
Cincom Smalltalk™

Web Service Developer's Guide

P46-0142-04

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

Copyright © 2002-2009 Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0142-04

Software Release 7.7

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, COM Connect, and StORE are trademarks of Cincom Systems, Inc., its
subsidiaries, or successors. ENVY is a registered trademark of Object Technology
International, Inc. GemStone is a registered trademark of GemStone Systems, Inc. All
other products or services mentioned herein are trademarks of their respective
companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation copyright © 2002-2009 by Cincom
Systems, Inc. All rights reserved. No part of it may be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without prior
written consent from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

www.cincom.com

Contents
About This Book ix

Audience .. ix
Organization .. x
Conventions ... xi

Typographic Conventions .. xi
Special Symbols .. xi
Mouse Buttons and Menus ...xii

Getting Help ...xii
Commercial Licensees ...xiii
Non-Commercial Licensees ...xiv

Additional Sources of Information ...xiv

Chapter 1 Introduction to Web Services 1-1

About Web Services ...1-2
Architecture ..1-2

VisualWorks Implementation ...1-4
XML and HTTP Support ...1-5
XML to Object Mapping ..1-5
WSDL ...1-5
SOAP ...1-6
Wizards ..1-6

Compatibility with Standards ...1-7
Common Usage Scenarios ..1-8

Creating Web Services Clients ...1-8
Creating Web Services ...1-8

Loading Support for Web Services ..1-9
Web Services Settings ..1-10

Web Services Examples ..1-10
Time Demo ..1-11

Using the Time Demo ..1-11
Web Service Developer’s Guide iii

Contents
Library Demo .. 1-12
Using the Library Demo ... 1-12

Unit Tests ... 1-12

Chapter 2 Web Services Wizard 2-1

Creating Classes using the Web Services Wizard .. 2-1
Generating a WsdlClient ... 2-2
Generating an Opentalk client .. 2-4

Chapter 3 Building Clients 3-1

WSDL Support Services .. 3-2
Loading WSDL Support .. 3-2
Using WsdlClient .. 3-2
Class Struct .. 3-3
Authentication ... 3-4

WSDL Builders .. 3-5
WSDL Class Builder ... 3-5

Running WsdlClassBuilder .. 3-6
Loading and Saving a Schema .. 3-6
Overwriting Class names ... 3-6
Cleaning the Binding Registry ... 3-7
Moving a client Class to another Image ... 3-7

Class-generating API .. 3-7
Instance creation class methods ... 3-8
Environment setting methods .. 3-8
Class generation methods ... 3-8

Inside the WsdlClassBuilder .. 3-9
Schema Bindings .. 3-9
Binding Classes .. 3-10
Client Classes ... 3-11
Service Classes .. 3-12

Chapter 4 Document Processing 4-1

Working with WSDL Schemas ... 4-1
Loading a WSDL Schema .. 4-1
Generating XML-to-object Bindings .. 4-2
Saving a Schema with its Binding ... 4-4
Load and Use a WSDL Schema ... 4-4
Customizing Mappings ... 4-5
Making a Request with a WSDL Schema ... 4-6
iv VisualWorks

Contents
Generating Bindings without a WSDL Document ..4-6
Complex Type to Dictionary Bindings ..4-7

Generating the Binding Schema ..4-7
Creating the Binding Dictionaries ...4-8
Marshaling and Unmarshaling a Struct ..4-8

Complex Type to Object Bindings ...4-9
Generating the Binding Schema ..4-10
Creating the Binding Classes ...4-11
Marshaling and Unmarshaling the Objects4-11

Chapter 5 SOAP Exchanges 5-1

VisualWorks Implementation ..5-2
Loading SOAP Support ...5-2
SOAP Messaging Framework ...5-2

Building a SOAP Request using a WSDL Schema ..5-3
Messages with Arguments ..5-4

RPC-style Message Arguments ...5-5
Document-style Message Arguments ..5-5

SOAP Messaging without WSDL ...5-6
SOAP Headers ...5-8

Sending SOAP Messages with Header Entries ..5-8
Using SOAP Header Entries with WsdlClient ...5-9
Using Soap Header Entries with an Opentalk Client5-9

Handling a Requst with Wrong Parameters.5-10
Setting the Result Type ..5-11
Accessing Soap Headers from Service Methods5-11

Creating a SOAP Header ..5-11
Sending Requests over Persistent HTTP ...5-13
SOAP Exception Handling ...5-15

Chapter 6 Building Web Services 6-1

Web Services and Opentalk ...6-2
Loading Opentalk-SOAP ...6-2
Parcel contents ..6-2

Building Servers from a WSDL schema ...6-3
Creating Service Classes using the Web Services Wizard6-3
Creating an Opentalk Server from a WSDL schema6-7
Creating pragma templates ...6-7
Creating Service Classes using the WsdlClassBuilder6-8

Generating a Schema from Smalltalk Classes ...6-10
Generating a Schema using the Web Services Wizard6-10
Web Service Developer’s Guide v

Contents
Generating a Schema using the WsdlBuilder .. 6-13
Providing a description for service interfaces ... 6-14
Providing a description for interface parameters,

result, and exception types ... 6-16
Providing descriptions for service access points 6-18
Generating the specification .. 6-19
WsdlBuilder instance creation API ... 6-19
Instance methods .. 6-19
Creating WSDL specification elements 6-20
Printing WSDL specification .. 6-20
Examples ... 6-20

Using the Opentalk Request Broker .. 6-21
Creating and Configuring a Broker ... 6-22
Starting and Stopping a Broker .. 6-23

SOAP Messaging .. 6-23
Mapping SOAP operations to Smalltalk messages 6-26
User-defined SOAP types ... 6-27
Exceptions and SOAP Faults .. 6-29

XML Messaging ... 6-29
Marshaling .. 6-30

HTTP Transport Extensions ... 6-32
HTTPTransport ... 6-32
CGITransport .. 6-34

Chapter 7 XML to Object Binding Wizard 7-1

Using the XML-to-Object Binding Wizard .. 7-1
An Example Application .. 7-2
Creating an XML to Object Binding .. 7-3

Chapter 8 XML to Smalltalk Mapping 8-1

Core framework classes .. 8-2
Creating XML-to-Object bindings .. 8-3

Creating a binding specification .. 8-5
Binding specification examples ... 8-6

Simple objects .. 8-6
Complex objects .. 8-7

Installing a binding .. 8-7
XML marshalers .. 8-8
Marshaling XML entity types ... 8-9

Mashaling XML <simpleType> elements .. 8-9
vi VisualWorks

Contents
Marshaling XML <complexType> elements ...8-10
Marshaling XML complex types as Dictionaries8-10
Marshaling XML complex types as objects8-11

Mapping XML <union> elements ..8-13
Marshaling XML <element> elements ...8-13
Marshaling XML attributes ..8-15
Marshaling XML values ...8-15
Marshal XML <any> elements ...8-16
Marshal XML <choice> element ..8-18
Marshaling XML <group> and <attributeGroup> elements8-18
Marshaling collections ...8-20

Describing collection using cardinality ...8-20
Describing collection using <sequence_of>8-20
Describing collection using <soapArray>8-21

Resolving object identity using <key> <keyRef>8-21
Invoking a marshaler ..8-24
Adding new marshalers ..8-24

Registering the marshaler ...8-25
Marshaling exceptions ...8-26

Index Index-1
Web Service Developer’s Guide vii

Contents
viii VisualWorks

About This Book

This guide describes the VisualWorks web services libraries and
frameworks for building both client and server applications. Web services
support is an integral part of the VisualWorks technologies that enable
you to build applications for the internet and e-business.

In addition to web services, VisualWorks also includes these related
components:

• The VisualWorks Application Server, for building web applications
using server pages, servlets, Seaside, and VisualWave.

• The Net Clients framework, which provides support for widely-used
internet protocols, such as HTTP, FTP, and email protocols POP3,
SMTP, IMAP, and MIME.

For details, see the Web Application Developer’s Guide and the Internet
Client Developer’s Guide.

Audience
This document is intended for new and experienced developers who want
to quickly become productive developing applications using the web
services capabilities of VisualWorks.

It is assumed that you have a beginning knowledge of programming in a
Smalltalk environment, though not necessarily with VisualWorks. For
introductory-level documentation, you may begin with the on-line
VisualWorks Tutorial (http://www.cincom.com/smalltalk/tutorial), and the
Application Developer’s Guide.
Web Service Developer’s Guide ix

http://www.cincom.com/smalltalk/tutorial

About This Book
Organization
This guide begins with a general overview of web services, and the
VisualWorks framework that support this new technology. The following
chapters then describe the tools and libraries provided by the web
services framework and how to use them when building your
applications.

The chapters are as follows:

Chapter 1, “Introduction to Web Services.” Briefly describes what web
services are, the architecture of the VisualWorks implementation, the
parcels making up VisualWorks Web Services support, and the included
example applications.

Chapter 2, “Web Services Wizard.” Describes the web services wizard for
building applications from a WSDL schema, and vice versa.

Chapter 3, “Building Clients.” Describes support for Web Service
Description Langauge (WSDL), how to write and access WSDL
documents in VisualWorks, and use builders to assist in creating classes
from WSDL documents.

Chapter 4, “Document Processing.” A more detailed discussion of WSDL
document processing in the VisualWorks web services framework.

Chapter 5, “SOAP Exchanges.” Describes SOAP messaging services,
how to create a SOAP request, with or without a WSDL document, and
how to manipulate SOAP headers.

Chapter 6, “Building Web Services.” Describes how to build server
applications, either from Smalltalk service classes, or a WSDL schema.
Also describes how to produce a WSDL schema for use by other clients,
and explores the use of Opentalk SOAP extensions when building a
server application.

Chapter 7, “XML to Object Binding Wizard.” Describes the XML-to-Object
binding wizard, used for ascribing types to domain classes, creating X2O
bindings, and XML schemas.

Chapter 8, “XML to Smalltalk Mapping.” Describes the XML-to-Smalltalk
mapping framework.
x VisualWorks

Conventions
Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Special Symbols
This book uses the following symbols to designate certain items or
relationships:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File > New Indicates the name of an item (New) on a menu
(File).

<Return> key

<Select> button
<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.
Web Service Developer’s Guide xi

About This Book
Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or
combinations:

Note: This is a different arrangement from how VisualWorks used
the middle and right buttons prior to 5i.2. If you want the old
arrangement, toggle the Swap Middle and Right Button checkbox on the UI
Feel page of the Settings Tool.

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>
xii VisualWorks

Getting Help
Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

• The version id, which indicates the version of the product you are
using. Choose Help > About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help > About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to
supportweb@cincom.com.

Web
In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com

Telephone
Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.
Web Service Developer’s Guide xiii

mailto:supportweb@cincom.com
mailto:supportweb@cincom.com
http://supportweb.cincom.com

About This Book
Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:

• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu

with the SUBJECT of "subscribe" or "unsubscribe". You can then
address emails to vwnc@cs.uiuc.edu.

• A Wiki (a user-editable web site) for discussing any and all things
VisualWorks related at:

http://www.cincomsmalltalk.com/CincomSmalltalkWiki

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincomsmalltalk.com/documentation/

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.
xiv VisualWorks

mailto:vwnc-request@cs.uiuc.edu
mailto:vwnc@cs.uiuc.edu
http://www.cincomsmalltalk.com/CincomSmalltalkWiki
news:comp.lang.smalltalk
http://www.cincomsmalltalk.com/documentation/

1

Introduction to Web Services

The Internet has become a widely-used and trusted source of
information. Increasingly, it is also a medium for performing
commerce. A family of new protocols known as web services are now
being used to extend the usefulness of the Internet as a general
service provider.

This chapter gives a brief, general overview of web services,
describes the architecture of the VisualWorks implementation, its
compliance with industry standards, and offers some common usage
scenarios that can guide you to the sections of this guide that are
most relevant to your application.

For developers new to VisualWorks, Smalltalk, or web services, we
strongly recommend starting with some of the example applications
described at the end of this chapter.

In brief, this chapter describes:

• About Web Services

• Architecture

• Common Usage Scenarios

• Loading Support for Web Services

• Web Services Examples
Web Service Developer’s Guide 1-1

Introduction to Web Services
About Web Services
Web services provides a fine-grained approach to building web
applications. Services are typically envisioned as small building-
blocks, such as authentication (e.g., Microsoft® Passport), phrase
translation, currency conversion, or shipping status lookup. But, there
is no restriction on the size of the application, and large business
processes can also be presented as web services.

Web services provide a mechanism for companies to make
proprietary software publically available without distributing software
and data outside their organization.

According to the W3 organization “A web service is a software
application identified by a URI, whose interfaces and bindings are
capable of being defined, described, and discovered as XML
artifacts. A web service supports direct interactions with other
software agents using XML based messages exchanged via internet-
based protocols” (Web Services Architecture Requirements).

To make a service available, a provider designs its API and
expresses it using WSDL, then implements the service.

The VisualWorks web services framework makes it easy to
interoperate with remote services, or to make Smalltalk applications
available on the Internet as services for others. VisualWorks supports
web services by providing rich implementions of the WSDL and
SOAP, class builders, and wizards to simplify application
development. UDDI standards are not much is use, and so are not
supported at this time.

The following pages explore the high-level architecture of the
VisualWorks web services framework, and offer some general
suggestions about how you can find the discussions in this guide that
are most relevant to your particular development tasks.

Architecture
Web services are implemented following the general model of a web
application: a client sends a message to a service provider, which in
turn performs some operation and sends a response. Typically, HTTP
is used as a transport mechanism.
1-2 VisualWorks

http://www.w3.org/TR/2002/WD-wsa-reqs-20021011

Architecture
In the case of an application using a web service, the message from
the client is expressed as XML. Here, a XML document is used to
describe more complex interactions between client and server. The
web services framework provides a way to specify access to the
business logic of the web application, and handles the translation of
objects in the business model to and from the XML representation
used for messaging.

For an application to use a web service, the programmatic interface
of the service must be precisely described. This is accomplished with
WSDL (Web Services Description Language), a XML grammar for
describing web services. In this sense, WSDL plays a role analogous
to the Interface Definition Language (IDL) used in describing CORBA
services.

A WSDL document represents the public interface of a web service
as a collection of “endpoints,” or ports, that receive and handle
documents. The port description includes such details as the protocol
bindings, host and port number used, the operations that can be
performed, the formats of the input and output messages, and the
exceptions that can be raised.

The SOAP protocol is often used with WSDL to provide a web
service. WSDL provides the interface description of the service, and
SOAP is then used to actually call the service over the network.
SOAP provides a way to represent messages to be executed by a
remote service provider. SOAP facilitates the exchange of structured
and typed information in a distributed, heterogeneous environment.
Web Service Developer’s Guide 1-3

Introduction to Web Services
VisualWorks Implementation
The VisualWorks web services framework is a layered, modular
implementation that enables you to build both clients and servers.
Lightweight client applications use the core support for WSDL and
SOAP. For server applications, the VisualWorks Opentalk framework
is used in conjunction with web services.

To help automate the construction of your application, the
development environment also includes a number of class builders
and wizards.

The organization of the web services framework is illustrated below.

The VisualWorks implementation of web services has been
architected to simplify the design of your application, while giving you
complete control over lower-level interfaces as needed.

The following sections describe each component of the web services
framework in more detail.
1-4 VisualWorks

Architecture
XML and HTTP Support
The web services platform requires rich support for XML and HTTP.
XML is used as the basis for the higher-level protocols such as
WSDL and SOAP. VisualWorks provides a complete XML support
library that includes both DOM and SAX APIs.

The NetClients package for VisualWorks provides basic HTTP client
support, including authenticated HTTP and HTTPS. A VisualWorks
HTTP server can be used in a stand-alone configuration or, for higher
performance, behind a commercial server such as Apache or IIS.

The VisualWorks Opentalk framework provides a full-featured HTTP
server. When building server applications that support WSDL and
SOAP, this is augmented with the Opentalk-SOAP package.

For a complete discussion of the Opentalk framework, refer to the
Opentalk Communication Layer Developer’s Guide.

XML to Object Mapping
To create XML messages based on a schema description or to
unmarshal XML messages into Smalltalk objects, VisualWorks
includes the XMLSchemaMapping, XMLObjectMarshalers, and
XMLObjectBindingTool packages.

Given an XML document containing a <types> description (or given an
XML document containing a <schema> description), an
XMLTypesParser is used to generate a binding specification. This
specification describes the mapping of schema types into Smalltalk
objects (also called an “X2O specification”, this is in fact a XML
document). Complex XML types may be mapped into custom
Smalltalk domain classes (the web services framework can also build
these classes from a binding specification).

To actually marshal Smalltalk objects into XML and vice versa, class
BindingBuilder uses the XMLTypesParser to create a binding
specification. From this, the builder creates Smalltalk classes, then
XMLObjectBinding is used to load a binding specification, creating and
registering marshalers in the XMLBindingRegistry.

WSDL
VisualWorks WSDL support provides simple mechanisms for:

• Loading and parsing WSDL documents

• Creating classes from user-defined object types in a WSDL
document
Web Service Developer’s Guide 1-5

OpentalkDevGuide.pdf

Introduction to Web Services
• Programmatically invoking a web service based on the port
information in a WSDL document

For building simple clients programmatically, most of the WSDL API
is provided by class WsdlClient. This class can load a WSDL schema
and invoke client operations without creating any additional classes.
To use more complicated features (e.g. SOAP header processing)
you may want to use the OpenTalk client.

VisualWorks also provides several builders to generate Smalltalk
classes or schemas for use in your application: WsdlClassBuilder and
WsdlBuilder.

Class WsdlClassBuilder can programmatically generate service
classses from schemas. Given a WSDL document, WsdlClassBuilder
generates Smalltalk classes for complex types from the X2O
specification created by an XMLTypesParser.

Class WsdlBuilder can generate a WSDL schema from a Smalltalk
application. Given a service class with a pragma description for web
service operations, the WsdlBuilder can create a WSDL schema.

SOAP
VisualWorks provides support for SOAP document exchange using
HTTP as the underlying transport mechanism. The SOAP API allows
for both RPC-style services, where the unit of interaction is a WSDL
operation, and also a service-oriented architecture (SOA) that is
message oriented.

Support for WSDL greatly simplifies SOAP document exchange in
VisualWorks by automatically producing the appropriate SOAP
message using transformations based on a WSDL schema, making
SOAP programming almost trivial.

SOAP support in VisualWorks is provided by class SoapRequest and
its subclasses. The XML-to-Object mapping mechanism described
above is used when making SOAP requests.

Wizards
The VisualWorks web services framework also includes two wizards
to simplify the task of building your application:

WSDL Wizard

This wizard may be used when building both client applications
or web services. When building a client application, the wizard
can automatically generate binding classes from a WSDL
1-6 VisualWorks

Architecture
schema (i.e., the classes generated from a X2O (XML to Object)
specification that correspond to XML complex types). When
building a server application, the wizard can generate a WSDL
schema from Smalltalk classes. The wizard also generates
workspace code that may be used during testing and
construction of your application.

X2O Wizard

This wizard may be used to build X2O bindings and XML
schemas from classes. These may be used in web service
applications, but the wizard is designed to be general purpose. It
may be useful for any application that requires code to translate
between Smalltalk objects and XML.

Compatibility with Standards
The VisualWorks web services implementation is compliant with the
following industry-standard protocols:

VisualWorks interoperates naturally with web services and clients
written for other platforms. For example, a web service implemented
in VisualWorks and deployed on the network is immediately visible to
.NET developers, and is indistinguishable from a native .NET service.
Likewise, .NET services are easily discovered and accessed from
VisualWorks.

Interoperability with Java web services and clients can be tested
using the tools available at: http://ws.apache.org/axis/index.html.

Protocol Version

WSDL 1.1 (SOAP via HTTP bindings only)

SOAP 1.1

Basic Profile 1.1

HTTP 1.1 (RFC 2616)

XML 1.0
Web Service Developer’s Guide 1-7

http://ws.apache.org/axis/index.html

Introduction to Web Services
Common Usage Scenarios
This guide includes detailed discussions of several common usage
scenarios, involving both clients and servers. The code examples in
these discussions may provide useful patterns as you build your
application.

Creating Web Services Clients
The following scenarios presuppose that your application makes
client requests and that you have a WSDL schema for a remote web
service.

1 If you want to send simple client requests via an API, see the
discussion of class WsdlClient (Building Clients).

2 If your WSDL schema uses complex data types, and you want to
use a wizard to generate the binding classes, see the wizard
guide (Web Services Wizard).

3 If your WSDL schema uses complex data types, and you want to
use an API to programmatically generate binding classes, see
the discussion of class WsdlClassBuilder (WSDL Class Builder).

Creating Web Services
The following scenarios presuppose that your application provides
web services to clients running remotely (i.e., a server).

1 If you want to use a wizard to create services for your application,
see the discussion of Creating Service Classes using the Web
Services Wizard.

2 To automatically generate classes for the server application using
the class builder API, see Creating Service Classes using the
WsdlClassBuilder.

3 To build a Smalltalk service from a WSDL schema using a
wizard, see Building Servers from a WSDL schema.

4 To create a WSDL schema for a Smalltalk service using a wizard,
see Generating a Schema using the Web Services Wizard.

5 If you prefer to create the server programmatically via an API,
see the discussion of Using the Opentalk Request Broker.
1-8 VisualWorks

Loading Support for Web Services
Loading Support for Web Services
The VisualWorks web services framework is provided in a collection
of parcels that load successive layers of support. Higher-level parcels
load lower level ones as prerequisites.

To load a web services parcel, open the Parcel Manager (select Parcel
Manager from the System menu in the Launcher window), and select
the Web Services category in the list on the left side of the Parcel
Manager.

The main parcels and their functionality are as follows:

WSDL

Installs basic support for WSDL and SOAP.

WSDLTools

A builder for generating classes from a WSDL schema and vice
versa. For details, refer to Building Clients.

WSDLWizard

Installs a tool for creating Smalltalk classes from a WSDL
schema and a WSDL schema from a service class. For an
example illustrating its use, see: Web Services Wizard.

SOAP

Installs the SOAP bindings for XML-to-Object marshaling. For
details, refer to SOAP Exchanges.

Opentalk-SOAP

One of either Opentalk-HTTP or Opentalk-CGI must also be loaded.
This parcel adds server support to WSDL, enabling the use of
Web Services as a viable distributed computing environment. For
details, refer to Building Web Services.

XMLObjectBindingTool

A builder for generating Smalltalk classes from an XML-to-Object
binding.

XMLObjectBindingWizard

Installs a wizard for creating a XML-to-Object binding
specification. For an example illustrating its use, see XML to
Object Binding Wizard.
Web Service Developer’s Guide 1-9

Introduction to Web Services
XMLObjectMarshalers

The basic XML-to-Object marshaling machinery, required by all
other web service support (also useful for developing protocols
other than SOAP). For details, refer to XML to Smalltalk Mapping.

You can browse the dependencies between these components by
using the Parcel Manager and selecting the Prerequisite Tree tab.

Web Services Settings
The Web Services section in the System Settings tool provides
options for controlling aspects of both class and schema building,
affecting the behavior of WsdlClassBuilder, WsdlBuilder, and the web
services wizards.

To open the Settings Tool, select System > Settings in the Visual
Launcher.

Web Services Examples
Several example applications are provided to quickly illustrate the use
of the VisualWorks web services framework. We recommend starting
with these examples to learn about the framework, builders, and
tools.

The examples are provided in two parcels:

WebServicesTimeDemo

The WebServicesTimeDemo provides simple client and server
applications to illustrate some basic features of the VisualWorks
framework.

WebServicesDemo

The WebServicesDemo is a more advanced example that illustrates
the use of communication features. The basic application is
contained in the Protocols-LibraryDemo package, which is
extended by the WebServicesDemo. You may use it to exercise
much of the advanced functionality described in this guide.

To load the demo parcels, use the Parcel Manager as described
above (see Loading Support for Web Services). All prerequistes are
loaded automatically.
1-10 VisualWorks

Web Services Examples
Time Demo
The WebServicesTimeDemo is a simple time service that responds to
client requests with an object reporting the current time (i.e., an
instance of class Time). The demo includes three simple applications
to illustrate how web service clients interact with servers.

Each of the three applications is simply a pair of two classes (client
and server), illustrating a particular style of binding the message to
the underlying protocol. All of these example classes are located in
the WebServices.* name space.

Three clients are provided in the demo:

Three server classes are provided, one for each of these clients:
TimeServer, TimeServerRPC, and HTimeServer.

Using the Time Demo
To test the examples, simply start one of the servers and then send
requests using the corresponding client class. This can be done on a
single workstation, with both server and client running in the same
VisualWorks image.

For example, to test the TimeServer, evaluate the following code in a
Workspace window using Inspect It (from the <Operate> menu):

| client value |
“Start the default TimeServer”
WebServices.TimeServer defaultStart.
“Create and start a client”
client := WebServices.TimeClient new.
client start.
“Request the current time from the server”
value := client timeNow.
“Stop the client and server”
client stop.
WebServices.TimeServer defaultStop.

The result in the variable "value" should be an OrderedCollection
containing a Time object.

Class name Description

TimeClient Uses standard document/literal style

TimeClientRPC Uses RPC (Remote Procedure Call) style

HTimeClient Uses SOAP header processing
Web Service Developer’s Guide 1-11

Introduction to Web Services
These simple applications are used as examples later in this guide.
For additional details on the applications and their implementation,
see to the package comment for WebServicesTimeDemo, or browse the
client and server classes.

Library Demo
The Library Demo is a web service that models a public library.
Based upon the Protocols-LibraryDemo package, it provides services to
patrons, maintains holdings that can be loaned out, and provides
other services like copying, searching, a weather forecast, etc.

The demo includes a simple application called LibraryServer that can
be used to illustrate how web service clients interact with servers.

Using the Library Demo
To test the Library Demo, you may start the LibraryServer and then
send requests using the corresponding client classes. This demo has
been designed to be run using two separate VisualWorks images,
one for the server and another for the client.

To start the Library Demo, load the WebServicesDemo and evaluate:

LibraryServer defaultStart.
For details on the actual use of the Library Demo, see the package
comment for WebServicesDemo.

Unit Tests
Extensive SUnit tests are available for the VisualWorks web services
framework. These are not included with the distribution CD, but may
be loaded directly from the Cincom public Store repository.
1-12 VisualWorks

2

Web Services Wizard

The VisualWorks web services framework includes wizards and
builders that can automatically generate Smalltalk classes for use in
your application. Given a WSDL schema, the WSDL wizard can
generate custom client classes to access the service described by
the schema.

The web services wizard is the simplest way to create the Smalltalk
code you need to access a web service from within VisualWorks.
However, for very lightweight applications that do not require custom
client classes, you might also consider using the WsdlClient, as
described in Building Clients.

This chapter shows how to use the WSDL wizard to build a client-
side application. To generate a schema from classes and prepare an
existing Smalltalk application for presentation as a web service (i.e.,
to build a server application), see Building Web Services.

Creating Classes using the Web Services Wizard
Given a WSDL schema, the wizard can create the Smalltalk code
and client classes that are needed to access a web service from
within VisualWorks. The wizard allows you to select processing
options, and then it generates the <schemaBindings> section and
supporting code.

To illustrate the use of the wizard, we shall use the
WebServicesTimeDemo (for details, see: Web Services Examples). To
begin, first load the demo parcel and then start the time server by
evaluating the following code:

WebServices.TimeServer defaultStart.
Web Service Developer’s Guide 2-1

Web Services Wizard
Before using the wizard, you must load the WSDLWizard package (for
instructions, see Introduction to Web Services).

Generating a WsdlClient
The wizard provides a number of options for generating Smalltalk
classes and code. The simplest is to generate a subclass of
WsdlClient.

1 To launch the wizard, select Web Services Wizard on the Tools menu
of the Visual Launcher.

2 On the first page of the wizard, select Create an application from a
WSDL schema, and click Next.

3 On the next page, specify a schema to load.

The demo TimeServer provides a WSDL schema at this URL:

http://localhost:4950/TimeNowService?wsdl
In general, you can either enter a URL in the WSDL schema URL
field, or load a WSDL document from a file (click on Browse file...).

4 In the Bind XML Types to section of the wizard, select Classes.
2-2 VisualWorks

Creating Classes using the Web Services Wizard
This option specifies how to handle complex data types (for
details, refer to Generating XML-to-object Bindings):

• Classes creates a Smalltalk class for each complex type

• Dictionaries maps each complex type to a Dictionary

Since we are using the WebServicesTimeDemo as the target
service, we select Classes.

5 The Create option tells the wizard what kind of code to generate
for the client. The two options are:

• WSDL clients generates code for issuing a standard SOAP
request

• Opentalk clients generates code for issuing requests via an
Opentalk proxy (refer to the Opentalk Protocol Layer).

Select the WSDL clients option, which is simpler.

Leave the Create Opentalk server name and Create service class options
unselected for this procedure.

6 For the WebServicesTimeDemo, ignore the Settings... button. This
button opens a dialog for setting the package and/or name space
for the generated code.

7 Click Next to generate the Smalltalk support code.

8 A dialog opens to show the list of response classes that will be
generated. Click OK.

9 Once the code is generated, the final wizard page is displayed.
This page displays a workspace with Smalltalk expressions that
exercise the newly-generated client code.

When using the WebServicesTimeDemo, the following code should
appear in the workspace:

client := TimeNowServiceWsdlClient new.
value := client timeNow.

You can select this code and evaluate it directly in the workspace
with Inspect It. The result should be an OrderedCollection containing
a single instance of TimeNowResponse. This is the result passed
from the TimeServer running on your workstation.

To save the workspace, copy its contents and paste them into
another workspace.

10 Click Finish to close the wizard.
Web Service Developer’s Guide 2-3

OpentalkDevGuide.pdf

Web Services Wizard
At this point, the wizard has generated a client class that is suitable
for use in an application (TimeNowServiceWsdlClient). The class is
located in the package WSDefaultPackage, but may be moved
elsewhere.

Generating an Opentalk client
When building a client, the wizard can generate either a new
subclass of WsdlClient, or a subclass of the Opentalk client (see step
5, above). If you opt for an Opentalk client, the wizard can also create
service classes.

The generated service classes include stub methods for all the
operations defined in the WSDL schema, but no implementation. This
is because WSDL defines the operations, but not their
implementation. To use these service classes, you must add an
implementation for each operation.

The wizard can be used to simplify this step as well. To illustrate how
this is done, we can use the WebServicesTimeDemo again, following
roughly the same steps described in the previous section (Generating
a WsdlClient).

1 To begin, check that the demo parcel has been loaded
(WebServicesTimeDemo should appear in the package view of a
System Browser) and, if you have not already done so, start the
time server by evaluating the following code:

WebServices.TimeServer defaultStart.
2 Launch the wizard, by selecting Web Services Wizard on the Tools

menu of the Visual Launcher.

3 On the first page of the wizard, select Create an application from a
WSDL schema, and click Next.

4 On the next page, specify the WSDL schema URL:

http://localhost:4950/TimeNowService?wsdl
The demo TimeServer provides a WSDL schema at this address.

5 In the Bind XML Types to section of the wizard, select Classes.

6 In the Create section of the wizard, select Opentalk clients, and
select the Create service class option.

7 Click Next to generate the Smalltalk support code.
2-4 VisualWorks

Creating Classes using the Web Services Wizard
8 A dialog prompts to show the response classes that will be
generated, with the option to change their names. Simply click
OK.

9 Once the code is generated, the final wizard page is displayed.
This page displays a workspace with Smalltalk expressions that
exercise the newly-generated client code.

When using the WebServicesTimeDemo, the following code
appears in the workspace:

client := TimeNowServiceClient new.
client start.
value := client timeNow.
client stop.

You can select this code and evaluate it directly in the workspace
with Inspect It. The result in the variable value should be an
OrderedCollection containing a single instance of TimeNowResponse.
This is the result passed from the TimeServer running on your
workstation.

To save the workspace, copy its contents and paste them into
another workspace.

10 Click Finish to close the wizard.
Web Service Developer’s Guide 2-5

Web Services Wizard
2-6 VisualWorks

3

Building Clients

The VisualWorks web services framework provides a basic API for
making client requests, and also APIs for building client classes. To
make client requests, the simplest of these is class WsdlClient, which
provides an easy way to get started using web services.

The class-builder API (WsdlClassBuilder) may be used to create
classes that are specific to your application. Provided with a suitable
WSDL document, the WsdlClassBuilder can help automate the
development of your application by generating classes. Since these
are subclasses of WsdlClient, their operation is similar.

For applications that require more complicated features (e.g. SOAP
header processing), an Opentalk client must be used instead of a
WsdlClient or its subclasses (for details on Opentalk-based clients,
see: Building Web Services)

In brief, this chapter describes:

• WSDL Support Services

• Loading WSDL Support

• Authentication

• WSDL Class Builder
Web Service Developer’s Guide 3-1

Building Clients
WSDL Support Services
Class WsdlClient provides most of the WSDL client API. This class:

• Loads a WSDL schema using URI, and from schema parts if they
are represented by an <import> element in the schema, such as:

<import location="http://www.whitemesa.com/interop/
InteropTest.wsdl"
namespace="http://soapinterop.org/" />

• Parses the schema and automatically creates a default
<schemaBindings> element (for details on schema parsing, refer to
XML to Smalltalk Mapping).

• Creates a WsdlConfiguration, which consists of WSDL schema
objects such as WSDL services, operations and bindings. At that
time the <types> section is completely ignored. The
<schemaBindings> element is used to create all marshalers.

• Based on the WsdlConfiguration, constructs a SOAP message,
sends it via HTTP, and unmarshals the response from the SOAP
body.

Loading WSDL Support
To send client requests with WsdlClient (or specific clients), use the
Parcel Manager to load the WSDL parcel (for step-by-step
instructions, see Loading Support for Web Services). To create
specific clients during application development, load either the
WSDLTool or WSDLWizard parcels.

Using WsdlClient
Generally, an instance of class WsdlClient is configured for a particular
web service, and then used to send requests to a server.

As a simple example, we can host both client and server in a single
VisualWorks development image. Here, we query the TimeServer in
the WebServicesTimeDemo. To begin, load the demo parcel (see
Loading Support for Web Services), open a Workspace, and evaluate
the following code to start the demonstration server:

WebServices.TimeServer defaultStart.
3-2 VisualWorks

WSDL Support Services
With the server running on your local workstation, evaluate the
following code in a Workspace using Inspect It:

wsdlClient := WsdlClient new loadFrom:
 'http://localhost:4950/TimeNowService?wsdl' asURI.
value := wsdlClient executeSelector: #TimeNow.

The result in the variable "value" should be an OrderedCollection
containing a web services Struct object. The Struct contains the
current time.Use the Settings Manager, to set the correct time zone
for the VisualWorks image. Select Settings from the System menu in
the Launcher window, and use Do It to evaluate code on the right-
hand side of the tool to specify your time zone.

In the code example shown above, the message loadForm: causes the
client to load and parse a WSDL schema, and create several
registries and a WsdlConfiguration. Then, executeSelector: causes the
client to actually send a request and get a response.

You can examine the client’s configuration by evaluating:

wsdlClient config
Based upon this configuration object, the WsdlClient can also create a
script of Smalltalk code that illustrates the full interface defined by the
schema. This may be useful for testing the remote service.

To see the script, evaluate the following using Inspect It:

wsdlClient createScript
When you are finished with the example, don’t forget to stop the
server:

WebServices.TimeServer defaultStop.
For a more detailed discussion of WsdlClient and its use, see
Document Processing.

Class Struct
The response to a query using WsdlClient generally includes a Struct.
Instances of class Struct are used to represent the ‘struct’ object from
C-like languages. The elements of a Struct can be accessed using a
basic subset of Dictionary protocol (at: and at:put:, etc.), but unlike a
Dictionary the order of elements in a Struct is maintained, with new
elements being added at the end. Similarly, a Struct defines
equivalence in terms of structural comparison.Starting in release 7.5,
WebServices.Struct is a subclass of Protocols.Struct, rather than of
Dictionary. Since this change may affect your application code, we
recommend careful testing and allowing time for revision as required.
Web Service Developer’s Guide 3-3

Building Clients
To provide backward compatibility, WebServices.Struct remains in the
image. However, this class is obsolete and will likely be removed in a
future release.

Authentication
Class WsdlClient supports all standard forms of HTTP authentication
(e.g., Basic, Digest and NTLM schemas). Instances of WsdlClient use
an HttpClient object as a transport mechanism, and the latter provides
the actual support for authentication.HTTP authentication is presently
available only for applications using the WsdlClient. This functionality
is under active development for Opentalk and will be included in a
future release.

Generally, authentication is set up by sending username:password: to
the WsdlClient instance before executing any remote operations.

For example:

myClient := WsdlClient new.
myClient username: 'myUser' password: 'myPassword'.
myClient loadFrom: 'http://myCompany.com/mySchema.wsdl' asURI.
myClient executeSelector: #setString args: (Array with: 'myString').

At the transport level, the server at myCompany.com returns a
challenge if it requires authentication for mySchema.wsdl. The
HttpClient responds to the challenge with a token that authorizes the
schema request.

It is also possible that executeSelector:args: will also require
authentication. In this case, HttpClient adds authorization to the SOAP
request. If a different user token is required, the user name and
password can be reset before sending the SOAP request.

Another example would be to only set the username and password in
the event of an error. In this case, an exception handler may be used
to process HttpUnauthorizedError, i.e.:

[client := WsdlClient url: 'http://myCompany.com/mySchema.wsdl']
on: HttpUnauthorizedError
do: [:ex |

client username: 'anotherUser' password: 'somePassword'.
ex retry].

[client executeSelector: #setString args: (Array with: 'myString')]
on: HttpUnauthorizedError
do: [:ex |

client username: 'anotherUser' password: 'somePassword'.
ex retry].
3-4 VisualWorks

WSDL Builders
WSDL Builders
Two builder classes are provided to assist in creating classes and
WSDL schemas. Using these builders, you can create service
classes from a WSDL schema, or vice versa.

WsdlClassBuilder

Defines Smalltalk classes using the requirements specified in a
WSDL schema. A schema describes objects and the messages
they respond to, which can be represented in Smalltalk as
classes and instance messages. WsdlClassBuilder can also
generate classes for user-defined types.

WsdlBuilder

Generates a WSDL specification document from service provider
classes, simplifying the task of making a service written in
VisualWorks available for web access. For details, see Building
Web Services.

WSDL Class Builder
WsdlClassBuilder performs the work of WsdlClient and more. In addition
to reading and parsing a WSDL document, it builds Smalltalk classes
representing the services described in the WSDL document. Classes
are built according to the <schemaBindings> section of the WSDL
document.

The WsdlClassBuilder can generate the following classes:

• Smalltalk classes from user-defined data types.

• The client class that includes methods for accessing the services
(operations) of the service classes.

• The service classes from the WSDL operation description. These
classes implement the services. The service class names are the
same as given in the WSDL specification binding element.

• The Opentalk server class that implements the code to set up,
start and shutdown a server.

In this chapter we will examine only the client side functionality,
although there is little difference for defining the service classes for a
SOAP server. Refer to XML to Smalltalk Mapping for discussion of
server-related uses.
Web Service Developer’s Guide 3-5

Building Clients
Running WsdlClassBuilder
The class builder has a very simple API, very much like WsdlClient.
Minimally, to build client classes from a WSDL schema, you may
evaluate the following:

| builder |
builder := WsdlClassBuilder readFrom:

'http://live.capescience.com/wsdl/AirportWeather.wsdl' asURI.
builder createClientClasses.

Classes are created in the default package, category, and name
space specified in the Web Services Class Builder page of the Settings
Manager (to open this tool, choose Settings from the System menu in
the Launcher window).

To programmatically specify a package where the classes are
generated, configure the builder by sending a package: message to
the builder before generating the classes:

| builder |
builder := WsdlClassBuilder readFrom:

'http://live.capescience.com/wsdl/AirportWeather.wsdl' asURI.
builder package: 'AirportWeather'.
builder createClientClasses.

The API for WsdlClassBuilder is summarized below, under Class-
generating API.

Loading and Saving a Schema
Schemas may be loaded from and saved to files. The protocol for
classes WsdlClassBuilder and WsdlClient is the same. For details, see:
Saving a Schema with its Binding and Load and Use a WSDL
Schema.

Overwriting Class names
When generating classes, it is possible that a class name specified
by the schema is already in use in the Smalltalk image. These name
clashes are handled according to the settings of the WsdlClassBuilder
useExistingClassName options, as follows:

• If set to true and a class with this name is already in the system,
the class is not generated; the existing class is used for the
binding. This is the default option.

• If set to false, new classes are always generated, and they are
unique in the namespace where the classes are defined.
3-6 VisualWorks

WSDL Builders
If set to false, then to ensure uniqueness the newly class name is
appended with a number, if the class already exists. For example, if
the target name space already has the class Document and the XML
attribute is name="Document", then the binding object name will be set
to “Document1”. If Document1 already exists, then it is named
“Document12”, and so on.

Cleaning the Binding Registry
Every time you run WsdlClassBuilder to generate classes, it registers
the object binding in XMLBindingRegistry, which provides each object
marshaler with a reference to a Smalltalk class. If you re-run
WsdlClassBuilder on a schema, you need to clean up the registry;
otherwise you can end up with unexpected results and obsolete class
references.

To remove a specific registry entry, you can evaluate:

XMLObjectBinding registry removeKey:
someTargetNamespaceFromTypesSchema

If you do not need to preserve the current bindings, you can
reconfigure the entire registry:

XMLObjectBinding configure
Then regenerate the classes.

Moving a client Class to another Image
When you generate classes from a WSDL schema, all information
about access points is registered in WsdlPort.PortRegistry. The client
class knows its binding, which helps it find correct port in the registry.

To move your client class in to another VisualWorks image (via file-
out or publishing as a package), the port registry needs to be
updated. You can either initialize the port registry, or evaluate:

WebServices.WsdlBinding loadWsdlBindingFrom:
MyWsdlClient wsdlSchema readStream.

Class-generating API
The WsdlClassBuilder protocol relevant for building a SOAP client from
a WSDL document is described below. Additional protocol is
described in Building Servers from a WSDL schema.
Web Service Developer’s Guide 3-7

Building Clients
Instance creation class methods

readFrom: aDataSource

Create an instance of WsdlClassBuilder and loads the Wsdl
schema from a data source, and creates a <schemaBinding>
section for user defined data types. The dataSource may be a
URI, a Filename (a String will be treated as a Filename), or an
InputSource.

Environment setting methods

package: aPackageName

If aPackageName does not exist in the system, the package will
be created and all classes created in it.

category: aString

Creates all classes in the specified category.

namespace: aString

Creates all generated classes in the specified namespace. By
default, classes are created in the Smalltalk namespace.

Class generation methods

createBindingClasses

Creates binding classes from the schema <types> element.

createClasses

Creates binding, client, and service classes.

createClientClasses

Creates client classes, and binding classes if not already
generated.

createServiceClasses

Creates stub service classes, and binding classes if not already
generated. Service classes are the minimum required to
implement a web service. For details, see Building Web Services.

createServerClass

Creates the Opentalk server class. For details, see Building Web
Services.
3-8 VisualWorks

Inside the WsdlClassBuilder
Inside the WsdlClassBuilder
The WsdlClassBuilder can create the following:

• Schema Bindings

• Binding Classes

• Client Classes

• Service Classes

The following sub-sections describe each of these elements in more
detail.

Schema Bindings
As described above (Load and Use a WSDL Schema) when a WSDL
schema includes user-defined data types described in the <types>
element, WsdlClient creates bindings for these, mapping them to
Smalltalk data types, according to default type mappings.
WsdlClassBuilder takes this a step further and identifies Smalltalk
classes for these types.

For example, the WSDL schema for the Library Demo describes the
complex type Book as (see LibraryServer class method wsdlSchema):

<types>
<schema targetNamespace="urn:webservices/demo/libraryServices"

elementFormDefault="qualified"
xmlns:tns="urn:webservices/demo/libraryServices"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema">
<complexType name="Protocols.Library.Book">

<sequence>
<element name="publicationYear" type="xsd:short"/>
<element name="publisher" type="xsd:string"/>
<element name="acquisitionCost" type="xsd:decimal"/>
<element name="pages" type="xsd:short"/>
<element name="acquisitionNumber"

type="xsd:positiveInteger"/>
<element name="braille" type="xsd:boolean"/>
<element name="collectionId" type="xsd:string"/>
<element name="language" type="xsd:string"/>
<element name="statusId" type="xsd:string"/>
<element name="libraryName" type="xsd:string"/>
<element name="title" type="xsd:string"/>
<element name="catalogNumber"

type="tns:Protocols.Library.CatalogNumber"/>
Web Service Developer’s Guide 3-9

Building Clients
<element name="authors"
type="tns:CollectionOfAuthorialName"/>

<element name="acquisitionDate" type="xsd:date"/>
<element name="dueDate" type="xsd:date" minOccurs="0"/>
<element name="largePrint" type="xsd:boolean"/>

</sequence>
</complexType>

...
</schema>

</types>
WsdlClient would create a Struct from this complex type, which would
then be marshaled as a Dictionary. WsdlClassBuilder creates a X2O
binding with XML complex types mapped to objects.

Binding Classes
From the bindings defined in the <schemaBindings> section,
WsdlClassBuilder generates corresponding binding classes. In the
above example from the Library Demo, the class is named Holding.
Based on the aspect attribute, the instance variable accessors will
also be created. The set accessor will include a pragma that
describes parameter types. For example:

acquisitionCost
^acquisitionCost

acquisitionCost: aFixedPoint
"Generated by WS Tool on #(January 3, 2003 11:41:36 am)"
<addAttribute: #acquisitionCost type: #FixedPoint>
acquisitionCost := aFixedPoint

Binding classes and their method definitions are used by the class
builder when defining the client and service classes, to provide the
information needed to properly construct those classes. Binding
classes are also used for creating a WSDL schema from service
classes, as described in Building Web Services.

For a client application, the binding classes are not needed once the
client classes are generated, and can be safely removed from the
development image. For convenience, you can define them in a
separate package from the client classes, as follows:

builder := WsdlClassBuilder readFrom: 'LibraryDemo.wsdl' asFilename.
builder package: 'LibraryDemoBindings'.
builder createBindingClasses.
builder package: 'LibraryDemoClient'.
builder createClientClasses.
3-10 VisualWorks

Inside the WsdlClassBuilder
Client Classes
Client classes contain the protocol necessary for requesting a service
described in the WSDL document. In general, you can simply create
an instance of the client and request the service using the supplied
API.

The client classes are created using the WSDL operation description,
and include methods that allow it to load the schema binding and
invoke services from the remote server.

Client class names are created from the WSDL port element attribute
name, plus the suffix "Client". So, from the port element:

<port name=" SrvcSearchRPC"../>
the client class is named SrvcSearchRPCClient and the class is derived
from the WsdlClient class. Based on the WSDL operation description
above, the following methods would be generated in WSClient:

RPC style:

initialize
self setPortNamed: 'SrvcSearchRPC'.

searchByExactTitle: aString includeAffiliatedLibraries: aBoolean
"Generated by WS Tool on #(February 21, 2003 6:50:37 am)"

"operationName: #SearchByExactTitle"
"documentation: #'The SearchByExactTitle operation returns a

collection of holdings or empty collection if no holdings found'"
"addParameter: #holding_title type: #'String'"
"addParameter: #includeAffiliatedLibraries type: #'Boolean'"
"result: #(#Collection #'WSLDHoldingBook')"
| args |
args := Array new: 2.
args at: 1 put: aString.
args at: 2 put: aBoolean.
^self executeSelector: #'searchByExactTitle:includeAffiliatedLibraries:'

args: args.
Document-literal style:

initialize
self setPortNamed: 'SrvcSearchDoc'.

Web Service Developer’s Guide 3-11

Building Clients
searchByExactTitle: aStruct
"Generated by WS Tool on #(February 21, 2003 6:50:31 am)"

"operationName: #SearchByExactTitle"
"documentation: #'The SearchByExactTitle operation returns a

collection of holdings or empty collection if no holdings found'"
"addParameter: #holding_title type: #'String'"
"addParameter: #includeAffiliatedLibraries type: #'Boolean'"
"result: #(#Collection #'WSLDHoldingBookDoc')"
| args |
args := Array new: 1.
args at: 1 put: aStruct.
^self executeSelector: #'searchByExactTitle:' args: args.

Service Classes
Service classes represent the web service ports, from a service
provider perspective. They are named using the binding name
specified in the <binding name=... >.

The generated service classes include stub methods for the protocol
defined in the specification, but no implementation for those methods
(because the WSDL does not include implementation). The methods
also include pragmas, which, along with the binding classes, are
used by WsdlBuilder when generating a WSDL schema from the
implementation.
3-12 VisualWorks

4

Document Processing

This chapter explores and elaborates the lower-level details of WSDL
document processing in the VisualWorks web services framework.

The WsdlClient, the web services Wizard, and the WsdlClassBuilder can
all load and parse WSDL documents to generate a Smalltalk binding
schema, which describes a mapping between Smalltalk objects and
the elements described in the WSDL document.

This chapter explores the web services APIs for:

• Loading a WSDL Schema

• Saving a Schema with its Binding

• Generating XML-to-object Bindings

• Customizing Mappings

• Generating Bindings without a WSDL Document

Working with WSDL Schemas
The VisualWorks web services framework provides some lower-level
messaging protocol in WsdlClient for loading and parsing WSDL
schemas.

Loading a WSDL Schema
To load a WSDL schema and generate XML-to-object bindings, send
an url: instance creation message to WsdlClient, with its URL as
argument:

wsdlClient := WsdlClient url:
'http://www.capeclear.com/AirportWeather.wsdl'.
Web Service Developer’s Guide 4-1

Document Processing
WsdlClient uses WsdlSchemaLoader to load the schema and schema
parts.

Generating XML-to-object Bindings
If the schema declares user defined types in a <types> section, these
are used to create XML-to-object bindings. VisualWorks supports two
types of binding:

• default, which maps complex XML data type to Smalltalk
dictionaries

• object, which maps complex XML data type to Smalltalk objects

WsdlClient uses the default mapping; WsdlClassBuilder and the Wizard
give you the option or using either. WsdlSchemaLoader can be invoked
directly for these mappings by sending, for the default mappings:

WsdlSchemaLoader defaultReadFrom: aDataSource.
and for the object mappings:

WsdlSchemaLoader objectReadFrom: aDataSource
WsdlSchemaLoader creates the <schemaBindings> element and writes
default mappings of XML elements to elements that will be used to
create XML marshalers. (The default mappings are described in XML
to Smalltalk Mapping)

For example, consider this element from the <schema> section of the
WSDL document retrieved above:

<xsd:complexType name="WeatherSummary">
<xsd:sequence>

<xsd:element maxOccurs="1" minOccurs="1" name="location"
nillable="true" type="xsd:string" />

<xsd:element maxOccurs="1" minOccurs="1" name="wind"
nillable="true" type="xsd:string" />

<xsd:element maxOccurs="1" minOccurs="1" name="sky"
nillable="true" type="xsd:string" />

<xsd:element maxOccurs="1" minOccurs="1" name="temp"
nillable="true" type="xsd:string" />

<xsd:element maxOccurs="1" minOccurs="1" name="humidity"
nillable="true" type="xsd:string" />

<xsd:element maxOccurs="1" minOccurs="1" name="pressure"
nillable="true" type="xsd:string" />

<xsd:element maxOccurs="1" minOccurs="1" name="visibility"
nillable="true" type="xsd:string" />

</xsd:sequence>
</xsd:complexType>
4-2 VisualWorks

Working with WSDL Schemas
The default mapping maps this complexType element to a <struct>
element in the <schemaBindings> section:

<struct name="WeatherSummary">
<element maxOccurs="1" minOccurs="1" name="location"

nillable="true" ref="xsd:string"/>
<element maxOccurs="1" minOccurs="1" name="wind"

nillable="true" ref="xsd:string"/>
<element maxOccurs="1" minOccurs="1" name="sky"

nillable="true" ref="xsd:string"/>
<element maxOccurs="1" minOccurs="1" name="temp"

nillable="true" ref="xsd:string"/>
<element maxOccurs="1" minOccurs="1" name="humidity"

nillable="true" ref="xsd:string"/>
<element maxOccurs="1" minOccurs="1" name="pressure"

nillable="true" ref="xsd:string"/>
<element maxOccurs="1" minOccurs="1" name="visibility"

nillable="true" ref="xsd:string"/>
</struct>

The default Smalltalk marshaler for the <struct> element marshals this
element as a Dictionary, as explained in XML to Smalltalk Mapping.

The object mapping, for comparison, would be:

<object name="WeatherSummary" smalltalkClass="WeatherSummary">
<element maxOccurs="1" minOccurs="1" name="location"

nillable="true"
ref="xsd:string" aspect="location"/>

<element maxOccurs="1" minOccurs="1" name="wind" nillable="true"
ref="xsd:string" aspect="wind"/>

<element maxOccurs="1" minOccurs="1" name="sky" nillable="true"
ref="xsd:string" aspect="sky"/>

<element maxOccurs="1" minOccurs="1" name="temp" nillable="true"
ref="xsd:string" aspect="temp"/>

<element maxOccurs="1" minOccurs="1" name="humidity"
nillable="true"

ref="xsd:string" aspect="humidity"/>
<element maxOccurs="1" minOccurs="1" name="pressure"

nillable="true"
ref="xsd:string" aspect="pressure"/>

<element maxOccurs="1" minOccurs="1" name="visibility"
nillable="true"

ref="xsd:string" aspect="visibility"/>
</object>
Web Service Developer’s Guide 4-3

Document Processing
When bindings have been created, they should be reviewed, and
possibly custom mappings created. In general, you would save the
specification, make any customizations, and then load the schema,
as shown in the following sections.

While loading the WSDL schema, the XMLObjectBinding can raise a
notification if there are any XML elements that are not resolved. The
notifications are collected in the BindingReport objects and should be
reviewed before sending a SOAP request.

BindingReport report inspect
The result may be list of warnings, such as:

"Warning in: AnyRelationMarshaler>>unmarshalFrom:do:
There is no defined marshaler for the node tag: <suds:class>"

Any warnings about the XML elements that will not be used in the
SOAP request can be ignored.

Saving a Schema with its Binding
To preserve the generated bindings with the schema, save it with the
binding. The schema can be saved to a file, a method by evaluating:

wsdlClient saveSchemaDocuments
This opens a file dialog prompting for a file name (e.g.,
AirportWeather.wsdl), and writes the schema to the file, including the
bindings in the <schemaBindings> section at the end.

Alternatively, send saveDocumentsIntoFile: to the client:

wsdlClient saveDocumentsIntoFile: filename
to save the schema into a file, or:

wsdlClient saveSchemaDocumentsIntoMethod: aMethodSelector
class: aClassName withComment: aString

to save the schema in a class method.

In both cases, if there are more than one WSDL document, the first
document is named as specified, and successive documents are
given a suffix, for example, AirportWeather.wsdl1,
AirportWeather.wsdl12, ...

Load and Use a WSDL Schema
To reuse a saved schema, load it from the file:

wsdlClient := WsdlClient fileName: 'AirportWeather.wsdl'.
4-4 VisualWorks

Working with WSDL Schemas
or from a stream:

wsdlClient := WsdlClient readFrom:
'AirportWeather.wsdl' asFilename readStream lineEndTransparent.

While loading a WSDL schema, the following registries are created:

XMLObjectBinding registry

Includes XML to object marshalers.

WsdlBinding wsdlBindings

Includes WSDL configurations for all web services.

WsdlPort portRegistry

Includes all port descriptions.

WsdlService registry

Includes all web services.

Customizing Mappings
After saving the schema with the bindings, you should review the
default mappings and possibly create custom mappings. For
example, instead of the default mapping for <struct> to a Dictionary, an
element can be created mapping it to a Smalltalk class, such as
WeatherSummary. This simply involves adding a smalltalkClass=
attribute, with the class name enclosed in quotation marks, e.g.:

<object name="WeatherSummary" smalltalkClass="WeatherSummary">
<element maxOccurs="1" minOccurs="1" name="location"

nillable="true" ref="xsd:string" aspect="location"/>
<element maxOccurs="1" minOccurs="1" name="wind"

nillable="true" ref="xsd:string" aspect="wind"/>
<element maxOccurs="1" minOccurs="1" name="sky"

nillable="true" ref="xsd:string" aspect="sky"/>
<element maxOccurs="1" minOccurs="1" name="temp"

nillable="true" ref="xsd:string" aspect="temp"/>
<element maxOccurs="1" minOccurs="1" name="humidity"

nillable="true" ref="xsd:string" aspect="humidity"/>
<element maxOccurs="1" minOccurs="1" name="pressure"

nillable="true" ref="xsd:string" aspect="pressure"/>
<element maxOccurs="1" minOccurs="1" name="visibility"

nillable="true" ref="xsd:string" aspect="visibility"/>
</object>

Once the schema is updated and saved, you can reuse it to make
requests.
Web Service Developer’s Guide 4-5

Document Processing
Making a Request with a WSDL Schema
The WSDL schema may specify several services. To make a request,
specify the service and port:

wsdlClient port:
(wsdlClient getPortAt: wsdlClient config targetNamespace
fromService: wsdlClient services first).

If a port is not specified, the default port will be used, which is the first
port from the first service.

wsdlClient port: client config anyPort
Using this information, as well as the message definitions in the
WSDL schema, you can create a SOAP request (see SOAP
Exchanges):

| wsdlClient soapRequest |
wsdlClient := WsdlClient fileName: 'AirportWeather.wsdl'.
wsdlClient port: client config anyPort.
soapRequest := SoapRequest new.
soapRequest port: wsdlClient config anyPort.
soapRequest smalltalkEntity:

(Message selector: #getHumidity argument: 'KSNA').
^wsdlClient executeRequest: soapRequest.

Generating Bindings without a WSDL Document
Sometimes you don’t have a full WSDL document, but only a <types>
section, and still want to generate XML object bindings and even
generate marshaler classes. This can be done using the facilities
described in this section.

You can invoke the XMLTypesParser directly to generate the
<xmlToSmalltalkBinding> element of a binding schema. The way you
invoke the parser depends on how you want complex types to be
mapped, whether to dictionaries or specific Smalltalk classes. The
resulting bindings are processed differently to generate the
dictionaries or classes, and then accessed differently for marshaling
and unmarshaling. This section gives separate descriptions for these
two approaches to mapping.

For the code examples given below, consider this fragment,
containing only a <types> section:

xmlTypes := '<?xml version="1.0" encoding="UTF-8"?>
<wsdl:types xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" >

<schema targetNamespace="urn:vwservices"
4-6 VisualWorks

Generating Bindings without a WSDL Document
xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
xmlns:ns="urn:vwservices"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<complexType name="Customer">

<sequence>
<element name="name" minOccurs="1" maxOccurs="1"

type="xsd:string" />
<element name="id" minOccurs="1" maxOccurs="1"

type="xsd:int" />
<element name="address" minOccurs="1" maxOccurs="1"

type="ns:Address" />
</sequence>

</complexType>
<complexType name="Address">

<sequence>
<element name="street" minOccurs="1" maxOccurs="1"

type="xsd:string" />
<element name="state" minOccurs="1" maxOccurs="1"

type="xsd:string" />
<element name="zip" minOccurs="1" maxOccurs="1"

type="xsd:int" />
</sequence>

</complexType>
</schema>

</wsdl:types>'.

Complex Type to Dictionary Bindings
The default binding for complex types is to map them to instances of
Dictionary, as specified in a <struct> section in the binding schema.

Generating the Binding Schema
To generate a schema mapping complex types to dictionaries, send a
readFrom: message to the parser class with a ReadStream on the types
fragment text:

xmlToObjElement := XMLTypesParser readFrom: xmlTypes readStream.
This returns an Element holding the following <schemaBindings>
section:

<schemaBindings>
<xmlToSmalltalkBinding elementFormDefault="qualified" name=""

targetNamespace="urn:vwservices"
xmlns="urn:visualworks:VWSchemaBinding"
xmlns:ns="urn:vwservices"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
Web Service Developer’s Guide 4-7

Document Processing
<struct name="Customer">
<element maxOccurs="1" minOccurs="1" name="name"

ref="xsd:string"></element>
<element maxOccurs="1" minOccurs="1" name="id"

ref="xsd:int"></element>
<element maxOccurs="1" minOccurs="1" name="address"

ref="ns:Address"></element>
</struct>
<struct name="Address">

<element maxOccurs="1" minOccurs="1" name="street"
ref="xsd:string"></element>

<element maxOccurs="1" minOccurs="1" name="state"
ref="xsd:string"></element>

<element maxOccurs="1" minOccurs="1" name="zip"
ref="xsd:int"></element>

</struct>
</xmlToSmalltalkBinding>

</schemaBindings>
Note that the complex types from the types document are
represented as <struct> elements.

Creating the Binding Dictionaries
Given the bindings schema, you build the bindings, including the
relevant dictionaries, by sending a buildBindings: message, with the
schema as argument, to class XMLObjectBinding:

binding := (XMLObjectBinding buildBindings:
(Array with: xmlToObjElement)) first.

The result is an XMLObjectBinding defining marshalers for Customer
and Address, each with a Struct as the representative Smalltalk class.
To browse the binding, you can browse XMLBindingRegistry, a shared
variable of class XMLObjectBinding, and select urn:vwservices.

Marshaling and Unmarshaling a Struct
The object binding provides the mechanism necessary to marshal
(represent a Smalltalk object in XML) and unmarshal (represent an
XML object in Smalltalk) objects.

To marshal an object of a complex type, you first construct the object,
which is an instance of Dictionary. In the current example, there are
two complex objects, Customer and Address, and an Address is a
component of a Customer. Both are structs, so each is represented as
4-8 VisualWorks

Generating Bindings without a WSDL Document
a Dictionary, in this case a Customer dictionary holding an Address
dictionary in its address entry. You might construct this structure as
follows:

cust := Dictionary new.
cust

at: #name put: 'bob';
at: #id put: 123;
at: #address put:

(Dictionary new
at: #street put: 'street';
at: #state put: 'state';
at: #zip put: 123456;
yourself).

To marshal this dictionary as a Customer, create an
XMLObjectMarshalingManager on the binding, get the marshaler for the
Customer data type, and then marshal the object:

manager := XMLObjectMarshalingManager on: binding.
marshaler := manager marshalerForType: 'Customer' ns:
'urn:vwservices'.
xmlres := manager marshal: cust with: marshaler.

The result is an XML element:

<ns:Customer xsi:type="ns:Customer" xmlns:ns="urn:vwservices"
xmlns:ns0="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ns:name xsi:type="ns0:string">xxx</ns:name>
<ns:id xsi:type="ns0:int">123</ns:id>
<address xsi:type="ns:Address">

<ns:street xsi:type="ns0:string">street</ns:street>
<ns:state xsi:type="ns0:string">state</ns:state>
<ns:zip xsi:type="ns0:int">123456</ns:zip>

</address>
</ns:Customer>

Conversely, given an Customer XML element, unmarshaling it into a
dictionary can be done by sending:

cust1 := manager unmarshal: xmlres.
which returns the corresponding Struct.

Complex Type to Object Bindings
For extensive processing within a Smalltalk application, it is
frequently better to represent complex types as instances of
corresponding Smalltalk classes. Instead of mapping to dictionaries,
you can map complex types to Smalltalk objects.
Web Service Developer’s Guide 4-9

Document Processing
Generating the Binding Schema
To generate a schema binding for mapping to objects, send a
useObjectBindingReadFrom:inNamespace: message to XMLTypesParser. A
ReadStream on the contents of the <types> section fragment is the first
argument; the second argument is a String specifying the Smalltalk
name space:

xmlToObjElement := XMLTypesParser
useObjectBindingReadFrom: xmlTypes readStream
inNamespace: 'Smalltalk'.

This returns an Element object containing a <schemaBindings> section:

<schemaBindings>
<xmlToSmalltalkBinding defaultClassNamespace="Smalltalk"

elementFormDefault="qualified"
name="" targetNamespace="urn:vwservices"
xmlns="urn:visualworks:VWSchemaBinding"
xmlns:ns="urn:vwservices"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<object name="Customer" smalltalkClass="Customer">

<element aspect="name" maxOccurs="1" minOccurs="1"
name="name" ref="xsd:string"></element>

<element aspect="id" maxOccurs="1" minOccurs="1" name="id"
ref="xsd:int"></element>

<element aspect="address" maxOccurs="1" minOccurs="1"
name="address" ref="ns:Address"></element>

</object>
<object name="Address" smalltalkClass="Address">

<element aspect="street" maxOccurs="1" minOccurs="1"
name="street" ref="xsd:string"></element>

<element aspect="state" maxOccurs="1" minOccurs="1"
name="state" ref="xsd:string"></element>

<element aspect="zip" maxOccurs="1" minOccurs="1" name="zip"
ref="xsd:int"></element>

</object>
</xmlToSmalltalkBinding>

</schemaBindings>
Note that the complex types from the types document are
represented as <object> elements.
4-10 VisualWorks

Generating Bindings without a WSDL Document
Creating the Binding Classes
Given the bindings schema, you build the bindings, including the
relevant classes, by sending a createClassesFromBindings: message,
with a collection of schemas as argument, to an instance of
BindingClassBuilder. The builder should be given a package name in
which to put the generated classes:

builder := BindingClassBuilder new.
builder package: 'WSTest'.
builder createClassesFromBinding:

(OrderedCollection with: xmlToObjElement).
The result is a collection of classes built for the complex types. The
classes include accessor methods for setting and getting the values
of the classes’ attributes.

Marshaling and Unmarshaling the Objects
The object binding provides the mechanism necessary to marshal
(represent a Smalltalk object in XML) and unmarshal (represent an
XML object in Smalltalk) objects.

To marshal an object of a complex type, you first construct instances
of the representing class, which in this case are instances of Address
and Customer, and an Address is a component of a Customer. You
might construct a Customer instance as follows:

cust := Smalltalk.Customer new.
cust

name: 'bob';
id: 123;
address: (Smalltalk.Address new

street: 'street';
state: 'state';
zip: 123456;
yourself).

To marshal the object as an XML element, send a
marshal:atNamespace: message to XMLObjectMarshalingManager, with
the object and name space as arguments:

xmlres := XMLObjectMarshalingManager
marshal: cust
atNamespace: 'urn:vwservices'.

The result is an XML element representing the object:

<ns:Customer xsi:type="ns:Customer" xmlns="urn:vwservices"
xmlns:ns="urn:vwservices"
xmlns:ns0="http://www.w3.org/2001/XMLSchema"
Web Service Developer’s Guide 4-11

Document Processing
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ns:name xsi:type="ns0:string">xxx</ns:name>
<ns:id xsi:type="ns0:int">123</ns:id>
<address xsi:type="ns:Address">

<ns:street xsi:type="ns0:string">street</ns:street>
<ns:state xsi:type="ns0:string">state</ns:state>
<ns:zip xsi:type="ns0:int">123456</ns:zip>

</address>
</ns:Customer>

Conversely, given an Customer XML element, unmarshaling it into a
Customer instance can be done by sending:

cust1 := XMLObjectMarshalingManager
unmarshal: xmlres printString readStream
atNamespace: 'urn:vwservices'

which returns the corresponding object.
4-12 VisualWorks

5

SOAP Exchanges

While many applications using web services can be built solely with
WSDL, there are occasions when you may need to use SOAP as
well. SOAP (Simple Object Access Protocol) is an XML-based
protocol for exchanging structured and typed messages in a
distributed and heterogeneous environment.

While it may be compared with technologies like CORBA and DCOM,
SOAP is a vendor-neutral technology for exchanging messages via
HTTP. Historically, SOAP may be understood as a successor to XML-
RPC.

Where WSDL is concerned with a service description (which is
embodied in a WSDL schema), SOAP is concerned with the actual
details of exchanging messages. That is, it specifies the envelope
(message formats for data exchange), request/response
handshaking, and protocol binding.

WSDL was designed to use HTTP/REST or MIME as messaging
protocols, but it generally uses SOAP and HTTP. Thus, most web
services applications use WSDL and SOAP together.

This chapter discusses:

• Building a SOAP Request using a WSDL Schema

• SOAP Messaging without WSDL

• SOAP Headers

• Sending Requests over Persistent HTTP

• SOAP Exception Handling
Web Service Developer’s Guide 5-1

SOAP Exchanges
VisualWorks Implementation
Support for WSDL in the VisualWorks web services framework
greatly simplifies SOAP messaging by automatically producing the
appropriate SOAP message. Generally, the web services framework
produces SOAP messages transparently, by using transformations
based on a WSDL schema, making web service development almost
trivial.

However, for situations where SOAP is needed without a WSDL
schema, you can still write directly to the SOAP protocols. Both
approaches are described in this chapter.

When WSDL is used in conjuction with SOAP, two general forms of
SOAP messaging are available: RPC- and Document-literal style.

At the core of SOAP support in VisualWorks is the XML-to-object
mapping mechanism (described in XML to Smalltalk Mapping). Using
a SOAP binding, Smalltalk messages are marshaled into a SOAP/
XML representation for communication to a service provider, and the
XML response is unmarshaled back into Smalltalk.

Loading SOAP Support
To load SOAP support, use the Parcel Manager to load the WSDL
parcel. This will automatically load the SOAP parcel, as well as the
XML-to-Object support parcels (for details, see Loading Support for
Web Services).

SOAP Messaging Framework
A SOAP message is an XML document with a mandatory envelope,
an optional header, and a mandatory body. The structure of such a
message is described in detail in the SOAP specifications, and is not
covered here.

The three parts of a SOAP message are modeled in VisualWorks
using SoapEnvelope, SoapBodyStruct, and SoapHeaderStruct. You seldom
need to deal with instances of these classes directly, since they are
intermediate objects used by the SOAP marshaler.

SOAP messages and their components are modeled by the following
classes:

SoapMessage
SoapRequest
SoapResponse
5-2 VisualWorks

Building a SOAP Request using a WSDL Schema
For placing a service request, you build and execute a SoapRequest.
The response, if successful, comes as a SoapResponse, though the
request execution generally returns a more useful object, as
illustrated below.

Building a SOAP Request using a WSDL Schema
The easiest way to use SOAP in VisualWorks is by requesting
services for which there is a WSDL document describing those
services. Because there is a SOAP binding for WSDL, VisualWorks
can provide bindings to map a Smalltalk object (specifically, instances
of Message) to the appropriate SOAP messages. By specifying the
mappings between a WSDL schema and Smalltalk in a
transformation method (or other mechanism), the task of constructing
the appropriate SOAP messaging is automated.

For example, the VisualWorks WebServicesTimeDemo includes
services that each provide a WSDL document. When running the
demo on your workstation, the schema is available at this URL:

http://localhost:4950/TimeNowService?wsdl
(For a selection of example services with WSDL schemas, see http://
xmethods.net.

From this document we discover that the service supports a request
message named TimeNow which takes no arguments.

To prepare and send a request, we can evaluate the following code:

| wsdlClient soapRequest soapResponse |
wsdlClient := WsdlClient new loadFrom:

'http://localhost:4950/TimeNowService?wsdl' asURI.
soapRequest := SoapRequest new.
soapRequest port: wsdlClient config anyPort.
soapRequest smalltalkEntity:

(Message selector: #TimeNow).
soapResponse := soapRequest value.

Among other things, the WSDL schema document defines the ports
providing the available services. In the code example shown above,
the first line creates a WsdlClient containing a configuration, an
instance of WsdlConfiguration, from the WSDL document.

The next line creates a new, empty SOAP request:

soapRequest := SoapRequest new.
Web Service Developer’s Guide 5-3

http://localhost:4950/TimeNowService?wsdl
http://xmethods.net
http://xmethods.net

SOAP Exchanges
Then, we add the parts to the request that are needed to send it.
First, assign a port to identify a service. The anyPort message
retrieves the first port of the first service in the WsdlConfiguration,
which is often sufficient:

soapRequest port: wsdlClient config anyPort.
Next, the Smalltalk message to be marshaled into the SOAP request
is added, by sending a smalltalkEntity: message to the SoapRequest.
The Smalltalk entity will be a Message, which is created by sending
the selector: instance creation method:

soapRequest smalltalkEntity:
(Message selector: #TimeNow).

The selector must match exactly the operation name in the interface
definition. To get the possible message selectors, you can inspect:

wsdlClient config interfaces first operations
This gives an OrderedCollection of WsdlOperationDescriptor instances. If
the message takes arguments, you can dig down into an operation to
find its input. Consult the service’s documentation for information
about what the argument values should be.

With that information provided, we can now ask for the value of the
request (the message #value actually causes the request to be sent to
the server):

soapResponse := soapRequest value.
The result will be an instance of SoapResponse.

In summary, this code example marshalls the request as a SOAP
message, sending the request, and returning the value of the
response.

You can inspect the result of this example (evaluate with Inspect it).

Messages with Arguments
Most service messages require argument values. To provide
arguments, you may use executeSelector:args:. Alternately, you can
create the soapEntity for the request by sending a selector:arguments:
instance creation message to class Message. In each case, the
arguments are passed in an Array with the appropriate content.

The content of this array depends on the request binding style; SOAP
requests can be in either an RPC or a Document style.
5-4 VisualWorks

Building a SOAP Request using a WSDL Schema
RPC-style Message Arguments
For an RPC-style binding, the soap message can have zero or many
arguments that are sent in an Array of elements. For example, the
WebServicesTimeDemo includes a service that accepts a Time object as
an argument, returning a Timestamp object. The following code
snippet illustrates this style of binding.

After starting the TimeServerRPC, evaluate the following using Inspect It:

| wsdlClient arguments value |
wsdlClient := WsdlClient new loadFrom:

'http://localhost:4952/TimeNowServiceRPC?wsdl' asURI.
arguments := Array with: Time now.
value := wsdlClient executeSelector: #AsTimestamp args: arguments.

(This code may be found in the class-side method wsdlClientScript of
TimeServerRPC.)

We can also illustrate RPC-style binding with a real-world example.

The BabelFish translation service may be used with RPC-style
binding. The request takes two arguments: a translation code and a
string to translate, both as strings. Thus, to translate from English to
French, we use the directive string 'en_fr'. This example also shows
how to use a SoapRequest object directly:

| wsdlClient soapRequest |
wsdlClient := WsdlClient new loadFrom:

'http://www.xmethods.net/sd/BabelFishService.wsdl' asURI.
soapRequest := SoapRequest new.
soapRequest port: wsdlClient config anyPort.
soapRequest smalltalkEntity:

(Message selector: #BabelFish arguments:
#('en_fr' 'this is a test')).soapRequest value.

Document-style Message Arguments
For a Document binding style, the SOAP message body must have
either zero or one parts. To pass arguments to a document-style
service, the arguments should be provided as Dictionary or a web
services Struct.

The result of a document style request is an OrderedCollection with one
element.

For example, the demo TimeServer may be invoked with document-
style binding by evaluating the following code:
Web Service Developer’s Guide 5-5

SOAP Exchanges
wsdlClient := WsdlClient new loadFrom:
'http://localhost:4950/TimeNowService?wsdl' asURI.

struct := WebServices.Struct new.
arguments := Array with: struct.
struct at: #asTimestamp put: Time now.
value := wsdlClient executeSelector: #AsTimestamp args: arguments.

SOAP Messaging without WSDL
A SOAP message is an XML document, so you can, in principle,
create a message simply by constructing the XML document and
sending it. VisualWorks simplifies that, even without the use of a
WSDL schema, by allowing you to create the SoapRequest. You need
to specify the binding, and explicitly provide input and output
marshalers, but even without the schema this is much simpler than
creating raw XML.

For example, suppose we want to make the SOAP echo request:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope

xmlns:m="http://soapinterop.org/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<m:echoInteger>
<inputInteger>123</inputInteger>

</m:echoInteger>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>
First, we must build an object binding. Since an integer is being
passed and echoed, the marshaler for type int is required.

m := XMLObjectBinding soapBinding
marshalerForTag:

(XML.NodeTag new qualifier: ''
ns: 'http://www.w3.org/2001/XMLSchema'
type: 'int')

ifAbsent: [nil].
A SoapOperationBinding provides marshalers for the SOAP operation:

soapOperBinding := SoapOperationBinding new
name: 'echoInteger';
style: 'rpc'.
5-6 VisualWorks

SOAP Messaging without WSDL
Next, create the input marshaler and assign it to the
SoapOperationBinding. The marshaler will be an instance of
SoapParameterMarshaler.

(inputMarshaler := SoapParameterMarshaler new)
structName: (XML.NodeTag new

qualifier: 'm'
ns: 'http://soapinterop.org/'
type: 'echoInteger');

style: 'rpc'.
inputMarshaler

from: (Array with:
((XML.NodeTag new qualifier: '' ns: '' type: 'inputInteger') -> m))

use: ''
encodingStyle: ''
order: nil.

soapOperBinding inputMarshaler: inputMarshaler.
The from:use:encodingStyle:order: message assigns the arguments to
the SOAP message, as an Array as was the case when using WSDL.

Similarly, create and assign the output marshaler:

outMarshaler := SoapParameterMarshaler new
structName: (XML.NodeTag new

qualifier: ''
ns: 'http://soapinterop.org/'
type: 'echoIntegerResponse');

style: 'rpc'.
outMarshaler

from: (Array with:
((XML.NodeTag new qualifier: '' ns: '' type: 'return') -> m))

use: ''
encodingStyle: ''
order: nil.

soapOperBinding outputMarshaler: outMarshaler.
Fault marshalers also must be specified, but can be empty:

soapOperBinding faultMarshalers: OrderedCollection new.
Given this, we can build a SOAP request, as follows:
Web Service Developer’s Guide 5-7

SOAP Exchanges
req := SoapRequest new
binding: XMLObjectBinding soapBinding;
transport: (SoapHttpBindingDescriptor

verb: 'POST' soapAction: 'http://soapinterop.org/');
accessPoint:

'http://www.dolphinharbor.org/services/interop2001' asURI;
operation: soapOperBinding;
smalltalkEntity: (Message selector: #echoInteger arguments: #(123));
execute.

resp := req value.

SOAP Headers
SOAP Header blocks are used to extend an application with
additional features. Extensions that can be implemented as header
entries include authentication, transaction management, payments,
and so on.

Currently, support for SOAP headers in VisualWorks is compliant with
SOAP 1.1. This supports processing a WSDL schema with SOAP
headers, and marshaling and unmarshaling SOAP messages with
headers.

The SoapMessage class holds its header entries in the header instance
variable, which holds a Dictionary (a SoapHeaderStruct), with the header
entry name as the key, and an instance of SoapHeaderEntry as its
value. This corresponds to the SOAP specification in which a header
is the first immediate child element of a SOAP envelope, and header
entries are immediate child elements of the header.

Sending SOAP Messages with Header Entries
The WebServicesTimeDemo includes a simple example that illustrates
the use of SOAP headers: class HTimeServer. This is similar to class
TimeServer, which was described previously (for details, see Web
Services Examples), but it also includes additional code to invoke a
header processor class.

For example, to test the HTimeServer using an instance of HTimeClient,
evaluate the following code in a Workspace window using Do It (from
the <Operate> menu):
5-8 VisualWorks

SOAP Headers
WebServices.HTimeServer defaultStart.
client := WebServices.HTimeClient new.
client start.
(client headerFor: #password) value: 'myPassword'.
“Request the current time from the server”
result := client timeNow.
“Stop the client and server”
client stop.
WebServices.HTimeServer defaultStop.

After starting both the server and client, we attach a header entry to
the client’s requests by sending headerFor:, with the name of the new
header entry as a symbol. A value, the object to be marshaled, is
assigned to the header by sending value:.

The result in the variable "result" should be an OrderedCollection
containing a Time object (you can examine this variable using
Inspect It).

Using SOAP Header Entries with WsdlClient
When using WsdlClient to make SOAP requests, you can add header
entries using the same API, or assemble the SoapMessage in your
application code. To illustrate, we can again query HTimeServer, but
this time using class WsdlClient to make and send the request with a
SOAP header:

WebServices.HTimeServer defaultStart.
client := WsdlClient url:

'http://localhost:4954/TimeNowServiceWithHeaders?wsdl'.
(client headerFor: #password) value: 'myPassword'.
result := client executeSelector: #TimeNow.
WebServices.HTimeServer defaultStop.

Here, the header is again created in the client by sending headerFor:,
and a value assigned, but this time in the WsdlClient. The request is
then constructed and sent using executeSelector:.

Using Soap Header Entries with an Opentalk Client
To illustrate, we will query AuthSearchServer from WebServicesDemo.
The examples below can be found in the TestSoapHeaders class.

The WSAuthenticatedSearchService class provides some services that
require SOAP headers for authentication. The operation pragmas
should include a description (inputHeader/outputHeader) for the header
processors. The header processors must provide the header type
description in the class methods: headerTag and header. The header
processors must implement methods to process header objects.
Web Service Developer’s Guide 5-9

SOAP Exchanges
client := ClientForAuthenticatedSearchService new.
client start.

Add the #AccessLevel header to the request

(client headerFor: #'AccessLevel')value: '12345'.
Add the AuthenticationToken header to the request. The provided user
ID and password are accepted by the header processor on the
server.

(client headerFor: #'AuthenticationToken')
value: (WebServices.AuthenticationToken new

userID: 'UserID';
password: 'password';
yourself).

value := (client authenticatedSearchByWord: 'and') first.
When the Opentalk server receives a request with headers it
unmarshals the headers and then sends the header objects to the
corresponding processor. For an example, see
processInputHeader:transport: in class HdPrAuthenticationToken.

Handling a Requst with Wrong Parameters.
Add the #AuthenticationToken header to the request. The provided user
ID and password are NOT accepted by the header processor on the
server.

(client headerFor: #'AuthenticationToken')
value: (WebServices.AuthenticationToken new

userID: 'ID#ABC';
password: 'password';
yourself).

The server returns a reply with

Confirmation header value: <not confirmed>
The client header processor raises the WrongConfirmationExc
exception. See processOutputHeader:reply:transport: in HdPrConfirmation.

[client authenticatedSearchByWord: 'and']
on: WrongConfirmationExc
do: [:ex | 'do some processing']
5-10 VisualWorks

SOAP Headers
Setting the Result Type
The Opentalk client can be set to return different result types. The
default return type is specified by the WSDL schema. The requests
from the testServiceWithHeaders return the default types.To return an
instance of WebServices.SoapEnvelope set the returned type to
#envelope:

client returnedObject: #envelope.value := client
authenticatedSearchByWord: 'and'.

To return an instance of WebServices.SoapResponse set the returned
type to #response:

client returnedObject: #response.value := client
authenticatedSearchByWord: 'and'.

Accessing Soap Headers from Service Methods
The SOAP headers are accessible in services methods. The server
can set an option and the header object will be added to the
ProcessEnviroment. For example:

broker := (opentalkServer interfaces at: 'localhost:4922') broker.broker
marshalerConfiguration environmentWithHeaders: true.

The service method can reach the header object as:

WSAuthenticatedSearchService>>authenticatedSearchByTitle:
| header |
header := ProcessEnvironment current

at: #AuthenticationToken
ifAbsent: [self error: 'There is no such header in the

ProcessEnvironment current'].

Creating a SOAP Header
A SOAP header consists of one or more SOAP header entries, each
of which is an instance of SoapHeaderEntry. Each header entity holds
four values in its instance variables:

name

The local name of the entry element. The name space path is
taken from the WSDL document. (Note that this variable is often
not set because it is not used by the marshaler, which uses the
keys of the SoapHeaderStruct instead.)

value

The object to marshal.
Web Service Developer’s Guide 5-11

SOAP Exchanges
actor

The actor attribute specifies the recipient SOAP node of a header
element. The value of the SOAP actor attribute is a URI. The
special URI "http://schemas.xmlsoap.org/soap/actor/next"
indicates that the header element is intended for the very first
SOAP application that processes the message. If no actor is
specified, the actor is understood to be the ultimate destination of
the SOAP message.

mustUnderstand

The mustUnderstand attribute Indicate whether a header entry is
mandatory or optional for the recipient to process. The value of
the mustUnderstand attribute is either true or false. The absence of
the SOAP mustUnderstand attribute is semantically equivalent to
false.

The following SoapHeaderEntry instance creation methods set these
values:

value: anObject

Creates new header entry with the specified value. The actor and
mustUnderstand attributes are not set.

value: anObject mustUnderstand: aBoolean actor: aString

Creates new header entry with the specified value, and actor and
mustUnderstand attributes.

targetRecipientValue: anObject

Creates new header entry with the specified value, the actor as
"http://schemas.xmlsoap.org/soap/actor/next", and
mustUnderstand as nil.

targetRecipientMU1Value: anObject

Creates new header entry with the specified value, actor set to
"http://schemas.xmlsoap.org/soap/actor/next", and
mustUnderstand set to true.

targetReceipientMU0Value: anObject

Creates new header entry with the specified value, actor set to
"http://schemas.xmlsoap.org/soap/actor/next", and
mustUnderstand set to false.
5-12 VisualWorks

Sending Requests over Persistent HTTP
Header entries are held in the header variable (in a SoapHeaderStruct
dictionary) of a SoapMessage instance. Use the following SoapMessage
(SoapRequest or SoapResponse) accessor messages to get or set
header entries:

headerFor: aSymbol

Creates new header entry with the specified name aSymbol

header

Returns a dictionary of all header entries

headerAt: aSymbol put: aSoapHeaderEntry

Adds new header entry to the message

headerAt: aSymbol ifAbsentPut: aBlock

Returns the header entry aSymbol, or adds new header entry to
the message header if it does not already exist.

headerRemoveKey: aSymbol ifAbsent: aBlock

Removes the header entry from the message.

This API is duplicated in class WsdlClient (implemented in SoapClient).
The WsdlClient holds its own header dictionary. When the client sends
the request, the header entries are added to the request as follows:

1 If the header entry exists in both WSDL client and SOAP request
dictionaries, the SOAP request header entry is used.

2 If the header entry exists in WSDL client but not in the SOAP
request, the WSDL client header entry is added to the request.

Sending Requests over Persistent HTTP
The typical SOAP session over HTTP sends several requests to the
same server, opening a new HTTP connection for each request.

wsdlClient := WsdlClient url:
'http://www.dolphinharbor.org/services/interop2001/service.wsdl'.

value := wsdlClient executeSelector: #echoInteger args: #(123).
wsdlClient executeSelector: #echoString args: #('ABc 46').
Web Service Developer’s Guide 5-13

SOAP Exchanges
If you are using a secure HTTP connection this is not satisfactory,
because it can take a fairly long time to negotiate the connection. To
handle this, WsdlClient provides an API to open a persistent
connection and reuse it. Send a connectToHost: message to establish
the connection, and then send your requests.

For example:

wsdlClient := WsdlClient url:
'http://www.dolphinharbor.org/services/interop2001/service.wsdl'.

"connecting to the Http server"
[wsdlClient connectToHost: 'www.dolphinharbor.org']

on: Exception do: [:ex | wsdlClient reconnect. ex return].
"executing a few requests and close the Http connection"
[intValue := wsdlClient executeSelector: #echoInteger args: #(123).

strValue := wsdlClient executeSelector: #echoString args: #('ABc 46')]
ensure: [wsdlClient close].

An alternative approach is to create the connection using the normal
HTTP mechanisms, and send the SoapRequest. For example:

wsdlClient := WsdlClient new loadFrom:
'http://services.pagedownweb.com/ZipCodes.asmx?WSDL' asURI.

http := HttpClient host: 'services. pagedownweb.com'.
[http connect] on: Exception

do: [:ex | ex inspect].
request := SoapRequest new.
request port: wsdlClient config anyPort.
request transportClient: http.
dict := Dictionary new.
dict at: #zip_IN put: '45069'.
request smalltalkEntity:

(Message selector: #rtnZipInfoCSV
arguments: (Array with: dict)).

http close.
request value.
5-14 VisualWorks

SOAP Exception Handling
SOAP Exception Handling
There are five exception classes specific to SOAP support: SoapFault,
SoapClientFault, SoapServerFault, SoapException, and
SoapEmptyBodyException:

Exception
Error

SoapException
SoapEmptyBodyException

SoapFault
SoapClientFault
SoapServerFault

These SOAP exceptions are not intended for use by user
applications. When building your web services you should create and
use exceptions that are specific to your application, creating new
classes as necessary. As a example, in the WebServicesDemo, see
WSLDSrvcGeneralPublicDoc holdingByAcquisitionNumberDoc:.

SoapException indicates a server or socket error. SoapBodyException is
signaled specifically if, after unmarshaling a response, the body is
empty.

SoapFault and its subclasses are returned as the body element of a
response, indicating that the server found some problem with the
request or its processing. SoapClientFault usually indicates that the
request was malformed or lacked needed information to process the
request. SoapServerFault indicates that processing failed for reasons
not directly attributable to the request, such as an upstream server
failing to respond. SoapFault is raised if a version mismatch (invalid
namespace) or a “must understand” requirement was not obeyed by
the processor.

SOAP and WSDL communications can suffer any number of other
general communications errors as well, such as server performance
and schema relocation errors.

Any time your application fetches a schema from a remote server,
various communication errors may be raised (e.g. HTTP Not Found)
that are not specifically covered by SOAP and WSDL support. These
errors may be raised by the host OS or the VisualWorks protocols
framework, and will be sent to your aplication as general exceptions.
Web Service Developer’s Guide 5-15

SOAP Exchanges
5-16 VisualWorks

6

Building Web Services

The VisualWorks web services framework may be used to build both
client and server applications. Where the previous chapters focused
on building client applications, this chapter is devoted to building
servers. The wizards and class builders included in the VisualWorks
framework can also help simplify the task of developing server
applications.

The facilities described in the previous chapters are appropriate for a
client that needs to make an occassional SOAP request. For a server
application, though, it is inconvenient and inefficient to set up a new
connection for each request. The same holds for both client and
server when web services are used in a distributed computing
environment. In both of these cases, it is better to use Opentalk.

The follow pages explore the Opentalk extensions to VisualWorks
Web services support and their use in developing servers.

In brief, this chapter discusses:

• Web Services and Opentalk

• Building Servers from a WSDL schema

• Generating a Schema from Smalltalk Classes

• Generating a Schema using the WsdlBuilder

• Using the Opentalk Request Broker

• SOAP Messaging

• HTTP Transport Extensions
Web Service Developer’s Guide 6-1

Building Web Services
Web Services and Opentalk
Opentalk is a VisualWorks component that adds a rich and extensible
framework for developing, deploying, maintaining, and monitoring
distributed applications. For web services applications, Opentalk
provides rich support for developing brokers to process multiple
SOAP requests and replies, as is needed for servers and distributed
environments.

By integrating web services with the Opentalk framework,
VisualWorks simplifies the task of developing request brokers and
provides other support services, such as the Opentalk naming
service.

Loading Opentalk-SOAP
The Opentalk extensions to SOAP and XML protocol support are in
the Opentalk-SOAP parcel. To load the support required for the
discussion in this chapter:

1 Open the Parcel Manager (select System > Parcel Manager in the
VisualWorks Launcher window).

2 Select the Distributed Computing category, in the list on the left-hand
side of the tool.

3 In the upper-right list, select and load Opentalk-SOAP (Parcel > Load
menu command).

4 Select and load Opentalk-HTTP or Opentalk-CGI, to provide the
transport for SOAP messaging.

Parcel contents
Loading Opentalk-SOAP also loads Opentalk-Core, its prerequisites, and
Opentalk-XML. The contents of Opentalk-Core are described in the
Opentalk Communication Layer Developer's Guide.

Opentalk-XML contains two main extensions to the client XML support:

• XMLRequest and XMLReply classes handle general XML
messages, and fit the messages in the Opentalk RemoteMessage
framework.

• XMLMarshaler represent an XML binding in the Opentalk
framework.

See XML Messaging below for more information.
6-2 VisualWorks

OpentalkDevGuide.pdf

Building Servers from a WSDL schema
Opentalk-SOAP further extends the XML extensions covering specific
SOAP requirements for XML messaging:

• SOAPRequest and SOAPReply provide for special SOAP
requirements, including message structure and SOAP error
responses.

• SOAPMarshaler provides for marshaling and unmarshaling
support.

See SOAP Messaging below for more information.

Opentalk-HTTP provides the HTTP transport infrastructure, as required
by Opentalk. Two classes are of particular interest.

• HTTPClientTransport simply wraps Net.HttpClient to do the actual
HTTP work. It is only useful for request clients.

• HTTPTransport implements both an HTTP client and an HTTP
server. However, it is not currently a full-featured HTTP server, so
might not be useful in some circumstances.

See HTTP Transport Extensions for more information.

Building Servers from a WSDL schema
In Web Services Wizard we described how to use the web services
wizard and WsdlClassBuilder to create classes based on a WSDL
document to access a web service as a client from Smalltalk. These
tools provide additional features for creating a server, which we
discuss here.

Before using the wizard, you must also load the WSDLWizard package
(for instructions, see: Loading Support for Web Services).

Creating Service Classes using the Web Services Wizard
Given a WSDL schema, the wizard can create the Smalltalk code
and service classes that are needed to build a web service in
VisualWorks. The wizard allows you to select processing options, and
then it generates the <schemaBindings> section and produces the
supporting code.

To illustrate this use of the wizard, we will use WebServicesTimeDemo
(for details, see: Web Services Examples). If you haven’t already
done so, load the WebServicesTimeDemo parcel, but do not start any of
the demonstration servers.
Web Service Developer’s Guide 6-3

Building Web Services
1 To prepare a WSDL schema, open a Browser, locate class
TimeServer in the WebServicesTimeDemo parcel, and save the XML
contents of the class-side method wsdlSchema in a file (e.g.
TimeServer.wsdl). Only save the contained XML, not the Smalltalk
code.

2 Launch the wizard by selecting Web Services Wizard from the Tools
menu of the Visual Launcher.

3 On the first page of the wizard, select Create an application from a
WSDL schema, and click Next.

4 On the next page, specify a schema to load:

Click on Browse file... and locate the file TimeServer.wsdl that we
created in the first step. We’ll use this schema to build the
service.

In general, you can enter a URL in the WSDL schema URL field
(including a file: URL).

5 In the Bind XML Types to section of the wizard, select Classes.

This option specifies how to handle complex data types (for
details, refer to Generating XML-to-object Bindings):
6-4 VisualWorks

Building Servers from a WSDL schema
• Classes creates a Smalltalk class for each complex type

• Dictionaries maps each complex type to a Dictionary

6 In the Create section of the wizard, select Opentalk clients.

7 Check the Create Opentalk server named: option, and provide a name
for the server. For this example, enter TimeNowServer as the
server name.

8 Check the Create service classes option.

This tells the wizard to generate the stub class and methods to
provide the implementation for the service.

9 By default, the server, and binding, service, and server classes
will all be created in the package named WSDefaultPackage, and
they will belong to the Smalltalk.* name space.

To change the package and/or name space for the generated
code, click Settings... and enter different names.

For this example, use the default package and name space.

10 Click Next to generate the Smalltalk support code.

11 A dialog appears to show the response classes that will be
generated, with the option to change their names. Simply click
OK.

12 Once the code is generated, the final wizard page is displayed.
This page displays a workspace with Smalltalk expressions that
exercise the newly-generated server code. However, before we
can use the server code, we must add implementation code.

Using the schema for the TimeServer, the wizard has created the
following classes in the WSDefaultPackage package:
TimeNowService (the service class), TimeNowServer (an Opentalk
server), and TimeNowServiceClient (an Opentalk client class).

The service class TimeNowService includes stub methods for the
operations defined in the schema. These methods contain
pragmas that define the operation, but no implementation in
Smalltalk.

13 To add implementation code to the service class TimeNowService,
the workspace includes code to open a browser on it. Evaluate
the following using Do It:
Web Service Developer’s Guide 6-5

Building Web Services
RefactoringBrowser newOnClass: TimeNowService.
You may be prompted for the full name of the class. If so, choose:
Smalltalk.TimeNowService. The class WebServices.TimeNowService
(note the different name space) belongs to the
WebServicesTimeDemo, and we do not want to change it.

14 In the browser on class Smalltalk.TimeNowService, select the
protocol named public api, and the method named timeNow.

The stub method generated by the wizard now appears in the
code pane of the browser:

timeNow
<operationName: #TimeNow>
<result: #TimeNowResponse>
^self "Add implementation here"

"Result object:
TimeNowResponse new

result: ('Time');
yourself"

This method contains a suggestion about the implementation
code.

15 To add the implementation code, edit the method as follows:

timeNow
<operationName: #TimeNow>
<result: #TimeNowResponse>
^TimeNowResponse new

result: Time now;
yourself

The effect of this code is to return a new instance of class
TimeNowResponse that contains a Time object.

16 Select Accept from the <Operate> menu to compile the code.

You may now test this code in the wizard’s workspace.

17 In the workspace, start the server by evaluating:

server := TimeNowServer new.
server start.

18 To test the server, evaluate the following using Inspect It:

client := TimeNowServiceClient new.
client start.
6-6 VisualWorks

Building Servers from a WSDL schema
value := client timeNow.
The result in value should be an OrderedCollection that contains a
single TimeNowResponse object. This is the result passed from the
newly-created TimeServer running on your workstation.

19 Stop the server and client by evaluating this code (using Do It):

client stop.
server stop.

To save code from the Workspace, copy its contents and paste
them into another workspace.

20 Click Finish to close the wizard.

Creating an Opentalk Server from a WSDL schema
An Opentalk server class includes all of the methods necessary to
create Opentalk brokers, load bindings, start brokers, and shut down
brokers.

To see the Opentalk server generation example, load the
WebServicesDemo parcel and browse
testCreateOpentalkClientServerClasses in TestCreateWSApplication.

The Opentalk server class is generated with port implementation
information in a portDescription method, in class
OpentalkServerSrvcGenPublicDoc:

portDescription
"Generated by WS Tool on #(January 31, 2003 10:29:21 am)"
<wsdlServiceImplementation: #'ServiceImplementationName'>
<serviceClass: #'WebServices.WSLDSrvcGeneralPublicDoc' address:

#'http://localhost:3931/generalDoc' bindingType: #'soap'>
The port description describes the server access point. The
wsdlServiceImplementation name is the WSDL specification <service>
element name.

For more information about Opentalk server support, refer to the
Opentalk Communication Layer Developer’s Guide.

Creating pragma templates
The Web Services Tool API can also create templates for pragmas
and the Opentalk server class. For an example, see the LibraryServer
class (jn the WebServicesDemo package).
Web Service Developer’s Guide 6-7

OpentalkDevGuide.pdf

Building Web Services
To create pragma templates for interfaces, for example, use the
following:

WsdlClassBuilder setInterfacePragmasForClasses:
(Array with: WSLDSrvcGeneralPublic with:

 WSLDSrvcGeneralPublicRpc)
This creates a pragma for the methods located in “public api”
category:

searchByExactTitle: aStruct
"Generated by WS Tool on #(February 2, 2003 7:39:01 pm)"

<operationName: #'SearchByExactTitle'>
<addInputParameter: #'searchByExactTitle' type: #String>
<result: #String>

the default type String should be changed to the correct type.

To create pragma templates for the instance variables, evaluate:

WsdlClassBuilder setTypePragmasForClasses:
(Array with: WSLDDataPersonName with: WSLDHoldingBook)

This creates “set” accessors and a pragma for the variable type, e.g.:

authorialType: aString
"Generated by WS Tool on #(February 2, 2003 7:39:01 pm)"
<addAttribute: #authorialType type: #String>
authorialType := aString

To create an Opentalk server class template, evaluate:

WsdlClassBuilder new
serverClassName: 'OpentalkServerSrvcGenPublicRpcx';
namespace: 'WebServices';
serviceClasses: (Array with: WSLDSrvcGeneralPublicRpc);
package: 'WebServicesDemo';
createServerClass.

Creating Service Classes using the WsdlClassBuilder
The service classes are generated by WsdlClassBuilder from the
WSDL specification operations. The WSDL specification binding
names are used for the service class names. The service class
methods that are derived from the operations go into the “public api”
protocol, and contain pragmas that describe operation parameters.
For example, the Library Demo defines services such as
HoldingByAcquisitionNumber and ProvidesServices.
6-8 VisualWorks

Building Servers from a WSDL schema
The HoldingByAcquisitionNumber service has an input parameter that is
a positive integer, and the ProvidesServices service has no input
parameters.

<message name="HoldingByAcquisitionNumber">
<part name="holding_acquisitionNumber" type="xsd:positiveInteger"/>

</message>
<portType name="SrvcGeneralPublicAllTypesPortType">

<operation name="ProvidesServices">
 <documentation>The ProvidesServices operation checks if the

library has some services. Returns true or false </
documentation>

<input message="tns:ProvidesServices"/>
<output message="tns:ProvidesServicesResponse"/>

</operation>
<operation name="HoldingByAcquisitionNumber">

<documentation parameterOrder="holding_acquisitionNumber">The
HoldingByAcquisitionNumber operation returns a holding or
exception if the holding not found</documentation>

<input message="tns:HoldingByAcquisitionNumber"/>
<output message="tns:HoldingByAcquisitionNumberResponse"/>
<fault message="tns:HoldingByAcquisitionNumberFault"/>

</operation>
….
</portType>

Based on this description and the specification style, the
WsdlClassBuilder generates the WSService service class with the
following methods.

RPC style, in WSLDSrvcGeneralPublicRpc class:

holdingByAcquisitionNumber: aLDHolding_acquisitionNumber
"Generated by WS Tool on #(February 19, 2003 9:36:44 am)"

<operationName: #HoldingByAcquisitionNumber>
<documentation: #'The HoldingByAcquisitionNumber operation

returns a holding or exception if the holding not found'>
<addParameter: #'holdingByAcquisitionNumberDoc' type:

#'LargePositiveInteger'>
<result: #'WSLDHoldingBook'>
<addException: #holdingNotFound type: #'LDExcHoldingNotFound'>

providesServices
"Generated by WS Tool on #(January 24, 2003 10:33:21 am)"

<operationName: #'ProvidesServices'>
<documentation: #'The ProvidesServices operation checks if the
Web Service Developer’s Guide 6-9

Building Web Services
library has some services. Returns true or false '>
<result: #'Boolean'>

Document style, in WSLDSrvcGeneralPublicDoc class:

holdingByAcquisitionNumberDoc: aStruct
"Generated by WS Tool on #(February 19, 2003 9:36:44 am)"

<operationName: #HoldingByAcquisitionNumber>
<documentation: #'The HoldingByAcquisitionNumber operation

returns a holding or exception if the holding not found'>
<addParameter: #'holdingByAcquisitionNumberDoc' type:

#'LargePositiveInteger'>
<result: #'WSLDHoldingBook'>
<addException: #holdingNotFound type: #'LDExcHoldingNotFound'>

providesServices"Generated by WS Tool on #(January 24, 2003 10:33:21
am)"

<operationName: #'ProvidesServices'>
<documentation: #'The ProvidesServices operation checks if the

library has some services. Returns true or false '>
<result: #'Boolean'>

If style='document' and use='literal' are specified at the SOAP binding
level, a description must have zero or one part in a wsdl:message
element. For this reason, the document-style parameters are always
placed in a Struct.

Generating a Schema from Smalltalk Classes

Generating a Schema using the Web Services Wizard
The web services wizard also provides a simple way to create a
WSDL schema document from Smalltalk code that provides a
service.

1 To launch the wizard, select Tools > Web Services Wizard in the
Visual Launcher.
6-10 VisualWorks

Generating a Schema from Smalltalk Classes
2 On the first page select Expose an application as a web service, and
click Next.

3 The Describe Port Type operations page is used to identify the
application and methods to represent in the WSDL schema.

Fill in the following fields:

• Service class is the application class providing the service.
Click the Select... button to browse the image for the desired
class.

• Use methods in protocol selects the method category, or
protocol, that contains the methods to expose in the schema.
All methods must be in the same protocol, which is public api
by default.

• Including super class specifies the superclass up to which
method and type specifications are included. The WSDL
Builder settings in the Settings Tool must also be set to Add
the service super class methods for this option to have effect. (for
details, see Web Services Settings).

• WSDL target namespace specifies the targetNamespace attribute in
a WSDL schema (in the <schema> section).

4 Next, set the descriptions for methods.
Web Service Developer’s Guide 6-11

Building Web Services
Once the class (and superclass option) has been selected, the
methods that will be defined in the WSDL schema are listed. Any
methods with Caution! symbols need additional information in their
descriptions. For each of these methods, select the method and
click Description...

In the Operation Description dialog, provide a Name, Type, and In/Out
value for each operation parameter and the return value. Your
selections for types will depend on the requirements of the
operation. Refer to Creating XML-to-Object bindings for help
selecting types.

When you are finished, Accept the settings.

5 When all method descriptions are complete, click Next.

6 On the Add Header Processors to Operations page, you may optionally
include header processors for each operation in the service.

A header processor serves two purposes:

• It maps between a Smalltalk type and SOAP header node

• The procesor methods are invoked to process header entries
for the operation by the Opentalk server or client classes.

7 When finished, click Next.

8 On the Describe complex types page, set the descriptions for
complex types.

If the method descriptions involve complex types, they are listed
on this page. Any incomplete descriptions are marked with a
Caution! symbol. Complete the descriptions, as in one of the
previous steps.

When all complex type descriptions are complete, click Next.

9 If you want to generate a Opentalk server for the service being
described, check the Generate class option on the Generate Opentalk-
SOAP server class page; otherwise leave it unchecked.

If you check the option, provide a class name and other
parameters as needed.

When ready, click Next.

10 If you want to generate an Opentalk client class for the service
being described, check the Generate class option on the Generate
Opentalk client class page; otherwise leave it unchecked.
6-12 VisualWorks

Generating a Schema using the WsdlBuilder
If you check the option, provide a class name and other
parameters as needed.

When ready, click Next

11 The Testing Opentalk server page displays a Workspace script you
can use to exercise the broker and client classes generated by
the wizard. You should review these results.

To correct problems and regenerate, click Back. To proceed, click
Next.

12 To generate a WSDL document for this service, check Generate on
the Generating WSDL schemas page

13 In the Schemas section, select the schema type:

• WSDL schema with XML to object binding produces a schema
including the <schemaBindings> section.

• WSDL schema produces only the schema, without the
<schemaBindings> section

• XML to object binding produces only the <schemaBindings>
section

• Service interface produces the abstract description of web
services operations that includes messages and port types.

14 In the Destination section, select the output destination for the
schema:

• Method writes the schema to a class method. Provide a
method name (wsdlSchema by default) and select the class.

• File out writes the schema to an external file in plain text
format.

• POST url posts the schema on the HTTP server using the
specified URL.

15 Click Next to generate the schema.

16 Click Finish to close the wizard.

Generating a Schema using the WsdlBuilder
WsdlBuilder generats a basic WSDL schema from the information
found in either a service class that provides a web service interface
description or an Opentalk server class.
Web Service Developer’s Guide 6-13

Building Web Services
There are a few steps required before we can generate the WSDL:

1 Provide descriptions for service interfaces.

2 Provide descriptions for interface parameters, and for result and
exception types.

3 Optionally, provide descriptions for access points or service
implementations

Providing a description for service interfaces
The service provider class must have descriptions for all methods
that are to be represented as external interfaces. The methods
should include pragmas that describe the operation name, input/
output parameters, return types, exceptions, and documentation.

Pragmas can be added to methods manually, or WsdlClassBuilder can
create pragma templates for service class methods in the “public api”
category. The method creates or updates all methods in “public api”
category and opens a browser on all updated methods.

The pragmas can be added to the service class and its super
classes.

For an interface description the following pragmas are supported:

#operationName:

The operation name to be used for the <operation> element in the
WSDL <portType> element.

#documentation:

The operation description.

#addParameter: parameterDescription type: typeDescription

parameterDescription is either:

• #parameterName

• #(#parameterName #parameterType)

where #parameterName is the parameter name, as a Symbol,
and the #parameterType is either #in or #out.

typeDescription is either:

• #type - describes simple or complex type, e.g., #String or
#LDHolding.
6-14 VisualWorks

Generating a Schema using the WsdlBuilder
• #(#Collection #type #min #max) - describes a collection of type
#type. #min and #max specify the cardinality of #Collection.

• #(#Array #type #dimension) - describes a Soap array type.
#dimension specifies array dimension.

• #(#Choice #(#name #type) …#(#name #type)) - describes
choice type. The choice type will be represented as a Struct
object, where the key and value of a choice type are #(#name
#type).

#addException: exceptionName type: typeDescription

Operation exception name and type. Each operation can have
zero or more exceptions. Corresponds to the WSDL <fault>
elements for the operation.

#result: typeDescription

Result type. Corresponds the WSDL operation response
message.

Note: If data types are defined in your own namespace or in
Smalltalk, the types can be described by their class names alone.
Types defined outside of your namespace or Smalltalk, in order
to be resolved, must be fully qualified as
MyNamespace.HoldingBook.

For example:

holdingByAcquisitionNumber: aLDHoldingAcquisitionNumber
"Generated by WS Tool on #(January 24, 2003 10:33:21 am)"

<operationName: #'HoldingByAcquisitionNumber'>
<documentation: #'The HoldingByAcquisitionNumber operation

returns a holding or exception if the holding not found'>
<addParameter: #'holdingByAcquisitionNumber'

type: #'LargePositiveInteger'>
<result: #'WSLDHoldingBook'>
<addException: #'holdingNotFound' type: #'LDExcHoldingNotFound'>

The above method will be represented in the WSDL <portType> and
<message> elements:

<message name="HoldingByAcquisitionNumber">
<part name="holdingByAcquisitionNumber"

type="xsd:positiveInteger"/>
</message>
<message name="HoldingByAcquisitionNumberResponse">
Web Service Developer’s Guide 6-15

Building Web Services
<part name="return" type="ns:WSLDHoldingBook"/>
</message>
<message name="HoldingByAcquisitionNumberFault">

<part name="holdingNotFound" type="ns:LDExcHoldingNotFound"/>
</message>

<portType name="WSLDSrvcGeneralPublicRpc">
<operation name="HoldingByAcquisitionNumber">
<documentation>The HoldingByAcquisitionNumber operation returns

a
holding or exception if the holding not found</documentation>
<input message="ns:HoldingByAcquisitionNumber"/>
<output message="ns:HoldingByAcquisitionNumberResponse"/>
<fault message="ns:HoldingByAcquisitionNumberFault"/>

</operation>….
</portType>

Providing a description for interface parameters, result, and exception
types

All data type definitions used to describe the parameters in the
messages exchanged have to be defines in the WSDL <types>
element in the form of an XML Schema.

The current implementation supports complex, simple, and collection
types.

• Complex types define a set of attribute declarations. For
example, the complex type named WSLDHoldingBook contains
descriptions of holding book attributes as authors, coverPhoto,
language, largePrint, pages, and so on. In the WSDL <schema>
element, this type will be mapped to the <complexType> element.

• Simple types have no child elements. For an example, browse
the LargePositiveInteger type. Simple types are encoded using
XML Schema: Datatypes

• Collection types define collection of complex or simple types.

Each complex object must have attribute type descriptions for the
attributes that are to participate in the message exchange. The
attribute description should be provided in the set accessor pragma.

If a complex object has references to other complex objects that are
going to participate in the message exchange, these complex objects
must have attribute descriptions.
6-16 VisualWorks

Generating a Schema using the WsdlBuilder
If a superclass of the complex object has an attribute description, the
XML schema will include the <complexType> elements for the complex
object and its superclass.

The following pragmas are supported to describe the attributes:

#addAttribute: attributeDescription type: typeDescription

attributeDescription is either:

• #attributeName - element name in complex type

• #(#attributeName #options) - #options is either #optional or
#required. These values specify if this XML element will be
optional or required. The XML attribute minOccurs will be 0.
#required is the default option

typeDescription - as described above for #addParameter:type:

To create a pragma template for complex objects, you can send
setTypePragmasForClasses: to WsdlClassBuilder. This message creates
or updates setter accessors with pragmas for all instance variables,
and opens a selector browser on all updated methods.

For example

WsdlClassBuilder setTypePragmasForClasses:
(OrderedCollection

with: WSLDHoldingBook
with: WSLDDataCatalogNumber
with: WSLDDataAuthorialName)

will generate these pragma templates in WSDLHoldingBook:

acquisitionDate: aDate
"Generated by WS Tool on #(January 3, 2003 11:41:36 am)"

<addAttribute: #acquisitionDate type: #String>
acquisitionDate := aDate

authors: aCollOfWSLDDataAuthorialName
"Generated by WS Tool on #(January 3, 2003 11:41:36 am)"

<addAttribute: #authors type: #(#Collection #String)>
authors := aCollOfWSLDDataAuthorialName

The default String type should be replaced by the correct attribute
type:
Web Service Developer’s Guide 6-17

Building Web Services
acquisitionDate: aDate
"Generated by WS Tool on #(January 3, 2003 11:41:36 am)"

<addAttribute: #acquisitionDate type: #Date>
acquisitionDate := aDate

authors: aCollOfWSLDDataAuthorialName
"Generated by WS Tool on #(January 3, 2003 11:41:36 am)"

<addAttribute: #(#authors #optional)
type: #(#Collection #WSLDDataAuthorialName)>

authors := aCollOfWSLDDataAuthorialName
Also, in WSLDDataAuthorialName:

name: aWSLDDataPersonName
"Generated by WS Tool on #(January 3, 2003 11:41:35 am)"

<addAttribute: #name type: #'WSLDDataPersonName'>
name := aWSLDDataPersonName

Providing descriptions for service access points
There are two options to provide access points for a service: either by
specifying the service URL in the Opentalk server class, or by using
the WsdlBuilder API. WsdlClassBuilder can generate the Opentalk
server class with the service description template. The service URL
should be changed to correct address.

The following pragmas are supported to describe server ports:

wsdlServiceImplementation

Specifies the WSDL <service> element name.

serviceClass: aServiceSymbol address: accessPointSymbol
bindingType: bindingSymbol

Describes the service class, its access point, and binding type.
The service class name must be fully qualified (e.g.,
WebServices.WSLDSrvcGeneralPublicDoc), unless it is defined in the
Smalltalk.* name space.

For example:

OpentalkServerSrvcGenPublicDoc class >> portDescription
"Generated by WS Tool on #(January 31, 2003 10:29:21 am)"

<wsdlServiceImplementation: #'ServiceImplementationName'>
<serviceClass: #'WebServices.WSLDSrvcGeneralPublicDoc'

address: #'http://localhost:3931/generalDoc' bindingType: #'soap'>
6-18 VisualWorks

Generating a Schema using the WsdlBuilder
Generating the specification
After performing the above preparatory steps, the WSDL
specification can be generated.

Browse WSLD1TestCreateWSDL, in the WebServicesDemo parcel, for
examples.

WsdlBuilder instance creation API

buildFromOpentalkServer: aServerClassName
classNamespace: clString targetNamespace: tnsString

(Both class and instance versions.) Builds all elements for the
WSDL specification: types, portType, binding, service and
XMLToSmalltalk binding. All data types will be resolved in the
specified class name space. tnsNamespace contains the target
namespace for the WSDL specification and XML types. The
default message style is “document/literal.” The server port
description provides information about service class and access
point.

buildFromOpentalkServer: aServerClass

The same as above with default values for class name space and
target name space. The default class name space is 'Smalltalk.*'
and the default target namespace is 'urn:vwservices'.

buildFromService: aServiceClass classNamespace: clString
targetNamespace: tnsString

Same as buildFromService:.

buildFromService: aServiceClass

(Both class and instance versions.) From service class interface
description builds the WSDL elements types, portType, binding
and XML-to-Smalltalk binding.

Instance methods

useDocument

Sets properties to build 'document/literal' style

useRPC

Sets properties to build 'rpc/literal' style
Web Service Developer’s Guide 6-19

Building Web Services
useRPCEncoded

Sets properties to build 'rpc/encoded' style

setPortAddress: url forBindingNamed: serviceName
wsdlServiceNamed: wsdlService

Set an access point (url) for the service class (serviceName).
The value of wsdlService provides name for the WSDL <service>
element. The method corresponds to the service description from
Opentalk server class.

Creating WSDL specification elements

createSpec

Creates a full WSDL specification with elements types, portType,
binding and service. The service element created only if
information about access point was provided.

createServiceInterface

Creates types, portType and binding elements.

createServiceImplementation: locationString

Creates an import element with interface location specified by
URL (locationString) and service element.

createSmalltalkBinding

Creates a XMLToSmalltalkBinding element

createSpecWithSmalltalkBinding

Full WSDL specification and XMLToSmalltalkBinding element

Printing WSDL specification

printSpecOn: aStream printServiceInterfaceOn: aStream
printServiceImplementationOn: aStream interfaceLocation: aString
printSmalltalkBindingOn: aStream
printSpecWithSmalltalkBindingOn: aStream

Output the spec on the specified stream.

Examples
To build a WSDL 'rpc/literal' schema from an Opentalk server class:

builder := WsdlBuilder new.
builder
6-20 VisualWorks

Using the Opentalk Request Broker
useRPC;
buildFromOpentalkServer: OpentalkServerSrvcGenPublicRpc
classNamespace: 'WebServices'
targetNamespace: 'urn:LibraryDemo\srvcGeneral\rpc'

To print WSDL with a XMLToSmalltalkBinding element:

stream := (String new: 2048) writeStream.
builder printSpecWithSmalltalkBindingOn: stream.

To build a WSDL 'document/literal' schema from a service class:

builder := WsdlBuilder
buildFromService: WSLDSrvcGeneralPublicDoc
classNamespace: 'WebServices'
targetNamespace: 'urn:LibraryDemo\srvcGeneral\srvcdoc'.

Printing types, portType and binding elements:

stream := (String new: 2048) writeStream.
builder printSpec: stream.

Adding an access point for the service:

builder
setPortAddress: 'http://localhost/WSSrvcGeneralPublic/

srvcGeneralDoc'
forBindingNamed: 'WSLDSrvcGeneralPublicDoc'
wsdlServiceNamed: 'LibraryDemoSoapDoc'.

Printing a service implementation:

builder
printServiceImplementationOn: stream
interfaceLocation: 'http://localhost/schemaDoc.wsdl'

Using the Opentalk Request Broker
By integrating the SOAP support infrastructure with Opentalk, your
server and client applications gain access to the Opentalk request
broker and its services.

In the Opentalk framework, your application uses a request broker to
access all distribution services and their corresponding APIs. The
application establishes an instance of the distribution machinery by
creating an instance of the request broker.

In the preceding discussions of WSDL and SOAP clients, a broker
was not needed. When using higher-level APIs, the services
performed by a broker are established implicitly as part of the
request.
Web Service Developer’s Guide 6-21

Building Web Services
However, for developing a web services server, or using web services
as a distributed computing architecture, you need a full request
broker.

The following discussion describes the APIs used to create,
configure, and manipulate these broker objects.

Creating and Configuring a Broker
A request broker maintains the necessary machinery to manage
access to its services. This requires an access point, an object
adaptor to represent the protocol implementation, and a registry of
objects that represent its services.

Several instance creation methods, defined in BasicRequestBroker,
provide common broker configurations:

newSoapCgiAt: anIPSocketAddress binding: aWsdlBinding
newSoapCgiAt: anIPSocketAddress bindingNamed: aString
newSoapCgiAtPort: aNumber binding: aWsdlBinding
newSoapCgiAtPort: aNumber bindingNamed: aString
newSoapHttpAt: anIPSocketAddress binding: aWsdlBinding
newSoapHttpAt: anIPSocketAddress bindingNamed: aString
newSoapHttpAtPort: aNumber binding: aWsdlBinding
newSoapHttpAtPort: aNumber bindingNamed: aString

Create a new binding as specified.

Select the instance creation method according to the transport type
(CGI or HTTP), how the access point is specified (port number or
IPSocketAddress instance), and how the WSDL binding is specified (a
WsdlBinding instance or a String).

For example, to create a broker using the HTTP transport on port
4242 and the TimeServerSoapBinding (see SOAP Messaging below or
the Opentalk-SOAP package comment for the binding definition), use:

server := BasicRequestBroker
newSoapHttpAtPort: 4242
bindingNamed: 'TimeServerSoapBinding'

The access point (port number or IP socket address) is the specific
location in the network where the broker receives remote messages.
Access points link the brokers with the underlying network protocol,
and so are expressed in terms recognized by the protocol. For
example, the access points of TCP/IP based brokers are instances of
IPSocketAddress.
6-22 VisualWorks

SOAP Messaging
The broker creation methods all invoke the more basic Opentalk
broker creation API. For a full discussion of the Opentalk broker
framework, refer to the Opentalk Communication Layer Developer’s
e.

Additional configuration of the broker can be performed by sending
these messages to the broker:

requestType: aClass

Sets the request class to be used by the broker.

requestTimeout: anInteger

Sets the request timeout as anInteger milliseconds

Starting and Stopping a Broker
An instance of a broker has to be activated before it can mediate
remote communication. To activate it to a “running” state, use the start
message. Similarly, stop it by sending a stop message. Stopping a
broker closes all the open communication channels and deactivates
it. Once it has been stopped, a broker can be restarted again with
start.

| server |
server := (BrokerConfiguration standard

adaptor: (AdaptorConfiguration connectionOriented
transport: (TransportConfiguration http

marshaler: (MarshalerConfiguration soap
bindingNamed: 'TimeServerSoapBinding')))

) newAtPort: 4242.
“ server start.

SOAP Messaging
The Opentalk-SOAP parcel integrates generic SOAP/WSDL support
with Opentalk-XML (see XML Messaging below), to provide
transparent messaging access to SOAP services for clients, and
infrastructure for setting up SOAP servers. SOAP messages are sent
via lower-level transport protocols, usually via HTTP, which has to be
loaded as well in order to set up a SOAP broker (see HTTP Transport
Extensions below).
Web Service Developer’s Guide 6-23

OpentalkDevGuide.pdf
OpentalkDevGuide.pdf

Building Web Services
The SOAP marshaler configuration method is soap, with a required
parameter binding: which takes an instance of WsdlBinding. Another
form of the required parameter is bindingNamed: that takes a name of
a pre-loaded WSDL binding.

Let's build a simple time service as an example. It will support a
single operation “Now” that will return the current time. For the service
implementation we will simply use the Timestamp class, and the
operation “Now” will invoke the now method. Consider the following
WSDL binding definition:

schema := '<definitions
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
targetNamespace="urn:time-server">
<message name="timeNow">
</message>
<message name="timeNowResult">

<part name="time" type="xsd:dateTime" />
</message>
<portType name="TimeServerPortType">

<operation name="TimeNow">
<input message="timeNow" />”
<output message="timeNowResult" />

</operation>
</portType>
<binding name="TimeServerSoapBinding" type="TimeServerPortType">

<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http" />

<operation name="TimeNow" selector="now">
 <soap:operation

soapAction="http://localhost/TimeServer.TimeNow" />
<input>

<soap:body use="encoded"
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/" />
</input>
<output>

<soap:body use="encoded"
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/" />
</output>

</operation>
</binding>

</definitions>'.
6-24 VisualWorks

SOAP Messaging
The binding instance can be built from the schema as follows:

(WsdlBinding loadWsdlBindingFrom: schema readStream)
bindings first.

Once the binding is loaded we can create an instance of a broker for
SOAP over HTTP:

client := (BrokerConfiguration standard
adaptor: (AdaptorConfiguration connectionOriented

transport: (TransportConfiguration http
marshaler: (MarshalerConfiguration soap

bindingNamed: 'TimeServerSoapBinding')))
) newAtPort: 4243.
client start.

We will need to create another SOAP broker for the server, and let's
run it on port 4242. To complete the server setup we just need to
register the server object implementing the service with the server
broker. Registration is performed by simply exporting the server
object with a preselected OID:

service := Timestamp.
server objectAdaptor export: service oid: 'timeserver'.

This simple setup allows us to send SOAP requests. SOAP requests
are sent to instances of a URL instead of an ObjRef. The URL should
point to the address that the server broker is listening on and include
the OID as an additional path element. In our example we can run
both brokers in the same image in which case the URL would be:

url := 'http://localhost:4242/timeserver' asURI.
A requests can be sent in an RPC style or in a fully transparent way.
An RPC-style request invocation would look as follows:

reply := client sendRequest:
(SOAPRequest

newRequest: (Message selector: #now)
to: url
timeout: 20000).

To be able to send a message transparently we need to have a proxy
for the remote service (of course the proxy can be reused for multiple
message sends):

proxy := RemoteObject newOn: url requestBroker: client.
reply := proxy now.
Web Service Developer’s Guide 6-25

Building Web Services
Don't forget that when you're done using a broker it should be
stopped.

client stop.
server stop.

Mapping SOAP operations to Smalltalk messages
In the WSDL binding specification above, there's one element
attribute, “selector,” in the <operation> element in the <binding> section,
that is not specified in the WSDL specification. This attribute is part of
the Opentalk extensions, and is very important, because it is the only
thing that links the WSDL operation “TimeNow” to the Smalltalk
message now. Without it the framework can only make some simple
guesses about which Smalltalk message to invoke when a SOAP
request arrives. It is also important for clients, because it instructs the
marshaler to marshal given Smalltalk message as the corresponding
WSDL operation in the outgoing SOAP request. If the selector is not
defined in the WSDL operation binding, then,

1 the operation name is transformed using the algorithm in
SoapOperationBinding equivalentSmalltalkMessageName,

2 the target objects is checked as to whether it responds to the
computed selector, and

3 if it does, that message is sent to the target object.

If the target object does not respond to either selector, it will be sent
message soapPerform: with the SOAPRequest instance as the
argument.

It is usually desirable to provide explicit mapping between WSDL
operations and Smalltalk messages. However WsdlBindings are often
built automatically from publicly available binding specifications, and it
specification writers can not generally be expected to add valid
smalltalk selector equivalents of operation names to it.

You may simplify this work by using the WsdlClassBuilder to add
mappings to Smalltalk classes and methods to a schema, in the
<schemaBindings> section. Refer to Creating Service Classes using
the WsdlClassBuilder in this chapter for more information.

If simply editing the specification and filling in the “selector” attribute
is not feasible, for example because the specification is still under
development and changes frequently, it is possible to modify the
instance of WsdlBinding directly aftet it is built from the specification
6-26 VisualWorks

SOAP Messaging
XML. For example, if the “TimeNow” operation did not have the selector
attribute specified, we could use following code fragment to
compensate for that:

(binding operations
detect: [:op | op name asString = 'TimeNow']) selector: #now.

User-defined SOAP types
Only simple data types are passed along with the messages in our
simple example. To handle more complex objects, the marshaling
framework needs an XMLToSmalltalk binding, the same as the one
used for generic XML brokers. The binding definition can be included
directly in the WSDL specification as in the next example:

schema := '<definitions
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
targetNamespace="urn:coordinate-converter">
<schemaBindings >
<xmlToSmalltalkBinding name="CoordinateConverterBinding"

xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
targetNamespace="urn:coordinate-converter">
<object name="Point" smalltalkClass="Point">

<element name="x" ref="xsd:double"/>
<element name="y" ref="xsd:double"/>

</object>
</xmlToSmalltalkBinding>
</schemaBindings >
<message name="ConvertPolarRequest">

<part name="radius" type="xsd:double" />
<part name="theta" type="xsd:double" />

</message>
<message name="ConvertPolarResponse">

<part name="point" type="Point" />
</message>
<portType name="CoordinateConverterPortType">

<operation name="ConvertPolar">
<input message="ConvertPolarRequest" />
<output message="ConvertPolarResponse" />

</operation>
</portType>
<binding name="CoordinateConverterBinding"

type="CoordinateConverterPortType">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http" />
Web Service Developer’s Guide 6-27

Building Web Services
<operation name="ConvertPolar" selector="r:theta:">
<soap:operation

soapAction=
"http://localhost/CoordinateConverter.ConvertPolar" />

<input>
<soap:body use="encoded"

encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/" />

</input>
<output>

<soap:body use="encoded"
encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/" />
</output>

</operation>
</binding>

</definitions>'.
This is a schema that allows us to set up a server supporting a
ConvertPolar operation that takes polar coordinates and returns an
instance of Point with (x,y) coordinates. The operation binding plugs
into the Point class method r:theta:, so one can simply export the Point
class itself as the service implementation. The client side can directly
use the #r:theta: message to invoke the operation.

The standard way is to define custom data types using the WSDL
<types> section. So instead of the <schemaBindings> section above
there would be something like the following:

'...
<types>
<schema xmlns="http://www.w3.org/2000/10/XMLSchema"

targetNamespace="urn:coordinate-converter">
<complexType name="Point">

<element name="x" type="double" />
<element name="y" type="double" />

</complexType>
</schema>
</types>
...'

This has to be converted into an <xmlToSmalltalkBinding> section for
the marshaling framework. It can be done by hand, or with the help of
XMLTypesParser, which is able to generate an <xmlToSmalltalkBinding>
out of the WSDL <types> section.
6-28 VisualWorks

XML Messaging
Class WsdlClient illustrates how to use the XMLTypesParser for "on-the-
fly" parsing of WSDL specifications downloaded from the Internet.
Currently the easiest way to invoke this parser is through the
WsdlClient, e.g.:

binding := (WsdlClient readFrom: schema readStream)
config bindings first.

Note that the <xmlToSmalltalkBinding> generated by the parser has a
limitation. Since the <types> section does not specify the Smalltalk
classes to which the individual types correspond, it generates all the
type marshalers as struct marshalers. This means that the
marshalers don't expect to handle general objects but instances of
Struct instead. This is actually useful for dynamic clients like
WsdlClient, for which one cannot expect to have the domain classes to
be readily implemented in the client image. Marshaling the datatypes
as Struct objects avoids this obstacle.

Exceptions and SOAP Faults
In general, any exceptions sent to the client are sent as SoapFaults.
SoapFault instances can be generated by Opentalk or built by the
application code. Transparent handling of operation faults (faults
listed in the operation declaration in the WSDL specification) is also
supported. Operation faults are marshaled into the <detail> element of
SoapFault. On the client side Opentalk checks if the incoming SoapFault
has an operation fault in its <detail> element. If there is one, it signals
the <detail> exception, otherwise it signals the generic SoapFault
exception. Operation faults are expected to be implemented as
subclasses of Error.

The application code generates an operation fault by signaling the
corresponding Error. Application code can also generate a SoapFault
explicitly by signaling a SoapFault exception. Client code is expected
to use the usual exception handling constructs, with the constraint
that faults are inherently not resumable.

XML Messaging
The Opentalk-XML parcel enhances the XML-Object marshaling
framework (XMLObjectMarshalers parcel) to integrate it with Opentalk.
It also adds a new XML marshaler and XML messages, providing a
general support implementation for XML messaging. As an
abstraction, this provides for future implementation of XML-based
Web Service Developer’s Guide 6-29

Building Web Services
protocols, in addition to SOAP, simply by providing a binding. The
SOAP implementation is, in effect, simply an extension of the XML
protocol framework.

Marshaling
As before, the protocol is defined by an XMLObjectBinding, as
described in XML to Smalltalk Mapping. All entities carried by the
messages, i.e., objects, exceptions, and message formats, have to
be defined in a binding. Also, individual marshaler methods are
defined for the various XML elements.

Opentalk-XML adds a new marshaler, XMLMarshaler, as a centralized
marshaler object that invokes all the individual marshaler methods in
the SOAP parcel. The marshaler is initialized with an instance of
XMLObjectBinding, which is wrapped in an instance of
XMLOperationMap that maps Smalltalk selectors to corresponding
request/reply entity types.

The XML marshaler configuration method is xml. An XML marshaler
configuration has a required parameter map: which takes an instance
of the XMLOperationMap as the parameter. An instance of
XMLOperationMap is created on an instance of binding using the
binding: instance creation method. The selector mapping has to be
built using add:request:reply: which takes the selector, request struct
tag name and reply struct tag name as the parameters.

The XML protocol has to be used in combination with a lower level
transport protocol, like HTTP, which must be loaded in order to set up
an XML broker.

Let's build a simple random number generator service as an
example. It will support a single request NextBatch that will return a
sequence of random numbers. For the service implementation we will
simply use an instance of Random, and the NextBatch request will
invoke the #next: method on it. The corresponding binding definition
would look as follows:

schema := '<schemaBindings >
<xmlToSmalltalkBinding name="RandomGenerator"

xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
targetNamespace="urn:random">

<sequence_of name="numbers">
<implicit ref="xsd:float"/>

</sequence_of>
<struct name="NextBatch">
<element name="number" ref="xsd:integer" />
6-30 VisualWorks

XML Messaging
</struct>
</xmlToSmalltalkBinding>

</schemaBindings >'.
The operation map has to associate the 'NextBatch' request and the
'numbers' reply with the Smalltalk message next:

binding := XMLObjectBinding loadFrom: schema readStream.
map := (Opentalk.XMLOperationMap binding)

add: #next:
request: 'NextBatch'
reply: 'numbers';
yourself.

With the operation map, we can create an instance of a broker for
XML over HTTP as follows:

client := (BrokerConfiguration standard
adaptor: (AdaptorConfiguration connectionOriented

transport: (TransportConfiguration http
marshaler: (MarshalerConfiguration xml

map: map)))) newAtPort: 4243.
client start.

Of course, we’ll need to setup a server to be able to run the example.
Let's assume we have another XML broker called server running on
port 4242. To complete the server setup we just need to register the
server object implementing the service with the server broker.
Registration is performed by simply exporting the server object with a
preselected OID:

service := Random new.
server objectAdaptor export: service oid: 'random'.

Now we are ready to send requests. XML requests are sent to
instances of a URL instead of an ObjRef. The URL should point to the
address that the server broker is listening on and include the OID as
an additional path element. In our case, it could be:

url := 'http://localhost:4242/random' asURI.
A request can be sent in an RPC style or in a fully transparent way.
An RPC-style request invocation would look as follows:

reply := client sendRequest: (
XMLRequest

newRequest: (Message selector: #next: argument: 10)
to: url
timeout: 20000).
Web Service Developer’s Guide 6-31

Building Web Services
To be able to send a message transparently we need to have a proxy
for the remote service (of course the proxy can be reused for multiple
message sends):

random := RemoteObject newOn: url requestBroker: client.
reply := random next: 10.

Don't forget that when you're done using a broker it should be
stopped.

client stop.
server stop.

HTTP Transport Extensions
HTTP is the only transport currently supported for web services in
Opentalk. This is provided by HTTPTransport, which does standard
HTTP request handling, and CGITransport, which handles requests
passed via a CGI relay.

HTTPTransport
The Opentalk-HTTP parcel contains the HTTP transport
infrastructure required to operate with the request broker. The HTTP
transport can be used with either the XML marshaler or the SOAP
marshaler.

Two versions of HTTP transport are implemented.

• HTTPClientTransport simply wraps Net.HttpClient to do the actual
HTTP work, and is, therefore, only usable for request clients.

• HTTPTransport implements both an HTTP client and an HTTP
server, but is not currently a full-featured HTTP server

HTTPTransport may be missing some features that are important in
your application. For example, there is currently no built-in support for
firewall proxies, and so will not be useful in cases where you have to
use a proxy to get to an external SOAP server. HTTPClientTransport, on
the other hand, does support proxies, and so is useful in this case.
Also, for setting up a server, consider using the CGITransport from the
Opentalk-CGI package.

HTTPTransport assumes that application messages can carry
contextual information (both XML and SOAP messages do). The
transport compiles an "environment" dictionary from all the header
6-32 VisualWorks

HTTP Transport Extensions
fields of the transport message and attempts to install it into the
message during unmarshaling. This allows the application to access
the header fields if necessary.

The configuration message for HTTPClientTransport is chttp. The
transport is implemented as a datagram transport, and therefore it
must be used with a connectionless adaptor. For example, assuming
an xml-to-Smalltalk binding:

<xmlToSmalltalkBinding
elementFormDefault="qualified"
name=""
targetNamespace="urn:TestingHeaders"
defaultClassNamespace="Opentalk"
xmlns:tns="urn:TestingHeaders"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="urn:visualworks:VWSchemaBinding">

you might set up a SOAP broker for it with:

^(BasicBrokerConfiguration new
requestTimeout: 3000;
adaptor: (ConnectionAdaptorConfiguration new

isBiDirectional: false;
soReuseAddr: true;
transport: (TransportConfiguration http

marshaler: (MarshalerConfiguration soap
binding: aXMLObjectBinding)))

) newAtPort: aPort
If you have defined and registered an XML to Smalltalk binding for
this (see XML to Smalltalk Mapping), named DateCalculatorBinding, this
would simplify to:

(BrokerConfiguration standard
adaptor: (AdaptorConfiguration connectionLess

transport: (TransportConfiguration chttp
marshaler: (MarshalerConfiguration soap

bindingNamed: 'DateCalculatorBinding'))))
newAtPort: 4242

To configure an HTTPTransport, use the message http. The transport is
a StreamTransport, therefore it has to be used with a connection-
oriented transport. Here is an example of how to setup a SOAP
broker for it:
Web Service Developer’s Guide 6-33

Building Web Services
(BrokerConfiguration standard
adaptor: (AdaptorConfiguration connectionOriented

transport: (TransportConfiguration http
marshaler: (MarshalerConfiguration soap

bindingNamed: 'DateCalculatorBinding'))))
newAtPort: 4242

CGITransport
The Opentalk CGITransport class, which is provided in the Opentalk-
CGI parcel extends HTTPTransport to support web-server mediated
communication through VisualWave CGI relays. This is useful, for
example, if you want to use a web server like Apache to serve static
content and pass of CGI requests to a VisualWave application.

CGITransport simply listens to a socket, waiting for requests from the
relay. CGITransport is obviously only usable for servers, not clients.

Note that CGITransport assumes that application messages can carry
contextual information (both XML and SOAP messages do). The
transport compiles an "environment" dictionary from the environment
variables passed by the CGI relay and attempts to install it into the
message during unmarshaling. This allows the server application to
access the header fields if necessary (e.g. when trying to hook into
the security features of the webserver).

The corresponding configuration message for TransportConfiguration is
cgi. The transport is a StreamTransport therefore it has to be used with
a connection-oriented transport. Here is an example setting up a
SOAP broker using CGI:

(BrokerConfiguration standard
adaptor: (AdaptorConfiguration connectionOriented

transport: (TransportConfiguration cgi
marshaler: (MarshalerConfiguration soap

bindingNamed: 'DateCalculatorBinding'))))
newAtPort: 4242

Configuring the VisualWave CGI relay is described in the Web Server
. Configuring the relay involves:

1 Copying the appropriate cgi2vw VisualWave CGI relay executable
to the server, and renaming it appropriately.

2 Copying the cgi2vw.ini file to a VisualWave directory, and setting
access permissions.

3 Editing the HTTP server configuration file appropriately to find
the INI file.
6-34 VisualWorks

WebServerConfig.pdf
WebServerConfig.pdf

HTTP Transport Extensions
4 Configuring the CGITransport to use the VisualWave CGI relay.

Refer to the Web Server Configuration Guide for detailed instructions.
Web Service Developer’s Guide 6-35

WebServerConfig.pdf

Building Web Services
6-36 VisualWorks

7

XML to Object Binding Wizard

The VisualWorks web services framework includes wizards and
builders that can automatically generate Smalltalk classes for use in
your application.

The XML-to-Object Binding wizard enables you to ascribe types to
domain classes, to create X2O bindings, and to test the marshaling
and unmarshaling behavior of these classes.

X2O bindings may also be used by any application (not merely web
services) that needs to serialize and deserialize Smalltalk classes to/
from XML. For a more detailed discussion of XML to object
translation, see: XML to Smalltalk Mapping.

Using the XML-to-Object Binding Wizard
The XML to Object Binding Wizard helps to create X2O binding and
XML schema specifications for your domain classes. These X2O
bindings may be used when building web services applications, or
any other application that needs to translate between Smalltalk
objects and XML documents.

In the case of a web services application, an X2O binding provides
descriptions of the parameters to each operation that belongs to a
service. These descriptions include type information, which is
represented using Smalltalk classes (i.e., each type is actually a
class). In the WSDL schema for a given application, the types in an
X2O binding element apper in the <types> element of the schema.

Specifically, the wizard simplifies the task of assigning classes as
types for the operation parameters that will be passed to service
classes.
Web Service Developer’s Guide 7-1

XML to Object Binding Wizard
Before using the wizard, you must also load the
XMLObjectBindingWizard package (for instructions, see: Loading
Support for Web Services).

An Example Application
To illustrate the use of the wizard, consider a simple web service that
defines a Customer class like this:

Smalltalk defineClass: #Customer
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: 'name emailAddress physicalAddress
telephoneNumbers '
classInstanceVariableNames: ''
imports: ''
category: '(none)'

Let’s say, further, that the web service includes an operation to fetch
the address of a particular Customer instance, e.g.:

addressFor: aCustomer
In order to send instances of class Customer to this service, we need
to be able to translate it into XML. The web services framework does
this automatically, but the application developer must first specify the
types of class Customer’s instance variables. In VisualWorks, these
types are represented as classes.

For the purposes of this example, we’ll specify these types using a
mix of simple and complex types, the latter defined by the Library
Demo:

The steps described below show how to create an X2O binding for
class Customer.

Instance Variable Type

name String

emailAddress Protocols.Library.EmailAddress

physicalAddress Protocols.Library.PhysicalAddress

telephoneNumbers Collection of
Protocols.Library.TelephoneNumber
7-2 VisualWorks

Using the XML-to-Object Binding Wizard
Creating an XML to Object Binding
To begin, first load the XMLObjectBindingWizard and WebServicesDemo
parcels (for instructions, see: Loading Support for Web Services).

1 To launch the wizard, select XML to Object Binding from the Tools
menu in the Visual Launcher.

Use the first page of the wizard to describe types, by building up
a list of classes.

2 To begin, set the XML Schema targetNamespace attribute.

For this example, use urn:CustomerSchema.

3 Next, add classes to the binding using the Add class... button.

For this example, choose class Customer, as we defined it above.

(To remove a class from the list, select it and click on the
Drop Classes button. To add all classes in a package, use Add all
from....)

4 After adding some classes, select one and click the Description
button.

In the Description dialog, use the <Operate> menu in the Type field
to set the following values:
Web Service Developer’s Guide 7-3

XML to Object Binding Wizard
a For name, select Simple Types • String.

b For emailAddress, select Complex Type.., and enter
Protocols.Library.EmailAddress (start by entering the name
of the class, e.g. EmailAddress).

c For physicalAddress, select Complex Type.., and enter
Protocols.Library.PhysicalAddress.

d For telephoneNumbers, select Collection.., and enter
Complex Type • Protocols.Library.TelephoneNumber.

When finished, click Accept.

The type description for each instance variable in the class is
stored as a pragma definition in the corresponding instance
setter method.

If the class doesn’t have accessor methods they are created by
the wizard. The names of the accessor methods are used in the
X2O binding’s aspect attribute.If the class doesn't have any type
description, a Caution! symbol will appear next to its name. A class
can have descriptions for some, all of none of the instance
variables, but in general all should be defined to produce a
correct WSDL schema.

Repeat this step as necessary, until all classes have been
described.

5 At this point, the following list of classes appears:

Customer

Protocols.Library.EmailAddress

Protocols.Library.PhysicalAddress

Protocols.Library.TelephoneNumber

6 Select Protocols.Library.PhysicalAddress and click Add super class.
The class AbstractRandom will be added to the list.

7 Class AbstractRandom doesn’t have any instance variables and
won’t have a type description, so you can ignore the Caution! icon
that appears next to its name.

8 When all classes are described, click Next.

9 On the Validate and Load XML To Object Binding page, you can edit the
specification as desired.
7-4 VisualWorks

Using the XML-to-Object Binding Wizard
10 When the specification has been finalized, click Next. This loads
and validates the schema, and then registers it in the
XMLObjectBinding registry.

11 On the Create XML schema description page, you can update and
save the XML Schema to a particular destination.

To save the schema, select an option in the Destination section:

• Method writes the schema to a class-side method. Provide a
method name (#wsdlSchema is the default) and specify the
class by clicking on Select....

• File-Out writes the schema to an external file in plain text
format.

• POST URL posts the schema to an HTTP server using the
specified URL.

12 When the destination has been specified, click Next.

13 The Testing XML To Object Binding page script provides a way to test
the newly created X2O bindings.

Code fragments are provided to marshal Smalltalk objects into an
XML document, and unmarshal an XML document into a
Smalltalk object.

Here, you can create instances of the XML to Object binding
classes and execute the script using Do It and Inspect It.

14 To close the tool, click Finish.
Web Service Developer’s Guide 7-5

XML to Object Binding Wizard
7-6 VisualWorks

8

XML to Smalltalk Mapping

XML has become a standard format for data exchange over the web,
and is the essential foundation for deploying Web Services via SOAP
and WSDL. To accommodate this use of XML in VisualWorks, a
mechanism is required for mapping XML elements and attributes to
Smalltalk objects, and back again. VisualWorks includes an XML-to-
Object marshaling mechanism that performs this mapping, and is the
foundation for the rest of VisualWorks web service support.

The XML-to-object mapping is generated based on a binding
specification, which is an XML document written using a syntax
described later in this chapter. From this mapping, the marshaling
engine produces prototype objects. The objects are stored in a
registry that maps the prototype objects to tag names in the binding
document. This registry is then used by the engine to marshal and
unmarshal an XML document.

The XML-to-object mechanism supports marshaling for:

• simple types to simple types;

• simple types with attributes to complex objects;

• complex elements to complex objects;

• elements, attributes, or text to aspects of Smalltalk objects.

The XML-to-object mechanism also supports a few important object
marshaling alternatives. For instance, it can marshal XML either as
an object with aspects or as a “struct,” that is, marshal to a Dictionary,
handling aspects by at:, at:put: messages. This allows you to marshal
objects for which no specific domain object has yet been defined,
permitting you to start with an intermediate implementation and then
gradually refine it. Collections can also be used in this way.
Web Service Developer’s Guide 8-1

XML to Smalltalk Mapping
Aspects can be defined easily. Both scalar aspects and repeating
groups (collection-valued aspects) are supported.

The XML to object framework supports a number of common
primitive types, including strings, numbers, token lists, URI
references, namespace-qualified names and name references, etc.
To resolve a primitive type, serialization, deserialization and initializer
blocks are used. The blocks are stored in BindingBuilder class
registries.

Core framework classes
The primary marshaling classes are implemented as subclasses of
XMLTypeMarshaler:

Object
BindingBuilder
XMLTypeMarshaler

BindingImport
HrefMarshaler
ObjectMarshaler

ComplexObjectMarshaler
CollectionObjectMarshaler
KeyObjectMarshaler

KeyRefObjectMarshaler
SoapArrayMarshaler

RelationMarshaler
AnyRelationMarshaler

BodyMarshaler
ChoiceMarshaler

ChoiceRelation
GroupMarshaler

RestrictionMarshaler
SimpleTypeMarshaler

SimpleObjectMarshaler
UnionMarshaler

XMLObjectBinding
SoapBinding
WsdlBinding

Most of these classes are marshalers for various XML types, and are
described below (see XML marshalers).

BindingBuilder is responsible for generating bindings from binding
specification documents, maintaining a registry of mappings from
XML tags to prototype marshalers, and blocks for resolving primitive
types.
8-2 VisualWorks

Creating XML-to-Object bindings
XMLObjectBinding maintains another registry, a registry of bindings for
specific schemas. It responds to requests to find a marshaler for a
specific XML tag or Smalltalk object.

Creating XML-to-Object bindings
XML-to-object translation is bidirectional. Given a Smalltalk object to
be sent to a service, the object must be marshaled as an XML data
element. And, given an XML element, it must be unmarshaled as a
Smalltalk object so it can then be processed by a Smalltalk
application.

An XML document generally has a schema describing the structure
and type of elements and attributes that the document may contain.
Based on such a schema, you create a binding specification that tells
the XML-to-object engine how to map the XML objects to Smalltalk
objects. The binding specification determines two items: the
marshaler for element or attribute, and the Smalltalk class to
represent the item.

Each binding has a target namespace (URI) and an optional name.
All NCNAMEs defined in this binding belong to their target
namespace. Each binding is represented by an instance of
XMLObjectBinding or a subclass. The main purpose of a this class is to
serve requests to its marshaler according to its name (tag). The
bindings with a target namespace register themselves in the
XMLObjectBinding class-side binding registry. These bindings can be
obtained by the target namespace.

The binding specification is itself an XML document that is
constructed using element tags stored in the BindingBuilder Registry
shared (class) variable. The element tag identifies the marshaler.
Several marshalers are already defined, though you can create
additional marshalers. Elements may take several attributes, one of
which typically specifies the Smalltalk class to model the XML data, if
a class other than the default class for the marshaler is required.

An application may register its own marshalers. An important point is
that the registry is prototype based; it contains preconfigured
instances of marshalers, not classes. One can view registry entries
as a sort of macro. This allows us to have a very small set of highly
configurable marshaler types, which is convenient because every
marshaler is potentially a small cluster of objects: the marshaler itself,
its XPath proxy and parser, and potentially a relation description,
Web Service Developer’s Guide 8-3

XML to Smalltalk Mapping
aspect implementation, and marshaler for the far side of the relation.
To create a new instance of a marshaler we, make a copy of an entry
in the registry.

An instance of RelationMarshaler can be configured to marshal
elements, attributes or text; the complex object marshaler can be
configured to marshal objects, dictionaries, collections or streams.
On top of that, a XPath expression can be specified to define rules of
XML parsing/composition. To make it usable, the registry contains
some of the most frequent and useful configurations (i.e. 'object' and
'struct', 'sequence_of', 'element', 'attribute', 'text', etc.). These are not
only preconfigured, but implicitly create XPath expressions based on
the values of other attributes.

For example, consider this simple binding specification:

schema := '<schemaBindings >
<xmlToSmalltalkBinding name="RandomGenerator"

xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
targetNamespace="urn:random">

<sequence_of name="numbers">

<implicit ref="xsd:float"/>
</sequence_of>

<struct name="NextBatch">
 <element name="number" ref="xsd:integer" />
</struct>
</xmlToSmalltalkBinding>

</schemaBindings >'.
There are two elements, introduced by the sequence_of and struct
tags. The binding registry contains entries for each of these, mapping
the tags to CollectionObjectMarshaler and ComplexObjectMarhsaler,
respectively.

BindingBuilder reads the binding specification, and maps each tag to a
copy of the marshaler object registered under the tag. Only tag types
are compared, ignoring namespaces.

The initial set of binding specification tags and their marshalers are
summarized below.
8-4 VisualWorks

Creating XML-to-Object bindings
Creating a binding specification
To create a binding specification, create an XML binding specification
document. The document may be an external file, or the return value
of a method. For example, browse the binding specification in the
XMLObjectBinding class method defaultSoapBindingLocation.

The document begins with the usual prefix information, identifying the
XML version. You’ll probably include a comment as well:

<?xml version ="1.0"?>
<!-- MyService to Smalltalk binding -->

Tag type Marshaler class

any AnyRelationMarshaler

anyCollection AnyCollectionMarshaler

attribute RelationMarshaler

bindingImport BindingImport

choice ChoiceMarshaler

choiceRelation ChoiceRelation

element RelationMarshaler

enumeration RestrictionMarshaler

group GroupMarshaler

identityStruct ComplexObjectMarshaler

implicit RelationMarshaler

key KeyObjectMarshaler

keyRef KeyRefObjectMarshaler

object ComplexObjectMarshaler

sequence_of CollectionObjectMarshaler

simple SimpleObjectMarshaler

struct ComplexObjectMarshaler

text RelationMarshaler

union UnionMarshaler

xmlToSmalltalkBinding XMLObjectBinding
Web Service Developer’s Guide 8-5

XML to Smalltalk Mapping
The body of the document is an xmlToSmalltalkBinding element (or
some other XML-to-object binding)

<xmlToSmalltalkBinding name="MyServiceBinding"
defaultClassNamespace="MyCo"
targetNamespace="http://www.myco.com/schemas/myservice"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

</xmlToSmalltalkBinding>
Namespaces are declared in this tag as shown, including the
namespace for your service’s schema and any others, such as the
XML Schema namespace.

You can import other bindings, using the bindingImport tag, and giving
the name of the binding. For example:

<!-- Imports -->
<bindingImport name="SoapBinding"/>

where “SoapBinding” specifies another binding (in
XMLObjectBinding.BindingRegistry).

The rest of the document, before the </xmlToSmalltalkBinding> close
tag, consists of specifications for individual bindings. Several
examples are shown in the following section (see Binding
specification examples, below).

Binding specification examples
The following examples illustrate binding specifications for several
object types.

Simple objects
Simple objects are objects that have an opaque structure, and
include the common primitive data types, such as string or float:

<simple name="string" id="String" />
<simple name="float" id="Float" />

Simple objects are identified by their conversion ID and are resolved
using serialization/deserialization blocks that are defined for several
Smalltalk classes (browse the BindingBuilder class method
initializeSerializationBlocks). The value comes from or is put into
element character data.

While loading the XMLToObjectBinding class, this XML schema binding
for simple types is loaded and registered:
8-6 VisualWorks

Creating XML-to-Object bindings
http://www.w3.org/2001/XMLSchema

XMLToObjectBinding class method defaultXsdBindingLocation2001.

Simple object descriptions can include constraining facets. Currently
we provide support only for "enumeration" facet (enumeration
constrains the value space to a specified set of values). For details,
see: http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/s.

Complex objects
Complex object are objects with relations. These objects are
described by their type and the set of their relations with other
objects. Relations can be implemented in a number of different ways
and are a generalization of such notions as attributes, aspects,
members of a collection, etc. A complex object knows how to get/set
value for a specific relation.

As examples of complex objects, consider the following XML complex
type element information items:

<complexType name="LDDataPersonName">
<sequence>

<element name="title" type="string"/>
<element name="firstName" type="string"/>
<element name="lastName" type="string"/>

</sequence>
</complexType>

and

<complexType name="Document">
<simpleContent>

 <extension base="string">
 <xsd:attribute name ="ID" type="string"/>

 </extension>
</simpleContent>

</complexType>

Installing a binding
To install the bindings in a binding specification document, send a
loadFrom: message to the XMLObjectBinding class. Minimally, the
command would be, if the specification is defined in the
myBindingSpec class method in your application:

WebServices.XMLObjectBinding
loadFrom: self myBindingSpec readStream
Web Service Developer’s Guide 8-7

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/datatypes#rf-facets

XML to Smalltalk Mapping
For an example with condition checking, see the XMLObjectBinding
class method loadVWBinding and similar methods.

Your binding is now loaded into XMLObjectBinding.BindingRegistry, and
ready for use.

When you update Web services with a new version, it make sense to
clean up the XML to object registry and reload you bindings. To reset
the registry, send:

WebServices.XMLObjectBinding configure.
Then load your bindings.

XML marshalers
Marshalers convert XML elements and/or their parts to Smalltalk
objects, and vice versa. Each marshaler matches some XML node or
collection of nodes. Therefore, each marshaler has an associated
XPath expression and XPath parser for this expression. Since XPath
is a kind of object in itself, there is a bridge between marshaler and
XPath parser—XMLMarshalerProxy.

XML marshalers interact with a MarshalingContext, which maintains all
the context needed to perform marshaling and unmarshaling.

All marshalers are subclasses of XMLTypeMarshaler, and must support
the following protocols:

marshalFrom: marshalingContext

Marshal Smalltalk object as XML.

unmarshalFrom: marshalingContext

Unmarshal XML as a Smalltalk object.

Marshalers also implement methods that facilitate marshaling of
compound objects.

The marshaler hierarchy contains three main categories of
marshalers

• Type marshalers - These are the “real” marshalers that marshal
(parts of) XML elements to Smalltalk objects. Several are
described below.

• XML-to-object bindings - These are high-level repositories of
binding info. They are usually root elements in the binding spec.
8-8 VisualWorks

Marshaling XML entity types
An XML-to-Object binding contains the list of all element
marshalers and can find a marshaler for specific XML tag or
Smalltalk object. Bindings can import other bindings.

• Others - These are not real marshalers, but rather serve to
configure other marshalers. An example is BindingImport which
is only used to add import definitions to bindings.

Marshaling XML entity types

Mashaling XML <simpleType> elements
SimpleObjectMarshaler instances are used to marshal simple types like
strings and numbers, and so implement known primitive types that
are defined in XML Schema datatypes. Primitive type marshalers
implement methods serialize: and deserialize:, and have two blocks that
actually perform the conversion between an XML string and a
Smalltalk object. BindingBuider maintains dictionaries of serialization
and deserialization blocks keyed by id (i.e. 'String', 'date', 'binary').

For example, for the XML data type “dateTime” the mapping is:

<simple name="dateTime" id="dateTime"/>
The serialization and deserialization blocks are:

Deserializers at: 'date'
put: [[:mv :string | self decodeDateFrom: string]].

Serializers at: 'date'

put: [[:mv | self encodeDate: mv value]].
The XML simple type can be described as:

<s:simpleType name="Title">
<s:restriction base="s:string">

<s:enumeration value="Mr." />
<s:enumeration value="Mrs." />

</s:restriction>
</s:simpleType>

The element will be described in the XML to object binding:

<element name="Title" ref="s:string">
<s:enumeration value="Mr." />
<s:enumeration value="Mrs." />

</element>
Web Service Developer’s Guide 8-9

XML to Smalltalk Mapping
While marshaling/unmarshaling the "Title" element, the
SimpleObjectMarshaler will validate the string value and raise an
EnumerationValueError exception if the value does not equal 'Mr.' or
'Mrs.'.

Marshaling XML <complexType> elements
ObjectMarshaler is superclass for marshaling/unmarshaling complex
objects, such as structs, objects, and collections.

ComplexObjectMarshaler and its subclasses marshal objects with parts,
such as:

struct

Marshal an object as a Dictionary, for accessing parts using an at:
message.

object

Marshal objects with aspects (accessor methods).

Marshaling XML complex types as Dictionaries
The XML <complexType> element information item can be mapped to
a <struct> binding element, which is the default mapping for XML
complex types.

The XMLToObjectBinding descriptions for the two XML elements above
would be:

<struct name="LDDataPersonName">
<element name="title" aspect="title" ref="xsd:string"/>
<element name="firstName" aspect="firstName" ref="xsd:string"/>
<element name="lastName" aspect="lastName" ref:="string"/>

</struct>
and

<struct name="Document">
<text aspect="value" ref="xsd:string"/>
<attribute name ="ID" aspect="id" ref="xsd:string"/>

</struct>
A <struct> binding element is, by default, marshaled by the
ComplexObjectMarshaler as an instance of WebServices.Struct (a
subclass of Dictionary), with its constituent objects as entries. The
dictionary entries are specified by the "aspect" attribute.
8-10 VisualWorks

Marshaling XML entity types
The XML element described by the first struct is unmarshaled into:

WebServices.Struct new
at: #title put: 'Mr.';
at: #firstName put: 'John'
at: #lastName put: 'Smith'.

The second struct is represented as:

WebServices.Struct new
at: #value put: 'some text';
at: #id put: '1234'.

Marshaling XML complex types as objects
The XML <complexType> element information items can be mapped to
<object> binding elements. In this case, the samples above would be
described as:

<object name="LDDataPersonName" smalltalkClass = "PersonName">
<element name="title" aspect="title" ref="xsd:string"/>
<element name="firstName" aspect="firstName" ref="xsd:string"/>
<element name="lastName" aspect="lastName" ref:="string"/>

</object>
and

<object name="Document" smalltalkClass = "SampleDocument">
<text aspect="value" ref="xsd:string"/>
<attribute name ="ID" aspect="id" ref="xsd:string" setSelector="setID"

getSelector="getID"/>
</object>

An <object> binding element is marshaled by the
ComplexObjectMarshaler as an instance of the Smalltalk class with the
name specified by the smalltalkClass attribute.

When the XML to object binding is loaded the Smalltalk class must
exist; otherwise, the binding builder is raises an
ClassIsNotDefinedSignal exception, and the handler builds the class.
Smalltalk classes are created with any instance variables that are
specified in "aspect" attributes, and with accessor methods for those
instance variables.

In our examples, the first XML element described by the first "object"
is would be unmarshaled to:

PersonName new
Title: 'Mr.';
firstName: 'John';
lastName: 'Smith'.
Web Service Developer’s Guide 8-11

XML to Smalltalk Mapping
The second object is unmarshaled as:

Doc := SampleDocument new
value:'some text';
setID: '1234'.

Id := doc getID.

Existing binding attributes

Attribute name default description

Relation description:

name no Can be used to set default accessors.

aspect name Can be used to set default accessors.

setSelector aspect Used as set accessor for the specified
aspect.

getSelector aspect Used as get accessor for the specified
aspect.

minOccurs 0 Sets occurrence constraint.

maxOccurs 1 Sets occurrence constraint; to set
unbounded, use '*'.

Resolvers

ref no Used to resolve the simple or complex
object identity.

smalltalkClass no Used to resolve complex object
identity. Default class namespace is
'Smalltalk'; to specify another
use:'MyNamespace.MyClass' or
setdefaultClassNamespace="MyName
space"in XMLToObjectBinding for all
binding classes

Xpath description:

xpath tag or
name

Used to construct xpath expression to
define rules of xml parsing/
composition.

xpathPrefix no Constructs xpath expression
xpathPrefix,xpath

xpathSuffix no Constructs xpath expression xpath,
xpathSuffix
8-12 VisualWorks

Marshaling XML entity types
Mapping XML <union> elements
A union defines a collection of simple object definitions.

XML to olbject bindings for union datatypes can be described as:

<union name="size">
<simple baseType="xsd:integer"/>
<simple baseType="xsd:token">

<enumeration value="small"/>
<enumeration value="large"/>

</simple>
</union>

or using memberTypes attribute:

<union name="size" memberTypes="tns:integerType tns:booleanType" >
<simple baseType="xsd:token">

<enumeration value="small">
</enumeration>

<enumeration value="medium">
</enumeration>

<enumeration value="large">
</enumeration>

</simple>
</union>
<simple name="booleanType" baseType="xsd:boolean"/>
<simple name="integerType" baseType="xsd:integer" maxInclusive="18"

minInclusive="2"/>
<struct name="Coat" tag="Coat">

<element name="size" ref="tns:size">
</element>

<element name="color" ref="xsd:string">
</element>

</struct>
The UnionMarshaler holds a collection of union member type
marshalers and tries to use them in the order in which they appear in
the definition until a match is found. The marshaler for memberTypes
attributes s added first to the marshalers collection.The evaluation
order can be overridden with the use of xsi:type.

Marshaling XML <element> elements
An <element … /> binding specifies a relationship between a new
object type and an already defined type. Marshaling/unmarshaling is
done based on an XPath expression defined as 'child::xxx', where xxx
is the value of the name attribute.
Web Service Developer’s Guide 8-13

XML to Smalltalk Mapping
A RelationMarshaler handles the marshaling/unmarshaling for objects
whose marshalers are specified as the same as for some already
defined object type. Accordingly, it collaborates with its parent
marshaler to get/set the value to the parent object.

Since relations may be either one-sided or many-sided, and
implementation of marshaling is reasonably different, to represent
those differences there is a separate class, a subclass of Relation,
which represents a relation between an object and its parts. A
relation has a descriptive name, get and set selectors, and cardinality
constraints.

Note that the meaning of a get or set selector entirely depends on the
aspect implementation for that relation. For object aspects, for
example, it represents real selectors; for Dictionary aspects these are
keys for at: and at:put: methods.

For example, a relation a single relation:

<element ref = "personName"/>
and a relational with many relations:

<element ref = "email" minOccurs = "0" maxOccurs = "*"
aspect="emailList"/>

For example,

<element name="firstName" ref="string" />
This element specifies that any element named “firstName” is to be
handled as if it were "string" and so is marshaled as a simple object
to an instance of String. So,

<firstName>John</firstName>
is unmarshaled as 'John'.

As another example,

<element name="money" ref="float" />
specifies that a “money” element is to be marshaled as a Float value.
So,

<money>50.02</money>
is unmarshaled to a Float value 50.02.
8-14 VisualWorks

Marshaling XML entity types
An <implicit … /> binding is the same as element relation, except for
its XPath expression. Marshaling/unmarshaling is done based on
XPath expression defined as 'child::*'. This relation is convenient to
use for describing collections where the item tag is not important. The
marshaler is RelationMarshaler.

For example, for binding description:

<sequence_of name = "contacts">
<implicit ref="contact" />

</sequence_of>
and an XML element:

<contacts>
<contactx>first contact</contactx>

<contactx>second contact</contactx>
</contacts>

will be unmarshal to

OrderedCollection new
Add: 'first contact';
Add: 'second contact'.

Marshaling XML attributes
An <attribute…/> binding defines relations for XML attributes.
Marshaling/unmarshaling is done using the XPath expression '@xxx',
where xxx is the value of name attribute. The marshaler is
RelationMarshaler.

For example, for binding description:

<object name="document" smalltalkClass = "SampleDocument">
<attribute name ="ID" aspect="id" ref="xsd:string" />
</object>

and XML element:

<document ID='1234'/>
the unmarshaled value is an instance of SampleDocument:

Sample := SamlpeDocument new
Sample id: '1234'.

Marshaling XML values
A <text…/> binding defines relations for XML value. Marshaling/
unmarshaling is done using the XPath expression 'child::text()'. The
marshaler is RelationMarshaler.
Web Service Developer’s Guide 8-15

XML to Smalltalk Mapping
For example, for binding description:

<object name="document" smalltalkClass = "SampleDocument">
<text aspect="value" ref="xsd:string" />
</object>

and XML element:

<document>some text</document>
the unmarshaled value is an instance of SampleDocument class:

Sample := SamlpeDocument new
Sample value: 'some text'.

Marshal XML <any> elements
AnyRelationMarshaler marshals and unmarshals the XML <any>
element.

An <any…/> binding is the same as an 'element' relation. The XML to
object binding should include descriptions for all objects that can
occur in the XML document. If the attempt to find a marshaler fails,
an exception is raised. The marshaling/unmarshaling starts with
AnyRelationMarshaler which searches for an appropriate marshaler
based on the node namespace and type.

For example, for binding descriptions

<struct name="GetPerson">
<any aspect="contents" />

</struct>
<object name="Person1" smalltalkClass="Person1">

<element name="name" ref="string"/>
</object>
<object name="Person2 smalltalkClass="Person2>

<element name="age" ref="int"/>
</object>

and XML element:

<GetPerson>
<Person1>

<name>any name</name>
</Person1>

</GetPerson>
or XML element:

<GetPerson>
<Person2>

<age>10</age>
8-16 VisualWorks

Marshaling XML entity types
</Person2>
</GetPerson>

the unmarshaled object will be a <struct> with entry #contents and
value an instance of Person1 or Person2:

WebServices.Struct new
At: #contents put: (Person1 new name: 'any name'; yourself).

or

WebServices.Struct new
At: #contents put: (Person2 new age: 10; yourself).

Using an <any> relation allows you to specify no aspect in a complex
object, but still to use relation aspects from referenced types. For
example, for binding description:

<struct name="GetPerson">
<any />

</struct>
<element name="Person1" aspect="person1" ref="Person1Type"/>
<object name="Person1Type" smalltalkClass="Person1">

<element name="name" ref="string"/>
</object>
<element name="Person2" aspect="person2" ref="Person2Type"/>
<object name="Person2Type" smalltalkClass="Person2>

<element name="age" ref="int"/>
</object>

and XML element:

<GetPerson>
<Person1>

<name>any name</name>
</Person1>

</GetPerson>
or:

<GetPerson>
<Person2>

<age>10</age>
</Person2>

</GetPerson>
the unmarshaled object will be struct with entry #person1 and value
instance of Person1, or entry #person2 and value instance of Person2:

WebServices.Struct new
At: #person1 put: (Person1 new name: 'any name'; yourself).
Web Service Developer’s Guide 8-17

XML to Smalltalk Mapping
or

WebServices.Struct new
At: #person2 put: (Person2 new age: 10; yourself).

Marshal XML <choice> element
The <choice..> binding is similar to <any>, except that the choice
relation is limited to some set of types. The marshaler is
ChoiceMarshaler, which holds a registry of available marshalers.

For example, for binding description:

<struct name="GetData">
<choice>

<element name="Person1" aspect="person1" ref="Person1Type"/>
<element name="Person2" aspect="person2" ref="Person2Type"/>
<element name="Data" aspect="data" ref="string"/>

</choice>
</struct>
<object name="Person1Type" smalltalkClass="Person1">

<element name="name" ref="string"/>
</object>
<object name="Person2Type" smalltalkClass="Person2>

<element name="age" ref="int"/>
</object>

Marshaling/unmarshaling will be done based on three types:
Person1Type, Person2Type and string.

Marshaling XML <group> and <attributeGroup> elements
When we create an XML-to-Object binding we map the attributeGroup
and group elements as follows:

1 elements with name are mapped to struct type

2 elements with ref are mapped to group

For example, the XML schema:

<xsd:group name="myGroup">
<xsd:sequence>

<xsd:element name="group1" type="xsd:string"/>
</xsd:sequence>

</xsd:group>
<xsd:attributeGroup name="myAttrs">

<xsd:attribute name="grAttr1" type="xsd:string"/>
<xsd:attribute name="grAttr2" type="xsd:string"/>

</xsd:attributeGroup>
<xsd:element name="Item">
8-18 VisualWorks

Marshaling XML entity types
<xsd:complexType>
<xsd:sequence>
<xsd:group ref="myGroup"/>

<xsd:element name="aaa">
<xsd:complexType>

<xsd:attributeGroup ref="myAttrs"/>
<xsd:attribute name="aaaName" type="xsd:string"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
will be mapped to:

<xmlToSmalltalkBinding ..>
<struct name="myAttrs">

<attribute name="grAttr1" ref="xsd:string"/>
<attribute name="grAttr2" ref="xsd:string"/>

</struct>
<struct name="myGroup">

<element name="group2" ref="xsd:string"/>
</struct>
<struct name="Item" tag="Item">

<group name="myGroup" ref="tns:myGroup"/>
<element ref="tns:Item_aaa" tag="aaa"/>

</struct>
<struct name="Item_aaa" tag="aaa">

<group name="myAttrs" ref="tns:myAttrs"/>
<attribute name="aaaName" ref="xsd:string"/>

</struct>
</xmlToSmalltalkBinding>

The request arguments for the XML-to-Object binding above should
be prepared as:

anObj := WebServices.Struct new.
anObj

group1:'astring';
aaa: (WebServices.Struct new
grAttr1: 'grAttr1';

grAttr2: 'grAttr2';
aaaName: 'aaName';
yourself).
Web Service Developer’s Guide 8-19

XML to Smalltalk Mapping
Marshaling collections
CollectionObjectMarshaler marshaler converts a sequence or XML
elements and/or their parts to a Smalltalk collection of objects, and
vice versa. The “sequence-of” tag introduces a homogeneous
collection of items with known types or type ANY.

Describing collection using cardinality
The marshaler is RelationMarshaler. For a binding description:

<object name="document" smalltalkClass="SoapDocument">
<element name="details" aspect="detailsCollection" minOccurs=1

maxOccurs="*" />
</object>

and XML element:

<document>
<details>some description1</details>
<details> some description1</details>

</document>
the unmarshaled Smalltalk object would be:

Doc := SoapDocument new.
Doc detailsCollection: (OrderedCollection with: 'some description1'

with: 'some description2').

Describing collection using <sequence_of>
The marshaler is CollectionMarshaler. For a binding description:

<object name="document" smalltalkClass="SoapDocument">
<element name="details" aspect="detailsCollection" ref="details" />

</object>
<sequence_of name="details">

<implicit ref="string"/>
</sequence_of>

and XML element:

<document>
<details>

<item>some description1</item>
<item> some description1</item>

</details>
</document>

the unmarshaled smalltalk object would be:

Doc := SoapDocument new.
Doc detailsCollection: (OrderedCollection with: 'some description1'

with: 'some description2').
8-20 VisualWorks

Marshaling XML entity types
Describing collection using <soapArray>
Currently, soapArray support is limited to multi-dimensional arrays.
Partially transmitted and sparse arrays are not supported. The
marshaler is SoapArrayMarshaler.

In a WSDL schema, the soapArray is usually described as
complexType:

<complexType name="ArrayOfDetails">
<complexContent>

<restriction base="SOAP-ENC:Array">
<xsd:sequence>

<xsd:element name="item" type="string"/>
</xsd:sequence>
<attribute ref="SOAP-ENC:arrayType"

wsdl:arrayType="string[1,3]"/>
</restriction>

</complexContent>
</complexType>

For example, for an XML to object binding description:

<object name="document" smalltalkClass="SoapDocument">
<soapArray name=" ArrayOfDetails" aspect="details" ref="xsd:string"

dimension="1" dimSize ="3" elementTag="item"/>
</object>

The attributes dimension, dimSize and elementTag are optional.

Then, the XML element:

<document>
< ArrayOfDetails >

<item>some description1</item>
<item> some description1</item>
<item> some description3</item>

</ ArrayOfDetails >
</document>

will be unmarshaled to the Smalltalk object:

Doc := SoapDocument new.
Doc details: (Array with: 'some description1' with: 'some description2').

Resolving object identity using <key> <keyRef>
KeyObjectMarshaler marshals and unmarshals between an XML
<key> element and a Smalltalk object.
Web Service Developer’s Guide 8-21

XML to Smalltalk Mapping
In some cases we would like to relate an XML node to an already
existing object. This is important in case of multi-reference nodes and
other scenarios. These are resolved using an approach that mimics
the XMLSchema approach, using keys and key references.

A TYPE may have zero or more keys. A key may consist of one or
more fields. Each field may be any XPath expression, although the
current implementation limits key generation to a simple XPath
expression consisting of an element or attribute name. Each key has
a name, which is a qualified name whose namespace is the target
namespace of the binding. Since keys consist of parts, they are
similar in their structure to complex types and use the same notation.

A RELATION may have zero or one key reference marshalers. A key
reference references the key it corresponds to and must have the
same number of fields as the corresponding key so that the fileds
match in their respective types.

In the presence of keys and key references, object identity is resolved
as follows:

1 When a type is being unmarshaled, its keys are computed and
registered with the marshaling manager. The manager stores
each key in a dictionary where the key is an association (key
marshaler -> key fields) and the value is the target Smalltalk
object.

2 When a relation is unmarshaled and the marshaler contains a
key reference, this key reference is unmarshaled first and then
the marshaler calls the marshaling manager to find a value for
the association (key reference's key, unmarshaled fields). If
match is found, its value is used as a target. Otherwise, the
marshaling manager places this association in the list of actions
waiting for resolution. Every time a new key is registered, this list
is rescanned. When a match is finally found, a callback is
evaluated the same way as if match was found right away. This
allows for handling forward references.

3 If the relation does not have any key references, the marshaling
manager resolves object identity by invoking the method
newInstanceFor: on the marshaler. Most marshalers would then
answer a new instance of Smalltalk class stored in it. This
provides for the default resolution behavior when creating new
instance of the class.
8-22 VisualWorks

Marshaling XML entity types
For example, suppose we want to unmarshal an XML document and
resolve the key reference in the GetAuthToken object as a
"structToken" struct. The "structToken" object has defined a "userID"
attribute as a key with name "tokenKey". The GetAuthToken object
defines the "favorite" attribute as a key reference that should be
resolved to an object with key "tokenKey" and value the same as
"favorite".

The XML to object binding is:

<xmlToSmalltalkBinding >
<struct name="structToken">

<key name="tokenKey">
<attribute name="userID" ref="string" minOccurs="1"/>

</key>
<attribute name="userID" ref="string" minOccurs="1" />
<attribute name="name" ref="string" />
<attribute name="favorite" ref="string"/>
<element name="cred" ref="string" />

</struct>
<object name="get_authToken" smalltalkClass="GetAuthToken">

<attribute name="userID" ref="string" minOccurs="1" />
<attribute name="name" ref="string" />
<attribute name="favorite" ref="structToken">

<keyRef ref="tokenKey">
<attribute name="favorite" ref="string"/>

</keyRef>
</attribute>
<element name="cred" ref="string" />

</object>
<object name="tokens" smalltalkClass="Association">

<element name="key" ref="structToken"/>
<element name="value" ref="get_authToken"/>

</object>
</xmlToSmalltalkBinding>'

The XML document is:

<tokens xmlns="mynamespace">
<key name="alex" userID="1234" favorite="5678">

<cred>my credentials</cred>
</key>
<value name="fred" userID="5678" favorite="1234">

<cred>freds credentials</cred>
</value>

</tokens>
Web Service Developer’s Guide 8-23

XML to Smalltalk Mapping
Unmarshaling results in:

Assoc := Association key: keyObject value: valueObject.
(keyObject := WebServices.Struct new)

at: #userID put:'1234';
at: #favorite put: '5678';
at: #cred put: 'my credentials';
at: #name put: 'alex'.

ValueObject := GetAuthToken new.
ValueObject

Name: 'fred';
UserID: '5678';
Cred: 'freds credentials';
Favourite: keyObject. ß resolved to association key

Invoking a marshaler
Marshalers, once registered, are invoked using a simple API defined
in XMLObjectMarshalingManager:

marshal: anObject

Marshals anObject into its XML representation.

unmarshal: anXmlNode

Unmarshals anXmlNode into a Smalltalk object.

An exception is raised if an appropriate marshaler is not specified in
the registry.

Adding new marshalers
The available bindings can be extended by creating new a marshaler
and adding it to BindingBuilder.Registry, associated with a tag. The tag
can then be used in binding specifications to invoke the new
marshaler.

BindingBuilder expects prototype marshalers to support the following
builder API:

add: child

Adds a submarshaler, child, to the receiver
8-24 VisualWorks

Adding new marshalers
setAttributesFrom: dictOfAttributes in: builder

Selectively sets attributes in dictOfAttributes.

add: is implemented using double-dispatch as:

add: child
child addTo: self

addTo: is implemented polymorphically, so a child has to know how to
add itself to its parent. For example, the attribute and aspect
marshalers add themselves differently, as does a binding import
marshaler, which is not a real marshaler.

Each prototype marshaler registers itself with its parent by sending
register: to the builder. The builder then sends add: to its parent (top
element on the stack).

Registering the marshaler
Once you have created a new marshaler, you need to add it to the
prototype marshaler registry, BindingBuilder.Registry. This is a
Dictionary with tag names as keys and instance creation expressions
as values.

To add your new marshaler, you send an at:put: message to the
registry, possibly from an initialization method in your application.
(Browse the BindingBuilder class method initializePrototypeMarshalers for
an extended example.)

For example, suppose we have a marshaler class Bar and we want to
invoke it by the tag “foo”. Register it by sending:

Net.BindingBuilder.Registry
at: 'foo'
put: (Bar newProxy xpathPrefix: 'self::';yourself).

The argument to xpathPrefix: will be the appropriate XPath axis for the
XML element your marshaler handles.
Web Service Developer’s Guide 8-25

XML to Smalltalk Mapping
Marshaling exceptions
The following exceptions may be raised during marshaling and/or
unmarshaling, to allow higher-level code decide what to do.

XMLObjectBindingSignalEnumerationValueErrorMissingValueException
MissingValueNotificationNoMarshalerSignal

NoRelationMarshalerSignal
ObjectNotResolvedSignal
UnResolvedReferenceSignal
XMLDatatypeError

NoMarshalerException indicates that no known marshaler is available
for marshaling or unmarshaling. For example, we use the no-
marshaler exception for unmarshaling a SOAP envelope. The content
of a SOAP body is described as ANY, and is defined in a schema
other than the one that describes the SOAP envelope. Sometimes we
would like to be able to unmarshal both envelope and body contents
all the way through, other times we would like to stop at the body
contents. The missing-marshaler exception enables this mechanism.

Another use would be if the schema/namespace of the body contents
is not known in advance. In this case, the missing-marshaler
exception acts as a callback to locate, load, and activate the body
contents schema.

MissingValueException indicates that there is no value to marshal or
unmarshal. Higher-level code can then, for example, set the element
to a default value, stop unmarshaling the current path, or pass
exception outwards. This is useful for defining policies to handle
optional elements.

ObjectNotResolvedSignal signals that the XML element was not
resolved to a Smalltalk object.

UnresolvedReferenceSignal signals that the XML element reference was
not mapped to a Smalltalk object. Class BindingBuilder uses the
exception for resolving elements.

XMLDatatypeError is raised when the XML data type does not match a
Smalltalk object, for example, if XML data defined as type int includes
non-digit characters.

EnumerationValueError signals that the validation failed for the simple
value ClassIsNotDefinedSignal signals when the class specified by the
smalltalkClass attribute does not exist.
8-26 VisualWorks

Index
Symbols
<Operate> button iii-xii
<Select> button iii-xii
<Window> button iii-xii

A
AnyRelationMarshaler class 8-16

B
binding

specification
complex object 8-7
creating document 8-5
simple object 8-6

binding specification 8-1, 8-3
BindingBuilder class 8-2, 8-3
buttons

mouse iii-xii

C
CollectionObjectMarshaler class 8-20
ComplexObjectMarshaler class 8-10
conventions

typographic iii-xi

E
exceptions

marshaling 8-26

F
fonts iii-xi

K
KeyObjectMarshaler class 8-21

M
marshaler

adding new 8-24
register 8-25
registry 8-3

marshaling exceptions 8-26
mouse buttons iii-xii

<Operate> button iii-xii
<Select> button iii-xii
<Window> button iii-xii

N
notational conventions iii-xi

R
RelationMarshaler class 8-14
request broker 6-21
requestTimeout: 6-23
requestType: 6-23

S
SOAP

document-style binding 5-5
exception handling 5-15
introduction 1-3, 5-1
loading support 5-2
message framework 5-2
messaging without WSDL 5-6
RPC-style binding 5-5
schema 5-3
sending requests over persistent HTTP

5-13
SOAP headers 5-8
SoapBodyStruct class 5-2
SoapEnvelope class 5-2
SoapHeaderEntry class 5-8
SoapHeaderStruct class 5-2
SoapRequest class 5-3
SoapResponse class 5-3
special symbols iii-xi
start 6-23
stop 6-23
symbols used in documentation iii-xi

T
type marshalers

AnyRelationMarshaler 8-16
CollectionObjectMarshaler 8-20
ComplexObjectMarshaler 8-10
KeyObjectMarshaler 8-21
RelationMarshaler 8-14

typographic conventions iii-xi

W
WSDL

schema 5-3
support
Web Service Developer’s Guide Index-1

Index
introduction 1-3
support classes 3-2

WsdlClient class 3-2
WsdlConfiguration class 3-2

X
XML

marshalers
introduction 8-8

XMLObjectBinding class 8-3
XML-to-object

binding
creating 8-3
installing 8-7

mapping
core framework classes 8-2
introduction 8-1
marshaling exceptions 8-26
Index-2 VisualWorks

	About This Book
	Audience
	Organization
	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support
	Web
	Telephone

	Non-Commercial Licensees

	Additional Sources of Information

	Introduction to Web Services
	About Web Services
	Architecture
	VisualWorks Implementation
	XML and HTTP Support
	XML to Object Mapping
	WSDL
	SOAP
	Wizards

	Compatibility with Standards

	Common Usage Scenarios
	Creating Web Services Clients
	Creating Web Services

	Loading Support for Web Services
	Web Services Settings

	Web Services Examples
	Time Demo
	Using the Time Demo

	Library Demo
	Using the Library Demo

	Unit Tests

	Web Services Wizard
	Creating Classes using the Web Services Wizard
	Generating a WsdlClient
	Generating an Opentalk client

	Building Clients
	WSDL Support Services
	Loading WSDL Support
	Using WsdlClient
	Class Struct
	Authentication

	WSDL Builders
	WSDL Class Builder
	Running WsdlClassBuilder
	Loading and Saving a Schema
	Overwriting Class names
	Cleaning the Binding Registry
	Moving a client Class to another Image

	Class-generating API
	Instance creation class methods
	Environment setting methods
	Class generation methods

	Inside the WsdlClassBuilder
	Schema Bindings
	Binding Classes
	Client Classes
	Service Classes

	Document Processing
	Working with WSDL Schemas
	Loading a WSDL Schema
	Generating XML-to-object Bindings
	Saving a Schema with its Binding
	Load and Use a WSDL Schema
	Customizing Mappings
	Making a Request with a WSDL Schema

	Generating Bindings without a WSDL Document
	Complex Type to Dictionary Bindings
	Generating the Binding Schema
	Creating the Binding Dictionaries
	Marshaling and Unmarshaling a Struct

	Complex Type to Object Bindings
	Generating the Binding Schema
	Creating the Binding Classes
	Marshaling and Unmarshaling the Objects

	SOAP Exchanges
	VisualWorks Implementation
	Loading SOAP Support
	SOAP Messaging Framework

	Building a SOAP Request using a WSDL Schema
	Messages with Arguments
	RPC-style Message Arguments
	Document-style Message Arguments

	SOAP Messaging without WSDL
	SOAP Headers
	Sending SOAP Messages with Header Entries
	Using SOAP Header Entries with WsdlClient
	Using Soap Header Entries with an Opentalk Client
	Handling a Requst with Wrong Parameters.
	Setting the Result Type
	Accessing Soap Headers from Service Methods

	Creating a SOAP Header

	Sending Requests over Persistent HTTP
	SOAP Exception Handling

	Building Web Services
	Web Services and Opentalk
	Loading Opentalk-SOAP
	Parcel contents

	Building Servers from a WSDL schema
	Creating Service Classes using the Web Services Wizard
	Creating an Opentalk Server from a WSDL schema
	Creating pragma templates
	Creating Service Classes using the WsdlClassBuilder

	Generating a Schema from Smalltalk Classes
	Generating a Schema using the Web Services Wizard

	Generating a Schema using the WsdlBuilder
	Providing a description for service interfaces
	Providing a description for interface parameters, result, and exception types
	Providing descriptions for service access points
	Generating the specification
	WsdlBuilder instance creation API
	Instance methods
	Creating WSDL specification elements
	Printing WSDL specification
	Examples

	Using the Opentalk Request Broker
	Creating and Configuring a Broker
	Starting and Stopping a Broker

	SOAP Messaging
	Mapping SOAP operations to Smalltalk messages
	User-defined SOAP types
	Exceptions and SOAP Faults

	XML Messaging
	Marshaling

	HTTP Transport Extensions
	HTTPTransport
	CGITransport

	XML to Object Binding Wizard
	Using the XML-to-Object Binding Wizard
	An Example Application
	Creating an XML to Object Binding

	XML to Smalltalk Mapping
	Core framework classes
	Creating XML-to-Object bindings
	Creating a binding specification
	Binding specification examples
	Simple objects
	Complex objects

	Installing a binding

	XML marshalers
	Marshaling XML entity types
	Mashaling XML <simpleType> elements
	Marshaling XML <complexType> elements
	Marshaling XML complex types as Dictionaries
	Marshaling XML complex types as objects

	Mapping XML <union> elements
	Marshaling XML <element> elements
	Marshaling XML attributes
	Marshaling XML values
	Marshal XML <any> elements
	Marshal XML <choice> element
	Marshaling XML <group> and <attributeGroup> elements
	Marshaling collections
	Describing collection using cardinality
	Describing collection using <sequence_of>
	Describing collection using <soapArray>

	Resolving object identity using <key> <keyRef>

	Invoking a marshaler
	Adding new marshalers
	Registering the marshaler

	Marshaling exceptions

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

