
Cincom Smalltalk™

Web Application
Developer's Guide
P46-0137-05

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

© 1995 – 2008 Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0137-05

Software Release 7.6

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, the Cincom logo and Cincom Smalltalk logo are
registered trademarks of Cincom Systems, Inc. ParcPlace and VisualWorks are
trademarks of Cincom Systems, Inc., its subsidiaries, or successors and are registered in
the United States and other countries. ObjectLens, ObjectSupport, Cincom Smalltalk,
Database Connect, DLL & C Connect, COM Connect, and StORE are trademarks of
Cincom Systems, Inc., its subsidiaries, or successors. ENVY is a registered trademark of
Object Technology International, Inc. All other products or services mentioned herein are
trademarks of their respective companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation © 1995 – 2008 by Cincom Systems, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior written consent
from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents

About This Book xi

Audience ...iii-xi
Conventions ... xii

Typographic Conventions .. xii
Special Symbols.. xii
Mouse Buttons and Menus .. xiii

Getting Help .. xiii
Commercial Licensees... xiii

Before Contacting Technical Support .. xiii
Contacting Technical Support ... xiv

Non-Commercial Licensees ... xiv
Additional Sources of Information ... xv
Online Help ... xv

News Groups ... xvi
VisualWorks Wiki ... xvi
Commercial Publications.. xvi

Examples .. iii-xvi

Chapter 1 Overview

Application Server Architecture ..1-2
Web Application Design ...1-3
Building Web Applications with Smalltalk Server Pages ..1-4
Building Web Applications with Smalltalk Servlets ...1-5
Building Web Applications with VisualWave ...1-5

Chapter 2 Web Concepts

Web Transactions ...2-2
HTTP Request ..2-3

GET versus POST ..2-3
Server Variables ...2-4
Cookies ..2-5
Web Application Developer’s Guide iii

Contents
HTTP Response ... 2-6
Response Status ... 2-6
Response Buffering ... 2-7
Cookies .. 2-7
Redirection ... 2-7
Secure Sockets .. 2-7

Chapter 3 Application Development

Application Server Parcels ... 3-1
Creating a Development Image ... 3-2
Saving the Development Image ... 3-3
Exiting the Development Image ... 3-3
Deploying Web Applications .. 3-4

Server System Requirements ... 3-4
Client System Requirements .. 3-4

Chapter 4 Server Console

Smalltalk HTTP Server .. 4-1
Using a Web Server ... 4-2

Opening the Server Console .. 4-2
Creating a New Server ... 4-3
Starting a Server ... 4-4
Testing a Server .. 4-5
Shutting Down the Server ... 4-5

Chapter 5 Web Sites

Working with Web Sites ... 5-2
Managing Web Site Configurations .. 5-2

Selecting the Default Configuration ... 5-4
Selecting the Demo Configuration ... 5-4

Viewing Site Attributes .. 5-5
Creating and Configuring a Site ... 5-5

Configuring a Site .. 5-6
Removing a Site .. 5-8

Specifying Site Attributes .. 5-8
Site Name .. 5-8
Configuration File ... 5-8
Home Directory .. 5-9
Home Page .. 5-9
Aliases ... 5-9
Namespace .. 5-10
iv VisualWorks

Registered Servlets Only ...5-10
Enable ..5-10
Password ..5-10
Debugging ..5-11
Event Callbacks ..5-11
Saving a Site Configuration ..5-11

Setting Site Debugging Options ..5-12
Managing Server Attributes ...5-13
Managing Server Logging and Sessions ..5-14

Chapter 6 Servlets

Overview ..6-2
When to Use Servlets ...6-2
Servlets, Containers, Contexts ..6-3

Servlet Basics ..6-4
Testing the VeryBasicServlet ...6-5
The Redirect Servlet ...6-5

Mapping Requests to Servlets ...6-6
Servlets Implementation ..6-7

HttpServlet ..6-7
Servlet Initialization ..6-7
Handling Requests ...6-7
Multithreading Servlets ...6-8
Ending Service ...6-9

Servlet Context ..6-10
Initialization Parameters ...6-10
Setting Context Attributes ...6-10
Accessing Resources ...6-11

Request ...6-12
Accessing Parameters ...6-12
Using Request Attributes ...6-12
Retrieving and Translating the Request Path6-13
Accessing Cookies ...6-14
Retrieving the Client’s Locale ...6-14
Secure Sockets Layer ..6-15
Accessing Headers ..6-15

Response ..6-16
Writing and Buffering Responses ...6-16
Passing Cookies to the Client ..6-17
Redirection ...6-18
Specifying Character Sets and Content Type6-19
Web Application Developer’s Guide v

Contents
Setting Language or Locale Attributes ... 6-20
Accessing Headers .. 6-21

Session ... 6-22
Establishing a Session ... 6-22
Tracking Sessions .. 6-22
Binding Session Attributes ... 6-23
Setting the Session Timeout .. 6-24
Ending a Session ... 6-24
Specifying a Locale .. 6-24
Sessions and Character Sets .. 6-25

Dispatching ... 6-26
Creating a Request Dispatcher .. 6-26
Using a Request Dispatcher .. 6-26
Including Query Strings in Dispatcher Paths 6-27

Chapter 7 Server Page Applications

Understanding Server Pages ... 7-2
Example: Server Pages ... 7-3

Testing the Example ... 7-3
VisualWorks Implementation ... 7-4

Request .. 7-5
Accessing Parameters ... 7-5
Multi-Part Forms .. 7-6
Encoding Form Data .. 7-7
Cookies .. 7-8
Server Variables .. 7-8
Retrieving the Client’s Locale .. 7-8

Response ... 7-9
Writing and Buffering Responses .. 7-9
Setting Character Sets and Content Type 7-10
Setting Language or Locale Attributes ... 7-10
Setting the Expiration Time .. 7-10
Creating and Updating Cookies ... 7-11
Testing the Client’s Connection .. 7-11
Response Status ... 7-11
Redirection ... 7-11
Controlling Caching ... 7-12
Accessing the Response Header .. 7-12
Logging .. 7-12

Application .. 7-13
Application Events ... 7-13
Parallelism ... 7-14
vi VisualWorks

Session ...7-15
Accessing Session Variables ...7-15
Specifying a Locale ..7-15
Setting the Session Timeout ..7-16
Abandoning a Session ...7-16
Obtaining the Session ID ...7-16
Session Events ...7-17

Server ..7-18
Setting the Script Timeout ..7-18
Dispatching and Transferring Execution of a Script7-18
Converting a Virtual Path ...7-19
Encoding URLs for Queries ..7-19
Encoding HTML for Page Display ..7-20

Error Handling ...7-21
Handling Exceptions in Server Pages ..7-21

Chapter 8 Server Page Syntax

Syntax ..8-2
Capitalization ...8-4
Variables ...8-4
Scripting Variables ..8-5
Comments ...8-5
Directives ..8-5

Language ...8-6
Taglib ..8-6

Predefined Scripting Actions ..8-7
Tag Attributes ..8-7
Standard Actions ...8-8

useBean ...8-8
setProperty ...8-8
getProperty ..8-9
include ..8-9
forward ...8-10
scriptlet ...8-10
expression ..8-10

An Example using JSP-style Script ...8-11

Chapter 9 Server Page Extensions

Overview ..9-2
When to Use Tag Libraries ..9-2

How Tag Libraries Work ...9-3
Tag Library Descriptor File ..9-3
Web Application Developer’s Guide vii

Contents
Tag Handlers ... 9-3
Custom Tags in Server Pages .. 9-4

Creating Tag Libraries ... 9-5
Creating a Tag Library Descriptor File .. 9-5
Creating a Tag Handler ... 9-7

Defining a Simple Tag Handler .. 9-8
Handler Properties ... 9-9
Handling Tag Attributes .. 9-9
Including the Tag Body .. 9-10
Processing the Tag Body ... 9-12
Using Nested Tags ... 9-14

Implementation of Tag and BodyTag .. 9-15

Chapter 10 Content Management

Overview .. 10-2
Resolving Web Requests .. 10-3

Associating a Site with a Domain Name ... 10-3
Creating a Site Alias ... 10-4
Creating a Virtual Directory .. 10-5

Resolving Requests to Applications .. 10-6
Logical Names .. 10-6
Smalltalk Links .. 10-7
Using Logical Names and Logical Links ... 10-8
Server-Side Includes .. 10-8

Chapter 11 Deployment

Working with Configuration Files ... 11-2
The Global Configuration File ... 11-3
Site-Specific Configuration Files ... 11-4
Configuring a Site with an Initialization File .. 11-5
Securing an Application for Deployment ... 11-7

Password-Protecting the Server .. 11-7
Disabling the Server’s Configuration Page 11-7
Setting the Server’s Default Home Page 11-7
Enabling Use of Registered Servlets ... 11-8

Configuration Errors .. 11-8
Specifying Server Attributes .. 11-9

Setting the Name of the Logfile ... 11-9
Setting the Name of the Configuration ... 11-9
Specifying Event Callbacks .. 11-9
Specifying User-Defined Parameters ... 11-10

Changing the Server’s Default Configuration ... 11-11
viii VisualWorks

Appendix A Cookies A-1
Class HTTPCookie .. A-2

Working with Cookies ... A-2
Setting a Cookie’s Expiration Time .. A-3
Setting a Cookie’s Path and Domain ... A-3
Using Cookies in Secure Communication A-4

Using Cookies with Server Pages .. A-4

Index Index-1
Web Application Developer’s Guide ix

Contents
x VisualWorks

About This Book

This guide is designed to help VisualWorks programmers create Web
applications effectively using the VisualWorks Application Server.

This book accompanies the VisualWorks Application Developer’s Guide,
providing additional information that will help you effectively use the
features of the VisualWorks Application Server.

Audience

The discussion in this book presupposes that you have at least a
moderate familiarity with object-oriented concepts and the VisualWorks
environment. It also presupposes that you have a good understanding of
the World Wide Web, web (HTTP) servers, browsers, and HTML.

For an overview of Smalltalk, the VisualWorks development environment
and its application architecture, see the VisualWorks Application
Developer’s Guide.

The Web Toolkit support for Smalltalk Server Pages assumes a level of
familiarity with server pages (ASP/JSP), and servlets.

In addition to this book, the documentation set for the VisualWorks
Application Server includes the following:

• Web GUI Developer’s Guide: Provides detailed information about
building Web applications using the VisualWorks UI Painter and
VisualWave.

• Web Server Configuration Guide: Provides more detailed information
about installing and configuring server applications, the internal
architecture of the VisualWorks Application Server, and its interface
with commercial HTTP servers.
Web Application Developer’s Guide xi

About This Book
Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Special Symbols
This book uses the following symbols to designate certain items or
relationships:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File New Indicates the name of an item (New) on a menu
(File).

<Return> key

<Select> button
<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.
xii VisualWorks

Getting Help
Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or
combinations:

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>
Web Application Developer’s Guide xiii

mailto:supportweb@cincom.com

About This Book
• The version id, which indicates the version of the product you are
using. Choose Help About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to:

supportweb@cincom.com.
Web

In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com
Telephone

Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.

Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:
xiv VisualWorks

mailto:supportweb@cincom.com
http://supportweb.cincom.com

Additional Sources of Information
• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu
with the SUBJECT of "subscribe" or "unsubscribe".

• An excellent Smalltalk archive is maintained by faculty and students
at UIUC, who are long-time Smalltalk users and leading lights in the
Smalltalk community, at:

http://st-www.cs.uiuc.edu/
• A Wiki (a user-editable web site) for discussing any and all things

VisualWorks related at:

http://wiki.cs.uiuc.edu/VisualWorks
• A variety of tutorials and other materials specifically on VisualWorks

at:

http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincom.com/smalltalk/documentation
is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.

Online Help
VisualWorks includes an online help system.

To display the online documentation browser, open the Help pull-down
menu from the VisualWorks main menu bar and select one of the help
options.
Web Application Developer’s Guide xv

mailto:vwnc-request@cs.uiuc.edu
http://st-www.cs.uiuc.edu/
http://wiki.cs.uiuc.edu/VisualWorks
http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
news:comp.lang.smalltalk
http://www.cincom.com/smalltalk/documentation

About This Book
News Groups
The Smalltalk community is actively present on the internet, and willing to
offer helpful advice. A common meeting place is the comp.lang.smalltalk
news group. Discussion of VisualWorks and solutions to programming
issues are common.

VisualWorks Wiki
A wiki server for VisualWorks is running and can be accessed at:

http://brain.cs.uiuc.edu:8080/VisualWorks.1
This is becoming an active place for exchanges of information about
VisualWorks. You can ask questions and, in most cases, get a reply in a
couple of days.

Commercial Publications
Smalltalk in general, and VisualWorks in particular, is supported by a
large library of documents published by major publishing houses. Check
your favorite technical bookstore or online book seller.

Examples
There are a number of examples in file-in format in the examples
subdirectory, under the VisualWorks install directory.

Web Toolkit examples are located in the \web\examples subdirectory.
xvi VisualWorks

http://brain.cs.uiuc.edu:8080/VisualWorks.1

1
Overview

The VisualWorks Application Server is a full-featured environment for
creating and maintaining Web business applications using VisualWorks.
A flexibile, scalable architecture provides support for industry standard
Web technologies, and three distinct application frameworks: Smalltalk
Server Pages, Servlets, and VisualWave.

Web applications can be built either using the VisualWorks IDE, or by
using commercial Web design tools such as Macromedia Dreamweaver.
The VisualWorks Application Server provides an open development
model that accommodates either strategy, or a combination of both.

Many existing VisualWorks applications can run as VisualWave
applications, though typically some modifications are required to optimize
the application for the Web.

This chapter describes:

• Application Server Architecture

• Web Application Design

• Building Web Applications with Smalltalk Server Pages

• Building Web Applications with Smalltalk Servlets

• Building Web Applications with VisualWave
Web Application Developer’s Guide 1-1

Overview
Application Server Architecture
Architecturelly, the VisualWorks Application Server is an add-on to the
VisualWorks development environment. By building on VisualWorks’
platform portability, the Application Server makes it easy to develop
cross-platform, cross-browser Web applications.

VisualWorks Application Server supports the following:

• Static and dynamic HTML pages

• Smalltalk Server pages (ASP version 3.0 or JSP version 1.1)

• Servlets (Java specification version 2.2)

• Content management

• Security framework (HTTPS)

• CGI, ISAPI, FastCGI

• XML

• Database connects (Oracle, SQL, ODBC)

• Server administration tools

Web applications can be designed using either a formal approach that
separates the development of presentation from domain logic, as well as
a rapid-prototyping approach that begins directly with the business logic.

The VisualWorks Web Toolkit provides an application model well-suited
for projects in which the visual layout of the application is created by page
designers or marketing groups, while the domain logic is authored by
programmers.

Content management features add support for associating domains with
Web applications, performing URL aliasing, logical naming of application
resources, and server-side includes. Server page and servlet protocol is
extended for more flexibility when generating dynamic content.
1-2 VisualWorks

Web Application Design
Web Application Design
From the client's perspective, a Web application is a collection of pages.
The content of these pages may be static or dynamic, the difference
being that a dynamic page contains content generated by the Web server
each time the client requests the page.

The mechanism for producing the dynamic content of any given page
depends upon the server technology that is used. Dynamic pages may be
generated from HTML templates (using server pages that contain script),
or they may be generated programmatically by components of the
application (using servlets or VisualWave).

VisualWorks Application Server provides three distinct server
technologies: Smalltalk Server Pages (SSP), servlets, and VisualWave.
For maxiumum flexibility, the Application Server can simultaneously host
a number of different types of applications, each being constructed with
any combination of server pages, servlets, or VisualWave.

When starting to design your Web application, it may be helpful to begin
by identifying the type of server technology that best meets your
requirements. Some criteria include:

• Whether the bulk of your site design is done commercial page
applications (e.g., Macromedia Dreamweaver)

• Whether your application requires extensive manipulation of form
data

• Whether you are converting an existing VisualWorks application into
a VisualWave application

As a general guideline, applications built with commercial page design
software are best implemented using server pages. This approach is
most familiar to web designers. If the application makes extensive use of
dynamic form data (results from database queries, for example), then an
implementation using server pages and servlets may be better suited.

When converting an existing VisualWorks application, you may rapidly
prototype a Web version using VisualWave. For applications that do not
require dynamic page data or precise control over graphical presentation,
conversion using VisualWave can save time.

Once you have selected an appropriate server technology, you use the
corresponding server behavior to help structure your application logic.
Each server technology supported by the Application Server comes with
an ensemble of classes for creating an application model.
Web Application Developer’s Guide 1-3

Overview
Building Web Applications with Smalltalk Server Pages
In an application that uses Smalltalk Server Pages, both static and
dynamic pages are represented as HTML files, and both can contain
client-side scripts (e.g., JavaScript) that are evaluated by the client's
browser. The dynamic pages contain scripts or simple classes written in
Smalltalk that are evaluated by the VisualWorks Application Server.

VisualWorks Application Server evaluates server pages using the familiar
model: when the client requests a server page, the application server
loads the HTML page, treating it as a template for an embedded script
written in Smalltalk. The Smalltalk expressions embedded in the page are
evaluated by the server, and the results are merged into the stream of
HTML sent to the client. The template provides a simple way to combine
dynamic content with static HTML.

The process of developing a Web application can be greatly simplified by
designing with server pages, which provide a general framework for
presenting a complex application model to the client while separating the
application logic from the page design. The application logic that appears
in the page is minimal.

Architecturally, Smalltalk server pages are composed of two elements:
a scripting language and an application model.

The scripting language is Smalltalk, which gives your application full
access to business logic that uses the Smalltalk class library, language
features such as name spaces, and database and DLL access via add-
ons. Syntactically, server page scripts may be viewed as a simple
extension of HTML. For a complete discussion of how server pages are
embedded in HTML, see “Server Page Syntax” on page 8-1.

The application model may follow either that of ASP or JSP. For a
complete description, see “Server Page Applications” on page 7-1.
1-4 VisualWorks

Building Web Applications with Smalltalk Servlets
Building Web Applications with Smalltalk Servlets
Servlets are a component framework for processing HTML directly within
the Web application. They use a request/response application model
similar to that of a CGI, though they offer distinct advantages over CGIs in
terms of performance, security, and reliability.

In most respects, servlets offer nearly identical functionality to server
pages. Both provide session and application (context) variables,
transparent session tracking, security, and direct use of the Smalltalk
class library.

Servlets are well-suited for use in conjunction with server pages, as they
provide a better model for concurrency and transaction handling.
A common way to organize an application is to divide the presentation
components from the components that actually connect to the application
model, using redirection to pass requests from the first to the second.
The presentation components are then implemented with server pages,
while servlets are used to connect to the application model.

For a complete discussion, see “Servlets” on page 6-1.

Building Web Applications with VisualWave
You build a Web application with VisualWave the same way that you build
an application with VisualWorks:

• Design the application using an object-oriented architecture.

• Create or adapt classes that define the data and behavior of the
application objects.

• Create the user interface using the UI Painter and related editor tools.

• Build the application domain model and the application model (or
controller), you create classes and method definitions in Smalltalk
code.

For a complete discussion of building applications for VisualWave, see
the VisualWorks Web GUI Developer’s Guide.
Web Application Developer’s Guide 1-5

Overview

1-6 VisualWorks

2
Web Concepts

Web applications primarily use HTTP to communicate between client and
server. Regardless of whether a particular application makes use of static
or dynamic pages, client- or server-side scripting, it uses features of
HTTP to structure all interactions between client and server.

Since the requirements for client- and server-side application
development differ, the following chapter reviews basic Web concepts, but
with an emphasis placed upon the features of HTTP most often used
when developing server-based applications.

If you are familiar with the basic concepts of server-based applications
(HTTP transactions, GET vs. POST, Cookies, etc.), you may wish to skip
ahead to the following chapters.

Additional information about HTTP can be found here:

• Hypertext Transfer Protocol -- HTTP 1.0
http://www.ietf.org/rfc/rfc1945.txt

• Hypertext Transfer Protocol -- HTTP 1.1
http://www.ietf.org/rfc/rfc2616.txt
Web Application Developer’s Guide 2-1

http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc2616.txt

Web Concepts
Web Transactions
The basic structure of a Web application model can be understood by
briefly looking at the request-response form of an HTTP transaction.

An HTTP transaction begins when a client opens a stream connection to
a server and then sends a request message. The server replies with a
response message, and then generally closes the connection. Since the
connection is typically opened and then closed for each transaction,
HTTP is often described as a stateless protocol.

Although HTTP/1.1 allows clients to hold an open connection, the Web
transaction model does not generally use it to maintain state.

There are a number of different HTTP request types, although typically a
request is either for a resource (a resource being a file, a graphic image,
or some kind of document), or else a request that the server accept data
from the client. In both cases, the client’s request includes a uniform
resource identifier (URI) to specify the resource to retrieve or accept.

On the server side, the HTTP stream is first converted into request
message objects. The server may host a number of different Web
applications, but it resolves the request to just one of them. If the request
is simply for a resource contained in a file, the Web application may not
be involved at all. If the request is for dynamically-generated data, then
the Web application handles the request.

If the Web application completes the requested activity, it prepares a
response object to be returned to the client. The transaction is complete
when the application satisfies the request and the server sends the
response to the client.

Response

Request
Client Application Server Application

Client Session

“GET /index.htm HTTP/1.0”

“HTTP/1.0 200 OK”
2-2 VisualWorks

Web Transactions
HTTP Request
The VisualWorks Application Server resolves incoming requests to files,
server pages, servlets, or directly to Smalltalk methods. If the request is
for a resource located in a file, the server simply returns the named
resource to the client. If, on the other hand, the request requires dynamic
activity on the part of the server, it converts the HTTP message into a
new request object which is then passed to the Web application.

Request objects may contain parameter and query data, cookies, x.509
certificate fields, or CGI environment variables (a.k.a. server variables).

GET versus POST
HTTP/1.1 defines a number of different request methods, though in
practice, only two of them are commonly used: GET and POST:

In general, the client sends GET as a simple resource request (the
resource may be a file, an image, or the output of a script) while POST is
used to pass parameter data, usually from an HTML form object. It
should be noted, though, that a GET message may also be used to pass
a limited amount of parameter data.

If the resource is available, the server will respond with an OK, returning
the contents of the resource in the message body. If the resource doesn’t
exist, the server will respond with a Not Found error. For details on
response types, see “Response Status” on page 2-6.

All HTTP messages have the same general form: all contain a header
and a body section (HTTP message headers are specified by RFC-822).
Since the parameter data passed with HTTP messages may be located
in either the header or the body, the VisualWorks Web request classes
provide methods to access both parts of an HTTP message.

When the client passes parameters in a request message, the actual
parameter data will be located either in the message body (in the case of
a POST message) or else in the message header (in the case of a GET
message). The principal difference between these two message types is
that POST may pass parameters in the message body while GET may not.

As a rule, there should be no active code in a page that is invoked by
GET, e.g., a GET should not cause some change to a database. When
committing any sort of transaction between the client and the Web
application, by convention a POST message is used.

When a client passes parameters using GET, the request is often referred
to as a query, and when the parameters are passed using POST, they are
often referred to as form data.
Web Application Developer’s Guide 2-3

Web Concepts
Server Variables
Each HTTP request is also associated with a collection of server
environment variables containing details available to the Web application.

Server variables represent a combination of information sent by the client
and information supplied by the Web server. Not all of these variables are
available, depending on the server and gateway in use.

The following table shows the available server variables:

Code Description

AUTH_TYPE Protocol used to authenticate the user, e.g.,
NTLM or BASIC.

CONTENT_LENGTH Length of the content portion of a client request.

CONTENT_TYPE Data type of the client request,
e.g. application/x-www-form.

DOCUMENT_ROOT Path to the root data directory relative to the
system root.

GATEWAY_INTERFACE Revision of the CGI specification to which this
server complies; format: CGI/revision.

HTTP_ACCEPT MIME types that the client accepts, for example:
image/jpeg, */*; format: type/subtype

HTTP_HOST Contents of "Host:" header supplied by the client.

HTTP_REFERER URL of the page containing the link that was
referenced to arrive at the current page.

HTTP_USER_AGENT String describing the client’s browser; format:
software/version library/version.

PATH_INFO Virtual path of the script being executed, e.g.,
/MyApp/Search.ssp.

PATH_TRANSLATED Physical path of the script being executed, e.g.,
C:\MyAppServer\www\Search.ssp.

QUERY_STRING String used for queries — all that follows the ‘?’
character in the URL.

REMOTE_ADDR IP address of the client’s machine.

REMOTE_HOST DNS name of the client’s machine (if available).

REQUEST_METHOD HTTP method used for the request, e.g., GET,
POST, etc.

SCRIPT_NAME Virtual path of the script being executed.

SERVER_NAME DNS name of alias of the server machine.
2-4 VisualWorks

Web Transactions
Cookies
Cookies allow Web applications to store small pieces of information on a
client’s machine, and to access this persistent state across web sessions.
This mechanism enables application developers to recover state
information each time a client visits a particular page, greatly simplifying
the task of working with a stateless protocol like HTTP.

When the client requests a particular Web page, the browser uses the
URL or domain of the request to look up any associated cookies saved
on the client’s machine. If cookies are found that belong to the page, the
browser attaches them to the message header of the HTTP request.

Web applications may likewise attach cookies to HTTP responses, and
these are in turn saved by the client’s machine when the browser
receives the response. Future requests to the same page will include
these cookies.

SERVER_PORT Post number receiving the request.

SERVER_PROTOCOL Name and revision number of the request
protocol, e.g., HTTP/1.1.

SERVER_SOFTWARE Name and version of the server software that
responds to the request; format: name/version.

Code Description
Web Application Developer’s Guide 2-5

Web Concepts
HTTP Response
Each time the client initiates a transaction, the Web server invokes the
application logic with a single request object and a single response
object.

A response object represents an HTTP response message sent from the
Web application to the client.

Like HTTP requests, a response message consists of several parts: a
status code, header information specifying the content’s data type, page
content (the response body), and cookies. Web applications can access
each part of the response object.

The Web application framework also provides protocol for controlling how
a response is buffered, whether or not it has an expiration time, and
whether it may be cached by proxy servers.

Response Status
Each HTTP response starts with a three-digit general status string passed
to the client’s browser. This status string may be specified by the server
and/or the Web application, e.g.:

200 OK
...
404 The requested page could not be found.

The first digit of the status string indicates the category of the response.
The codes used in HTTP 1.1 are summarized in the following table (see
RFC 2616 for a complete description of the codes in each category):

Code Category Description

1xx Informational Information only — request processing in
progress.

2xx Success The request was received, understood, and
accepted.

3xx Redirection The request is incomplete because a
redirection is in progress; this range is used
to indicate pages that have been moved to
another URL.

4xx Client Error The request contains bad syntax or
otherwise cannot be fulfilled.

5xx Server Error The server encountered a runtime error
(anomaly or insufficient resources to fulfill
the request).
2-6 VisualWorks

Web Transactions
Response Buffering
As the Web application assembles the content of a response, the
Application server can either store it in a buffer, or else send each
element to the client as it is passed to the HTTP output stream.

When responses are unbuffered, the HTTP connection remains open and
client’s browser receives the unbuffered stream as it is being assembled
by your application.

Depending upon the requirements of the Web application, it may be
preferable to disable output buffering.

Cookies
Just as the request object provides protocol for accessing the value of
cookies stored on the client machine, the response object provides
protocol for assigning values to cookies held by the client. When the
client’s browser receives a response message containing cookies, it will
create new cookies or update existing ones to reflect the values of any
cookies passed in the message.

Redirection
Web applications may perform two types of redirection on requests:
client- or server-side.

In a client-side redirection, the server returns an HTTP response
message with a special status code that directs the client’s browser to
another URL.

The redirection may be to a full URL (e.g., http://mycorp.com/index.html), a
relative URL (alias), or to a file stored in the same directory on the server.
If any page content has been written to the response object, the client’s
browser may display it while the redirection is in progress.

The second type of redirection happens within the server. In this case,
the Web application redirects the flow of control from one servlet or
server page to another. A server-side redirect is completely invisible to
the client. This is typically referred to as a “forward”, “include”, or
“transfer” operation.

Secure Sockets
To support HTTP transactions via the Secure Sockets Layer (SSL), client
certificates are used to communicate the X.509 certificate information for
each request. This is generally handled by the front-end Web server.

For details on working with SSL, refer to the VisualWorks Server
Configuration Guide.
Web Application Developer’s Guide 2-7

Web Concepts

2-8 VisualWorks

3
Application Development

To begin developing a Web application, you must first create a
development image by loading the Application Server parcels into the
VisualWorks environment.

Complete details on working with image files and loading parcels can be
found in the VisualWorks Application Developer’s Guide.

Application Server Parcels
The VisualWorks Application Server is contained in a set of parcels. To
develop Web applications, you must load one or more of these parcels.

The main parcels, which are contained in the /web, /wavedev, and
/waveserver directories of the VisualWorks distribution, are:

When beginning development of a Web application, generally you will
start with either the VisualWave or the WebToolkit parcel.

VisualWave Support for VisualWave applications

WaveLoad-Server Load-balancer component for the Server

WaveLoad-Client Load-balancer component for secondary servers

WebToolkit Support for Smalltalk server pages and servlets
Web Application Developer’s Guide 3-1

Application Development
Creating a Development Image
To load the Application Server into the VisualWorks environment:

1 Open the Parcel Manager by selecting System Parcel Manager in the
Launcher window.

2 Select the category Application Server on the Suggestions tab.

A list of the Application Server parcels appears on the left:

3 Select the VisualWave parcel and select Load from the <Operate>
menu. If you wish to use the features of the Web Toolkit (i.e., server
pages or servlets), select and load the Web Toolkit parcel instead.

4 VisualWorks loads the chosen parcel and any prerequisites, showing
its progress in the Transcript window.

The Application Server is now loaded and ready for use.
3-2 VisualWorks

Saving the Development Image
Saving the Development Image
To save an image containing the Application Server:

1 In the VisualWorks Launcher window, choose File Save Image As...

A dialog box prompts you with the name of the current image.

2 Enter a name for the image, and click on OK.

You can use the current image name, and overwrite the current
image file, or enter another name. Do not include the .im file
extension.VisualWorks does not create a directory for you.

Caution: If you save an image using the same name as that of the
standard image, make sure that you can restore the original image
shipped with VisualWorks, if needed.

A new image file has been created.

Saving the image also saves any servers you create, and any
applications you load.

Exiting the Development Image
To exit the development environment:

• In the Launcher Window, choose File Exit VisualWorks...

When exiting, you are given an option to save before exiting. This allows
you to save the server environment image, as described above. Any
unsaved changes to the server environment or servers are lost.

Exiting the server environment renders all of the servers in that
environment unavailable.
Web Application Developer’s Guide 3-3

Application Development
Deploying Web Applications
You deploy a VisualWorks Web application the same way you deploy a
VisualWorks desktop application: by delivering an image or any number
of parcels. For applications built with server pages or static HTML, all
content files are typically located in one or two directories.

For a Web application, a deployment image may be created by stripping
the image using the Runtime Packager. A headless configuration is also
available. Note that while previous versions of the Application Server
used the ImageMaker to create deployment images, in VisualWorks 5i
this was superseded by the Runtime Packager.

Deploying Web applications is described in more detail in the
VisualWorks Web Server Configuration Guide. Parcels, the Runtime
Packager, and strategies for deploying screen-oriented applications are
described in detail in the VisualWorks Application Developer’s Guide.

Server System Requirements
In addition to an image configured for the VisualWorks Server,
applications require:

• An HTTP (Web) server.

• For development, you can use the Smalltalk HTTP Server
provided with the Application Server.

• For production use, you may also use a commercial HTTP server
in combination with VisualWorks Server. For more information,
see the VisualWorks Web Server Configuration Guide.

• The VisualWorks object engine and associated files.

For hardware requirements, refer to the VisualWorks Release Notes.

Client System Requirements
Clients need a Web browser and the URL to reach your application. The
URLs used during development typically have this form:

http://host.domain:port/pathPrefix/path
For example, the following URL starts the Examples.CheckbookInterface
application using the Smalltalk server that is at localhost:8008:

http://localhost:8008/launch/Examples.CheckbookInterface
If you are using an External Web server, the URL will be different. For
details, see the VisualWorks Web Server Configuration Guide.
3-4 VisualWorks

4
Server Console

The Server Console is the tool you use to manage the HTTP servers and
server applications running within the VisualWorks Application Server
image. It enables you to manage and monitor all communication between
the Application Server and the Internet.

VisualWorks Application Server includes a personal HTTP server, the
Smalltalk HTTP Server, which you can use for developing and deploying
server applications. As a web server, it listens for requests from a web
browser, manages a session with the requested server application, and
returns the response to the web browser.

For deployed applications, VisualWorks Application Server includes
special features for working with high-performance, commercial web
servers.

Smalltalk HTTP Server
The Smalltalk HTTP Server runs within your image and eliminates the
need for a commercial web server and CGI script. When you use the
personal HTTP server, the client’s web browser is directed to the
application in your image via a specially-coded URL.

The Smalltalk HTTP Server has two limitations:

• It does not automatically serve documents from the file system to the
requesting web browser. To do this, you can set up a special
FileResponder resolver to serve documents from the file system.

• It has no security features.
Web Application Developer’s Guide 4-1

Server Console
Using a Web Server
To set up a web server:

1. Open the Server Console.

2. Create a new server.

3. Start the server.

Opening the Server Console
To open the Server Console, choose Web Server Console from the
VisualWorks Launcher window, or click the Web button.

VisualWorks displays the Server Console, which lists any HTTP servers
in the image, providing status information about those servers, and
allowing you to configure them. Initially, no servers are listed.

From the Server Console you can:

• Create servers

• Edit the configuration of the selected server

• Start or shutdown the selected server

• Edit the server’s resolver, which determines how the server interprets
the request provided to it

• View server activity (web requests and responses)

• Delete servers

After you create servers and save the environment as an image, the
Application server preserves any servers you create. All servers start in
an inactive state, unless the server is set to start at system startup. Any
applications that you had loaded and registries you created are also still
present.
4-2 VisualWorks

Using a Web Server
Creating a New Server
The first thing you need to do is create a server. To create a web server:

1 Click the Create Server button.

The Server Console extends to provide options for creating a new
Web server.

For a server, you can specify:

Type: During development, it is easiest to use the Smalltalk HTTP
Server. The External Web Server is for use with CGIs and
commercial web servers.

Hostname: The name of the machine on which the VisualWorks Server
is running.

Port: The port on which the IP Server listens.

Virtual Directories: The names of any virtual directories used on the
server (for use with External Web Server only).

Resolvers: The set of resolvers used to map information provided in
the URL to actions to take and/or applications to invoke. A set of
default resolvers is provided with VisualWorks Application Server.
Web Application Developer’s Guide 4-3

Server Console
Errors: The destination for error messages. Servers can display errors
on the host machine’s screen or they can redirect errors back to the
web browser.

2 Choose the options for your configuration. For a VisualWorks image
running on the same machine as the Web browser (during testing),
the most common options are:

3 Click the Create button at the bottom of the Server Console.

VisualWorks creates the specified server and lists it at the top of the
console.

You now have a personal web server to use for interactions between a
VisualWorks image and a web browser that are on the same host
machine. That server, however, is not yet running.

Starting a Server
To start the HTTP server that you have just created:

1 In the Server Console, select the server’s entry from the list view.

2 Click the Start button.

The HTTP Server changes from inactive to active.

The entry for a server shows (from left to right):

• The type of server (Smalltalk or External)

• Whether the server is active (started) or inactive (shutdown)

• The hostname and port number

• Installed paths

VisualWorks is now ready to accept requests from a web browser.

Setting Value

Server Type Smalltalk HTTP Server

Hostname localhost

Port 8008

Virtual Directories

Use default resolvers Yes

Allow error notifiers on server Yes
4-4 VisualWorks

Using a Web Server
Testing a Server
To test VisualWorks and your web server:

1 Start your web browser.

2 In your web browser, request the following URL:

http://localhost:8008/echo
3 The web browser displays a list of environment variables received

from the Application server. If you did not receive a list of variables,
make sure that the Server is active in the Server Console.

In the requested URL:

• The first section specifies the protocol to transmit the request and
response. HTTP (HyperText Transfer Protocol) is the protocol most
commonly used by web browsers and servers.

• The next section specifies the recipient of the request by hostname
and port number (e.g., localhost:8008). It matches the hostname and
port of the web server that you created.

• The next section of the URL (the path) contains information for the
recipient. VisualWorks Web servers use resolvers to break apart the
path and determine what action to take. Resolvers are set up as part
of the server. When you created the Smalltalk HTTP Server, you
chose to use the default resolvers. When a server using the default
resolvers receives the path echo, it simply returns the complete web
request to the browser.

Shutting Down the Server
To shut down a server:

1 Display the Server Console.

2 Select the server to shut down.

3 Click the Shutdown button.

You do not need to shut down the server when your application isn’t
running. In fact, when you’re using VisualWorks to serve your clients via
the web, you probably want to leave a server running at all times.

You do not need to delete servers that are not currently being used.
When you delete a server, you also lose the configuration set up for that
server. Shutting down a server makes that server unable to respond to
any web requests, but it is simple to restart.
Web Application Developer’s Guide 4-5

Server Console

4-6 VisualWorks

5
Web Sites

A Web application may be defined as a collection of static and/or dynamic
pages, their supporting files, and any server-side code needed to make
the dynamic pages run. A Web application is generally configured for a
particular server or set of servers at deployment time, and what we call a
Web site refers specifically to this deployment information.

The site configuration defines all parameters that concern how a Web
application is to be hosted on a particular server. VisualWorks Application
Server provides several mechanisms for creating and managing Web site
configurations.

This chapter shows how to configure server support for Web sites.
Additional information on configuring servers can be found in the
VisualWorks Web Server Configuration Guide.
Web Application Developer’s Guide 5-1

Web Sites
Working with Web Sites
A single VisualWorks Application Server may host a number of distinct
Web site configurations, each being held in the server’s virtual image as
an instance of class WebSite. Distinct sites must be unique by name.

When the Application Server is running, a special administrator’s Web
interface is available to interactively set configuration parameters for any
WebSite contained in the server image, as well as those which apply to
the Application Server itself. The administrator’s interface may be
accessed using a standard Web browser.

Since any changes to these configurations only affect the objects in the
virtual image, at some point, you may want to create configuration files
that define all configuration parameters for the server and its sites.

For more advanced site configurations, including use of content
management features, or for deploying an application in a production
environment, you must use a configuration file. For details, see the
discussion of “Deployment” on page 11-1.

Managing Web Site Configurations
All server and site properties may be viewed and modified using a
standard Web browser. With the Application Server running, you can view
all site configurations defined by the server using a Web browser.

The Application server provides a special Welcome page that is
configured by default to appear at the server’s base URL.

For example, to view the Welcome page for a server running on the same
machine as the Web browser:

1 Start the server using either the prebuilt image included on the
release media (\web\runtime.im), or a standard VisualWorks
image with the Application Server and Web Toolkit loaded.

a If you are starting from the prebuilt image, skip to step 3.

2 Open a Server Console, then create and start a Smalltalk HTTP
Server (for instructions, see “Smalltalk HTTP Server” on page 4-1).

3 Start a Web browser and open the following URL:

http://localhost:8008/
5-2 VisualWorks

Working with Web Sites
The browser will redirect you to the Web Toolkit’s Welcome page:

From the Welcome page, you may manage the attributes of an existing
site, create new sites, remove sites, or manage server attributes that
govern the behavior of all sites.

If you have previously defined a home page for the default site, or if you do
not have a default site in your server's configuration, you must access the
Welcome page using its explicit URL:

http://localhost:8008/configure/
The Welcome page also allows you to configure the server with one of
two pre-set configurations distributed with the Web Toolkit: default or demo.
You may browse examples or run demos directly from this page.

Note that selecting one of the pre-set configurations restores the server
to a specific state, removing any other sites that you have created.

Note: Use of Netscape or Internet Explorer version 6 or later is
strongly recommended. Some of the Welcome page features may not
work correctly with Netscape 4.x.
Web Application Developer’s Guide 5-3

Web Sites
Selecting the Default Configuration
The default configuration is provided to help orient you during the initial
phase of working with site definitions. The prebuilt image (runtime.im)
is configured to use this configuration.

You may restore this configuration from the server’s Welcome page, by
clicking on Set Default Configuration.

The default configuration includes two sites:

For convenience, each example page in the default site is located in a
separate subdirectory of \web\examples, and each example is
accompanied by a Readme file. To view the general Readme file for these
examples, click on Browse Web Toolkit Examples. From the examples page,
you can navigate to specific Readme files and access example pages.

Alternately, you may enter a URL directly into a Web browser., e.g., for
the frames example:

http://localhost:8008/examples/frame0.ssp

Selecting the Demo Configuration
The Web Toolkit also contains a simple demo application. Before running
this application, though, you must set its specific site configuration. The
configuration files and the pages for this application are located within or
below the \web\demo directory.

To select this pre-set configuration, open the server’s Welcome page, and
click on Set Demo Configuration (note that this will remove all other sites you
have created). The demo configuration contains the four following sites:

Site Name Description

configure Manages the Administrator’s Web interface.

default A placeholder containing example pages and servlets.

Site Name Description

configure Manages the Administrator’s Web interface.

default A placeholder containing example pages and servlets.

images A site alias that allows the demo to serve general image
content separately from the server pages.

toyzinc Contains the Toyzinc demo application.
5-4 VisualWorks

Working with Web Sites
For convenience, each example site is located in a separate subdirectory
of \web, though this placement is not a requirement imposed by the
Application Server. Each example is accompanied by a Readme file.

With the example configuration selected, a number of demonstration files
may be accessed in the default site. Alternately, you may enter a URL
directly into a Web browser.

For example, to start the Toyzinc demo: open the Welcome page, click on
Run the ToyzInc Demo or else launch:

http://localhost:8008/toyzinc/main.ssp
When running the ToyzInc demo, if you have not already configured the
demo configuration, you are prompted to do so.

Viewing Site Attributes
You may use the administrator’s Web interface to view the attributes of
any site in the currently selected configuration.

To view a summary of all site attributes in the current configuration, jump
to the View Config Details link from the server’s Welcome page.

The Configuration Details page shows the server’s global configuration,
followed by the details for each site in the configuration. Any errors are
also noted here (for details, see “Configuration Errors” on page 11-8).

The Configuration Details page may also be accessed using this URL:

http://localhost:8008/configure
To view the attributes of a particular site, click on its linked name as it
appears in the site list on the server’s Welcome page.

This opens a page showing the complete site configuration, and any
server pages or static HTML pages located in its home directory.

Creating and Configuring a Site
You may change the default site configuration that is included with the
Application Server release image, or you may create new site instances,
but the procedure for configuring a site is the same in both cases.

To change the configuration of an existing site, go to the Manage Sites
page, click on the site's configure link.

To create a new site, use the form provided in the middle of the
Manage Sites page. The name you provide when creating a new site is
used by the Application Server to uniquely distinguish the site object.
Web Application Developer’s Guide 5-5

Web Sites
The name is also used to attract requests to the site. For example, the
site named toyzinc would serve these requests:

http://localhost:8008/toyzinc
http://localhost:8008/toyzinc/catalog.ssp

In the first example, since no file is specified, the Application Server
directs the request to the site’s home page.

Requests that do not include an explicit site name in their path are routed
to the default site. There are a variety of other ways to attract requests to a
site; for details, see “Resolving Web Requests” on page 10-3.

Configuring a Site
To configure a simple site for viewing the Web Toolkit examples:

1 Starting from the Manage Sites page, enter the new site name in the
input field and click on the Create New Site button.

A Site Configuration page appears:
5-6 VisualWorks

Working with Web Sites
2 Since you have not yet created a configuration file for your site, leave
the form's Configuration File field blank. See “Deployment” on page 11-1
for details on using configuration files.

3 Enter the site’s Home Directory. This specifies the location of any server
pages or static HTML pages used by your application. For example:

$(VISUALWORKS)/web/examples

Note: The Home Directory is the only attribute that is absolutely
required during configuration.

For details on each attribute of the site configuration, you may click
on the Help button shown on the Site Configuration page, or see
“Specifying Site Attributes” on page 5-8.

4 Enter a Home Page (e.g.: readme.html). This optional file is shown when
clients access the site without specifying any particular page. For
example, when no other home page is specified, the default site’s
home page is redirected to the configuration site.

5 Enter one or more Aliases used to attract requests to the site
(optional). An alias specifies the first path component of the request
URL, much like a virtual directory.

6 Leave the Namespace attribute in its default state: Smalltalk.

7 Disable Registered Servlets Only.

8 Enable the site.

9 You may specify a Password for your site, but leave this field blank for
the moment.

10 Enable Debugging.

11 Finally, enter a short Description of your site.

12 To configure the site using the specified attributes, click on Submit.

The site configuration is now complete.

With a configured site, you may use the administrator’s Web interface to
visit any of the server pages located in the site’s home directory. For
convenience, the Site Visit page includes a list of links to these pages on
the lower part of the configuration results display.

The sample site we’ve created uses $(VISUALWORKS)\web\examples
as its home directory. Thus, all files within or below the \web\examples
directory are shown on the Site Visit page.
Web Application Developer’s Guide 5-7

Web Sites
If the configuration you are using includes a default site, and that default
site has no home page, then you can reach the configuration page by
opening the basic host:port URL. If you are using only “named” sites (i.e.,
there is no default site), then you must use the following URL to get to the
configuration page:

http://localhost:8008/configure
For a detailed discussion of the options available for resolving incoming
requests to specific sites, see “Resolving Web Requests” on page 10-3.

Removing a Site
To delete a user-defined site, start from the Manage Sites page and click on
the corresponding remove link.

Specifying Site Attributes
The following site attributes can be set from the Site Configuration page:

Site Name
A site name is used internally to uniquely identify the site for
administrative purposes. The name you provide when creating a new site
is also the name used to attract requests to the site. If no site name is
specified, incoming requests are routed to the default site.

The site name need not correspond to the base directory in the site’s
URL, although this might often be the case. The physical location of the
files served is relative to the site's home directory.

If you do not specify an Alias for the site (see discussion below), the site
name will be used to attract requests in the same manner. For example, if
the site named mySite does not contain an alias, then requests to the URL

http://www.myCorp.com/mySite/index.html
are directed to mySite. If you want both the site name and some other
aliases, you must include your site name in the list of aliases. For details
on working with aliases, see “Creating a Site Alias” on page 10-4.

Configuration File
The attributes of each site may optionally be set using a INI-formatted
configuration file. Configuration files are used in conjunction with the
advanced features of the Server such as content management and
logical naming. They may also be used to automatically configure a
headless image at startup time.
5-8 VisualWorks

Working with Web Sites
The INI file may be specified with either an absolute or relative path. If a
relative filename is used, it is resolved relative to the directory containing
the global configuration file — not the site’s home directory.

By default, the global configuration file is webtools.ini. The Server
expects to find this in the VisualWorks working directory (if it exists);
otherwise, it is $(VISUALWORKS)/web/webtools.ini. This can be
changed using the Administrator’s Web interface.

Use the Reset button on the Site Configuration page to restore all the
attributes of a site to those specified in the named configuration file.

For details about modifying the content of INI files and where they should
be located, see “Deployment” on page 11-1.

Home Directory
Specifies the physical directory used as a base directory when serving
static pages or Smalltalk server pages located in files on the server.
The home directory indicates where these files are to be found, with the
remainder of the URL being treated as a path underneath the home
directory.

For example, if the home directory is c:\sites\myApp then the URL:

http://mycorp.com/sales/welcome.ssp
would serve the page c:\sites\myApp\sales\welcome.ssp.

If the Home Directory is specified using a relative path, then it is resolved
relative to the current VisualWorks working directory.

Home Page
Defines the (optional) home page for a site. If defined, any requests
directed to the site which do not resolve to a page are directed to the
home page.

Aliases
One or more aliases may be used to attract requests to the site. If no
alias is specified, the site name (see above) is used as the default site
alias. If you want both the site name and some other aliases, you must
include your site name in the list of aliases.

Aliases may be used to create the equivalent of a virtual directory on the
server. A site serves any request if the first path component of the
request URL is one of the site's aliases.
Web Application Developer’s Guide 5-9

Web Sites
For example, if the site named red defines aliases red and rouge, then any
request of the form:

http://myCorp.com/rouge/index.ssp
will be directed to the site named red. Requests which are not attracted to
any site through an alias are redirected to the default site.

To specify multiple aliases for a site, enter a list of names separated by
semi-colons, e.g.:

 aliases = oneAlias; twoAlias; threeAlias
For details on defining site aliases or using them as virtual directories,
see “Creating a Site Alias” on page 10-4.

Namespace
Defines the environment in which server page script is evaluated. A
namespace should be specified when using server pages that access
classes in your own namespaces.

To use more than one namespace, create a new namespace that imports
all the other namespaces you want to use.

The Application Server’s own classes belong to the VisualWave.*
namespace, which is distinct from the Smalltalk.* namespace. If your
application uses a private namespace, and you use any parts of the
Application Server (e.g., servlets or custom tag handlers), you will need
to either import VisualWave.* into your namespace or fully qualify all the
VisualWave class names you reference

Registered Servlets Only
Enable or disable direct access to servlets using the standard servlet
URL (e.g. /servlet/ServletClass). When disabled, servlets may be launched
using URLs that include /servlet/ServletClass as a path component.

During deployment, Registered Servlets Only should be enabled as a security
measure, so that servlets may only be accessed using logical names. For
details, see “Enabling Use of Registered Servlets” on page 11-8.

Enable
Enable or disable a site without losing its configuration. When a site is
disabled, it will not accept requests.

Password
Set to password protect a site.
5-10 VisualWorks

Working with Web Sites
Note: Before distributing a production image you should either
disable or change the password on the configure site so that clients
cannot change your site configuration.

Debugging
Activate debugging features on the site. For details on debugging options,
see “Setting Site Debugging Options” on page 5-12.

Event Callbacks
Define methods which the Application Server calls when specific session-
or application- level events occur. If you define an event callback in the
global configuration file, it applies to all web sites. Event callbacks can
only be defined in the configuration file.

In addition to the application and session events, a special configuration
event is also available (for details, see “Application Events” on
page 7-13).

Saving a Site Configuration
Any changes made using the administrator’s Web interface only affect
WebSite objects in the serving image. Thus, site configurations are saved
by saving the VisualWorks image.

In release 7.6 of VisualWorks Application Server, WebSite configurations
may be read from an initialization file, but any changes you make are not
saved to the file. This limitation will be removed in a subsequent release.

To make changes that do not reside in the image, you must use the
server configuration files. For details, see “Deployment” on page 11-1.
Web Application Developer’s Guide 5-11

Web Sites
Setting Site Debugging Options
When developing a Web application, it is often useful to allow exceptions
to produce walkbacks rather than having them trapped and redirected as
an error message to the client. The Application Server can be set to trap
exceptions that may occur during the compilation of a server page, as
well as those that occur during page execution. When deploying a Web
application, however, you will normally want to trap all exceptions.

The site debugging feature is most useful when developing server pages.
In addition to this feature, the Application Server defines two other
mechanisms for exception handling. The three different mechanisms are
as follows:

Site Debugging
The Debugging setting on the site configuration page enables you to
trap exceptions raised when compiling server pages. When this
setting is False, pages are cached for maximum performance, and
exceptions are directed to the client as HTTP 5xx (Internal Server)
errors. When set to True, compiled server pages are not cached, and
exceptions open a notifier window on the server.

Server Debugging
The Trap all Errors setting in the Server Console may be used to
capture exceptions that occur during the execution of a server page,
servlet, or a VisualWave application. In the case of a server page, the
exception may possibly occur outside of the code contained within
the page. When Trap all Errors is set, these exceptions will be directed
to the client as HTTP 5xx errors.

Development Debugging
A global flag isDevelopingOverride is provided that will set the
Trap all Errors flag true for every defined server. To set this flag,
evaluate ProcessEnvironment isDevelopingOverride: true/false.

The following table summarizes the recommended settings:

By default, these flags are set appropriately for development, and the
packaging process automatically sets them for deployment use.

Activity Site Configuration Server Configuration

Development Debugging: True Allow Error Notifiers

Deployment Debugging: False Trap All Errors
5-12 VisualWorks

Working with Web Sites
Managing Server Attributes
The VisualWorks Application Server administrator’s Web interface also
provides a means to browse and change various server attributes that
apply to all defined sites. The Server Management page may be accessed
from the server’s Welcome page (click on Manage Server).

The following functions are provided:

Configure Server
Set the name of the global configuration file. By default, this is
webtools.ini in the VisualWorks working directory (if it exists),
otherwise, it is $(VISUALWORKS)/web/webtools.ini. Use the
input field to enter a new file name.

Relative file paths are resolved relative to the VisualWorks working
directory.

Clear Caches
Clear all cached data, including compiled server pages and sessions.
This should be used when server pages contained in files have been
updated. The session you are currently using is not released.

Reset Configuration
Clear all cached data, and re-read the server configuration files.
Both the global server configuration file (webtools.ini, or the file
you have specified) and any per-site files are re-read.

Reset Server
Clear all cached data, reload all parcels specified on the command
line, and re-read the server configuration files.

This is intended for use in a headless or runtime.im installation.

Exit Server
Terminate the server (quit the object engine).
Web Application Developer’s Guide 5-13

Web Sites
Managing Server Logging and Sessions
The administrator’s Web interface may be used to browse and change
logging of server traffic. Access the Sessions And Logging page from the
server’s Welcome page.

The following functions are provided:

Start/Stop Logging
Toggle logging behavior.

Configure Logging
Set the name of the global log file (by default, webserve.log in the
VisualWorks working directory). Use the input field to enter a new file
name.

View Sessions
Show a list of all client sessions.

View Error Log
Show the contents of the error log file vwave.log.

View Web Log
Show the contents of the global log file (webserve.log, or the file
you’ve specified).
5-14 VisualWorks

6
Servlets

Servlets are lightweight server-side application components that accept
HTTP requests and deliver an HTTP response. Servlets generally
manage the application’s presentation logic, keeping it separate from the
business logic. Servlets are similar to traditional CGI scripts, but start
more quickly, provide additional supporting code, and allow for more
sophisticated interactions.

Servlets run inside a servlet container, which may hold many different
servlets. Requests come to the container, and are parsed and routed to
the appropriate servlet instance. Servlet classes include message
protocol for accessing request information, emitting response data, and
communicating with other servlets or server pages.

A servlet can be as small as a single, one-method class, but it may also
be combined with other servlets to provide a larger unit of functionality.
When applications are partitioned into a group of servlets, the servlet
instances communicate by sharing and forwarding request information
before sending a response.

The VisualWorks implementation of Smalltalk servlets closely follows
version 2.2 of the Java Servlets API. Accordingly, the discussion in this
chapter presupposes some familiarity with the servlets specification.

This chapter presents:

• Overview

• Servlet Basics

• Mapping Requests to Servlets

• Servlets Implementation
Web Application Developer’s Guide 6-1

Servlets
Overview
Servlets provide a language, protocol, and platform independent model
for creating server-side application components. A servlet employs a
request-response programming model that harmonizes with the structure
of Web transactions. Although the servlet model is general, it is typically
used to structure HTTP-based Web applications.

VisualWorks Application Server provides support for Smalltalk servlets.
Under VisualWorks Application Server, a servlet is represented by a
single Smalltalk class, and new servlets are typically built by subclassing
class HttpServlet.

HTTP Servlets provide:

• Simple, request/response programming model

• Session tracking

• Dispatching/forwarding

• Security features

When to Use Servlets
When choosing between server pages and servlets, the following points
may help to clarify the best design for your application.

• HTML should be kept in server pages, not hard-coded into servlet
methods. Any reasonable quantity of Smalltalk code should be in an
object, either a servlet or a component invoked from a server page.

• As a general rule of thumb, you should consider using servlets in the
parts of your application where significant processing is required to
handle requests; in particular, when your application needs to
extensively manipulate request, response, and session object state.

• During development, servlets have the distinct advantage of being
much easier to manage than server pages. All standard tools in the
VisualWorks IDE are available to simplify the coding, debugging, and
maintaining the servlet code.

• When control over page presentation is an issue, servlets are best
used in conjunction with server pages.
6-2 VisualWorks

Overview
Servlets, Containers, Contexts
The VisualWorks Application Server acts as the servlet container.
The servlet container is responsible for mapping requests to servlets,
loading and activating a particular servlet class on demand, and then
managing the servlet through its entire life-cycle.

The Servlet interface accommodates two different execution models:
single- and multi-threaded. Note that these names are somewhat
misleading, because in fact both support multi-threading. The distinction
has more to do with the flow of control and the container’s memory
allocation strategy.

Although the servlet specification recommends not to use the single-
threaded model, if properly implemented a single-threaded servlet can
perform equally well and be more convenient to use (for details, see
“Multithreading Servlets” on page 6-8).

Once a servlet has been loaded and initialized by the container, it is
ready to service requests. A request is processed when the servlet
container passes a request and a response object to the servlet.
Requests are processed until the container unloads the servlet.

Each Web application is also associated with a single servlet context.
Since a single application may be composed of a number of different
specialized servlets, the servlet context provides a way for them to share
data and access resources. The context provides the servlet with a view
on its local environment, although in a distributed environment, servlet
contexts are not distributed between hosts. For details, see “Servlet
Context” on page 6-10.
Web Application Developer’s Guide 6-3

Servlets
Servlet Basics
Let’s examine a simple example servlet to see how it works.

HTTP servlets are defined as subclasses of HttpServlet. Instance
variables should not be declared in these classes. For example:

Smalltalk.VisualWave defineClass: #VeryBasicServlet
superclass: #{VisualWave.HttpServlet}
indexedType: #none
private: false
instanceVariableNames: ''
classInstanceVariableNames: ''
imports: ''

This class, along with a number of other servlet examples, is predefined
in the VisualWorks Web Toolkit. To view the example servlet classes,
open a Hierarchy Browser on class HttpServlet.

Any servlet class loaded in the VisualWorks image is ready for activation.
When the servlet container receives a request that can be mapped to a
servlet class, it either transmits the request to an existing servlet
instance, or it creates and initializes a new servlet instance to field the
request, and then transmits the request to the new instance.

Typically, the servlet container spawns a separate thread (in this case, a
Smalltalk process) for each HTTP request. The thread executes a single
service method that handles the request, returns an HTTP response, and
then terminates. Servlets must define an appropriate service method by
implementing either a doGet:response: or doPost:response: method.

Each type of HTTP message is handled by a separate method. A servlet
that responds to an HTTP GET request, for example, must implement the
service method doGet:response:, while a servlet that responds to an HTTP
POST request must implement the service method doPost:response:.

Thus, the example VeryBasicServlet declares the following:

doGet: aRequest response: aResponse
"write output to the response object"

aResponse write: '<HTML><BODY>Hello world</BODY></HTML>'.
This method ignores the content of the request object, and simply writes
a string of formatted HTML to the response object.

When this service method finishes, the servlet container flushes the
response object to the client.
6-4 VisualWorks

Servlet Basics
Testing the VeryBasicServlet
To test this servlet, open a Server Console to start a Smalltalk Server on
localhost:8008 (for details, see “Using a Web Server” on page 4-2).

Open a Web browser and enter the following (case-sensitive) URL:

http://localhost:8008/servlet/VeryBasicServlet
The text "Hello world" should appear in the browser.

Although implemented with only a single method, this is a completely
functional servlet.

The Redirect Servlet
A slightly more complicated example can be found in class Redirect.

This servlet, like the VeryBasicServlet, declares only one service method:

doGet: aRequest response: aResponse
| url |
url := aRequest getParameter: 'url'.
url isNil ifTrue: [aResponse write: '<HTML><BODY>Cannot redirect, no

url provided</BODY><HTML>'. ^self].

aResponse redirectTo: url.
When the Redirect servlet is invoked, it expects to find a single parameter
named "url" in the query string, e.g.:

http://localhost:8008/servlet/Redirect?url=http://www.cincom.com/smalltalk/
The servlet performs a client-side redirection by first obtaining an URL
instance from the named query parameter (query parameters are
separated from the base URL using the ? character). If no parameter is
available, an error message is returned.

The actual redirection is achieved by sending an HTTP redirect message
to the client. The redirection URL is placed in the message header of the
response, and flushed to the client. The client’s browser then performs
the redirection by opening a new HTTP connection to the target URL.
Web Application Developer’s Guide 6-5

Servlets
Mapping Requests to Servlets
During development you may launch servlets using URLs of the form
/servlet/className, e.g.:

http://localhost:8008/servlet/VeryBasicServlet
In this case, /servlet is a fixed string recognized by the Application Server,
and /className is the case-sensitive name of the servlet class. The /servlet
path component may be preceded by other sections of the URL, e.g.:

http://localhost:8008/examples/servlet/VeryBasicServlet
When the Web application is deployed, you should restrict client access
to servlet classes. Web sites include a registeredServlets attribute that can
be changed to disallow use of the /servlet path and permit access only to
servlets which have pre-defined logical names. For details, see “Enabling
Use of Registered Servlets” on page 11-8.

During deployment, it is preferable to configure a special mapping to the
application’s servlet classes using logical names. In general, the
Application Server resolves each URI to a servlet by following two steps:

1. Resolve the request to a WebSite instance.

A single server may host several distinct sites, each being described
by a separate WebSite object. Requests can be mapped either on
the basis of the domain name or the first path element. Site aliases
may be used to parse the first path component of the request URL.
These are similar to the virtual directory facility available on IIS and
Apache servers.

2. Resolve any logical names in the URI.

Logical names may be used to substitute part of the request URI.
These names are defined in one of two special configuration files, the
first being associated with the server (global to all sites hosted by the
server), the second being associated with each site.

More information about URI mapping strategies can be found in the
discussion of “Content Management” on page 10-1.

Note: The namespace of the Web site you define for servlets must
include the namespace in which your servlets and support classes
are defined. For details on setting this namespace in the site object,
see “Creating and Configuring a Site” on page 5-5.
6-6 VisualWorks

Servlets Implementation
Servlets Implementation
VisualWorks Application Server includes functionality equivalent to
version 2.2 of the Java Servlets specification.

Web applications built around the servlets model make use of protocol in
the following classes:

• HttpServlet

• ServletContext

• Request

• Response

• HttpSession

• ServletConfig

• RequestDispatcher

HttpServlet
The abstract superclass HttpServlet provides the basic service framework
for initializing servlet instances and processing requests.

Servlet Initialization
After loading and instantiating a servlet, the container allows it to perform
one-time initialization (using the methods init or initialize). This is the
opportunity for the servlet to read any persistent state information,
initialize database connects, etc. During initialization, the servlet is
provided with appropriate instances of ServletConfig and ServletContext.

Handling Requests
Once a servlet has been initialized, requests can be processed using the
service:response: method. This method dispatches on the HTTP message
type, passing the request to the corresponding service method (e.g.,
doGet:response: for an HTTP GET message; doPost:response: for an HTTP
POST message, etc).

Servlets implement their functionality by overriding the doGet:response:
and/or doPost:response: messages implemented in the superclass
HttpServlet. It is not recommended to override the service:response: method.

In the case of a single-threaded model servlet, the flow of execution is
slightly different. Instead of implementing doGet:response: and
doPost:response:, single-threaded model servlets provide doGet and
doPost.
Web Application Developer’s Guide 6-7

Servlets
Multithreading Servlets
Servlets can be designed to handle threading with one of two models,
called the single thread model or the multi-thread model. By default, the
servlet container uses the multi-threaded model.

If a servlet subclasses from SingleThreadModelServlet, or if it implements
the class method singleThreadModel, then it will be run under the single-
threaded model. The method singleThreadModel must return true.

In the multi-threaded model, the servlet container creates only one
instance of the servlet class. For each request, a separate thread is
spawned, but all threads run the same method against the same servlet
instance. For this reason it is not advisable to hold any state in the
instance variables of a multi-threaded servlet. Many threads may be
running the same method at once, all attempting to use the same
variable.

If a servlet uses the single-thread model, the container creates an
instance of the servlet for each request. A single thread is spawned for
each request, so each thread will have its own servlet instance. Note that
the new servlet instances are created by copying the reference servlet
instance, so information like the servlet context and configuration will be
shared. Since only one thread will access a particular servlet instance,
state may be stored using instance variables.

Single-threaded servlets do not need to accept the request and response
objects as message parameters, but instead implement two
parameterless service methods doGet and doPut. Class
SingleThreadModelServlet defines instance variables for request, response,
and session, and automatically populates them before invoking the
servlet.

The single-thread model requires slightly more memory allocation than
the multi-thread model, but it is more convenient. Given the high-quality
garbage collection provided by VisualWorks, the additional overhead
from using the single-threaded model is minimal.

Note: The implementations of the request and response objects are
not guaranteed to be thread safe. Consequently, the request and
response objects should not be passed to other threads that may
attempt modifications. Only the thread containing the service method
should handle these objects.
6-8 VisualWorks

Servlets Implementation
Ending Service
The servlet container unloads servlets when an administrator issues a
server reset command. When the container unloads a servlet, it allows
any existing threads to finish, and then sends the destroy message.

When the servlet receives destroy, it should release any external
resources that may have been allocated during initialization. Once destroy
has been called, the container ceases to pass requests to the servlet
instance.
Web Application Developer’s Guide 6-9

Servlets
Servlet Context
Every servlet belongs to a servlet context that is provided by the
container. The context object gives each servlet a view of the application
in its entirety. In a sense, the servlet context is similar to the application
object provided by server pages. It is used to share attributes of
application scope, for accessing resources on the Web server (e.g., files,
graphics), and for reading application-specific initialization information.

A servlet obtains its context using the convenience method servletContext
defined in class HttpServlet.

Although a Web application implemented using servlets can be
distributed across a number of hosts, the servlet context only resides on
a single machine and is not designed for distributed object storage.

Initialization Parameters
Context initialization parameters are available to set up site-specific
variables associated with the Web application. For example, these
variables might be used to set the name of a database instance, or the
login name and password required by the database.

Use initParameter: to add a String value to the context’s parameters
Dictionary, and initParameterNames to retrieve a collection of all keys in the
Dictionary.

Note: Although these parameter values are actually stored in the
ServletConfig object, they can only be set by using these access
methods.

Setting Context Attributes
Attributes provide a mechanism for all servlets in a single Web
application to share small amounts of String data. Class ServletContext
provides protocol for setting and reading these attributes. In general,
attributes should be used instead of variables of larger scope.

Use attribute: or attribute:ifAbsent: to read the value of an attribute, e.g.:

currentUser := self servletContext attribute: 'user_name'.
A collection of all attributes defined in the servet context may be obtained
using the attributeNames method.
6-10 VisualWorks

Servlets Implementation
Use setAttribute:to: or attributeAt:put: to create an attribute or change its
value, and removeAttribute: or removeAttribute:ifAbsent: to remove one, e.g.:

self servletContext setAttribute: 'user_name' to: currentUser.

self servletContext removeAttribute: productCategory.
Note that in applications that are implemented using both servlets and
server pages, you may share these attributes. The attributes associated
with the servlet context may be manipulated as application-scoped
variables in your server pages (and vice versa).

Accessing Resources
Class ServletContext provides an interface for resolving the location of any
static external resources (HTML and XML documents, GIF or JPG image
files) that belong to the Web application. Typically, servlets refer to static
content using relative paths, which the servlet context resolves to an
absolute path. These resource-access methods are appropriate for
accessing static, rather than dynamic content (see “Dispatching” on
page 26 for details about accessing dynamic content).

Use getResource: to obtain an URL instance that is mapped to the path that
contains the resource:

jpgURL := self servletContext getResource: '/insetGraphic.jpg'.
This method resolves the URL to the named resource, not its actual
content. The result of getResource: is an instance of a subclass of Net.URI.
To obtain a ReadStream on the content of the resource:

stream := context getResourceAsStream: '/includes/includeme.html'.
result := stream contents.

Resources are most commonly documents stored on the Web server’s
local file system, but they may be located anywhere.
Web Application Developer’s Guide 6-11

Servlets
Request
Instances of class Request are used to represent HTTP request
messages. The servlet container creates a separate instance for each
incoming client request.

Class Request provides protocol for accessing all information in an HTTP
request, including the parameter data (passed either in a form or in the
URL itself), cookies, x.509 certificate fields, as well as attributes that
other servlets may have attached to the request. For more details on
HTTP request messages, see “HTTP Request” on page 2-3.

Accessing Parameters
Parameters in an HTTP request are passed either as a part of the URL
(in the case of a GET message) or in the body of the request (in the case
of a POST message). A request object may contain different collections of
parameter data (query and form data), though each is organized as a
collection of name/value pairs.

It is important to note that a single name may contain several different
parameter values. If this is the case, the values will be ordered such that
those passed in the query string appear first, followed by those passed as
part of the form data. See also the discussion of “Multi-Part Forms” on
page 7-6.

To access parameter data stored in a request:

userName := self getParameter: 'user_name'.
allParams := self getParameterNames.

In the case of a single named parameter with multiple values, use
getParameterValues:. This method returns an Array containing all the String
values associated with the name. Using getParameter: to access a pair
containing multiple values will return the first value in the Array.

Using Request Attributes
Attributes are used to attach information to a request object, especially
when passing the request from one servlet to another. Attribute data is
reserved for use by your application and the servlet container.

Use getAttribute: and setAttribute:value: to manipulate request attributes:

"set attribute as flag for servlet B"
self setAttribute: 'validate' value: true.

...
"check if servlet A requested validation"

(self getAttribute: 'validate')
6-12 VisualWorks

Servlets Implementation
ifTrue: [self newuserValidation].
Each attribute name can have only one value.

Retrieving and Translating the Request Path
The request path is the portion of the request URL that identifies the
context and active servlet on the VisualWorks Application Server.
This path corresponds to the portion of the URL that follows the DNS
name of the Web server:

URL: http://mycorp.com/catalog/books/index.ssp
Request URI: /catalog/books/index.ssp

The request path may be further decomposed into three parts:

Servlet Path
Directly corresponds to the mapping which activates the servlet for
this request; begins with / (forward slash) character.

Context Path
Represents the path prefix associated with this servlet’s context.

Path Info
Represents the remainder of the path that belongs neither to the
servlet path nor the context path.

Mapping between the URI and the servlet happens in two general ways.
For details, see “Mapping Requests to Servlets” on page 6-6.

Thus, the URL shown above might be disassembled as follows:

URL: http://mycorp.com/catalog/books/index.ssp

Context Path: /catalog
Servlet Path: /books
Path Info: index.ssp

Class Request provides methods for accessing these three path elements:
contextPath, servletPath, and pathInfo. Each returns a String value. Note that
depending upon your use of a ServletContext, the context path may be
empty, e.g.:

URL: http://search.mycorp.com/search.ssp
Here, the context would simply default to the base URL of the Web
server. In this case, the String returned by sending contextPath is empty.

A convenience method is also available for translating the request path
into a corresponding file system path. To obtain a String representation of
the local filename to which the URI path corresponds:
Web Application Developer’s Guide 6-13

Servlets
localName := self pathTranslated.
This method resolves the “path info” (see above) into a local file name.

Accessing Cookies
Web applications use cookies to maintain persistent state between
individual transactions or across Web sessions. Each HTTP request
object includes cookie data cached by the client machine. Only the
cookies associated with the particular URL are sent with the request.

Cookies may be simple name/value pairs, or they may be dictionaries.
Although you can send cookies to obtain the entire cookie Dictionary
associated with the request, you probably want to access a particular
cookie by name:

lastVisit := self cookieValueAt: 'last_visit_date'.
Use allCookieValuesAt: to access a cookie that has a number of values
associated with a single key:

userDates := self allCookieValuesAt: 'user_dates'.
VisualWorks Application Server provides several interfaces for working
with cookies. See “Cookies” on page A-1 for additional discussion.

Retrieving the Client’s Locale
A client may optionally specify language and locale preferences that are
passed to the Web server via the Accept-Language header or other means
available with HTTP/1.1.

A request object may be queried for locale preferences as follows:

userLocale := aRequest locale.
acceptedLocales := aRequest locales.

If the client has specified at least one locale, the locale method returns an
instance of Locale, with priority being given to the first language/locale
selected by the client. The locales method returns a collection of Locale
objects, ordered from most preferred to least preferred as specified by the
client. If no locale is indicated in the request, locale and locales will return
the default Locale object assigned to the servlet container.

Clients may also indicate a character set used for encoding FORM data.
For details, see “Encoding Form Data” on page 7-7.

For more details about working with Locales, refer to the VisualWorks
Internationalization Guide.
6-14 VisualWorks

Servlets Implementation
Secure Sockets Layer
An X.509 client certificate may be associated with the request to
implement a secure transfer protocol such as HTTPS. Your application
can query for the presence of this certificate using the isSecure method.

Version 7.6 of VisualWorks Application Server can use the SSL support
of a front-end Web server, but does not provide its own SSL
implementation. Native SSL support will be added in a future release.

Accessing Headers
Request objects provide direct access to the headers in the HTTP
request message. These headers are organized as name/value pairs
(see RFC-822 for a full discussion) that may be repeated. To retrieve
header values, use the access methods in Request.

Use headerNames to obtain a collection of all header names in the request,
and header: for a specific value. For example:

allHeaders := self headerNames.
(allHeaders includes: 'Content-Type')

ifTrue: [contentType := self header: 'Content-Type'].
Use the convenience method intHeader: to retrieve the value of a header
with an integer value:

length := self intHeader: 'Content-Length'.
Note that if multiple headers with the same name are found in the
request, header: and intHeader: will retrieve the first one.
Web Application Developer’s Guide 6-15

Servlets
Response
Instances of class Response are used to encapsulate all information
associated with an HTTP response message. When a servlet is invoked
by the container, it is invoked with both request and response objects.
Typically, a servlet begins by setting any header information (data type,
cookies, etc.), and then writing the content (the body of the response).

As content is written to the response, it may be sent to the client,
depending on the buffering scheme in use. When the response is
complete, output buffers are flushed and the complete response sent to
the client.

Writing and Buffering Responses
As a servlet assembles a response, the Application Server can either
store it in a buffer, or else send each string of HTML to the client as it is
passed to the HTTP output stream. Since output buffering can improve
server performance, the servlet container enables buffering by default.

Regardless of whether buffering is enabled or disabled, your application
should normally use the write: method to send HTML to the client:

aResponse write: 'The time is: ' , Time now.
The write: message takes a String or ByteArray for its parameter, possibly
including HTML tags, e.g.:

aResponse write: 'The time is: ' , Time now , ''.
By default, output buffering is enabled. You may disable it as follows:

aResponse buffer: false.
When the response is unbuffered, each invocation of write: appends the
string parameter directly to the output stream. In practice, this means the
HTTP connection remains open between calls to write: and the client’s
browser reads the unbuffered HTML stream as the servlet writes it.

"query the status of output buffering, then enable it"
[aResponse buffer]

ifFalse: [aResponse buffer: true].
With buffering enabled, the response can be explicitly flushed to the client
by sending flushBuffer, or else discarded by sending reset. Use isCommitted
to obtain a boolean indicating whether any portion of the output stream
has been sent to the client. Once the response has been committed,
subsequent attempts to reset the output stream will raise an exception.
6-16 VisualWorks

Servlets Implementation
If your application requires stream protocol for output, you may also
access the response’s output stream directly. For example:

"send a collection of dates with HTML emphasis"
responseStream := aResponse outputStream.
responseStream nextPutAll: 'Important dates: '.
datesCollection do:

[:date |
responseStream nextPutAll: '' , date printString , ', '].

responseStream nextPutAll: '.
'.
In a localized Web application, the output stream will be an initialized
instance of EncodedStream that accepts Unicode text.

By default, the Content-Type for the response is 'text/html'. Use the
contentType: method to specify a different type/subtype, e.g.:

aResponse contentType: 'image/jpeg'.
For details on content types, refer to RFC 2231.

If output buffering is disabled (it is enabled by default), contentType: must
be used before any output is sent to the client using write:.

Passing Cookies to the Client
Both request and response objects may include cookies (see “Accessing
Cookies” on page 6-14 for details about reading cookie values).

Cookie data in a response is recorded on the client’s machine. When the
client’s browser receives a response message containing cookies, it will
either create new cookies or else update existing ones to reflect the
values of the cookies passed in the response.

To set the value of a cookie on a client machine, use cookieAt:put:.

response cookieAt: 'user_name' put: 'Xavier'.

Note: Although two types of cookies are generally available under
HTTP, the VisualWorks Application Server currently provides support
only for single value cookies. This limitation may be resolved in a
future release.
Web Application Developer’s Guide 6-17

Servlets
To examine the OrderedCollection of cookies in the response:

cookieCollection := response cookies.
The domain, expiration date, path and secure properties of the cookie will
be set automatically by the Application Server. By default, the domain of
the cookie will be the domain of the server, and the cookie will be set to
expire at the end of the client’s session. The path property will default to
the virtual path of the Web application in use (e.g., /MyApp/Home/), and
the secure setting will be false.

Internally, cookies are represented using instances of class HTTPCookie
(for a more complete discussion, see “Cookies” on page A-1).
To set any of the cookie properties other than name and value, create an
instance of HTTPCookie and use the addCookie: method:

"create a cookie, enable the use of SSL, then add it to the response header"
cookie := HTTPCookie named: 'user_password' value: 'secret'.
cookie domain: (request serverVariableAt: 'SERVER_NAME').
cookie secure: true.
response addCookie: cookie.

Note that if the response output is unbuffered, cookies must be created
before any output is sent to the client (because cookies are passed in the
header of the HTTP response, using a SET-COOKIE header).

Note: Certain browsers (e.g., Netscape Navigator) are case
sensitive in their treatment of URLs and filenames. To avoid problems
when resolving the names of cookies, it is good practice to use
names spelled in a consistent case (all lower case, for example).

Redirection
Clients may be redirected to another URL either via a client-side redirect,
or by transferring control on the server side, inside the Web application.

Use the convenience method sendRedirect: or redirectTo: to request that
the client’s browser redirect to another URL:

aResponse sendRedirect: 'http://mycorp.com/index.html'.

aResponse redirectTo: 'http://noBiz.org/authenticate.html'.
The redirection parameter may be either a full, or a relative URL. If a
relative URL is used (e.g., /index.html), the servlet container translates it
into a fully qualified URL, raising an exception if it cannot.
6-18 VisualWorks

Servlets Implementation
If the redirection is to another page in the same application, you may also
forward control to another servlet using a dispatcher. This takes place
entirely on the server (see “Dispatching” on page 6-26 for details).

Error Notification

Two convenience methods are provided for communicating runtime error
conditions to the client. These methods require the three-digit status
Integer that gets sent to the client’s browser, e.g.:

"tell client we've encountered a server error"
aResponse sendError: 500.

Optionally, String data may be sent in the content body of the response.

"send standard 404 -- not found error"
aResponse sendError: 404

message: 'This item could not be found.'
Any content that is buffered for output may be sent, but attempting to
write: after using sendError: or sendError:message: will raise an exception.

Specifying Character Sets and Content Type
Use charSet: to specify the character set for the content of the HTTP
response. For example:

aResponse charSet: 'ISO-8859-1'
Specifying a character set by setting the attribute in a response object
overrides the whatever character set is associated with the session.

If no character set is specified, the client uses its platform native
encoding. PC and compatible clients assume ISO-LATIN-1, while MacOS
clients default to the Mac Roman encoding. Your application should
specify a character set appropriate for its textual content.

Note: When using encoded streams or other features of the
VisualWorks Internationalization package, note that character sets
are specified using instances of Symbol, not String.

By default, the Content-Type for the response is 'text/html'. Use the
contentType: method to specify a different type/subtype, e.g.:

aResponse contentType: 'image/jpeg'.
The String parameter must be in a type/subtype format. The default value
is 'text/html'. For details on content types, refer to RFC 2231.

If output buffering is disabled, charSet: and contentType: should be used
before any output is sent to the client using write:.
Web Application Developer’s Guide 6-19

Servlets
When used in conjunction with contentType:, the response object may be
used to send graphics, database objects, or other media types to a client.
Generally, servlets are better for sending custom media types.

For example, the servlet shown below may be used to send a GIF image
to a client. Note: this code requires loading the GIFEncoder package into
your development image.

doGet: aRequest response: aResponse
| pix gc gifImage |
pix := Pixmap extent: 500 @ 400.
gc := pix graphicsContext.
gc paint: ColorValue blue.
gc

displayWedgeBoundedBy: (20 asPoint extent: pix extent - 20)
startAngle: 20
sweepAngle: 320.

gc paint: ColorValue red.
gc displayString: Time now printString at: 5 @ 20.
gifImage := pix asImage asGIFNonTransparent.
aResponse

contentType: 'image/gif';
write: gifImage gifBytes

This servlet creates a simple Pixmap, draws into it, and then converts it to
a GIFImage object, which is written to the response stream.

Setting Language or Locale Attributes
If a client specifies preferred language or locale information, a servlet can
set the language/locale attributes of a response object. These attributes
are generally sent as HTTP message headers (additional mechanisms
are available in HTTP/1.1).

Use locale: in conjunction with an instance of Locale to set the various
locale attributes of a response:

"create a locale and use it to set the locale of a response"
locale := Locale new.
locale

currencyPolicy: (NumberPrintPolicy newFor: #fr);
numberPolicy: (NumberPrintPolicy newFor: #fr);
timePolicy: (TimestampPrintPolicy newFor: #fr).

locale name: #'Français'.
aReponse locale: locale.

For example, to set the locale of a response to correspond to the client’s
browser's characteristics:

aResponse locale: request locale
6-20 VisualWorks

Servlets Implementation
Each session object also contains a locale, which is used by default when
writing output to a response object (for details on locales and sessions,
see “Specifying a Locale” on page 6-24).

If output buffering is disabled (it is enabled by default), locale: should be
used before any output is sent to the client using write:.

Note: by default, the web locale is the ISO-8859-1 character set
since all clients must accept this encoding (for details, see: RFC
2068, section 3.7.1 or 14.2). However, if you set the locale using
locale:, either on the response or session object, this takes precedence
over the default.

For more details about working with Locales, refer to the VisualWorks
Internationalization Guide.

Accessing Headers
Servlets can directly access the HTTP headers of a response object
using the following protocol. These headers are used to pass cookies,
character encoding, and similar parameters. Although specialized
protocol is defined for setting the most common response properties, you
may want to add custom headers directly to the response object.

Use setHeader:value: to add a new header:

"set the 'pragma' attribute to disable browser caching"
aResponse setHeader: 'Pragma' value: 'no-cache'.

The convenience methods addDateHeader:value: and addIntHeader:value: are
also provided for setting Date and Integer values in a header.

Note: When using custom headers, it is best not to choose names
with embedded underscores, as these might collide with predefined
header values used by HTTP, producing unpredictable results.

If output buffering is disabled (it is enabled by default), these messages
should be used before any output is sent to the client using write:.
Web Application Developer’s Guide 6-21

Servlets
Session
Servlets support the notion of a session object that may be used to track
the client’s progress through the different stages of a Web application.
Since the HTTP messaging protocol is by nature stateless, client
sessions are managed by the servlet container. By establishing a distinct
session for each new client, the application can give meaningful
continuity to all subsequent transactions with the same client.

Sessions allow the application to track user-identification and user-
specific data across a number of discrete page transactions between
client and server. All variables of session scope may be shared by all
servlets belonging to the same servlet context.

A session object is created when a user first requests a page, and it
exists until either the client abandons the session or the server concludes
it. Sessions can remain inactive until a specified timeout, at which time
they will be invalidated by the server.

A number of different mechanisms are used for session tracking, though
your application generally need not concern itself with these details.

Establishing a Session
Sending the session message to a request object will return the
appropriate session object associated with that request. If no session
object exists, one is created and associated with the client.

Your application can use isNew to test whether a session has just been
established.

mySession := self request session.
mySession isNew

ifTrue: ["new session -- redirect user to starting page"
aResponse sendRedirect: 'http://mycorp.com/start.html'].

Tracking Sessions
Sessions are tracked using a cookie named sessionKey that is passed
transparently by the server. It is possible that the client may open several
different windows to view your application. Although each window can
show a separate view, the browser will nevertheless associate the same
sessionKey cookie with each window. The developer should design the
Web application to anticipate this situation.

If the client’s browser does not accept cookies, the servlet container will
detect the condition and the session ID will be encoded into the URL as a
query string. This technique is known as “URL rewriting”.
6-22 VisualWorks

Servlets Implementation
Note: URL rewriting for sessions is currently unimplemented; thus,
clients must have cookies enabled to for session tracking to function
properly with release 7.6 of VisualWorks Application Server. This
limitation will be removed in a subsequent release.

Each session is identified using a unique ID. In general, your application
should not need to access the session ID directly, though if you do make
use of this ID, it should never be cached or otherwise used as a
mechanism to identify a particular client beyond the duration of a session.

The request object may be queried to determine whether the session ID
has been established using cookies or using URL rewriting.

aRequest isRequestedSessionIdFromCookie]
ifTrue: [self weCanUseCookies].

aRequest isRequestedSessionIdFromURL
ifTrue: [self weUseURLrewriting].

Binding Session Attributes
Servlets can associate name/value attributes with their assigned session
object. The scope of session attributes allows access to all servlets
belonging to the same servlet context. Use the following methods to
manipulate the dictionary of session attributes:

"retrieve the value of an attribute"
userName := mySession attribute: 'user_name'.

"set the value of an attribute"
mySession setAttribute: 'user_name' to: userName.

"remove an attribute from the Dictionary"
mySession removeAttribute: 'preferred_category'.

"obtain a Set of all attribute names in the session"
sessionVars := mySession attributeNames.

As a convenience, you may also use some Dictionary protocol directly on
the session object, including at: and at:put:. You can also ask for the
session contents, which returns a dictionary containing all session
attributes.

Note that in applications that are implemented using both servlets and
server pages, you may share these attributes. The attributes associated
with a session may be manipulated as session-scoped variables in your
server pages (and vice versa).
Web Application Developer’s Guide 6-23

Servlets
Setting the Session Timeout
Class HttpSession provides a timeout mechanism for expiring inactive
sessions. The default value is defined by the servlet container, but may
be changed by your application.

"set the session timeout to at least 20 minutes (20 * 60 seconds)"
mySession := self request session.
mySession maxInactiveInterval < 1200

ifTrue: [mySession maxInactiveInterval: 1200].
The timeout value is set in seconds. If user sessions tend to be short, you
should consider lowering the timeout value to conserve memory
resources on the server machine.

Note: Though it is not advised, specifying a value of -1 indicates that
the session should never expire.

Ending a Session
In applications where session-based transactions must be secure, it is
often desirable to allow the user to log out of the session. This feature is
often used in banking service and internet e-mail systems. When
explicitly terminating a session, all session-scoped variables and
associated memory resources are released. The next request from the
client will prompt the servlet container to create a new session.

Use the methods abandon or invalidate to end a session, e.g.:

"terminate the session"
mySession := self request session.
mySession invalidate.

In general, it is a good idea to end the client’s session using abandon or
invalidate, otherwise the servlet container preserves the client’s session
state until a timeout occurs.

Accessing the session object after it has been invalidated will raise an
exception.

Specifying a Locale
Each session object carries a locale attribute that corresponds to a
standard international country code. This attribute is used when creating
responses and is used to indicate how information like dates and
currency should be formatted in the output stream. In North America, for
example, dates are formatted as month/day/year, whereas in Europe they
are formatted day/month/year.
6-24 VisualWorks

Servlets Implementation
Locale information is held in the session object, and persists as long as
the session exists. By default, the Application server sets the locale and
character set automatically when the session is created, based upon the
Accept-Language header of the request object (however, this can be
turned off in the settings pages). Your application can also specify a
different locale by explicitly setting the attribute in a response object.

Use locale: with an instance of Locale to change the locale ID that will be
received by the client’s browser. For example, to set the session to the
current locale used by the server:

self request session locale: Locale current.
Clients may optionally specify their language and locale preferences
using the Accept-Language header attached to an HTTP request.

For details about working with Locale, refer to the VisualWorks
Internationalization Guide.

Sessions and Character Sets
Each session object includes an attribute that specifies the encoding
(character set) used by default when writing output to response objects.
Encoding information is held in the session object, and persists as long
as the session exists. Note that encoding and locale attributes are treated
by the Application server as distinct values.

By default, the Application server selects the encoding automatically
when the session is created, based upon the Accept-Charset header
of the request object (however, this can be turned off from the Character
Sets and Locales settings page). Your application can also specify a different
character set by explicitly setting the attribute in a response object.

Clients may also indicate a character set used for encoding FORM data.
For details, see “Encoding Form Data” on page 7-7.
Web Application Developer’s Guide 6-25

Servlets
Dispatching
It is often desirable to factor a Web application such that one servlet
dispatches a request for additional processing by other servlets.
By chaining different servlets together, specialized behavior can be
localized and reused in a smaller number of components.

To dispatch a request, the destination path must be wrapped using an
instance of RequestDispatcher. The destination path can point to either a
servlet, a static page, a dynamic page, or another type of resource.

Creating a Request Dispatcher
The servlet context provides methods to delegate requests to other
servlets or server pages using a request dispatcher object. To obtain a
dispatcher object:

dispatcher := self servletContext getRequestDispatcher: '/catalog/Search'.
The String parameter to getRequestDispatcher: must describe a relative
path within the scope of the servlet context.

It is also possible to query the request object using an analogous method
(of the same name) in class Request. Using the request object to resolve
the path has the advantage that a full path relative to the base of the
servlet context is not mandatory.

For example, let’s say we want to resolve the path to the Search servlet in
the context of /bookCatalog.

To resolve a path using the context, we must use '/bookCatalog/Search' as
the path parameter, but if we use the request object the path does not
need to be relative to the servlet context:

dispatcher := request getRequestDispatcher: '/Search'.

Using a Request Dispatcher
Requests may be dispatched in one of two ways: the caller can either
forward the request to the called servlet, or the caller can include the
response of the called servlet.

For example, to forward a request from inside a service method:

doGet: aRequest response: aResponse
...
"wrap a dispatcher"
dispatcher := self servletContext getRequestDispatcher: '/servlet/Search'.
dispatcher forward: aRequest response: aResponse.
6-26 VisualWorks

Servlets Implementation
Using forward:response: will pass control to the /Search servlet. The thread
of execution is transferred entirely to /Search, and the remainder of the
caller’s service routine will be ignored.

A request may be forwarded at any time. If content has been written to
the response, the headers of the final response will be whatever headers
the original servlet had written, but the content will come from both the
original servlet and the servlet that received the forwarded request.

To dispatch so that the target servlet will eventually return control, use
include:response: instead of forward:response:, e.g.:

doGet: aRequest response: aResponse
...
"wrap a dispatcher"
dispatcher := self servletContext

getRequestDispatcher: '/servlet/NewsUpdate'.
dispatcher include: aRequest response: aResponse.

The path for the new request may be an absolute path, or a relative path
(in which case it is relative to the directory of the current request, rather
than to the home directory of the current web site).

The “included” servlet is granted unrestricted access to the request
object, though query parameters in the request object are not forwarded.

Including Query Strings in Dispatcher Paths
By default, query parameters of the current request are not automatically
included in a request that is dispatched. However, query strings may
optionally be included in the path resolved for a dispatcher.

To pass query parameters, you may extract the queryString from the
current request and append it to the path of the new request when
constructing the RequestDispatcher object.

For example, on a server page, or in a servlet:

dispatcher := self servletContext
getRequestDispatcher:

'/servlet/Search?', (self request queryString).
Web Application Developer’s Guide 6-27

Servlets
6-28 VisualWorks

7
Server Page Applications

Server pages are a language-independent technology for server-side
scripting. VisualWorks Application Server includes a scripting interface
and application models to support Smalltalk server pages (SSP). The
scripting interface uses a templating mechanism to combine static HTML
pages with Smalltalk script.

The VisualWorks Web Toolkit supports the development of applications
that are constructed following either an ASP or a JSP model. In addition
to using the standard APIs for each model, your application can access
components from the entire Smalltalk class library.

Web applications built using server pages can maintain persistent state
both during and between client sessions. Persistant state may easily be
shared between servlets and server pages. Several mechanisms are
provided in the application framework to manage client state information.

Server pages can also use XML-style tags and include custom tag
libraries to define special-purpose scripting actions. For details, see
“Predefined Scripting Actions” on page 8-7.
Web Application Developer’s Guide 7-1

Server Page Applications
Understanding Server Pages
The VisualWorks Application Server resolves incoming requests to files,
server pages, servlets, or Smalltalk methods. If the request is resolved to
a server page, the scripting engine evaluates the page, generating a new
document that is returned to the client. The Application Server treats any
requested file with an extension of .ssp (preferred), .jsp or .asp as a
Smalltalk Server Page.

Server pages follow the general model of a typical HTTP transaction.
Roughly speaking, the script may be viewed as a single method that is
evaluated within a special execution context. The script takes its input
from a request object and writes its output to a response object. For a
general overview of this request/response mechanism used by HTTP,
see “Web Transactions” on page 2-2.

The scripting elements of a server page can reference a number of
implicit objects that represent the state of the transaction and the
application.

In the following expression, for example, the method cookieValueAt: is used
to fetch a cookie value from the implicit variable that represents a request:

userName := request cookieValueAt: 'user_ID'.
Five implicit objects are available at any time: request, response, session,
application, and out. The first four of these objects are used to store
attributes, session or application variables. Class protocol for each is
described in “VisualWorks Implementation” on page 7-4.

The implicit objects that are accessible as variables belong to one of four
possible scopes: page, request, session, application:

Variable Scope Description

request request Request objects may be forwarded from one
page to another; thus, each request has a distinct
scope.

response page Response objects belong to a single page.

out page Response output stream.

local page Any variables declared on the page are treated
like method variables.

session session Variables and attributes are accessible by all
pages that belong to the same client session.

application application Variables and attributes shared between all
sessions of a single Web application.
7-2 VisualWorks

Example: Server Pages
Example: Server Pages
A Smalltalk server page begins life as a document formatted in HTML.
The scripting elements that are evaluated when a client requests the
page are embedded in the HTML using the special delimiters <% ... %>.

To illustrate how server pages work, consider the following examples:

<%@ language="SScript" %>
<html>
<head>
<title>Smalltalk Server Page Example</title>
</head>
<body>
<% theHour := Time now hours. %>
<%= theHour > 18

ifTrue: ['Good evening.']
ifFalse: [theHour > 12

ifTrue:['Good afternoon.']
ifFalse: ['Good morning.']]. %>

</body>
</html>

Here, the first scripting action stores the hour in a local variable theHour.
The second tests theHour and uses an output expression <%= ... %> to
insert the appropriate string (e.g., 'Good morning') into the template.

Testing the Example
To test this server page:

1 Save the script file in the home directory.

Be sure to use the .ssp file extension when saving the script file,
e.g., C:\visualworks7\web\example1.ssp.

2 Set up a Web site (for details, see “Creating and Configuring a Site”
on page 5-5).

3 Open a Server Console to start a Smalltalk Server on localhost:8008
(for details, see “Using a Web Server” on page 4-2).

4 Launch a Web browser and enter the following URL:

http://localhost:8008/example1.ssp
The text "Good morning.", "Good afternoon." or "Good evening." should appear
in the browser.

Additional server page examples can be found in the \web\examples
directory of the VisualWorks installation.
Web Application Developer’s Guide 7-3

Server Page Applications
VisualWorks Implementation
The VisualWorks Application Server provides class protocol analogous to
the developer’s interface to ASP/JSP. When using the server page
application model, implicit variables may be referenced by scriptlets and
expressions. The implicit variable names, and the classes which provide
their protocol are summarized in the following table:

Aspects of the server environment are controlled using the class protocol
provided by ASPServer. This corresponds to the ASP server object.

Support for ASP-style scripting elements is described in the following
section. For details on support for JSP-style scripting elements, see
“Server Page Extensions” on page 9-1.

Variable Class Description

request Request Instances represent the contents and all
parameters received by the Web application with
incoming HTTP requests. Corresponds to the
ASP or JSP Request object.

response Response Used to compose and send HTTP response
messages to the client. Provides protocol for
sending individual responses, creating cookies,
and sending general information about the
outgoing content.

out Response Provides direct access to the response stream.

session HttpSession Maintains variables that are specific to a
particular client session. Instantiated for each
active session of the Web application.
Corresponds to the ASP Session object and the
Servlet HttpSession class.

application HttpApplication Maintains variables shared between all sessions
of a single application. Instantiated once when
the application is started, and released when it is
shut down. Corresponds to the ASP Application
or JSP ServletContext object.
7-4 VisualWorks

VisualWorks Implementation
Request
Web applications are built around a message-based request/response
model, with the requests always being sent by the client. An incoming
request may belong to an active session, or it may initiate a new one.
For every HTTP request received by the server, a distinct request object
is instantiated. Within the context of a particular Smalltalk Server Page,
this object is accessed as a variable named request.

Class Request provides protocol for accessing all information in an
incoming HTTP request, including the parameter data (passed either in a
form or in the URL itself), cookies, x.509 certificate fields, or gateway
environment variables (also called server variables) that come with each
HTTP request.

Accessing Parameters
To retrieve the parameters passed to an HTTP request, your application
may use three different access protocols to class Request.

Generally, requests that use forms employ the POST method.
All parameter data accompanying a POST message is passed in the body
of the HTTP request.

For example, the following excerpt of HTML may be used to submit a
book search request using POST:

<FORM ACTION="http://mycompany.com/search.ssp" METHOD="POST">
Author: <INPUT TYPE="text" NAME="author" SIZE=40>

Title: <INPUT TYPE="text" NAME="title" SIZE=40>

<INPUT TYPE="hidden" NAME="details" VALUE="no">
<INPUT TYPE="search" VALUE="Search">
<INPUT TYPE="cancel" VALUE="Cancel">
</FORM>

The Web application then uses script elements to access this parameter
data from an instance of Request:

showDetails := request anyFormValueAt: 'details'.
bookName := request anyFormValueAt: 'author'.
bookTitle := request anyFormValueAt: 'title'.

These statements save the parameters as local variables on the server
page, so that their values may be passed to the component that actually
performs the book search.

Alternately, HTTP requests may use the GET method (sometimes called a
query) to pass parameter data in the URL. Here, a list of name/value
pairs are appended to the URL following a ? (question mark) character
and separated by & (ampersand).
Web Application Developer’s Guide 7-5

Server Page Applications
In the example shown above, submitting the form to the book searching
application might result in a new page containing list of books found, each
of which is presented to the client as a hyperlink.

A typical link might be as follows:

http://mycompany.com/search.ssp?details=yes&author=Plato&title=Republic

This URL, when selected, sends an HTTP GET message with three
parameters: one to specify that the client wants details; one for author and
one for title. When the server handling SSPs receives this HTTP request,
a Request object will be created that holds the three parameters in its
queryString collection.

The Web application can access the elements in the queryString collection
using the following expressions:

showDetails := request anyQueryValueAt: 'details'.
bookName := request anyQueryValueAt: 'author'.
bookTitle := request anyQueryValueAt: 'title'.

Finally, class Request also provides a single message that may be used to
access both query and form data:

showDetails := request anyParameterValueAt: 'details'.
bookName := request anyParameterValueAt: 'author'.
bookTitle := request anyParameterValueAt: 'title'.

The access methods anyParameterValueAt: and allParameterValuesAt: will
search through the queryString collection, then the form collection, and
lastly the cookies collection.

Multi-Part Forms
Multi-part forms may be used when capturing a large amount of form
input from a client, or transferring data from client to server (uploading).
They offer several advantages over a simple POST operation. The
Application Server supports multi-part forms, using instances of class
MimeEntity to represent the form data.

No additional protocol is provided for accessing multi-part form data.
Sending anyParameterValueAt: to the request object normally returns a
String, but will instead return an instance of MimeEntity when multi-part
forms are used. To obtain the value of the MimeEntity, you must send it the
#value message twice, e.g.:

uploadFileName := (request anyFormValueAt: 'fileName') value value.
Two pieces of example code are provided to demonstrate the use of
multi-part forms: class SimpleFileUploadServlet and the server page
$(VISUALWORKS)/web/examples/fileuploadtest.ssp.
7-6 VisualWorks

VisualWorks Implementation
Encoding Form Data
When a web request is sent, any form data containing non-ASCII
characters is encoded by the client’s browser. The URL-encoding scheme
is employed, and out-of-range characters are represented using %HH
notation. However, the particular encoding is not specified in the request,
so the server application must know how to decode these characters.

Encoding can be a problem even within a particular locale, because
different clients may be using different character sets, and they may differ
only in a few characters. For example, in the US-English locale, the ISO-
8859-1 character set (common on Unix) mostly overlaps with the
Microsoft Code Page 1252, but a few characters are different. The
Microsoft quote characters, for instance, are not included and can pose
problems if the ISO-8859-1 encoding is used.

There are several distinct steps that must be taken to ensure that form
data is encoded and decoded predictably.

First, when creating forms that may contain non-ASCII characters, the
META tag should be used to specify the character set. For example:

<META http-equiv="Content-Type" content="text/html; charset=utf-8" />
When in doubt, UTF-8 is a safe choice because it captures all Wetsern
and Eastern characters.

Note that when using the META tag in this way, the page must also be
served in the specified encoding. By default, the VisualWorks Application
Server uses UTF-8. To change this, use the setting Charset for Form Data on
the Character Sets and Locales settings page (you may also wish to disable
Set Session Charset from Initial Request), or WebToolkitSettings>>formEncoding.

Second, the server page should instruct the browser to use a known
character set by including an Accept-charset parameter in the form
definition. For example:

<FORM Accept-charset="utf-8">
Normally, the browser uses this parameter to include Accept-charset
among the HTTP headers for the request sent to the server.

Caution: Several browsers, including Internet Explorer 6.0, do not
generate any Accept-Charset headers, though they do try to
follow the encoding specified in the META tag.

Due to known limitations with several browsers (e.g., Internet Explorer),
your application should emply both the META tag for each page and the
Accept-charset parameter for each FORM definition.
Web Application Developer’s Guide 7-7

Server Page Applications
Cookies
Cookies enable Web developers to maintain client persistent state across
Web sessions. Request objects may contain cookie information that can
be accessed within a server page. The Application Server provides
several different interfaces for working with cookies (for a more complete
discussion, see “Cookies” on page A-1).

Cookies may be simple name/value pairs, or they may be dictionaries.
Starting with an instance of Request, your application can access a
particular cookie by name using the following expression:

lastVisit := request cookieValueAt: 'last_visit_date'.
If several values belong to a single name, cookieValueAt: will return the
first; if none, it will return nil. To obtain all cookies associated with a
particular key:

userDates := request allCookieValuesAt: 'user_dates'.

Server Variables
Request objects provide access to a collection of predefined environment
variables containing specialized information about the client’s HTTP
request. For example:

clientAddress := request serverVariableAt: 'REMOTE_HOST'.
This returns the name of the remote machine hosting the client, as it
would appear on a DNS lookup. For a complete description of the
environment variables available in an request object, see “Server
Variables” on page 2-4.

Retrieving the Client’s Locale
A client may optionally specify language and locale preferences that are
passed to the Web server via the Accept-Language header.

Query the request object for locale preferences as follows:

userLocale := request locale.
acceptedLocales := request locales.

If the client has specified at least one locale, the locale method returns an
instance of Locale, with priority being given to the first language/locale
selected by the client. The locales method returns a collection of Locale
objects, ordered from most to least preferred as specified by the client. If
no locale is indicated in the request, locale and locales will return the
default Locale object assigned by the Application server.

For more details about working with Locales, refer to the VisualWorks
Internationalization Guide.
7-8 VisualWorks

VisualWorks Implementation
Response
A response object represents an HTTP response sent from the Web
application to the client. Within a Smalltalk Server page, this object may
be referenced as a local variable named response. Class Response
provides protocol for writing HTML information to the outgoing HTTP
response, including the content that will be sent to the client (the
response body), header information specifying the content’s data type,
and cookies. The response object also provides protocol for controlling
the buffering of the actual HTTP message sent to the client.

You may use the response object to set the expiration time of a given
page, to specify whether or not the page may be cached by a proxy
server, and to query whether or not the client is still connected to the Web
application.

As a general strategy, you should set any special header values in the
response before beginning to write HTML content to it. Failure to observe
this rule may cause header information to be lost en route to the client.

Writing and Buffering Responses
Generally, text is sent to the HTTP stream using an output expression.
For example, the following expression sends the current time to the
output stream:

The time is: <%= Time now printString %>
There are occasions when you may wish to pass text to the output stream
using an explicit message send within Smalltalk code:

<% response write: 'The time is: ' , Time now printString. %>
This yields the same result as the output expression, using <%= ... %>.

The write: message takes a String or ByteArray for its parameter. You can
also pass HTML tags directly to the output stream using write:.
For example:

<% response write: 'The time is: ' , Time now printString , ''. %>
When writing to the response object, applications written using server
pages use essentially the same message protocol as those implemented
using servlets. For details, and a discussion of response buffering, see
“Writing and Buffering Responses” on page 6-16.
Web Application Developer’s Guide 7-9

Server Page Applications
Setting Character Sets and Content Type
You may set both the character set and MIME content type attributes of
the response object. As a general rule, servlets are better for sending
custom media types to a client’s browser. For details, and an illustration of
how to send non-textual media types, see “Specifying Character Sets and
Content Type” on page 6-19.

Setting Language or Locale Attributes
If a client specifies preferred language or locale information, you may
wish to set the language/locale attributes of a response object. These
attributes are generally sent as HTTP message headers (additional
mechanisms are available in HTTP/1.1).

When manipulating language and locale settings, applications written
using server pages use essentially the same message protocol as those
implemented using servlets. For details, see “Setting Language or Locale
Attributes” on page 6-20.

Setting the Expiration Time
Use expires: and expiresAbsolute: to set the length of time that the client
machine should cache the response page. If the client returns to view the
page before the specified expiration time, the Web browser will display
the copy stored in its local cache. For example:

"expires in one hour"
response expires: 60.

The browser can be directed to never cache the page by sending expires:
with a value of zero. This will cause the browser to reload the page from
the server on every re-viewing.

Use expiresAbsolute: to specify a date and/or time (using an instance of
class Timestamp) when the browser should invalidate the cached page:

response expiresAbsolute: expirationTimestamp.
Alternately, you may omit either the date or time. If no date is specified,
the browser will invalidate the cached page at midnight of the current day;
if no time is specified, the browser uses midnight of the specified date.

Since the client and server are very often in different time zones, GMT
time is used so that there is no confusion about the expiration time.
The Application Server automatically converts this expiration time to GMT
before sending the response to the client.

If output buffering is disabled (it is enabled by default), expires: and
expiresAbsolute: should be used before any output is sent to the client. For
additional details, see “Controlling Caching” on page 7-12.
7-10 VisualWorks

VisualWorks Implementation
Creating and Updating Cookies
Cookies are passed to the client via the response object. When working
with cookies, applications written using server pages use essentially the
same message protocol as those implemented using servlets.

For details, see “Passing Cookies to the Client” on page 6-17.

Testing the Client’s Connection
During lengthy script operations, it may be desirable to discontinue script
execution if the client has disconnected or moved to another page. Use
isClientConnected to test the status of the connection. For example:

response isClientConnected
ifFalse: [response end].

The method isClientConnected returns true as long as the HTTP response
stream to the client is open.

Response Status
Use status: to specify the three-digit status Integer that is passed to the
client’s browser with the HTTP response.

For example:

response status: 200.
...
response status: 404

reasonString: 'The requested page could not be found.'.
Generally, status: is used to indicate unavailable resources or internal
error conditions. For a complete description of available status
categories, see “Response Status” on page 2-6.

Redirection
Use redirectTo: to request the client’s browser to redirect to another URL:

response redirectTo: '/index.html'.
The redirectTo: message takes a parameter which is either a relative URL
(e.g., /catalog/search.ssp), or a full one (e.g., http://mycorp.com/index.html).

If output buffering is disabled (it is enabled by default), the message
redirectTo: must be used before any content is written to the response.

If the redirection is to another page in the same application, you may also
use the ASPServer method transfer:for:, which performs the redirection on
the server, rather than the client side. For details on server-side
redirection, see “Dispatching and Transferring Execution of a Script” on
page 7-18.
Web Application Developer’s Guide 7-11

Server Page Applications
Controlling Caching
Use cacheControl: to indicate that proxy servers can cache the page. By
default, pages are not cached, but for large pages with static content,
clients may receive faster responses from a local proxy server.

Note: The cacheControl: option has no effect over local client caching,
only the behavior of proxy servers.

By default, this setting is 'Private'; to disable caching. To enable caching:

response cacheControl: 'Public'.
For additional details, see “Setting the Expiration Time” on page 7-10.

Accessing the Response Header
Each response object contains a collection of HTTP message headers
used to pass cookies, character encoding, and similar parameters.
Although class Response provides some access protocol, under certain
circumstances you may want to add headers directly to the response
object.

Use addHeader:value: to append a message header:

response addHeader: 'My-Header' value: 'SomeToken'.
If you add a header with a previously defined name, the new value is
included in the message headers collection, and all headers will be sent
with the response.

To examine message headers sent by the client, including custom
headers, send the serverVariableAt: message to the request object.

Note: When defining custom headers, it is best not to use names
with embedded underscores, as these might collide with predefined
header values used by HTTP, producing unpredictable results.

If output buffering is disabled (it is enabled by default), addHeader:value:
should be used before any output is sent to the client.

Logging
Use appendToLog: to append a String to the server’s W3C-format log file.

Note: The appendToLog: method is unimplemented in version 7.6 of
VisualWorks Application Server.
7-12 VisualWorks

VisualWorks Implementation
Application
The Application object provides a way to share state between all users of
an application. It has one instance variable, contents, which is a Dictionary
used to hold variables of application scope. When a Web application is
first started, a single instance of class HttpApplication is created. It exists
until the application is unloaded or the server is shut down.

Class HttpApplication should not be subclassed, and in general its
instances should be used sparingly. Typically, the contents Dictionary is
initialized at startup to contain constants that are global to the application.
For example, we might place the following expression within a server-side
include:

application at: 'Catalog' put: 'Books'.
Subsequently, during the execution of the application, we can access the
value of 'Catalog' using this expression:

application at: 'Catalog'.

Application Events
The application object provides a simple event mechanism that may be
used to initialize application variables during startup or to save them at
shutdown. Presently, two events are defined: ApplicationStartup and
ApplicationShutdown (these correspond to the ASP-style events named
onStart and onEnd).

The ApplicationStartup event is triggered once when the first incoming
request is received to launch a Web application. The ApplicationShutdown
event is triggered when the Web application is about to be shut down,
typically when an administrator stops it using the Server Console. Like
the ApplicationStartup event, ApplicationShutdown is only triggered once.
Since there may be active Web sessions when the shutdown event is
triggered, changes to some application variables may be lost.

Events are handled by callback methods. Each must be a class method,
with a single parameter for the object for which the event is triggered (i.e.,
the application object). To receive event notification from the Application
Server, these callback methods must be registered in an initialization file.

For details, see “Event Callbacks” on page 5-11.

It should be noted that the Application Server does not configure itself
(i.e. read and install the configuration from the designated configuration
files) until it receives the first request through a listening server.
Web Application Developer’s Guide 7-13

Server Page Applications
For applications which may wish to perform their own configuration, a
private, internal event is sent to signal the completion of Application
Server configuration.

Note: This is a private event defined by the VisualWorks Application
Server, and is not the same as the ApplicationStartup event, which
occurs for each web site as it is configured.

To catch this configuration-completion event and pass control to your own
application configuration logic, you may use a piece of code like the
following in a class-side initialize method or in the postLoad action for your
application’s parcel:

WebConfigurationManager
when: #finishedServerConfiguration
send: #configureMyApplication
to: MyApplicationConfigurator.

Parallelism
VisualWorks Application Server supports parallel processing within an
application. By default, each incoming Web request spawns a separate
Smalltalk process. In general, care should be taken to ensure that all
code which modifies application or session variables is thread safe.

Note: It is the developer’s responsibility to protect modifications to
application variables using critical sections.

Multiple pages can also be chained together within the same thread
using the execute:for: and transfer:for: methods provided by the server
object (for details, see “Dispatching and Transferring Execution of a
Script” on page 7-18).
7-14 VisualWorks

VisualWorks Implementation
Session
Since the basic HTTP messaging protocol is stateless, the VisualWorks
Application Server provides a transparent “session” interface that makes
it possible to associate state with each active client. Session objects are
used to track user-identification and user-specific data across a number
of discrete transactions between the client and Web application.

When a client first requests a server page in a Web application, the
server creates an instance of class HttpSession and initializes it for that
client. This session object exists until the site visit is concluded, either
because the client has abandoned the session, or because the server
has concluded it. A session can remain inactive until a specified timeout
(20 minutes by default), at which point it is terminated by the server.

Session objects are typically used as a place to store data that can be
accessed across a number of different pages. They may also be used to
hold the client’s movement through a series of pages (especially when
entering form data).

Accessing Session Variables
Each session object holds a Dictionary of session variables which may be
shared by all pages in the application. Use at:put: to add a key to this
Dictionary, e.g.:

session at: 'userName' put: 'Marie'.
To access the value of a variable during the session:

name := session at: 'userName'.
name := session at: 'userName' ifAbsent: [self getNewUsername].

To remove the variable from the Dictionary:

session removeKey: 'userName'.
To obtain a Set of all variable names in the session:

sessionVars := session keys.

Specifying a Locale
Each response object carries a locale attribute that corresponds to a
standard international country code. This attribute indicates how
information like dates and currency should be formatted by the browser.
In North America, for example, dates are formatted as month/day/year,
whereas in Europe they are formatted day/month/year.

By default, the Application server sets the locale and character set
automatically when the session is created, based upon the Accept-
Language header of the request object (however, this can be turned off
Web Application Developer’s Guide 7-15

Server Page Applications
in the settings pages). Your application can also specify a different locale
by explicitly setting the attribute in a response object. Locale information
is held in the session object, and persists as long as the session exists.

Use locale: with an instance of Locale to change the locale ID that will be
received by the client’s browser. For example, to set the session to the
current locale used by the server:

session locale: Locale current.
Clients may optionally specify their language and locale preferences
using the Accept-Language header attached to an HTTP request.

For details about working with Locale, refer to the VisualWorks
Internationalization Guide.

Setting the Session Timeout
By default, the Application Server will expire all sessions that have been
inactive for 20 minutes. Use timeout: to change this interval:

"set session timeout to 30 minutes"
session timeout: 30.

If user sessions tend to be short, you should consider lowering the
timeout value to conserve memory resources on the server machine.
Increasing the timeout value increases the amount of idle session state
the server must maintain.

Abandoning a Session
When a user session reaches its end, you may use the abandon method
to release all session-scoped variables and associated memory
resources. The next server page requested by the client will prompt the
server to instantiate a new session object.

In general, it is a good idea to end the client’s session using abandon,
otherwise the server continues to maintain the client’s session state until
a timeout occurs.

Note that the abandon method immediately releases all session-scoped
variables. Any references to session variables between the abandon and
the end of the page containing its invocation may raise an exception.

Obtaining the Session ID
During a client session, a unique ID is assigned by the Application Server
to each active client. The server automatically maintains this ID using a
cookie on each client’s machine. During each subsequent transaction,
7-16 VisualWorks

VisualWorks Implementation
the server identifies the client’s identity by matching the cookie sent with
each HTTP request message. This mechanism enables the server to
maintain session state for each active client.

Clients who have disabled cookies cannot use an application with this
particular session logic. In this case, the application may either (a)
maintain session state using variables in a queryString or, (b) maintain
session state using variables in an HTML form hidden in each page.

Send the message id to obtain the unique ID assigned by the server:

myID := session id.
The session ID cookie is maintained on the client’s machine until either
the client restarts the browser, the cookie expires on the client’s machine,
or the server ends the session. Note that the expiration of the cookie
holding the session ID and the timeout value used by the server to expire
sessions are two distinct intervals.

Caution: A session ID should never be cached in a database or
used for the purposes of identifying a user across visits to the Web
site.

In effect, the session ID is only semi-unique. For example, if the user’s
session ends normally, or if the server abandons the session, and the
client subsequently returns to the Web application, the server may re-
issue the same session ID.

The session ID for any given client is guaranteed to change only when
client’s browser and server application have both been restarted. Thus,
your application should not assume the value persists between sessions.

Session Events
Session objects include a simple event mechanism that may be used to
initialize variables during startup or to save them at shutdown. Presently,
two events are defined: SessionStartup and SessionShutdown (these
correspond to the ASP-style events named onStart and onEnd).

The SessionStartup event is triggered once when the first incoming request
is received to create a session object. The event occurs before any code
in the server page is executed. The SessionShutdown event is triggered
when the session times out or is ended explicitly using the abandon
method. Like the SessionStartup event, SessionShutdown is only triggered
once.
Web Application Developer’s Guide 7-17

Server Page Applications
Events are handled by callback methods. Each must be a class method,
with a single parameter for the object for which the event is triggered (i.e.,
the session object). To receive event notification from the Application
Server, these callback methods must be registered in an initialization file.

For details, see “Application Events” on page 7-13.

Server
The server object provides protocol for controlling the flow of page
execution, and accessing various aspects of the server environment. The
server object is essentially a collection of miscellaneous functionality that
belongs to the Web application server itself. It is most frequently used
when your application needs to redirect the thread of execution from one
page to another.

Setting the Script Timeout
Use the scriptTimeout: method to specify the maximum amount of time the
server will devote to executing the current page:

"evaluate the current script for no longer than 30 seconds"
ASPServer scriptTimeout: 30.

By default, a script will be evaluated for a maximum of 90 seconds. If the
timeout is reached, the server sends a timeout error to the client.

Note: The scriptTimeout: method is unimplemented in version 7.6 of
VisualWorks Application Server.

Dispatching and Transferring Execution of a Script
During the execution of a script, you may dispatch control to another
script using execute:for:, or transfer control entirely using transfer:for:.
For example:

ASPServer execute: '/MyApp/CreateProfile.ssp' for: aPageModel.
Each method takes the same parameters: a path string and an instance
of PageModel. The sole difference between the two is that whereas
execute:for: returns control to the original page once execution is
complete, transfer:for: does not.

The execute:for: and transfer:for: methods are generally used to assist
when breaking a more complicated application into smaller elements.
In cases where the application needs to redirect the client to another URL
on the same server, transfer:for: may be used for faster redirection that is
possible with a client-side redirect.
7-18 VisualWorks

VisualWorks Implementation
Since local variables defined within the context of a page are confined to
the name scope of that page, local variables on the page of the sender of
execute:for: are distinct from similarly-named local variables on the page of
the receiver. If you need to share objects between pages, use the session
object or request attributes (for details, see “Session” on page 7-15).

Unlike variables local to the page, the contents of the request object are
maintained when evaluating execute:for: and transfer:for:. Thus, incoming
form data or cookie objects that are accessible in the page that sends
transfer:for: are likewise accessible in the target page.

Converting a Virtual Path
Use mapPath: to convert a virtual path to the physical path used by the
VisualWorks Application Server:

ASPServer mapPath: '/MyApp/CreateProfile.ssp'
If the parameter to mapPath: begins with a slash character (/ or \), a
mapping from a virtual to a physical path is performed, otherwise it is
assumed that the parameter contains a path relative to the location of the
current script’s home directory on the Web server. In either case, the
result is a String containing the physical path, formatted following the
conventions of the host file system.

For details on URL mapping, see “Content Management” on page 10-1.

Encoding URLs for Queries
Characters such as ?, &, and + all have specific meanings in a URL, and
must be translated into equivalent URL entities before they can be sent
as queries. Use the urlEncode: method to perform the proper translation.

For example, consider the following URL in plain text:

http://mycorp.com/search.ssp?title=The Olive Book
To pass the following String as a valid URL, it must be converted like this:

http://mycorp.com/search.ssp?title=The+Olive+Book
Thus, if we want to generate this URL in a server page and then include it
as a hyperlink, we must first convert the URL:

"translate URL entities"
<% anURL := 'http://mycorp.com/search.ssp?title=The Olive Book'. %>
...
<A HREF="<%= server urlEncode: anURL %>The Olive Book

Any URL that contains a query string should be converted before being
included in a server page.
Web Application Developer’s Guide 7-19

Server Page Applications
All characters with an ANSI value greater than 126 decimal must be
converted into % character followed by the ANSI value represented in
hex. Additionally, the characters listed below must also be converted:

Encoding HTML for Page Display
Use the htmlEncode: method to convert characters which have reserved
meaning in HTML into their quoted equivalents. For example:

"explain simple text emphasis in HTML"
unencodedText := 'The tag is used to indicate bold text.'.
encodedText := server htmlEncode: unencodedText.

<%= encodedText. %>

This method should be used anytime you wish to display HTML source or
otherwise prevent the client’s browser from interpreting reserved HTML
characters.

Character URL Entity Character URL Entity

space + \ %5C

' %27] %5D

! %21 ^ %5E

%23 ' %60

$ %24 { %7B

% %25 | %7C

& %26 } %7D

(%28 + %2B

) %29 < %3C

/ %2F = %3D

: %3A > %3E

; %3B [%5B
7-20 VisualWorks

VisualWorks Implementation
Error Handling
Errors during the execution of a server page are of two general types:

• Errors that occur during the compilation of a page

• Errors that occur during the evaluation of a page

The first type of error includes syntax errors and exceptions raised when
attempting to resolve references to bindings at compilation time.
Ordinarily, these will prevent any page processing and return a response
of type 500, indicating an Internal Server Error.

Errors that occur when evaluating scripting elements on a page raise an
exception. Your application code should handle these exceptions (most
commonly “message not understood”). Any unhandled exceptions will
cause page processing to abort and return an error page to the client.

Handling Exceptions in Server Pages
Applications written using server pages may raise exceptions during the
course of normal execution. Generally, the application developer will want
to catch these exceptions, often redirecting control to another page.

During exception handling, it is often desirable to pass an error string or
other parameters to the code that handles the exception. In the case of
an application implemented using server pages, this may be done using
session variables.

In the following code sample, the session variable serverError is used to
hold the exception’s error string while control is transferred to the page
showServerError.ssp:

[doSomething]
 on: Error
 do: [:ex | session at: 'serverError' put: ex description.
 ASPServer transfer: '/showServerError.ssp' for: self].

The page showServerError.ssp might report the error using code like this:

Error: <%= session at: 'serverError' ifAbsent: ['Unknown error']. %>
In a slightly more elaborate situation, code that validates a user name
against a profile stored in a database might redirect to a special page
called loginError.ssp that handles login errors, e.g.:

[userProfile := databaseBroker findUserName: userName]
on: Error
do: [:ex | session at: 'loginError' put: 'Unknown user -- try again'.

session at: 'unvalidatedUserName' put: userName.
ASPServer transfer: '/loginError.ssp' for: self].
Web Application Developer’s Guide 7-21

Server Page Applications
7-22 VisualWorks

8
Server Page Syntax

Smalltalk Server Pages follow the general conventions for server-side
scripting with Microsoft’s Active Server Pages (TM) and Sun’s Java
Server Pages (TM). This chapter presents an overview of server page
conventions and explains the relationship between the code that appears
in a server page and that of a standard Smalltalk method.

A single server page may contain elements of both HTML and Smalltalk
code, as well as a client-side scripting language such as JavaScript.
Special tags separate the server- and client-side code, identifying which
parts of the page will be processed by the application server, and which
parts by the client’s browser.

When the client’s browser requests a page with the .ssp, .jsp, or .asp
extension, the application server loads the page and evaluates any script
contained within. The results of this evaluation are then sent to the client
as a new HTML document. From the client’s perspective, the
transformation is invisible.

Smalltalk Server Pages may also be written in an alternate syntax using
XML-format scripting expressions. These predefined tags make it
possible to author pages using standard XML-editing tools, and you can
extend the standard action types by defining your own tag libraries.
Web Application Developer’s Guide 8-1

Server Page Syntax
Syntax
Server pages are HTML documents composed of a template (the static
HTML) and scripting elements. Scripting elements are generally identified
in a server page using the following tag:

<% ... %>
Alternately, scripting elements may be placed in XML format, including a
tag followed by some number of attributes (JSP-tag style), e.g.:

<jsp:scriptlet>
...
</jsp:scriptlet>

Smalltalk server pages may contain three types of scripting element:
directives, actions, and output expressions. Actions are sometimes
referred to as scriplets, and output expressions simply as expressions.

A directive is a scripting element that is interpreted by the scripting
engine as a command. It is not treated as a Smalltalk expression, and
has no direct effect on the HTML page output. Directives are used to
indicate the scripting language, set page buffering modes, and so forth
(for details, see “Directives” on page 5).

An action or scriptlet is a Smalltalk expression or group of expressions
that will be evaluated as part of a single method when the page is
requested by the client. The result of the evaluation is merged with the
HTML sent to the client.

For example, the following Smalltalk server page code:

<HTML>
<TITLE>Time Example</TITLE>
<% response write: 'The time is now ' , Time now printString. %>
</HTML>

causes the following HTML to be sent to the client:

<HTML>
<TITLE>Time Example</TITLE>
The time is now 3:29:18 pm
</HTML>

Since the results should appear in a textual form, we send the message
printString to the instance of Time.

Note: Although Smalltalk syntax does not require a period at the end
of a method, a scriptlet should always end with a period character.
8-2 VisualWorks

Syntax
Alternatively, an action may use an output expression tag <%= ... %> to
generate a textual result. To do this, we could rewrite the middle line of
the example like this:

The time is <%= Time now %>
When using an output expression, the period that marks the end of a
Smalltalk statement is not required.

To produce more complex structures, Smalltalk scripting elements and
HTML can be mixed together, particularly by placing one type of tag
within the constructs of the other. In this way, Smalltalk expressions may
be used to generate HTML code.

For example, to create a list of customer names for an HTML drop-down
menu, we might use the following:

<% response write: '<select name="developerNames" size="10" multiple>'.
customerNames do: [:name |

response write: '<option value="'.
response write: name.
response write: '">'.
response write: name.
response write: '</option>'].

response write: '</select>'. %>
In HTML, the select tag is used in the definition of a FORM. Here we can
use a loop written in Smalltalk to generate a list of customer names that
will populate the list of items to “select” from.

The Smalltalk code alone looks like this:

customerNames do: [:name | name].
Inside the select tag, we begin a loop over the list of customer names. To
define the select options, the Smalltalk block variable name is embedded in
HTML using two output expressions <%= ... %>. Since the loop hasn’t
been closed, the option tag will be repeated for each customer name,
expanding into a list of names. Within the option tag, we embed the name
of the customer, which varies according to the loop. Finally, a new
Smalltalk code fragment is used to terminate the loop with "].".

Although it is not necessary to place all server-side script within the
<HTML></HTML> tags, you must be sure to place it within these tags when
using scripting elements to generate HTML code.
Web Application Developer’s Guide 8-3

Server Page Syntax
Capitalization
The capitalization conventions for Smalltalk scripting elements follow
those of VisualWorks Smalltalk. In general, these are more lenient than
the conventions used by server-scripting languages like ASP and JSP,
though all tags and names are case sensitive.

In Smalltalk, only class, name space, and shared variable names must
use an initial capital. By convention, all other names (methods, instance,
class instance, and temporary variables) begin with a lower-case letter.

Variables
Smalltalk server pages may reference predefined, persistent variables in
the application model, as well as declare their own temporary variables to
use during the execution of a page.

Classes and shared variables within the scope of page’s application
model may be referred to by name. For details on the scope of reference
within a page, see “Server Page Applications” on page 7-1.

When the code on a server page is evaluated, it is transformed into a
method. Temporary variables in this method may be defined explicitly
using vertical bars | ... | in standard Smalltalk syntax, or they may be
defined implicitly by the compiler at execution time. The latter is a feature
particular to Smalltalk server pages.

For example, the following code defines a temporary variable:

<% | customer |%>
<HTML>
<HEAD><TITLE>DynamicForm.asp</TITLE></HEAD>
...

Alternately, this variable may be definied implicitly by the compiler. If we
include the following tags in the body or the page:

<HTML>
<HEAD><TITLE>DynamicForm.asp</TITLE></HEAD>
...
<% customer := database findCustomerWithId: 12. %>

In the Smalltalk programming environment, we would need to declare
customer as a temporary variable at the beginning of a method. In the
case of a server page, though, the compilation process is such that any
variable name used within that page that is not otherwise defined is
assumed to be a temporary variable.
8-4 VisualWorks

Syntax
Note: Although some scripting languages use a special notation for
declaring variables, Smalltalk does not require explicit declarations.
Thus, the JSP convention of declaring variables with <%! ... %> is not
necessary on Smalltalk Server Pages. In fact, it is not allowed.

Finally, the fragments of HTML on the server page are stored as variables
and made available as temporaries named htmlChunk1, htmlChunk2, etc.
These should only be used for debugging purposes.

Scripting Variables
Server pages include the notion of scripting variables, which are declared
at page-execution time and accessible only within the scope of the page.

Actions may reference these scripting variables by name, just like other
variables. The only difference is in their declaration. For example, the
following tag defines a scripting variable named user that is assigned a
new instance of UserProfile, available in the context of the enclosing page:

<jsp:useBean id="user" class="UserProfile" />
The scripting variable “user” is always available within the context of the
enclosing page, and the useBean tag allows it to be defined within other
scopes as well (for details, see “Standard Actions” on page 8-8).

The Application Server provides a number of implicit scripting variables
(sometimes called implicit objects). These objects are part of the SSP
application model, and may be accessed within scriptlets using their
reserved names: request, response, out, handler, application, and session. For
details on their protocol, refer to “Server Page Applications” on page 7-1.

Comments
Within a scripting element, regular Smalltalk comments may be used,
delimited by double quotes. Anywhere on the page, it is possible to use a
server page comment, using the notation:

<%-- comments --%>

Directives
Directives are indicated using special delimiters:

<%@ ... %>
Directives do not have a direct effect of the page that contains them, but
are treated as commands to the scripting engine. Generally, a directive is
an attribute/value pair.
Web Application Developer’s Guide 8-5

Server Page Syntax
The following directives are defined in VisualWorks Application Server
7.6:

Language
Smalltalk server pages are identified by a special LANGUAGE tag that
appears at the beginning of each page of code processed by the server:

<%@ LANGUAGE="SScript" %>
This directive identifies the scripting engine to be used by the server
when processing the page. The value SScript sets Smalltalk as the
scripting language. Normally, a single server technology is specified for
the site as a whole.

Note that it is possible and often convenient to combine client-side script
in the same page by using the <SCRIPT> tag. For example, client-side
widgets may be implemented using JavaScript using the following tag:

<SCRIPT LANGUAGE="JScript" >
Script that is embedded in this way will be ignored by the server.

When using commercial Web design applications, you may need to
change the preferences to include this tag in the server pages generated
for your site. When using Macromedia Dreamweaver, for example, you
must specify Smalltalk server pages as the server technology in order to
generate the correct LANGUAGE tag.

Note: In version 7.6 of VisualWorks Application Server, the
LANGUAGE tag is optional. The Application Server assumes that all
files containing server-side script will be in Smalltalk. This may be
changed in a future release.

Taglib
Specifies a tag library to be used when evaluating a server page that
uses JSP tags. The tag library is contained is a separate file that may be
named by either an absolute or a relative URI, e.g.:

<%@ taglib uri="file:cincomtags.tld" prefix="cincom" %>
The tag library file is an XML document containing tag definitions for use
in the page. If the file is specified using a relative URI, it is interpreted as
being relative to the directory containing the server page. A prefix must
also be specified to distinguish the actions that use the library’s tags.

For details on the use of tag libraries and custom tags, see “Server Page
Extensions” on page 9-1.
8-6 VisualWorks

Predefined Scripting Actions
Predefined Scripting Actions
Smalltalk Server pages can also be written using special XML-format
actions. These follow the JSP specification and can be combined with
scripting elements or used in their place.

The advantages of using these actions are that you can entirely eliminate
the use of code from your server pages, helping to separate the roles of
Web designers and developers, as well as making it simpler to
manipulate the pages using HTML and XML tools.

The VisualWorks Application Server provides a predefinied set of tags,
and also supports mechanisms that let you define your own tags.

Smalltalk server pages can include the standard JSP actions specified
using scripting element tags. Note that these tags are case sensitive and
often mixed case.

Tag Attributes
Scripting elements in XML format can include named attributes. The
value of a named attribute must be quoted.

There are two general tag attributes which may be applied to most
scripting elements:

id
You may use the id="name" attribute to declare a name for the element
that may be used within the scope of the current server page. I.e., if
the action instantiates a new object, this object will be associated
with name for the duration of the page.

scope
Use the scope="page|request|session|application" attribute to assign a
specific scope to the value of an action. When associating the object
with session or application scope, the object is assigned as an
attribute of the session/application.
Web Application Developer’s Guide 8-7

Server Page Syntax
Standard Actions
The following tags are supported in VisualWorks Application Server 7.6:

useBean
Create a new instance of the class, assigning it the scripting variable
name id within the specified scope. Note that a scripting variable is always
declared for id within the scope of the page, regardless of the value
specified for scope.

The action may optionally include a body. If a body is included, it will
generally contain scriptlets or one or several setProperty tags.

The following attributes are defined:

Example:

<jsp:useBean id="clock" class="MyNameSpace.ClockClass" scope="session" />

setProperty
Set the value of properties in a scripting variable. Use the name attribute
to identify the variable.

The following attributes are defined:

Attribute Description

id Name used to identify the object within the specified
scope, as well as the scripting (local) variable name used
during page evaluation. The id is case sensitive.

scope Scope of the newly named instance — can be page |
request | session | application. Defaults to page scope if not
specified.

class Fully qualified name of the class used to instantiate the
object. The class name is case sensitive.

beanName Not supported.

type Not relevant in Smalltalk.

Attribute Description

name Name of the instance created with a useBean action.

property Name of the property to be set. If the property attribute is
set to “*”, the setProperty tag sets every named property in
the specified scripting variable with the corresponding
values in the current Request object.
8-8 VisualWorks

Predefined Scripting Actions
Examples:

<jsp:setProperty name="request" property="*" />

<jsp:setProperty name="customer" property="fullName" param="username"/>

getProperty
In the scripting variable specified using name, obtain the instance variable
specified using property, and return its String value. The getProperty tag
functions as a scripting expression.

The following attributes are defined:

Examples:

<jsp:getProperty name="userInfo" property="name" />

include
Include the named resource in the current page. The resource is named
using a relative URL that is translated using the active Web site object.

The following attributes are defined:

Example:

<jsp:include page="/MyApp/legalPrologue.html" flush="true" />

param Name of the request parameter to be assigned to an
instance — usually from a Web form.

value The value to assign to the named property.

Attribute Description

name Name of the scripting variable to be referenced.

property Name of the instance variable to retrieve.

Attribute Description

page Relative URL of resource to include.

flush Boolean (mandatory) indicating whether or not to flush the
page, i.e., “true” will cause the page to be flushed.

Attribute Description
Web Application Developer’s Guide 8-9

Server Page Syntax
forward
Dispatch the current request to the named page. The target can be a
resource (static HTML), a server page, or a servlet class name. Since the
forward tag dispatches without returning, the remainder of the current
page will not be executed.

The following attributes are defined:

Example:

<jsp:forward page="/MyApp/servlet/ClientValidate" />

scriptlet
Evaluate the element as a Smalltalk expression.

Equivalent to the tag <% ... %>.

Example:

<jsp:scriptlet>response write: Date today printString</jsp:scriptlet>

expression
Evaluate the element as a Smalltalk expression, adding the result directly
to the response object.

Equivalent to the tag <%= ... %>.

Example:

<jsp:expression>Date today printString</jsp:expression>

Attribute Description

page Relative URL of the page that will assume control.
8-10 VisualWorks

Predefined Scripting Actions
An Example using JSP-style Script
Server pages are generally authored to follow either an ASP or a JSP
pattern. Although the two models are similar at the level of semantics,
their syntax, scripting elements, and scripting protocol are rather
different.

This can be seen in the following simple JSP-style page:

<jsp:useBean id="customer" scope="request" class="CustomerInfo"/>
<html>
<head>
<title>Customer Registration</title>
</head>
<h1>Welcome,<jsp:getProperty name="customer" property="name"/>.</h1>
</br>
<p>Your current profile:</p>

<h2>Name: <jsp:getProperty name="customer" property="fullName"/></h2>
<h2>Address: <jsp:getProperty name="customer" property="address"/></h2>
<h2>Phone: <jsp:getProperty name="customer" property="phone"/></h2>
<h2>Account: <jsp:getProperty name="customer" property="account"/></h2>

</br>
Update your profile.
</body>
</html>

This example page displays the values captured in a CustomerInfo object.
To obtain a named instance of the object, and then display its contents,
two of the standard JSP actions are used: useBean and getProperty.

The jsp:useBean action creates a new instance of CustomerInfo, or else
uses an instance associated with the client’s current Web session. By
setting the “id” attribute, the new instance is identified by the name
'customer' for the scope of the page.

The remainder of the page uses the jsp:getProperty scripting action to
obtain various properties of the CustomerInfo instance (fullName, address,
phone, account), displaying them in an unordered list.
Web Application Developer’s Guide 8-11

Server Page Syntax
8-12 VisualWorks

9
Server Page Extensions

Smalltalk server pages are written using scripting actions in either ASP or
JSP syntax. When using JSP-style pages, developers may extend the
standard action types by creating tag libraries.

A tag library defines a set of custom actions for use in a server page.
Developers can use tag libraries to abstract the functionality of server
pages into a more natural and portable format. Tag libraries are a means
to provide content developers with predefined sets of functionality.

The VisualWorks Application Server supports all both the predefined JSP
1.1 scripting actions, as well as custom actions. This chapter describes
the use of tag libraries and custom tags (for details, see “Predefined
Scripting Actions” on page 8-7).
Web Application Developer’s Guide 9-1

Server Page Extensions
Overview
Custom scripting actions are invoked by using custom tags in a server
page. To define custom tags, you must create a tag library.
Tag libraries facilitate another level of componentization, and are
designed to be used independently of the scripting language.

For example, an application written using server pages and tag libraries
could be ported from one scripting environment to another simply by
changing the tag library. The server pages could use business logic
written either in Java or Smalltalk, while server pages remain unchanged.

Each custom tag defines a set of scripting actions (much like a method
body) which may access all variables and implicit objects contained
within the server page that invokes the tag. Custom tags may also be
nested. The body of a custom tag can, for example, contain other custom
tags that modify the response object which belongs to the calling page.

When to Use Tag Libraries
When considering the use of tag libraries, the following points may help to
choose the best design for your application:

• As a general rule, server pages should not be used to perform
extensive processing of requests. Instead, they should defer
processing to code components in the application’s business logic.

• Tag libraries declare a stable interface to code components. They can
make it easier to work with authoring tools, and to encapsulate code
such that it is more portable between different Application Servers.

• Custom tags and their handlers may be used to modify the content of
a server page. Server-side components invoked from server pages
cannot modify the server pages.

• The use of tag libraries requires some additional effort on the part of
the developer, but generally only in the early phases of the project.
9-2 VisualWorks

How Tag Libraries Work
How Tag Libraries Work
Tag libraries are defined using two parts: (1) a set of tag handler classes,
one class for each custom tag and, (2) a tag library descriptor file (TLD).
The tag handler classes exist as application code that extends the
functionality of the Application Server.

The tag handler classes are associated with the application’s business
logic. They establish an interface to components in the Web application
that may be accessed by code in the server page. The actual interface
definition is declared in the tag library descriptor file. This allows the
server pages and the TLD to be written in a fashion that is portable and
independent of the scripting language.

To use a tag library, each server page needs to explicitly declare an
interest in that tag library’s descriptor file. This is achieved by including a
taglib directive at the head of the server page.

Tag Library Descriptor File
The tag library descriptor file (TLD) is an XML document that describes a
tag library. It is essentially an interface description. The TLD contains a
short header, and a series of definitions, one for each custom tag in the
library. A tag definition specifies the name of the tag, its corresponding
handler class, whether it can support nested tags, and so forth.

Within the TLD, a typical tag definition looks like this:

<tag>
<name>myTag</name>
<tagclass>MyTag</tagclass>
<info>Simple tag that provides my functionality</info>
<bodycontent>empty</bodycontent>

</tag>
The descriptor file is used by the Application Server when processing
custom tags, and may also be used by authoring tools when creating
server pages that include custom tags.

For details, see “Creating a Tag Library Descriptor File” on page 9-5.

Tag Handlers
A tag handler is a class that defines how to evaluate a tag during the
execution of a server page. For each custom tag used in a server
application, a corresponding tag handler class must be declared. The tag
handler defines the tag’s semantics, and serves as a point of contact
between the server page and components in the server application.
Web Application Developer’s Guide 9-3

Server Page Extensions
When a server page that includes custom tags is evaluated, the
Application Server instantiates a tag handler object for each occurrence
of a custom action. In effect, the instances of the tag handler class serve
as runtime representations for the custom tags.

Tag handlers have two main interfaces, found in class Tag and BodyTag.
Custom tag handlers are created by sub-classing either class Tag or
BodyTag. For details, see “Creating a Tag Handler” on page 9-7.

Custom Tags in Server Pages
Server pages that use custom tags must first include a taglib directive
that refers to the TLD, e.g.:

<%@ taglib uri=”file:myLib_1_2.tld” prefix=”myLib” %>
This directive must be placed at the beginning of the server page, before
any scripting expressions that use custom tags declared in the library.

The taglib directive contains two attributes: the first, uri, specifies the
TLD to be used by the page. This URI may be either absolute or relative.

The second attribute, prefix, associates a tag prefix with the actions in the
library. This prefix must be used when referencing the library actions from
a server page.

Custom tags may appear anywhere in the body of the server page.
Typically, a custom tag includes attributes. It may or may not include a tag
body.

For example, the following tag would be handled by an instance of the tag
handler class MyAction, as specified in the tag library called “myLib”:

<myLib:myAction att="myAttribute" />
This tag may be described as “simple” because it contains no body.

Alternately, a tag may also include a body, e.g.:

<myLib:myActionBody>
Arbitrary Text

</myLib:myActionBody>
The body of a tag may be raw HTML, JSP, or other (nested) custom tags.
If the tag includes a body, the tag handler processes it before passing the
result as part of the page generated by the Application Server.

For details on the various types of tags and how to implement handler
classes for them, see “Creating a Tag Handler” on page 9-7.
9-4 VisualWorks

Creating Tag Libraries
Creating Tag Libraries
To create a tag library, you must:

1 Create a tag library descriptor file (TLD)

2 Define appropriate tag handler classes

The tag library descriptor file resides on the server along with the
application’s server pages.

The tag handler classes are associated with the application logic.
Generally, these are part of the Web application, though you may choose
to package them as a separate component.

The following sections describe each of these steps in more detail.

Creating a Tag Library Descriptor File
The tag library descriptor file is an XML format file that is generally
located in the same directory as the server pages that reference it.
By convention, the file’s suffix is tld and it is common to include the
version of the TLD as part of the file name, e.g.:

myLib_1_0.tld

The official DTD for a tag library descriptor file is described at:

http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd
A sample tag library descriptor file might look as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<taglib>
<tlibversion>1.0</tlibversion>
<jspversion>1.1</jspversion>
<shortname>cincom</shortname>
<uri>http://mySite.com/taglibs/myLib_1_0.tld</uri>
<info>An example tag library, provided by Cincom</info>

<tag>
<name>myTag</name>
<tagclass>VisualWave.MyTag</tagclass>
<info>Simple example: do something</info>
<bodycontent>empty</bodycontent>

</tag>
<!-- Additional tag definitions follow -->

</taglib>
The (required) taglib element is the root of the entire document. Within
this element, the TLD has two parts: a set of header elements, which are
generally fixed, followed by a series of tag definitions.
Web Application Developer’s Guide 9-5

Server Page Extensions
The following sub-elements constitute the header for the tag library
descriptor file:

The TLD header is followed by a series of tag definitions.

Each tag definition specifies the tag’s name, its handler class, details
about the tag’s body content (e.g., whether it is always empty), and
documentation on the tag’s function. Each valid attribute accepted by the
tag must be explicitly declared, with an indication of whether or not it is
required, and whether it accepts run-time expressions.

Tag definitions may contain the following sub-elements:

Element Description

tlibversion Version number of this tag library.

jspversion Version of the JSP implementation required by this
tag library; default is version 1.1.

shortname A short token for use by authoring tools when creating
pages; may be used as a prefix to identify tags
associated with this library. Should not include white
space or begin with an underscore character.

uri The public URI that identifies this version of the tag
library.

info A short text string that describes this tag library.

Element Description

name Base name of the action, i.e., as it appears in the
server page (required).

tagclass Fully-qualified name of the tag handler class
(required). Typically, tag handlers are located in the
VisualWave name space. The tag handler must be a
subclass of Tag or BodyTag.

teiclass N/A

bodycontent Type of the tag’s body content.

May be either tagdependent, JSP, or empty:
tagdependent Indicates that the body of the action

is interpreted by the tag handler
itself. The body may be empty.

JSP Indicates that the body of the action
contains JSP elements. The body
may be empty. This is the default
value for the bodycontent element.

empty Indicates that the body must be
empty.
9-6 VisualWorks

Creating Tag Libraries
The URI of the tag library descriptor file must be declared in each server
page using the taglib directive (for details, see page 4).

Creating a Tag Handler
Tag handlers for custom actions make use of two main interfaces, found
in the classes Tag and BodyTag. A new custom tag handler is created by
subclassing either of these two, depending upon the desired behavior of
the scripting action.

Recall that there are two basic types of actions:

• Simple actions

• Actions with a body

Simple actions are defined as those which do not include a body. Tag
handlers for these actions only need the protocol defined by class Tag,
which provides basic support for initialization of the handler object, and
evaluation of attributes associated with the tag.

If the scripting action includes a body, then the handler may need to be
defined as a subclass of BodyTag. Class BodyTag is a subclass of Tag that
provides additional protocol for accessing and evaluating the tag’s body.

Your custom handler should only subclass BodyTag if it needs to perform
processing on the tag body (i.e., parse the body content and transform it
programmatically). For handlers that just pass the body as text or JSP, it
is sufficient to sub-class Tag.

Actions may also be described as cooperating, i.e., two or more actions
which are nested, and share some variable data locally.

info A short text string describing this tag.

attribute Defines an attribute of the custom action.

Attributes may define the following sub-elements:

name Name of this attribute (required).
required This attribute is required (optional).

May be true, false, yes, or no.

rtexprvalue The attribute’s value may be
dynamically generated at runtime
by a scripting expression (optional).
May be true, false, yes, or no.
Web Application Developer’s Guide 9-7

Server Page Extensions
Defining a Simple Tag Handler
A handler class for a simple tag that includes no body and uses no
attributes might be defined as follows:

Smalltalk.VisualWave defineClass: #MyTag
superclass: #{VisualWave.Tag}
indexedType: #none
private: false
instanceVariableNames: ''
classInstanceVariableNames: ''
imports: ''
category: 'MyApp-JSP'

To process a simple tag, the new handler class MyTag must define the
method doStartTag. The logic for handling the tag is located primarily in
this method. Since it is defined in the abstract class Tag, the method
doStartTag is thus overridden by the custom handler class. The message
doStartTag is always sent to the handler object after it has been initialized.

For example, consider a simple tag that returns the current date:

<myLib:dateToday />
The handler method for this could be implemented as follows:

doStartTag
pageContext response write: (Date today printString).
^#SKIP_BODY.

This method obtains the current date, and writes it to the response stream.
Handlers do not have direct access to the request and response objects,
but may fetch them from the pageContext. As a return value, the method
returns a special Symbol that is interpreted by the Application Server.
Since the tag we’ve defined doesn’t contain a body, #SKIP_BODY is
passed as a return value. This instructs the Application Server to ignore
any text between the start and end tags.

For tags without body or attributes, the custom handler class can place
most of its logic in one method: doStartTag.
9-8 VisualWorks

Creating Tag Libraries
Handler Properties
Each tag handler contains two properties (instance variables) that are set
by the Application Server: pageContext and parent. These are initialized
automatically once when the tag handler object is created, and may be
used by the methods in your custom tag handlers (accessor methods are
provided).

The pageContext property holds the object that represents the server page
containing the active tag. This property may be used to access objects
associated with the page model, e.g., the request and response objects.

The parent property holds the tag handler for the enclosing action. This
property is generally used by a tag that is nested within another tag.

Note: The pageContext property should always be set before parent.

Handling Tag Attributes
Tags may optionally contain named attributes, e.g. the tag myAction might
use two attributes called name and value:

<myLib:myAction name="first" value="second" />
Tag handler classes use a simple protocol for processing these attributes:
for each named attribute, there must be a corresponding access method.
For example, the handler class for a tag that includes name="first" would
need to declare a method named setName: that accepts a String value.

When the tag handler object is created during page processing, the
Application Server uses these access methods to initialize the handler
object. This takes place before the tag’s body is processed.

Typically, the access method simply stores the attribute’s value in an
instance variable of the tag handler, so that it may be used during
subsequent processing of the tag or its body.

For the example mentioned above, the method might look like this:

setName: aString
“Set the name attribute to aString”
aName := aString

Although by convention the named attributes in tags begin with a lower-
case letter, note that the attribute name in the access method is expected
to use an upper-case letter (i.e., name vs. setName:).
Web Application Developer’s Guide 9-9

Server Page Extensions
When a tag includes attributes, they must be explicitly declared in the
TLD file. The tag declaration should include an attribute element for each
named attribute, defining the following sub-elements:

To illustrate, a TLD definition for the tag myAction (mentioned above)
would declare the two attribute elements as follows:

<tag>
<name>myAction</name>
<tagclass>VisualWave.MyAction</tagclass>
<info>Simple example: do something</info>
<bodycontent>empty</bodycontent>
<attribute>

<name>name</name>
<required>true</required>

</attribute>
<attribute>

<name>value</name>
<required>true</required>

</attribute>
</tag>

Including the Tag Body
As mentioned previously, tags may also include a body, e.g.:

<myLib:myActionInclude>Body</myLib:myActionInclude>
The body may contain plain text, HTML, or scripting expressions, and the
tag handler can optionally include this body content in the response object.
Since the body may contain scripting expressions, this processing occurs
when the server page is first translated into executable code.

To include the body content, a custom tag handler should be a subclass
of Tag and, as in the case of a handler for simple tags (see above), it must
define a doStartTag method. However, in order for the Application Server

Sub-element Description

name A case-sensitive attribute name (required).

required A flag that indicates whether or not this attribute is
required in the tag (required). This element may be
true, false, yes, or no.

rtexprvalue A flag indicating whether the attribute can be a JSP
expression that is evaluated at run-time (optional). If
this element is included and set to true, the attribute
may have a value like <%= self doSomething %>.
This element may be true, false, yes, or no.
9-10 VisualWorks

Creating Tag Libraries
to evaluate and include the tag body, the doStartTag method must return
the Symbol #EVAL_BODY_INCLUDE (not #SKIP_BODY, as in the case of a
handler for simple tags).

In addition to doStartTag, tag handlers that include the body content must
define a doEndTag method. This method is invoked after the body has
been processed, and it returns a Symbol that instructs the Application
Server whether or not to continue processing the server page.

Normally, doEndTag should return #EVAL_PAGE to indicate that page
processing should continue. If the tag handler wants to stop processing
the page, this method should return #SKIP_PAGE, in which case the
response object is considered to be complete.

To illustrate the use of these methods, consider the following example:

<myLib:applyColor color=”green”>Plants and Trees</myLib:applyColor>
To implement a simple tag handler (ApplyColor) that uses the color
attribute to set the emphasis of the body text, we can use the following
methods:

setColor: aString
“Set the color attribute to aString”
colorAttribute := aString

doStartTag
“If a color attribute exists, use it to emphasize the body content”
colorAttribute ~= nil

ifTrue: [pageContext response write: ‘’].
^#EVAL_BODY_INCLUDE.

doEndTag
colorAttribute ~= nil

ifTrue: [pageContext response write: ‘’].
^#EVAL_PAGE.

The first method, setColor:, receives the color attribute (if any) and saves it
in an instance variable. If a color attribute is included in the tag, the
doStartTag and doEndTag methods use it to include HTML formatting
around the body content.
Web Application Developer’s Guide 9-11

Server Page Extensions
The TLD definition for tags that include body content (plain text, HTML, or
scriptlets) must specify “JSP” for the bodycontent element, e.g.:

<tag>
<name>applyColor</name>
<tagclass>VisualWave.ApplyColor</tagclass>
<info>Apply color to the tag body</info>
<bodycontent>JSP</bodycontent>
<attribute>

<name>color</name>
<required>true</required>

</attribute>
</tag>

Note that the tag handler may be designed to optionally include the tag
body depending upon some request-time condition. In such a case,
doStartTag would return either #EVAL_BODY_INCLUDE or #SKIP_BODY.

When implementing a custom tag handler in this manner, care should be
taken to write both doStartTag and doEndTag such that each method
accommodates both cases (i.e., to include body content, or not).

Processing the Tag Body
For some applications, it is necessary to manipulate or transform the tag
body before it is passed to the response stream. Tag handlers that extend
class Tag may ignore the tag body or include it, but cannot manipulate it.
Custom tag handlers that need to perform more elaborate processing of
the tag body should subclass BodyTag.

Class BodyTag includes additional protocol for stream-based manipulation
of the body content. The handler methods obtain a BodyContent object,
and the custom handler class assumes responsibility for passing its
contents to the response object.

The semantics of the methods doStartTag and doEndTag are generally the
same as those in class Tag (see preceding sections for details). To
process the body, the doStartTag method should return #EVAL_BODY_TAG,
and #SKIP_TAG to ignore it. The doStartTag in a subclass of BodyTag should
never return #EVAL_BODY_INCLUDE.

Class BodyTag provides additional three additional methods to support
processing of body content: bodyContent, doBeforeBody, and doAfterBody.

The bodyContent method may be used by a tag handler to obtain an object
holding an object that buffers the body using an internal stream. The
contents of the stream may be extracted using the message string.
9-12 VisualWorks

Creating Tag Libraries
For example, to take the contents of the body and simply write it to the
response object, a custom tag handler could include the following:

pageContext response write: self bodyContent string.
The message doBeforeBody is sent once to the handler object, before the
body content is processed in any way (unless doStartTag returns
#SKIP_BODY, in which case doBeforeBody and doAfterBody are not sent).
This method is typically used to initialize variables used by the handler
when processing the bodyContent object.

Similarly, the message doAfterBody is sent after the body has been
processed. Typically, this method contains the logic for handling the
bodyContent object. If the tag handler is intended to process the body in a
single pass, doAfterBody should return #SKIP_BODY, thereby signalling the
Application Server that no further processing is desired. Alternately, if
doAfterBody is used in an iterative manner, it returns #EVAL_BODY_TAG
until finishing.

For example, a tag handler could be used to iterate over its body a
variable number of times, e.g.:

<myLib:repeat count="6">
<%= Date today printString %>

</myLib:repeat>
The attribute count indicates the number of iterations. This can be stored
in the tag handler class as an instance variable. The tag handler (Repeat)
would contain the following three methods:

setCount: aString
“Set the count attribute, converting the string to an integer”

count := aString asNumber

doStartTag
“Always evaluate the body content”

^self class EVAL_BODY_TAG

doAfterBody
“Write the body content to the response object until the variable count is
equal to zero”
pageContext response write: self bodyContent string.
count := count - 1.
count == 0 ifTrue: [^self class SKIP_BODY].
^self class EVAL_BODY_TAG.

The method setCount: captures the value of the count attribute, storing it in
an instance variable of the handler object.
Web Application Developer’s Guide 9-13

Server Page Extensions
The iteration over the tag body is controlled by the method soAfterBody,
which passes the bodyContent to the response object, and returns
#EVAL_BODY_TAG until the variable count reaches zero.

In general, the execution of a BodyTag handler follows this pattern:

1. Instantiate handler object

2. Set pageContext

3. Set parent

4. Set attributes

5. Send doStartTag

6. Set bodyContent

7. Send doBeforeBody

8. Send doAfterBody

9. Send doEndTag

10. Send release

Using Nested Tags
Custom tags may be nested in order to share locally scoped variables.
Tags that are intended to nested in this way are often referred to as
cooperating tags. Nested tags are useful when writing handlers that
behave differently depending upon context. Tags that are nested may be
based upon either Tag or BodyTag.

For example, consider the following expressions:

<myLib:outerTag color=”red”>
<myLib:innerTag />

</myLib:outerLib>
For these two tags, our application might define the handler classes
OuterTag and InnerTag. The handler object for outerTag would typically hold
the color attribute in an instance variable. When activated, the handler
object for innerTag could then access this value as follows:

doStartTag
| outerTagHandler |
outerTagHandler := self findAncestorWithClass: OuterTag.
pageContext response write: outerTagHandler color printString.
^self class SKIP_BODY

The method findAncestorWithClass: checks each enclosing handler until it
finds one with the expected class (or returns nil).
9-14 VisualWorks

Creating Tag Libraries
Implementation of Tag and BodyTag
This section summarizes the public protocol of class Tag and BodyTag.

Note: The JSP 1.1 specification names class TagSupport and
BodyTagSupport as the base classes for defining custom tag handlers.
These classes are not provided by VisualWorks Application Server.
Instead, developers should subclass Tag and BodyTag.

Class Tag provides the following protocol for manipulating properties:

pageContext:
Set the handler’s pageContext property. This property must be set
before sending parent:.

parent
Get the handler’s parent tag. Used with findAncestorWithClass:.

parent:
Set the handler’s parent tag. This property must be set after the
pageContext property.

Class Tag provides the following protocol for processing actions:

doStartTag
Called once the handler object has been initialized, but before
evaluating the tag body (if any). Typically, the tag handler’s logic is
located in doStartTag. May return #EVAL_BODY_INCLUDE to indicate
that the body content should be included, or #EVAL_BODY_TAG to
indicate the body should be evaluated, or #SKIP_BODY, to ignore it.

doEndTag
Called after the tag and body (if present) have been processed.
Returns #EVAL_PAGE to indicate that page evaluation should
continue, and #SKIP_PAGE to ignore the remainder of the page and
complete the response object.

release
Release any internal state held by the tag handler. After sending
release, all properties of the tag have an unspecified value.

Class Tag provides one method for supporting nested tags:

findAncestorWithClass:
Returns the handler object for an enclosing tag of the specified class.
Returns nil if the tag is not nested, or if no match is found.
Web Application Developer’s Guide 9-15

Server Page Extensions
Class BodyTag provides the following protocol for manipulating the body:

bodyContent
Return a BodyContent object, which is a special block used for
buffering the body content generated during evaluation.

bodyContent:
Set the handler’s bodyContent property. This property is set once per
tag evaluation, before the message doStartTag is sent to the handler.

doBeforeBody
Sent by the Application Server after doStartTag but before the body
content is processed (unless doStartTag returns #SKIP_BODY, in which
case doBeforeBody is not sent). The doBeforeBody method is typically
used to initialize variables used by the handler when processing the
bodyContent object.

doAfterBody
Called after the body has been processed (unless doStartTag returns
#SKIP_BODY, in which case doBeforeBody and doAfterBody are not
sent). Typically, this method contains the logic for handling the
bodyContent object. Returns #SKIP_BODY if the tag handler is intended
to process the body in a single pass, or #EVAL_BODY_TAG to request
that the Application server re-evaluate the body content.
9-16 VisualWorks

10
Content Management

VisualWorks Application Server provides content management features
to simplify the construction and administration of complex sites.
Web applications that are composed of many heterogeneous elements
(server pages, servlets, resources, static HTML insets) can be structured
into a unified whole by using server-side includes and logical names.

When using a single VisualWorks server to host several different
applications, or when building a Web application that serves a number of
different IP domains, content management features may be used to
simplify the configuration and management of site-specific parameters.

Content management also provides facilities for creating and managing
visitor profiles, as well as for logging content serving statistics.

This chapter presents:

• Overview

• Resolving Web Requests

• Resolving Requests to Applications
Web Application Developer’s Guide 10-1

Content Management
Overview
Content management provides a general framework for accessing and
organizing the heterogeneous content of a Web application using site
policies, logical names, and logical links.

When used in conjunction with the Application Server’s site configuration
tools, content management can be used to set up multiple domain
mappings, aliases, and virtual directories. Content management features
can also be used within server pages to rationalize the link structure of a
Web application.

Sites and applications may use the following features:

Site Policies
Web site objects may be associated with policy objects. A site policy
describes, among other things, the mapping of the site to domain
names, and any URL aliases (virtual directories) assigned to the site.
For details, see “Resolving Web Requests” on page 10-3.

Logical Names
Each Web site may define a dictionary of logical names used to
translate URL path components, register servlets, and to translate
links on server pages. Logical names are defined using a two-tier
configuration mechanism. For details, see “Logical Names” on
page 10-6.

Server-Side Includes
VisualWorks adds logical linking to standard server-side includes,
providing a way to include both static and dynamically generated
content. For details, see “Server-Side Includes” on page 10-8.

Smalltalk Links
When using logical names, Web requests can be translated directly
into message sends. Two varieties are available: SSP methods, for
use with server pages, and servlet methods, for use in place of
generic servlets. For details, see “Smalltalk Links” on page 10-7.

Both incoming client requests and page content can be manipulated
using a single set of logical names. Incoming requests can be
manipulated using site policies and logical links, and static or dynamic
includes can be generated by using logical includes or Smalltalk links.

Note: Many of the features discussed in this chapter require the use
of configuration files. For details, see “Deployment” on page 11-1.
10-2 VisualWorks

Resolving Web Requests
Resolving Web Requests
At a high level, each Web request received from a client is resolved to a
particular application using a two-step procedure: first, the request is
resolved to an active Web site, then the site object is used to resolve the
request to a particular application or resource that belongs to that site.
VisualWorks Application Server provides configuration options to create
rules for governing both steps of request resolution.

In the first step of request resolution (identifying the appropriate Web site
object), each Web site instance uses an associated policy to determine
the domain(s) it serves and to apply any URL aliases it understands.

Depending upon the site policy, a single Application Server may be
configured to host a one or number of distinct sites. Each site object may
be associated with a single domain name, or with several, as well as an
URL alias (or aliases) at that domain name.

By default, the Application Server listens at a specified port, as specified
using the Server Console (see “Using a Web Server” on page 4-2).
Requests to each particular host:port pair are resolved to a site object,
and the site’s default resolution policy is to map its home directory to the
base of the URL path of the server.

A policy for selecting a Web site object must be specified when multiple
sites are configured for use by a single server, or when the application
requires that a site be registered with a specific domain and/or URL alias
(for a discussion of the latter, see “Creating a Site Alias” on page 10-4).

For a site object to receive Web requests, it must include either a domain
definition or an alias. Any requests which do not correspond to a
recognized domain and/or alias are dispatched to the default site.

Associating a Site with a Domain Name
Ordinarily, a server is registered with a physical IP address, and the latter
has a single assigned domain name. For cases in which the server may
be identified with several domain names, a distinct Web site object may
be associated with each name.

For example, a company might register the domain names
http://support.foo.com/, http://sales.foo.com/, and http://employeesonly.foo.com/
such that all three resolve to the same physical server (i.e., the domain
names all share the same IP address). However, the application designer
may wish to have each domain name provide different content by creating
three distinct site objects within the server.
Web Application Developer’s Guide 10-3

Content Management
To associate a site object with a specific domain:

1 Add an entry to specify a DNS name in the [configuration]
section of the site’s configuration file, e.g.:

domain = newyork.cityplan.com.

To associate the site with multiple domains, add them to the same
entry, separating each domain name with the ; character, e.g.:

domain = brooklyn.ny.org; coney-island.ny.org

2 Save your changes to the configuration file.

3 Use the administrator’s Web interface to select the Site Configuration
page, and Submit the existing configuration.

The changes made to the site configuration file are used to update the
Web site object. For details on the site configuration file and using the site
administrator’s toolset, see “Creating and Configuring a Site” on
page 5-5.

Creating a Site Alias
A site alias may be used to associate a single WebSite instance with a
particular base URL. Aliasing is also used as an equivalent to the virtual
directory feature available on most commercial Web servers.

Aliasing begins with the first path component of the URL (to alias any
other portion of the path, you must use a logical name). For example, by
defining a site alias for /support, the URLs http://mycorp.com/index.html and
http://mycorp.com/support/index.html can reside on the same machine while
being configured as two distinct sites. The first path component (in this
case /support) determines the correct site instance.

Note: For sites other than the default site, if you wish to use the site
name as well as other site aliases, you must include the site name in
the list of aliases.

To create a site alias:

1 Add an entry to specify a relative directory name in the
[configuration] section of the site’s configuration file, e.g.:

alias = support

To associate the site with multiple aliases, add them to the same
entry, separating each alias with the ; character, e.g.:
10-4 VisualWorks

Resolving Web Requests
colors = red; green; blue

2 Save your changes to the configuration file.

3 Open the administrator’s Web interface, navigate to the site’s
configuration page, and Reset the existing configuration.

The changes made to the site configuration file will update the site object.

Creating a Virtual Directory
On IIS and Apache servers, virtual directories can be created to establish
a mapping between a URL path and a physical path on the server. The
first component of the URL path can be specified as a “virtual” directory.
Any URL that includes the virtual directory path element is translated by
the server into its physical counterpart.

For example, if the virtual directory /MyApp were defined and given the
value of C:\WebApps\MyApp, then a request to /MyApp/index.html
would be directed to C:\WebApps\MyApp\index.html.

VisualWorks Application Server provides web sites as an equivalent to
virtual directories. Each virtual directory is in effect a separate site object.

To configure a WebSite as a virtual directory, follow the same steps to
create a web site, setting the site’s home directory to be the target
directory. Any request URLs whose first path component matches the
alias will be resolved to using the web site.

Alternatively you may also add an alias to an existing web site whose
home directory references the desired virtual directory location.

When using the Smalltalk HTTP Server to test a VisualWorks Web
application running behind IIS or Apache, it is often useful to create a
web site for use as a virtual directory.

Since the Smalltalk server does not have access to the internal
definitions used by Apache or IIS, the VisualWorks Application Server
cannot resolve pages that assume the existence of a virtual directory
defined by the front-end server, unless you define a web site for this
purpose.
Web Application Developer’s Guide 10-5

Content Management
Resolving Requests to Applications
The second step in resolving a client request is to identify the target page
on the server. Once a client request has been resolved to a particular
Web site instance, the remainder of the path is translated using that site
to identify the target page.

The exact resolution of the request to a target page is a function of the
site catalog. Each site has an associated catalog of logical names that
are used to translate portions of the request’s URL. When all logical
names have been translated, the path is used to select a request handler.

Requests may be handled by server pages, servlets, SSP or servlet
methods, or a FileResponder (for serving images or static HTML files).

Logical Names
Logical names are mappings used to translate path components.
They have two modalities, and may be used in several different ways.

The first and most general use of a logical name is for path translation.

For example, the site catalog might define:

current = 2001/july

in which case the URL

http://dailyblab.com/news/current/index.html
would be resolved to

http://dailyblab.com/news/2001/july/index.html
During the process of request resolution, the VisualWorks server will
recursively translate any logical name in the URL path, until nothing is
found in the catalog. Any element of the path that does not correspond to
a logical name in the site catalog remains unchanged.

Since the entire local path of the URL is used for translation, any place
the name occurs as a complete path entry is translated.

Logical names may be single- or multi-pass, depending upon the number
of translations.

For example, a multi-pass name for mapping the name of a servlet could
be defined like this:

setup = configure/signon
signon = servlet/SignOnServlet
10-6 VisualWorks

Resolving Requests to Applications
Using these definitions,

http://support.myCorp.com/setup
would be resolved as:

http://support.myCorp.com/configure/servlet/SignOnServlet

Smalltalk Links
Generally, a logical name resolves a URL to a server page, a servlet, or a
file, but they may also be resolved to directly to Smalltalk methods. This
second type of logical name is called a Smalltalk link. For example:

books = x-ssp:BookStore$htmlDepartments

This link would cause the method htmlDepartments to be sent to the class
BookStore. The class-side method must return a String formatted in HTML.
These SSP methods are invoked in a manner analogous to server pages.

In general, the format of an SSP method link is:

name = x-ssp:MySmalltalkClassName$methodName
A second type of Smalltalk link resolves to a servlet-style protocol, e.g.:

toys = x-servlet:ToyStore$catalogReq:response:

Here, the request is resolved into a message sent to a newly-created
instance of class ToyStore, to the method catalogReq:response:.
The two parameters to the method are servlet request and response
objects (for details on the protocol of these objects, see “Servlets
Implementation” on page 7).

The format of a servlet method link is:

name = x-servlet:MySmalltalkClassName$methodNameReq:response:
The protocol x-ssp or x-servlet is used to distinguish SSP from
servlet methods.

The server imposes a security restriction on Smalltalk links: they may not
be included in HTML pages, rather, they may only be resolved using
logical names defined in the site catalog (typically, the per-site INI file).

The behavior of SSP and servlet methods is summarized below:

Type Method Description

SSP method
(x-ssp)

class-side method
zero parameter

No parameters. Returns an HTML-formatted
String.

servlet method
(x-servlet)

instance-side
two parameter

Returns result in response object (second
parameter).
Web Application Developer’s Guide 10-7

Content Management
Using Logical Names and Logical Links
Logical names must be defined in the [logical-names] section of the
site configuration file. These definitions are used to build the site catalog.
It is also possible to define logical names with global scope by adding
them to the [global] section of the webtools.ini file.

Generally, logical names are used to translate path elements in an URL,
but they may also be referenced in server pages using the following
scripting element:

<%= self linkNamed: 'linkName' %>
When the server page is compiled, this logical link is expanded into the
full URL.

For example, given the definition:

siteIndex = http://myCorp.com/index.html

the logical link

HREF = "<%= self linkNamed: 'siteIndex' %>"
would be replaced with

HREF = "http://myCorp.com/index.html"
Logical names embedded in scripting elements using linkNamed: may
resolve file URLs, HTTP URLs or Smalltalk links.

Server-Side Includes
Sometimes it is convenient to compose a server page by inserting the
contents of another file. The Application server provides support for
server-side includes equivalent to the services found in Apache and IIS.

Use the #include directive in a Smalltalk server page to achieve this:

<!-- #include path-type = "target.inc" -->
The path-type attribute can be either file, virtual, or logical. The target may
have any file extension, though the .inc suffix is conventional, e.g.:

<!-- #include file = "copyright-footer.inc" -->
The keyword file specifies an include file with an absolute path, or else
located relative to the directory containing the page that contains the
include. In a relative path, you may use ..\ to move up the directory
structure and access files in sibling directories.
10-8 VisualWorks

Resolving Requests to Applications
Use the virtual keyword to specify a file located using a virtual directory.
For example, if the file includes.inc were located in a path accessible from
the virtual directory /NewApp, the following directive could be used:

<!-- #include virtual = "/NewApp/includes.inc" -->
The target in this case is an URL relative to the Web site’s home
directory. The first path component must be an alias defined by a Web
site instance (e.g., NewApp). Platform-specific separator syntax may also
be used, though an URL ensures greater portability. Since the target is a
relative path, navigation using ..\ is specifically disallowed.

Use the logical keyword to specify a logical name:

<!-- #include logical = "boilerPlate" -->
All logical names in the target are resolved before the contents of the
include file are inserted in the page. Logical names are defined in the site
configuration file, and can resolve to either file paths or Smalltalk links (for
details, see “Using Logical Names and Logical Links” on page 10-8).

A logical name may be either single- or multi-pass, the difference being
that a single-pass name is resolved to a file path while a multi-pass name
is resolved from one logical name to another, eventually being resolved to
a file path or Smalltalk link.

If the logical name is resolved to a Smalltalk link, it must be a link to a
SSP method that returns a string. “Servlet methods” cannot be used in
server-side includes.
Web Application Developer’s Guide 10-9

Content Management

10-10 VisualWorks

11
Deployment

The VisualWorks Application Server has been designed to simplify both
the development and the deployment of Web applications. For ease of
development, the Application Server provides an administrator’s Web
interface for setting and changing server and site configuration
paramaters (for details, see “Web Sites” on page 5-1).

Since the administrator’s Web interface is not ideal for setting site
attributes in a production environment, an application may also be
deployed by using configuration files. In this way, you may save all server-
and site-specific parameters in a form which can easily be loaded into
one or more servers. The server configuration files are also necessary if
you intend to use any of the content management features.

Configuration files are used when deploying the headless runtime image
provided with the VisualWorks release media. All site parameters defined
in the configuration file are read at startup time by the headless image.

Additional information on configuring servers can be found in the
VisualWorks Web Server Configuration Guide.

This chapter presents:

• Working with Configuration Files

• Specifying Server Attributes

• Changing the Server’s Default Configuration
Web Application Developer’s Guide 11-1

Deployment
Working with Configuration Files
Site parameters are defined in two separate configuration files: one
global, and one per-site. The global file contains sections for
configuration, sites and global logical names.

By default, the global configuration file is named webtools.ini, though
you may use the administrator’s Web interface to change this.

During development, or whenever the Application Server cannot find
webtools.ini, it uses $(VISUALWORKS)/web/webtools.ini.
This is the pre-set configuration for the Web Toolkit examples.

The per-site files contain sections for configuration and local logical
names. Each site is configured from a separate INI file. Site names and
the names of their corresponding INI files must be defined in the
[sites] section of the global INI file.

The Application Server does not configure itself (ie. read and install the
configuration from the designated configuration files) until it receives the
first request through a listening server.

The Web Toolkit configuration files use a format similar to that of
Microsoft INI files. INI files are a simple text-based format in the default
encoding for the server’s platform.

File and directory references used in a configuration file may be in either
URL format (using forward slashes), or in the format appropriate for the
platform, or using environment variables such as $(VISUALWORKS).

The file is divided into named sections, each section containing some
number of keys. Keys may have a single value or an enumeration; e.g.:

[section-name]
comment
key=value
keymultiple=value; value; value

Enumerations are delimited using semicolons. Spaces may be used
around the equals sign in key/value pairs, but they are not required.

Section names, as well as key names, are case sensitive. Values are also
generally case sensitive, although the values representing file or directory
names may not be, depending on the server platform’s file system.
11-2 VisualWorks

Working with Configuration Files
The Global Configuration File
The following sections are defined for the global Web Toolkit INI file:

[configuration]
Server configuration parameters, if any. (This section is required,
even if it is empty. All parameters are optional.)

This section may use the following pre-defined keys:

[sites]
(This section is required.) Logical names used to locate the individual
site INI files, where each key is the name of the site, and each
assigned value is the name of the INI file for that site (relative to the
directory containing this global configuration file).

[global]
Logical names that are global to all sites. Note that site logical names
take precedence over global logical names. The global section may
include user-specified keys.

When an Application Server is used in a production environment (i.e.,
deployed), none of the internal Web Toolkit sites are used by default.

To deploy the Application Server, you must define a configuration for each
site, including the configure site, and the default site. Even if you plan to
disable the configure and default sites, the Server expects to find a
configuration file for each site.

Note: Many of the configuration parameters are optional, however it
is strongly recommended that you add a password to restrict access
to the configure site. For details, see “Securing an Application for
Deployment” on page 11-7.

Key Description

name Specify a logical name for the server configuration.

logfile Specify the path for the Application Server's global log
file.

callbacks Name methods for the server to call at session or
application events. When specified at this level, these
callbacks apply to all sites.
Web Application Developer’s Guide 11-3

Deployment
Site-Specific Configuration Files
The following sections are defined for the site-specific INI files:

[configuration]
Contains the site parameters, which are the same as those which can
be set from the administrator’s Web interface. (This section is
required. All parameters are optional, except directory.)

This section may include the following pre-defined keys:

Details on a number of these configuration attributes are available in
other sections of this guide.

For a discussion of debugging options, see “Setting Site Debugging
Options” on page 5-12. For details on using registered servlets, see
“Enabling Use of Registered Servlets” on page 11-8. For details on
using callbacks, see “Specifying Event Callbacks” on page 11-9.

[logical-names]
Definitions for logical names representing directory paths, file names
for HTML content, server-side includes, and Smalltalk URLs to be
executed during page processing.

The logical-names section may include any user-specified keys.

Key Description

directory Specify a file path, either relative or absolute, using
platform-specific syntax or URL syntax. Relative file
paths are resolved relative to the VisualWorks
working directory.

environment Specify a Smalltalk namespace. Note that Application
Server classes belong to the VisualWave namespace.

description Textual description of the Web site — not quoted.

enabled Specify that the site is active — “true" or "false".

domains Specify domain names. Use semicolons to delimit
multiple names.

debuggable Debugging options — "true" or "false".

password Specify a per-site password.

home Specify a file name for the home page.

registeredServlets Allow only servlets with defined logical names —
"true" or "false".

callbacks Names of methods for the server to call at session or
application events.
11-4 VisualWorks

Working with Configuration Files
Configuring a Site with an Initialization File
The following steps show how to configure a site for use with the test
pages bundled with the Web Toolkit. You may use either the prebuilt
image file runtime.im in the \web directory, or an Application Server
development image.

In this example, we shall use the default configuration files provided on
the release media, and create a new configuration file to add an
additional site.

1 Create a new directory to hold the image and configuration files.

It is recommended that this directory be located at the same level in
the file hierarchy as the \web directory. For example:

c:\visualworks7\myApp

It is further recommended that the image and configuration files be
located in the same directory. As a rule, however, these Server
configuration files should not be located alongside the site content.

2 Copy the three initialization files webtools.ini, default-
site.ini, and configure-site.ini from the \web directory to
the new directory of your choice (e.g. c:\visualworks7\myApp).

3 After copying the site-specific INI file default-site.ini, rename it
for use with your new site.

For example, to configure a site named blue, copy and rename the
per-site file (default-site.ini) as blue-site.ini.

4 In the [configuration] section of the blue-site.ini file, set
the home key to the name of the file displayed as the home page:

home = Readme.html

5 Set the directory key to the default directory used for files
associated with the site, e.g.:

directory = $(VISUALWORKS)/myApp

6 Change the description entry to text describing your new site.

7 Save your modifications to the blue-site.ini file.

8 Since you are adding a new site to your configuration, you must also
edit the [sites] section in the webtools.ini file (which contains
links to the names of the per-site files). Add the new site, e.g.:

[sites]
blue = blue-site.ini
Web Application Developer’s Guide 11-5

Deployment
9 Save your modifications to the webtools.ini file.

10 Before starting the Application Server image, copy it to the new
directory (e.g., c:\visualworks7\myApp). Generally, you will use
either the prebuilt runtime.im from the /web directory, or a copy of
your development image.

The runtime image is normally invoked with a parcel containing
your application. Your development image should contain the Web
Toolkit and your Web application.

This completes the configuration. You may start the image and access
the main Readme file using the following URL:

http://localhost:8008/blue/
When starting the prebuilt runtime.im, the server will automatically
configure itself from the local configuration files on startup. If you are
using a development image, the server will configure itself when it
receives the first request directed to one of its web sites.

Note: Placing server configuration files in the same directory that
contains the HTML pages and script files in your application poses a
security risk. As a rule, configuration files should be separated from
the page and script content of your application.
11-6 VisualWorks

Working with Configuration Files
Securing an Application for Deployment
When using your Web application in a production environment, you
generally want to secure the Application Server. For example, under
normal circumstances, clients should not be able to access the various
Site Management pages. As a rule, access to these pages should be
reserved only for authorized administrators.

The Application Server may be secured by changing its site configuration
parameters. In a production environment, this must be done by editing
the three files default-site.ini, configure-site.ini, and
webtools.ini. Before deploying your Web application, you should
make sure to review the configuration settings for the default and configure
sites in these three files.

Note: Any changes you make using the administrator’s Web
interface are only temporary. To ensure that your settings are applied
when the Application Server is restarted, you must modify the
configuration files.

For details about building a runtime or headless image suitable for
deployment, see the VisualWorks Web Server Configuration Guide.

The Application Server defines a special site called configure that is used
for running the administrator’s Web interface. To secure the Server, you
may password protect the configure site, or you may simply disable it.

Password-Protecting the Server
You may password-protect the server’s configuration pages by assigning
a value to the password key in the [configuration] section of the
file configure-site.ini.

Disabling the Server’s Configuration Page
For maximum security, you may entirely disable this site.

To disable the Server’s configure site, assign false to the enable key in
the configuration section of the file configure-site.ini.

Setting the Server’s Default Home Page
The home page for the Server’s default site may be set by editing either
the default-site.ini or the webtools.ini file. You may change all
of the default settings in default-site.ini, or you may simply create
a new configuration file and assign it to the default key in the
webtools.ini file (located in the [sites] section of the file), e.g.:

default = blue-site.ini
Web Application Developer’s Guide 11-7

Deployment
Enabling Use of Registered Servlets
During deployment, the registeredServlets site attribute should be set to
true as a security measure. This disables direct access to servlets using
the standard servlet URL (e.g. /servlet/ServletClass), and only allows
access to servlets that are “registered” using logical names. The servlet
must be registered in the configuration file using a logical name with the
syntax:

myServlet = servlet/MyServletClass

Or:

myServlet = x-servlet:MyServletClass
For details on defining logical names, see “Logical Names” on page 10-6.

Configuration Errors
If the Application Server encounters a global configuration error, requests
to the configuration pages return a plain-text error page. In the event of a
site configuration error, any request for pages from that site will also be
redirected to this error page.

To open the administrator's Web interface when there is a configuration
error on the default site, use the configure site name in the path, e.g.:

http://localhost:8008/configure
In the administrator's Web interface, use the Configuration Details page,
to make any configuration changes necessary to eliminate the error.

Errors usually result when the server is unable to find the configuration
file in the specified location, or the file is incomplete in some way. As a
rule, a global configuration file must have the [configuration] and
[sites] sections defined properly, and a site configuration file must
have a valid [configuration] section.

When the Application Server is used in a production environment, an
internally generated password is used to protect the site in the event of a
global configuration error.

By default, the password is: vw7!WCMdCP.

This password can be found in:

WebConfigurationManager class >> defaultConfigurePassword
11-8 VisualWorks

Specifying Server Attributes
Specifying Server Attributes
The following server-specific configuration parameters may be defined in
the global configuration file. These parameters are applied to all sites.

To change these parameters using the administrator's Web interface, see
“Managing Server Logging and Sessions” on page 5-14.

Setting the Name of the Logfile
Specify the (optional) path for the web logfile in the configuration
section of the file. The syntax is:

logfile = <file-path>
If a relative file name is used it is resolved relative to the VisualWorks
working directory.

The default log file is named webserve.log, and it is created in the
VisualWorks working directory

Setting the Name of the Configuration
Sepcify the (optional) logical name for the configuration in the
configuration section of the file. This name is displayed on the
Configuration Details page in the administrator's Web interface.

The syntax is:

name = MyApp Configuration

Specifying Event Callbacks
You can define methods which the Application Server calls when specific
session- or application-level events occur. If you define an event callback
in the global configuration file, it applies to all web sites. Events may also
be defined for individual sites. Note that these callbacks may only be
defined in a configuration file.

The following events are supported:

Event Name Description

applicationStartup Occurs when the Server creates a web site's
application instance during site initialization.

applicationShutdown Occurs when the web site is released, thereby
releasing its application instance.
Web Application Developer’s Guide 11-9

Deployment
The syntax to define event callbacks is:

callbacks = event(MyClass$myMethod1:); event(MyClass$myMethod2:)
The methods must be class-side methods that accept a single parameter,
the session or application object, depending on the type of event.

For example, the following line might appear in the webtools.ini file:

callbacks =
applicationStartup(MyApp$onStart:); applicationShutdown(MyApp$onEnd:)

With this definition in place, the Application Server sends #onStart: to
class MyApp when the server initializes the application object, and it
sends #onEnd: to the class when the server is shut down.

When using callbacks in a deployed application, the Server image must
be built with the name of the global configuration file. Otherwise, the
Application Server defaults to look for a global configuration file named
webtools.ini in the current working directory for the image.

For more details on using sessions to manage state, see “Session” on
page 7-15. For details on application and configuration events, see
“Application Events” on page 7-13.

Specifying User-Defined Parameters
You may also include your own application-specific parameters in the
configuration section of the webtools.ini file. This feature is
useful for specifying database connection parameters, etc in an INI file.

For example, if the webtools.ini file contained the line:

servers = myServerName
The following Smalltalk code may be used in the application to read the
value associated with servers:

WebConfigurationManager configParameterNamed: 'servers'
The method configParameterNamed: answers the named global
configuration parameter as read from the INI file or else an empty String
(if no parameter has been defined).

sessionStartup Occurs when the Server creates a session in which to
process a client’s request.

sessionShutdown Occurs when the session expires. Neither the browser
nor the server explicitly release the session.To force
the release unexpired sessions, use the Clear Caches
command on the Server Management page of the
administrator’s Web interface.

Event Name Description
11-10 VisualWorks

Changing the Server’s Default Configuration
A Dictionary containing all the information from the configuration
section in the INI file may be retrieved using:

WebSite siteConfiguration configParameters.
It is also possible to define and fetch configuration parameters on a site
by site basis. E.g.:

aSite := WebSite siteConfiguration siteNamed: 'smalltalk'.
siteParams := aSite configParameters.

Alternately, configuration parameters may be festched by name:

WebConfigurationManager
configParameterNamed: 'servers' forSite: ‘mySite’

Changing the Server’s Default Configuration
When configuring the Application Server using initialization files, the
effect of the Set Default Configuration operation in the administrator’s Web
interface may be changed.

You should be aware that when restoring the Application Server to the
default configuration, the server selects its configuration file, in this order:

1. webtools.ini from the working directory, if it exists, or

2. The WebToolkit default, $(VISUALWORKS)/web/webtools.ini

The second default is only available in a development environment.

Once configured, a development image will continue to start with that
configuration until you change or reset the configuration. A headless or
runtime image contains the name of its global configuration file. The
default name is webtools.ini, but you may change this name.

The prebuilt runtime.im has been configured to use webtools.ini
from the VisualWorks current directory. Therefore, regardless of where
you copy this image, whenever you start runtime.im, the server will
always configure itself from webtools.ini in the current directory, or
launch with a global configuration error if it does not exist.
Web Application Developer’s Guide 11-11

Deployment

11-12 VisualWorks

A
Cookies

HTTP Cookies are a mechanism used by Web applications to both store
and retrieve information on the client (browser) side of the connection.

The following discussion presupposes that you are familiar with HTTP
cookies. Information about HTTP cookies can be found in the following
web sites:

• Persistent Client State — HTTP Cookies
(http://www.netscape.com/newsref/std/cookie_spec.html)
is the official specification from Netscape.

• Cookies (Client-side Persistent Information) and Their Use
(http://home.netscape.com/assist/support/server/tn/cross-platform/20019.html)
contains technical tips from Netscape.
Web Application Developer’s Guide A-1

http://www.netscape.com/newsref/std/cookie_spec.html
http://home.netscape.com/assist/support/server/tn/cross-platform/20019.html

Class HTTPCookie
Class HTTPCookie provides a general mechanism that Web applications
can use to both store and retrieve information on the client (web browser)
side of the connection.

Each cookie is essentially a name=value pair that may contain
additional information. The server sends this information to the client’s
browser in the form of an HTTP header message and the client
subsequently returns it in the same fashion — as an entity header.

An instance of HTTPCookie represents a single cookie.

Working with Cookies
To create a new cookie object:

myCookie := HTTPCookie named: 'CustomerProfile' value: 'anonymous'.
The name must be a String; the value can be anything (excluding
commas, semi-colons, or white space), but it is saved as a string.

To create a cookie on the client’s machine, it must be attached to an
HTTP response object and then sent to the client. For applications
implemented using VisualWave, the cookie may be attached like this:

aWebPage addCookie: myCookie.
For applications implemented using Smalltalk Server Pages or servlets:

response addCookie: myCookie.

Instance variable HTML attribute Description

name (String) name= Name of the cookie

value (String) value Value of the cookie

expires (Timestamp) expires=date When this time is reached, the browser
may discard the cookie [optional].
Should be in local time.

domain (String) domain=domain
Name

The browser must be speaking to this
domain before it sends the cookie
[optional]

path (String) path=pathName This must be a prefix of the URL path
before the browser sends the cookie
[optional]

secure (Boolean) secure If this is true, the cookie will only be
returned if we are using a secure server
A-2 VisualWorks

Class HTTPCookie
Setting a Cookie’s Expiration Time
Cookies include several attributes which may be (optionally) modified.
Each cookie may be given an expiration value, which tells the client’s
browser when it should discard the cookie.

By default, cookies are set to expire at the end of the client’s session.
To specify a longer expiration time, or to save the cookie between
sessions, a number of methods are provided:

expireAfterDays: aNumber
Mark this cookie for expiration after aNumber of days from now.

expireAfterHours: aNumber
Mark this cookie for expiration after aNumber of hours from now.

expireImmediately
Mark this cookie for immediate expiration.

expireNever
Mark this cookie to never expire.

expires: aTimeStamp
Note: aTimeStamp should be in local time.

For example, to set a cookie to expire one year in the future:

memberIDCookie expireAfterDays: 365.
On the client’s machine, the expiration time is saved in GMT. Applications
sending expires: may use local time, and it will be converted appropriately
by the Application Server.

Setting a Cookie’s Path and Domain
When a Web browser sends a request to a server, the browser checks
the server’s domain and path to see if they match any associated with
cookies that it is holding. If there is a match, the browser sends the
appropriate cookie(s) with the request.

Your application may set both the domain and path attributes of cookies
sent to the client.

Note: If your Web application is associated with more than one DNS
name, or if it uses pages with different URL paths, it may be
necessary to set the path and/or domain attributes explicitly.
Web Application Developer’s Guide A-3

For example, an application might use pages at both europe.travel.com and
asia.travel.com with links between them. By default, if the application’s
pages at europe.travel.com create a cookie, it is only returned to the server
with requests to europe.travel.com. To access the same cookie at
asia.travel.com, you must set its domain attribute to travel.com. E.g.:

myCookie domain: ‘travel.com’.
Similarly, if your application uses one cookie in a number of different
pages, you may need to set the cookie’s path attribute. By default, a
cookie is only accessable to pages that reside in the same path. I.e., the
path which contains the page which created the cookie.

For example, if a page located at europe.travel.com/germany/register.ssp
creates a cookie, it will only be available to pages on the /germany path.
To access the cookie from the homepage of europe.travel.com, you must
set the path explicitly. E.g.:

myCookie path: ‘/’.
In general, setting the path to ‘/something’ would match both
‘/something.ssp’ as well as ‘/something/search.ssp’.

Using Cookies in Secure Communication
By default, a cookie’s secure attribute is set to false. With the secure
attribute set to true, the cookie will only be sent to the server if the
communication channel is secure (currently, this means HTTPS).

Using Cookies with Server Pages
An application implemented with server pages may manipulate cookie
data directly using scripting expressions.

For example, a portal application that maintains a database of registered
members might save each member’s ID or name using a cookie stored
on the client machine. For maximum security, each member should be
asked to verify a password, but the cookie may be used as a hint.

To store and then later retrieve a cookie, two different server pages may
be used. First, to create the “hint” cookie, one server page might use the
following code:

memberIDCookie := HTTPCookie named: 'member_ID' value: ‘4567’.
memberIDCookie expireAfterDays: 90.
response addCookie: memberIDCookie.
A-4 VisualWorks

Class HTTPCookie
The cookie named member_ID is assigned a string that contains the ID
(‘4567’). Then, it is set to expire after 90 days. To attach the cookie to the
HTTP response, we use addResponse:. When the page is displayed in the
client’s browser, a new cookie is created on the client’s machine.

When the user returns to the portal application at a later time, the client’s
browser will include the saved cookie in the HTTP request. The ID may
be retrieved from the request as follows:

memberID := request cookieValueAt: 'member_ID'.
Note that cookieValueAt: does not return an instance of HTTPCookie, but
rather the String value associated with the member_ID cookie (or nil, if no
cookie by that name was included with the request).
Web Application Developer’s Guide A-5

A-6 VisualWorks

Index
A
application object

defined 7-13

B
building a web application 1-5
building the Server Image 3-2

C
caching

specifying for proxy servers 7-12
CGI script 4-1
character sets

specifying 6-19, 7-10
content type

specifying 6-19, 7-10
cookies A-1

accessing 7-8
and servlets 6-14
updating 7-11

D
deployment image

building 3-4
development image

building 3-2
dispatching execution 7-18

E
encoding

behavior in sessions 6-25
Encoding Form data 7-7
error handling 7-21
events

application 7-13
defining 11-9
session 7-17

examples iii-xvi
exception handling 7-21
expiration time

setting for server pages 7-10

F
FileResponder 4-1
forms

multi-part 7-6

H
HTML

encoding for page display 7-20
HTTP cookies A-1
HTTP server 4-1
HTTP servers

creating 4-2

I
implicit objects 8-5

defined 7-2
ISO-8859-1 encoding and Form data 7-7

L
language attributes

setting for server pages 7-10
setting for servlets 6-20

locale
setting for server pages 7-10
setting for servlets 6-20
specifying 6-24, 7-15

look policies 8-2, 10-2

M
MS-1252 encoding and Form data 7-7
multi-part forms

accessing data 7-6

P
parameters

accessing 7-5
Parcels 3-4
paths

converting virtual to physical 7-19

R
redirection 7-11
request

accessing 7-5
accessing cookies 7-8
accessing headers 6-15
accessing multi-part form data 7-6
accessing parameters 7-5
accessing server variables 7-8
attributes, using 6-12
Web Application Developer’s Guide Index-1

path, retrieving and translating 6-13
retrieving client’s locale 6-14, 7-8

requests
handling 10-6

resolvers
in server console 4-2

response
accessing messages in header 7-12
redirecting 7-11
setting status 7-11
writing and buffering 7-9

S
scripting elements

defined 8-2
scripting variables

defined 8-5
scripting variables, implicit 8-5
server

creating 4-3
shut down 4-5
starting 4-4
testing 4-5

server console 4-1
server object

defined 7-18
server pages

implicit objects 7-2
server variables

accessing 7-8
service method 6-4
servlet container 6-3
servlet context 6-3
servlet request path 6-13
ServletContext

initializing 6-10
servlets

context object 6-10
session

abandoning 7-16
obtaining ID 7-16
specifying timeout 7-16

session object 6-22
defined 7-15

session variables 7-15

T
transferring execution 7-18

U
URL

encoding for queries 7-19

V
VisualWave server 4-1
VisualWorks Application Server

documentation
Web GUI Developer’s Guide iii-xi
Web Server Configuration Guide iii-xi

W
web server 4-1
web servers

types supported 4-3
web site

site policy 10-3
WebSite object

catalog 10-6
Index-2 VisualWorks

	Contents
	About This Book
	Audience
	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information
	Online Help
	News Groups
	VisualWorks Wiki
	Commercial Publications

	Examples

	Overview
	Application Server Architecture
	Web Application Design
	Building Web Applications with Smalltalk Server Pages
	Building Web Applications with Smalltalk Servlets
	Building Web Applications with VisualWave

	Web Concepts
	Web Transactions
	HTTP Request
	GET versus POST
	Server Variables
	Cookies

	HTTP Response
	Response Status
	Response Buffering
	Cookies
	Redirection
	Secure Sockets

	Application Development
	Application Server Parcels
	Creating a Development Image
	Saving the Development Image
	Exiting the Development Image
	Deploying Web Applications
	Server System Requirements
	Client System Requirements

	Server Console
	Smalltalk HTTP Server
	Using a Web Server
	Opening the Server Console
	Creating a New Server
	Starting a Server
	Testing a Server
	Shutting Down the Server

	Web Sites
	Working with Web Sites
	Managing Web Site Configurations
	Selecting the Default Configuration
	Selecting the Demo Configuration

	Viewing Site Attributes
	Creating and Configuring a Site
	Configuring a Site
	Removing a Site

	Specifying Site Attributes
	Site Name
	Configuration File
	Home Directory
	Home Page
	Aliases
	Namespace
	Registered Servlets Only
	Enable
	Password
	Debugging
	Event Callbacks
	Saving a Site Configuration

	Setting Site Debugging Options
	Managing Server Attributes
	Managing Server Logging and Sessions

	Servlets
	Overview
	When to Use Servlets
	Servlets, Containers, Contexts

	Servlet Basics
	Testing the VeryBasicServlet
	The Redirect Servlet

	Mapping Requests to Servlets
	Servlets Implementation
	HttpServlet
	Servlet Initialization
	Handling Requests
	Multithreading Servlets
	Ending Service

	Servlet Context
	Initialization Parameters
	Setting Context Attributes
	Accessing Resources

	Request
	Accessing Parameters
	Using Request Attributes
	Retrieving and Translating the Request Path
	Accessing Cookies
	Retrieving the Client’s Locale
	Secure Sockets Layer
	Accessing Headers

	Response
	Writing and Buffering Responses
	Passing Cookies to the Client
	Redirection
	Specifying Character Sets and Content Type
	Setting Language or Locale Attributes
	Accessing Headers

	Session
	Establishing a Session
	Tracking Sessions
	Binding Session Attributes
	Setting the Session Timeout
	Ending a Session
	Specifying a Locale
	Sessions and Character Sets

	Dispatching
	Creating a Request Dispatcher
	Using a Request Dispatcher
	Including Query Strings in Dispatcher Paths

	Server Page Applications
	Understanding Server Pages
	Example: Server Pages
	Testing the Example

	VisualWorks Implementation
	Request
	Accessing Parameters
	Multi-Part Forms
	Encoding Form Data
	Cookies
	Server Variables
	Retrieving the Client’s Locale

	Response
	Writing and Buffering Responses
	Setting Character Sets and Content Type
	Setting Language or Locale Attributes
	Setting the Expiration Time
	Creating and Updating Cookies
	Testing the Client’s Connection
	Response Status
	Redirection
	Controlling Caching
	Accessing the Response Header
	Logging

	Application
	Application Events
	Parallelism

	Session
	Accessing Session Variables
	Specifying a Locale
	Setting the Session Timeout
	Abandoning a Session
	Obtaining the Session ID
	Session Events

	Server
	Setting the Script Timeout
	Dispatching and Transferring Execution of a Script
	Converting a Virtual Path
	Encoding URLs for Queries
	Encoding HTML for Page Display

	Error Handling
	Handling Exceptions in Server Pages

	Server Page Syntax
	Syntax
	Capitalization
	Variables
	Scripting Variables
	Comments
	Directives
	Language
	Taglib

	Predefined Scripting Actions
	Tag Attributes
	Standard Actions
	useBean
	setProperty
	getProperty
	include
	forward
	scriptlet
	expression

	An Example using JSP-style Script

	Server Page Extensions
	Overview
	When to Use Tag Libraries

	How Tag Libraries Work
	Tag Library Descriptor File
	Tag Handlers
	Custom Tags in Server Pages

	Creating Tag Libraries
	Creating a Tag Library Descriptor File
	Creating a Tag Handler
	Defining a Simple Tag Handler
	Handler Properties
	Handling Tag Attributes
	Including the Tag Body
	Processing the Tag Body
	Using Nested Tags

	Implementation of Tag and BodyTag

	Content Management
	Overview
	Resolving Web Requests
	Associating a Site with a Domain Name
	Creating a Site Alias
	Creating a Virtual Directory

	Resolving Requests to Applications
	Logical Names
	Smalltalk Links
	Using Logical Names and Logical Links
	Server-Side Includes

	Deployment
	Working with Configuration Files
	The Global Configuration File
	Site-Specific Configuration Files
	Configuring a Site with an Initialization File
	Securing an Application for Deployment
	Password-Protecting the Server
	Disabling the Server’s Configuration Page
	Setting the Server’s Default Home Page
	Enabling Use of Registered Servlets

	Configuration Errors

	Specifying Server Attributes
	Setting the Name of the Logfile
	Setting the Name of the Configuration
	Specifying Event Callbacks
	Specifying User-Defined Parameters

	Changing the Server’s Default Configuration

	Cookies
	Class HTTPCookie
	Working with Cookies
	Setting a Cookie’s Expiration Time
	Setting a Cookie’s Path and Domain
	Using Cookies in Secure Communication

	Using Cookies with Server Pages

	Index

