

VisualWorks®

Web GUI Developer's Guide

P46-0139-00

© 1993–2002 by Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0139-00

Software Release 7

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, COM Connect, and StORE are trademarks of Cincom Systems, Inc., its
subsidiaries, or successors. ENVY is a registered trademark of Object Technology
International, Inc. All other products or services mentioned herein are trademarks of their
respective companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation © 1993–2002 by Cincom Systems, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior written consent
from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents

About This Book 9

Audience ...9
Conventions .. 9

Typographic Conventions ...10
Special Symbols ...10
Mouse Buttons and Menus ..11

Getting Help ..11
Commercial Licensees ...12

Before Contacting Technical Support ..12
Contacting Technical Support ...12

Non-Commercial Licensees ...13
Additional Sources of Information ...13
Online Help ...14

Commercial Publications ..14
Examples ..14

Chapter 1 Overview 15

Building Web Applications ...16
Design Considerations ..17
Supporting Graphics ...18
Supporting Database Access ..18

Chapter 2 Windows and Applications 19

Windows and Sessions ...20
Web Sessions and Phasing ..21
Using Dialogs ..21
User Interface Design Considerations ...22
Web GUI Developer’s Guide 3

Contents
Chapter 3 Widgets 23

VisualWave Widgets ... 23
Supported Widgets .. 24
Unsupported Widget Properties .. 25

Controlling Widget Layout ... 26
Layout Tips .. 28

Window Size ... 28
Widget Size ... 28
Widget Placement ... 28
Canvas Properties .. 28

Look Policies ... 29

Chapter 4 Creating an Image Map 31

Setting Up a ClickMap .. 31
Loading or Drawing the Background Image ... 32
Adding a Click Map Widget to the Canvas ... 32
Programming the Click Map Widget .. 33
Defining the Hot Region Mappings .. 34

Click Map Widget Properties .. 35
Hot Regions Editor ... 36
Using Custom Views and Controllers ... 36

Chapter 5 Creating HTML Text 37

HTML Text Widget .. 37
Adding an HTML Text Widget ... 38

Providing HTML Text for the Widget .. 38
Programmatically Creating HTML Text ... 39
Generating a Stub using the Painting Tools 39
Creating the HTML Text Instance ... 40
Supported HTML Tags .. 41

HTML Text Editor .. 42
Using the HTML Text Editor ... 42

Opening the HTML Text Editor .. 42
Editing and Formatting HTML Text ... 42
Connecting your HTML Text to the Widget 43

Importing HTML Markup .. 43
Specifying a Base URL .. 44
Controlling HTML Encoding ... 45
Adding Color to HTML Text .. 45
4 VisualWorks

Contents
Chapter 6 HTML Frames 47

Overview ...47
Dividing a Canvas into Frames ..48
Selecting and Deselecting Frames and Framesets ...55

Selecting a Frame ..55
Deselecting a Frame ..55
Selecting a Frameset ...56
Deselecting a Frameset ...56

Specifying the Attributes for a Frame ..57
Basics ...57
Details ..58

Specifying the Attributes for a Frameset ...59
Basics ...59
Details ..60
JS Events ...60

Other Operations with Frames ..60
Deleting a Frame ..60
Moving Frames ...60
Saving a Framed Canvas ...60
Accommodating Browsers that Don’t Support Frames61

Examples ..61

Chapter 7 Targeting Output 63

Allowed Targets ...63
Targeting with the Base Target Property ...64

Setting the Base Target ..64
For a Frame ...64
For a Window ..64

Targeting with JavaScript ..65
When to Use JavaScript ...65
How to Use JavaScript ...65
Example: Targeting From a Widget ..66

Targeting from a Window ..66
Targeting from a Frames or Frameset ...66
Targeting from a Widget ..67

Targeting from a Label Widget ...67
Examples: Targetting Output ...68

Example 1: Frame and Widget ...68
Example 2: Frame and Window ...69
Web GUI Developer’s Guide 5

Contents
Chapter 8 Client-side JavaScript 71

Why Use JavaScript? .. 71
Supported Widgets and Events .. 72
JavaScript Properties ... 73

JavaScript Properties for Windows .. 73
JavaScript Properties for Widgets ... 73

Using JavaScript ... 74
Browser Support of JavaScript .. 74
Submit on Selection ... 75
Submit from an Artibrary Widget ... 75
Accessing Named Fields ... 76
Subcanvas Support ... 76
Single vs. Double Quotation Marks ... 77

Example: Validating Input with JavaScript .. 77
Questions and Answers .. 81
Additional Examples ... 82

Chapter 9 VRML Widget 83

Prerequisites ... 83
Testing VRML with VisualWave .. 83
Tutorial: A Simple VRML World .. 84
Exploring the VRML Classes .. 87

Basic VRML Functionality .. 87
Reserved Classes ... 87

Additional VRML Examples .. 87
Implementation Notes ... 88

World Size ... 88

Chapter 10 Java Applet 89

Using Java Applets ... 89
Java Applet Properties .. 90
Setting Properties Programmatically .. 90

Parameters .. 90
Other Properties .. 91

Examples: Using Java Applets ... 91
6 VisualWorks

Contents
Chapter 11 Bookmarks 93

Overview ...93
URL Cache ..93
Bookmark Manager ...94
Example: Using the Bookmark Manager ...95

Creating Bookmarks ...95
Using Bookmarks ...97
Example: Updating Bookmarks ..100

Troubleshooting ...100

Chapter 12 HTTP Cookies 101

Using HTTP Cookies ...102
Setting Up the Web Page for Cookies ..102
Adding a Cookie to the Page ..104
Displaying All the Cookies Being Sent ...105
Accessing the Cookies in the Request ...108
Using Received Cookies ..112

Class HTTPCookie ..113
Examples ..114

Chapter 13 Client Pull 115

Overview of Client Pull ..115
Using Client Pull ..117

Basic HTTP Refresh ..117
Example: Letting the User Set the Refresh Rate117

Create a Simple Canvas ...118
Set up the Time Display ..120
Set up the Count Display ...120
Set up the Refresh Rate Display ...120
Set up Screen and Web Variations ...121
Start Client Pull ...122
Stop Client Pull ..123
Running the Example ..123

Additional Examples ..123

Chapter 14 FileResponder Resolver 125

Configuring a FileResponder ..125
Content Types ...127
Web GUI Developer’s Guide 7

Contents
Chapter 15 Graphic Image Formats 131

Automatically Generating Graphic Images ... 132
Using the Java Renderer .. 133
Using GIF-compatible (GUF) Images ... 134

Chapter 16 ActiveX Widget 135

Using ActiveX ... 135
ActiveX Properties .. 136

Setting Properties Programmatically ... 136
Notifying Browsers without ActiveX .. 137
Examples .. 137

Chapter A Tools Reference 139

Hot Regions Editor ... 139
Menu Bar Commands .. 140

Regions Menu ... 140
Edit Menu .. 140
View Menu .. 140

Painting Controls ... 141
HTML Text Editor .. 142

Menu Bar Commands .. 142
File Menu .. 142
HTML Menu .. 143
Edit Menu .. 143

<Operate> Menu Commands .. 144
Formatting Options .. 144

Paragraph Formatting ... 144
Character Formatting .. 145

Editing and Display Controls .. 145
Bookmark Manager .. 147

Menu Bar Commands .. 147
Bookmarks .. 147
Edit ... 148

<Operate> Menu Commands .. 148
Category List .. 148
URL List .. 149

Buttons .. 150

Index 153
8 VisualWorks

About This Book

This guide is designed to help VisualWorks programmers create web-
based applications effectively using VisualWave. VisualWave is a server
technology supported by the VisualWorks Application Server.

This document accompanies the VisualWorks Application Developer’s
Guide, and the VisualWorks GUI Developer’s Guide, which together
provide information that will help you effectively use the features in
VisualWorks Application Server.

Audience

The discussion in this book presupposes that you have at least a
moderate familiarity with object-oriented concepts and the VisualWorks
environment. It also presupposes that you have a good understanding of
the World Wide Web, web (HTTP) servers, browsers, and HTML.

In addition to this book, the documentation set for the VisualWorks
Application Server includes the following:

• Web Application Developer’s Guide: Provides detailed information
about building Web applications using the VisualWorks Web Toolkit.

• Web Server Configuration Guide: Provides more detailed information
about installing and configuring server applications, the internal
architecture of the VisualWorks Application Server, and its interface
with commercial HTTP servers.

Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.
Web GUI Developer’s Guide 9

About This Book
Typographic Conventions
The following fonts are used to indicate special terms:

Special Symbols
This book uses the following symbols to designate certain items or
relationships:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File � New Indicates the name of an item (New) on a menu
(File).

<Return> key
<Select> button

<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.
10 VisualWorks

Getting Help
Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or
combinations:

Note: This is a different arrangement from how VisualWorks used
the middle and right buttons prior to 5i.2.
If you want the old arrangement, toggle the Swap Middle and Right Button
checkbox on the UI Feel page of the Settings Tool.

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commericial and non-commercial license holders.

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>
Web GUI Developer’s Guide 11

About This Book
Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

• The version id, which indicates the version of the product you are
using. Choose Help � About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help � About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to
supportweb@cincom.com.

Web
In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com
Telephone

Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.
12 VisualWorks

mailto:supportweb@cincom.com
mailto:supportweb@cincom.com
http://supportweb.cincom.com

Additional Sources of Information
Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:

• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu

with the SUBJECT of "subscribe" or "unsubscribe".

• An excellent Smalltalk archive is maintained by faculty and students
at UIUC, who are long-time Smalltalk users and leading lights in the
Smalltalk community, at:

http://st-www.cs.uiuc.edu/

• A Wiki (a user-editable web site) for discussing any and all things
VisualWorks related at:

http://wiki.cs.uiuc.edu/VisualWorks

• A variety of tutorials and other materials specifically on VisualWorks
at:

http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincom.com/smalltalk/documentation

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.
Web GUI Developer’s Guide 13

mailto:vwnc-request@cs.uiuc.edu
http://st-www.cs.uiuc.edu/
http://wiki.cs.uiuc.edu/VisualWorks
http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
news:comp.lang.smalltalk
http://www.cincom.com/smalltalk/documentation

About This Book
Online Help
VisualWorks includes an online help system.

To display the online documentation browser, open the Help pull-down
menu from the VisualWorks main menu bar and select one of the help
options.

Commercial Publications
Smalltalk in general, and VisualWorks in particular, is supported by a
large library of documents published by major publishing houses. Check
your favorite technical bookstore or online book seller.

Examples
VisualWorks Application Server includes many examples, including some
which are not referred to in this manual.

Examples demonstrating the use of server pages and servlets can be
found in the \web\examples\ directory.

To explore the UI Painter examples, load the demonstration parcel,
VisualWaveDemos.pcl. Specific examples are referred to by class
name.
14 VisualWorks

1
Overview

The VisualWorks Application Server is a full-featured environment for
creating and maintaining Web business applications using VisualWorks.
A flexibile, scalable architecture provides support for industry standard
Web technologies, and support for three distinct application frameworks:
Smalltalk Server Pages, Servlets, and VisualWave.

For a general overview of the VisualWorks Application Server, or for
details on building applications using Smalltalk Server Pages or servlets,
refer to the VisualWorks Web Application Developer’s Guide.

This guide covers the details of building applications using VisualWave.
Existing VisualWorks applications may be easily Web-enabled using
VisualWave, though typically some modifications are required to optimize
an application for the Web.

By nature, Web applications impose certain restrictions on the application
developer. This document addesses these restrictions, as well as special
enhancements that allow you to taylor existing VisualWorks applications
for the Web.

This chapter describes:

• Building Web Applications

• Design Considerations

• Supporting Graphics

• Supporting Database Access
Web GUI Developer’s Guide 15

Chapter 1 - Overview
Building Web Applications
VisualWave enables developers to build Web applications using the
standard VisualWorks painting paradigm:

• Design the application domain model using an object-oriented
architecture.

• Create or adapt classes that define the data and behavior of the
application objects (the application model).

• Build the user interface using the UI Painter and related editor tools.

With VisualWave, the difference occurs at runtime. Where VisualWorks
uses a window specification to create an onscreen display, VisualWave
uses it to define an HTML (Hypertext Markup Language) page.

When building window specifications, VisualWave adapts the
VisualWorks UI Painter in several ways:

• Providing Special Widgets

• Excluding Some Unsupported Widgets

• Excluding Some Unsupported Widget Properties

• Providing Look Policies

The following chapters in this book discuss the additions provided by
VisualWave as well as the restrictions and other differences imposed
when building Web applications.
16 VisualWorks

Design Considerations
Design Considerations
When designing and building a VisualWorks application that will run on
the Web, the following points should be kept in mind:

Web applications are multi-user
Whereas client-based applications are typically single-user, multiple
users will be running instances of your Web application
simultaneously. Applications built for VisualWave should be thread-
safe.

Navigation within the application must be open
Web browsers make it possible (using the back and forward buttons)
to violate the application’s assumptions of where a user can go in the
application at any given time. It is always the client that initiates
communication and s/he may switch to pages in an open pattern.

Web applications use forms
In a VisualWorks application, users enter information in one widget at
a time. In a Web application, users enter information in several
widgets and then submit all the new values in batch mode.
Applications running with VisualWave process those new values
according to tab sequence order.

Dynamic widgets may present difficulties
Because of the “fill in and submit” nature of HTML forms, Web
applications should avoid some of the dynamic capabilities of screen-
oriented GUIs such as immediate modification of widget properties
based on user input. Features such as hierarchical menus do not
work well.

Some widgets that are common in screen-oriented applications are
not readily represented by Web browsers.

Screen layout is only approximate
Web browsers are not WYSIWYG. In fact they’re intentionally just the
opposite, allowing you to separate content from presentation.

When using the UI Painter to create a Web application, it is not
possible to achieve the kind of precise layout to which most GUI
designers have become accustomed. Having said that, there are
tricks that can help. For example, you can group widgets together in
the painter in order to line them up better. Experimentation and
preview are key.

For an application that requires sophisticated layout, you should
consider using commerical Web design software in conjunction with
Smalltalk Server pages.
Web GUI Developer’s Guide 17

Chapter 1 - Overview
Supporting Graphics
Web applications built using VisualWave require a server that supports
graphics. Accordingly, a VisualWave application cannot be “headless”
(lacking a GUI), as can a VisualWorks or Web Toolkit application.

VisualWave uses resources on the host machine when converting
images to GIF or GIF-compatible (GUF) format for display on the client’s
web browser. As a result, if the server machine has a monochrome
display, then only monochrome images are supported to the client.

Note: Because GIF and GUF graphics are 8-bit, we strongly
recommend running the host machine’s window system in 8-bit
mode.

Class Image does not support transparency in graphics. To create
transparent images, save the image object as an external GIF file and
use a standard graphics editor to make it transparent.

Supporting Database Access
To deploy a database application as a web application, you can use the
ObjectLens programmatically as described in the VisualWorks Database
Connect Application Developer’s Guide. You can also use the Data
Modeler. You cannot, however, use the data forms or canvases that are
generated by the database tools. The dataset, linked data form, and
embedded data form widgets are also not supported.

Database applications that use the EXDI and Database Connect
technology directly are supported for both web and non-web applications.
Note, however, that multiple clients using the application can cause
performance and concurrency issues on platforms that do not support the
Threaded API. For details, see the VisualWorks DLL & C Connect User’s
Guide.
18 VisualWorks

2
Windows and Applications

Using multiple windows is a common technique in VisualWorks GUI
design. The most common additional windows are dialogs. Others may
be opened for providing alternative views on application data.

Multiple windows need to be handled differently by a VisualWave
application than in VisualWorks.

An alternative to multiple windows in some cases is to use frames. For
more information on using frames in a VisualWave application, refer to
“HTML Frames” on page 47.

This chapter describes:

• Windows and Sessions

• Web Sessions and Phasing

• Using Dialogs

• User Interface Design Considerations
Web GUI Developer’s Guide 19

Chapter 2 - Windows and Applications
Windows and Sessions
Normally, a VisualWorks application opens another window by sending
open to that window’s application model:

actionButton
ApplicationModelName open

When a VisualWave application starts, it automatically creates a web
session for itself. The web session keeps track of the client host and web
browser to which the application should send its output. All of the
application’s windows must belong to the same session. VisualWave
extends the VisualWorks application model by adding protocol that
enables the first application model to open other application models and
assign them to its web session.

Any of the following will work to replace the example above:

actionButton
self openClass: ApplicationModelName

actionButton
self openClass: ApplicationModelName interface: #mySpec

actionButton
| am |
am := ApplicationModelName new.
am setSomething: nil.
self open: am interface: #windowSpec

When converting a screen-oriented application for use with VisualWave, it
is important to consider all continuity across the user interface. If the web-
based application requires session continuity from page to page, it is
tempting to use a nested subcanvas in the screen-oriented application.
However, because of the implementation of web sessions, care must be
exercised so that the nested subcanvas object doesn’t lose its context.

VisualWave provides a mechanism for keeping track of the phase of a
web session. If the application presents a series of pages, the
VisualWave application server notes which page the client is on, and
requires that FORM data be received only from that page.

This mechanism ensures the continuity of a web session. If, for example,
the client uses the Web Browser’s Back button to look at a previous page,
and then tries to SUBMIT input from that page, VisualWave will detect this
and signal an out-of-phase condition. By default, the server reports an
error, but it is possible to override this action, and selectively give the
responsibility for maintaining session phase to the application.
20 VisualWorks

Web Sessions and Phasing
Web Sessions and Phasing
VisualWave maintains the state of a client’s interaction with an application
using the notion of a web session. The application typically presents a
series of pages to the client, each of which may be submitted as FORM
data. If the client uses the Web Browser’s Back button to move to a
previous page in the session, and if the previous page is then submitted
with stale data, VisualWave will raise an out-of-phase condition, and
report an error to the client.

You can tell VisualWave to ignore this out-of-phase condition, and allow
your application to make a decision about the best response to a phase
error. For maximal control, you can enable and disable trapping for the
out-of-phase condition on a widget by widget basis.

To disable reporting of an out-of-phase condition, select the widget you
wish to change, open a Properties Tool, and set the Ignore Phase Errors
check box on the Web properties page.

Using Dialogs
VisualWave supports the use of some Smalltalk dialogs. You can also
implement web dialogs using JavaScript.

VisualWave displays dialogs in the client’s web browser like any other
web page. The user must, however, respond to the dialog before entering
information on any of the application’s pages. Attempts to use another
page return the user to the page containing the dialog.

The following expressions can be used to open a dialog:

self openDialogInterface: #dialogSpec

self dialog warn: 'Do not do that'

Dialog warn: 'Do not do that' for: self builder window
To set the look policy, session, and builder:

self simpleDialog
To have the application set the look policy and session for the dialog:

SimpleDialog new
Web GUI Developer’s Guide 21

Chapter 2 - Windows and Applications
User Interface Design Considerations
Keyboard hooks, auto accept, and direct manipulation of controller and
view state occasionally performed in VisualWorks applications are not
available to web applications. Similarly, in a VisualWave application,
componentAt: returns the view itself, not the wrapper.

Visual blocks for sequence views, such as graphics in tables and lists, are
not supported.

Care must be exercised when using nested subcanvases in several parts
of an application. Under some conditions, the application can break when
a subcanvas is invoked.
22 VisualWorks

VisualWave Widgets
3
Widgets

VisualWorks provides a rich set of widgets for building applications and
VisualWave adds a number of special widgets to the standard palette.
Due to limitations of HTML and HTTP, a few standard widgets are not
supported in VisualWave.

This chapter provides an overview of working with widgets in VisualWave.
Later chapters include additional details on specific widgets.

VisualWave Widgets
HTML Text Widget

A text field that allows you to specify font changes, anchors, and
links. For the Aspect property, you can supply text, a URL, or a
message that returns HTML text. See “Creating HTML Text” on
page 37 for details.

VRML Widget
An enhanced view holder that allows you to incorporate a VRML
scene in a VisualWave application. See “VRML Widget” on page 83
for details.

Java Applet
An enhanced view holder that allows you to incorporate a Java applet
in a VisualWave application. See “Java Applet” on page 89 for details.

ActiveX Widget:
An enhanced view holder that allows you to incorporate an ActiveX
control in a VisualWave application. See “ActiveX Widget” on
page 135 for details.
Web GUI Developer’s Guide 23

Chapter 3 - Widgets
Supported Widgets
Not all standard VisualWorks widgets have HTML equivalents. Widgets
that have no HTML equivalent become invisible and inactive in Web
applications.

The following table shows which widgets are supported in Web
applications and, of those, which can have alignment properties set.

Widget OK for Web Can Align

Action button X X

ActiveX control X X

Chart X X

Check box X X

Click map X X

Combo box

Dataset

Divider (horizontal) X X

Divider (vertical) N/A

Group box

HTML text X X

Input field X X

Java applet X X

Label X X

List view X X

Menu button X X

Notebook

Percent Done

Radio button X X

Region

Resizer

Slider

Subcanvas X X

Tab Control
24 VisualWorks

VisualWave Widgets
The following widgets generate errors in Web applications:

• Embedded data forms

• Linked data forms

Unsupported Widget Properties
Some widget properties are ignored because they cannot be specified
precisely for all web browsers.

See the Web Notes in the widget properties tool for details about specific
widgets and their properties. In general:

• Position properties are ignored, except those set using the Web Position
page of the properties tool.

• Validation properties, except Change, are ignored.

• Notification properties, except Change, are ignored.

• Read-only widgets appear to be editable. They are read-only in
implementation; the controller does not process anything the user
enters into them.

• Enable/Disable has the same effect as beVisible/beInvisible.

• Table cells that are selectable are displayed with radio buttons. For
example, if you have the cell-select property chosen for a table, every
cell will have a radio button in it. Currently, VisualWave does not
support non-select tables. Cell, row, or column selection must be
chosen.

Table X X

Text editor X X

Tree View

View holder X X

VRML X X

Widget OK for Web Can Align
Web GUI Developer’s Guide 25

Chapter 3 - Widgets
Controlling Widget Layout
When VisualWave generates a web page under the Enhanced HTML look
policy, it uses a table to control the layout of all of the widgets on the
canvas (for details on look policies, “Look Policies” on page 29).
Each widget is placed in its own table cell in the HTML page.

The alignment of each widget within its table cell is controlled using the
Web Position properties:

You can control both the horizontal and vertical alignment. Use the radio
buttons to set the horizontal alignment to left side, center, right side, or
none. Similarly, a widget’s vertical alignment can be set to top, middle,
bottom, baseline of text, or none.

For a single widget on a page, the alignment makes no difference
because that widget determines the cell size. When multiple widgets
cooperate to determine the width of a column or the height of a row, the
alignment can make a significant difference.

To see how alignment works, set up a canvas with a series of tall and
wide “spacing” widgets that determine the size of the rows and columns.
Then add widgets that are smaller than the spacing widgets and adjust
the alignment of those smaller widgets.
26 VisualWorks

Controlling Widget Layout
In the canvas below, Spacing buttons are used to determine the column
and row sizes. The other buttons, labels, and input fields appear to have
the same alignment on the canvas, but their properties are set so that:

• Button1, Label1, and InputField1 are aligned to the left and top.

• Button2, Label2, and InputField2 are aligned to the center and middle.

• Button3, Label3, and InputField3 are aligned to the right and bottom.

The resulting HTML page is shown here:

Notice that table borders are turned on to show the alignment. You can
turn table borders on for VisualWave by sending the message:

NetscapeTableLayout showBorders: true
For a list of widgets that can be aligned, see page 24.
Web GUI Developer’s Guide 27

Chapter 3 - Widgets
Layout Tips
The painting tools are used to specify the basic layout that will appear in
the web browser. They do not, however, describe the exact layout.

One of the benefits of HTML is that it separates content from
presentation. You specify the kinds of elements that you want on your
web page and each web browser then determines how to present those
elements. Therefore, the layout you see on the web browser will only be
an approximation of what you drew in the Painter. However, there are
ways to control the display.

Window Size
If you change the window size, you must set the new window size as the
preferred size using Layout � Window � Preferred Size.

Widget Size
The height of the following widgets is not affected by the position
properties when they are displayed in a web browser:

• Action button

• Check box

• Radio button

• Input field

• Menu button

The width of action buttons, check boxes, and radio buttons is determined
by the label of the widget. Setting the position properties does not affect
display in a web browser.

Widget Placement
Use the Painting Tool’s Group command (on the Arrange menu) to line up
widgets better.

Canvas Properties
The Web properties page for a canvas allows you to set a background
pattern and sound, as well as a few other properties that affect the
behavior or appearance of the web page displaying your application.
Refer to the Web Notes page in the Properties tool for more information.
28 VisualWorks

Look Policies
Look Policies
The painting tools support two web-specific look policies:

• Basic HTML is used for web browsers that do not support tables.

• Enhanced HTML is used for web browsers that do support tables.

To set the look policy, open the Canvas Tool’s Look menu. When you
choose an HTML look policy, the canvas redraws itself to look more like it
will when displayed in a web browser. Widgets for which there are no
HTML equivalents become invisible and inactive.

When the application is running, VisualWave automatically determines
which look policy to use. With a VisualWorks Application Server image,
you can specify the exact set of browsers for which each HTML look
policy is used.
Web GUI Developer’s Guide 29

Chapter 3 - Widgets
30 VisualWorks

Setting Up a ClickMap
4
Creating an Image Map

The Click Map widget is a key element in the VisualWave implementation
of HTML image maps. A click map allow you to define areas of a graphic
image and determine what action to invoke based on the area in which
the user clicked.

Click maps are often used for button bars at the top or bottom of web
pages. Using a click map makes it possible to use any graphic image to
represent a row of buttons. The image may include text, graphics, and a
variety of colors. All of the buttons may be part of a single image,
guaranteeing their relative layout and allowing for a wider variety of
layouts than permitted by HTML button entities. Quite often button bars
created with click maps are highly stylized with elaborate graphic images
and text.

Setting Up a ClickMap
To create a click map:

1. Load or create the background graphic image

2. Add a click map widget to the canvas

3. Program the click map widget

4. Define the hot regions for the click widget

You can also use a custom view (see: “Using Custom Views and
Controllers” on page 36).
Web GUI Developer’s Guide 31

Chapter 4 - Creating an Image Map
Loading or Drawing the Background Image
The VisualWorks Image Editor enables you to draw graphic images and
store them in resource methods. The Image Editor is available from the
Tools menu of the VisualWorks Launcher window and the Tools menu of
the UI Painter. It is described in the VisualWorks Application Developer’s
Guide.

VisualWave also allows you to load bitmap graphics that have been
drawn with standard drawing and painting programs. To load a bitmap
into your image:

1 Open a Resource Finder by choosing Browse�Resources in the
Launcher window.

2 In the class list (left-hand list) of the Resource Finder, select the class
in which you wish to store the image. This must be an application
model class.

3 In the resource list (right-hand list), select new Image From File on the
<Operate> menu, enter the name of the bitmap file, and click OK.

4 Enter the selector you want used for the method that stores and
returns the bitmap image resource. Click OK.

VisualWave reads the bitmap image from the file provided and converts it
into a Smalltalk graphic image. The specification for the Smalltalk graphic
image is stored in a newly created resource method.

Adding a Click Map Widget to the Canvas
The graphic image is displayed on the canvas by a click map widget. The
click map widget also contains the hot region mappings to use with the
image. This widget is the connection between the image and the actions
that user clicks will invoke.

To add a click map widget to a canvas:

1 Open a canvas for editing.

2 From the Palette, choose the click map widget:

3 Place the click map on the canvas.
32 VisualWorks

Setting Up a ClickMap
Programming the Click Map Widget
The click map widget needs to know which image to display as the
background for the hot regions. You specify the click map’s image and
other information through the Properties Tool:

1 With the click map selected, click the Properties button in the Canvas
Tool or choose properties from the canvas’s <Operate> menu.

2 In the Properties Tool, set the following Basic properties:

• ID: A unique identifier for the widget.

• Visual Message: Determines the image that is displayed. It can be
the selector for the resource method in which the image is stored.
It can also be an URL that directs your web server to an external
image file.

• Default Click Message: (optional) Determines the action to be
invoked when the user clicks in an area for which no other action
is specified.

3 Apply the properties to the widget by clicking the Apply or Apply and
Close button. The image appears in the click map widget.

4 In the canvas, resize the click map widget so that it closely outlines
the graphic image.

5 If you changed the size of the canvas, set the new window size by
choosing Layout�Window�Preferred Size.

6 Install the canvas by clicking the Install button or choosing install from
the canvas’ <Operate> menu. When prompted, provide the class
name and method name in which to install the canvas.
Web GUI Developer’s Guide 33

Chapter 4 - Creating an Image Map
Defining the Hot Region Mappings
1 Make sure the click map widget is selected in the canvas.

2 In the Canvas Tool, choose Tools�Hot Regions Editor.

3 To display the selected click widget’s image as the background in the
Hot Regions Editor, choose Regions�Read. Resize the editor window
to display the entire image.

Alternatively, you can choose View�Load Backdrop and specify the
class and selector from which to read the image.

4 To start defining a region, choose Edit�New Slice.

A slice is comprised of one or more areas that invoke the same action
when clicked. The areas in a slice do not need to be contiguous. For
example, you could have the area at the left end and the area at the
right end be the same slice and invoke the same method.

You specify the areas that make up a slice by painting. The Hot
Regions Editor contains basic painting tools similar to other bitmap
editors. There are:

• Four colors or patterns of ink, allowing you to choose the color
that gives you the most accuracy when painting regions on your
image. The color does not show up on the final click map.

• Six brush sizes and shapes. The first four draw lines, the next
draws an ellipse, and the sixth draws a rectangle.

• A fill-mode bucket that fills the entire image.

5 Paint the slice.
34 VisualWorks

Click Map Widget Properties
6 In the Selector input field, enter the selector for the action method that
will be invoked when this slice is clicked.

7 Press <Return>. The selector appears on the menu button in the
middle of the Hot Regions Editor. You can use the menu to switch
between different slices of the same hot region resource.

8 Repeat steps 4 through 7 to define all the slices for this hot region.

9 Choose Regions�Apply to:

• Install the hot region resource. You are prompted for the class
name and selector for the resource method that stores the hot
region mappings.

• Insert the resource’s selector into the Mapping Selector property of
the click map widget that is selected in the canvas.

10 Close the Hot Regions Editor.

11 Install the canvas.

Click Map Widget Properties
Visual Message

This property determines the graphic image that is to be displayed as
the background for the click map.

Mappings Selector
This property specifies the method that performs the actual mapping
between the area in which the user clicked and the appropriate action
for that location. You define the areas and associate them with
methods to invoke by using the Hot Regions Editor.

Default Click Message
This property specifies the method to invoke when the user clicks in
an area for which no other method has been specified.

Note that it is the click map widget that makes the association between a
graphic image and a set of hot regions. The graphic image and the hot
region mappings are not stored together. They are associated by virtue of
being named in the click map’s Visual Message and Mappings Selector
properties. Thus, you could use reuse the graphic image with different hot
region mappings.
Web GUI Developer’s Guide 35

Chapter 4 - Creating an Image Map
Hot Regions Editor
The Hot Regions Editor is used to create and edit a hot region mapping,
which can be integrated into a click map widget. You use the Hot Regions
Editor to create hot regions and specify messages to be sent when the
user clicks in those regions. The Hot Regions Editor uses your entries to
generate a specification for building an appropriate hot region object. This
code is then installed in an application model as a resource method.

To open the Hot Regions Editor, open the Canvas Tool and choose
Tools�Hot Regions Editor.

For a complete functional description of the Hot Regions Editor, see “Hot
Regions Editor” on page 139 in Appendix A.

Using Custom Views and Controllers
If you have an application that uses custom views and controllers, you
can make it work as a VisualWave application:

1 Make the custom view a subclass of ClickWidget.

2 In the custom view class, implement a mouseReleaseAt: method that
specifies what to do when the user clicks in the custom view.

3 Disconnect the custom controller from your application. Move any
custom behavior to the custom view’s mouseReleaseAt: method.

Remember that interaction with the user is more limited in web
applications than in other applications. In particular, the only mouse
events transmitted to the application from the web browser are mouse
clicks. Events based on entry, mouse movement, and exit are ignored.
36 VisualWorks

HTML Text Widget
5
Creating HTML Text

This section describes how to add an HTML text widget to the canvas,
and how to create and display the HTML text. It explains how to create
HTML text both programmatically and using the HTML Text Editor.

HTML Text Widget
The HTML text widget allows you to place arbitrary pieces of HTML in
your application. It is essentially a text field that allows you to specify font
changes, anchors, and hyperlinks.

The Aspect property determines where the widget looks for the item to
display. For the Aspect property, you can supply text, an URL, or the name
of a method in the application model class that returns an instance of
HTMLText. The method may be an instance method that you have
programmed to return HTML text or a resource method that you created
with the HTML Text Editor.

The HTML text widget’s properties are similar to those of a regular text
field (for details, see the VisualWorks Application Developer’s Guide).
Note that some properties are not supported in web browsers. See the
Web Help properties page for details.
Web GUI Developer’s Guide 37

Chapter 5 - Creating HTML Text
Adding an HTML Text Widget
To display HTML text, place an HTML text widget on the canvas and
specify its properties. The properties include the name of a method that
provides the HTML text to display.

To add an HTML text widget:

1 Open a canvas for editing.

2 In the Palette, select the HTML Text widget:

3 Position the mouse pointer on the canvas and click to place the
HTML text widget.

4 Size and shape the widget as desired. Keep in mind that you are only
providing general instructions for the web browser. The web browser
will display the widget as tall and wide as is necessary to display the
widget’s entire contents.

5 With the HTML text widget still selected, click the Properties button in
the Canvas Tool or choose properties from the canvas’s <Operate>
menu.

6 In the Properties Tool, set the Basic properties:

• Aspect: The name of the method that returns an instance of
HTMLText. This may be the name of an instance method that
returns an HTMLText object programmatically or the name of a
class method that returns an HTML text resource that was
created with the HTML Text Editor.

• ID: A unique symbolic name for the HTML text widget.

7 Apply the properties to the widget by clicking the Apply or Apply and
Close button.

8 Install the canvas by clicking the Install button or choosing install from
the canvas’s <Operate> menu. When prompted, provide the class
name and method name in which to install the canvas.

Providing HTML Text for the Widget
The widget uses the Aspect property to obtain its HTML text:

• If the application model for the canvas has an instance method
whose selector matches the Aspect property, that method is executed.
The result is displayed in the HTML text widget. The instance method
may return an instance variable that holds onto the HTML text.
38 VisualWorks

Adding an HTML Text Widget
• If an instance method is not found, a check is made for a resource
method with that selector on the class side of the application model.
If a resource method exists, its resource is displayed in the HTML text
widget.

To use an instance method, you programmatically create the method and
the HTML text. To use a resource method, you use the HTML Text Editor
to create the method and HTML text. Using an instance method to
programmatically generate and return HTMLText is acceptable for very
small pieces of text. For larger pieces, you may want to create a resource.

If you use an instance method, you can easily create a value holder on
the text and store the value holder as an instance variable. You can send
value: to the instance variable with a new piece of HTML text, and it will
change in the widget. This strategy is demonstrated in Getting Started
with VisualWave for message text that changes depending on the
context.

Programmatically Creating HTML Text
To use an instance method to supply HTML text, create an instance
method whose selector matches the widget’s Aspect property and then
program that method to return an instance of HTMLText.

Generating a Stub using the Painting Tools
If you are going to use the instance method in combination with an
instance variable, you can use the painting tools to get started:

1 In the canvas, select the HTML text widget.

2 Click the Define button in the Canvas Tool.

3 The Definer asks you to verify that you want to define a model
(combination instance variable and instance method that returns that
variable’s value model) and add initialization.

4 Click OK to confirm the Define dialog.

VisualWave adds the following to the application model class:

• An instance variable (whose name matches the Aspect property)
that holds onto the HTML text that the widget displays.

• An aspect method (whose selector matches the Aspect property)
that returns the value of the notifier instance variable.
Web GUI Developer’s Guide 39

Chapter 5 - Creating HTML Text
Creating the HTML Text Instance
Whether you start from the painting tools or start from scratch, you need
to edit the instance method to return an instance of HTML text for the
words and formatting you desire. You can create HTMLText using one of
three methods:

String>>asHTMLText
HTMLText>>fromString:
HTMLText>>convertFromString:

Sending asHTMLText to a string is a quick way to turn the string into an
instance of HTMLText.

If your string already contains HTML markup tags, use the asHTMLText or
fromString: method.

If your string does not contain HTML tags, use the convertFromString:
method. When HTMLText converts a string, it encodes all HTML special
characters (such as <>&”). To add additional HTML markup, you send
messages to the HTMLText. HTMLText inherits protocol from its superclass
Text that enable it to add emphasis to individual characters.

For example, suppose that you wanted to have HTML text that displayed
the location of Cincom’s web site, www.cincom.com. You want all of the
text to be bold and be a link to the web site, and you want the “www” to
appear in italics. The following code creates the appropriate instance of
class HTMLText and assigns it to the temporary variable myHTMLText:

| myHTMLText |
myHTMLText := ’www.cincom.com' asHTMLText allBold.
myHTMLText emphasizeAllWith:

(#anchorDestination-> 'http://www.cincom.com').
myHTMLText emphasizeFrom: 1 to: 3 with: #italics.

When the text is asked to “display” on a web browser, the emphases are
converted to HTML tags. The HTMLText defined above would result in this
HTML markup:

<I>www</I>.cincom.com

And the text will be rendered as a bold anchor with “www” in italics.
40 VisualWorks

Adding an HTML Text Widget
Supported HTML Tags
To view the currently supported HTML tags, open a System Browser on
the class HTMLCharacterTag. Look on the class side in the protocol class
initialization for the method initializeEncodings. This method contains
expressions of the form:

Encodings at: #H1 put: <H1> -> <H1>.
The code above translates the emphasis #H1 to the HTML <H1> tag. For
example, if you want to display Cincom’s web location as a heading, you
evaluate this code:

| myHTMLText |
myHTMLText := 'www.cincom.com' asHTMLText.
myHTMLText emphasizeAllWith:

(#anchorDestination- 'http://www.cincom.com').
myHTMLText emphasizeallWith: #H1.
Web GUI Developer’s Guide 41

Chapter 5 - Creating HTML Text
HTML Text Editor
The HTML Text Editor is used to create and edit HTML text resources,
which can be integrated into an HTML text widget. You use the HTML
Text Editor to create text and specify characteristics for that text. The
HTML Text Editor uses these entries to generate a specification for
building an appropriate HTML text object. This specification is then
installed in a resource method on the class side of the application model.

To open the HTML Text Editor from a Canvas Tool, choose
Tools�HTML Text Editor.

For a complete functional description of the HTML Text Editor,
see “HTML Text Editor” on page 142 in Appendix A.

Using the HTML Text Editor
The text editor is used to create an HTML text resource.

To use a resource method to supply HTML text, you create a resource
with the HTML Text Editor and install it on a method whose selector
matches the widget’s Aspect property.

Opening the HTML Text Editor
You can open the HTML Text Editor from either the Launcher window or
the Canvas Tool by choosing HTML Text Editor from the Tools menu.

If you open the HTML Text Editor from a canvas that has already been
installed, the HTML Text Editor uses information from that canvas to set
defaults for certain operations, such as installing. If an HTML text widget
is selected, you can read and apply properties between the widget and
the HTML text resource.

Editing and Formatting HTML Text
In the HTML Text Editor, you can now enter some text, highlight it, and
apply various emphases to the highlighted text, including anchors. To
remove emphases, select the text, and deselect the emphases you want
removed. Use the X button to remove all emphases.

Click on the show HTML button to view the HTML. While in this mode, you
can enter arbitrary HTML markup. You cannot, though, create ordered
lists directly with the editor. While in the show HTML mode, however, you
can type in an ordered list by hand. If you save the HTML text while in
show HTML mode, your markup will be preserved. If you select show text,
you will lose all direct HTML editing changes.
42 VisualWorks

HTML Text Editor
Connecting your HTML Text to the Widget
When you are finished, choose HTML�Apply in the HTML Text Editor.

If an HTML text widget is selected in the canvas, this action applies the
text in the editor to that HTML Text widget. To make the text appear,
reapply the Aspect property in the Properties Tool. The text should now
appear on the canvas.

In the show HTML editing mode, the text appearing in the canvas has HTML
tags in it, whereas in the show text mode, rendered text appears on the
canvas.

Importing HTML Markup
You can import HTML source code from either a local file or from a URL.

To import HTML markup from an external file on your system. choose
File�Open... in the HTML Text Editor and enter a file name.

To import HTML markup from the web:

1 In the HTML Text Editor, choose File�Open from URL....

2 When prompted, enter the URL for the desired file and click the OK
button. The URL must be an HTTP request; it cannot be an ftp,
gopher, or other kind of request. As a shortcut, you can leave off
http:// from the URL.

The HTML markup is imported and displayed in the HTML Text
Editor.

3 Install the HTMLText resource by choosing HTML�Install and
specifying a class and a resource method name.

The HTML markup is imported by copying it into the resource method.
Changes made to the original source file after importing will not be
reflected in the HTMLText resource.

Note that the HTML Text Editor does not parse the HTML markup. In both
the show HTML and show text modes, the HTML Text Editor shows the raw
HTML markup that you imported.
Web GUI Developer’s Guide 43

Chapter 5 - Creating HTML Text
Finally, when you import HTML markup, there may be references to URLs
that are relative the document’s original host location. There are two ways
to make these URLs work:

• You can expand each to a full URL beginning with http:// by using the
Edit�Make URLs Relative To... command and entering the document’s
original protocol, host, and any intermediate directory names.

• You can leave the relative URLs and specify a base URL for the
HTML text widget that uses this resource by setting the Base URL
property for that widget.

Specifying a Base URL
To make all of the URLs in an HTMLText resource share the same base
URL, you can embed the base URL in the HTMLText resource’s links. The
HTML Text Editor automates this process with the Edit�Make URLs Relative
To... command. Note that this command affects all widgets that use the
HTMLText resource.

This can be useful for “fixing” HTML that you have imported from an
external file. It does not work if the URLs in your HTMLText resource are
already fully-qualified URLs beginning with a protocol.

To embed the base URL in an HTMLText resource:

1 Open the HTML Text Editor.

2 Load the HTMLText resource.

The links in the HTMLText resource should have relative URLs.

3 Choose the Edit�Make URLs Relative To... command.

When you choose this command, the HTML Text Editor prompts you
for the base URL. The base URL is the prefix you want inserted
before each relative URL in the current HTMLText resource. The base
URL consists of the protocol, host name, and any intermediary
directory names for the document.

4 Enter the base URL and click the OK button.

Once you’ve entered the base URL, the HTML Text Editor searches
for all occurrences of HTML tags that use URLs (for ACTION, SRC,
and HREF attributes). When it locates an occurrence of one of these
tags, if the coresponding URL is relative (not qualified with a host), it
will prepend the specified base URL to it.

5 Install the HTMLText resource by choosing HTML�Install and
specifying a class and a resource method name.
44 VisualWorks

HTML Text Editor
Controlling HTML Encoding
Edit�Encode HTML Characters...

This option only applies when saving or installing the text you are
working with. With this option on, the HTML Text Editor encodes any
character that is a reserved HTML character when you save or install
your work, (bracket, ampersand, quotation marks, and so on).

For example, suppose that your text is:

<enter name here>
The editor will encode the brackets to look like this:

<enter name here>
This allows the client’s browser to display the characters rather than
trying to interpret this text as an HTML tag.

Edit�Convert Crs to
...
This option only applies when saving or installing the text you are
working with. When you toggle this option on, whenever you save or
install your work, the HTML Text Editor will convert line breaks that
are not paragraph breaks to an HTML break (
). The
 then
shows up both when you are showing the text and when you are
showing the HTML in the editor.

Adding Color to HTML Text
You can assign colors to sections of HTML text. To add color:

1 Set the HTML Text Editor display to Show HTML.

2 Use the mouse to select the text that you want to color.

3 Click the Color button .

The HTML Text Editor displays the Color Tool.

4 Click on the color for the selected text and then click the Accept button.
Web GUI Developer’s Guide 45

Chapter 5 - Creating HTML Text
5 Install the HTMLText resource by choosing HTML�Install and
specifying a class and a resource method name.
46 VisualWorks

Overview
6
HTML Frames

This section describes VisualWave’s support for HTML frames.

VisualWave’s HTML frames are compatible with frames as supported by
Netscape Navigator 2.0 and later.

This section assumes that you are familiar with Netscape frames.
Information about frames can be found in numerous web sites and books.

For official information, see Netscape’s Frames: An Introduction
(http://home.netscape.com/assist/net_sites/frames.html).

Overview
Frames are an extension to HTML that make it possible for documents to
divide the browser window into one or more independently-scrollable
panes and then to assign a separate document URL to each pane.

VisualWave provides tools for painting a specification for a group of
framesets and frames. Each frameset and frame has properties, such as
borders. The frame’s properties include its initial contents, which can be a
window specification for an application model in the VisualWave image or
it can be an URL.

To create and edit the specification for a set of frames, use the Frames
Editor, which is available from the main Tools menu. When the layout is
finished, you then install it as a resource in a class whose superclass is
CompositeApplication. To start the application, you open the
CompositeApplication, which in turn opens the initial contents for each
frame.
Web GUI Developer’s Guide 47

http://home.netscape.com/assist/net_sites/frames.html

Chapter 6 - HTML Frames
When working with the HTML frames and the editor, keep in mind that:

• An application that is designed to be displayed in frames cannot be
run as a screen application on a workstation; it must always be run
from a frames-enabled web browser.

• Framesets and frames are not widgets in the traditional sense; they
are divisions of the canvas itself. Thus, every part of the canvas must
be contained by a frame.

• Frames may not overlap each other.

• All new frames are created by dividing an existing frame into two
equal-sized frames. Frames can then be resized and moved as
needed.

• A canvas may contain as many frames as space permits.

• If separate applications are run each in its own frame, each
application runs separately, each with its own overhead. If the
applications share an intensive process, such as database access,
you can reduce the amount of overhead by putting that process in a
separate manager layer, and accessing that from the other
applications.

Not all browsers support frames, and some users don’t like them. To
provide a minimal interface for browsers that do not support frames, fill
out the Alternate HTML property for the frameset.

Dividing a Canvas into Frames
To create an example canvas that is divided into frames:

1 In the Launcher window, choose Tools�Frames Editor.

VisualWave opens the Frames Editor. If your image’s palettes are set
to open with every canvas, VisualWave also opens the Frames
Palette. If your image’s palettes are set to open on demand, display
the Palette by choosing tools�palette from the Frames Editor’s
<Operate> menu.
48 VisualWorks

Dividing a Canvas into Frames
The initial frameset contains a single frame. Like any HTML frameset,
it can be divided into either a set of either horizontal frames (rows) or
vertical frames (columns).

2 Divide the canvas into two horizontal frames:

a In the palette, click on the Horizontal Frames button:

b Click anywhere in the canvas. The Frames Editor divides the
canvas into two equally-sized horizontal frames. You always add
frames by dividing an existing frame, vertically or horizontally, into
two equally-sized frames.
Web GUI Developer’s Guide 49

Chapter 6 - HTML Frames
3 Resize the frames so that the top one takes up about 1/4 of the
canvas:

a In the canvas, click in the top frame to select it. When it’s
selected, a black selection handle appears on the bottom edge.

b Position the pointer over the selection handle, hold down the
<Select> mouse button, and drag the bottom edge of the frame
upward.

c Release the mouse button.

Notice that the bottom frame becomes larger to fill the space. Frame
are not like widgets; you do not place them on the canvas and move
them around. Instead, frames are divisions of the canvas itself. Every
part of the canvas must be in exactly one frame.
50 VisualWorks

Dividing a Canvas into Frames
Each of these frames can be further divided into vertical or horizontal
frames.

4 Divide the bottom frame into two vertical frames:

a In the palette, click on the Vertical Frames button:

b Click in the bottom frame. The Frames Editor divides the bottom
frame into two equally-sized vertical frames.
Web GUI Developer’s Guide 51

Chapter 6 - HTML Frames
5 Resize the frames so that the bottom left one takes up about 1/4 of
the canvas:

a In the canvas, click in the left frame to select it. When it’s
selected, black selection handles appear on the top and right
edges.

b Position the pointer over the right selection handle, hold down
the <Select> mouse button, and drag the right edge of the frame
to the left.

c Release the mouse button.
52 VisualWorks

Dividing a Canvas into Frames
At this point, your canvas is divided into two framesets:

• The first frameset divides the canvas into two horizontal frames
or rows.

• The bottom frame of the first frameset is itself a frameset, divided
into two vertical frames or columns.

To see the HTML that VisualWave generates for this layout, click the
Preview button in the Palette. VisualWave generates the HTML and
writes it to a file named preview.htm.

The HTML for this layout is:

<FRAMESET COLS="*" >

<FRAMESET ROWS="25%,*" >
<FRAME

SRC="http://localhost:8008/launch/FrameSource@undefinedSpec"
SCROLLING="Auto" >

</FRAME>
<FRAMESET COLS="25%,*" >

<FRAME
SRC="http://localhost:8008/launch/FrameSource@undefinedSpec"
SCROLLING="Auto" >

</FRAME>
Web GUI Developer’s Guide 53

Chapter 6 - HTML Frames
<FRAME
SRC="http://localhost:8008/launch/FrameSource@undefinedSpec"
SCROLLING="Auto" >

</FRAME>
</FRAMESET>

</FRAMESET>

</FRAMESET>
Use your web browser to display the preview.htm file that
VisualWave generated. It should look like this:
54 VisualWorks

Selecting and Deselecting Frames and Framesets
Selecting and Deselecting Frames and Framesets

Selecting a Frame
To select a frame, simply click the <Select> mouse button within the
boundaries of the frame. Any other frame that was selected becomes
deselected. The selected frame is indicated by selection handles along its
interior borders. In the picture below, the bottom left frame is selected.

Deselecting a Frame
To deselect a frame:

• Click on another frame, or

• Hold down the <Shift> key and click the <Select> mouse button

When no frames or framesets are selected, the Properties Tool displays
the properties for the window itself.
Web GUI Developer’s Guide 55

Chapter 6 - HTML Frames
Selecting a Frameset
You can also select a frameset on the canvas. To select a frameset, hold
down the <Alt> key and click the <Select> mouse button within the
frameset. The selected frameset is emphasized and “frameset” appears
in the upper left corner of the selected area. In the picture below, one of
the framesets is selected.

Deselecting a Frameset
To deselect a frameset:

• Click on frame outside the frameset, or

• Hold down the <Shift> key and click the <Select> mouse button

When no frames or framesets are selected, the Properties Tool displays
the properties for the window itself.
56 VisualWorks

Specifying the Attributes for a Frame
Specifying the Attributes for a Frame
VisualWave supports all of the attributes that can be applied to a frame.
They are treated as properties of the frame, similar to the properties for
widgets.

To view the properties for a frame, select the frame and click the
Properties... button on the Palette.

Basics
Name (optional)

A name is necessary if you want to target output into this frame from
another frame, an application model, or JavaScript. The name can be
any string that is a legal name for an HTML frame.

Src (required)
Every frame must have a source, which can be either:

• An URL, specified in the Src field of the Basic properties. That
URL will be requested by the user’s web browser and must be
locatable by that browser, or

• A class name and window specification name, specified in the
Class and Canvas fields. The class must be a subclass of
ApplicationModel.

The source cannot be any other kind of Smalltalk resource.
Web GUI Developer’s Guide 57

Chapter 6 - HTML Frames
Target (optional)
If you want the results of an HTTP sumbit from the current frame to
be returned in another frame, click the appropriate radio button:

The target attribute for a frame sets the base target for the page that
is initially generated for that frame. Thus, it only affects the first
application model that is loaded into the frame. For more information
about targets, see “Targeting Output” on page 63.

Details
Margin Width (optional)

Specifies the amount of space to leave on at the left and right edges
of the frame. May not work properly with some versions of Netscape
Navigator.

Margin Height (optional)
Specifies the amount of space to leave on at the top and bottom
edges of the frame. May not work properly with some versions of
Netscape Navigator.

Resizable (optional)
By default, the user can resize the frames in his browser by selecting
the edge and dragging. Select this attribute to generate frames that
cannot be resized in the web browser.

Scrolling (optional)
By default, the browser is allowed to add scroll bars when the
contents for a frame are larger than the frame. When scroll bars are
added, both horizontal and vertical bars are added together. To
generate frames that always have scroll bars, choose On. To generate
frames that never have scroll bars, choose Off.

Blank Returns the result in a new web browser window.

Parent Returns the result in the frame’s parent frameset.

Top Returns the result in the main browser window.
Useful for “breaking out of” a framed application.

Self Returns the result in the current frame. This has the
same effect as not specifying a target at all.

Named Returns the result in a frame of the name shown in
the Target input field. That frame must be defined as
part of the same frame specification and must have
a name. If the input field is blank, no target is
specified and the result is shown in the current
frame.
58 VisualWorks

Specifying the Attributes for a Frameset
Frame Border
Controls whether or not the frame has a visual border.

Specifying the Attributes for a Frameset
VisualWave supports all of the attributes that can be applied to a
frameset. They are treated as properties of the frameset, similar to the
properties for widgets.

To view the properties for a frameset, select the frameset and click the
Properties... button on the Palette.

Basics
Alternate HTML (optional)

When this box is checked, VisualWave includes a <NOFRAMES>
section in the HTML page that is generated. The <NOFRAMES>
section contains the HTML shown in the text field below the Alternate
HTML box.

Web browsers that do not support HTML frames display this alternate
text. The default text instructs the user to use a browser that supports
frames, such as Netscape Navigator 2.0.

Web browsers that support HTML frames ignore this text.
Web GUI Developer’s Guide 59

Chapter 6 - HTML Frames
Details
Frame Spacing

Allows you to create additional spacing between frames. The number
that you enter is interpreted as a number of pixels.

Frame Border
Allows you to control whether or not there is a visual border around
the frameset. Users can resize framesets by dragging the borders
displayed in their browsers. By default, a border is included.

JS Events
Framesets support two JavaScript events:

• onLoad

• onUnload

For more information about JavaScript events, see “Client-side
JavaScript” on page 71.

Other Operations with Frames

Deleting a Frame
To delete a frame, select it and choose cut from the popup <Operate>
menu or press the <Delete> key. The Frames Editor removes that frame
and extends the other frames in the immediate frameset to fill in the
space.

Moving Frames
Frames are not widgets. Thus, they cannot be moved simply by selecting
them and dragging them across the canvas.

Rather, frames are divisions of the canvas itself. At every moment, the
canvas must be completely covered in frames; no part of the canvas can
be outside a frame. Thus, you move frames by switching the location of
one frame with another frame. The Frames tool palette contains four
buttons that control movement of frames.

Saving a Framed Canvas
To save a frame specification, you install it in a class by clicking on the
Install... button and specifying the name of the class and a name for the
window specification that will be created. The class that is created must
be a special kind of ApplicationModel, called a CompositeApplication.
60 VisualWorks

Examples
Accommodating Browsers that Don’t Support Frames
You can specify the message to be displayed in browsers that do not
support frames. To do so:

1 Display the frame specification in the Frames Editor

2 Select a frameset by holding down the <Alt> key and clicking on a
frameset.

3 Display the frameset’s properties.

4 Open the Properties Tool, and select the Basics page.

5 On the Basics page, check the Alternate HTML for non-Frame browsers
checkbox.

6 In the text field below the checkbox, there is a default message. You
can edit the message to suit your situation. The message can include
any standard HTML markup.

7 Apply the changes.

8 Install the canvas.

Examples
Two examples of applications that use frames are included with
VisualWave.

ServiceDeskDemo is a very basic customer request and tracking
application. ServiceDeskDemo is in the VisualWaveDemos parcel.

CheckbookInterface is a framed version of the Checkbook application.
CheckbookInterface is in the VisualWaveDemos parcel.
Web GUI Developer’s Guide 61

Chapter 6 - HTML Frames
62 VisualWorks

Allowed Targets
7
Targeting Output

HTML allows some elements to have a target assigned to them. When
the user requests a web page, the target determines where the response
will be displayed. VisualWave allows you to set the base target for a web
page, which determines where a submission from any element on that
page will display its output. You can also set the target for a label widget
that acts as an HTML link.

This section describes VisualWave support for targets.

Allowed Targets
No matter which method you use to set the target, the allowed targets are
the same. You can target output to:

Target value Description

_self The current frame. This is the same as having no target
specified. It can be used explicitly when you need to
change a target that has already been set.

frameName The frame with the given name. You can specify the
name for a frame as part of its properties. Only frames
that have a name can be a target. The name can be
any string that is a legal name for an HTML frame.

_parent The parent frameset. Use _parent if you want the
output to take up the current frameset. Using _parent
removes any other frames that were in that frameset.
Web GUI Developer’s Guide 63

Chapter 7 - Targeting Output
Targeting with the Base Target Property
You can set the base target in the properties for a frame or window
(canvas). You should use the Base Target property to:

• Set the initial target for a frame.

• Set the initial target for a window.

Setting the Base Target

For a Frame
1 Select the frame.

2 Click the Properties button in the HTML Frames Editor’s Palette to
display the frame’s properties.

3 Select the button for the target: self, top, parent, blank, or named.

4 If you selected the named button, enter the frame’s name in the Target
input field.

5 Apply the change.

6 Install the canvas.

For a Window
1 Deselect all the widgets in the window. Hold down the <Shift> key

and click the <Select> mouse button on a widget to deselect it.

2 Click the Properties button in the Canvas Tool to display the window’s
properties.

3 Go to the Web Base page.

4 In the Base Target input field, enter the desired target.

5 Apply the change.

6 Install the canvas.

Target value Description

_top The current browser window. Use _top if you want the
output to take up the entire browser window. Using
_top removes any other frames and framesets that
were in the window.

_blank A new browser window. The current browser window
remains on the screen unaltered.
64 VisualWorks

Targeting with JavaScript
Targeting with JavaScript
You can use JavaScript to change the base target for the current page.
For example, the following JavaScript code sets the page’s target to
_parent.

this.form.target='_parent'
You can use JavaScript to change the target based on an event for:

• A window (canvas)

• A frameset

• A widget

This section provides details and an example; for complete information
about VisualWave’s support for JavaScript, see “Client-side JavaScript”
on page 71.

When to Use JavaScript
You should use JavaScript instead of another method to change the
target based on:

• A widget event. Only JavaScript allows you to set the target from an
arbitary widget. You can set the target for a label widget in the
widget’s Web properties.

• A frameset event. Only JavaScript allows you to set the target from a
frameset.

• A window event, other than onLoad. Setting the target in the Base
Target properties of the window is equivalent to setting the target in the
onLoad event of the window.

How to Use JavaScript
Framesets, windows, and some widgets have a JS Events properties page.
The JavaScript events that are supported by the UI Painter for the
selected frameset, window, or widget appear on that page. You can set
the target based on any of the events.

1 Select the event that you want to trigger the change of target.

2 Enter the JavaScript code to change the target.

3 Apply the change.

4 Install the canvas.
Web GUI Developer’s Guide 65

Chapter 7 - Targeting Output
Note that this.form.target changes the base target for the entire
form. Even when this.form.target is executed in response to a
JavaScript event for a widget, the target is changed for the entire form.
Thus, the change affects all submits, from any widgets on that form.

Example: Targeting From a Widget
The most common use of JavaScript is to change the target when a
particular widget is clicked. For example, you may want the Exit button to
target the browser window and remove all of the frames that the
application has displayed. In that case, you would set the Exit button’s JS
Events onClick event property to be:

this.form.target='_top'

Targeting from a Window
To set the target at the window level:

• Use the JavaScript onLoad event for the window (see “Targeting with
JavaScript” on page 65),
or

• Use the Base Target property for the window. The window can be either
a regular canvas or a frameset canvas (see “Targeting with the Base
Target Property” on page 64).

Targeting from a Frames or Frameset
To set the target for a frame, set the frame’s Target property (see
“Targeting with the Base Target Property” on page 64 above).

Note: The target attribute for a frame sets the base target for the
page that is initially generated for that frame. Thus, it only affects the
first application model that is loaded into the frame.

To set the target for a frameset based on:

• Loading or unloading of a frameset, use JavaScript (see “Targeting
with JavaScript” on page 65),
or

• Loading the main frameset of a frameset canvas, use the Base Target
property for the window (see “Targeting with the Base Target
Property” on page 64).
66 VisualWorks

Targeting from a Widget
Targeting from a Widget
To change the target based on interaction with a widget, use JavaScript
(see “Targeting with JavaScript” on page 65).

Targeting from a Label Widget
Label widgets can be used as HTML links. When they are, you can
assign a target to them. Clicking on the label takes the user to the
assigned URL and displays the results in the assigned target frame.

To set the target for a label widget:

1 Place the label widget on the canvas and display its properties.

2 Specify the text that you want to appear on the HTML page displayed
to the user:

a Choose the Basics page.

b In the Label property, enter the desired text.

c Click the Apply button.

3 Specify the link information, which determines which location will be
displayed when the user clicks on the label:

a Choose the Web page.

b Select the anchor type HREF.

c Select the Protocol HTTP.

d In the Enter an URL for the link field, enter a complete URL including
the HTTP protocol.

e Click the Apply button.

4 Specify the target information:

a On the Web page, select a predefined target (blank, top, parent,
or self) or select the Named option.

b If you selected the Named option, enter the name of a frame.

c Click the Apply button.

5 Install the canvas.
Web GUI Developer’s Guide 67

Chapter 7 - Targeting Output
Examples: Targetting Output

Example 1: Frame and Widget
Suppose that your application has two frames. The left frame contains a
series of buttons. All of the buttons except one should cause VisualWave
to target the answering page to the right frame. The Exit button should
cause VisualWave to target the answering page to the parent frameset:

You can implement this by:

• Setting the left frame’s Target property to be the name of the right
frame.

It makes sense to set the target at the frame level because the
contents of this frame do not change. Once the initial control panel is
displayed, it remains in the left frame. If the left frame were ever
updated, the new contents would not inherit the target.

• Setting the Exit button’s onClick JavaScript event property to change
the target to _parent.
68 VisualWorks

Examples: Targetting Output
The only way to target a particular widget’s response to a different
location is to use a JavaScript event. Note that JavaScript changes
the target for the entire form. The new target affects submits from all
of the other buttons as well. In the case of the Exit button, that’s okay;
the user will not be clicking another button.

Example 2: Frame and Window
Suppose that your application has three frames. When the application
first starts:

• The left frame has a set of control buttons or options

• The middle frame has a logo

• The right frame has a logo

When the user clicks on one of the controls in the left frame, the middle
frame is updated so that it contains another set of controls. When the
user clicks on one of the controls in the middle frame, the right frame is
updated. Think of the three frames as an outline, each displaying more
details depending on what is selected in the frame to its left.
Web GUI Developer’s Guide 69

Chapter 7 - Targeting Output
In the example below, when the user clicked the Books button, the middle
frame was updated to show the choices for kinds of books. When the
user clicked the Reference button, the right frame was updated to explain
that all the reference books are checked out.

You can implement this by:

• Setting the left frame’s Target property to be the name of the middle
frame.

It makes sense to set the target at the frame level because the
contents of this frame do not change.

• Setting the BookKinds canvas’s Base Target property to be the name of
the right frame.

You cannot set the target in the middle frame because this canvas is
not initially displayed in the middle frame. When it is displayed, it
overwrites all of the previous frame contents.

You cannot set the target in the middle frame because this canvas is
not initially displayed in the middle frame. When it is displayed, it
overwrites all of the previous frame contents, including the target
setting. Specifying the target at the window level ensures that the
target is set when the window is loaded.

Note that both the middle and right frames must have names in the
specification for the frameset.
70 VisualWorks

Why Use JavaScript?
8
Client-side JavaScript

VisualWave’s JavaScript support is compatible with JavaScript as
supported by Netscape Navigator (3.0 and higher), and is compatible with
Microsoft Internet Explorer (4.0) to the extent that it supports the
Netscape definition.

This chapter assumes that you are familiar with JavaScript. Information
about JavaScript can be found in numerous web sites and printed books.
For official information, see Netscape’s JavaScript Authoring Guide
(http://home.netscape.com/eng/mozilla/gold/handbook/).

Why Use JavaScript?
All application logic in VisualWave is implemented on the server side.
This makes it difficult or impossible to do such things as pop-up help,
submitting when a radio button is selected, or client-side validation of
input fields.

JavaScript fills this gap by letting you define event handlers for events
such as clicking on a form element, moving the input focus out of a field,
or moving the mouse pointer over a link. JavaScript support in
VisualWave allows you to associate JavaScript code with events for a
variety of VisualWave widgets. Those widgets and the supported events
are described below.

VisualWave uses JavaScript to submit an HTML form when a selection is
made in a list or by selecting a Check Box, Radio Button, or Menu Button.

VisualWave does not automatically generate any JavaScript code to do
field validation, nor does it attempt to translate any Smalltalk validation
methods.
Web GUI Developer’s Guide 71

http://home.netscape.com/eng/mozilla/gold/handbook/

Chapter 8 - Client-side JavaScript
Supported Widgets and Events
JavaScript defines the events that are recognized for each HTML tag. You
can associate JavaScript code (JavaScript function calls and/or other
JavaScript code) with a recognized event for VisualWave widgets as
listed in the following table.

VisualWave
Widget

HTML Tag Recognized Events

Netscape 2.0 Netscape 3.0

Window* form, body onSubmit,
onLoad,
onUnload

onSubmit, onLoad,
onUnload, onBlur,
onFocus, onError

Frameset frameset onLoad,
onUnload

onLoad, onUnload,
onBlur, onFocus

Frame frame onBlur, onFocus

ActionButton button onClick onClick

ActionButton** image none none

Check Box check box onClick onClick

Radio Button radio button onClick onClick

Label (plain) none none none

Label (link) link onClick,
onMouseover

onClick,
onMouseover,
onMouseout

Label (link with
label as image)

link and image onClick,
onMouseover

onClick,
onMouseover,
onMouseout,
onLoad,
onAbort, onError

Input Field input field (text
field)

onFocus, onBlur,
onChange,
onSelect

onFocus, onBlur,
onChange,
onSelect

Text Editor text area onFocus, onBlur,
onChange,
onSelect

onFocus, onBlur,
onChange,
onSelect

Menu Button select onFocus, onBlur,
onChange

onFocus, onBlur,
onChange

List select onFocus, onBlur,
onChange

onFocus, onBlur,
onChange
72 VisualWorks

JavaScript Properties
JavaScript Properties

JavaScript Properties for Windows
The window itself has three JavaScript properties pages in the UI Painter
Properties tool:

JS Src allows you to reference JavaScript functions that are in an external
file. External files are referenced by URL. This page also allows you to
set the text that is displayed in web browsers that do not support
JavaScript.

JS Functions allows you to define functions that can be called by the
widgets on the window or its subcanvases. Functions defined here are
included in the <HEAD> section of the page so that they are guaranteed
to be downloaded before they are called.

JS Events allows you to associate JavaScript code with events that apply to
the window, such as loading and unloading.

JavaScript Properties for Widgets
VisualWorks widgets that get translated to HTML tags with recognized
events (see the list above) have a JS Events properties page. This page
contains a list of supported events and a text pane where you can type in
arbitrary JavaScript code.

When you click on an event handler name in the JavaScript Event list, its
associated event handler code (if any) appears in the JavaScript text
pane. You can associate each recognized event with an arbitrary amount
of JavaScript code. You can enclose strings in either single or double
quotation marks, but do not mix single and double quotation marks in a
JavaScript code segment (see “Single vs. Double Quotation Marks” on
page 77). You can refer to other fields on a page by name (see
“Accessing Named Fields” on page 76).

* The onSubmit event is actually associated with the FORM section of an HTML document.
The onLoad, onUnload, onError, onBlur, and onFocus events are associated with the BODY
section. Because the mappings are unambiguous and neither the FORM nor BODY sections
are surfaced as widgets in the canvas, these events are mapped to the window widget.

** For buttons with Enforce Boundary with GIF enabled.
Web GUI Developer’s Guide 73

Chapter 8 - Client-side JavaScript
Tip: You can test JavaScript code in a Netscape browser by
choosing File-Open Location and entering javascript: for the
location. Netscape then opens a window in which you can
enter and evaluate JavaScript code.

After you’ve entered code, click Apply to save it.

Once code has been applied, the event handler name appears in bold so
you can immediately tell which event handlers are defined. To “undefine”
an event, delete all code (whitespace will be ignored in this case) and
apply the change; the event handler name will return to the normal font.

Although you can define functions in a widget’s JavaScript page, normally
you’ll define the functions elsewhere and call them from the widget event
handlers. Normally, functions are defined on the JS Functions properties
page for the widget’s window.

Labels are transformed into links (with click and mouseover events) or
plain text (with no recognized events). The JS Events page is present for all
labels, whether they have events or not.

A widget with Label as Image checked turns into a MappedClickWidget. The
corresponding field type does not support any JavaScript events, so the
onClick event handler is ignored when the HTML is generated.

Using JavaScript

Browser Support of JavaScript
Keep in mind that not all browsers support JavaScript. VisualWave
encloses JavaScript code in old-style HTML comments so the code will
be ignored by non-JavaScript enabled browsers. You can specify the
message to be displayed in browsers that do not support JavaScript. To
do so:

1 Display the canvas and its properties.

2 In the Properties Tool, display the JS Src page.

3 On the JS Src page, check the Alternate HTML for non-JavaScript browsers
checkbox.

4 In the text field below the checkbox, there is a default message. You
can edit the message to suit your situation. The message can include
any standard HTML markup.
74 VisualWorks

Using JavaScript
5 Apply the changes.

6 Install the canvas.

Note that even browsers that do support JavaScript are not necessarily
equal. Unless you know exactly which browsers your audience will use
and/or until there is a JavaScript standard definition, you may want to
minimize the reliance on JavaScript.

Submit on Selection
If you check the Submit form when selection is made checkbox on the Web page
for a widget, the following code is appended to the appropriate event
handler:

/* The following was added when the **Submit form
when selection is made** property was enabled. */

this.form.submitController.value=this.name;
this.form.submit()

For List Views and Menu Buttons, the code is added to the onChange
event handler. For Check Boxes and Radio Buttons, the code is added to
the onClick event handler.

You can add other JavaScript code around this code. If you delete the
code, VisualWave automatically unchecks the Submit form when selection is
made checkbox. You can, however, delete the comment without confusing
the checkbox.

Submit from an Artibrary Widget
Any JavaScript code can trigger a submit. If you want to submit from an
arbitrary field or event handler, you can include code in the event handler.
The code you include is similar to that generated by VisualWave when
you click the Submit form when selection is made checkbox for a widget. The
first line fills in a value for a hidden variable that tells VisualWave which
field caused the submit. The second line performs the submit.

Be careful with anchors. A hypertext link is not a form element, so you’ll
have to modify this code or you’ll see the browser error “Form has no
properties” if you try to use this code in a label/anchor.
Web GUI Developer’s Guide 75

Chapter 8 - Client-side JavaScript
Accessing Named Fields
JavaScript allows you to access fields by the HTML name. For example, if
you write HTML that includes:

NAME='statefield'

you can refer to this field by its name statefield. VisualWave’s
JavaScript support provides access to named fields by using their IDs
from the properties page.

For non-Smalltalk objects such as JavaApplets, you can use the ID field
on the properties page to access an entity by name. For example:

document.blinkApplet.stop()

For widgets that have live Smalltalk objects associated with them, you
must refer to this field in a script using that name prefixed with a $. For
example:

$statefield.value = 'TX'

sets the value of the state field to the string “TX”, assuming that you have
properly qualified the name. To set the value of an input field from an
onLoad event handler at the window level, you need to use something like:

document.forms[0].$statefield.value = 'tx'

Assuming that you’ve defined a function named toHex, you could convert
the new value of an input field to hex format and display it in a second
input field with the following:

this.form.$hexfield.value = tohex(this.value)

VisualWave dynamically generates names for fields based on their keys
and phases to keep the web browser objects synchronized with the
Smalltalk objects. When generating the HTML, VisualWave replaces the
user-defined ID-based names with the real key/phase names. This is why
you may see an error message from Netscape referring to a field with the
name v2345w5 instead of $statefield. To see the mapping, open an
inspector on the WebSession and examine the dictionary in WebRequest.

Subcanvas Support
As far as JavaScript is concerned, all subcanvases disappear and all
fields are at the same level. There is a distinction between a local and a
global submit, but that’s handled on the Smalltalk side. The good news is
that this means that you can refer to a named field from any event
handler as if it were implemented on the top level page. The bad news is
that you must be careful to avoid duplicating ids or you will get strange
results.
76 VisualWorks

Example: Validating Input with JavaScript
If you define functions at the window level for a window specification that
is later used as a subcanvas, these functions will be appended to those of
the main window and included in the <HEAD> section. Be careful to avoid
duplicating function names in a subcanvas: in Microsoft Internet Explorer,
duplicates cause an error on loading.

Window event handlers for the subcanvas, if any, are ignored.

Single vs. Double Quotation Marks
In the HTML generated by VisualWave, the event handler code needs to
be enclosed in single or double quotes. You can use either, but not both,
within the same event handler code.

If VisualWave first finds a single quotation mark in your JavaScript code
(even if it’s in a comment), it generates double quotation marks around
the event handler code and vice versa. Therefore, if you enter the
following JavaScript code for the onLoad event,

alert('hello')

the following HTML is generated:

onload="alert('hello')"

If, however, you use both:

alert('single quotes around a string');
alert("double quotes")

VisualWave does not massage the code, so you get a syntax error when
you load the page.

Example: Validating Input with JavaScript
JavaScript is often used to validate input on the client side (in the web
browser) before submitting the input to the server. In this example, you’ll
learn how to use VisualWave’s JavaScript support to verify that the user
has entered exactly three characters in an input field.

1 Start VisualWave.

2 Create a canvas with label, an input field, and an action button as
shown here:
Web GUI Developer’s Guide 77

Chapter 8 - Client-side JavaScript
3 Define the JavaScript functions for the canvas:

a Display the properties for the window.

b On the JS Functions page, add this JavaScript function:

function verifyLength(field, expectedLength) {
if (field.value.length != expectedLength) {

alert ("Expected length is " +
expectedLength)
return(false)

} else {
alert ("Length verified")
return(true)

}
}

78 VisualWorks

Example: Validating Input with JavaScript
c Apply the change.

4 Define the event handler for the input field:

a Display the properties for the input field.

b On the JS Events page, select the onChange event.

c Enter the JavaScript code shown here:

/* verify that the length is only 3 characters */
verifyLength(this,3)
Web GUI Developer’s Guide 79

Chapter 8 - Client-side JavaScript
d Apply the change.

5 To change the status area (the area at the bottom of the Netscape
browser) to contain a helpful message when the cursor enters the
input field, define the event handler for the onFocus event and Apply
the change:

window.status="Enter 3 characters in the input
field and click the Test button"; return true

6 Install the canvas on class JavaScriptExample and selector windowSpec.
When prompted, create the class with the following attributes:

Name JavaScriptExample

Category JavaScriptDemos

Superclass ApplicationModel
80 VisualWorks

Questions and Answers
7 When you run this example in a Netscape browser and type in more
than three characters, Netscape displays an alert:

Questions and Answers
Q: I’m using Internet Explorer. Some of the JavaScript examples work,
but many do not. What’s wrong?
A: Microsoft has stated that they will support JavaScript, but their support
seems to lag behind Netscape quite a bit. Test your application carefully
with all browsers and platforms you expect your customers to use before
relying on a particular JavaScript feature. Coming soon: access to the
NOSCRIPT tag to print out a message for browsers that are not
JavaScript-enabled.

Q: Can I add my own new JavaScript events? For example, I want to
validate each key stroke, so I need an #onKeyPress event.
A: No. Users cannot define new JavaScript events, and JavaScript as
supported by Netscape 4.0 does not recognize keystroke events. It does
trigger the #onChange event when an input field’s contents have
changed and the input field loses focus but at the present time, you are
not notified of individual key presses.
Web GUI Developer’s Guide 81

Chapter 8 - Client-side JavaScript
Q: I’m using Netscape 2.02. Why doesn’t the window.defaultStatus
property or some of the events such as onSelect work correctly?
A: These are among some of the bugs that have been fixed in Netscape
3.0 and higher.

Q: Can I use JavaScript to control where the output is sent when a button
is clicked?
A: Yes. See the information about targets in “Targeting Output” on
page 63

Additional Examples
VisualWave comes with a few examples that use JavaScript.

JADemo shows how you can use JavaScript to call Java methods. It
uses the Blink class from the JDK demo directory. JADemo is in the
VisualWaveDemos parcel.

Verify uses JavaScript to verify data entered in input fields. Its
docExampleSpec matches the tutorial described above. Verify is in the
VisualWaveDemos parcel.

CheckbookInterface is a version of the Checkbook application that is
described in Getting Started with VisualWave. It uses JavaScript to
display status information at the bottom of the browser window to verify
input before submitting the form to VisualWave, and to change the target
when the Exit button is clicked. CheckbookInterface is in the
VisualWaveDemos parcel.
82 VisualWorks

Prerequisites
9
VRML Widget

This section describes VisualWave’s support for the Virtual Reality
Modeling Language (VRML) and VRML worlds.

The following discussion presupposes that you are familiar with VRML.
The VRML Repository (http://www.sdsc.edu/vrml) contains a complete set
of links to hardware and software for viewing virtual worlds, collections of
worlds, and documentation.

Prerequisites
Both you and your application’s users must have a web browser that
supports VRML:

• Microsoft Internet Explorer version 3.0 or higher with a VRML 1.0-
compliant plug-in 3D browser.

• Netscape Navigator version 3.0 or higher with a VRML 1.0-compliant
plug-in 3D browser.

Testing VRML with VisualWave
To test your installation:

1 Launch a web browser with the VRML plug-in installed.

2 Start VisualWave.

3 From the Server Console, start a TinyHttpServer. In this example, the
TinyHttpServer has the host localhost and the port number 8008.

4 Load the VisualWaveDemos parcel.
Web GUI Developer’s Guide 83

http://www.sdsc.edu/vrml

Chapter 9 - VRML Widget
5 In the web browser, request the following URL:

http://localhost:8008/launch/PlanetO?ApplicationModel
A web page such as the following should be displayed:

Your VRML area may contain different navigational instructions or menus,
but the center three planets should be the same. If you do not see a
VRML area at all, there is a problem with your setup. Refer to the VRML
plug-in vendor’s documentation for setup and navigation information.

Tutorial: A Simple VRML World
In this example, you will build a simple VRML world, consisting of a single
cylinder. You will learn how to:

• Incorporate VRML into a canvas

• Set up the VRML application model class

• Create the VRML scene
84 VisualWorks

Tutorial: A Simple VRML World
To build a VisualWave application that includes a VRML scene:

1 Open a new canvas by choosing Tools�New Canvas in the Launcher
window.

2 Resize the canvas to provide ample room for the VRML scene. Store
the new canvas size by choosing Layout�Window�Preferred Size from
the Canvas Tool.

3 Select the VRML Region widget from the canvas:

4 Place the VRML Region on the canvas and resize it to fill most of the
canvas.

5 Set the VRML Region’s Aspect property to #scene and apply the
change.

6 Set the window’s Label property to VRML Cylinder and apply the change.

7 Install the canvas in class VRMLCylinderExample under the selector
windowSpec.

8 When prompted to create the VRMLCylinderExample class, enter the
following values:

Every canvas that contains a VRML Region must be a subclass of
VRMLAppModel.

Category VRMLDemos

Superclass VRMLAppModel
Web GUI Developer’s Guide 85

Chapter 9 - VRML Widget
9 Close the painting tools.

10 Using the System Browser, display the VRMLCylinderExample class. At
this point it has only one class method that returns the canvas you
painted. There are no variables or instance methods. The class does,
however, inherit a scene instance variable and method from its
superclass VRMLAppModel.

11 Create the following instance method in a protocol named private.

buildVRMLScene

| root |
scene := VRMLScene new.
root := scene root.
root add: (PerspectiveCamera new positionX: 0 y: 0 z: 8).
root add: (Cylinder radius: 1 height: 2)

12 Test your example by running VRMLCylinderExample from a VRML-
enabled web browser. The result should be a VRML space with a
cylinder in it:

13 Experiment with this simple VRML scene:

• Practice navigating around the scene.

• Change the PerspectiveCamera coordinates in the buildVRMLScene
86 VisualWorks

Exploring the VRML Classes
method and restart the application.

• Change the Cylinder’s radius and height in the buildVRMLScene
method and restart the application.

• Try adding other elements to the scene. Classes for the VRML
basic shapes can be found the category VRMLShapes.

For more complex VRML examples, see “Additional VRML
Examples” on page 87.

Exploring the VRML Classes

Basic VRML Functionality
VisualWave includes a wide number of classes that allow you to program
VRML 1.0 worlds in Smalltalk. All classes are in categories whose names
begin with “VRML”. Some categories that you may want to explore first
are:

• VRMLShapes
• VRMLGroups
• VRMLGeometry
• VRMLText

Reserved Classes
The following categories contain classes that are used by VisualWave to
generate VRML worlds and should not be modified:

• VRMLDev
• VRMLApplications

Additional VRML Examples
VisualWave comes with a few examples that use VRML:

• HelloVRMLWorld much like the VRMLCylinderExample described in
the tutorial above.

• DiskSpaceUsage demonstrates the ability to dynamically generate
scenes based on domain information gathered prior to rendering. To
run PlanetO, you must use an URL of the form:
Web GUI Developer’s Guide 87

Chapter 9 - VRML Widget
http://host:port/launch/PlanetO?ClassName
PlanetO also demonstrates the ability to dynamically generate
scenes.

The VRML examples are all in the VisualWaveDemos parcel.

Implementation Notes

World Size
When preparing world (.wrl) files, you should keep them well below
1Meg in size for VRML browsers to work properly. VRML browsers
receiving .wrl content larger than this size have been known to lock up
the operating system in worst case.
88 VisualWorks

Using Java Applets
10
Java Applet

This section describes VisualWave’s support for Java applets. It includes
these topics:

• Using Java Applets

• Java Applet Properties

• Setting Properties Programmatically

• Examples: Using Java Applets

Using Java Applets
VisualWorks allows you to include Java applets and to communicate with
them using JavaScript. To add a Java applet to a canvas:

1 Display a UI Painter canvas for editing.

2 From the Palette, choose the Java applet widget and place it
on the canvas.

3 Set the properties for the widget (see table below).

4 Install the canvas.
Web GUI Developer’s Guide 89

Chapter 10 - Java Applet
Java Applet Properties

Setting Properties Programmatically

Parameters
In addition to being set from the Properties Tool, Java parameters can be
set programmatically in the instance of HTMLJavaApplet that represents
the Java applet widget. For example, use the following code fragment to
add a new parameter and set its value:

Page Property Required Description

Basics ID No The name of this component.

Applet Yes The name of the Java applet’s object
code (.class) file. This file must be in
the directory named in the Code Base
property.

Code Base Yes An URL that points to the directory
containing the Java class file(s). The
Java code must be accessible from
some web server.

Alternate
HTML

No When checked, the HTML in the text
field below is shown in web browsers
that cannot run Java applets.

Details Can Access
JavaScript

No When checked, it allows your applet
code to call JavaScript code. This
property sets the MAYSCRIPT attribute
of the APPLET tag.

Parameters Parameters No Enables you to pass information to the
Java applet. Parameters should be
entered one per line, in the format:
name=value
name2=value2
name3=value3
90 VisualWorks

Examples: Using Java Applets
postOpenWith: aBuilder
 "Add a parameter named 'BackToWaveUrl' with a value
 that contains an url that represents this page with
 an additional jabber component."

 self executeForWebOnly:
 [(self builder componentAt: #wavebackRegion)
 widget htmlEntity add:
 (HTMLParameter new
 name: 'BackToWaveUrl';
 value: (self builder window urlForRefresh ,
 '&jabber='))].

Other Properties
You also can set HTML attributes of an applet that aren’t surfaced in the
Properties Tool. For example, use the following code fragment to set the
vspace parameter of an HTMLInsertObject:

postBuildWith: aBuilder
 | webJKGTable |
 webJKGTable := aBuilder componentAt: #table.
 webJKGTable htmlEntity vspace: 8

Examples: Using Java Applets
VisualWorks comes with two examples that use Java applets:

StarFieldTest embeds the applet from the BounceItem class found in
http://java.sun.com/applets/applets/BouncingHeads. BounceTest is in the
VisualWorksDemos parcel.

JADemo shows how JavaScript can call Java methods using the Blink
class from the Java Developers Kit. You can download that from
http://java.sun.com/products/JDK/. JADemo is in the VisualWorksDemos
parcel. See the JADemo class comment for configuration information.
Web GUI Developer’s Guide 91

http://java.sun.com/applets/applets/BouncingHeads.
http://java.sun.com/products/JDK/

Chapter 10 - Java Applet
92 VisualWorks

Overview
11
Bookmarks

Overview
In VisualWave, you can assign aliases for URLs and then reference those
aliases in your applications. Each alias and URL pair is called a
bookmark. In VisualWave, bookmarks exist in named sets. Each
bookmark set can have any number of bookmarks, organized into any
number of groups or categories.

Bookmark sets can be saved to and read from files, enabling you to move
bookmarks to the VisualWave Server or other development environments
when you move your application. Using bookmarks makes it easier to
move your applications from the development environment to VisualWave
Server because you don’t have to replicate the directory structure. It also
makes it easier to update an URL that is used in multiple applications or
in multiple places in the same application; you can simply update the
bookmark.

URL Cache
The VisualWave image keeps a cache of URLs. This cache is used to
populate the:

• Enter an URL menu of the Bookmark Manager

• Enter an URL for the link (HREF) menu of the HTML Text Editor.

• Background Pattern menu of the Web properties for a window.

• Background Sound menu of the Web properties for a window.

• Enter an URL for the link (HREF) menu of the Web properties for a label.
Web GUI Developer’s Guide 93

Chapter 11 - Bookmarks
You can control the number and kinds of URLs that are cached by setting
preferences in the Bookmark Manager.

Bookmark Manager
You create and edit sets of bookmarks using the Bookmark Manager.
To open the Bookmark Manager, choose Tools � Bookmark Manager in the
Launcher window.

When you open the Bookmark Manager, it displays an empty set of
bookmarks. The set has the initial name of “New.” You can change the
name when you save the bookmark set.

For a complete functional description of the Bookmark Manager, see
“Bookmark Manager” on page 147 in Appendix A.
94 VisualWorks

Example: Using the Bookmark Manager
Example: Using the Bookmark Manager

Creating Bookmarks
1 Open the Bookmark Manager by choosing Tools�Bookmark Manager in

the main window.

Initially, the Bookmark Manager displays a new, empty set of
bookmarks with the name New. In this tool you can load, create or
edit, and save bookmarks.

2 Create a bookmark set by choosing Bookmarks�New. When prompted,
enter a name for the new bookmark set. For this example, use the
name Cincom.

3 Click the Add Category button and enter the name for the new category
in the prompter. For this example, enter the name Graphics.
Web GUI Developer’s Guide 95

Chapter 11 - Bookmarks
4 For the Protocol, select HTTP. When you select HTTP, http:// is
automatically entered into the Enter an URL field.

5 In the Enter an URL field, complete the URL. The URL may reference a
server within the VisualWave image or an external HTTP server. It
must be a full URL beginning with the protocol. For this example,
enter the URL http://www.cincom.com/newimages/vwscrstkr.jpg.

Note: If the Cincom web site changes this image file might no longer
be available. You may substitute the URL for any graphic on the web.

6 Enter an Alias. This is used to construct the Bookmark Path, which is
what you will use in your applications. It can be any string. For this
example, enter VWLogo.

7 Click the Add button.

The Bookmark Manager creates the bookmark and lists its URL in
the URL list on the bottom right. VisualWave also generates a
Bookmark Path for the new bookmark, although it does not
automatically display it.
96 VisualWorks

Example: Using the Bookmark Manager
8 Click on the URL in the URL list to display the bookmark path in the
Bookmark path field.

This is what you enter in your application to access the selected URL.
In this case, the entire bookmark path is Cincom_Graphics_VWogo.

9 Save the new bookmark by choosing Bookmarks�Save. This makes
the bookmark available for use in an application.

When prompted for a name, use the name that you have already
given the bookmark set, Cincom. If you change the name, the first
segment of each bookmark path in that set is changed to match the
new set name.

You now have a set of bookmarks with one category and one bookmark.

Using Bookmarks
You can use bookmarks anywhere in an application that you would
normally use an URL, such as for:

• The Message property for labels, radio buttons, check boxes, and
action buttons.

• The Background Pattern and Background Sound properties for windows.

• The URL for an anchor within an HTML Text resource.

• The URL for a label that is being used as a link. The URL is entered
on the Web properties page for the label.
Web GUI Developer’s Guide 97

Chapter 11 - Bookmarks
In this next example, you will use bookmarks for the graphic image for a
label and for a hyperlink for the label.

1 Open a new canvas for editing.

2 On that canvas, place a label widget.

3 Enter and apply the following properties for the widget:

This assigns the graphic at the bookmarked URL as the label image.

4 Install the canvas on class BookmarkTest and selector windowSpec.
When prompted to create the class, enter:

5 Test the application.

Start a TinyHTTPServer as a local host on port 8008. Make sure you
have an open internet connections. Then open a browser and enter
the URL:

http://localhost:8008/launch/BookmarkTest

Message Cincom_Graphics_VWLogo

Label is Image Checked

Name BookmarkTest

Category BookmarkDemos

Superclass ApplicationModel
98 VisualWorks

Example: Using the Bookmark Manager
The browser should display the Cincom graphic and logo.

6 To make the graphic a hyperlink to the Cincom web page, return to
the canvas and enter and apply the following Web properties for the
label widget:

You can load the Default bookmark set into the Bookmark Manager to
view this definition.

Note that, with the Bookmark Manager open, you can copy a
bookmark path into the Properties Tool using either of these
shortcuts:

• Select the bookmark’s URL in the URL list of the Bookmark
Manager and choose Copy Path from the <Operate> menu. Then
place the insertion point in the appropriate field of the Properties
Tool and choose paste from the <Operate> menu.

• Select the bookmark’s URL in the URL list of the Bookmark
Manager and <Shift>-drag to the appropriate field of the
Properties Tool.

Anchor HREF

Protocol HTTP

Enter an URL for the link Default_VisualWave_Wave
Web GUI Developer’s Guide 99

Chapter 11 - Bookmarks
7 Install the canvas on the class BookmarkTest and the selector
widowSpec.

8 Test the updated label by as you did in step 5.

Notice that the graphic now has a border around it, and the cursor
changes as you move it over the graphic. Click on the graphic to go to
the Cincom web page.

Example: Updating Bookmarks
Using bookmarks in your application makes it easy to update the URLs to
which those bookmarks refer. Returning to the example above, suppose
that you wanted to display another graphic image, such as just the
Cincom logo. To change the graphic image:

1 Open the Bookmark Manager.

2 Load the Cincom bookmark set.

3 Select the Graphics category and the URL to the graphic.

4 Click the Edit button. This enables the Enter an URL and Alias fields so
that you can edit them.

5 In the Enter an URL field, enter the new URL to which this alias should
refer. For this example, change the URL to:

http://www.cincom.com/images/topheader.gif
6 Click the Accept button and select Bookmarks�Save to update the

bookmark set.

7 Run the application.

Notice that you did not have to change your application code; you only
had to change the bookmark definition.

Troubleshooting
Unhandled exception: Bookmark: name not found

Make sure that the bookmark name is correct and that the
bookmarks have been saved. When verifying the bookmark name,
make sure that all the parts—bookmark set, category, and alias—are
correct.
100 VisualWorks

12
HTTP Cookies

HTTP Cookies are a general mechanism that web applications can use to
both store and retrieve information on the client (web browser) side of the
connection.

The following discussion presupposes that you are familiar with HTTP
cookies. Information about HTTP cookies can be found in the following
web sites:

• Persistent Client State—HTTP Cookies
(http://www.netscape.com/newsref/std/cookie_spec.html)
is the official specification from Netscape.

• Cookies (Client-side Persistent Information) and Their Use
(http://home.netscape.com/assist/support/server/tn/cross-platform/20019.html)
contains technical tips from Netscape.

• SurfCart 1.1 Theory and
How can I keep “state” information between calls to my CGI
program?
(http://www.surfutah.com/surfcart/theory.html)
(http://www.put.poznan.pl/hypertext/Internet/faq/www/hfields.htm)
contain information about how HTTP cookies compare to other
methods of storing state information and verifying clients.

• SurfCart 1.1 Theory and
How to make cookies and shopping cart
(http://www.surfutah.com/surfcart/theory.html)
(http://users.ids.net/~oops/tech/make-cookie.html)
describe how to use HTTP cookies to create a “shopping cart” for
web catalog users.
Web GUI Developer’s Guide 101

http://home.netscape.com/assist/support/server/tn/cross-platform/20019.html
http://www.surfutah.com/surfcart/theory.html
http://users.ids.net/~oops/tech/make-cookie.html
http://www.netscape.com/newsref/std/cookie_spec.html
http://www.surfutah.com/surfcart/theory.html
http://www.put.poznan.pl/hypertext/Internet/faq/www/hfields.htm

Chapter 12 - HTTP Cookies
• For some thoughts on security, see:
Netscape tricks raise security concerns
(http://www.macweek.com/mw_1011/gw_net_tricks.html).

Using HTTP Cookies
Each HTTP cookie is essentially a name=value pair that may contain
additional information. This information is sent to the browser in the form
of an HTTP header message and returned in the same fashion as an
entity header.

VisualWave uses cookies to store the state of each active session
(specifically, the session key and page key). For each web request,
VisualWave keeps a dictionary of cookies.

To create your own cookies:

1 Create the cookie:

HTTPCookie named: 'CookieName' value: aValue
And fill in the required attributes.

2 Associate the cookie with a page:

aWebPage addCookie: cookie
This may appear in the application as early as its postBuildWith:
method.

VisualWave automatically generates an HTTP metaheader that includes
the cookie.

Setting Up the Web Page for Cookies
Cookies are attached to web pages or canvases by VisualWave. To begin
working with cookies, let’s create a simple canvas that displays the name
of a cookie, its value, and its complete set of attributes.

1 Open a new canvas (by choosing Tools � New Canvas from the
VisualWorks main window).

2 Place three labels on the left side of the canvas and three input fields
on the right side of the canvas.

3 Assign the following properties to the widgets:

Widget Property Value

Window Label Cookie Example
102 VisualWorks

http://www.macweek.com/mw_1011/gw_net_tricks.html

Using HTTP Cookies
4 Resize the canvas and set its size (Layout�Window�Preferred Size).
Your canvas should now look like this:

5 Install the canvas on class CookieExample and selector windowSpec.
When prompted to create the CookieExample class, enter the following
characteristics:

6 Select all the input fields and click on the Define... button of the
Canvas Tool. Define models and initialization for cookieName,
cookieValue, and cookieComplete.

Label Label Cookie Name:

Label Label Cookie Value:

Label Label Cookie (complete):

Input Field Aspect #cookieName

ID #cookieNameField

Details Bordered, Can Tab, Read Only

Input Field Aspect #cookieValue

ID #cookieValueField

Details Bordered, Can Tab, Read Only

Input Field Aspect #cookieComplete

ID #cookieCompleteField

Details Bordered, Can Tab, Read Only

Name: CookieExample

Category: Examples

Superclass: ApplicationModel
Web GUI Developer’s Guide 103

Chapter 12 - HTTP Cookies
At this point you have the class CookieExample. That class has one class
method that returns the windowSpec. It has an instance variable and an
accessor method for each of the three aspects cookieName, cookieValue,
and cookieComplete.

Adding a Cookie to the Page
To add a cookie to a page, you simply create the cookie and then attach it
to the web page. For this example, you’ll create a cookie that displays the
number of times that the user has visited this web page.

1 Open a System Browser and display the CookieExample class.

2 Add a protocol (method category) called interface opening.

3 Enter and accept this new method:

postBuildWith: aBuilder

| cookie |
cookie := HTTPCookie named: 'VisitsToCookieExample'
value: '1'.
cookie expireAfterDays: 1.
cookie path: '/launch/CookieExample'.

aBuilder window addCookie: cookie.

self cookieName value: cookie name.
self cookieValue value: cookie value.
self cookieComplete value: cookie valueString

Within this method:

HTTPCookie named:value:
Creates a new HTTP cookie with the given name and value. The
name must be a String; the value can be anything. The methods
expiresAfterDays: and path: set additional attributes of the cookie.

aBuilder window addCookie: cookie
Attaches the cookie to the web page so that VisualWave will generate
the appropriate HTTP header for the cookie when it generates the
HTML for the web page.
104 VisualWorks

Using HTTP Cookies
self cookieName value: cookie name,
self cookieValue value: cookie value, and
self cookieComplete value: cookie valueString

Update the cookieName, cookieValue, and cookieComplete fields to
display the new cookie’s name, value, and complete set of attributes.
Note that cookies are not normally displayed on the screen to the
user. Here you explicitly updated the display to show the cookie that
you created.

4 Run the CookieExample from a web browser. Notice that the values
you gave to the cookie are correctly displayed. Notice the difference
between the cookie’s value and its valueString.

Displaying All the Cookies Being Sent
In the previous example, you learned how to create a cookie and how to
display your cookie’s name and value in a web page.

There are, however, other cookies attached to your web page.
VisualWave attaches two cookies to every web page: sessionKey and
pageKey. VisualWave uses those cookies to determine where the user left
off and to return that page if the user enters a generic submit
(http://hostname:port/submit) to VisualWave.

You can get the complete set of cookies that is being sent with the web
page by sending the message cookies to the window’s HTMLEntity:

self builder window htmlEntity cookies
Obviously, you need to send this message after VisualWave has built the
web page and included all possible cookies, including the sessionKey and
pageKey. You can do this by implementing a noticeOfAnswer: method on
your application model.
Web GUI Developer’s Guide 105

Chapter 12 - HTTP Cookies
1 Open the CookieExample windowSpec for editing.

2 Resize the canvas and then set its new size using
Layout�Window�Preferred Size.

3 Add a label on the left side of the canvas and a text editor field on the
right side of the canvas.

4 Assign the following properties to the widgets:

Your canvas should now look like this:

5 Install the canvas in class CookieExample and selector windowSpec.

6 Select the Text Editor widget next to All Cookies Sent: and press the
Define... button. Define the model for cookiesSent, including
initialization.

7 In a System Browser, display the CookieExample class.

8 In the interface opening protocol, enter and accept this method:

Widget Property Value

Label Label All Cookies Sent:

Text Editor Aspect #cookiesSent

ID #cookiesSentField

Details Bordered, Can Tab, Read Only
106 VisualWorks

Using HTTP Cookies
noticeOfAnswer: aWebPage

| tmpStrm |

tmpStrm := ReadWriteStream on: String new.
aWebPage htmlEntity cookies do:

[:each | tmpStrm nextPutAll: each valueString; cr].
cookiesSent value: tmpStrm contents.

^aWebPage
Within this method:

aWebPage htmlEntity cookies
returns the complete set of cookies that are associated with the
current web page.

tmpStrm holds the string representation of the set of cookies.

cookiesSent value: tmpStrm contents
updates the All Cookies Sent field to display the complete set of
attributes for every cookie. Note that cookies are not normally
displayed on the screen to the user. Here you explicitly updated the
display to show the cookie that you created.

9 Run the application.
Web GUI Developer’s Guide 107

Chapter 12 - HTTP Cookies
Accessing the Cookies in the Request
You’ve learned how to create and add cookies to a web page and how to
verify the set of cookies that are being sent with the web page. Your
application can also access the content of the cookies stored by the
client’s web browser. Whenever the web browser makes a request, it
checks the domain and path to see if they match any associated with the
cookies that it is holding. If there is a match, it sends the appropriate
cookie(s) with the request. Those cookies are part of the web request in
VisualWave. An application model can get the cookies from the incoming
web request using this message-send:

self webRequest cookieData
To see the results, let’s expand the CookieExample to include a field for the
cookies that were in the previous web request.

1 Open the CookieExample windowSpec for editing.

2 Resize the canvas and then set its new size using
Layout�Window�Preferred Size.

3 Add a label on the left side of the canvas and a text editor field on the
right side of the canvas. Add an action button at the bottom left
corner.

4 Assign the following properties to the widgets:

Widget Property Value

Label Label Cookies Received in Previous Request:

Text Editor Aspect #cookiesReceived

ID #cookiesReceivedField

Details Bordered, Can Tab, Read Only

Action Button Label Update Page

Action #submit

ID #submitButton
108 VisualWorks

Using HTTP Cookies
Your canvas should now look like this:

5 Install the canvas in class CookieExample and selector windowSpec.

6 Define cookiesReceived, including initialization. Do not define submit.

7 In a System Browser, display the CookieExample class.

8 In a new actions protocol, enter and accept this method:

submit
^self

9 Edit the noticeOfAnswer: method so that it contains this code:

noticeOfAnswer: aWebPage

| tmpStrm tmpStrm2 aReq |

tmpStrm := ReadWriteStream on: String new.
aWebPage htmlEntity cookies do:

[:each | tmpStrm nextPutAll: each valueString; cr].
cookiesSent value: tmpStrm contents.

tmpStrm2 := ReadWriteStream on: String new.
aReq := self webRequest.
aReq cookieData notNil ifTrue:
Web GUI Developer’s Guide 109

Chapter 12 - HTTP Cookies
[aReq cookieData orderedNameValues
do: [:e | tmpStrm2 nextPutAll: e printString; cr]].

cookiesReceived value: tmpStrm2 contents.

^aWebPage
10 Start the application.

When you launch the application, the page shows that three cookies
were sent with this page and that one cookie was sent with the
launch request (see image below). That cookie is the
VisitsToCookieExample cookie that you set the last time you ran the
application from the web browser. This time when you ran the
application, the browser checked its cookies and found one that
matched the path /launch/CookieExample so it sent it with the
launch request.

Notice that the sessionKey and pageKey cookies that were sent with
this request have a path of /submit. That means that if the browser
does a submit, it should include these cookies along with the
transaction.
110 VisualWorks

Using HTTP Cookies
11 Click the Update Page button. The page returned by VisualWave now
has the sessionKey and pageKey cookies in the list of cookies that were
sent with the previous request. The VisitsToCookieExample cookie is
Web GUI Developer’s Guide 111

Chapter 12 - HTTP Cookies
not listed because it is only sent to VisualWave in a launch request;
this was a submit request.

Using Received Cookies
As the application is now, the VisitsToCookieExample is always 1. Ideally,
the application should check for a cookie sent by the browser in the
launch request. If the cookie is sent, the application should add one to the
cookie and send it back to the browser. If not, it should send the cookie.
To make that happen, change the method postBuildWith: as follows:
112 VisualWorks

Class HTTPCookie
postBuildWith: aBuilder

| cookie oldCookie aReq |
aReq := self webRequest.

oldCookie := aReq cookieValueAt: 'VisitsToCookieExample'.
oldCookie isNil

ifTrue: [cookie := HTTPCookie
named: 'VisitsToCookieExample' value: 1]

ifFalse: [cookie := HTTPCookie
named: 'VisitsToCookieExample' value:

(oldCookie asNumber + 1)].
cookie expireAfterDays: 1.
cookie path: '/launch/CookieExample'.

aBuilder window addCookie: cookie.

self cookieName value: cookie name.
self cookieValue value: cookie value.
self cookieComplete value: cookie valueString.

Class HTTPCookie
Class HTTPCookie provides a general mechanism that VisualWave
applications can use to both store and retrieve information on the client
(web browser) side of the connection. Each HTTPCookie is essentially a
name=value pair that may contain additional information. This information
is sent to the browser in the form of an HTTP header message and
returned in the same fashion as an entity header.

An instance represents an HTTP cookie.

Instance variable HTML attribute Description

name (String) name= Name of the cookie

value (String) value Value of the cookie

expires
(Timestamp)

expires=date When this time is reached, the
browser may discard the cookie
[optional]

domain (String) domain=domain
Name

The browser must be speaking to
this domain before it will return the
cookie [optional]
Web GUI Developer’s Guide 113

Chapter 12 - HTTP Cookies
During initialization for a new HTTPCookie instance, secure is set to false.

The expires TimeStamp should be in local time.

Examples
CookieDemo is much like the application described in this chapter, with
the addition of account number and page count features. CookieDemo is
in the VisualWaveDemos parcel.

path (String) path=pathName This must be a prefix of the URL
path before the browser will return
the cookie [optional]

secure (Boolean) secure If this is true, the cookie will only
be returned if we are using a
secure server
114 VisualWorks

Overview of Client Pull
13
Client Pull

This section describes VisualWave’s support for client pull technology.

You and your application’s users must have a web browser that supports
client pull.

This section assumes that you are familiar with the client pull feature of
the HTTP protocol, the HTML format, and web browsers. Information
about client pull can be found in numerous web sites. A few are listed
here:

• An Exploration of Dynamic Documents
(http://www.netscape.com/assist/net_sites/pushpull.html)
is the official story from Netscape.

Overview of Client Pull
Normally, web browsers are driven by user input. A user clicks on a link or
requests an URL and the HTTP server returns the appropriate data. Each
exchange is inititated by the user.

In non-web software applications, the application may respond to
requests from the user (just as with a web browser), but the application
may also initiate interaction with the user. Applications commonly
interrupt the user to display error messages or to update the display to
reflect new data as it becomes available.

Obviously, it would be nice for the application to have that form of
communication with users who access it from a web browser. Client pull
is one way your application can take independent action.

With client pull, the server transmits page information to the user’s web
browser that automatically instructs the web browser to perform an action
such as “reload this page in ten minutes” or “go load this URL in two
Web GUI Developer’s Guide 115

http://www.netscape.com/assist/net_sites/pushpull.html

Chapter 13 - Client Pull
minutes.” After the specified amount of time has elapsed, the web
browser pulls updated pages according to the instructions provided along
with the page. The user can terminate the page’s actions by closing the
page.

Client pull differs from server push in that:

Server push
The server sends data to the web browser. The browser displays the
data and leaves the connection open. The server uses that open
connection to send more data. Whenever the server sends more
data, the browser displays it, still leaving the connection open. The
connection remains open and controlled by the server until either the
server or the user breaks the connection.

Client pull
The server sends data to the web browser. That data includes a
directive (in the HTTP response or the document header) that
instructs the browser to reload the current data or load new data after
a specified amount of time. After the initial data is sent, the
connection is closed. After the specified amount of time has elapsed,
the browser follows the instructions, opening a new connection and
either reloading the current data or getting new data.

Client pull is most useful when you want to provide the user with up-to-
date information as soon as that information becomes available. A simple
use of client pull is to cause a document to be automatically reloaded on
a regular basis.

For example, client pull can be used to implement:

• A weather watcher that shows an updated satellite photo at 15-
minute intervals.

• A stock ticker that displays a new quote data every 5 minutes.

There are hundreds of other examples on the World Wide Web.
Whenever images start to flash in your browser and you feel that you’ve
lost control, you’ve probably loaded a page that makes use of server
push or client pull. If you’ve set your browser to display the current URL
and that URL changes as the image changes, you’re probably observing
client pull in action.
116 VisualWorks

Using Client Pull
Using Client Pull

Basic HTTP Refresh
1 Open the canvas for the window that you want to refresh.

2 Display the canvas’s properties.

3 Select the Web properties page.

4 In the Refresh every x seconds field, enter the amount of time between
refreshes. The value must be equal to or greater than one.

5 Apply the properties.

6 Install the canvas.

7 Run the application from a web browser that supports client pull done
with HTML <Meta> headers and HTTP refresh.

Example: Letting the User Set the Refresh Rate
To demonstrate the features of client pull, let’s create a simple application
that enables the user start client pull, stop client pull, and set the refresh
rate. The application will display the time the page was sent and the
number of times that the page has been refreshed.

This example is divided into several high-level tasks:

1 Create the canvas.

2 Set up the time, count, and refresh rate displays.

3 Set up the screen and web variations.

4 Start client pull.

5 Stop client pull.

6 Run the application.
Web GUI Developer’s Guide 117

Chapter 13 - Client Pull
Create a Simple Canvas
1 Open a new blank canvas for editing.

2 On the canvas, place four labels, three input fields, and three action
buttons, as shown here:

Use the Properties tool to set the properties for the window and
widgets as shown in this table. Where a property is not specifically
mentioned, use the default value.

Component Properties Page Properties

Window Basics Label: ClientPullExample2

Web Refresh every x seconds(*)

Label (upper left) Basics Label: This page has been
displayed

Label (upper right) Basics Label: times.

Label (middle left) Basics Label: Time sent:

Label (lower left) Basics Label: Refresh rate (sec):

Input field (top) Basics Aspect: #count
ID: #countField
Type: Number

Details Bordered: not checked

Input field (middle) Basics Aspect: #timestamp
ID: #timeField

Input field (bottom) Basics Aspect: #refreshRate
ID: #refreshRateField
Type: Number

Action button (left) Basics Label: Start
Action: #startRefresh
ID: #startButton
118 VisualWorks

Using Client Pull
3 Resize and arrange the widgets as desired.

4 Set the window’s default size by choosing Layout�Window�Preferred
Size.

5 Install the canvas by clicking the Install button on the Canvas Tool.
Install the canvas in class ClientPullExample2 and selector windowSpec.
When prompted, choose to create class ClientPullExample2 in category
ClientPullDemos as an Application and subclass of ApplicationModel.

6 Ensure that nothing is selected in the canvas. Define the canvas by
clicking the Define button on the Canvas Tool. Choose to define the
model and add initialization for count, refreshRate, startRefresh,
stopRefresh, and timestamp. Do not define closeRequest.

At this point, you have set up the interface for the example. In the next
sections, you will learn how to program the widgets to actually display the
current time and count, start client pull, and stop client pull.

Action button (middle) Basics Label: Stop
Action: #stopRefresh
ID: #stopButton

Action button (right) Basics Label: Close
Action: #closeRequest

(*) This property specifies the initial client pull refresh rate for the window. Because you
don’t want the window to refresh until the user starts client pull, leave this value 0.
Web GUI Developer’s Guide 119

Chapter 13 - Client Pull
Set up the Time Display
1 In a System Browser, display the ClientPullExample2 method timestamp

(in the protocol aspects).

2 Edit the method to be the following:

timestamp
 ^timestamp isNil
 ifTrue: [timestamp := Time now printString asValue]
 ifFalse: [timestamp]

3 Accept the change.

Set up the Count Display
1 In a System Browser, display the ClientPullExample2 method count (in

the protocol aspects).

2 Edit the method to be the following:

count
 ^count isNil
 ifTrue: [count := 1 asValue]
 ifFalse: [count]

3 Accept the change.

Set up the Refresh Rate Display
1 In a System Browser, display the ClientPullExample2 method

refreshRate (in the protocol aspects).

Notice that the default value for the refreshRate input field is 0
seconds. Note that the initial value is not the refresh rate when the
window is first opened; it is a suggestion for the user’s input. The
initial refresh rate is stored in the window property Refresh every x
seconds.

2 Change the refreshRate method so that the initial value displayed is
the initial refresh rate from the window’s properties by editing the
refreshRate method so that is matches the method shown here:

refreshRate
^refreshRate isNil

ifTrue: [refreshRate :=
(self builder windowSpec propertyAt: #refreshSeconds)
asValue]

ifFalse: [refreshRate]
3 Accept the change.
120 VisualWorks

Using Client Pull
Set up Screen and Web Variations
Now let’s set up the code that starts and stops client pull so that it works
when the application is run from the screen as well as from a web
browser. The dual behavior is made possible by a watcherProcess in
combination with refreshForScreen and refreshForWeb methods.

1 Display the class definition for ClientPullExample2. Add the variable
watcherProcess to the list of instanceVariableNames (which already
includes count, timestamp, and refreshRate) and accept the change.

2 Create a new protocol called accessing and add the following instance
method:

watcherProcess
^watcherProcess

3 Create a new protocol called submitting and add the following
instance method:

refreshForScreen
self count value: count value + 1.
self timestamp value: Time now printString.
self builder window repairDamages

4 In the protocol called submitting, add the following instance method:

refreshForWeb
self count value: count value + 1.
self timestamp value: Time now printString

5 In the protocol called submitting, add the following instance method:

submitFrom: submitController toComponents:
componentCollection

"If this submit is a refresh event from the browser, do the
refresh."

 submitController == self builder window controller
ifTrue: [self refreshForWeb].

^super submitFrom: submitController
toComponents: componentCollection
Web GUI Developer’s Guide 121

Chapter 13 - Client Pull
Start Client Pull
1 In the System Browser, display the startRefresh method in

ClientPullExample2 (in the protocol actions).

2 Edit the method so that it looks like this:

startRefresh
ProcessEnvironment

executeForScreen:
[self refreshForScreen.

watcherProcess := [
[(Delay forSeconds: self refreshRate value) wait.

self timestamp dependents isEmpty]
whileFalse: [self refreshForScreen]]
forkAt: Processor userBackgroundPriority].

ProcessEnvironment executeForWeb:
[self builder window refreshAfterSeconds:

self refreshRate value]
3 Accept the change.

If the application is run from a web browser, the start method tells the web
page (self builder window) to set refreshAfterSeconds to be the refreshRate
that the user entered. If the refreshRate is at least 1, a web page is
generated and returned after the user’s submit. This page contains the
following: an HTML header with HTTP-Equiv=Refresh; the content set
to refreshRate; and the URL needed to redisplay the web page.

If the application is run from the screen, it waits the amount of time
designated in the refreshRate, then calculates a new timestamp value, and
then redisplays the window.

When the user submits the page, the WebSession sends
submitFrom:submitController toComponents: componentCollection to the class.
The submitFrom:toComponents: method checks to see if the submitController
is the same as the WebPage’s controller. If it is, then it refreshes the
timestamp. If it isn’t, then it does not refresh the timestamp. In either
case, it then does a

^super submitFrom: toComponents:
which causes it to return the componentCollection.
122 VisualWorks

Additional Examples
Stop Client Pull
1 In the System Browser, display the stopRefresh method in

ClientPullExample2 (in the protocol actions).

2 Edit the method so that it looks like this:

stopRefresh
ProcessEnvironment

executeForScreen:
[self watcherProcess terminate.
watcherProcess := nil].

ProcessEnvironment executeForWeb:
[self builder window noRefresh]

3 Accept the change.

Running the Example
1 In VisualWave, use the Server Console to create and start a

TinyHttpServer.

2 In a web browser, request an URL such as the following, substituting
the host and portname of your TinyHttpServer for localhost:8008 if
necessary:

http://localhost:8008/launch/ClientPullExample2
3 Enter a refresh rate that is fairly small, such as 5.

4 Click the Start button.

The page is submitted and another is returned. Wait until the refresh
interval and watch the page automatically submit itself.

5 Click the Stop button.

Additional Examples
For a description of the client pull examples in this chapter, see “Using
Client Pull” on page 117, and study the other examples included in the
VisualWaveDemos parcel.
Web GUI Developer’s Guide 123

Chapter 13 - Client Pull
124 VisualWorks

Configuring a FileResponder
14
FileResponder Resolver

VisualWave includes a resolver called a FileResponder. The FileResponder
resolver appears in the Server Console on the Resolver Type menu when
you are editing or creating a resolver.

A FileResponder is a general mechanism to enable the server to serve out
files referenced in VisualWave applications. One reason to use this is if
the server has the responsibility of serving out embedded content which
is housed in files.

An example of an external file that can be retrieved using a FileResponder
is a VRML world (.wrl). In VRML, there may be many different kinds of
embedded content. VRML worlds may have subworlds specified as
“WWWInlines,” Node textures as “Material,” and others. To a VRML-
enabled browser this means inflating this inline or material in the same
scene that is being constructed. These imbedded pieces are in turn
requested from the server using file references. The FileResponder is
responsible for handling these file requests and bundling up file content to
send back to the client browser for construction to continue.

Configuring a FileResponder
To use a FileResponder:

1 In the Server Console, select a server.

2 Display the server’s resolvers by clicking the Edit Resolver button.

3 To add a new resolver, click the Add Path button.

4 To make the new resolver a FileResponder, pull down the Resolver type
menu and choose FileResponder.
Web GUI Developer’s Guide 125

Chapter 14 - FileResponder Resolver
5 In the Path input field, enter the string that will be included in URLs to
cause VisualWave to serve files. In this example, the path is file.

6 Accept the new resolver.

Now, whenever the server gets a request which has the path prefix file, it
will use the FileResponder to service the request.

To configure the FileResponder:

1 Select its entry in the list of Installed Paths.

2 Click the Configure Resolver button.
126 VisualWorks

Content Types
3 In the Default directory input field, enter the name of the directory in
which the FileResponder is to look for files.

4 Accept the change.

Content Types
The FileResponder creates a content type based on the file extension in
the requested path. The current types supported are:

Category file extension content type

Text types: .htm text/html

.html text/html

.txt text/plain

.text text/plain

Application types: .js application/x-javascript

.mocha application/x-javascript
Web GUI Developer’s Guide 127

Chapter 14 - FileResponder Resolver
VRML .wrl x-world/x-vrml

Video .avi video/x-msvideo

.mov video/quicktime

.qt video/quicktime

.moov video/quicktime

.mpeg video/mpeg

.mpg video/mpeg

.mpe video/mpeg

.mpv video/mpeg

.vbs video/mpeg

.mpegv video/mpeg

Audio .wav audio/x-wav

.au audio/basic

.snd audio/basic

.mp2 audio/x-mpeg

.mpa audio/x-mpeg

.abs audio/x-mpeg

.mpega audio/x-mpeg

.aif audio/x-aiff

.aiff audio/x-aiff

.aifc audio/x-aiff
128 VisualWorks

Content Types
You can add to these types by sending a message to the FileResponder
class:

FileResponder addType: 'application/octet-stream'
 extension: #exe.

or modify the FileResponder>>initializeDefaultTypes method to always include
your new type.

Images .bmp image/x-MS-bmp

.rgb image/x-rgb

.gif image/gif

.ief image/ief

.png image/x-png

.pcd image/x-photo-cd

.ppm image/x-portable-pixmap

.pgm image/x-portable-graymap

.pbm image/x-portable-bitmap

.pnm image/x-portable-anymap

.xwd image/x-xwindowdump

.xpm image/x-xpixmap

.xbm image/x-xbitmap

.ras image/x-cmu-raster

.tif image/tiff

.tiff image/tiff

.jpeg image/jpeg

.jpg image/jpeg

.jpe image/jpeg

.pip image/jpeg

.jfif image/jpeg

.pipeg image/jpeg
Web GUI Developer’s Guide 129

Chapter 14 - FileResponder Resolver
130 VisualWorks

15
Graphic Image Formats

VisualWave incorporates the GIF-compatible GUF format and a Java
Rendered graphics format. This section describes the three options
available for using graphic images:

• Automatically Generating Graphic Images

• Using the Java Renderer

• Using GIF-compatible (GUF) Images

Note: Due to licensing restrictions, the standard VisualWave image
does not include the ability to generate true compressed GIF images.
For information about how to obtain the GIF compression code, see
the VisualWave Release Notes.

To use the Java Renderer, you and your application’s users must have a
web browser that supports Java and Java must be enabled in the
browser.

To use the GIF-compatible GUF format, you and your application’s users
must have a web browser that supports standard GIF images. Almost all
web browsers meet this requirement.
Web GUI Developer’s Guide 131

Chapter 15 - Graphic Image Formats
Automatically Generating Graphic Images
VisualWave automatically generates graphic images in several situations:

• Smalltalk graphic images (instances of any subclass of Image) are
automatically converted to a web-compatible graphics format.

• Some widgets for which there is no HTML equivalent are
automatically converted to web-compatible graphic images and
incorporated using the HTML entity closest to the widget’s original
purpose. In particular, the following widgets are converted to web-
compatible graphic images:

• Buttons for which the Enforce Boundary with GIF property is set.

• Menu bars

• Charts

• View holders

• Widgets for which the label or background is a graphic image can use
either an external graphic image (referenced by URL) or a Smalltalk
graphic image. When they use a Smalltalk graphic image, that image
is converted to a web-compatible graphics format.

If you have a static graphic image that is used in your application, it is
more efficient to place that image in an external file and reference it by
URL or bookmark. Doing so speeds up access in two ways:

• VisualWave does not need to generate the graphic image and send it
to the web browser each time it is used. Instead, VisualWave sends
an URL and the web browser retrieves the image.

• The web browser caches the image for reuse. An image generated
by VisualWave may not have the same URL each time that it is
generated, causing the web browser to reload the image each time it
is used.
132 VisualWorks

Using the Java Renderer
Using the Java Renderer
VisualWave can generate graphic images using a Java Renderer. When
you use the Java Renderer, a Java applet is downloaded to the user’s
web browser. VisualWave then sends instructions to that applet,
describing the graphic image that is to be rendered. Java rendered
graphic images download and display more quickly than VisualWave’s
GIF-compatible GUF images. Java Rendered graphic images, however,
require that the user’s web browser support Java and that Java is enabled
in that browser. Furthermore, they may not be as crisp as GIF-compatible
images.

By default, VisualWave generates graphic images in GIF-compatible GUF
format. To cause VisualWave to generate graphic images using the Java
Renderer:

1 Display the Settings Tool (in the main window choose
File�Settings...).

2 Display the Web Image page.

3 Set the Use Java Renderer option.

4 Apply the settings.

5 Save the VisualWave image.

Once Use Java Renderer is set, all graphic images generated by VisualWave
are sent to the user’s browser with a Java Renderer.
Web GUI Developer’s Guide 133

Chapter 15 - Graphic Image Formats
Note: At this time, masked images are not supported by the Java
libraries and cannot be rendered using the Java Renderer.

Using GIF-compatible (GUF) Images
The GUF format is the same as uncompressed GIF format. As a result,
GUF images can be displayed in any web browser that can display GIF
images. GUF images, however, are as much as 2 to 20 times as large as
GUF images. As a result, they take more time to download and display
than compressed GIF images.

By default, VisualWave generates graphic images in GIF-compatible GUF
format. If you have set VisualWave to use the Java Renderer, you can
reset it to use the GUF format:

1 Display the Settings Tool (in the main VisualWave window choose
File�Settings.

2 Display the Web Image page.

3 Set the Uncompressed GIF-Compatible (GUF) option.

4 Apply the settings.

5 Save the VisualWave image.
134 VisualWorks

Using ActiveX
16
ActiveX Widget

This section describes VisualWave’s support for ActiveX. Developers and
application users must have a web browser that supports ActiveX.

Browser Rrequirements:

ActiveX support is native in Microsoft Internet Explorer Version 3.0 and
higher. Netscape Navigator may require a special plug-in available from
the Netscape web site.

Using ActiveX
VisualWave supports inclusion of, but not communication with or
between, ActiveX components. To add an ActiveX component to a
canvas:

1 Open a canvas for editing.

2 From the Palette, choose the ActiveX widget and place it on the
canvas. Inactive Java/ActiveX regions appear onscreen as labelled
gray areas.

3 Set the properties for the widget (see table below).

4 Install the canvas.
Web GUI Developer’s Guide 135

Chapter 16 - ActiveX Widget
ActiveX Properties

Setting Properties Programmatically
In addition to being set from the Properties tool, ActiveX parameters can
be set programmatically in the instance of HTMLInsertObject that
represents the ActiveX widget. For example:

postOpenWith: aBuilder
 "Add a parameter named 'BackToWaveUrl' with a value
 that contains an url that represents this page with
 an additional jabber component."

 self executeForWebOnly:
 [(self builder componentAt: #wavebackRegion)
 widget htmlEntity add:
 (HTMLParameter new
 name: 'BackToWaveUrl';
 value: (self builder window urlForRefresh ,
 '&jabber='))].

Only a minimal set of ActiveX <OBJECT> tag parameters are explicitly
available in the Properties tool. The other parameters can be set
programmatically in the instance of HTMLInsertObject that represents the
ActiveX widget. For example, use the following code fragment to set the
vspace parameter of the HTMLInsertObject:

Page Property Required Description

Basics ID No The name of this component.

Class ID Yes An URL whose syntax depends on the type of ActiveX’s
object being embedded. Registered ActiveX controls begin
with CLSID:class identifier.

Code Base Yes An URL or series of URLs that identify the location of the
ActiveX files. Thus, the code must be accessible from
some web server.

Data No An URL that identifies the data for the object.

HTML ID Yes The HTML ID attribute for the ActiveX object.

Alternate
HTML

No When checked, the HTML in the text field below is shown
in web browsers that cannot run ActiveX components.

Parameters Parameters No Enables you to pass information to the Java applet.
Parameters should be entered one per line, in the format:
name=value
name2=value2
name3=value3
136 VisualWorks

Notifying Browsers without ActiveX
postBuildWith: aBuilder
 | webJKGTable |
 webJKGTable := aBuilder componentAt: #table.
 webJKGTable htmlEntity vspace: 8

Notifying Browsers without ActiveX
You can specify the message to be displayed in browsers that do not
support ActiveX components. To do so:

1 Open for editing the canvas that contains the ActiveX widget.

2 Select the ActiveX component.

3 Display the ActiveX component’s properties.

4 In the Properties Tool, display the Basics page.

5 On the Basics page, check the Alternate HTML for non-ActiveX browsers
checkbox.

6 In the text field below the checkbox, there is a default message. You
can edit the message to suit your situation. The message can include
any standard HTML markup.

7 Apply the changes.

8 Install the canvas.

Examples
VisualWave comes with two examples using embedded ActiveX controls:

• ActiveXDemos with the default window specification.

• ActiveXDemos with the textSpec window specification. To run this
application, request an URL of the form:

http://host:path/launch/ActiveXDemos?textSpec.
The ActiveX demos are in the VisualWaveDemos parcel.
Web GUI Developer’s Guide 137

Chapter 16 - ActiveX Widget
138 VisualWorks

Hot Regions Editor
A
Tools Reference

This appendix contains a complete description of each of the tools in the
VisualWave environment:

• Hot Regions Editor

• HTML Text Editor

• Bookmark Manager

Hot Regions Editor
Use the Hot Regions Editor to create and edit a hot region mapping,
which can be integrated into a click map widget.
Web GUI Developer’s Guide 139

Chapter A - Tools Reference
Menu Bar Commands

Regions Menu
New

Clears the Hot Regions Editor of the current set of region mappings
and prepares for a new set.

Load
Loads the hot regions resource from the specified class and selector
into the Hot Regions Editor.

Install
Prompts for the method selector and class name where hot regions
specifications are stored.

Read
Edits hot regions that have been applied to a selected widget.

Apply
Applies the hot regions in the Hot Regions Editor to an associated
canvas.

Exit
Quits the Hot Regions Editor.

Edit Menu
Undo Painting

Reverses the most recent painting operation.

New Slice
Ends the editing of the last hot region and enables editing of a new
hot region.

Clear Slice
Clears all of the areas specified in the current region. The region’s
name and selector remain.

Delete Slice
Deletes the current region. Deletes the region name, selector, and
areas specified.

View Menu
Load Backdrop...

Prompts for the background image to display. This image can be
used as a guide when drawing regions, but is not connected to the
hot regions. The association between an image and hot regions is
made by specifying them both in the properties of a click map widget.
140 VisualWorks

Hot Regions Editor
All Slices
Displays all of the slices for the current hot region resource at one
time. Useful for looking for areas that do not have a hot region
defined.

Painting Controls
You paint slices in the Hot Regions Editor much like you use other
painting applications. A single slice may contain any number of areas,
connected or not connected.

The Hot Regions Editor contains several painting controls.

Ink selector:
Allows you to choose the color or pattern of ink for painting. The color
you choose does not show up in the running click map; it is only for
your convenience when specifying regions.

Brush 1:
The smallest size paintbrush, allowing you to paint very small areas.

Brush 2:
The next smallest size paintbrush.

Brush 3:
A larger, circular paintbrush.

Brush 4:
A larger, square paintbrush.

Ellipse:
When chosen, enables you to draw filled elliptical areas.

Rectangle:
When chosen, enables you to draw filled rectangular areas.

Fill mode:
Fills the region.
Web GUI Developer’s Guide 141

Chapter A - Tools Reference
HTML Text Editor
Use the HTML Text Editor to create and edit HTML text resources, which
can be integrated into an HTML text widget.

This section contains descriptions of:

• Menu Bar Commands

• <Operate> Menu Commands

• Formatting Options

• Editing and Display Controls

Menu Bar Commands

File Menu
Open...

Loads text from a file into the HTML Text Editor. Prompts you for the
filename.

Save as...
Saves the HTML text to the specified file. HTML text is saved in ASCII
format with HTML markup included.

Exit
Quits the HTML Text Editor.
142 VisualWorks

HTML Text Editor
HTML Menu
New

Clears the HTML Text Editor of the current text and prepares for new
text.

Read
Edits HTML text that has been applied to a selected widget.

Load...
Loads an HTML text resource from a specified class and selector into
the HTML Text Editor.

Install...
Prompts for the method selector and class name where the HTML
text resource is to be stored.

Apply...
Applies the HTML text in the HTML Text Editor to an associated
canvas.

Edit Menu
Find...

Finds the specified text.

Replace...
Replaces the specified text with other text.

Undo
Reverses the effects of the last editing action.

Cut
Deletes the selected text and places it into the paste buffer.

Copy
Copies the selected text into the paste buffer.

Paste
Places cut or copied text after the insertion point.

Clear All
Deletes all of the text and resets the attributes.
Web GUI Developer’s Guide 143

Chapter A - Tools Reference
<Operate> Menu Commands
Below are the <Operate> menu commands for the HTML Text Editor’s
text view. These commands can be accessed by positioning the mouse
pointer over the text view and pressing the <Operate> mouse button.

find...
Finds the specified text.

replace...
Replaces the specified text with other text.

undo
Reverses the effects of the last editing action.

copy
Copies the selected text into the paste buffer.

cut
Deletes the selected text and places it into the paste buffer.

paste
Places cut or copied text after the insertion point.

accept
Installs the HTML text resource.

cancel
Reverts to the last accepted HTML text.

Formatting Options
The HTML Text Editor has two drop-down menus; one for formatting
paragraphs, and the other for formatting characters.

Paragraph Formatting
The paragraph-control options for the HTML Text Editor correspond to the
six HTML heading levels noted by the <hn>...</hn> HTML markup tags.

There is no forced hierarchy in these headings, but for consistency you
should use the top level (Heading 1) for main headings, and lower levels
for progressively less important ones.

Paragraph formatting is applied to the currently-selected text, making that
text a separate paragraph of the given heading level. If no text is selected,
a blank paragraph of the given heading level is inserted.
144 VisualWorks

HTML Text Editor
Character Formatting

Editing and Display Controls
Removes all HTML markup from selected characters.

Inserts a paragraph break.

Makes the selected text into an anchor. Anchors mark a hypertext link or
a destination. In the dialog box, specify:

• Link and a URL to mark the anchor as the start of a link to another
place in the current HTML text or to another document or location.

• Anchor and a name to mark the anchor as the possible destination of
a link from within the same HTML text or from another document.

Inserts one of the following sets of HTML tags:

...
...

Link or destination text is shown in blue. Link text is underlined. When the
insertion point is within text that is designated with an anchor, the anchor
name or link appears in the upper right corner of the HTML Text Editor.

Toggles underline of the selected text by inserting or removing the HTML
tags <u>...</u>. Underline may be rendered as slanted in some web
browsers.

Toggles italics of the selected text by inserting or removing the HTML
tags <i>...</i>. Italics may be rendered as slanted in some web browsers.

code sample <code>...</code> Example of typed code (usually fixed-
width font).

typed text <kbd>...</kbd> Text to be marked as keyboard input.

variable <var>...</var> A variable name.

sample <samp>...</samp> A sequence of literal characters.

definition <dfn>...</dfn> The defining instance of a term (often
rendered bold or bold italic).

citation <cite>...</cite> A citation (typically rendered in
italics).

typewriter <tt>...</tt> Fixed width typewriter font.

none Clears all character formatting.
Web GUI Developer’s Guide 145

Chapter A - Tools Reference
Toggles bold of the selected text by inserting or removing the HTML tags
.... Bold may not be available in all web browsers.

Toggles emphasis of the selected text by inserting or removing the HTML
tags Emphasis is represented by italic in many web
browsers.

Toggles additional emphasis of the selected text by inserting or removing
the HTML tags Strong emphasis is displayed as bold
in most web browsers.

Increases the font size by a standard increment by inserting HTML tags
such as Several levels of increase are available.

Decreases the font size by a standard increment by inserting HTML tags
such as Several levels of decrease are available.

Aligns all of the HTML text to the left.

Aligns all of the HTML text in the center.

Aligns all of the HTML text to the right.

Toggles the display in the text view between the HTML text and its HTML
markup. This button only affects display in HTML Editor; it does not affect
what is stored in the HTML text resource.
146 VisualWorks

Bookmark Manager
Bookmark Manager
Use the Bookmark Manager to create and edit sets of bookmarks.

Menu Bar Commands

Bookmarks
New

Clears the current set of bookmarks from the Bookmark manager
and prepares for a new set. You are prompted for a name for the new
set.

Load
Loads a set of bookmarks from the current VisualWave image into
the Bookmark Manager.

Save
Saves the current set of bookmarks from the Bookmark Manager to
the current VisualWave image so that they are available for use within
the image. Does not save the VisualWave image; you must do that for
the changes to be in effect the next time you start VisualWave.

Load from file...
Loads a set of bookmarks from an external file into the current
VisualWave image and into the Bookmark Manager.

Save to file...
Saves the current set of bookmarks to an external file from which
they can be loaded into other VisualWave or VisualWave Server
images.
Web GUI Developer’s Guide 147

Chapter A - Tools Reference
Edit
Delete...

Deletes the specified set of bookmarks. All bookmarks in the set are
deleted from the current VisualWave image. If the bookmarks also
exist in an external file, the file is not affected.

Preferences...
Displays the bookmark preferences:

<Operate> Menu Commands

Category List
Bookmark categories listed in bold have subcategories. To see the list of
subcategories, double-click on the bold category name.

Copy
Copy the selected category and all its bookmarks into the buffer.

Cut
Remove the selected category and all bookmarks within it.

Paste�After
If the buffer contains a category, insert that category and its
bookmarks after the selected category. The bookmark paths for all
bookmarks within the category are also changed to reflect their new
organization. Note that places you have used the bookmark paths are
not updated automatically; you must update them manually. If no
category is selected, this command has no effect.

Cache relative URLs Causes VisualWave to cache URLs that do not
begin with a protocol. For example, the following
URL is only cached when this option is chosen:
myGraphics/VWLogo.gif.

Cache bookmarks in
URL list

Causes VisualWave to cache bookmark paths,
when they are entered into fields that accept
URLs.

Number of URLs to
cache?

The number of URLs (including relative URLs and
bookmarks when the above options are chosen)
that are cached by VisualWave and displayed in
menus that offer a list of URLs.

Empty Cache Clears the cache of URLs.

Apply Makes changes to preferences take effect.

Close Closes the preferences window.
148 VisualWorks

Bookmark Manager
Paste�Before
If the buffer contains a category, insert that category and its
bookmarks before the selected category. The bookmark paths for all
bookmarks within the category are also changed to reflect their new
organization. Note that places you have used the bookmark paths are
not updated automatically; you must update them manually. If no
category is selected, this command has no effect.

Paste�Indented
If the buffer contains a category, insert that category and its
bookmarks within the selected category, as an indented subcategory.
The bookmark paths for all bookmarks within the category are also
changed to reflect their new organization. Note that places you have
used the bookmark paths are not updated automatically; you must
update them manually. If no category is selected, this command has
no effect.

Rename
Change the name of the selected category. The bookmark paths for
all bookmarks within that category are also changed to reflect their
new organization. Note that places you have used the bookmark
paths are not updated automatically; you must update them manually.

Add�After
Insert a new empty category after the selected category. If no
category is selected, the new category is added at the end of the list.
When prompted for a category name, you can enter any string.

Add�Before
Insert a new empty category before the selected category. If no
category is selected, the new category is added at the top of the list.
When prompted for a category name, you can enter any string.

Add�Indented
Insert a new empty category within the selected category. If no
category is selected, the new category is added at the bottom of the
list. When prompted for a category name, you can enter any string.

URL List
The URL List appears in the bottom right pane of the Bookmark Manager.
For the category selected in the left page, the URL List displays all the
URLs for which bookmarks are defined.

Copy URL
Copy the selected URL into the buffer. Once copied, you can paste
the URL into any property that accepts an URL.
Web GUI Developer’s Guide 149

Chapter A - Tools Reference
Copy Path
Copy the bookmark path for the selected URL into the buffer. Once
copied, you can paste the path into any property that accepts an
URL.

Browse References
Display all of the methods that refer to the selected URL by its
bookmark path.

Buttons
Add the specified bookmark to the selected category. If no category is
selected, this command has no effect. You must specify a Protocol, Alias,
and URL. The Alias cannot be one that is already used in the current
category. When you add a bookmark, the Bookmark Manager
automatically generates a bookmark path for it, based on the names of
the bookmark set, category, and alias. For an example, see “Creating
Bookmarks” on page 95.

Causes changes to a bookmark’s protocol, URL, or alias to be stored in
the Bookmark Manager. Note that the change is not stored in the image
and made generally-available until you save the bookmark set by
choosing File�Save. For an example, see “Example: Updating
Bookmarks” on page 100.

Causes changes to a bookmark’s protocol, URL, or alias to be dismissed.

Allows you to edit the protocol, URL, or alias for the bookmark selected in
the URL list. The bookmark path is automatically-generated and cannot
be edited. If you change the alias, however, the bookmark path is
automatically updated to reflect the change. Note that places you have
used the bookmark paths are not updated automatically; you must
update them manually.

Note that to make your change take effect, you must do two things: you
must click the Accept button to store the change in the Bookmark Manager
and you must choose Bookmarks�Save to store the changed bookmark set
in the current VisualWave image.

For an example, see “Example: Updating Bookmarks” on page 100.

Remove the selected bookmark from the selected, category, the current
bookmark set, and from the VisualWave image. References to it are not
deleted; however, you can find references using the Browse References
command on the URL List’s <Operate> menu.
150 VisualWorks

Bookmark Manager
Retrieve the image or document for the selected bookmark and displays it
in a small viewer window. Useful for testing URLs. Applicable only for
URLs with the protocol HTTP or relative URLs that can be found by an
active TinyHttpServer within the image (usually found using a
FileResponder resolver).

Add a new, empty category at the bottom of the list. When prompted for a
category name, you can enter any string. Category names must be
unique within a bookmark set.

Move the selected subcategory up one level in the hierarchy. The
Bookmark Manager also changes the bookmark paths for all of the
bookmarks in the category to reflect the new organization. Note that
places you have used the bookmark paths are not updated automatically;
you must update them manually. If no category is selected or if the
selected category is already at the top level, this command has no effect.

Move the selected category down one level in the hierarchy, making it a
subcategory of the category above it. The Bookmark Manager also
changes the bookmark paths for all of the bookmarks in the category to
reflect the new organization. Note that places you have used the
bookmark paths are not updated automatically; you must update them
manually. If no category is selected or if the selected category is already
a subcategory at the lowest level, this command has no effect.
Web GUI Developer’s Guide 151

Chapter A - Tools Reference
152 VisualWorks

Index
Symbols
<Operate> button 11
<Select> button 11
<Window> button 11

A
action button size 28
ActiveX widget 23, 135
asHTMLText message 40

B
base target property 64
basic HTML look 29
bitmap graphics 32
Bookmark Manager 94, 95, 147
bookmarks 93

categories 93
saving 93

building a web application 16
buttons

mouse 11

C
check box size 28
Click Map widget 31
client pull 115
Combo boxes 24
CompositeApplication class 47
content type 127
conventions

typographic 9
cookies 101
creating HTML text 38

D
data forms 25
Data Modeler 18
database applications 18
dataset widget 24
demonstrations 14

E
electronic mail 12
embedded data forms 25
enhanced HTML look 29
examples 14

F
FileResponder

resolver 125
supported content types 127

fonts 9
frames 47

attributes 57
deleting 60

deselecting 55
moving 60
selecting 55
targets 63

Frames Editor 47
frameset

deselecting 56
selecting 56
targeting 66

G
graphics

click map 32
formats 131
GIF 18, 131, 134
GUF 18, 131, 134
image map 32
Java rendered 131

group box widget 24
GUI layout 17

H
horizontal alignment 26
HTML

frames 47
special characters 40
tags 41
target frames 63

HTML Text widget 23
HTMLCharacterTag class 41
HTMLText class 40
HTTP cookies 101
HTTP refresh 117, 128

I
Image class 18
image map, See click map widget 31
input field size 28

J
Java applet 76, 89

properties 90
widget 23

Java rendered graphics 131
Java Renderer 131, 133
JavaScript 71

event handler 75
named fields 76
quotation marks 77
target window 65

L
linked data forms 25
look policies 29
Web GUI Developer’s Guide 153

Index
M
mail

electronic 12
menu

button size 28
rendered as graphics 132

mime types 127
mouse buttons 11

<Operate> button 11
<Select> button 11
<Window> button 11

N
NetscapeTableLayout class 27
notational conventions 9
notebook widget 24

O
ObjectLens 18

P
phase

of a web session 20
out-of-phase condition 20

postBuildWith
 102

R
radio button 25
radio button size 28
region widget 24
resolvers

file responder 125
resources

for HTML text 42

S
server push 116
session

state saved using cookies 102
showBorders: message 27
slider widget 24
special symbols 9
subcanvas 76
submitting data 17
support, technical

electronic mail 12
World Wide Web 12

supported widgets 24
symbols used in documentation 9
T
tables

borders 27
support 29
widget position 26

technical support
electonic mail 12
World Wide Web 12

typographic conventions 9
U
URL bookmarks 93

URL cache 93
URL List 149

V
vertical alignment 26
VisualWaveDemos.pcl 14
VisualWorks Application Server documentation

Web GUI Developer’s Guide 9
Web Server Configuration Guide 9

VRML widget 23, 83

W
web browsers 29
Web Notes property 25
Web Position properties 26
web session 20

out-of-phase condition 20, 21
phasing 20, 21

Web Sessions and Phasing 21
widget

layout 26
properties 25
rendered as graphics 132
size 28
targeting from 66

widgets
supported 24

windows
multiple 19
opening 20
size 28
targeting from 66

World Wide Web 12
154 VisualWorks

P46-0139-00

FAX
IT!

WE STRIVE FOR QUALITY

Reader Comment Sheet
Name:

Job title/function:

Company name:

Address:

Telephone number: () - Date: / /

How often do you use this product? # Daily # Weekly # Monthly # Less

How long have you been using this product? # Months # Years

Can you find the information you need? # Yes # No

 Please comment.

Is the information easy to understand? # Yes # No

 Please comment.

Is the information adequate to perform your task? # Yes # No

 Please comment.

General comment:

To respond, please fax to Larry Fasse at (513) 612-2000.

	Contents
	About This Book
	Audience
	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information
	Online Help
	Commercial Publications

	Examples

	Overview
	Building Web Applications
	Design Considerations
	Supporting Graphics
	Supporting Database Access

	Windows and Applications
	Windows and Sessions
	Web Sessions and Phasing
	Using Dialogs
	User Interface Design Considerations

	Widgets
	VisualWave Widgets
	Supported Widgets
	Unsupported Widget Properties

	Controlling Widget Layout
	Layout Tips
	Window Size
	Widget Size
	Widget Placement
	Canvas Properties

	Look Policies

	Creating an Image Map
	Setting Up a ClickMap
	Loading or Drawing the Background Image
	Adding a Click Map Widget to the Canvas
	Programming the Click Map Widget
	Defining the Hot Region Mappings

	Click Map Widget Properties
	Hot Regions Editor
	Using Custom Views and Controllers

	Creating HTML Text
	HTML Text Widget
	Adding an HTML Text Widget
	Providing HTML Text for the Widget
	Programmatically Creating HTML Text
	Generating a Stub using the Painting Tools
	Creating the HTML Text Instance
	Supported HTML Tags

	HTML Text Editor
	Using the HTML Text Editor
	Opening the HTML Text Editor
	Editing and Formatting HTML Text
	Connecting your HTML Text to the Widget

	Importing HTML Markup
	Specifying a Base URL
	Controlling HTML Encoding
	Adding Color to HTML Text

	HTML Frames
	Overview
	Dividing a Canvas into Frames
	Selecting and Deselecting Frames and Framesets
	Selecting a Frame
	Deselecting a Frame
	Selecting a Frameset
	Deselecting a Frameset

	Specifying the Attributes for a Frame
	Basics
	Details

	Specifying the Attributes for a Frameset
	Basics
	Details
	JS Events

	Other Operations with Frames
	Deleting a Frame
	Moving Frames
	Saving a Framed Canvas
	Accommodating Browsers that Don’t Support Frames

	Examples

	Targeting Output
	Allowed Targets
	Targeting with the Base Target Property
	Setting the Base Target
	For a Frame
	For a Window

	Targeting with JavaScript
	When to Use JavaScript
	How to Use JavaScript
	Example: Targeting From a Widget

	Targeting from a Window
	Targeting from a Frames or Frameset
	Targeting from a Widget
	Targeting from a Label Widget

	Examples: Targetting Output
	Example 1: Frame and Widget
	Example 2: Frame and Window

	Client-side JavaScript
	Why Use JavaScript?
	Supported Widgets and Events
	JavaScript Properties
	JavaScript Properties for Windows
	JavaScript Properties for Widgets

	Using JavaScript
	Browser Support of JavaScript
	Submit on Selection
	Submit from an Artibrary Widget
	Accessing Named Fields
	Subcanvas Support
	Single vs. Double Quotation Marks

	Example: Validating Input with JavaScript
	Questions and Answers
	Additional Examples

	VRML Widget
	Prerequisites
	Testing VRML with VisualWave
	Tutorial: A Simple VRML World
	Exploring the VRML Classes
	Basic VRML Functionality
	Reserved Classes

	Additional VRML Examples
	Implementation Notes
	World Size

	Java Applet
	Using Java Applets
	Java Applet Properties
	Setting Properties Programmatically
	Parameters
	Other Properties

	Examples: Using Java Applets

	Bookmarks
	Overview
	URL Cache
	Bookmark Manager
	Example: Using the Bookmark Manager
	Creating Bookmarks
	Using Bookmarks
	Example: Updating Bookmarks

	Troubleshooting

	HTTP Cookies
	Using HTTP Cookies
	Setting Up the Web Page for Cookies
	Adding a Cookie to the Page
	Displaying All the Cookies Being Sent
	Accessing the Cookies in the Request
	Using Received Cookies

	Class HTTPCookie
	Examples

	Client Pull
	Overview of Client Pull
	Using Client Pull
	Basic HTTP Refresh
	Example: Letting the User Set the Refresh Rate
	Create a Simple Canvas
	Set up the Time Display
	Set up the Count Display
	Set up the Refresh Rate Display
	Set up Screen and Web Variations
	Start Client Pull
	Stop Client Pull
	Running the Example

	Additional Examples

	FileResponder Resolver
	Configuring a FileResponder
	Content Types

	Graphic Image Formats
	Automatically Generating Graphic Images
	Using the Java Renderer
	Using GIF-compatible (GUF) Images

	ActiveX Widget
	Using ActiveX
	ActiveX Properties
	Setting Properties Programmatically

	Notifying Browsers without ActiveX
	Examples

	Tools Reference
	Hot Regions Editor
	Menu Bar Commands
	Regions Menu
	Edit Menu
	View Menu

	Painting Controls

	HTML Text Editor
	Menu Bar Commands
	File Menu
	HTML Menu
	Edit Menu

	<Operate> Menu Commands
	Formatting Options
	Paragraph Formatting
	Character Formatting

	Editing and Display Controls

	Bookmark Manager
	Menu Bar Commands
	Bookmarks
	Edit

	<Operate> Menu Commands
	Category List
	URL List

	Buttons

	Index

