the course of development, a class or method may undergo
several changes. The Change List tool makes it easy to see the
evolution of, and to examine the details of, the code at any stage in its
development. This is particularly useful when you need to see a prior
version so you can change the code back.

To display the changes that have occurred since the last snapshot
was taken, select Recover last changes in the <Operate> menu of the list
view at the top. If you want to display changes that are in the Change
Set, select Disp-lay system changes instead.

Once you have displayed the change you want to revert to, select that
change and then select Replay selection in the <Operate> menu (or
Replay • This Change).

To revert to a whole collection of changes, read in the necessary
changes and set the filters to show exactly the changes you want to
load. Then choose Repl-ay all.

Recovering from a Crash
If some change you made to the system causes it to crash, the
Change List provides a way to recover changes up to, but excluding
the change causing the crash. In this way it provides a powerful crash
recovery tool.

To recover from a crash:

1 Launch the last saved image.

2 Open a Change List, and select File • Recover last changes.

3 Using a combination browsing and editing operations on the
displayed list, remove unneeded items that may have contributed
to the system crash.

This may involve a good deal of work, browsing the changes first
and understanding what ultimately caused the crash, which was
probably an interaction between several changes.

DoIts in particular are not usually necessary to recovering
changes, and may easily contribute to system instability. To
Tools Guide 5-7

Change List
remove all doIts, select on, and then click the type checkbox. This
filters the list to show only the doIts. You can then select Remove •
All to clear all doIts from the list.

4 Once the list contains just those operations you wish to recover,
select Replay • All from the top, or another appropriate replay
option.

Recovering Changes to a Clean Image
If your image file is damaged in a crash, you may need to recover
your changes into a clean image. By “clean image” we mean a copy
of the original visual.im that shipped with VisualWorks. If you have
modified this image file, you will need to start with one from the
distribution media.

The technique described here uses the changes file (myimage.cha)
related to the damaged image. You should back up this file before
proceeding. Then:

1 Backup your changes file.

2 Launch VisualWorks with the clean visual.im image file.

3 Load any parcels that were loaded in the lost image.

Parcel loading is not included in the .cha file, so they must be
loaded to ensure that code required by the changes is available.

4 Save this image to a new name, different from the name of the
damaged image.

If you use the same name as the damaged image, you will
overwrite the changes file you need for recovering. You will be
able to rename the original name later, after you have recovered
your work.

5 Open a Change List (select Tools • Change List in the Launcher
window), and load the changes file using File • Read file(s)... .

If your changes file is large, reading the file may be slow. Be
patient.

6 Remove doIts from the change list by selecting a doIt line, clicking
the Type check box to filter the list, then selecting Remove • All.
Then, select Forget • Forget these to remove the doIts from the list.

Remove • All marks all of the doIts for removal. To unmark one,
select it and choose Forget • Restore selection.
5-8 VisualWorks

Using the Change List
Remove at least doIts that you invoked from a workspace or
browser, since this might fail. In general, you may be able to
remove all doIts.

7 Uncheck Type, to show all the remaining changes.

8 Examine the list, especially near the end, to see if there is a
change that might have caused the damage. If so, remove it from
the list using Remove • Selection and Forget • Forget These.

There are a variety of changes you might wish to remove. For
example, a method may be defined several times, which is okay
as long as the last definition is the one you want.

9 Select Replay • All from the top, to restore all of your changes.

10 Save the resulting image.

At this point you have recovered your changes into the new image.
Test it, and if you are satisfied that it is stable, you may save it to the
original image name. Note that the old changes file will then be
overwritten, so you will not be able to repeat the process using it.

It frequently takes a few tries to get exactly what you want into the
restored image, so repeat the procedure until you have just what you
want.

Condensing the Change List File
In a large development effort, spanning months or years of
programming, the changes file can become very large. To condense
it so that it contains only the most recent change for each method,
select System • Changes • Condense Changes in the Visual Launcher or
evaluate the expression SourceFileManager default condenseChanges.
Changes involving anything other than a method—such as a class
addition or redefinition—will also be purged from the file
permanently. VisualWorks will assist you by making a backup copy of
the changes file before condensing it.

Changing the Change List File Name
By default, the change list is written to a file with the same file name
as the image file, but with a .cha extension. It is seldom necessary to
use a different file name. If you do need to change the file name, edit
the file name in the Settings Tool, Source Files page.
Tools Guide 5-9

Change List
Filing Out a Set of Changes
When the code you want to share consists of fragments from many
different classes and categories, it may be more convenient to use
the Change List to Write file with the desired code. Begin by loading all
changes into the Change List tool, as described in Browsing a
Change List.

Next, remove the irrelevant changes. For example, doIts are likely
candidates for removal because they rarely affect the image in a
lasting way. Also, use Remove • Old Versions to remove duplicate
entries, as when a method has undergone several changes, and
leave only the last entry in each case. Use Remove • Selection and
Remove • All to mark one or more changes for deletion, then use Forget
to erase them from the list. Use the filter switches to control the
affected range of entries.

For example, to remove all doIts, begin by selecting any doIt. Then
turn on the type switch so all of the doIts are listed. Select Remove all in
the <Operate> menu to mark them for deletion, then Forget to erase
them. Then turn off the type switch to see the remaining entries.

When the displayed list of changes is the desired set, select Write file
in the <Operate> menu and supply the name of a file in which to
store the code. That file can then be loaded into another image via
the File in command in a File Editor or File List.

Only the displayed changes are included in a Write file operation, so if
it is possible to define the minimum set of changes by using the filter
switches alone, it is not necessary to Remove and Forget the
nondisplayed entries.When you write selections to a file, be sure to
choose a file name that is different from any file that has been read
into the change list. The change list maintains pointers to the code in
the files that are read in, and these pointers become invalid when you
overwrite a file.
5-10 VisualWorks

6

Code Critic

The VisualWorks browser includes a Code Critic tool that may be
used to screen application code for over 60 common types of bugs.

The Code Critic also provides a mechanism for applying a set of pre-
defined transformation rules to your application code. These rules
express “best practices” for code development, and are almost
always safe to apply.

To write your own transformation rules, refer to the discussion of the
Code Rewrite Editor.

Using the Code Critic
To check a class, a protocol, method or methods:

1 Use the browser navigator to set the scope of the test. Select
multiple classes, protocols or methods by holding down the
<Shift> key.
Tools Guide 6-1

Code Critic
2 Select the tool using the Code Critic tab control in the lower part of
the browser.

The Code Critic tool presents a hierarchical list of rules. You may
select the entire list, or individual rules that you wish to check
against. Select multiple rules by holding down the <Shift> key.

3 With both code and the rules chosen, run the critic by clicking on
the Check... button.

Once the critic finishes checking your code, it presents a list of
classes/methods that failed a check. If all checks pass without error,
the message No results found appears in the lower portion of the
browser.

All methods that fail a check are gathered together and displayed in a
results window. Results are categorized by type, with a list of rules
that failed to pass followed by the number of methods that failed to
pass each rule (shown inside square brackets).

To open a Method List browser on all the methods that failed to pass
a given rule, select a rule in the results window and click on the
Browse... button.

Use the Remove button to remove items from the results list. This
feature may be helpful for keeping track of items that have been fixed.

Filtering Results
The Code Critic includes a mechanism for creating and applying
special rule filters. These enable you to ignore a particular rule for a
particular class or method.

For example, during a session with the Critic, once problems
associated with certain rules have been fixed, we may want to ignore
those rules during subsequent checks with the Code Critic.

To filter out an item visible in the Critic’s results list, select it and
choose Add Filter from the <Operate> menu or choose Class > Add Filter
from the browser menu bar.

To save the current filter set, or load another one, select Save Filters...
or Load Filters... from the browser’s Edit menu. To reset the filters used
by the Critic, select Clear Filters.
6-2 VisualWorks

Code Critic Rules
Applying Transformation Rules
To view the available rules, select View > Transformation Rules from the
browser’s Edit menu.

Follow the same general steps for applying the rules to your code:

1 Use the browser navigator to set the scope of the transformation.
Select multiple classes, protocols or methods by holding down
the <Shift> key.

2 Select the individual transformation rules you wish to apply. You
may select multiple rules by holding down the <Shift> key.

3 With both code and the rules chosen, run the critic by clicking on
the Check... button.

Once the critic finishes checking your code, it presents a list of
classes/methods that may be transformed. If all checks pass without
error, the message No results found appears in the lower portion of the
browser.

To preview the effects of a code transformation, select a method in
the upper portion of the results window. The current version of the
method and the transformed result are displayed side-by-side in the
lower half of the results window.

To apply the code transformation to the highlighted method, select
Execute from the <Operate> menu. To apply all the transformations in
the results window, select Execute All.

Limitations of the Code Critic
As with all automated tools, not everything flagged by Code Critic is
necessary a bug, rather, they are potential problems that might merit
further attention. Be aware that for some rules, the Code Critic may
return false positives.

Code Critic Rules
This section summarizes the rules used by the browser’s Code Critic
tool. The rules are organized in five groups:

• Bugs

• Possible Bugs

• Unnecessary Code
Tools Guide 6-3

Code Critic
• Intention Revealing

• Miscellaneous

Bugs

Rule Description

Messages sent but not implemented Checks for messages that are sent by a method, but no
class in the system implements such a message. These
will certainly cause a doesNotUnderstand: message
when they are executed.

Self/Super sends not implemented Similar to the "Message sent but not implemented"
check, but only checks messages sent to self or super
since these can be statically typed.

Overrides a "special" message Checks that a class does not override a message that is
essential to the base system (e.g., Object>>class).

References an undeclared variable Checks for references to a variable in the Undeclared
dictionary. If you remove a variable from a class that is
accessed by a method, you will create an undeclared
variable reference for those methods that accessed the
variable.

Subclass responsibility not defined Checks that all subclassResponsibility methods are
defined in all leaf classes.

Uses A | B = C instead of A | (B = C) Checks precedence ordering of & and | with equality
operators. Since | and & have the same precedence as =,
there are common mistakes where parenthesis are
missing around equality operators.

Uses True/False instead of true/false Checks for uses of the classes True and False instead of
the objects true and false.

Variable used, but not defined anywhere Similar to the "References an undeclared variable" check,
but looks for variables that are not defined in the class or
in the Undeclared dictionary.
6-4 VisualWorks

Code Critic Rules
Possible Bugs

Rule Description

Assignment inside unwind blocks should be
outside

Checks assignment to a variable that is the first
statement inside a value block that is also used in an
unwind block.

Defines = but not hash Checks that all classes that define = also define hash. If
hash is not defined then the instances of the class might
not be able to be used in sets since elements that are
equal must have the same hash.

Has class instance variable but no initialize
method

Checks that all classes that have class instance variables
also have an initialize method. This ensures that all class
instance variables are initialized properly when the class
is filed-in to a new image.

Instance variable overridden by temporary
variable

Checks for methods with block temporary variables that
override an instance variable. This causes problems
when using the instance variable inside the method.

Missing super sends Checks that some methods contain a send to super. For
example, the postCopy method should always contain
super postCopy.

Modifies collection while iterating Checks for sends to remove: from inside of collection
iteration methods such as do:. These can cause the do:
method to break since it will iterate beyond the end of the
collection. The common fix for this problem is to copy the
collection before iterating over it.

More addDependent: messages then
removeDependent:

Check that the number of addDependent: message
sends in a class is less than or equal to the number of
removeDependent: messages. If there are more
addDependent: sends, it is possible that some
dependents are not being released, which may lead to
memory leaks.

Possible missing "; yourself" Checks for missing "; yourself" cascaded message send
for cascaded messages. This helps locate common
coding mistakes such as: anArray := (Array new: 2) at: 1
put: 1; at: 2 put: 2. I.e., anArray would be assigned the
value 2 rather than the array object.

Possible three element point; E.g., x @ y + q
@ r

Checks arithmetic statements for possible three element
points (i.e., a point that has another point in its x or y
part).

References an abstract class Checks for references to classes that have
subclassResponsibility methods. Such references might
create instances of the abstract class or might be used as
the argument to an isKindOf: message (the latter is
considered bad style).
Tools Guide 6-5

Code Critic
Returns a boolean and non boolean Checks for methods that return a boolean value (true or
false) and return some other value such as (nil or self). If
the method is supposed to return a boolean, this
suggests there is a path through the method that might
return a non-boolean. If the method doesn't need to
return a boolean, you should probably rewrite it to return
some non-boolean value since other programmers
reading your method might assume that it returns a
boolean.

Returns value of ifTrue:/ifFalse: without
ifFalse:/ifTrue: block

Check for methods returning the value of an ifTrue: or
ifFalse: message. These statements return nil when the
block is not executed. For example, the following code will
return nil when aBoolean is false:methodName
^aBoolean ifTrue: [0]If the code should return nil when
aBoolean is false, then it should probably be written as:
methodName ^aBoolean ifTrue: [0] ifFalse: [nil]

Sends different super message Checks for methods whose source sends a different
super message. A common example of this is in creation
methods. You might define a method such as:
createInstance ^super new initializeIf the new method is
not defined in the class, you should probably rewrite this
to use self instead. Also, if the new method is defined,
you might question why you need to use the superclass'
new method instead of new method defined in the class.

Subclass of class that has instance variable
but doesn't define copyEmpty

Checks that all subclasses of Collection classes that add
an instance variable also redefine the copyEmpty
method. This method is used when growing the
collection. It copies over the necessary instance variables
to the new, larger collection.

Temporaries read before written Checks that all temporaries are assigned before they are
used. This can help find possible paths through the code
where a variable might still be unassigned when it is
used.

Uses the result of an add: message Check for possible uses of the result returned by the add:
or addAll: messages. These messages return their
arguments not the receiver. As a result, many uses of the
results are wrong.

Rule Description
6-6 VisualWorks

Code Critic Rules
Unnecessary Code

Rule Description

Block immediately evaluated Check for blocks that are immediately evaluated. Since
the block is immediately evaluated, there is no need for
the statements to be in a block.

Check for same statements at end of
ifTrue:ifFalse: blocks

Checks for ifTrue:ifFalse: blocks that have the same code
at the beginning or end. Instead of having the same code
in two places, it should be moved outside the blocks.

Class not referenced Check if a class is referenced either directly or indirectly
by a symbol. If a class is not referenced, it can be
removed.

Instance variables not read and written Checks that all instance variables are both read and
written. This check does not work for data model classes
since they use the instVarAt:put: messages to set
instance variables.

Method just sends super message Check for methods that forward the message to its
superclass. These methods can be removed.

Methods equivalently defined in superclass Check for methods that are equivalent to their superclass
methods. Such methods don't add anything to the
computation and can be removed, since the superclass's
method will work just fine.

Methods implemented but not sent Check for methods that are never sent. If a method is not
sent, it can be removed.

Unnecessary = true Check for an =, ==, ~=, or ~~ message being sent to true/
false or with true/false as the argument. Many times
these can be eliminated since their receivers are already
booleans. For example, anObject isFoo == false could be
replaced with anObject isFoo not if isFoo always returns
a boolean. Sometimes variables might refer to true, false,
and something else, but this is considered bad style since
the variable has multiple types.

Variable referenced in only one method and
always assigned first

Checks for instance variables that might better be defined
as temporary variables. If an instance variable is only
used in one method and it is always assigned before it is
used, then that method could define that variable as a
temporary variable of the method instead (assuming that
the method is not recursive).

Variables not referenced Check for variables not referenced. If a variable isn’t used
in a class, it should be deleted.
Tools Guide 6-7

Code Critic
Intention Revealing

Rule Description

Assignment to same variable at the end of
ifTrue:ifFalse: blocks

Checks for ifTrue:ifFalse: blocks that assign the same
variable at the end of the block. Instead of having the
assignment being in both blocks, we can instead assign
the variable the result of the ifTrue:ifFalse: message. For
example, this code:aBoolean ifTrue: [foo := true] ifFalse:
[foo := anotherBoolean]could be rewritten as:foo :=
aBoolean ifTrue: [true] ifFalse: [anotherBoolean]Once we
have simplified the expression by pulling the assignment
out of the blocks, then we could see that the code is
equivalent to:foo := aBoolean or: [anotherBoolean]

Guarding clauses Checks for ifTrue: or ifFalse: conditions at the end of
methods with two or more statements inside their blocks.
Such methods might be more comprehensible if they
returned self instead. For example, the following code:
someMethod a isNil ifFalse: [self doSomething. self
doAnotherThing]might be better represented as:
someMethod a isNil ifTrue: [^self]. self doSomething. self
doAnotherThingIn the first method, a not being nil looks
like the exception, but most likely a being nil is the
exception which is more obvious in the second method.

ifTrue:/ifFalse: returns instead of and:/or:'s Checks for common ifTrue: returns that could be
simplified. For example, foo aCondition ifTrue: [^false].
^truecan be simplified as:foo ^aCondition not

Method defined in all subclasses, but not in
superclass

Checks classes for methods that are defined in all
subclasses, but not defined in self. Such methods should
most likely be defined as subclassResponsibility methods
to help document the class. Furthermore, this check
helps to find similar code that might be occurring in all the
subclasses that should be pulled up into the superclass.

Sends add:/remove: to external collection Checks for methods that appear to be modifying a
collection that is owned by another object. Such
modifications can cause problems especially if other
variables are modified when the collection is modified.
For example, CompositePart must set the containers of
all its parts when adding a new component.

Unnecessary size check Check for code that checks that a collection is non-empty
before sending it an iteration message (e.g., do:, collect:,
etc.). Since the collection iteration messages work for
empty collections, the method does not need to be
cluttered with the extra size check.

Uses "size = 0" or "= nil" instead of "isEmpty"
or "isNil"

Checks for methods using equality tests instead of the
message sends. Since the code aCollection size = 0
works for all objects, it is more difficult for someone
reading such code to determine that aCollection is a
collection. Whereas, in the expression aCollection
isEmpty, it is clear that aCollection must be a collection
since isEmpty is only defined for collections.
6-8 VisualWorks

Code Critic Rules
Miscellaneous

Uses at:ifAbsent: instead of at:ifAbsentPut: Checks for uses of at:ifAbsent: in place of the shorter
at:ifAbsentPut: message. For example:aDictionary at:
aKey ifAbsent: [aDictionary at: aKey put: anObject]should
be rewritten as:aDictionary at: aKey ifAbsentPut:
[anObject].You may also use one of the Code Critic’s
transformation rules to convert these methods.

Uses detect:ifNone: instead of contains: Checks for the common code fragment:(aCollection
detect: [:each | 'some condition'] ifNone: [nil]) ~= nilwhich
can be simplified and clarified as:aCollection contains:
[:each | 'some condition'].

Uses do: instead of collect: or select:'s Checks for methods using do: instead of collect: or
select:. The collect: and select: variants are preferred for
clearly expressing intention.

Uses do: instead of contains: or detect: Checks for methods using do: instead of using contains:
or detect:.

Uses ifTrue:/ifFalse: instead of min: or max: Checks for uses of ifTrue:/ifFalse: when it could use min:
or max:. For example:a < b ifTrue: [a] ifFalse: [b]may be
rewritten as:a min: b

Uses to:do: instead of do:, with:do:, or
timesRepeat:

Checks for methods using to:do: when a do:, with:do: or
timesRepeat: should be used.

Uses whileTrue: instead of to:do: Checks for methods using whileTrue: when the shorter
to:do: would work. For example, this common C-like
code:i := 1. [i <= size] whileTrue: ["self do something with
i". i := i + 1]can be written as:1 to: size do: [:i | "self do
something with i"]

Rule Description

Doesn't use the result of a yourself message Check for methods sending the yourself message
unnecessarily. For example, the following statement
doesn't need yourself, since it is not used:aCollection
addAll: #(a b c); yourselfIf this statement were assigned
to a variable, then the cascade with yourself would be
needed to get the value of aCollection.

Inspect instances of "A + B * C" might be "A +
(B * C)"

Checks for methods that might have precedence
problems. Developers who are used to other languages
often make mistakes when writing Smalltalk code since in
Smalltalk all binary operations are performed left-to-right.

Instance variables defined in all subclasses Checks classes for instance variables that are defined in
all subclasses. It is often better style to move the instance
variable up into the class so that all the subclasses don’t
have to define it.

Rule Description
Tools Guide 6-9

Code Critic
Long methods Checks for methods that have more 10 statements (this
check counts statements, not lines.)

Methods with full blocks Checks for methods that contain full blocks or create a
context with the thisContext keyword. These methods are
a place where inefficiencies can creep in. For example, a
common reason why a full block is created is because a
block assigns a temporary variable that is not defined
inside the block. If the temporary variable is only used
inside the block, then the definition of the temporary
should be moved inside the block. The "move to inner
scope" refactoring can be used to correct this.

Non-blocks in ifTrue:/ifFalse: messages Checks for methods that don’t use blocks in the
ifTrue:ifFalse: messages. Developers new to Smalltalk
may write code such as: aBoolean ifTrue: (self
doSomething).instead of the correct version:aBoolean
ifTrue: [self doSomething].Even if such expressions are
correct, they cannot be optimized by the compiler.

Redundant class name in selector Checks for the class name in a selector,
e.g.:openHierarchyBrowserFrom:, which is a redundant
name for HierarchyBrowser.

Refers to class name instead of "self class" Checks for classes that have their class name directly in
the source instead of self class. Using self class allows
you to create subclasses without needing to redefine the
method.

Sends "questionable" message Check for methods that send messages which perform
low level actions. For example, using become: throughout
an application should be avoided. Also, messages such
as isKindOf: suggest a lack of polymorphism.

String concatenation instead of streams Check for methods that use string concatenation inside
an iteration message. Since string concatenation is
O(n^2), it is better to use streaming since it is O(n) -
assuming that n is large enough.

Unnecessary assignment or return in block Checks valueNowOrOnUnwindDo:, valueOnUnwindDo:,
ensure:, and showWhile: blocks for assignments or
returns that are the last statement in the block. These
assignments or returns should be moved outside the
block since they return the value of the block. For
example, the code: someMethod | bos | bos :=
BinaryObjectStorage onOld: 'test' asFilename
readStream. [^bos next] valueNowOrOnUnwindDo: [bos
close]can be rewritten as: someMethod | bos | bos :=
BinaryObjectStorage onOld: 'test' asFilename
readStream. ^[bos next] valueNowOrOnUnwindDo: [bos
close]Having the assignment or return inside the block
runs much slower than copying or optimizing blocks.

Rule Description
6-10 VisualWorks

Code Transformations
Code Transformations
The following predefined code transformations are provided by the
Code Critic (the patterns are defined in class
ParseTreeTransformationRule):

Utility method Check for methods that have one or more arguments and
do not refer to self or an instance variable. These
methods might be better defined in some other class or
as class methods.

Variable is only assigned a single literal value If a variable is only assigned a single literal value then
that variable is either nil or that literal value. If the variable
is always initialized with that literal value, then each
variable reference could be replaced with a message
send to get the value. If the variable can also be nil, then
it might be better to replace that variable with another that
stores true or false, depending on whether the old
variable had been assigned.

Rule Description

Transformation Description

"a >= b and: [a <= c]" -> "a between: b and: c" Transform:a >= b and: [a <= c]to:a between: b and: c

= nil -> isNil AND ~= nil -> notNil Transform = nil to isNil and transform ~= nil to notNil.

at:ifAbsent: -> at:ifAbsentPut: Transform:aDictionary at: aKey ifAbsent: [aDictionary at:
aKey put: anObject]to:aDictionary at: aKey ifAbsentPut:
[anObject].

detect:ifNone: -> contains: Transform:(foo detect: [:a| a test] ifNone: [nil]) isNilto:(foo
anySatisfy: [:a | a test])

Eliminate guarding clauses Transform methods ending with an ifTrue: or ifFalse: that
have multiple statements inside the block, replacing them
with ifFalse: [^self]. followed by straight-line code that was
inside the block. For example: someMethod a isNil
ifFalse: [self doSomething. self doAnotherThing]is
transformed to:someMethod a isNil ifTrue: [^self]. self
doSomething. self doAnotherThing

Eliminate unnecessary not Transform:aTest not ifTrue:to:aTest ifFalse:

Move assignment out of showWhile: blocks Transform:Cursor busy showWhile: [x := self
someLongCalc].to:x := Cursor busy showWhile: [self
someLongCalc]This eliminates a full block.

Move assignment out of ensure: blocks Transform:[x := self aCalc] ensure: [self close]to:x := [self
aCalc] ensure: [self close]This eliminates a full
block.Includes the ifCurtailed: variation.
Tools Guide 6-11

Code Critic
Move variable assignment outside of single
statement ifTrue:ifFalse: blocks

Transform:aTest ifTrue: [x:=1] ifFalse: [x:=2]to:x := (aTest
ifTrue: [1] ifFalse: [2])

Rewrite ifTrue:ifFalse: using min:/max: Transform:a < b ifTrue: [a] ifFalse: [b]to:a max: b(includes
many variations)

Rewrite super messages to self messages
when both refer to same method

Transform:Singleton class>>default ^super new
initializeto:Singleton class>>default ^self new initializeif
Singleton class does not define new.

Use cascaded nextPutAll: instead of #, in
#nextPutAll:

Transform:aStream nextPutAll: 'any ', 'time ', 'now '.to:
aStrean nextPutAll: 'any '; nextPutAll: 'time '; nextPutAll:
'now '.

Transformation Description
6-12 VisualWorks

7

Unit Testing

Overview
SUnit (Smalltalk Unit Testing Framework) is a popular test framework
for Smalltalk. It is the de facto industry standard in which developers
build test suites. SUnit supports the test-driven development practice
promoted by agile methodologies. It is suitable for writing tests at
functional unit, application, and UI levels.

VisualWorks includes the current cross-dialect implementation of
SUnit maintained by Camp Smalltalk. It also includes a VisualWorks
specific version, called SUnitToo (in the contributed folder).

There is a rich literature on SUnit and unit testing. Here is a starting
list:

• Various documents and papers are available at:

http://sunit.sourceforge.net/manual.htm

• “SUnit Explained,” Stephane Ducasse’s paper on SUnit 3.1:

www.iam.unibe.ch/~ducasse/Programmez/OnTheWeb/Eng-Art8-
SUnit-V1.pdf .

• “Extreme UI Testing” in Smalltalk Solutions 2007 conference
proceedings (whole conference archive is 97Mb):

www.stic.st/stsFiles/sts2007.zip

• Summary of Niall Ross’s paper on extending XP to UI testing (on
page 64):

www.esug.org/data/ReportsFromNiallRoss/
nfrStS2007andVendorReports.pdf
Tools Guide 7-1

http://sunit.sourceforge.net/manual.htm
www.iam.unibe.ch/~ducasse/Programmez/OnTheWeb/Eng-Art8-SUnit-V1.pdf
www.iam.unibe.ch/~ducasse/Programmez/OnTheWeb/Eng-Art8-SUnit-V1.pdf
www.stic.st/stsFiles/sts2007.zip
www.esug.org/data/ReportsFromNiallRoss/nfrStS2007andVendorReports.pdf
www.esug.org/data/ReportsFromNiallRoss/nfrStS2007andVendorReports.pdf

Unit Testing
SUnit Framework Classes
The SUnit testing framework primarily uses these classes:

TestCase

A test case is an instance of a class that inherits from TestCase.
Each such class can be given methods setUp and tearDown, and
some methods whose selectors begin with “test”. An instance
holds one of these test selectors. Running the test case executes
the setUp, test... and tearDown methods. These execute code and
make assertions to check specific conditions.

TestSuite

A test suite is a collection of test cases or test suites. The most
common kind of test suite holds all the tests of a test case class,
or of all classes in a package, and is created automatically when
you ask the UI to run the tests for that class or package. Suites
can also be created programmatically to build up complex
collections of tests.

TestResult

A test result captures the result of running test cases, classifying
them into those that raise errors, those that fail their assertions
and those that do neither, and so have passed.

TestResource

Normally, all the objects required by a test case are set up when
it starts and torn down when it ends, to avoid one test polluting
results from another. Sometimes, many tests can require
something (e.g. a database connection or temporary file) that
would be inconvenient or slow to set up and tear down for each
test. A test resource represents something that is needed by
many test cases in a suite. It is set up only once in the running of
the suite, when requested by the first test that needs it, and torn
down when the suite ends. Tests and resources are connected
on the class-side: TestCase class method resources returns those
subclasses of TestResource that it needs (see Defining Test
Resources).

These classes are contained in the SUnit parcel.
7-2 VisualWorks

Writing and Running SUnit Tests in VisualWorks
Writing and Running SUnit Tests in VisualWorks

Loading SUnit Support
Tests are classes and methods, like other code, and are written in the
System Browser. The RBSUnitExtensions parcel adds a UI for
running tests to the browser, providing an integrated interface for
writing and tests against your applications.

Open the Parcel Manager (from the Launcher window’s System menu).
Under Essentials on the Suggestions tab, choose RBSUnitExtensions and do
Load... from the <Operate> menu. This loads both it and the SUnit
parcel.

To view example test classes, you can load the SUnitTests parcel, in
the contributed/SUnit/ directory.

Creating a Test Case
A class that inherits from TestCase represents a given test scenario.
Its test methods verify behavior of aspects of this scenario. Its setUp
and tearDown methods create and release whatever the scenario
needs.

For example, to create a simple test case:

1 Create a subclass of TestCase (e.g., MatchTest)

2 In MatchTest, create a protocol to hold tests (typically called
“running”)

3 Create a test method (e.g., testMatchAtEnd):

testMatchAtEnd
self assert: ('*TheEnd’ match: ‘SomeTextWithTheEndAtTheEnd')

description: 'Repeated end sequence not matched at end'.
self deny: ('*TheEnd’ match: ‘SomeTextWithoutTheEndAtEnd')

description: 'Middle sequence matched at end'.

The method testMatchAtEnd now defines a single test case. Other test
methods can be written to verify other behavior of the match: utility. To
run this single test, select the method and press the Run button.

Writing Assertions in Test Methods
Class TestCase understands the following methods:
Tools Guide 7-3

Unit Testing
assert: anExpression

deny: anExpression

These show the description “Assertion failed!” on failure. Using
the ...description: forms of these methods is generally more
helpful, especially if others have to maintain your code and rerun
your tests.

assert: anExpression description: aString

deny: anExpression description: aString

To pass the test, anExpression should return true (assert:...) or
false (deny:...). In both cases, aString documents what failing the
test means and will be displayed in the debugger notifier if the
test fails.

assert: anExpression description: aString resumable: aBoolean

deny: anExpression description: aString resumable: aBoolean

A single failure aborts the rest of the test... method and proceeds
immediately to tearDown if aBoolean is false (the default, since
code in a test usually depends on earlier code having passed).
However if the same check applies to several configurations or
data points then when debugging, it may help to see the whole
list of failures before starting to fix things. Using these methods
allows you to resume a failed test you are debugging to see if its
later assertions pass or fail. For example,

#('same' ‘*’ '*.txt' 'a*c') with: #('same' 'any' 'some.txt' 'abc') do:
[:eachMeta :eachString |
self assert: (eachMeta match: eachString)

description: ('<1s> does not match <2s>'
expandMacrosWith: eachMeta with: eachString)

resumable: true]

Class TestCase also has methods that take a block parameter. The
methods should: and shouldnt: are deprecated. However, the following
methods are useful to test error raising.
7-4 VisualWorks

Writing and Running SUnit Tests in VisualWorks
should: aBlock raise: anExceptionSubclass description: aString

shouldnt: aBlock raise: anExceptionSubclass description: aString

Requires a 0 argument block. To pass the test, aBlock should or
shouldn’t raise an error of class anExceptionSubclass. For example,

self should: [RBParser parseExpression: '3 + .']
raise: Error
description: 'Parser did not reject an ill-formed expression'.

self shouldnt: [RBParser parseExpression: '3 + 4.']

raise: Error
description: 'Parser rejected a well-formed expression'.

Defining Test Resources
The normal SUnit pattern is that all the data and infrastructure for a
test is set up from scratch at the start of a test and torn down at its
end. Usually, such state is held in instance variables of the class. In
this way, you ensure that your tests do not pollute each other, and
that they start from a well-known clean state. This pattern should be
followed wherever possible.

However, some required state is constant over a suite of tests, and
costly to initialize or finalize. For example, setting up a database
connection, writing and deleting test data, etc. SUnit tests should be
run frequently while coding, and doing such set up for each test can
make running the suite very slow. In some cases, such as tests for an
external system that is optimized for intermittent long high-volume
transactions, the test might fail if connected, exercised and
disconnected incessantly in short low-volume tests.

TestResource handles these cases by implementing the singleton
pattern. When a test suite (or individual test case) is run, the first test
that requires a resource attempts to set it up. Subsequent tests either
note that it is set up or that this first attempt failed. A test case that
needs a resource fails before starting if that resource is unavailable,
and so is not run. Any tests in the suite that do not need the resource
run as normal. All resources set up during the run of a suite are torn
down when that run ends.

TestResource understands the same assertion protocol as TestCase, so
whenever test performance needs it and test safety (the need for one
test not to affect the running of another) allows it, code from the setUp
and tearDown of a subclass of TestCase can simply be refactored to a
Tools Guide 7-5

Unit Testing
subclass of TestResource. Implement the instance-side setUp and
tearDown methods for the resource to do the work, and an instance-
side isAvailable method to report if setUp succeeded.

To assign resources to tests, give each requiring test a class-side
resources method that returns a collection of those TestResource
classes that your test needs. That is the only thing you have to do to
ensure that resources are available when tests need them: the
framework handles the rest.

Although it should not be done without care, it is possible to combine
single-set-up for most tests with resetting a resource during a run. A
test might alter a resource state such that it becomes unsafe for other
tests to use. If the unsafe test sends MyTestResource reset in its
tearDown method then the next test will set up the resource again, as
if it were the first time. As this loses the performance point of
resources, it should be exceptional.

To resolve resources that conflict, see Extensions and Variants of
SUnit in VisualWorks.

Running Test Cases
To run tests, select one or more test methods defined in a subclass of
TestCase. Alternatively, you can select or any method categories,
classes, or packages that contains test methods. The browser then
displays the unit testing interface at the foot of the code tool:

To run all the tests you have selected and see how many passed,
failed or errored, click Run. The result is displayed by the testing
interface:

A test fails if one of its assertions does not return the expected result.
It errors if its code raises an walkback. It passes if it runs to
completion without failures or errors.

If all the tests pass, the bar is green. Otherwise it is red and you can:

• click Run Defects to rerun just those tests that did not pass

• click List Defects and select a test from the list to debug it

(To enable the Profile button, you must load the AT Profiling parcel.)
7-6 VisualWorks

Strategies for Writing and Using SUnit Tests
Strategies for Writing and Using SUnit Tests
The general principle is to write tests to expose errors and/or to
define features, then to refactor code until it passes tests for new
features and exposed bugs, while ensuring that tests for existing
features and fixed bugs continue to pass.

At what level should we aim our test cases? One approach, shown in
the ExampleSetTest in the SUnitTests parcel, is to write test cases for
classes or utilities. MyClassTest can verify that MyClass provides a
robust, well-defined service. These are unit tests in the strict sense of
the term.

Either in addition to or instead of the above, test cases can be aimed
at the top of the model layer of a large application, using the same
API as the application offers to its UI or to external systems that use
it. Such a test case often corresponds to a use case for the
application; its tests verify the various success and failure modes of
that use case. Despite the name “SUnit,” the framework is well-suited
to writing tests of this kind. In practice, the difference is often one of
degree rather than kind, because a low-level utility class still uses
other classes from base Smalltalk and a large application may offer
top-level interface or facade classes that model-layer tests address.

A possible second stage in this approach is to get double value from
these model-layer tests, by making them also exercise the UI directly.
The UI layer acts on the model layer in a way very similarly to the way
in which model-layer tests act on the model layer. In normal use, the
model layer gets its values from the UI and returns its results to the
UI. Under test, the model layer gets its values from the test and
returns its results to the test. UI-layer tests can be created with little
extra coding through refactoring test set up and completing the
commutative diagram by subclassing or delegating top-level model-
layer tests.

For more on this topic, see “Extreme UI Testing” .
Tools Guide 7-7

Unit Testing
Extensions and Variants of SUnit in VisualWorks
The description above is a basic overview of common ways to use
SUnit. The SUnit parcel and classes provided in the distribution have
comments that clarify points and guide usage. The code is there to
be read.

Browsing SUnit* and *SUnit* in the Cincom open repository will
reveal many extensions written by various people over the years. One
that is the SUnitUtilities bundle, which supports:

• the CompetingResource pattern, which handles the situation when
an overall suite contains tests that use two resources that cannot
be active at the same time

• the CrossProcessTestCase pattern, which handles the situation
when a test spawns subthreads whose errors and failures are not
caught by the overall handler, so that the test seems to pass but
opens a debugger.

Load the appropriate package within it for the features you need.
Read the extensive package and class comments.

SUnit is common to all dialects of Smalltalk, and is maintained by
Camp Smalltalk. Tests written for a utility in one dialect of Smalltalk
can be loaded into another and verify that a port of the utility works
there.

VisualWorks also provides the SUnitToo and SUnitToo(ls) parcels.
SUnitToo was developed to improve tools support, provided by
SUnitToo(ls). Currently, in addition to the obvious UI differences,

• SUnitToo groups its resources into unique sets used by tests and
sets up each set in turn, so a resource in multiple sets will
(re)start multiple times but no work is required to mark competing
resources.

• SUnitToo(ls), unlike RBSUnitExtensions, currently enforces a
random test-run order on each click of its run icon.

You can have both SUnit and SUnitToo loaded in your image. Each
will show the tests that belong to each and the System Browser will
show a coherent UI if you select test cases belonging to both.

Loading the SUnit-Bridge2SU2 parcel changes the parent of SUnit
TestCase subclasses to be SUnitToo TestCase subclasses, reverting
when unloaded. Since SUnit and SUnitToo use classes of the same
name but that live in different namespaces (XProgramming.SUnit in
7-8 VisualWorks

Strategies for Writing and Using SUnit Tests
SUnit, SUnit in SUnitToo), it is strongly recommended that any user
planning to use both get clear about these namespaces to avoid
several opportunities for confusion which will otherwise present
themselves.
Tools Guide 7-9

Unit Testing
7-10 VisualWorks

8

Object Inspector

The Inspector is used to examine the state of objects in the system.
However, beyond that simple description, the Inspector provides a
great deal of power, even functioning as an alternate code editor.
This chapter describes and illustrates how to use the Inspector’s
basic and advanced features.

Basic Inspecting
To open an Inspector, either send an inspect message to the object,
or select the object and pick the Inspect it menu action (Smalltalk >
Inspect it in a workspace) or click the Inspect toolbar button. For
example, evaluate these expressions in a workspace to inspect a
Point and an OrderedCollection:

(3 @ 4) inspect.(1 to: 10) asOrderedCollection inspect
The two windows that open have the normal inspector layouts.
Tools Guide 8-1

Object Inspector
The list on the left shows the component parts of the object. The
parts of a Point object are the point itself and its x and y instance
variables. Parts of an OrderedCollection are its elements, from first to
tenth.

Selecting a part shows the printString representation of the part in the
right hand side text view. Selecting multiple parts is possible (hold
down Ctrl or Shift while clicking). Selecting all parts at once is very
handy to get a quick overview of an object, so there is a toolbar
button and a keyboard shortcut Ctrl+A to do that.

Inspection Views
Above the parts list there is a set of tabs for selecting various views of
the object being inspected.

All objects have a Basic view that shows all instance variables.

The OrderedCollection we look at also has the Elements view, which is
initially selected. It is a higher-level "logical" view showing all
elements of the collection but ignoring such implementation details as
the firstIndex and lastIndex instance variables and unused indexed
variables. These can be viewed in the Basic view

In relation to the traditional inspectors, the Elements view works like
the OrderedCollectionInspector one would get when inspecting an
OrderedCollection, while the Basic view is the same as doing the
8-2 VisualWorks

Expression Evaluator
basicIinspect to the OrderedCollectionInspector. A similar distinction
applies to other objects that had special inspectors, such as
Dictionary.

All objects also have a Methods view that displays a methods browser
on the object’s class. The Inheritance menu allows you to control how
far down the inheritance tree inherited methods are shown, just like
you control the display in the system browser.

For some objects, the Basic view may include extra parts which are
not its instance variables. In fact, -self, which is shown as a part, is
always shown but is not an instance variable. For a less obvious
example, inspect a compiled method:

(Object compiledMethodAt: #printString) inspect
The Basic view includes -bytecode and -source. These are not really
parts of the receiver, but they are included in the basic view as
"virtual" attributes. For other interesting examples are an Integer

1234 inspect
or a Character

Character space inspect

Expression Evaluator
The text pane on the right of the inspector views is a normal
VisualWorks text pane, so you can type a Smalltalk expression into
the text view pane and evaluate it there. The evaluation context, the
value of self, is the receiver object being inspected. However,
whatever you type in this pane is lost as soon as you switch to
another field.
Tools Guide 8-3

Object Inspector
The Inspector provides a better way, an evaluation pane, that allows
the option to save any expression you wish to evaluate. Click the
“Toggle Evaluation Pane” button on the toolbar to open an extra text
area to the window.

This area stays unchanged regardless of what is going on in the rest
of the inspector. It can keep a set of expressions to be used over and
over again.

In addition, if you Accept the contents of the text pane (<Operate> >
Accept), the contents will be saved and displayed in all other
inspectors. This saves the text in a shared variable within the image.
Because that variable is used as the text model by all inspectors, the
accepted text will appear in all open inspectors, as well as in those
that will be open in future.

Editing Objects
One of the benefits of a live system such as Smalltalk is the ability to
change properties of objects on-the-fly. The Inspector provides tool
support for this capability.

Editing Variable Values
You can change the value of any instance variable of an object you
are inspecting. Select the variable, enter a Smalltalk expression in
the right text pane, and Accept. The result of evaluating the expression
is saved in the variable.

For example, select the y variable in the parts list, replace its value in
the text pane, then do <Operate> > Accept. Select -self to see that the
y coordinate of the point has changed.
8-4 VisualWorks

Editing Objects
The same happens if you change the value of an element of the
OrderedCollection; The old element at the selected index is replaced
with a new one.

You can even change the values of several variables or collection
elements all at once. Use multi-select to select all of the parts you
want to change, enter the new value into the right-hand text view, and
Accept.

Copy and Paste
The Edit menu contains the usual Copy and Paste items. These actions
copy and paste the object held by the instance variable or element in
the selected parts list item.

Objects are copied to or pasted from the Inspector’s own clipboard,
an instance of class Clipboard. To inspect the clipboard, evaluate:

Clipboard default inspect
Also, the printString representation of the object is copied to the
system clipboard.

Note that these menu items do not copy or paste text from the text
pane or evaluation pane. Copy and Paste operations on text in these
panes can be performed using the usual <Ctrl-C> and <Ctrl-V>
commands.

Add and Remove
The Add and Remove actions on the Edit menu add and remove parts in
the list.

When using these commands bear in mind that, depending on
context, the change might affect either the instance or the class. For
example, if you are inspecting a collection, adding a part (element)
adds to the instance. On the other hand, if the new part is a named
instance variable, it is added to the class definition of the object being
inspected. In the latter case, adding an instance variable changes the
structure (shape) of all current and future instances of the class. Also,
adding and removing instance variables is not allowed for some
objects.

The same kind of editing is possible with an Array. Even though
strictly speaking, an Array is not resizeable, the Inspector makes it
appear resizeable, allowing you to insert elements into an Array, or
remove elements and make the Array smaller.
Tools Guide 8-5

Object Inspector
Undoing an Edit
If you make a value change to a part and then change your mind, you
can undo the edit. Select Edit > Undo.

Undo is multiple-level, remembering and allowing you to undo a
sequence of edits. Suppose you had replaced the fifth element of an
OrderedCollection with 0, and then replaced multiple element values
with 555. If you do an Undo at this point, the multiple replacement will
be undone, reverting to the previous values. But, because we
replaced the fifth element with 0 before that, Undo is still enabled.
Doing another Undo will restore the fifth element to its original value.

Editing with Drag-Drop
The inspector is also enabled to allow editing using Drag-and-Drop
actions, to either change the order of elements or to copy values of
elements.

For example, open another inspector on this OrderedCollection:

(OrderedCollection with: 1 with: 2 with: 3 with: 4) inspect
To use drag-and-drop to change the order of elements in this
collection, select the first two elements of the collection, drag them
and drop after the last element in the list. Now select all elements to
see the new order of elements. You can also drop the selections
between elements.

To copy the value of one element to another, select one element,
then drag and drop it onto another element. Dropping on an element
replaces the element with the dropped value.

Drag-and-drop also works between inspectors. Open an inspector on
another collection, such as:

(OrderedCollection with: 5 with: 6 with: 7 with: 8) inspect
If you select several elements in one OrderedCollection, then drag and
drop them into the other collection, the elements are inserted, making
the collection bigger.

The drop target can only be a single element or between elements. If
you select several elements and attempt to drag and drop them onto
a single element, whether in the same inspector or in another, a
dialog prompts you to select the intended element from a list.
Multiple-select targets are not supported.
8-6 VisualWorks

Editing Objects
Drag-and-drop is supported as widely as possible: between
collections; between regular objects; between collections and regular
objects.

Drag and drop is also extended to workspaces. You can add any
object to a workspace as a local variable by dropping it onto the
workspace or on the workspace's Variables page.

Protected Variables
The Inspector allows any class to declare some or all of its instance
variables as "protected," and indicates a protected variable with a
hash mark.

For example, evaluate.

Object inspect
Notice that all of the instance variables are marked as protected. (A
class is itself an instance of its metaclass, so can have instance
variables.) Accidentally changing the value of, for example, its
methodDict variable, can crash the system.

Protected variables can be changed, but only after answering Yes to a
confirmation dialog.

To protect a class’s instance variables, define a class method named
protectedInstVarNames in the class that returns a collection of the
names of the instance variables to collect.

Note that protectedInstVarNames methods that are defined throughout
the superclass chain of a class are used to determine the variables of
a given instance that need protection. Because of that, a method in a
subclass can only add, but not remove, protection defined in a
superclass. The method should answer a collection of variable
names (Strings), possibly empty. Two useful ways to implement it are:

^self instVarNames
to protect all variables defined in this class, but not those inherited
from superclasses, and

^self allInstVarNames
to protect all variables an instance of this class has, including those
inherited from superclasses.
Tools Guide 8-7

Object Inspector
Exploring Objects
Most objects are complex, holding either other objects or references
to other objects in instance variables or collection elements. The
inspector is an object exploration tool that helps you examine these
further objects, all in the context of the original object.

Diving into Object References
A common action is to follow a reference to another object. Double-
clicking on a variable or element in the parts list dives into that part.
The inspector is then refocused on the selected object.

For example, inspect something more complex than a simple
collection, such as:

Window activeController inspect
This inspects the controller, an ApplicationStandardSystemController, of
the currently active window, which is a workspace. Double-click on
model. The inspector is now inspecting the workspace, an instance of
Workbook, which is the controller’s model. The title bar now shows the
role of the new object—the name of the instance variable it was
stored in or an index of an element—and the class of the object
(model: a Workbook).

Notice that the first of two toolbar arrow buttons is now available.
These buttons work like a web browser, moving the inspector focus
forward and back along the trail of visited objects. Click the first one,
the left-pointing arrow, to go back to the original controller. The right-
pointing arrow button becomes available, because the model has
been visited and so is now “ahead” on the visit trail. Click this button
to return to scheduled controllers.

Now double-click the uiSession part to dive into it. The object under
inspection is now a ControlManager. Open the History menu to see the
trail of visited objects, described by their roles and class membership.
Use this history list to jump to any object on the visit trail.
8-8 VisualWorks

Exploring Objects
Exploring Object Relationships
Diving into objects and traversing the visit trail are important
navigation aids but they are limited for exploring the wider network of
relationships between objects. For example, if we wanted to inspect
the window of the VisualLauncher, we would have to inspect
something like

ApplicationStandardSystemController allInstances inspect
which inspects a collection. Then we would have to repeatedly dive
into elements of the collection, look at the models, back out to the
collection, then dive back in on another element, until we find one
with a VisualLauncher as its model.

Additional views allow us to explore the world outside any given
object.

Siblings
In the case mentioned above, for example, we want to be able to
easily inspect all controllers in the collection.

Inspecting the collection above, dive into one of the collection
elements, so the inspector is focused on an
ApplicationStandardSystemController. Select the Explore > Siblings menu
item. The inspector transforms, adding an extra list on the left that
shows the parts of the previous object, in this case the collection we
were inspecting before diving into the current controller.

When you select to explore siblings, the added list box lists the parts
of the object of which the current object is a part; those are its
“siblings.” Selecting an element in the list refocuses the inspector on
the right so that it shows details of the newly selected element. Now,
Tools Guide 8-9

Object Inspector
to find the launcher, select model in the inspector and go through
elements of the collection until you find the one with a VisualLauncher
as the model.

Once the desired object is located, you can focus the inspector on
that object, closing the siblings list, by selecting Explore > Focus.

Parts
Similar to the Siblings view, is the Parts view (Explore > Parts). This
view adds a list of the parts of the current object’s parts. So, instead
of adding a list to the left containing the current object’s siblings, it
adds a list to the right listing the parts of the selected part of the
object.

For example, instead of diving into one of the elements in the
collection of ApplicationStandardSystemController instances and then
displaying siblings, you can start with the list and display the parts.
The same view is displayed. The difference is that instead of going
through the siblings of the original object, we want to go through its
parts.

History Views
The forward and back navigation buttons have already been
described.

As you dive into objects, go back, dive into other objects, and so on,
these visits form a tree.

The History menu provides a list of the current branch of that tree.
Rather than stepping forward and back one node at a time, use the
History menu to select a specific node.

To view the entire tree, select Explore > Visited.
8-10 VisualWorks

Exploring Objects
his adds a tree view to the top of the inspector showing the various
objects you have inspected and the path you took getting to them.
Select any of the nodes and the inspector displays it. You can then
continue your explorations from that point.

Exploring a Window
When you are exploring a window, some additional inspection options
are available.

The Object menu (and the part list popup menu when -self is selected)
includes two extra items: Raise and Close. These options make the
selected window active, or close and release it, respectively.

Previewing a Visual Part
A preview pane is added to the inspector, whenever a visual
component or image is inspected. For example, try

Image cincomSmalltalkLogo inspect
The preview pane shows the graphic, the window, the menu, or
whatever the visual component is.

Exploring an Object Hierarchy
For objects that form hierarchies, an extra item is added to the Explore
menu: Component Hierarchy. For example, visual parts (e.g., windows
and widgets), classes, exceptions (with exception classes being
members of two hierarchies at the same time), parse tree nodes, UI
Tools Guide 8-11

Object Inspector
specs, all form hierarchies. This command adds a tree list to the
inspector showing the entire contained/containing hierarchy of
objects.

This view greatly helps understand the structure of such objects.
Using this view together with the Methods view provides a powerful
tool for exploring complex object structures.

The inspector shows the component tree of the window, containing
only the classes of those components. Expand the branches to
expose more of the structure.

Viewing Related Objects
All objects have a Go > To Class menu item that focuses the inspector
on the class of the current object. In addition, an object can tell the
inspector about other important objects somehow related to it and
add them to the Go menu.

For example, if you inspect an ApplicationWindow, the Go menu
includes items that can take you to the important objects related to
that window: the model, the controller, the main visual component,
and the application. All of these objects are in fact instance variables
of the window, though is much easier to use the menu than to find
them in a list of more than variables.
8-12 VisualWorks

Customizing the Inspector
Customizing the Inspector
Any object can publish actions to be added to the inspector menus.

By default, an object will have two views in the inspector: Basic and
Methods, with Basic view showing -self and all named and indexed
variables of the instance.

The Inspector is a flexible tool, and allows you to provide additional
representations of objects, as described in this section.

Define the Object printOn: Representation
Objects often reimplement the printOn: method to specify its print
display. The inspector uses this method as well.

Add Displayed Attributes
You can add virtual attributes to the Basic view of an object by defining
an instance-side method, inspectorExtraAttributes. The method should
return a sequence of instances of either DerivedAttribute or
TextAttribute (both classes are in the Tools.Trippy namespace).

A DerivedAttribute has an object value. Such a value can, for example,
be dragged and dropped on a variable to store its value in that
variable. An example of a DerivedAttribute is the asInteger attribute of a
Character. -self, which shows up in any basic view, is a DerivedAttribute
added by the inspector itself.

A TextAttribute is an attribute without an object value, but that displays
informational text in the text view of the inspector. For example, the
various radix print strings of an Integer are text attributes.

See implementors of inspectorExtraAttributes for examples.

Add Menu Actions
Adding selectable object actions to the Object and the part list
<Operate> menus is done in a similar way: define an instance-side
method inspectorActions answering a sequence of instances of class
Action (defined in the Tools.Trippy namespace). See implementors of
inspectorAction for examples.

To define objects to jump to using the Go menu, define a method
inspectorCollaborators answering a sequence of instances of
Collaborator.
Tools Guide 8-13

Object Inspector
Identify Hierarchies
To display an object as part of a hierarchy (or several hierarchies) in
the hierarchy tree view, define a method inspectorHierarchies,
answering a sequence of instances of Hierarchy. Browse
implementors of inspectorHierarchies for examples in the system.

Add an Inspector Page
You can create your own inspector views to show special object
properties and add them as pages. Several system objects do this,
such as Dictionary, Array, and visual components.

To add your inspector, define an inspectorClasses method that returns
a collection of inspector classes that can meaningfully display the
object. Browse implements of this method for examples.

Provide Custom Object Views
To define your own view of an object, create a subclass of
Tools.Trippy.Inspector and include it into the list of classes returned by
inspectorClasses of your object.

Prototype-based Programming
Besides being an enhanced inspector, the Inspector is a good tool for
prototype-based programming.

In the following example, we create a Library object to managing a
collection of Book objects. We create it by modifying prototypical
instances of Book and Library and testing the functionality as we
proceed.

To begin, create two new classes, Library and Book, as usual.

To work on Book, inspect an instance of it. You can do this either by
evaluating in a workspace:

Book new inspect
or, if an inspector is already open on the Book class, select Go > To New
Instance" menu item. The menu command is available whenever you
are inspecting a class, and it creates and focuses on a new instance
of the class.
8-14 VisualWorks

Prototype-based Programming
So far the Book is just an empty shell. It needs, to start with, instance
variables to store information like the title and the author. To add
these, select Add... on the part list <Operate> menu of the variable list
(or use Edit > Add...). In the dialog, enter the name “title” and click OK.
The variable is added and selected. Repeat the process for “author.”

The variables are now created but their values are nil. You can add
values to the variables in the inspector, as described earlier. For
example, select title and type the String expression

'Moby Dick'
in the text view, then Accept it. Similarly, assign the String 'Herman
Melville' to the author variable. (Normal setter methods can be added
later.)

When you select -self in the inspector, the text just shows “a Book.”
We can change that to show the title and author by reimplementing
the #printOn: method for Book, and we can do this in the Inspector.
Switch to the Methods tab, add a “printing” protocol, and write a
reasonable printOn: method, such as:

printOn: aStream aStream nextPutAll: (title, ', by', author)
Switch back to the Basic tab and see the change to the display.

Changing the value of an instance variable of a prototype “by hand”
as we did above is fine for testing, but real objects will need a proper
API, with proper accessor methods. Switch back to the Methods tab,
add an “accessing” protocol, and create setter and getter methods for
the instance variables. These will be simple methods to set or return
the variable value, such as:

title ^title
and

title: aString title := aString
To test one of them, switch back to the Basics tab and select the title
instance variable. Open the evaluation pane (Options > Evaluation Pane
or hit <Ctrl>+<E>) and evaluate:

self title: 'Tempest'
The value of title that the inspector shows does not change
automatically, because the inspector does not know the code we
have evaluated has changed it. To update the display, select Object >
Refresh, or press <Ctrl>+<R>.
Tools Guide 8-15

Object Inspector
The implementation of Book is now reasonably complete. But before
moving on to Library, create another Book prototype to add to our
library. In the evaluation pane of the current inspector, type “self copy”
and Inspect It. This second inspector now holds onto a copy of the
original book, initially with the same title and author, but we can
change that.

Now open a third inspector on a fresh instance of Library. In a
workspace or the evaluation pane of an inspector, evaluate

Library new inspect
So the library can hold onto its books, add an instance variable,
books. It is added and its value is nil.

Because the library will hold more than one book, its value should be
a collection. We could create the value in the inspector, like we did
before, but that is only temporary. Any instance of Library will have a
collection in that variable. What we really need is an initialization
method.

Switch to the Methods tab of the Library and add a “initialize-release”
protocol at the instance side. Then write an initialize method to
initialize books to hold an OrderedCollection, such as:

initializebooks := OrderedCollection new
Instead of using the evaluation pane to try the new initialization logic,
simply select the initialize method, open its <Operate> menu, and
select Send It. Switch to the instance side and make sure the instance
was initialized properly.

To finish with the initialization logic, add the usual new method with
^super new initialize on the class side of Library. This might already
exist, if you had Initializer checked in the class creation dialog.

To add our books to the Library, dive into the books collection, so the
empty collection is displayed. Now, drag and drop self from both Book
inspectors into the collection. Switch back to Library and verify that
the books are where they should be.

This ends this simple demonstration of using for protocol
programming. As you continue your explorations, you will find
additional ways to use this inspector to simplify your work.
8-16 VisualWorks

9

System Profilers

Profilers are tools that report system resource use by a block of code.
The Time Profiler is useful for identifying portions of your code that
consume large amounts of processing time. The Allocation Profiler
performs a similar service for memory usage. Both single-process
and multi-process profiling is supported.

All profilers rely upon a statistical sampling heuristic to estimate,
rather than on instrumentation to directly measure, the resources
consumed by a process. Multiprocess profilers distribute the probes
that are used to estimate resource consumption over several
processes, and the distribution may be uneven. Running
multiprocess profilers does cause garbage collection and other
maintenance processes to run more frequently than otherwise.
These facts should be kept firmly in view when setting up
multiprocess profiling runs and when estimating the reliability of their
results. Within these limitations, multiprocess profilers have proven
useful in tuning web applications involving many hundreds of
processes.

Loading the Profilers
The profiler tools are contained in two parcels: AT Profiling Core and
AT Profiling UI. AT Profiling Core is a prerequisite for AT Profiling UI,
so both parcels are loaded when you load AT Profiling UI (or when
you load the All Advanced Tools).

For most development environments, load AT Profiling UI to get the
entire profiling tool.
Tools Guide 9-1

System Profilers
In the future, a detachable, distributable profiler will be available, and
only the core will need to be loaded in the image being profiled. Until
then, the AT Profiling Core parcel is not independent.

Opening a Profiler Window
Several Profiler UIs are available as submenus of Tools • Advanced •
Profiles in the Visual Launcher. For example, to open an Allocation
Profiler, select the Allocations submenu item.

Each profiler window has a code view for entering the code to be
analyzed, and a slider control for adjusting the sample size.

By default, the window shows explanatory text, as a guide to usage.
To display only profiling code templates, evaluate in a workspace:

Profiler showTemplates: true
The templates provide schematic expressions. Replace the place
holders, for iterations, the expression to profile, and others as
needed. The remainder of this section will assume the templates are
displayed.

Profiling a Block of Code
To profile either the time or memory usage of a block of code, open
the appropriate profiler and enter the Smalltalk expressions in the
code view of the profiler in a profile block. Templates are provided to
help you.
9-2 VisualWorks

Profiling a Block of Code
For example, suppose you wanted to find out what proportion of the
memory allocated by the Date today method. Open an Allocations
profiler (Tools • Advanced • Profiles • Allocations). Several templates are
displayed:

"(((self
profile:[((anIntegerR)) timesRepeat:

[((anExpression))]])))"
"(((self

profile:[((anIntegerR)) timesRepeat:
[((anExpression))]]

reportTo: ((aFilename)))))"
"(((self

keepStatistics: ((aBoolean));
profile:[((anIntegerR)) timesRepeat:

[((anExpression))]])))"
"(((self

keepStatistics: ((aBoolean));
samplingInterval: ((anIntegerS));
yourself)
profile:[((anIntegerR)) timesRepeat:

[((anExpression))]]
onExitDo: ((aBlock)))))"

Because the profiler employs statistical sampling, several iterations
should be used to produce results, so replace anIntegerR with an
integer value sufficiently large to produce good results (some
experimentation may be necessary). Then, replace anExpression with
the expression to be profiled. That is sufficient for the first template;
the others provide additional options.

To complete the example, then, you might use the first template with
the following substitutions:

"(((self
profile:[((1000)) timesRepeat:

[((Date today))]])))"
Then select the expression and evaluate it with Do it in the <Operate>
menu. After the expression is executed, the results of the analysis are
displayed in a new window.

For an explanation of the report, see Analyzing the Profiler Report.
Tools Guide 9-3

System Profilers
Adjusting the Sample Size
Repeating the code to be profiled, as shown above, increases the
accuracy of the sampling. An additional mechanism to control
accuracy is to adjust the sampling size, using the slider control in the
Profiler.

A profiler typically provides only an approximation of the time or
memory being used by each method that is called. It does so, in
effect, by monitoring the process at a regular interval, called the
sampling interval. For example, if a baby-sitter checks in on children
playing in their room every half hour, the sampling interval is 30
minutes.

At each 30 minute check point, the babysitter has to assume that the
behavior of the moment has been going on for the past half hour. By
reducing the sample size to 15 minutes, the babysitter will get a more
accurate picture of the children’s activities, though it will cost more
time and effort.

The sample size can affect the accuracy of the results dramatically.
Reducing the sample size improves the accuracy, but may slow down
the profiling run disproportionately. Setting the sample size to zero,
for example, causes the profile to be updated after each indivisible
chunk of time or memory is used, which can be very time-consuming.
In most situations, the default sample size provides adequate
accuracy without slowing things down unnecessarily.

To reduce the sample size (for brief processes), move the slider to
the left until the desired numerical size is shown below the slider. To
increase the sample size (for time- or memory-intensive processes),
move the slider to the right. (To move the slider, place the cursor on
the dark bar, press and hold the <Select> button on the mouse, then
move the mouse to position the slider.)

In the example used above, printing today’s date in the transcript, the
process is so light in its memory usage that the default sampling
interval of 1024 bytes is inappropriate. The process is only monitored
a few times, resulting in misleading allocation statistics. The obvious
solution is to reduce the sample size so the process is checked more
frequently.
9-4 VisualWorks

Analyzing the Profiler Report
Multi-process Profiling
Multi-process profiling provides profile reports for an expression
being evaluated in multiple process rather than a single process. The
multi-process profilers distribute the probes among several processes
to evaluate the resources used by an expression running in a multi-
processes context.

The expressions provided by the templates for MultiTime and
MultiAllocations profiling reflect the difference between multi-process
profiling and single-process profiling. Rather than evaluating the
expression within a single profile block, the profiler is started, then the
expression is evaluated, possibly repeatedly, and then the profiler is
stopped:

"(((self startProfiling)))"
"(((((anIntegerR)) timesRepeat: [((anExpression))])))"
"(((self stopProfiling)))"

The report window opens once the profiler is stopped. The resulting
report provides one more view option, tree grouped by priority.

Analyzing the Profiler Report
After the process that you are profiling has finished executing, the
profile report is displayed in a window having the following
components:

• A record of the sampling parameters.

• A slider for changing the cutoff percentage and a button for
applying a new percentage.

• A text view for displaying the statistics.

• A list providing selections of a totals view or a tree view, for
selecting the type of statistics to be displayed in the text view.
Tools Guide 9-5

System Profilers
At the top of the profile window, a set of statistics display useful
information about the profiling run, which include:

• Number of samples

• Sample size

• Total bytes consumed (allocation profile)

• Total milliseconds consumed, in both elapsed and processor time
(time profile)

This information is useful in judging whether a change in the
sampling interval will prove fruitful—because relatively few samples
were taken, for example. This information also serves to label the
profile, distinguishing it from profiles generated by other sampling
runs on the same code.

Tree Report View
When the tree view is selected, the text view displays a listing of
consuming methods that were called during the process. This listing
is useful for locating the places in your code that consume the most
time or memory, and therefore merit your optimizing attention.
9-6 VisualWorks

Analyzing the Profiler Report
Each method selector is preceded by a number representing the
percentage of system resource (bytes or milliseconds) consumed by
that method. The tree is displayed in the form of an indented list—
each method is indented under its calling method.

Totals Report View
When the totals switch is selected, the text view displays a list of the
fundamental object-creating methods that were called, with the
percentage of system resource consumed by each.

For example, a process that deals with graphics might make many
calls to the x:y: method in the Point class. That activity would be
summarized here. If you felt Point was taking an inordinate amount of
time or memory to get the job done, you might investigate alternative
coding paths that would generate fewer messages to Point.

Adjusting the Cutoff Percentage
Only those methods that consumed more than a threshold
percentage of time or memory are shown. The default is 2 percent,
meaning any method that consumed less than 2 percent of the time
or memory is excluded from the listing. In effect: “If it’s smaller than
this, don’t bother me with it.”
Tools Guide 9-7

System Profilers
To get finer detail in the profile, reduce the cutoff percentage by
moving the slider to the left. To restrict the profile to the methods that
consumed larger chunks of time or memory, move the slider to the
right. After you have changed the position of the slider, apply the new
cutoff by clicking on the apply cutoff button.

Contracting and Expanding the List
Another means of making the list more manageable in size is to
temporarily remove selected subhierarchies from the display. To do
so, select the method above an unwanted subhierarchy and then use
the contract fully command in the <Operate> menu. The selected
method redisplays in boldface, indicating that it can be expanded to
show more detail.

To restore detail under a contracted method, use either expand (for a
single level of called methods) or expand fully (for the entire
subhierarchy) in the <Operate> menu.
9-8 VisualWorks

Profiler Programmatic Interface
Spawning a Method Browser
To examine the body of a method in the tree, select the desired
method and then use spawn in the <Operate> menu. A method
browser will be opened in a separate window. Besides the selected
method, which is listed in boldface in the new window, the browser
will list parent and child methods when appropriate.

While the browser offers most of the features of a code view,
including text editing, you cannot recompile an edited method (via
accept) in this window, because that could cause confusion about the
state of the code at the time of the profile.

You can also browse senders of the selected message, implementors of
the method, and implementors of messages contained in the selected
method. These operations are the same as in the System Browser.

Profiler Programmatic Interface
At times it may be useful to profile larger blocks of code within the
context of an application. The Profiler API allows you to do this,
invoking the Profilers apart from the Profiler windows.

The interface classes are Profiler and its subclasses:
Tools Guide 9-9

System Profilers
Profiler
AllocationProfiler

MultiAllocationProfiler
TimeProfiler

MultiTimeProfiler
The primary messages for invoking a profiler on code are the same
as shown in the templates in the Profiler UI. The main difference is
that, outside of the UI, you cannot simply refer to self, but have to
send messages to either the appropriate Profiler class or an instance,
depending on the message.

For example, to run the profile used earlier, an Allocation Profile on
Date today, you would send:

AllocationProfiler profile:[1000 timesRepeat: [Date today]]
However, there is no class method for setting the sampling interval.
To change the interval, do:

| profiler |
profiler := AllocationProfiler new.
profiler samplingInterval: 2056.
profiler profile: [1000 timesRepeat: [Date today]]

For the complete API, browse the public api protocol on both the
instance and class side of these classes.
9-10 VisualWorks

10

Benchmarks

The Benchmark class provides a framework and a convenient interface
for running benchmarks to compare your application’s performance
across versions and in various operating environments. A simple
subclass of Benchmark can be built to run the benchmarking tests. As
an example, we have provided a subclass called SystemBenchmark,
which contains updated versions of the historic test suite we at
Cincom use to compare system performance on different platforms.

This chapter describes the reusable interface and related
mechanisms provided by the Benchmark class, using the
SystemBenchmark subclass as an example. The final section then
explains how to implement your own benchmarks.
Tools Guide 10-1

Benchmarks
Using the Benchmark Interface
To open the example System Benchmarks window, select
Tools•Advanced•Benchmarks.

The System Benchmarks window has three views, arranged side by
side. The benchmarks view, on the left side, lists the available
benchmark tests. The parameters view, in the center, contains a
variety of buttons and fill-ins for controlling report attributes. The Run
button located below the list view begins execution of a test suite. The
benchmark transcript, on the right, displays execution progress and
the final benchmark report.

Assembling the Test Suite
Although a benchmarking run can be limited to a single type of test,
such as adding 3 + 4 thousands of times, a run frequently involves a
suite of several related tests. You can use the benchmarks view to
select the tests you want to include in a run. To select an individual
test, just click on it with the <Select> button; click again to deselect it.
A check mark appears in the margin next to each selected test.

Selection Techniques
To select multiple adjacent tests, hold down the <Shift> key while
dragging the cursor through the desired tests (the check marks will
appear after you release both the mouse button and the <Shift> key).
To deselect multiple adjacent tests, hold down the <Control> key
while dragging through the test names.
10-2 VisualWorks

Using the Benchmark Interface
To cancel all selections, use clear selections in the <Operate> menu;
use select all to include all of the tests. The subclass can define a
default suite of tests— in our example, SystemBenchmark uses as
defaults the tests used by VisualWorks development for standard
comparisons of platform performance. You can reset the test suite to
the defaults at any time by selecting reset to default in the <Operate>
menu. To summarize these operations:

Selection techniques for system benchmarks

Setting the Report’s Granularity
At the end of each benchmarking run, a report is generated
containing statistics accumulated during the tests. Three buttons at
the top of the parameters view control the level of detail in the report,
as follows:

Raw Measurements
Details about each iteration of each test method. This information
can be used to discover significant variations among iterations. The
first iteration of an operation, for example, might consume a
disproportionate amount of time because it might not take advantage
of compiled-code caching.

The following times, for example, were reported for three iterations of
two tests in the SystemBenchmark suite: text displaying and text
replacement.

[display text]
“First iteration”

10 repetition(s) in
0.921 seconds
92100.0 microseconds per repetition

[text replacement and redisplay]
20 repetition(s) in
5.1 seconds

Operation Description

click <select> button Select and deselect a single test

<Shift> + drag <select> Select multiple tests

<Control> + drag <select> Deselect multiple tests

select all Select all tests

clear selections Deselect all selected tests

reset to default Select default tests
Tools Guide 10-3

Benchmarks
255000.0 microseconds per repetition
[display text]“Second iteration”

10 repetition(s) in
0.88 seconds
88000.0 microseconds per repetition

[text replacement and redisplay]
20 repetition(s) in
4.98 seconds
249000.0 microseconds per repetition

[display text]“Third iteration”
10 repetition(s) in
0.94 seconds
94000.0 microseconds per repetition

[text replacement and redisplay]
20 repetition(s) in
4.98 seconds
249000.0 microseconds per repetition

Benchmark Results
A summary of statistics for each test. In effect, this section of the
report summarizes the details described above, whether or not the
details themselves are included in the report. This information is
useful for identifying the slow performers in a suite of tests, marking
them as candidates for optimization.

Results are converted to rates (by the convert:toRateFor: method in the
subclass) when the rates switch is selected. When the times switch is
selected, no such conversion takes place. (The class comment for
Benchmark discusses this mechanism and its implications further.)
Types of statistics are described in Choosing Types of Statistics.

The following example reports the minimum, maximum, and median
for the raw times reported in the example above:

Individual benchmark results (three iterations)

Benchmark Minimum Maximum Median

TextDisplay 136.170 145.455 138.979

TextEditing 82.7451 84.7389 84.7389
10-4 VisualWorks

Using the Benchmark Interface
Overall Suite Statistics
A summary for the entire suite, the purpose of creating a suite in the
first place is to measure the performance of some subsystem.
Benchmarking provides a weighted average for the performance of
that subsystem, which you can then use to compare with an identical
benchmarking run under different operating circumstances.

For the weighted average, the report displays the same columns as
for the individual statistics. For example, if you elect to display only
the median value for individual benchmarks, only the median value
for the suite-wide statistic will be shown.

Benchmark suite results (three iterations)

Let’s use the minimum H-Mean (harmonic mean) to illustrate the
derivation of these statistics further. Each time the test suite is
performed, the individual test results are converted to rates and then
combined mathematically to arrive at the harmonic mean score for
that iteration.

The suite was performed three times, in our example, so three such
harmonic means are derived. The minimum H-Mean represents the
lowest of the three scores. Similarly, the maximum H-Mean is the
highest of the three, and the median H-Mean is the median (or middle
value) of the three.

Choosing Types of Statistics
The two summary sections of the report can include different types of
statistics. You control which types are included in the report by
selecting buttons in the parameters view. The types of statistics are
as follows (i represents the number of iterations):

• Minimum—the result from the best-performing iteration.

• Maximum—the result from the worst-performing iteration.

• Arithmetic mean—the average of all iterations; sum/i.

Rating Type Minimum Maximum Median

Minimum 118.539 126.309 125.558

Maximum 139.13 142.222 142.222

H-Mean 116.364 119.425 118.321

Median 118.539 126.309 125.558
Tools Guide 10-5

Benchmarks
• Harmonic mean—The number of iterations, divided by the sum
of the inverses of the weighted results for the separate iterations.

i/[(1/result1) + (1/result2) + ...]
• Median—the value that is midway through a ranked list of the

scores. For example, if you specify five iterations, the median is
the third element in the sorted collection of scores.

The harmonic mean is only useful when summarizing overall
performance, so it is only available under the Overall suite statistics
check box. Under the heading Benchmark results check box, the
arithmetic mean is only offered when you select the times switch;
when the rates switch is selected, the harmonic mean is offered.

Setting the Report Destination
The report can be displayed in the benchmark transcript view, stored
in a disk file, or both. Use the buttons under the heading Write report to:
in the parameters view to select one or both destinations. You can
provide the name of a file in the input field. The file will be created in
the start-up directory unless you specify an absolute or relative
pathname.

Setting the Number of Iterations
The test suite can be repeated as a means of improving the accuracy
of the results. By default, the iteration count is set to three. To change
the number of iterations, type the desired number in the input field
labeled Iterations.

The number of iterations represents the number of times the test
suite will be repeated—this is not to be confused with repetitions that
are hard-coded into a given method. For example, the test3plus4
method repeats the 3 + 4 operation 100,000 times for each iteration,
so three iterations would cause the operation to be repeated 300,000
times.

In some situations, a single iteration may produce more interesting
results. For example, a method might take a relatively long time to
execute on its first pass, but run much faster subsequently. However,
if your application calls the method only infrequently, the first-iteration
results might prove more illuminating.

To begin execution of the testing run, click on the run button. If your
window manager is configured to prompt you for placement of
windows, you might consider turning off that feature before running
10-6 VisualWorks

Creating a Benchmark Subclass
the default test suite or other suites involving window-displaying
operations. However, prompt-for-placement can be left on without
affecting the results.

Creating a Benchmark Subclass
The benchmarks are implemented via the following four classes, all
of which are subclasses of Object:

• Benchmark, and its subclass SystemBenchmark

• BenchmarkTable

• BenchDecompilerTestClass

Benchmark Superclass
Benchmark is an abstract superclass whose protocol provides the
interface we have been describing, as well as the timing and
statistical analysis facilities for a benchmarking run. It has instance
variables for remembering the report parameters as selected in the
interface, and the test results as they are accumulated. Benchmark
also provides the reporting protocol, making use of BenchmarkTable
(described further below).

SystemBenchmark Subclass
Subclasses of Benchmark, such as SystemBenchmark, are responsible
for providing the specific tests to be run. See the methods that begin
with the word “test” in SystemBenchmark for examples.

In addition, subclasses must implement the following accessing
messages:

benchmarkLabelForSelector:
benchmarkSelectors
initiallySelectedBenchmarks

Subclasses may also need to override Benchmark’s weighting protocol,
to establish relative weights for test methods and to convert the
results to an appropriate rate; and the defaults protocol, which
determines the default selections in the user interface.
Tools Guide 10-7

Benchmarks
BenchmakTable Class
BenchmarkTable provides two-dimensional reporting capabilities that
might well be useful to other applications, though the code requires
extensions to make it more generally useful. It holds onto a report
name, a collection of column labels, and a collection of rows. Each
row is assumed to be a collection itself.

The protocol is tailored to the needs of the benchmark reports,
though it provides a subset of a more generally useful set of
behaviors.

BenchDecompilerTestClass Class
BenchDecompilerTestClass is a holder for methods that are decompiled
during the SystemBenchmark>>testDecompiler benchmark. The code in
the methods has no functional value—in fact, it is obsolete.
10-8 VisualWorks

11

Class Reports

The Class Reports tool performs a variety of automated checks on
specified classes and helps you:

• Repair common coding errors.

• Estimate memory requirements of your application.

• Document your code.

Class Reports is a specific tool that is built on top of a set of general
system-analysis capabilities.
Tools Guide 11-1

Class Reports
Creating Class Reports
To open a Class Reports window, select Tools•Advanced•Class Reports.

The Class Reports window contains the following components for
defining the contents of the report:

• A Class Patterns view for roughly defining the classes to be
checked.

• A Class List view for selecting individual target classes.

• Three switches for choosing a type of report.

• Depending on the type of report selected, two extra switches may
be provided for choosing the output destination.

• Depending on the type of report and the output destination,
additional options may be provided.

• A button labeled run for launching a scan-and-report sequence.

Selecting the Target Classes
You can generate a report for a single class, all classes or any list of
classes. Keep in mind as you assemble your list that the amount of
time required to produce a report increases with each added class.
11-2 VisualWorks

Locating Coding Errors
Use the Class Patterns view to make a rough cut at the list. Enter one
or more wildcard patterns, one per line. Each such entry can contain
a class category component and/or a class component. If both
components are present, separate them with a greater-than symbol
(>). Then choose accept in the <Operate> menu, or click the run
button, to display all classes matching those criteria in the Class List
view.

Wildcard patterns are not case sensitive; an asterisk (*) stands for
any string, and a number sign (#) stands for any single character. You
can also use the paste command to insert a list of patterns that you
use frequently.

The following examples are all valid class patterns:

Valid class patterns

Then, in the Class List view, click on the desired class or classes to
highlight them for inclusion in the report. Use the add all command in
the <Operate> menu to select all of the classes in the list at once;
use clear all to deselect all of them. To select a range of classes, hold
down the <Shift> key while dragging through the desired class
names; to deselect a range of classes, hold down the <Control> key
while dragging.

Locating Coding Errors
To scan the selected classes for coding errors, select the Correctness
switch in the upper left corner of the Class Reports window. Two new
switches will appear, labeled Report and Browse. When the Report
switch is selected, ten report options are displayed. Each option has
a check box, and you can check any number of them to build up the

Tools* Classes in categories beginning with ‘Tools’

tools* Same as above

Tools-Misc>* Classes in the Tools-Misc category

Tools*>Changes* Classes beginning with ‘Changes’ in categories
beginning with ‘Tools’

Changes* Classes beginning with ‘Changes’

ChangesList The class name ChangeList
Tools Guide 11-3

Class Reports
desired report. When the Browse switch is selected, eight of the
options are offered—the other two are only appropriate for report
output.

Report options are described in the following paragraphs.

Messages Sent but Not Implemented
Each method in the class is checked to make sure that every
message sent is implemented somewhere in the system. No attempt
is made to assure the appropriateness of the implementor. For
example, a self grok message is acceptable even if grok’s implementor
is not in the target class or its superclass hierarchy.

Methods that send an unimplemented message are reported or, in
Browse mode, listed in a browser for examination and possible
correction.

Messages Implemented but Not Sent
Each method in the class is checked to make sure that its selector is
sent by at least one calling method.

Defining what it means for a message to be “sent” is problematic. As
an extreme example, one could have code that says self perform: (a,b)
asSymbol, where a and b are variables that hold 'foo' and 'bar',
respectively. This code, then, sends the message foobar, but no
practical analyzer can figure this out. So system tools have to take a
particular stand as to what it means for a message to be sent.

In the case of this facility, the stance taken is exactly the same as that
taken by the senders and messages facilities in the System Browser: a
message is sent if some compiled code has the message selector as
a literal. It will be a literal if the selector is used in code (e.g., self
foobar), or if the symbol exists in literal form (e.g., self perform:
#foobar). (The exception to this rule is a set of special selectors
known by the compiler classes. These selectors are always
considered to be sent, even if they do not appear as literals
anywhere.)

As a result, the facility may falsely report that some implemented
messages are not sent, so the report should be used as a guide. The
above example is, of course, poor programming style.

Methods that are not sent are reported or, in Browse mode, listed in a
browser for examination.
11-4 VisualWorks

Locating Coding Errors
Method Consistency
When two messages sent to the same instance or class variable
assume different object types, a conflict is reported.

Similarly, when a temporary variable is used to hold two very different
kinds of objects (considered bad form) and thus is sent incompatible
messages, a conflict is reported.

The current value of each class variable, pool variable, and global
variable is also tested to be sure its class implements the messages
that are sent to it.

Finally, an inconsistency is reported when a message is sent to self
that is not understood by the self object.

When inconsistent methods are found, they are reported or, in Browse
mode, listed in a browser.

Subclass Responsibilities Not Implemented
Each method that consists of a self subclassResponsibility message
motivates a check of each leaf subclass to make sure it owns or
inherits a reimplementation of that message.

Note that abstract subclasses need not implement these messages—
in such cases, the report will falsely report errors, so use the report
as a guide.

Offending methods are reported or, in Browse mode, listed in a
browser.

Undeclared References
Each method in the class is checked to verify that no undeclared
literals are used. Offending methods are reported or, in Browse mode,
listed in a browser.

Instance Variables Not Referenced
Each instance variable is checked to make sure it is referenced by at
least one method. Unreferenced variables are reported; this option is
not available in Browse mode.

Check Comment
The class comment is checked to make sure it mentions all instance
variables, class variables, and class instance variables that are in the
class definition.
Tools Guide 11-5

Class Reports
The comment is expected to follow a particular syntax:

• Any amount of plain text followed by a line that says “Instance
Variables:”.

• After that line, there should be a line for each instance variable,
containing the variable’s name followed by one or more spaces
and tabs, followed by a “type” specification in angle brackets,
followed by one or more tabs and spaces, followed by text
describing the variable.

• If the class has indexed instance variables, include another line
as described above, substituting “(indexed instance variables)”
for the variable name.

The type specification is typically one or more class names, or nil,
separated by vertical bars. In place of class name, you can also use
"ClassName of: OtherClassName", for example "Array of: Boolean". The
syntax allows more complicated descriptions; for more information,
see the method comments in Parser>>typeExpression and
Parser>>simpleType.

If the class defines any class variables, the comment should have a
section similar to the instance variable section. The heading line is
expected to say "Class Variables:".

Finally, if the class has messages defined as self
subclassResponsibility, these messages should be listed in a section
with "Subclasses must implement the following messages:" as its heading.

The parsing of class comments is somewhat rigid and sometimes
what appears to be a valid comment will generate errors in this
report, so use the report as a guide. For example, if a type
description does not fit on one line, or if the variable description does
not start on the same line, the facility will report these as errors.

For instance variables, the facility performs a protocol test:

• All messages sent to each instance variable are verified as being
implemented for the named class (or, if more than one class is
named, for at least one of them).

• If the class has existing instances, each variable is expected to
hold an object of the named type.

• For each class variable, the current value is expected to be an
object of the named type.
11-6 VisualWorks

Estimating Memory Requirements
This option is not available in Browse mode. If a comment contains the
words UNDER DEVELOPMENT (in capital letters), that fact is reported
and no checking takes place for that class.

Backward Compatibility Message Sends
The methods are checked to see whether they send messages that
exist (only) in a backward compatibility protocol.

Indefinite Backward Compatibility Message Sends
Similar to the preceding option, but the checker only pays attention to
the ambiguous case, when a message send exists in both a backward
compatibility category and another category. In this situation, static
analysis cannot determine whether the message send is
inappropriate, so it is reported as a candidate for your further
investigation.

Backward Compatibility Class References
The methods are checked to see whether they refer to a class that is
in a class category that contains the string ‘backward compat’
(without case sensitivity).

Estimating Memory Requirements
To receive an estimate of the memory requirements of the target
classes, select the Space switch in the upper-right portion of the Class
Reports window. Three new switches will appear. Each button
provides a different perspective on the estimated memory
requirements, as follows:

• Class Size —For each target class, the report shows the
estimated number of bytes required for the class definition,
variables, methods, and class organization.

• Method Size—For each method in a target class, the following
measurements are reported:

• Code Bytes—the memory occupied by the method’s byte
code, the portable compiled form of the method that is used
to create native machine code.

• Literals—the number of literal pointers created by the
compiler to refer to such things as message selectors, arrays,
strings, and floats. Each such literal pointer contributes 4
bytes to the total.
Tools Guide 11-7

Class Reports
• Literal Bytes—the number of bytes required by literal objects
other than Symbols.

• Full Blocks—the number of full blocks in each method. Full
blocks are blocks that contain out-of-scope references to
temps, or nonlocal (^) returns. Full blocks are nonoptimal
because they are slower and use more dynamic memory.
This is only of concern in methods that are used frequently.

• Total—the estimated total number of bytes needed by each
method, including overhead (20 bytes) not reported in the
other columns. A total byte count for all methods is also
displayed.

• Instance Size—For each target class, the following
measurements are reported:

• Count—the number of instances that exist.

• TotBytes—the memory, in bytes, occupied by all instances.

• AveByte—the average number of bytes for each instance.

A summary line reports the same measurements for all target
classes.

These reports are intended to help you optimize memory usage by
identifying places in your code where memory usage is
disproportionate to the functional contribution of the code.

Documenting Your Code
To create a listing of some or all of the elements that make up the
code in the target classes, select the Manual switch in the upper left
portion of the Class Reports window. Two new switches will appear,
labeled Report and Print. When the Report switch is selected, the
documentation is displayed in a separate window. When Print is
selected, the output is sent to a printer instead.

The following check-box options are provided for defining the code
components to be included in the listing. The options are hierarchic
and interconnected, as follows:

• class definition

• class comment

• include metaclass—include the metaclass definition.
11-8 VisualWorks

Documenting Your Code
• protocol names—instance protocol names are reported; class
protocol names are included when the include metaclass check-box
is selected.

• include private protocols—include any protocol beginning with the
string “private.” Private protocols are made separable in this way
because only public protocol is relevant for certain types of
manuals.

• methods—list method selectors, including metaclass and private
methods if those check-boxes are selected.

• method comments only

• method bodies—including method comments.

Various text emphases are used for the different components of
documentation. For example, #italic is used for the class comment. To
change one of these emphases, modify and recompile the
appropriate method in the emphases protocol on the instance side of
the ManualWriter class.
Tools Guide 11-9

Class Reports
11-10 VisualWorks

Index
A
adding

class definition 1-5
method definition 1-5

B
Benchmarks

Arithmetic mean 10-5
BenchDecompilerTestClass 10-8
Benchmark class 10-7
BenchmarkTable class 10-8
clear selections command 10-3
creating a subclass 10-7
Harmonic mean 10-6
Maximum 10-5
Median 10-6
Minimum 10-5
opening example 10-2
Raw Mesurements 10-3
report components 10-3
reset to default command 10-3
run button 10-2, 10-6
select all command 10-3
suite statistics 10-5
SystemBenchmark class 10-1, 10-7
types of statistics 10-5
window components 10-2

C
Change List

condensing 5-9
change list 5-1
Change Set

browsing changes 5-7
clearing 4-6
updating 4-5

changes
browsing 5-7
managing 5-1–5-9
See also Change List, Change Set

class
creating 1-5

class button 1-4
Class Reports

accept command 11-3

add all command 11-3
Browse switch 11-3
Check comment 11-5
Class List view 11-3
Class Patterns view 11-3
Class Size 11-7
clear all command 11-3
Correctness reports 11-3
finding coding errors 11-3
Inst vars not referenced 11-5
Instance Size 11-8
Manual switch 11-8
memory usage reports 11-7
Messages implemented but not sent

11-4
Messages sent but not implemented

11-4
Method consistency 11-5
Method Size 11-7
opening 11-2
Report switch 11-3
Space switch 11-7
SubclassResponsibilities not

implemented 11-5
text emphases 11-9
Undeclared references 11-5
Wildcard patterns 11-3
window components 11-2

crash recovery 5-7

D
decompiled code 1-5

E
editing

source code 1-5

F
filtering

change list 5-10

I
instance button 1-4
Tools Guide Index-1

Index
M
method

creating 1-5

N
named change sets 4-1

O
overrides

packages 3-3
parcels 3-3

P
packages

overrides 3-3
parcels

overrides 3-3
Profilers

apply cutoff button 9-8
contract fully command 9-8
cutoff percentage 9-7
expand command 9-8
expand fully command 9-8
profile descriptors 9-6
profile window 9-5
spawn command 9-9
threshold percentage 9-7
totals switch 9-7
tree list expansion 9-8
tree switch 9-6
window components 9-2

project
managing 5-1–5-9

R
recover, from crash 5-7

S
save source code 1-5
shared variables button 1-4
source code

editing 1-5
missing 1-5
saving 1-5

System Browser 1-1

V
version control 5-1–5-9
Index-2 VisualWorks

	About This Book
	Overview
	Audience

	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information
	Online Help
	VisualWorks FAQ
	News Groups
	VisualWorks Wiki
	Commercial Publications

	System Browser
	Browser Navigator
	Package View
	Hierarchy View
	Class / Name Space View
	Instance, Class, and Variable Views
	Icons in the Navigator

	Working with the Browser
	Editing Source Code
	Missing Source Code
	Source Code Formatting

	Searching
	Drag and Drop
	Controlling Visibility of Methods
	Using Multiple Views

	Code Rewrite Editor
	Transformation Rules
	Using Meta-variables and Modifiers

	Rewriting Methods
	Replacing Whole Methods

	Override Editor
	Reviewing Overrides
	Selecting Overrides
	Restoring an Overridden Definition
	Removing an Overridden Definition

	Publishing Parcels and Packages with Overrides

	Change Sets
	Change Set Manager
	Selecting a Current Change Set
	Creating a New Change Set
	Exploring Changes
	Browse Methods
	Edit
	Inspect
	Updating the Changes Display

	Saving Changes

	Creating Install and Remove Scripts
	Change Initialization Ordering
	Clearing a Change Set

	Change List
	The Change List Tool
	Using the Change List
	Browsing a Change List
	Reordering Items in the Change List
	Removing Items from the Change List
	Resolving Conflicts with the System
	Using the Conflicts Filter
	Managing Conflicts

	Change/Change Back Changes
	Reverting to a Prior Version
	Recovering from a Crash
	Recovering Changes to a Clean Image
	Condensing the Change List File
	Changing the Change List File Name
	Filing Out a Set of Changes

	Code Critic
	Using the Code Critic
	Filtering Results
	Applying Transformation Rules
	Limitations of the Code Critic

	Code Critic Rules
	Bugs
	Possible Bugs
	Unnecessary Code
	Intention Revealing
	Miscellaneous

	Code Transformations

	Unit Testing
	Overview
	SUnit Framework Classes

	Writing and Running SUnit Tests in VisualWorks
	Loading SUnit Support
	Creating a Test Case
	Writing Assertions in Test Methods
	Defining Test Resources

	Running Test Cases

	Strategies for Writing and Using SUnit Tests
	Extensions and Variants of SUnit in VisualWorks

	Object Inspector
	Basic Inspecting
	Inspection Views

	Expression Evaluator
	Editing Objects
	Editing Variable Values
	Copy and Paste
	Add and Remove
	Undoing an Edit
	Editing with Drag-Drop
	Protected Variables

	Exploring Objects
	Diving into Object References
	Exploring Object Relationships
	Siblings
	Parts
	History Views
	Exploring a Window
	Previewing a Visual Part
	Exploring an Object Hierarchy
	Viewing Related Objects

	Customizing the Inspector
	Define the Object printOn: Representation
	Add Displayed Attributes
	Add Menu Actions
	Identify Hierarchies
	Add an Inspector Page
	Provide Custom Object Views

	Prototype-based Programming

	System Profilers
	Loading the Profilers
	Opening a Profiler Window
	Profiling a Block of Code
	Adjusting the Sample Size
	Multi-process Profiling

	Analyzing the Profiler Report
	Tree Report View
	Totals Report View
	Adjusting the Cutoff Percentage
	Contracting and Expanding the List
	Spawning a Method Browser

	Profiler Programmatic Interface

	Benchmarks
	Using the Benchmark Interface
	Assembling the Test Suite
	Selection Techniques
	Setting the Report’s Granularity
	Raw Measurements
	Benchmark Results
	Overall Suite Statistics

	Choosing Types of Statistics
	Setting the Report Destination
	Setting the Number of Iterations

	Creating a Benchmark Subclass
	Benchmark Superclass
	SystemBenchmark Subclass
	BenchmakTable Class
	BenchDecompilerTestClass Class

	Class Reports
	Creating Class Reports
	Selecting the Target Classes

	Locating Coding Errors
	Messages Sent but Not Implemented
	Messages Implemented but Not Sent
	Method Consistency
	Subclass Responsibilities Not Implemented
	Undeclared References
	Instance Variables Not Referenced
	Check Comment
	Backward Compatibility Message Sends
	Indefinite Backward Compatibility Message Sends
	Backward Compatibility Class References

	Estimating Memory Requirements
	Documenting Your Code

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

