
Cincom Smalltalk™

VisualWorks® Walk Through
P46-0132-06

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

Copyright © 2000-2009 by Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0132-06

Software Release 7.7

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. VisualWorks is a trademark of Cincom Systems, Inc., its
subsidiaries, or successors and are registered in the United States and other countries. All
other products or services mentioned herein are trademarks of their respective
companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation copyright © 2000-2009 by Cincom
Systems, Inc. All rights reserved. No part of it may be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without prior
written consent from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents

Preface 5

Chapter 1 A Walk-Through of VisualWorks 6

In the beginning... .. 6
Make a working image ..8
What’s Next? ... 10

Chapter 2 Hello World 11

Writing the Program .. 12
Save the Image ... 15
Packaging for Stand-alone Execution ... 16
Test the Results ... 19
Polishing Things up a Bit ... 19

Renaming Visual Executable ... 19
Packaging as a Single Executable ... 20

Packaging on Windows ... 20
What’s Next? ... 20

Chapter 3 Building GUI Application 21

What we’re going to do... ... 21
Build the application GUI ... 22
An extremely brief explanation of objects .. 25
Finishing the GUI .. 26
Generating initial Smalltalk code ... 30
Try it out .. 35
Smalltalk Code: it’s time .. 36
More Smalltalk Code - Package Browser .. 39
The Random Class - Domain Models ... 41
Putting the GUI and the Model Together ... 48
Using the seed value ... 52
Move to its own package and name space ... 55
A word about name spaces ... 57
Walk Through 3

Contents
Comment your code! .. 59
Packaging it up ... 60
Where from here? ... 62
4 VisualWorks

Walk Through 5

Preface

Since the original publication of the WalkThrough with VisualWorks 5i.2,
the system has undergone major changes, all for the better. Updates for
versions 5i.3 and 5i.4 were important, and I provided updated versions of
the WalkThrough, even though some of my comments poking fun at
some idiosyncracies had to be removed, as the objects of comment were.

With VisualWorks 7, major changes have been made to the system, as
the result of outstanding work within the VisualWorks engineering team
and generous contributions from the VisualWorks user community. An
unfortunate casualty of so much advancement was an update the
WalkThrough in time for 7. This was corrected for 7.1, but 7.2 and 7.3
were missed. For 7.4 I caught up again, but then fell behind again until
the current release, 7.7.

So many changes. The 5i browsers, the object of many disparaging
comments, have been replaced with much better browsers based on the
Refactoring Browser by Refactory, Inc. These browsers are themselves
being refined as experience proves necessary, but the overall quality is
much improved.

The general appearance has been improved steadily. Gone are my
opportunities to make fun of Eliot’s icons, as Vassili has replaced them.

The UI Painter interface has similarly been reworked, and is much more
usable, thanks to Sam’s diligent efforts.

Similar changes have been made throughout the VisualWorks system,
though I neglect to mention them here.

So, with so much of my fun undercut in this way, why bother with an
update? Because VisualWorks is much more fun to use now. And, it is
still a complex system, requiring the kind of guidance provided by the first
edition.

Smalltalk is once again gaining notice in the programming world. With
this updated edition of the WalkThrough, I hope to encourage many more
explorers to discover VisualWorks.

1
A Walk-Through of VisualWorks

This short document is directed at new users of VisualWorks and
Smalltalk. When you first load a new tool, especially a programming tool,
it is seldom obvious just what to make of it. This can be all the more true
when it is a programming language and environment like Smalltalk.

It’s easy to get off on the wrong foot, and so start out thinking about
VisualWorks wrong-way around. The purpose of this walk-through is to
orient you to the landscape, show you the tools, demonstrate a quick, and
common, approach to prototype-application development, and point out a
variety of features of VisualWorks and Smalltalk along the way.

At various points, additional reading is suggested, but it is not required for
completing the walk-through. Many of the features pointed out are talked
about in far more detail in the places mentioned. In the walk-through, I’m
content to call them to your attention, and point you to further reading.

The primary additional document is the VisualWorks Application
Developer’s Guide, which contains a pretty comprehensive description of
the features of the VisualWorks environment. The Basic Libraries Guide
describes the main Smalltalk class libraries that you will need when
creating a program. For GUI development, the GUI Developer’s Guide is
the primary source. Becoming familiar with these documents will yield
great dividends as you continue learning VisualWorks.

In the beginning...
No, I’ll not go back that far. In fact, I’m assuming you already have VW 7.7
installed, either a commercial or noncommercial release. If you have an
earlier version of VisualWorks, use an earlier edition of this WalkThrough.
The tools have been undergoing extensive changes through the 7.x
6 VisualWorks

In the beginning...
releases, and you should avoid any confusion caused by mismatched
tools, if possible. But, VW 7.7 non-commercial is available for free, so you
might as well download it and get the latest and greatest available.

The Installation Guide describes how to install VisualWorks and how to
launch it. On Windows and MacOS systems, a launcher icon is installed,
so you can double-click on that to launch VisualWorks

More generally, you can typically find a VisualWorks image file (they have
a .im filename extension) and double-click on it to launch VisualWorks
on that image. Most installations set up an association to the VisualWorks
executable file. So, for starting, find visual.im in the image directory
and double-click it.

If VW was installed correctly, it will open on this image, and you’ll have
two windows: The Visual Launcher is on top, and a workspace is below it.

Quick Launch

On Windows and
MacOs, double-click
on the VisualWorks
icon.
Walk Through 7

A Walk-Through of VisualWorks
If you installed a Non-commercial version of VisualWorks, the workspace
has several pages, as shown, which you may browse at your leisure. Just
click on one of the tabs. I’ll not be talking about them, but there is some
interesting and helpful information in them.

If you have limited screen space, you can close the workspace, the
bottom window shown above, but leave the Visual Launcher, the top
window, open. You need it for everything.

The installer sets a system variable that holds your VisualWorks Home
directory. If for some reason it didn’t, some things won’t work correctly,
like you won’t be able to see system source code or load parcels. You can
check by looking at the Home setting—in the Visual Launcher select File >
Set VisualWorks Home... Make sure it is set to the root VW installation
directory, not one of its subdirectories. For example, if your VisualWorks
image file is c:\vw7.7\image\visual.im, then your VisualWorks
Home directory should be c:\vw7.7.

Make a working image
You never, never, never want to overwrite the visual.im image file,
including saving over it. It’s usually write protected and safe, and you can
always recover it, so there’s no big deal. But, you really want to work in a
working image, because otherwise you might blow away your copy of
visual.im, and finding the installation media to get a clean copy can be
a pain.

The working image will contain any tools or special features you need to
use, and your application code. Initially, we need the GUI building tool,
called the UI Painter. So, we’ll load the UI Painter and save the resulting
image as our working image file. (This is already loaded in the non-
commercial image, but you can still go through the steps.)

The UIPainter is contained in an external program module, called a
parcel. To use it, we load it’s parcel into a launched image. You already
have visual.im launched, which is a good place to start. So we will
load the parcel into it.

Working Images

You may end up
with several
“working” images,
images that you
save your work in.
If you use shortcuts
to launch VW, make
sure they load a
working image and
not the standard
image.
8 VisualWorks

Make a working image
In the Visual Launcher, select System > Parcel Manager.

Select Essentials in the list on the left, then select UIPainter in the list on the
right. Then select Parcel > Load.

If the parcel icons have question marks in them, it usually means that the
VisualWorks Home directory wasn’t set correctly. Make sure the home
directory is set correctly (File > Set VisualWorks Home), then reopen the
Parcel Manager.

While the parcel is loading, a few status messages are displayed in the
Transcript window.

There are dependencies between parcels, so that some features of one
parcel really need another parcel to work. They will be available if that
other parcel is ever loaded.

The parcel then finishes loading. Sometimes when loading a parcel, you
will see messages displayed in the Visual Launcher saying things like
“Autoloading blah blah blah,” and “Undefined object blah blah blah.”
These are normal. Someday you’ll understand what they mean, but it’s
not worth your time right now, so just ignore them. If a message says
something like the parcel can’t be loaded, then there’s a problem.

Parcels

Parcels store Visu-
alWorks code exter-
nally to the system
for loading when
needed.

Parcels are also
useful for defining
“components,”
chunks of code that
do specific tasks
that may be useful
to more than one
program.
Walk Through 9

A Walk-Through of VisualWorks
Now we have our working image created. You should see a couple new
buttons on the Visual Launcher, looking like a canvas on an easel and
something not very recognizable. Compare the launcher on your screen
to the image below, to make sure you’re close. If you forgot what it looked
like before, compare it to the launcher shown back a few pages.

We’re done with the Parcel Manager now, so go ahead and close it.

We need to save this image so we can load it later. Let’s call it “working”.

Select File > Save Image As... in the Visual Launcher. A standard Save File
dialog opens.

Replace the string in the entry field with working, and click OK. The image
will be saved as working.im. You don’t need to put the “.im” in yourself,
but you can and it will still be saved as “working.im”.

With the image saved, the title bar in the Visual Launcher should now say
VisualWorks working.

What’s Next?
Now we’re ready to get to work.

The rest of this walk-through consists of two simple projects: that old
chestnut, the Hello World! program, and a simple GUI oriented program.
10 VisualWorks

2
Hello World

For some reason, everyone seems to want to start with a “Hello, World!”
example. It has become like a tradition. So, to be traditional, we’ll start
with a VisualWorks “Hello, World!” example.

For some purposes it might be sufficient to enter into a workspace the
following expression:

Transcript cr; show:'Hello World!'; cr
and evaluate that with Do it (in the menus, pick Smalltalk > Do it). This
executes the one-line “program” shown above and displays the result in
the Transcript window.

Most new Smalltalk users, however, want to see this done in a stand-
alone application, rather than within the IDE as the above example does.
This requires a little more work, but not all that much more.
Walk Through 11

Hello World
The program will consist of one class and one method. We’ll then have to
generate the image file to run stand-alone. That’s about it, except for
some optional packaging.

Writing the Program
We will write the entire program using a code browser. In the VisualWorks
Launcher, click on the balloon button. This opens a System Browser,
which is where we’ll start.

One thing to be aware of while is that in VisualWorks, as for most
Smalltalk environments, you have the code for the whole current system,
including the language, IDE (development tools), and any loaded
libraries, right there in the browser available for browsing. This is useful,
eventually, but can also be distracting, or confusing, or overwhelming. You
need to learn how to focus on the parts of the system that you need, and
ignore the rest. This comes with experience, but there are also
techniques to help, such as how you organize your code, and the tools
you use to view the code.
12 VisualWorks

Writing the Program
For now, look at the top left pane, which shows a tree view of components
(packages and bundles) that contain the entire system. We don’t want our
program to be confused with all this stuff, so we will keep it separate by
creating our own package.

To create a package, pick the Package > New Package... menu item. A dialog
asks you for the package name. Let’s call it, very imaginatively, “Hello
World.” Enter “Hello World” and click OK.

Now find the Hello World package in the top left list pane and select it.
This is where we’ll be working. You can ignore everything else.

To make it a bit easier to focus just on our program, we can open a new
browser focused just on this package. With the Hello World package
selected, pick the Package > Spawn menu item. The new browsers is empty,
but is labeled as focusing on the Hello World package.
Walk Through 13

Hello World
Now we need to create a class. In the Hello World browser, pick the Class
> New Class... menu item, which opens the class creation dialog.

The yellow marker points out the required information, which in this case
is the class name. Type “HelloWriter” in the Name: field, to specify the
class name (unlike the package name, spaces are not allowed). The
package is already specified as the package we’re browsing. (The rest of
the items are all described in the Application Developer’s Guide. We will
use the items created by the three checkboxes.) Then click OK. The class
is then created, added to the package, and shown in the browser (in both
the System Browser and the Hello World browser, if both are opened).

As a side note, you have just modified the system, by adding a class.
Actually, you did when you created the package, as well, though that isn’t
so interesting a change. These changes are made immediately in the
image. Unlike many other environments, there is no need to save a
separate source file and compile it.

Now we need to create a method to do the work. The code is quite
simple, and will simply open a dialog showing “Hello, World!” and then
close when we click a button. We will use the class Dialog and the
method, choose:lables:values:default:, to do this. Both are already defined in
the system, in one of those system packages we are ignoring.

While it is not particularly good object-oriented code, it is quick and easy
to put this in the initialize method that was created for us along with the
class (remember those checkboxes?). In the Hello World browser, select

Unlike many envi-
ronments, we do
not need to
import things like
Dialog into our
program; they’re
already in the
system image.
14 VisualWorks

Save the Image
the HelloWriter class, then the initialize-release method category (also
referred to as a “protocol”), and then the initialize method. Replace the
space holder code there with:

initialize

Dialog
choose: 'Hello, World!'
labels: (Array with: 'Hello')
values: #(nil)
default: nil

and save your changes (Edit > Accept or Ctrl-S).

That’s it. You can test this code in a workspace by typing in

HelloWriter new
and executing this expression with Do it (Smalltalk > Do it or Ctrl-D).

The new message is a class message that creates a new instance of the
class. In the browser, click on the Class tab, select instance creation and new.
This method was generated at the same time as the initialize method. The
one executable line in that method invokes the instance creation method
of HelloWriter’s superclass, then sends initialize to the new instance. The
initialize message causes the dialog to open, as we wrote it to do.

Save the Image
You know how important it is to save your work. In VisualWorks, this is
done by saving the image into an image file.

When you first started VisualWorks, you launched a pre-built image from
a file, either visual.im or visualnc.im.. Now that we have changed
the image by adding a package, a class, and a method, we want to save
our work, but to a file with a new name.

In the VisualWorks Launcher, pick File > Save Image As... . In the input
dialog, type a name for the image, such as “HelloWorld,” and click OK. You
don’t need to enter any path information, unless you want the image in a
location other than the default directory. Also, you do not need to include
the “.im” extension; it will be added for you.

The default location is typically the image/ directory, but depends on
your system’s startup configuration.
Walk Through 15

Hello World
Packaging for Stand-alone Execution
So far we have the Hello World program, but we can only run it within the
VisualWorks development environment. We’d rather run it as a stand-
alone program, without starting the IDE first. To do this we prepare the
program using Runtime Packager.

In the VisualWorks Launcher, open the Parcel Manager (System > Parcel
Manager). Parcels are external library files. We don’t usually need all of the
features provided with VisualWorks, so leave most of them unloaded until
we need them. The Parcel Manager is the easiest way to load these
libraries when we need them, as we do now with the Runtime Packager.

In the Parcel Manager, click on the Essentials folder in the left list pane.
Then, in the top right list pane, double-click on RuntimePackager (or select
the parcel and pick Parcel > Load). Answer Yes when asked if you want to
load this package. Then close the Parcel Manager.

Now, in the Launcher, pick Tools > Runtime Packager to start the program.
16 VisualWorks

Packaging for Stand-alone Execution
There are a lot of options available in the Runtime Packager, and we’re
going to ignore nearly all of them. For the most part, the default values
will work well for this example.

Click Next>> twice, until you get to the Set common options window. Then click
Do this step. The new dialog has several pages. On the Create page we
need to enter the information needed to start our program. As we’ve
already seen, running

HelloWriter new
runs the program. HelloWriter is the class and new is the method, so that’s
what we enter, plus a name for the final image:

• Startup Class: HelloWriter

• Startup Method: new

• Runtime Image Path Name: hello

While we’re here, take a look at the Details page. There are a number of
options here, but notice the Action on last window close section. The default is
Shutdown image, which is what we want, so we’ll leave it. The desired
behavior of our program will be to launch, display “Hello World!” and then
exit.
Walk Through 17

Hello World
Also notice the Suppress splash screen and herald sound option. If checked, as it
is by default, the VisualWorks splash screen is not displayed and played
when your image starts up. This is probably a good thing, so leave it
checked. (The Application Developer’s Guide describes other options.)

We might as well look at the Platforms page, too. VisualWorks images are
fully portable between operating system platforms, meaning the same
images can run on any of the supported platforms. But, if you remove
some of the support for other platforms, it won’t work as expected. On
this page you can select the “look policy” and operating system support to
include in your image, so it will work and look right on another platform.
For example, if you are developing on Windows but know you will deploy
on Linux as well, you want to check the Motif UI look and Unix operating
system options on this page. By default, all of the options are selected,
which is a good choice for now.

Click OK to save the options we’ve set and return to the main Runtime
Packager window.

Click Next>> five times (but feel free to look at any of the pages by clicking
Do this step) until you get to the Test application window. In the test window,
click Begin Test. Our “Hello World!” dialog will be displayed again. Click OK
to close it, then click End Test to close the test screen. Hopefully it all
worked.

Click Next>> twice, to get to the Strip and save image screen. “Stripping”
refers to what will be done to the image (not how you dress for the
occasion); a number of classes used in the IDE but not needed in a
runtime program are removed from the image. Once that is done, the
image is saved to the name we specified in the “Set common options”
step (“hello”).

When you click Do this step, a dialog pops up saying that there are
windows open referencing classes that will be removed. Those include
any browsers we’ve left open. Click Yes to close all of those windows.

However, instances of the application and any workspace windows that
we have left open will not be closed in this step. If there are any, click No,
close the windows, then do the step again, answering Yes.

Read the messages in whatever dialogs are displayed, and respond
appropriately. Mostly they are notices about what is about to be done,
and asking for confirmation to proceed. Finally, changes are made to the
image, and it is written to the file name specified (hello.im), and
VisualWorks is shut down.
18 VisualWorks

Test the Results
Test the Results
You should now have a working program that you can launch
independently of the IDE. To check it out, find the image file, hello.im.
Usually it is in the image/ directory or folder of your VisualWorks
installation.

Then launch the image. On Windows and Mac systems, you can
generally just double-click on the image file. On other systems you may
need to execute a command line. It is easiest to change the current
directory to image/ and run from there. For instance, on Linux this might
look like the following (though it varies with the command shell and
configuration):

cd ~/vw7.7/image
../bin/linux86/visual hello.im

Polishing Things up a Bit

Renaming Visual Executable
End users on Windows like to launch the executable for their application,
rather than hand the application data to another, differently named,
executable. That is, they’d rather run a program called “hello.exe” than a
more complex thing like “visual.exe hello.im.” We can do this.

Using the tools provided by Windows, make a copy of the executable file
(visual.exe). Then, rename the copy to hello.exe, so that the name
is the same as for the image file. Copy or move both the executable and
the image files in the same directory. It doesn’t matter which directory.
Now simply run the executable.

By default, if no image file is specified, the virtual machine (the
executable) looks in its directory for an image file with the same name,
minus the filename extension. If there is one, it loads that.

You do still need to provide two files, but this is then similar to delivering
an executable with a DLL on Windows.

Note that this only works on Windows. For other platforms, there are
other execution strategies, as described in the Application Developer’s
Guide.
Walk Through 19

Hello World
Packaging as a Single Executable
Windows and MacOS developers sometimes want their programs to be
deployed as a single file, an executable. This is usually the case for very
small programs, like Hello World!, but can be useful for somewhat larger
programs as well. This is seldom an issue for Linux and Unix users,
however.

The approach on Windows and MacOS are different. Since I only have a
Windows system, I’m going to settle for showing you how to do this, in a
very simple form, on Windows. My apologies to Mac users.

Packaging on Windows
Windows allows an executable file to include certain resource files.
VisualWorks includes a third-party shareware program, ResHacker, that
helps you bundle an image, and possibly other resources, with the virtual
machine for deployment as a single, stand-alone, executable.

First, you have to extract ResHacker. It is in a ZIP file in the
packaging\win\ directory of your VisualWorks installation. Find it, and
extract it to the same directory.

It is easiest to build this file if all of our files are in the same place. So,
copy the image file (the finished one, hello.im) and one of the virtual
machine files (usually visual.exe) into packaging\win\ as well.

Now, open a Windows command session, change to this directory, and
execute the command:

reshacker -addoverwrite visual.exe, hello.exe,
hello.im, 332, 332,

Note that the syntax is really very particular. Those commas, for instance,
are necessary, even the last one.

Once successfully executed, ResHacker will create the hello.exe file,
which you can run by itself.

You can add other resources, such as splash screen bitmaps, sound files,
program icons, and command line options. Refer to the
WindowsPackaging.txt file for a full description.

What’s Next?
This has been a quick look at some basic features of VisualWorks. The
next chapter introduces the GUI building tools, and a simple application
design approach, as well as additional pointers for exploring
VisualWorks.
20 VisualWorks

3
Building GUI Application

What we’re going to do...
There are a variety of ways to start building an application in
VisualWorks. Frequently, the data model, or the kind of information and
processes that the application controls, are very well defined, or already
written, and a Graphical User Interface, or GUI, is simply put on top of it.
In fact, that’s pretty much what we’ll do here. A random number generator
already exists in VisualWorks, and we’ll just put a GUI on it.

An alternative, though still common, approach for creating a prototype of
an application begins with a GUI, for which there may not be a
particularly well defined data model yet. The GUI helps identify what kind
of information the underlying program will need to provide, and guides
further development.

The two approaches are not all that distinct. In fact, both begin with the
GUI, as we will here.

A GUI has two purposes: to accept user input, such as data and
commands, and to display the results of the program’s processing. The
processing all goes on “behind the scenes.” As a VisualWorks
programmer you will be concerned with both. You have to start with one
end or the other. We’ll start with the GUI.

Here’s the idea. We will create a GUI that, every time the user clicks a
button labeled “Next” will display the next number in a random sequence,
as produced by a random number generator. The user will also be

Program Structure

An application has a
“model” and a “user
interface.” The
model does the
thinking. The user
interface, which is
usually graphical
(hence, GUI), takes
user input and
displays results.
Walk Through 21

Building GUI Application
allowed to restart the sequence, or to enter a “seed” value, which just tells
the sequence where to start. So, it will have two buttons and two display
fields, something like this:

If you get stuck, especially later on, you can load the WalkThrough parcel
and examine my code.

Build the application GUI
As I said, we’re going to start by building our application’s GUI. To do this,
we need to open the UIPainter tool. Click on the easel looking button.
(You could also select Painter > New Canvas in the Visual Launcher, but why
work that hard?) Three windows are opened:

You may need to rearrange these windows for convenience.
22 VisualWorks

Build the application GUI
The window with all the little buttons (top right) is called the Palette. This
has all the pieces that you can (easily) put into your GUI.

The big window on the left is called the GUI Painter Tool. It is really
command central for configuring your application window. We’ll be using
this a lot.

The really important one is what’s currently called “Unlabeled Canvas.”
This is where you will build your GUI. You put pieces from the Palette onto
it, arrange them, and so design the way your application will look to the
user. Nothing to it, right? Right!

Look at the Palette and click on various of the buttons. The two buttons at
the top left, the arrow and stack of cards, are for placing single or multiple
copies of an element, respectively. There are also a bunch of
“arrangement” buttons, all greyed out at the moment. The remaining
buttons are the “widget” buttons.

When you click on one of the widget buttons, a brief description of the
selected widget is shown at the bottom of the Palette window. When you
drag the cursor over the widgets, a little fly-by help description is shown.
Find the widget button that says Input Field.

When you find it, click it, then move your mouse over to the Unlabeled
Canvas. To place it on the canvas, move it to a good location, like
centered and pretty near the top, and click. The Input Field widget will
“drop” there and stay.

If you had the arrow button selected, at the top of the Palette, then you’re
done. If you’d selected the other button, you could drop more Input Fields
by continuing to click on the canvas, dropping one each time.

Notice the little dark spots, or squares, at the corners of the Input Field
widget. These are usually referred to as, appropriately, “corners,” or
“handles.” Use them to change the size of the widget. Click and hold the

UI Painter Tools

The Canvas, where
you place and
arrange “widgets.”

The Palette, which
holds widgets for
selection and place-
ment on the canvas.

The GUI Painter
Tool, which provides
easy access to
operations on the
canvas.
Walk Through 23

Building GUI Application
left mouse button (like a double-click, only don’t let go on the second
click), and drag the mouse. You’ll push or pull the corner, changing its
size.

To move the widget, click and hold somewhere on the widget other than a
handle, and drag it to position. Then let go (drop).

Add one more Input Field widget under the first one somewhere, around
the middle of the canvas.

Now select the Action Button widget, and place two of them near the
bottom of the canvas, side-by-side. Click on the button on the left, to
select it (so its handles show).

The canvas should now look like this:

Now, look at the GUI Painter Tool.
24 VisualWorks

An extremely brief explanation of objects
The list on the left shows all the widgets you’ve put on the canvas so far.
The one that’s highlighted is the widget that is currently selected on the
canvas. You can change the selection either by clicking on another widget
in the canvas or in this list. Try it, but then get back to the action button on
the left.

The big area to the right holds the Properties pages. These pages set a
bunch of, well, properties, for the selected widget, and for the canvas if no
widget is selected. Each widget has a default name, or ID, which
identifies it in the widget list. Currently the Basics page is showing.

For action buttons, the most important items are the String and the Action:
fields (or properties). If you accidentally unselect the button, the
Properties pages will change. Just reselect the left button on the canvas
to get back to its properties.

The String field sets the button’s label. Delete the text there now, and type
in Next. Then click the Apply button at the bottom of the Properties page.
Notice that the button’s label changes. Select the other button, and
change its label to Reset the same way.

The other important property for buttons is their action, in the Action: field.
We’ve not talked about Smalltalk yet, but we have to now.

An extremely brief explanation of objects
Smalltalk is what’s called an “object-oriented programming” language and
environment. What that means is that programs are written by describing
kinds of things (objects) and what they do. What objects do is respond to
messages that are sent to them by other objects. So, really they talk to
each other by sending messages.
Walk Through 25

Building GUI Application
A message has a name, called a message selector. It may also have one
or more additional pieces of information, called arguments or parameters,
which give more details about the request. For example, if you have a Ball
object, called myBall, you might have a message called color that asks it
for its color like this:

myBall color
Similarly, you might have a message called color: that sets its color. The
colon indicates that the message must include an argument, in this case
to set the ball’s color:

myBall color: blue
When an object receives a message, it responds in some way. That
response is defined by a method, which is a piece of Smalltalk code. The
method defines the response to the message sent using the message
selector. Note that a message always responds by returning an object;
just what object is returned is determined by the method.

For example, an Action Button is an object. So, it communicates with
other objects by sending messages and by responding to messages sent
to it. The messages it responds to are fairly deep in the system, ultimately
coming from the keyboard and mouse, in general, so you don’t need to
worry about them right now. We’re really only interested in the message it
sends when the user clicks on it.

We already know what we want to happen when we click on either of our
buttons. The button labeled “Next” should get the next random number,
and the button labeled “Reset” should start over, or reset the sequence.
So, it makes sense for the first button to send a message like “next
random” and the second button to send one called “reset sequence.”

We will need to write methods to do this, but initially we only need the
message identifier. Smalltalk conventions are that keywords like message
identifiers are single words (no spaces), made up of intelligible (human
understandable) words, with word separations indicated by an uppercase
letter. The initial letter of a message identifier is always lower-case.

With this in mind, let’s call our message for the Next button nextRandom,
and for the Reset button resetSequence.

Finishing the GUI
On the Basics properties page, with the Next button selected, type
nextRandom in the Action: field, and click Apply. When you accept the
change, the message name is redisplayed as #nextRandom. The pound

Object Orientation

Smalltalk programs
consist of individual
things, or objects, in
communication.
Objects communi-
cate by sending
messages and
receiving a
response.
Responses to
messages are
defined in methods.
A general descrip-
tion of an object,
and the methods
that describe its
response to
message, are
contained in its
class definition.
Message Types

Unary messages
are messages
without arguments,

myBall color

Keyword messages
take an argument
for each keyword,
marked by a colon
(:):

myBall color: red

Binary messages
use a special char-
acter (such as ‘+’)
and one argument:

2 + 2
26 VisualWorks

Finishing the GUI
sign (#) is a piece of Smalltalk syntax that indicates that the word will be
passed as a symbol. Symbols are discussed in the Application
Developer’s Guide.

Now select the Reset button, type resetSequence in its Action: field, and click
Apply.

We’re done with the action buttons for now. Now we need to think about
the input fields. So click on the top one and look at its properties page.
Notice that the properties are different. There is no label string to be
entered, and no action to specify. Instead there are fields called Aspect:
and a Type:. Those are the most important fields for an Input Field widget.

An aspect is like a facet of a cut diamond; one part of its defining
properties or characteristics. Programs “model” something; a human-
machine interaction, perhaps, a manufacturing process or store
transaction, or something more abstract.

For this example, our program needs to model a random number
sequence (yes, mathematicians, it’s only pseudo-random, because it’s a
predictable and repeatable sequence). There are two essential aspects of
this model that we want to use: the current random value and the seed
value. The current random value is obvious. The seed value is something
used by computational (pseudo-) random number generators to provide a
predictable starting point and repeatable sequence.

Aspect Property

An Aspect stores a
feature of an object,
usually in an
instance variable.

The aspect is
usually stored as a
ValueHolder, for
easy use by the
VisualWorks UI
Framework.
Walk Through 27

Building GUI Application
Our top input field is really only going to be a display field, to show the
current random value. On its Basics properties page, we need to enter a
name for that aspect. Let’s call it currentRandomValue, and enter that in the
Aspect: field of its properties. In its Type: field, select Number from the drop-
down list. We’ll not bother with the format for now. Click Apply.

Notice that, since we made this a number, it’s initial value is now shown in
the canvas as 0. It’s also left-justified, which looks funny. Click on the
Details tab to change properties pages to see another page of properties.

In the Align: field, select Right from the drop-down list. Also, since we only
want to read the current value, not set it, click on the Read Only check box,
so a check mark shows in it. Since we won’t enter anything here, we don’t
need to tab to it, so uncheck Can Tab. Now, click Apply.

Hey, the background went grey!

Yes, it did indeed. That is meant to indicate that the field is read-only.
White background indicates read-write. This isn’t always appropriate, but
often is. You can change the background color on the Color property
page, which you may explore on your own. Refer to the GUI Developer’s
Guide if you need help.
28 VisualWorks

Finishing the GUI
We do want to enter something into the other input field, namely a seed
value. Click on it to show its properties, and click Basics to show that page.
Let’s call this field’s aspect “seed,” so enter seed into the Aspect: field.
Seeds need to be numbers, so make the Type: field Number. Click Apply.

Again, we want this to be right justified, so fix that on the Details page.
This time, however, we want to be able to enter a value in this field, so do
not check Read Only or uncheck Can Tab. And, as always, click Apply.

We’ve now done all the essentials of the GUI design. We can spruce it up
a little, however. Notice that the input fields are not labeled, so it’s not
clear what they are. If necessary, move the fields a little so there’s room
to label them with a label just above and to the left of the field itself.

Now, find the Label widget, and put one above and to the left of each
input field. Open the properties pages for each label and change their
String field to Current Random Value for the top one, and Seed for the lower
one. Remember to click Apply.

If the alignment of your widgets is a bit ragged, or the spacing is uneven,
there are some aids. For example, select a label, then shift-click to select
the other label, too. In the Palette, find the Align Left button and click it. The
labels will line up with the first one selected. You can do the same for the
entry fields and buttons, can even out the distribution, and so on. Explore
the options until the widgets are arranged to your liking.

Tab Control

Tabbing is an impor-
tant feature in a
good GUI. It allows
the user to move
between widgets
without the mouse.

Only widgets that
take user input
should allow
tabbing, such as
input fields, check-
boxes, and buttons.
Walk Through 29

Building GUI Application
One more thing. We don’t really want our canvas unlabeled. So, click on
the background of the canvas, or click on the Main Window item in the
widget list, so no widget is selected. Change the label string on the Basics
properties page to something interesting, like Random Number Picker. Since
we’re done setting properties, click Apply.

Your final canvas should now look something like this:

This is a good time to save the image again. It’s not a general working
image anymore, so you might give it a different name. Select File > Save
As... and enter WalkThru. Remember that you don’t need to include the
“.im” suffix.

Generating initial Smalltalk code
So far we’ve laid out the GUI and specified names for a couple of
methods that will need Smalltalk code. But, there is not yet any actual
Smalltalk code written or created.

In addition to methods, which are Smalltalk code, there are class
definitions, which are also Smalltalk code. Fortunately, taking the GUI-
first approach allows us to do a lot of this automatically. The class will
represent, or model, the application itself.
30 VisualWorks

Generating initial Smalltalk code
First, we will generate the class by “installing” the canvas. You need to
have the canvas and the GUI Painter Tool open.

In the GUI Painter Tool, click the Install button (or select Edit > Install). The
Install On Class dialog opens, asking you to specify the application class
name.
Walk Through 31

Building GUI Application
A little more about objects here. I’ve mentioned that action buttons are
objects. What we really have on our canvas are two “instances” of the
one “class” of action button. A class is like an abstract description of a
whole collection of concrete individuals of that kind. Our two button
instances are concrete, and differ from the prototype, or class, in having
specific labels and actions associated with them.

This is true of application programs, too, like the one we’re creating. All
concrete objects in Smalltalk are instances of some class. Even if there is
only one instance, it is defined by a class (it would be a singleton class,
but a class nonetheless).

So, we need to name this new class we’re about to create something.
The convention for class names is similar to the convention for method
names, except that they start with an uppercase letter. So, let’s call our
class RandomNumberPicker, taking our clue from what we labeled the
canvas. In the dialog, enter RandomNumberPicker in the top entry field.

Notice down at the bottom that there is another word, windowSpec. This is
actually a method name. You could change it, but don’t. VisualWorks
assumes that the initial GUI is defined in a method called windowSpec,
and you have to work harder to launch an application if you change this
name.

So, the dialog should now look like:

Click OK. Since this is a new class, another dialog opens up asking for
some more information:

Installing a Canvas

Installing a canvas
is how the canvas
design is stored in
VisualWorks.

Every time you
make a change to
the canvas, you
must install the
canvas again. Use
the same class and
method for rein-
stalling a canvas, to
update your appli-
cation.
32 VisualWorks

Generating initial Smalltalk code
The list on the left is a list of name spaces, which are abstract and take a
bit of explanation that we can skip for now. The Smalltalk name space is
currently selected. In the long run, this is not the right place for our class,
and we’ll fix it later. For now it’s just fine.

Classes are also subclasses of other classes. Ultimately, all classes are
subclasses of the big class Object (it’s actually a longer story than that, but
this is a good first approximation). Applications built using the UIPainter
are typically defined as subclasses of ApplicationModel, as shown in the
dialog. There are exceptions, but this isn’t one of them, so that’s ok.

There’s also a Category: field. This is just an organizational aid. You can
leave it as it is or change it to something like “My Applications”. Might as
well leave it with the default UIApplications-New.

Click OK. That’s it, almost. The class name dialog is still open. Click OK
again. This time it knows the rest of the information it needs. Now the
dialogs close and you’re back with the canvas and the UI Painter Tool.
The class RandomNumberPicker is now created and the windowSpec
method is defined in it. We’ll look at those shortly.

Subclasses

A class defines the
kind of a thing. A
subclass defines a
more specific kind
of a more general
thing.

So, if a bird is
defined as a class, a
penguin could be
defined as a
subclass, a more
specific kind of a
bird.
Walk Through 33

Building GUI Application
One more thing to do before moving to the code itself. Make sure no
widgets are selected in the widget list by selecting Main Window. Then, in
the UI Painter Tool, click the Define button. A Define Models dialog opens:

Look at the names in the list. Do they look familiar? They should. Those
are the names we gave to the aspects of our entry fields and to the
actions of our action buttons.

Each of those needs some Smalltalk code behind them. This dialog is
offering to create “stub” methods; little, essentially empty, place-holder
methods that we can then go in and modify. All the methods with check
marks will be generated. The initialization check box indicates that a little
bit of specific code, called “initialization” code, will be included in the stub
when appropriate.

Make sure all the methods are checked, and the Add Initialization check box
is checked. Then click OK.

Save the image again before we move on (File > Save Image in the Visual
Launcher).
34 VisualWorks

Try it out
Try it out
Before moving on, let’s test what we have. Don’t expect much yet, but we
really do have a working version of our GUI.

With the canvas still open, click Open on the UI Painter Tool. This runs the
application, such as it is, right from the canvas.

The application UI opens, and is ready to go. Well, sort of. Try clicking its
buttons. Nothing happens. That’s because we haven’t told it what to do
when its buttons are pushed. That’s next.

But, so far so good. You’re making progress! Now, to make it work.
Walk Through 35

Building GUI Application
Smalltalk Code: it’s time
Let’s keep this simple for now. With Main Window selected in the UI
Painter widget list, click the Browse button. You open what’s called,
generically, a code browser. This one is a hierarchy browser, showing the
class you just created, RandomNumberPicker, and all of its superclasses,
all the way up to Object.

The top-left window pane shows the hierarchy of classes, starting at the
top of the hierarchy (Object), then each of its subclasses, all the way down
to RandomNumberPicker. The bottom pane shows the definition for
whatever is currently selected. Initially, it is our class itself, so it is the
class definition that is shown.

Without explaining this definition in detail, look at a few of the items we’re
already familiar with. When installing our canvas, we called its class
RandomNumberPicker, and decided to leave it in the Smalltalk name space.
That’s what the first line says. The second line says that it is a subclass of
ApplicationModel, or that ApplicationModel is its superclass, which is the
same thing. The fifth line identifies instance variables, that is, variables
whose values are determined separately for each instance of the class.
You should recognize the two variable names as the aspects of our input
fields. The last line is the category that we identified for the class when
defining it. You might have changed it. I’ll say more about categories
shortly.
36 VisualWorks

Smalltalk Code: it’s time
The other lines aren’t important now, but you can learn about them in the
Application Developer’s Guide.

The second pane shows packages that contain definitions either of this
class or methods in it. I haven’t mentioned packages yet, but they are
closely related to categories, which I’ve also not described. Let’s come
back to that. So far, our class isn’t in a package, so this pane shows
(none).

The third pane shows method categories, or protocols, (I don’t think much
of the latter term, so will avoid it, but it’s traditional and you will hear it). In
this case, the categories are for methods that define messages that can
be sent to instances of the selected class. Notice that the tabs above that
pane indicate that instance-side definitions are being shown. These are
methods that are sent to instances of a class. Class-side methods are
sent to the class itself.

Select the class tab for a moment, and see what’s there. There’s just one
category here, called interface specs. Select it (click on it so it’s
highlighted). There’s just one method, windowSpec. This method stores all
the data that sets the look of the canvas. You hardly ever have to edit this
method directly, but it’s nice to know it’s there. Click on it to see what it
looks like. Don’t worry, you’re not supposed to understand it.

Click the instance tab to get back to the instance side definitions. There are
two categories for methods here, actions and aspects. That should give
you a clue about what you’ll find there.

Click on actions. Here are the stub method definitions for our action
buttons. Click on them. Except for their names, they say the same things
right now:

nextRandom
"This stub method was generated by UIDefiner"
^self

The line in quotation marks is a comment, and isn’t executed. The last
line, ^self, just returns the object itself, in this case the application. That’s
not what we want, so we’ll change it.

A method always returns a value (which is always an object) to whatever
sent the message invoking the method (remember, their names are the
same). The default return value is the message receiver, self. To specify a
different return value, precede the expression with the caret (^), as in this
method. Of course, the explicit value here specified is the same as the
default value, but we’re going to change that. It’s just a place holder for
now.

Class vs. Instance
Methods

Class side methods
define messages
that are sent to the
class itself, asking
the class to do
something. For
example, new is a
class message that
tells the class to
make an instance of
itself.

Instance side
methods define
messages that are
sent to instances,
asking that instance
to do something.
For example, if an
instance has a
color, it can be
asked for that color.
Walk Through 37

Building GUI Application
Before we change this method and the next one, we’ll have to look at the
VisualWorks random number generator. Right now we’re just touring our
class.

Click on the aspects method category. These two methods are supposed
to return the value of the indicated aspect, which are typically values of
instance variables. They’re the same at the moment, except for the
names of their variables:

seed
"This method was generated by UIDefiner. Any edits made here
may be lost whenever methods are automatically defined. The
initialization provided below may have been preempted by an
initialize method."

^seed isNil
ifTrue:

[seed := 0 asValue]
ifFalse:

[seed]
There’s more code here, which is written in “lazy initialization” style. That
refers to how, or when, the variable gets its initial value. In this case, not
until the message is sent the first time, rather than in an initialization
method that would set the value when the instance is created.

When a new instance of an object is created, that object’s instance
variables are also created, and have a initial value of nil, no value. Hardly
ever is nil an appropriate value, as it is not here, and will frequently cause
programs to crash. So, before the variable is actually used, it must be
assigned a value.

We could, in another method called initialize, provide a value for seed and
currentRandomValue as soon as the instance is created. Sometimes that’s
necessary, but here it’s not. So, we will use the default style, lazy
initialization, and just modify it as we need to.

Note the caret, specifying that the value of seed will be returned, rather
than self. But, what is seed? Well, it depends on the rest of the expression.
But, the conditions are evaluated first, determining the value of seed, and
that value is returned.

What the seed and currentRandomValue messages are supposed to do is
return the current value of the aspect of the model they represent, when
asked. If they don’t have a value when asked, that is if their value is still
nil, they make it up and hand back a default value, currently 0.
38 VisualWorks

More Smalltalk Code - Package Browser
The asValue message places the value 0 in a value holder, a special kind
of object, an instance of the class ValueHolder, which much of the GUI
framework assumes to be holding the values it has to display. The really
neat feature of a value holder is that it automatically updates the GUI
when its value changes, saving us some work. The value holder is itself
what is stored in the seed variable in the above code.

When we put a new random value into this variable, we will put it in the
value holder, too, using the value: message. The GUI framework retrieves
the value itself by sending another message, value, to the value holder.
This is an GUI framework architectural thing, but you need to understand
this much of it or you will be constantly confused and frustrated later.

More Smalltalk Code - Package Browser
We need to look at another bit of Smalltalk code, the Random class,
because this is the class that will provide us the data to display. An
instance of this class will give us new random numbers. It also gives us
an excuse to look at another essential VisualWorks tool.

Click on the Visual Launcher to bring it to the front of your display. Find
the fourth button. This button opens a new System Browser, which gives
you a view of the whole system.

ValueHolders

asValue creates a
ValueHolder and
assigns a value to it.

value: assigns a
new value to an
existing Value-
Holder

value returns the
value held by a
ValueHolder
Walk Through 39

Building GUI Application
Click on the balloon browser button; you might as well see the whole
thing. The System Browser opens:

You’ll notice that this is very similar to the hierarchy browser, but the top-
left pane now shows a list of packages and bundles. These are groupings
of classes related by some common functionality. Bundles contain
packages, and possibly other bundles. Packages are what actually
contain the code, but viewing a bundle shows all the code defined in its
packages.

This is a good time to say something about categories. It hasn’t always
been the case, but currently categories and packages amount to the
same thing. If you explore a few packages and the classes they contain,
you’ll see that the category and package names (not the bundle names)
are the same, almost always. Categories are a traditional way of grouping
classes that were related in some way. Packages do the same, but
provide more organizational features, and are the foundation of the
database code storage facilities available in VisualWorks if you load
Store. Store is described in the Source Code Management Guide.

The next pane over shows a list of all classes currently defined in the
selected category or categories. Several items are marked with icons
noting something special about them, such as that they are a name
40 VisualWorks

The Random Class - Domain Models
space, an exception class, a collection class, and so on. This list also
shows name spaces and shared variables, which we’ll have to explain a
bit later.

You can select all packages and bundles to see all of the classes in the
system. Or, you can see the entire class hierarchy, starting with object, by
clicking on the Hierarchy tab. Or, select a class in a package and then click
the Hierarchy tab, to display just the hierarchy for that class. There are
other views for browsing the system as well, as described in the
Application Developer’s Guide.

The Random Class - Domain Models
Often when you build an application like we’re doing, there is already a
program that does some work, such as recording business transactions
and performing calculations. Such a program “models,” or represents in
the program, a “problem domain,” whether it is a business process or a
representation of a scientific theory.

In setting up this example, we’ve chosen to build a GUI that provides
input to and accepts output from a simple model that already exists in
VisualWorks, namely a model of random numbers. This model is defined
in the class Random. Let’s take a look at it.

You can either use the System Browser you already have open or open a
new one. It is common, while working in Smalltalk, to have several
browsers open. The only limitations are your confusion threshold, the size
of your screen, and, eventually, your computer’s memory. I’m going to use
a new browser so I can use the old one to look at RandomNumberPicker
whenever I want.

Since we don’t know what package to look in, but do know the class we
want (because I just told you), we’ll use the find-a-class command.
Simply type Random in the Find: field in the system browser. Or, in the
package list, right-click and select Find Class... and enter Random. The
browser finds Random and selects it, and selects its package, Magnitude-
Numbers.

The Find features can be useful, also, if you know only part of the class
name. You noticed as you typed that is showed a list, first of all classes
starting with R, then only those with Ra, and so on until the list was quite
short.

Reminder:
Model and UI

We said the model
(or domain model)
does the thinking, or
the processing, of
the program.
Random does this
for our application.

The UI, our
RandomNumber-
Picker, provides the
user interface to
Random.
Walk Through 41

Building GUI Application
The right-click, or <Operate>, menu, by the way, is different depending on
where the mouse is. Try it in the other panes. The same menu is available
(at least usually) from the menu bar at the top of the browser. The code
pane <Operate> menu is the same as the browser Edit menu.

Now that we’ve found Random, let’s take a look at it. Looking at its class
definition, we see:

Smalltalk.Core defineClass: #Random
superclass: #{Core.Stream}
indexedType: #none
private: false
instanceVariableNames: 'seed '
classInstanceVariableNames: 'defaultGeneratorClass '
imports: ''
category: 'Magnitude-Numbers'

You can see here that it is in the Core name space (Smalltalk.Core). It also
has one instance variable, seed, which I’ve already mentioned in
connection with our GUI. Here’s the connection.

There’s also a class instance variable, which identifies the class that
provides the random number algorithm. Random is both an abstract
superclass, and a convenient access class for random number
gneerators. Most of its behavior is actually defined elsewhere.

You can also see where Random is in the class hierarchy. Click on the
Hierarchy tab in the System Browser’s menus, and the category list is
replaced by a pane that shows:

Object
Stream

Random
FastRandom
LaggedFibonacciRandom
ParkMillerRandom

MinimumStandardRandom
You can see that Random is not very deep in the hierarchy, just one class
away from Object, the root class. Stream is an interesting class, essentially
a superclass for classes that deliver a data series, or “stream.” Random
does that, delivering the next random number upon request.

Random also has a few subclasses, which are the actual generators. The
default generator is LaggedFibonacciRandom (at least in this release), so
we’ll look at it a little later.

<Operate> Menu

In most tools, you
can do a right-click
to pop-up a menu of
operations. The
menu changes
depending on
where the mouse is
when clicked.

Most of the time, the
same menu options
are available on a
normal menu, also.
42 VisualWorks

The Random Class - Domain Models
There are a number of tabs on the code view, which are all described in
the Tool Guide. One that is particularly useful while exploring the system
is the Comment tab. Click on it to display the class comment. When written
properly, the comment explains the purpose of the class, possibly how it
should be used, and explains the important variables. While trying to
understand the VisualWorks classes, don’t neglect these comments.
(And, as a programmer, you will write your own comments when you
create a class or write a method, won’t you? Make sure you do.)

Now let’s look at the code. Click on the Source tab.

First, let’s look at the class side. Click the Class tab. There are a few
method categories here, all of which occur frequently on the class side of
class definitions. The class initialization category contains methods, in this
case a single method called initialize, that set up values governing the
class itself and all instances of the class. (This requires a lot of
explanation that I will not give here. Refer to the Application Developer’s
Guide and Smalltalk-80: The Language for more information.)

The instance creation category generally contains the protocol for creating
instances from the class. Select this category and look at these.

Class side messages are sent to the class itself, as we’ll see in a minute.
Many classes have a new message, which is the simplest form of
instance creation. A version of new is implemented in Object, and so is
inherited by every class, though for some it’s useless. When it is useful, it
is generally reimplemented, as it is here:

new
"Answer a new random number generator."

^self defaultGeneratorClass new
This method, like all methods, is defined by a selector name on the first
line, new, and a few lines of code. Lines between double-quotation marks
are comments, and are there for explanatory purposes. The rest consists
of lines that send messages to objects, either the current object itself, or
other objects.

There is only one message sent in this method. The message begins with
the receiver object, in this case self, which refers to the sender itself,
Random. It is sent the message defaultGeneratorClass, which returns the
class that actually defines the generator we’ll use, LaggedFibonacciRandom.
(This is set in the initialize method.) This class is sent the message new,
which returns an instance of the generator.
Walk Through 43

Building GUI Application
It’s been a while since we’ve had a screen shot, so here’s one:

By the way, all those panes are resizable, so you can make your browser
look more like this. Just drag a border.

Often, as in this case, a class variable’s value is set in the class’s initialize
method, since it only needs to be set when the instance is created, and
remains the same for the life of that instance.

If you want to change the default generator, you can simply implement
the new generator, then assign it here.

Now we can see what happens back there in Random’s new message; it
simply sends new to the actual generator, LaggedFibonacciRandom. To dig
a bit deeper, find and select that class in the browser, and look at its new
method, which looks like this:

new
^self basicNewInstance

This message isn’t defined in the class, but in a superclass. In fact, in
Random, where it is defined as:

basicNewInstance
 ^self basicNew initialize
44 VisualWorks

The Random Class - Domain Models
The first word, self, we’ve already seen, and refers to the initial message
receiver. This is a class method, so here it refers to the class itself.
basicNew is the really primitive instance creator method, but we won’t
chase it further here. So, the result of self basicNew is an instance, and it
becomes the receiver of the message initialize, which is an instance
method.

In Smalltalk, a series of message sends like this are evaluated from left to
right, according to a set of rules of precedence. Sometimes parentheses
are helpful to make clear what’s going on. So, we could have written that
message series:

^(self basicNew) initialize
Sometimes parentheses are even necessary, but they aren’t here.

Refer to the Application Developer’s Guide for a fuller description of how
Smalltalk expressions are parsed and evaluated. It describes the
“precedence rules” for various operations and the use of parentheses.

Back to looking at LaggedFibonacciRandom, click on the Instance tab, select
the private category, and select initialize. Here, finally, is where the
generator really gets set up:

initialize

super initialize.
self initializeValueStorage.
self seed: Time microsecondClock

Understanding how this random number generator actually works will be
left as an exercise for the reader (that’s you). But, what this method does,
as do most instance initialization methods, is assign values to instance
variables. These values are used only by this instance of the object,
unlike class variables which share their values rather more widely, as
mentioned.

In summary, when we send new to Random, it in turn sends new to the
default generator class. What that class does with the message is up to it,
but in this case it sends basicNew, to create an instance, then sends
initialize to set the instance variables, so it’s ready to generate random
numbers. Make sense? It might take a little pondering. But, let’s move on.

Select Random again and click on the Instance tab. There are a few
categories here.

The testing category typically contains methods that report important
conditions of the instance. Here, atEnd reports whether the random
number stream is finished, which it never is, and so it always returns false.

Message Parsing

Unary messages
take precedence
over binary
messages, and are
parsed from left to
right.

Binary messages
take precedence
over keyword
messages, and are
parsed from left to
right.

Keyword messages
are evaluated last.

Messages in paren-
theses take prece-
dence over unary
messages.
Walk Through 45

Building GUI Application
Similarly, an object should not be able to push a value into a stream, so
isWritable also returns false. However, the point of a random number
generator is to provide values, so the stream returns true to isReadable.

The accessing category is an important category, containing “accessor
methods,” methods that set and retrieve values in the object’s instance
variables. Here, only the seed: method is important to us, and not for a
little while.

We need to look back at LaggedFibonacciRandom to find one more
important piece of behavior, so find it in the browser. Among its instance
methods, find next in the accessor methods. This method returns a value
based on the seed value, and updates the seed. The real work of
calculating the value is done in nextValue, which you can try to figure out in
your spare time, but it’s not important to understand it for our purposes.
That’s the stuff we refer to as “implementation details.”

Thinking back on what we’ve seen, and thinking in terms of what we need
for the UI, the methods that we potentially need from Random are:

• Class methods

• new - to get a random number generator object.

• Instance methods

• next - to get the next value from the generator.

• seed: - to set the seed value for the generator.

Let’s quickly look at how the messages work, and what they return,
before continuing to work on our application itself. To do this, we use the
VisualWorks Workspace, a tool we haven’t explored yet. Open a
workspace by clicking on the icon in the Visual Launcher that looks like a
pad of paper, or by selecting Tools > Workspace. The workspace opens
looking like a blank window. You can drag its corners to a size more to
your liking. You can resize it whenever necessary.
46 VisualWorks

The Random Class - Domain Models
The workspace is where you can do free-form evaluation of Smalltalk
expressions. It’s a good place for testing, to make sure you know how a
message works and what it returns.

Try this. In the workspace, type:

Random new next
Click on the expression, so the cursor is somewhere on it. Right-click in
the workspace to open its <Operate> menu, and select Print it (there’s
also a button for this). A floating point number (a Double, or double-
precision real, to be doubly precise) is displayed immediately following
the expression. This is the first random number in the sequence
generated by the default generator. For comparison, select just the
Random new part, and do Print it. All it says this time is “ a
LaggedFibonacciRandom.” Remember, that’s the default generator.

Sometimes you just need to perform an action, without seeing the result
in this window. Select the whole expression again, and select Do it from
the <Operate> menu (or the corresponding button). Nothing is displayed,
but it does the same thing. Now try this, type into the workspace:

Transcript show: (Random new next) printString
and evaluate it with Do it. There’s no response in the workspace, but a
number is shown in the Transcript, the text window part of the Visual
Launcher.

Here’s another useful trick for learning your way around objects. If you
can get an object, you can inspect it. Select Random new and select
Inspect it on the <Operate> menu. The window that opens is an inspector
on the instance of Random:

Workspace

The <Operate>
menu for a work-
space has normal
editor commands,
plus:

Do it, to evaluate an
expression silently.

Print it, to evaluate
an express and print
the return value.

Inspect, to open an
inspector on the
return value of the
expression.
Walk Through 47

Building GUI Application
Selecting self just shows a LaggedFibonacciRandom, like you saw in the
workspace. The other items are its instance variables. While an object is
alive, you can watch these values change. There is no instance variable
for the current, or next, value, since it is calculated from the seed based
on an algorithm embedded in the code. You can study the code sometime
to tease it out, but it is an “implementation detail” and so will seldom, if
ever, be discussed.

We can return now to our application itself, and finish this up.

Putting the GUI and the Model Together
We’ve built our GUI and explored the model that will be used to provide
values to the GUI upon request. Now we just need to put them together to
finish our application.

We’ve already seen that we can already open our application; it just
doesn’t do anything. Because it’s a subclass of ApplicationModel, it
responds to the open class method. So, you can enter this in a workspace
and evaluate it with Do it:

RandomNumberPicker open
48 VisualWorks

Putting the GUI and the Model Together
The application opens looking like this:

This does exactly the same thing as clicking the Open button in the GUI
Painter Tool.

As we’ve already seen, its buttons don’t do anything. We have to fix that
now. Close the application, because we’ll have to reopen it after a couple
of changes.

The first thing we need is a Random instance from which to get values. We
know how to do that in a workspace. In an application, though, we want to
make one and hold onto it. We do this by putting it in an instance variable,
which we must add. So, find RandomNumberPicker in a System Browser
(you may still have one open on it) and get the class definition itself in the
code pane. To the list of instance variable names, between the single-
quotes, add a variable, which I’ll call myRandom. Then select Accept on the
<Operate> menu. Your class definition should now be (with the change
highlighted):

Smalltalk.Tutorial defineClass: #RandomNumberPicker
superclass: #{UI.ApplicationModel}
indexedType: #none
private: false
instanceVariableNames: 'currentRandomValue seed myRandom '
classInstanceVariableNames: ''
imports: ''
category: 'UIApplications-New'

The VisualWorks application framework gives us an easy way to initialize
myRandom when the application opens. In the early stages, right after
creating the instance, it invokes the object’s initialize method, if one exists.
This is where you typically set such variables.

initialize Method

As soon as an
object is created, its
initialize instance
method is evalu-
ated. This is the
method used to set
instance variable
values early. You
also use it to set up
dependencies
between widgets, if
necessary (see the
Application Devel-
oper’s Guide for
information).
Walk Through 49

Building GUI Application
In the System Browser focused on RandomNumberPicker, make sure you’re
looking at the instance side (click on the Instance tab). In the method
category pane, open its <Operate> menu and select New... to add a new
category:

The traditional category for the initialize method is initialize-release. No point
in breaking tradition now, so enter initialize-release in the prompter and
click OK. This is another one of those helpful dialogs that makes
recommendations once you start typing.

Select the new method category, and a method definition template is
shown. Replace the method definition template with this:

initialize
"Create the initial random number generator for this application"

myRandom := Random new.
No surprises here, I hope. Smalltalk uses := to assign a value to a
variable. As soon as the application opens, it grabs a new instance of
Random and holds it captive as myRandom. Select Accept on the <Operate>
menu to save the code.

Now select the actions category and look at the nextRandom method. We
need to make the button do something. This is deceptively easy, because
the application framework does so much for us.
50 VisualWorks

Putting the GUI and the Model Together
You can guess that when the user clicks the Next button we will want to
send the message myRandom next. But, what shall we do with it? Display
the new value, of course. To do so we need to put the value in
currentRandomValue and make it display. We could do the value
assignment this way:

currentRandomValue := myRandom next
We’d need a way to update the display, then. That can be done, but
instead we’ll use the cool feature of value holders mentioned on page 39,
and both set the value and update the display with a single message,
value:. So, we shall write the next method like this:

nextRandom
"Update the current random display when the Next button is clicked"

currentRandomValue value: myRandom next
Select Accept on the <Operate> menu to save the code.

Now, launch the application again and see if anything has changed. (If
you still have the canvas open, click Open on the UI Paintr Tool; otherwise,
use the workspace expression RandomNumberPicker open.) Try clicking the
Next button. Anything happen? It should now show a new number. Click it
a bunch of times and watch it change.

Don’t close the application this time, because we’re going to see the
dynamic update feature of Smalltalk. Click the Reset button to verify that it
does nothing at this point. We’re going to fix that right now.

The Reset button is similarly straightforward. Select the resetSequence
method, and replace its stub code with:

resetSequence
"Start a new Random"

myRandom := Random new.
currentRandomValue value: 0.
Walk Through 51

Building GUI Application
and Accept the change. Now click the Reset button. Everything goes back
to the start. Click the buttons, just to make sure everything’s working.

You know enough to understand what’s going on in this method. Reset
just creates a new instance of Random, starting a new sequence, and
resets currentRandomValue to 0, using the value: message so the display is
updated.

Pretty slick, huh? And we didn’t even have to restart the application. This
is a feature of Smalltalk that developers love. No need to write code,
recompile the code, and relaunch the application for testing, in a
seemingly unending cycle. The exception earlier, when we had to
relaunch, was because we added that instance variable.

Save your image, and take a deep breath.

We’re almost done. We aren’t doing anything with the seed yet, but now
we will.

Using the seed value
Go back to the System Browser and look again at the new method in
Random. Remember, it looked like:

new
"Answer a new random number generator."

^self defaultGeneratorClass new
Now, look more carefully at the last line. If you select it and select Print it
on the <Operate> menu, it prints a LaggedFibonacciRandom. This shows
that the result is an instance of the default generator. There are lots of
ways to generate pseudo-random numbers. The default one is specified
in Random’s initialize method.

Random also provides a method for assigning a new seed to an instance,
called seed:. The colon indicate that an argument is expected, a value that
the receiving object needs in order to provide a response to the message.
We will get the desired effect of setting the seed by simply sending this
message, with an appropriate argument, to our new instance.

Back in our UI, you can’t see any response yet, but you can click in the
Seed field and enter a number. When you then hit Enter or click one of the
buttons, the seed variable is updated with this new value, automatically.
We want to use this changed value to set the seed in our random number
generator.
52 VisualWorks

Using the seed value
What the seed value does is provide a known starting point for the
pseudo-random sequence, allowing us to repeat a given sequence of
values. The only time we want to do this is when a new Random is
created. The first time may be too early, but when the Reset button is
clicked we can use the seed value to select the sequence.

But, we don’t always want to use the seed value, because sometimes we
really want the sequence to be more arbitrary. If in the initial case it were
set to 0, we would always start with the same sequence, which we don’t
want. We want the initial series to be arbitrary, more random.

We can do this by writing the program so that if seed is 0, then the
instance of Random is created without a specified seed, but if seed is
anything else, it is created with the seed specified. Make sense? Here’s
what we’ll do.

Display the resetSequence method definition. There are a lot of ways to do
this, but replace the method’s definition with this:

resetSequence
"Start a new Random, with a specified seed if seed is not 0"

| seedValue |
seedValue := self seed value.
seedValue = 0

ifTrue: [myRandom := Random new]
ifFalse: [myRandom := Random new seed: seedValue].

currentRandomValue value: 0
You can probably figure out what’s going on in most of this based on
explanations gone before, but some deserve further comment.

Remember that seed is the variable holding the contents of the Seed input
field. While this is an instance variable, and so can be accessed directly
by the instance, instead we access it by sending the seed accessor
message to self. This can be important, especially since we used lazy
initialization, to make sure the value has been properly set, and isn’t nil. In
this case it’s not particularly important, because the seed message is sent
when the application opens, but that is not always the case. We could
have written the line:

seedValue := seed value.
While it looks like seed is holding a number, it’s really not. It’s holding a
ValueHolder. But, Random needs to perform arithmetic operations, so
needs a numeric value, not a ValueHolder. Extracting this value from a
ValueHolder is done with the value message. In order to do this only once
Walk Through 53

Building GUI Application
rather than twice in this method, I’ve added a temporary variable,
seedValue, and set it to the value of seed. That’s the first two lines of the
code section, following the comment. (See, I commented my code!)

Then, as described above, we want to split the cases where seedValue is 0
and where it is not. This is done with a conditional branch. There are a
few messages for doing this in VisualWorks. Since we need to do
something different for each case, I’ve used the ifTrue:ifFalse: message.
(You can see other such messages by browsing the Boolean class, and
they’re described in the Application Developer’s Guide.)

We start the branch by testing whether seedValue is equal to 0. That’s the
seedValue = 0 part. Pretty clear, I hope. The result of that test is either true
or false (which are instances of Boolean subclasses). If it is true, the ifTrue:
branch is followed, and myRandom gets set to Random new as before.
However, if it is false, then the ifFalse: branch is followed, and we create
the instance and send seed: to it.

By the way, the arguments to the ifTrue: and ifFalse: keywords, the
expressions enclosed in square brackets, those are called block closures,
or simply blocks. These are another powerful feature of VisualWorks,
representing a deferred sequence of actions. They are themselves
objects, instances of class BlockClosure. Blocks are required as the
arguments for some messages, such as ifTrue:ifFalse:, but have uses in a
lot of contexts. Blocks are covered in detail in the Application Developer’s
Guide.

That’s it! Once you’ve entered the method code, test the application
again. Enter a value other than 0 into the Seed field, and click Reset and
Next a few times to see that it always starts generating the sequence at
the same value. Change Seed back to 0, and click Reset and Next a few
times to see that it always starts with a different value. That’s what we
wanted.

Note that, because the seed value is only used deeply within the
calculation of the new random sequence, there is no obvious relation
between the seed and any of the resulting random numbers. For
instance, it does not specify the smallest random number. All it does is
force a repeatable sequence of numbers.

The application works! We’re done (almost). Save your image!

Control Methods

ifTrue:ifFalse, and
similar messages,
set conditions for
performing certain
operations.

Other messages,
such as while:do:,
iterate an action as
long as the condi-
tion obtains.
54 VisualWorks

Move to its own package and name space
Move to its own package and name space
We’ve mentioned name spaces earlier, but have tried to skirt the issue,
because it can be complicated. But, they are important and powerful,
something Smalltalk needed for a long time, and were finally introduced
to Smalltalk in VisualWorks 5i. The reason is that without them, shared
variable and class names can only occur once in the whole image.

If two programmers decided to create a class called Customer for their
applications, for example, and both applications were loaded into the
system, the second one loaded would stomp on the first one. This isn’t
funny, and it has happened. The work-arounds have been creative, but
name spaces are the right solution.

Name spaces form a hierarchy, starting with Root at the top, then followed
by Smalltalk, then a whole bunch of other name spaces. All Smalltalk code
should be in sub-name spaces of the Smalltalk name space. But,
remember, we didn’t do that. We just let our class and its code be created
in Smalltalk. So, let’s move it.

If you still have a browser open on RandomNumberPicker, you can use that.
Click on the Package tab to show the list of packages and bundles. If you
don’t have the browser open, open a new System Browser.
RandomNumberPicker is in the (none) pseudo-package, since we haven’t
created one for it, so make sure it is selected. Only RandomNumberPicker
is in that package right now.

Let’s put it in its own package, say, Tutorial–WalkThru. Make sure you
don’t have a bundle selected (selecting (none) will ensure that), then pick
Package > New Package.... In the prompter, which should look familiar by
now, enter Tutorial-WalkThru, and click OK. The package is added to the
package list and selected. If (none) was selected, it still is, so it looks like
RandomNumberPicker class definition is already in it. But, it’s not. We have
to move it.

With (none) selected, select RandomNumberPicker in the class list.
Then, select Class > Move All to Package.... In the dialog, another one of
those helpful selection dialogs, start typing Tutorial-WalkThru. Select it and
click OK. You can now verify that the class and its methods are in the
Tutorial-WalkThru package, and not in (none).

Creating and moving our class to its own name space is similar. Select
Tutorial-WalkThru (the package) again, and select Class > New > Namespace....
The name space creation dialog opens.
Walk Through 55

Building GUI Application
The marker indicates that we need to enter a name, so enter WalkThru.
Notice that is already has our package name. The name space will be
created in the package (it’s a real object, so its definition has to go
somewhere). It also shows that our name space will be in the Smalltalk
namespace, so WalkThru will be a sub-name space of Smalltalk.

The Private checkbox indicates whether other name spaces will have
access to your definitions. You want them too, usually, so leave this
unchecked.

The Imports field specifies classes, other name spaces, and shared
variables) that are defined in other name spaces and that you want to
refer to without identifying their name space explicitly every time. Initially
it includes private Smalltalk.*. We don’t need it for this project (though we
did in earlier versions of VisualWorks), so let’s remove this. Select the text
and delete it.
56 VisualWorks

A word about name spaces
Click OK to save this definition. The dialog closes, and you are returned to
the browser. The name space has been added to the package and
selected, so you can see its actual definition in the code pane:

Now, we just need to move our RandomNumberPicker class to our name
space. Select RandomNumberPicker in the class/name space list. Then,
select the Class > Move > to Name Space... menu command (or Move > to Name
Space... in the <Operate> menu). A dialog opens listing the available
name space.

Select our name space, WalkThru, and click OK. The dialog closes, and the
deed is done. See in the class definition, the first line now says that it is in
Smalltalk.WalkThru.

A word about name spaces
At this point, in previous version of VisualWorks, if you tried to run the
application now, you would have gotten an error. That’s because, after
moving RandomNumberPicker to our own name space, it was looking for
Random in the wrong name space.

The Move to namespace trick now does the right thing, which ruins a good
chance to look at the Debugger. But, that’s a good thing. For the time
being, to learn about the Debugger, refer to the Applicaiton Developer’s
Guide.
Walk Through 57

Building GUI Application
But, we can still talk about name spaces a little bit. Recall (or look back
and see) that when we first wrote the initialize method, we wrote it as

initialize
"Create the initial random number generator for this application"

myRandom := Random new.
But, if you look at it now, it is

initialize
"Create the initial random number generator for this application"

myRandom := Smalltalk.Random new.
The reference to Random now includes its namespace as a prefix. If you
delete the prefix and attempt to save the change, the compiler will
complain that it doesn’t know the variable Random, and give several
options to resolve the reference.

The Smalltalk. prefix is one way to resolve the reference. A somewhat
more specific reference would be obtained by specifying Core. or
Smalltalk.Core. as the prefix, Core being the immediate namespace in
which Random is defined. Specifying just Smalltalk. is enough because it
already imports, and so includes, the contents of other system name
spaces, including Core.

Notice that the same prefix trick is used in our resetSequence method.

If we were writing all these methods by hand, it would become tedious,
and easy to make mistakes by leaving off the name space prefix. But,
there is a more general solution we could use. We can import Random into
RandomNumberPicker’s name space, which is the WalkThru name space.

Go back to the System Browser, and find and select the WalkThru name
space. Remember, the definition looks like this:

Smalltalk defineNameSpace: #WalkThru
private: false
imports: ''
category: 'Tutorial-WalkThru'

The imports: line corresponds to the Imports field in the creation dialog,
which I told you to leave empty. That’s where we’re going to tell
RandomNumberPicker where to find Random.

It would be enough to change the line to:

imports: ‘Core.Random’
58 VisualWorks

Comment your code!
You can add that, save, and run the application to make sure. But,
instead, we’re going to put back line we removed. Change the definition
so it reads:

Smalltalk defineNameSpace: #WalkThru
private: false
imports: 'private Smalltalk.*'
category: 'Tutorial-WalkThru'

and accept the change (Ctrl-S). Make sure you include the period and the
asterisk, because they are essential. By a little bit of magic, which
happens to be fully explained in the Application Developer’s Guide, this
imports all of the classes in the Smalltalk system, including Random.

Now you can go back to the initialize and resetSequence methods,
remove the Smalltalk. prefix from the references to Random, and the
methods will save without complaint.

You can also open and run the application just like before. One more
time, save your image.

Comment your code!
We’ve been ignoring this little detail. Everyone does. No one should.

But, you’ve probably noticed the small, yellow “caution” sign icon next to
the class name and on Comment tab in the browser. Sure you have, don’t
deny it. That’s a reminder that we haven’t written a comment for our class
or our namespace. This is easy to fix.

Select the class and click the Comment tab. There’s a dummy message
there saying the class hasn’t been commented. But, we knew that.

Replace the text with something descriptive, like:

RandomNumberPicker is a UI for Random, which allows specifying a seed
value, and then displays successive random values.

Instance Variables:
currentRandomValue <ValueModel> the current random number
myRandom <Stream> an instance of Random
seed <ValueModel> a seed value

Accept the changes as usual, and the tab label turns black.

Do the same for the name space. Just something simple like “Name
space for RandomNumberPicker of the WalkThrough.”

There! Guilt assuaged.
Walk Through 59

Building GUI Application
Packaging it up
OK, now you have this absolutely wonderful application that you want to
share with all your friends, or sell for the big bucks. How do you do that? It
can be quite a long story, but here’s a short version of it.

Remember that at the beginning of all this we loaded a parcel to get the
UI Painter into the system. At that time I mentioned that a parcel is an
external program module. It is useful for storing our program for loading
into another image, for archiving, and for distributing to friends or
customers. (When such a module contains a well-defined set of
functionality, it is often called a component.)

We can now make our own parcel. We won’t need to keep our WalkThru
image, which is big, but just the parcel. We can then load our application
when we want to use it or change it. Or, email it to friends to load into
their VisualWorks image.

This is pretty easy. Open a System Browser, or use one that is already
open, and select our Tutorial-WalkThru package. The browser looks like this:
60 VisualWorks

Packaging it up
Select Package > Publish as Parcel (also on the package <Operate> menu).
The publishing dialog opens.

There’s really not much for us to do here. The parcel name is already
entered in the Parcel Path: field. (A parcel path can include directory
information, but the name is enough for now.) There’s no need to change
any of the checkbox items, which are described on the dialog’s Help
screen (click Help if you want to read about them).

So, just click Publish. The system does its thing and closes the dialog.

Now find the image directory, which is usually the default parcel path
directory. If you started VisualWorks with a different default directory, you
might have to look around a bit. There should be two files:
Tutorial-WalkThru.pcl and Tutorial-WalkThru.pst. Copy
these to a safe place.

One more thing. The package is uncommented. Give it a comment, like
“This package contains RandomNumberPicker, the application model
developed in the VisualWorks Walk Through, and the WalkThru name
space required by the final example.”
Walk Through 61

Building GUI Application
That’s it. We’re done with this application. For help loading this parcel in
another image, refer to the Application Developer’s Guide. You can also
package things up as an executable, as we did for the Hello World!
program, though things are a bit different with a parcel.

But, you’re only starting with VisualWorks and Smalltalk. Read the
documentation. Browse the class library. Build an application of your own.
In a word, keep playing with VisualWorks. There’s a lot more to discover.

Where from here?
You are only limited by your imagination. This walk-through has only
given you a taste of VisualWorks, and given you some ideas about how to
work with it. It’s time to dream.

The best way to move on is to experiment. Browse the VisualWorks
classes, and think of a way to use them. Refer to the documentation for
hints and suggestions when you can’t figure them out.

Contact other Smalltalkers. For example, subscribe to the internet
newsgroup comp.lang.smalltalk.

Read. There are lots of books on Smalltalk and Object Oriented
programming.

And, play! Life’s short. Enjoy yourself.
62 VisualWorks

	Contents
	Preface
	A Walk-Through of VisualWorks
	In the beginning...
	Make a working image
	What’s Next?

	Hello World
	Writing the Program
	Save the Image
	Packaging for Stand-alone Execution
	Test the Results
	Polishing Things up a Bit
	Renaming Visual Executable
	Packaging as a Single Executable
	Packaging on Windows

	What’s Next?

	Building GUI Application
	What we’re going to do...
	Build the application GUI
	An extremely brief explanation of objects
	Finishing the GUI
	Generating initial Smalltalk code
	Try it out
	Smalltalk Code: it’s time
	More Smalltalk Code - Package Browser
	The Random Class - Domain Models
	Putting the GUI and the Model Together
	Using the seed value
	Move to its own package and name space
	A word about name spaces
	Comment your code!
	Packaging it up
	Where from here?

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

