
 GLORP

 User Guide

 By Nevin Pratt
With some updating by Alan Knight

 Document Introduction
While GLORP does not yet have any formal documentation, Nevin Pratt, maintainer of the Squeak port,
has written the following documentation in conjunction with the original Squeak port of GLORP. I've
updated it slightly to reflect recent changes in Glorp and we are making it available as part of the
standard Glorp distribution. Note that this should not be considered as formal documentation, is not in
any way connected with the regular VisualWorks documentation, and does not necessarily reflect the
views of Cincom or anyone else except Nevin. I'd also suggest skipping over the level zero and 1
strategies and going to the more recommended approaches that start with the “Basic Glorp Concepts”
section. However, given all those disclaimers, I think it should be very helpful
 -- Alan Knight

 GLORP Introduction

GLORP stands for Generalized Lightweight Object-Relational Persistence. It is a framework for giving
your domain objects the ability to persist beyond your current program invocation. It also, as a side-
effect, enables your program to have multi-user abilities.

To enable your domain objects to persist, theoretically all you need is some place (any place) to store
bits. GLORP uses a relational database (RDBMS) for this. Currently (version 0.3) the supported
databases include Oracle, Postgresql, SQL Server, Ocelot, and MS-Access, and it's fairly easy to add a a
database as long as the basic connection is available. Partial support for some other databases is also
available.

GLORP is relatively platform-independent, running on many different operating systems with ports
available for many different Smalltalk dialects, although there is a small amount of well-isolated,
platform-dependent code for each port. It is also the framework that Cincom (the vendor for
VisualWorks) anticipates using as the core mapping layer for their next generation of database
frameworks.

The goal of GLORP is to make your RDBMS (relational database) transparently appear to be what
many in the industry refer to as an Object Database. As such, you theoretically don't have to know any
SQL to use it, but what you'll discover is that while the illusion is very good, it isn't perfect (and
probably can't be perfect, given the constraints of the RDBMS world), and thus it helps to know a little
SQL.

But even so, the approach used by GLORP is light-years beyond the typical approach used for other
so-called "frameworks" for other languages, as those other frameworks typically just give you a
communications pipe to the database, plus a place to write your own SQL code for reading/writing the
database. That approach is what I call Direct SQL Coding. I also refer to that approach in this guide as
a “Level 0” approach, with the “zero” intended to represent that such an approach is worth (almost)
zero, or nothing. Thus, Direct SQL Coding is almost worthless as a persistence technique in a large
program. And yes, GLORP certainly supports Direct SQL Coding, if that is your desire, and I even
show you how. But your aim should be higher than that, and I also show you how to aim higher.

The main GLORP web-site is at http://www.glorp.org, and that site also has some documentation.
Note, however, that the main person behind that web site is Alan Knight, and Alan now works for

Cincom. Thus, the newer GLORP builds tend to appear for VisualWorks (VW) first, and tend to appear
on the Cincom Public Repository for VisualWorks before they end up on the glorp web site.

 GLORP Strategies – Level 0
Direct SQL Coding

The simplest (as well as least extensible and usually least maintainable) relational storage strategy is to
embed SQL directly into code whenever an object is read or written. With this approach, you explicitly
code all of the table operations in SQL by hand, and embed the SQL code directly into your application
code. This is the basic approach used by most of the various Java code I've been unfortunate enough to
have had to look at (one exception being the slightly improved approach afforded by the Java “Struts”
framework, and another exception another slightly improved approach using Enterprise Beans). If you
use Direct SQL Coding with GLORP, you will bypass all of the Object-Oriented benefits offered by
GLORP, just as you lose all of the OO benefits using this approach with Java.

This approach is relatively easy to visualize and initially implement, and for extremely simple
applications, it might even be an acceptable coding strategy. It should be noted, however, that if you are
going to embed SQL directly into the code like this, there is really no need for GLORP at all, because all
you need to support this style is a way to send SQL directly to the RDBMS. And of course, the EXDI
layer (for VisualWorks) can do that, as can the PostgreSQL driver for Squeak1. For that matter, any
RDBMS database driver can send SQL directly to the RDBMS—otherwise it's not much of a database
driver, is it!?

Never-the-less, for understanding parts of GLORP, it is probably useful to know how you would do
this using GLORP. And so here are the details.

It is an instance of a platform-specific subclass of the DatabaseAccessor class that allows you to issue
direct SQL code from your application to your RDBMS2. However, while the DatabaseAccessor
subclass is platform-specific, it is instantiated in a platform-neutral manner, through the
DatabaseAccessor class itself. Thus, you don't need to know which subclass of DatabaseAccessor to
instantiate. You instead just hand the DatabaseAccessor class an instance of a Login (which is just a
data structure containing login parameters), and it automatically selects the appropriate subclass to
instantiate. In the example below, we create a login instance for accessing the 'db' PostgreSQL database
residing on the machine named 'host', and with user name of 'username' and password of 'password':

login := Login new database: PostgreSQLPlatform new;
 username: 'username';
 password: 'password';
 connectString: 'host' , '_' , 'db'.

The 'database' login attribute for the Login instance can be an instance of any of the subclasses of
DatabasePlatform. These classes each contain some database-specific information needed for GLORP
to function properly on those respective platforms, but unless you are wanting to extend GLORP to
support other databases, you probably don't need to otherwise know anything about those two classes.
Furthermore, those classes employ various helper classes, primarily under the DatabaseSequence and

1The Java analog is typically JDBC, but as I mentioned, occasionally Struts is added to the mix. Java code rarely

progresses beyond that.
2It basically does this by passing the SQL directly through to the database layer, such as the EXDI layer for VW, or the

PostgreSQL driver for Squeak. So again, this is an indication that you really don't need GLORP if this is all you are
using for.

DatabaseType hierarchies, which you also probably don't need to learn anything about, but are
mentioned below just so you know which classes you can ignore.

Once you have created your Login instance, you create a platform-specific DatabaseAccessor subclass
instance thus:

accessor := DatabaseAccessor forLogin: login.

Now, for Squeak, your 'accessor' from above will automatically end up being an instance of
SqueakDatabaseAccessor. For VisualWorks, it will automatically be an instance of
VWDatabaseAccessor. For Dolphin, it will automatically be an instance of DolphinDatabaseAccessor,
and for VisualAge, it will automatically be an instance of VA55DatabaseAccessor.

Once you've gotten your 'accessor', you can tell it to log in to your database:

accessor login.

Once you've logged in, you can tell it to begin a transaction:

accessor beginTransaction.

Then you can tell it to execute any arbitrary SQL string. The result will be an array of values
representing the rows returned, if any:

result := accessor executeSQLString: aSQLString.

Once you have issued one or more SQL statement(s) within a transaction, you can tell it to either
commit or rollback the transaction:

accessor commitTransaction.
accessor rollbackTransaction.

And you can tell it to log out of the database:

accessor logout.

If the string passed to #executeSQLString: contains invalid SQL, an exception will be triggered.
Therefore, you might want to wrap that call in an exception handler. Or you can use the following
simple method that wraps it for you, which is functionally identical to wrapping it yourself:

accessor doCommand: [result := accessor executeSQLString: aSQLString]
 ifError: errorBlock

In fact, the above is absolutely identical to the following:

[result := accessor executeSQLString: aSQLString]
on: Error
do: errorBlock

Since those two are identical, and the latter is just as simple as the former, it leads one to wonder why
the first even exists, because it arguably doesn't seem to improve anything. So why was
#doCommand:ifError: even created?

The only reason I can think of is to provide for the possibility of differing Smalltalk implementations

having different ways to create exception handlers. For example, at one time VisualWorks used
#handle:do:, while VisualAge used #on:do:. However, the #on:do: form was adopted by the ANSI
standard, and I believe every Smalltalk dialect now implements it.

There is potentially one more advantage to using #doCommand:ifError: rather than #on:do:, and that is
you can easily search for senders of #doCommand:ifError: to find all exception handlers within the
GLORP framework separately from the rest of the image.

Anyway, both forms work fine—use whichever you prefer. I personally prefer #doCommand:ifError:,
and it's partially under the belief that the original author had something more in mind for that method.

 Transaction Boundaries

So why should we do this:
accessor beginTransaction.

rather than this:
accessor executeSQLString: 'BEGIN TRANSACTION'.?

And likewise, why should we send #commitTransaction or #rollbackTransaction to the database
accessor rather than issuing those respective SQL statements directly?

The answer is that #beginTransaction, #commitTransaction, and #rollbackTransaction all defer to the
connection object, relying on it to do the platform-specific “right” thing to mark the transaction (of
course, that is all that #executeSQLString: does as well, is defer to the connection object).

In the case of Squeak (using PostgreSQL), the connection object is an instance of PGConnection, and
sending #beginTransaction to the accessor just makes the connection object send 'BEGIN
TRANSACTION' to the RDBMS, exactly the same way that would have happened had you just sent
'BEGIN TRANSACTION' explicitly via #executeSQLString:. So, for Squeak, there really isn't a
difference in the above forms.

But for some Smalltalk dialect and RDBMS combinations, there seems to be a difference. Hence, if you
mark your transaction via 'accessor beginTransaction' rather than using #executeSQLString:, you can
potentially keep your code more portable.

But I'm not sure that it ever matters. Specifically, for Squeak, there is no difference at all in whether you
tell the database accessor to #beginTransaction, or if you send the SQL string 'BEGIN TRANSACTION'
directly to the database yourself via the #executeSQLString: method. No difference at all.

So, again, take your choice. But I again recommend using the #beginTransaction, #commitTransaction,
and #rollbackTransaction methods for consistency.

 GLORP Strategies – Level 1
Direct SQL Coding – Without the SQL

SQL is not very difficult, and in fact was a distinct improvement for certain cases when it was invented.
That is because SQL is designed to work with complete sets of data all at once, whereas the predominant
technology at the time SQL was invented was procedural, and you were forced to deal with the data one
row at a time procedurally.

But what if I don't know SQL? Can I still use GLORP to explicitly code table operations by hand?

Yes, using this Without the SQL variation of the Direct SQL Coding strategy. This variation is related to
the Direct SQL Coding strategy (and hence, shares its name), because with Direct SQL Coding you are
explicitly coding table operations by hand. And, just like the previously section described, the Without
The SQL variation also doesn't offer any real benefits in terms of Object-Oriented capabilities.

This variation also happens to be the approach used by many so-called Object-Oriented RDBMS
Interfaces for other languages. They merely provide a way for you to read, write, or update rows in the
database, and leave it to you to figure out what to do beyond that. They typically do this by providing
a Table object of some kind, a Column object of some kind, and a Row object of some kind, and these
three types of objects are directly mapped to the table, column, and row concept of a relational database.
Thus they often trade (relatively) clean SQL syntax for a more complicated object API to do exactly the
same thing, and then call it object-oriented (when it really isn't) just because they happen to have the
tables, columns, and rows representable as objects now. NeXT's long-defunct DB-Kit was one such
beast, and there are (and were) others3. Beware of such systems, as they often turn out to be more
complicated than if you had just directly coded the SQL yourself, using the earlier Direct SQL Coding
strategy.

With a relational database, you obviously first want to login to the database (as well as logout later).
After that, there are essentially six additional things that you will want to do with a table4 (which means
that there are seven things total):

1. Login/Logout.
2. Create a table.
3. Delete a table.
4. Insert a row.
5. Delete a row.
6. Update a row.
7. Select a row.

This section teaches you how to do each of those seven things, and without knowing any SQL at all to
do them. In many cases, though, I think it is more complicated doing these things without SQL than if
you just directly coded the SQL yourself, but the GLORP layer that allows you to do this is a low-level

3Java Enterprise Beans code that you'll find at a typical company also generally uses this approach. Although the beans

theoretically could use a more OO approach, in typical real-world code, as well as typical Java literature, you'll find that
it does not.

4This ommits other potential things like creating indexes, etc. These other things are typically DBA tasks.

layer upon which the rest of GLORP depends, and it is therefore quite useful to know these details (and
of course, this represents an area where GLORP, as well as any other mapping product, fails to deliver
The GemStone Illusion, which is the illusion of an ODBMS that I describe in the next section).

 Login/Logout:

Here is how you log in. And as should be obvious, you need to change the username and password
arguments with something that is appropriate for your installation, and you need to also change the
hostname (eg, 'host') and database name (eg, 'db') in the connect string to something that is appropriate
for your installation.

login := Login new database: PostgreSQLPlatform new;
 username: 'username';
 password: 'password';
 connectString: 'host' , '_' , 'db'.

accessor := DatabaseAccessor forLogin: login.
accessor login.
accessor logout.

The database accessor created during login is used throughout the code that is subsequently shown
below, so anytime you see accessor in any of the code that follows, you now know where it came from.

 Create A Table:

As a specific example of creating a table, consider a table that has two columns: a 'cust_no' column
containing an integer, and a 'cust_name' column containing up to 255 characters. Furthermore, consider
that the 'cust_no' is the key for each record. If you were using SQL, you might declare the table from a
psql session5 thus:

create table my_customer(
 cust_no integer CONSTRAINT my_customer_PK PRIMARY KEY,
 cust_name varchar(255));

As a brief note about the above SQL statement, one common convention for RDBMS systems is to have
SQL keywords in uppercase, and other names (such as table names and column names) as lowercase, and
to separate the words within a name with an underscore. This is a different convention than we are used
to with Smalltalk, but you need to realize that the RDBMS world is a different world than the Smalltalk
world, and you will probably need to conform to the conventions that non-Smalltalk people (such as
possibly a DBA) have already imposed. GLORP tries to be flexible in this regard, and allow any
convention, but there are a few areas where GLORP isn't (yet) flexible. For example, GLORP wants the
names (table names, column names, constraint names, etc.) to begin with a letter, and then you can use
any combination of letters, numbers, or underscores, but you cannot begin a name with an underscore6.

5Refer to the PostgreSQL documentation for information about their psql tool and how to use it.
6It is actually a Squeak Smalltalk limitation that imposes this constraint, not GLORP. In fact, earlier versions of GLORP

allowed the leading underscores. But,since GLORP is trying to be portable across Smalltalk implementations, GLORP
now honors that constraint, and you may not have leading underscores in the names.

Furthermore, constraint names must have the same name as the table name, and then appended with
particular suffix's. For example, notice that for the above, the primary key has been given the same name
as the table name, but is suffixed with '_PK'. This particular convention is currently mandated by
GLORP7.

Now, instead of creating the above my_customer table from within psql as that SQL showed, we really
wanted GLORP to do it. So if you executed the above from a psql session, then let's drop the table
(again from a psql session) now:

drop table my_customer;

To create this table from within GLORP (instead of psql), you create an instance of DatabaseTable that
describes the table that you want:

table := DatabaseTable named: 'my_customer'.
keyField := table createFieldNamed: 'cust_no' type: accessor platform int4.
table addAsPrimaryKeyField: keyField.
table createFieldNamed: 'cust_name'
 type: (accessor platform varChar: 255).

You then hand that table instance back to the database accessor that you created during Login, telling it
to create the table, and the database accessor does the job:

accessor createTable: table ifError: [].

The above statement will autocommit. But, if you prefer, you could wrap the above in an explicit
transaction thus:

accessor beginTransaction.
(accessor createTable: table ifError: []) notNil

ifTrue: [accessor commitTransaction]
ifFalse: [accessor rollbackTransaction].

So, doing all of the above as a single “do-it” operation within a Squeak workspace, on the localhost
machine, using database 'bb', username 'postgres', and no password, (and using autocommit), you can
create the table indicated by doing the following:

7See DatabaseTable>>primaryKeyConstraintName for a hint of why this is so.

| login accessor table keyField |
login := Login new database: PostgreSQLPlatform new;

 username: 'postgres';
 password: nil;
 connectString: 'localhost' , '_' , 'bb'.

accessor := DatabaseAccessor forLogin: login.

table := DatabaseTable named: 'my_customer'.
keyField := table createFieldNamed: 'cust_no' type: accessor platform int4.
table addAsPrimaryKeyField: keyField.
table createFieldNamed: 'cust_name'

 type: (accessor platform varChar: 255).

accessor login.
accessor createTable: table ifError: [].
accessor logout.

 Delete A Table:

Deleting a table is similar to creating a table, in that you hand that table instance back to the database
accessor that you created during Login, telling it to delete the table, and the database accessor does the
job:

accessor dropTable: table ifAbsent: [].

And of course again the above statement will autocommit. And again, if you prefer, you could wrap it
in an explicit transaction thus:

accessor beginTransaction.
(accessor dropTable: table ifAbsent: []) notNil

ifTrue: [accessor commitTransaction]
ifFalse: [accessor rollbackTransaction].

There are also easier ways to drop the table, only requiring you to know the table name:

accessor dropTableNamed: aString.

But this form of dropping the table doesn't trap for the error of the table not existing. To do that, you
can use the following form:

accessor dropTableNamed: table ifAbsent: [].

And again, you could wrap any of the above in an explicit transaction rather than depending on
autocommit.

So, doing all of the above as a single “do-it” operation within a Squeak workspace, on the localhost
machine, using database 'bb', username 'postgres', and no password, (and using autocommit), you can
delete the table indicated by doing the following:

| login accessor table keyField |
login := Login new database: PostgreSQLPlatform new;

 username: 'postgres';
 password: nil;
 connectString: 'localhost' , '_' , 'bb'.

accessor := DatabaseAccessor forLogin: login.
accessor login.
accessor dropTableNamed: 'my_customer' ifAbsent: [].
accessor logout.

 Insert A Row:

To insert a row without explicitly using SQL, we create an instance of DatabaseRow from the table in
the code above:

row := DatabaseRow newForTable: table.
row at: (table fieldNamed: 'cust_no') put: 3.
row at: (table fieldNamed: 'cust_name') put: 'Donald Duck'.

We can then create a command that knows how to insert this row.

command := InsertCommand forRow: row useBinding: true platform: login
database.

Normally, however, you wouldn't do this sort of operation independently, but rather through the
GlorpSession class. GLORP is designed so that the bulk of all activity happens around a session. The
session normally decides whether writing a row for a given DatabaseRow should involve an insert, an
update, or a delete, and it can generate a proper SQL string for any of those possibilities. Thus, the
session has the responsibility of generating that SQL. But I am bypassing all of that machinery, and just
asking the session to give me a proper SQL INSERT operation, because I am taking the responsibility
myself to make sure that I indeed need an INSERT rather than, say, an UPDATE. Note that the
useBinding flag tells the system whether to use database binding against the prepared statement in order
to put in the row data, or to generate a SQL string with the data directly embedded. Binding is usually
preferable, although not necessarily supported by GLORP on all Smalltalk dialects. Using binding also
allows the server to potentially re-use prepared statements, which can be an important optimization.

After getting the INSERT command from the session, you then tell the database accessor to execute it:

accessor executeCommand: command.

(Note that, unfortunately, the doCommand: and executeCommand: operations sound very similar, but
aren't related)
Thus, the complete code for doing all of the above as a single “do-it” operation within a Squeak
workspace, on the localhost machine, using database 'bb', username 'postgres', and no password, (and
using autocommit), becomes:

| login accessor table keyField row sqlString command |
login := Login new database: PostgreSQLPlatform new;

 username: 'postgres';
 password: nil;
 connectString: 'localhost' , '_' , 'bb'.

accessor := DatabaseAccessor forLogin: login.

table := DatabaseTable named: 'my_customer'.
keyField := table createFieldNamed: 'cust_no' type: accessor platform int4.
table addAsPrimaryKeyField: keyField.
table createFieldNamed: 'cust_name'

 type: (accessor platform varChar: 255).

row := DatabaseRow newForTable: table.
row at: (table fieldNamed: 'cust_no') put: 3.
row at: (table fieldNamed: 'cust_name') put: 'Donald Duck'.

command := InsertCommand forRow: row useBinding: true platform: login
database.

accessor login.
accessor executeCommand: command.
accessor logout.

 Delete A Row:

Deleting a row is identical to inserting a row, except that the we generate a delete command instead of an
insert command.

command := DeleteCommand forRow: row useBinding: true platform: login
database.

 Update A Row:

Updating a row is also identical to inserting a row, except that the session is asked for an update
command for the row instead of the INSERT string. Also, since this is an update, you presumably have
something you want to update, or change. I will change the customer name in the example below:

row := DatabaseRow newForTable: table.
row at: (table fieldNamed: 'cust_no') put: 3.
row at: (table fieldNamed: 'cust_name') put: 'Mickey Mouse'.

command := UpdateCommand forRow: row useBinding: true platform: login

database.

accessor login.
accessor executeCommand: command.
accessor logout.

The above code snippet will cause the following SQL to be generated and executed in the RDBMS:

UPDATE my_customer
SET cust_no = 3, cust_name = 'Mickey Mouse'
WHERE cust_no = 3

 Select A Row:

The seventh and final thing to show is how to select a row without using SQL to do it. Unfortunately,
there is no easy way to get GLORP to generate a SELECT statement without delving deep into
descriptors and mappings, neither of which have been introduced to you yet (but both of which will be
talked about later).

For now, if you really want to bypass all of the automatic facilities provided by GLORP with your own
explicit SELECT statements, and if you also don't want to write SQL, then I recommend that you
generate the DELETE statement, (via the section on Delete A Row), ask it for its #sqlString and then
replace the leading 'DELETE' within that string with 'SELECT *':

command := DeleteCommand forRow: row useBinding: true platform: aPlatform.
sqlString := command sqlString.
sqlString := 'SELECT *', (sqlString allButFirst: 6).

Of course, the above means that you are in fact writing a fragment of SQL yourself (by replacing
DELETE with SELECT *), so I didn't completely show you how to avoid writing SQL for the SELECT
case. (Note: I would really, really, really recommend against doing this, and going on to further sections
to find out about using descriptors and mappings -- Alan Knight)

At some later time when you know about descriptors and mappings, selecting from the database will be
reduced to something like the following:

myCustomer := session
readOneOf: MyCustomer
where: [:each | each custNo = 3].

There are also a number of specialized query classes that can aid you in selecting. This will be covered
later.

 Basic GLORP Concepts

This section covers basic GLORP concepts that you need to be aware of before you move on to the rest
of this guide. Although I call it Basic GLORP Concepts, the concepts covered here utilize more advanced
features of GLORP than the prior sections utilize. In particular, pay attention to the details leading up
to section on The GemStone Illusion, because this describes the “target”, or ideal, that GLORP is
shooting for.

 No Explicit Write Operations:

There is no explicit write operation of any form with GLORP (or at least, not when using the automatic
facilities, but you can explicitly write if you want to, just as the preceding sections showed).

In the preceding sections, you learned how to utilize the lowest levels of GLORP to directly manipulate
tables, rows, and columns the RDBMS. You should know that such an approach (of direct table
manipulation) goes against the grain of the basic design ideas behind GLORP.

When you are using the higher-level functions of GLORP, it will watch for dirty objects (objects whose
state has been changed since the transaction began) and then automatically write those objects to the
RDBMS when you commit the transaction (actually, when you commit the “Unit Of Work”, but that's a
slightly more advanced topic). It automatically generates the required SQL necessary to do that. You
don't (or shouldn't) need to ever explicitly write any SQL yourself, or otherwise need to explicitly
manipulate the rows yourself.

So, how does it know how to write those objects to the RDBMS? How does it know which tables,
columns, and rows to create or update, and when?

It knows through the declarative mappings you create that describe the relationships between the
tables/columns and the objects. Such mappings are known as meta-data to GLORP.

 Meta-data Driven:

The meta-data is a declarative description of the correspondence between an object and its database
representation. It is used to drive reads, writes, joins, and anything else that is needed. SQL code should
not ever have to be explicitly created, as it is autogenerated through the mappings, (i.e., through the
meta-data).

To map, we need a model of the table structure, and a model of the object structure. Currently both are
built up in code. We expect that in the longer term, table structure might be imported from the database.
There might also be some mechanism for more easily describing the mapping, for instance graphical
mapping tools But for now, the mappings must be built via explicit code. But don't worry—it's not that
hard!

 Object Identity:

Preserving object identity is one of the failings of the Direct SQL Coding approach previoiusly
mentioned. For example, suppose you needed the instance of an Individual known as “Nevin Pratt”, and
you were to directly code a database fetch to get the data for the “Nevin Pratt” individual. After
explicitly fetching the data, you would then typically instantiate an Individual and set the internal data
of that individual to the values that you explicitly fetched, via something like:

nevin := Individual new.
nevin firstName: fetchedFirstName.
nevin lastName: fetchedLastName.

...etc...

This is how you would “materialize” the “Nevin Pratt” instance into a complete instance from the data
in the database, using the Direct SQL Coding approach.

But now what if somewhere else in your program you also needed to reference the “Nevin Pratt”
instance? Using the Direct SQL Coding approach, that other code would likely again fetch the data, then
would likely instantiate yet another Individual instance, and then would likely set the internal data of
that new instance to the values that were just fetched.

But now you have two “Nevin Pratt” objects when there really should only be one. This is obviously
not good.

So, how do you avoid making two instances?

You avoid it by preserving object identity. To preserve object identity, the system needs to be smart
enough to recognize when the object has already been materialized, so that the second time it is asked for
the object, it merely returns the original object instead of re-materializing it a second time.

To preserve object identity, the framework itself needs to be given the responsibility of instantiating the
instance, so that it can make a decision as to whether or not it actually needs to instantiate it again. This
all by itself disallows the use of the Direct SQL Coding approach. We've got to go with something more
intelligent than that.

Furthermore, preserving object identity absolutely requires that we employ an object cache of some
kind, so that the cache can be queried to see if the desired object is already in cache, or if it needs to be
brought in from disk for the first time.

You may have already figured out from the discussion in the No Explicit Write Operations and Meta-data
Driven sections that GLORP manages the instance creation itself, but you might not have thought about
or otherwise been aware of the object cache.

Yes, GLORP manages it's own object cache. And with that, GLORP also preserves object identity. In
fact, identity is preserved at all levels of the system, from the internal API's to the public API's. Thus,
asking for the same descriptor twice will produce the identical descriptor. Asking for the same table
twice will produce the identical table, and fields within the table are treated likewise internally.

Preserving identity uniformly on these objects is fundamental to the operation of GLORP. Not only
does this allow more efficient lookups, but it avoids issues of name matching, complex printing, copying,
and so forth.

 Proxied:

GLORP uses proxies in it's object cache. These are objects that stand in for the real object, but can be
transparently replaced by the real object at a later time. Using proxies speeds up many operations
because GLORP doesn't have to instantiate all the domain objects that can be reached from a given root
domain object all at once. Also, it reduces memory demands because a proxy takes up much less
memory than the real object does. For the most part, the use of proxies is transparent to the
programmer.

 Non-Intrusive:

Suppose your application was a simple, single-user, single-machine application, and you believed it
would never grow beyond that? For such a simple application, the easiest persistence strategy (at least
for Smalltalk) would be to just use the image save functionality that is built-in to almost every Smalltalk
implementation. You would not need to use an RDBMS for persistence. You would not need to use
extra external files for persistence. You would not need to do anything extra for such persistence—right?

Of course, you would still want to separate the domain behavior from the presentation layer (typically
the “GUI”), and create separate objects in separate layers for this (you would do this for reasons that are
beyond the scope of this GLORP guide). But you really wouldn't need to do anything special for
persistence.

Now, suppose you wrote such an application, believing it would never need to grow beyond this simple
model, but then later you discovered that you really did need to grow it. Are you, as they say, SOL
(hmm, Surely Outa Luck?)?

Not at all—at least, not if you later add a non-intrusive persistence layer. What “non-intrusive” means,
in this context, is that it should be possible to use most of the facilities of your persistence framework
(ala GLORP) for your domain layer objects, and do it without having to specially modify the objects in
your domain layer to accommodate adding the persistence framework.

Furthermore, if you wish to utilize an existing RDBMS schema for your “persistence store”, non-
intrusive means that it should be possible to map your domain objects to an existing schema without
having to modify the schema to accommodate the domain objects.

In short, non-intrusive means that you can map an arbitrary domain model to an arbitrary relational
model.

A truly non-intrusive persistence framework would therefore make persistence issues become a
deployment issue rather than a development issue, because you could develop within the simple single-

user model previously described, and yet choose to later deploy under a multi-user model later, and do it
with no impact to development at all.

Can GLORP do that?

Well, no, nothing can really do that, and no RDBMS mapping tool ever will. Nothing will ever be able to
map arbitrary models that way.

But GLORP actually comes pretty close—closer than any other RDBMS persistence framework I've
looked at8. GLORP can accommodate a wide variety of database schemas and object models, in a very
non-intrusive manner.

And this actually makes it feasable to defer many persistence decisions to deployment time rather than
development time.

It is the design of the descriptor subsystem within GLORP that achieves this non-intrusiveness. In
other words, to use GLORP terminology, it is the mappings that do it.

Of course, you may have already figured that out after reading the previous section about GLORP being
Meta-data Driven. The meta-data is (are) the mappings.

 The GemStone Illusion:

If GLORP could truly be 100% non-intrusive to the domain model as described above, then it would
automatically be able to provide what I call The GemStone Illusion. Thus it would provide the illusion
of having an active object database like GemStone for your persistence rather than using a relational
database.

In GemStone, when it is used as an Application Server (meaning that you have written your application
in GemStone Smalltalk, and are running the application from within GemStone) persistence
automatically happens, with no extra effort on your part. Unfortunately, I've seen many GemStone
installations that used GemStone more as a database than as an Application Server. When used as a
database, you move data from GemStone into your client application, process it there, and then move it
back to GemStone afterwards. When GemStone is used as a database, it is not at all transparant, and
such a use definitely impacts your domain layer. But if your application instead runs completely from
within GemStone, you can give your domain model automatic, transparent persistence, with no added
effort, and potentially with no impact on your domain layer design.

Note that The GemStone Illusion doesn't require that you need to be able to utilize an arbitrary RDBMS
schema (because GemStone isn't an RDBMS). The GemStone Illusion, as I am defining it, only requires
that you be able to map persistence to an RDBMS with zero impact on the domain layer design, such as
what you would have if you instead implemented the domain layer completely within GemStone.

And of course, such a capability would in fact push most persistence issues into being just a deployment

8Note that this statement explicitly omits Object Application Server Technologies (commonly called an ODBMS) from the

discussion, as they have no intrinsic need for such a persistence framework.

issue instead of a development issue.

If you can come fairly close to achieving The GemStone Illusion, it enables you to write your application
without regard to database issues, and in fact you can first develop a completely functional single-user
program with no database what-so-ever9. You can then later just tack the database of your choice on
afterwards to make the program multi-user (either that, or else you can just go ahead and use GemStone
at that point in time instead of trying to create an illusion of using GemStone10).

9In this configuration, the standard Smalltalk image save capability is probably sufficient for persistence.
10Assuming you used GemStone as an Application Server rather than as a database.

 GLORP Strategies – Level 2

 Classes As Storage Managers

 Class-Side Methods:

A slightly better variation of the Direct SQL Coding strategy (either with or without explicit SQL) is to
embed class-side methods within each domain class that can be used to explicitly read or write instances
of that class to or from the RDBMS. This is how GemConnect for GemStone works (GemConnect
allows GemStone to talk to RDBMS's). Since GemStone really doesn't need to use the RDBMS for
persistence, GemStone typically doesn't need the level of sophistication that a product like GLORP
provides, as it often just needs a simple way to read and write rows to the RDBMS.

But the only real difference between this approach and the Direct SQL Coding strategy is that this
approach at least attempts to centralize the SQL to a single location for each class. Other than that, this
approach also tends to lead to non-Object-Oriented persistence designs, just as Direct SQL Coding does.

With such an approach, persistence is not transparant because each object that needs to be persisted has
to be explicitly written to the database, and each object that needs to be materialized from the database
has to be explicitly read from the database. This approach also typically results in a proliferation of
query methods on the class side of each domain class to support the various queries that are explicitly
asked for via the rest of the application code.

In the case of GemConnect, there is a bit more going on, because GemConnect also employs various
caches. GemConnect also supports the Without the SQL variation of the Direct SQL Coding approach,
as it has various classes that represent tables, columns, and rows, and can generate SQL for you for
explicitly reading or writing rows.

But GemConnect fails to provide The GemStone Illusion in any meaningful way. But then again, it
doesn't try to do that, nor does it need to do that, for the simple reason that it already employs
GemStone, and thus doesn't need to provide an illusion of GemStone. What would be the point of the
illusion?

 Tables as Classes, Rows as Instances

When using Classes As Storage Managers strategy, a typical design technique is to create a class for
each table. The columns of the table would be for the instance variables of the class, and the rows of the
table would represent the instances of the class. Thus, we have:

Table = Classes
Column = Instance Variable
Row = Instance

I have seen many persistence frameworks take such a simplistic approach, including most (all?) Java
code I've looked at. Such an approach has a myriad of problems, but all the problems seem to revolve
around this fundamental difference:

Classes are repositories for behavior
but

Tables are repositories for data

As repositories of data, tables are usually designed to fit strict rules, known as Rules of Normalization,
or Normal Forms. Tables are thus optimized for select, insert, delete, and update operations, which I
will collectively refer to as Query Operations. In short, tables are optimized for queries.

In contrast, classes have no particular basic need to conform to normal forms. The primary
consideration in their design should be upon the behavior that they support or perform, and the internal
instance data of the class is often merely a side-effect of supporting that behavior.

That's a pretty dramatic difference in design focus.

Furthermore, simplistically mapping tables directly to classes does not take into account object
inheritance, where instance variables are shared commonly with a common superclass. For example,
suppose you have an object model with a LegalEntity abstract superclass, and Company and Individual
subclasses (and possibly Government too). And under those you might have various specializations of
companies and individuals (and maybe governments). The Company class might be used to represent
any company that does not satisfy any of the specialization subclasses. Thus, any given specialization
subclass of Company is a concrete class, and it would have a concrete superclass Company, which in turn
would have an abstract superclass LegalEntity. And each of these classes would have it's own instance
variables defined (just as Individual and Government subclasses of LegalEntity also would).

Now, if classes are tables, then you would have to map the Company class to it's own table, you would
map subclasses of Company to their own tables, you would map the Individual class to it's own table,
and you would map the Government class to it's own table. And each of these tables would have to
carry the complete set of instance variables that a fully instantiated and initialized class instance would
hold, without regard to inheritance.

To further complicate things, your friendly neighborhood DBA would then see all those tables, and
notice the “seemingly” common datum elements being duplicated among the tables, and would
instinctively push to normalize the tables. And he would probably win over the opinion of management,
and succeed in normalizing the tables, and thus succeed in breaking your simplistic object mapping
scheme in the process. And you wouldn't be able to do anything about it.

You really need a better answer than that.

Never-the-less, GLORP can certainly be used with this strategy, even though I would rate this strategy
as only slightly better than the Direct SQL Coding strategy.

Code examples for the Classes As Storage Managers strategy will be left as an exercise for the reader.
Just remember, though, it is the Direct SQL Coding strategy (for which code has already been provided),

either with or without explicit SQL, but with the database code for each class centralized as class
methods of that class.

A slightly more interesting variation of the Classes As Storage Managers strategy is to map tables to
classes (as mentioned above), but use the automatic GLORP facilities to manage the database updates
rather than explicitly coding class-side methods for it. But, this variation isn't really practical to show
GLORP code for, because for GLORP to support this, you will have to code the mappings, descriptors,
and descriptor systems to support the automatic facilities, and then learn how to use them within a
session, and within a UnitOfWork. And once you've learned how to do that, then you are in a position
to knowledgably use GLORP at a more sophisticated level than the Classes As Storage Managers level
anyway, so there would be no point to the exercise.

But now you know a little more about what you need to cover to take GLORP to the next
level—namely, sessions, descriptor systems, descriptors, mappings, and units of work.

 GLORP Strategies – Level 3

 Basic Mapping

 Sessions11:

As mentioned before, the session normally decides whether writing a row for a given DatabaseRow
should involve an insert, an update, or a delete, and it can generate a proper SQL string for any of those
possibilities. Thus, the session has the responsibility (through DatabaseCommand objects) of generating
that SQL. Sessions also manage the object caches, the descriptor systems (which will be explained later),
and the units of work (also to be explained later). They also manage the descriptors and mappings
indirectly (via the descriptor systems).

In short, GLORP is designed so that the bulk of all activity happens around a session. Thus, they are
indespensable to the normal operation of GLORP.

 Domain:

In order to map anything, you need to have domain object(s) that need to be mapped, and you need to
have table(s) to map them to. We previously created a 'my_customer' table, so let's now create a
MyCustomer class to map to it. For this example, your MyCustomer class needs to contain 'custNo' and
'custName'12 instance variables.

GLORP can move data between the database and your domain objects, either using direct instance
variable access, or by sending getters and setters. This is settable as an option in the DescriptorSystem
(useDirectAccessForMapping). If you choose to use getters and setters, obviously those methods must
exist, and must use standard Smalltalk naming conventions.

With this, we now have a specific class (MyCustomer) that we want to map to a specific table
(my_customer). All that is needed now is to map it!

11As of GLORP version 0.2.17, the Session class in GLORP has been renamed to GlorpSession due to name collision with

Session in PWS on Squeak. Better namespace support would have rendered this a non-issue, but namespace support is
currently only complete in VisualWorks (VisualAge only has partial namespace support, and Squeak only has
experimental namespace code as of the time of this writing).

12Notice that I've adopted standard Smalltalk conventions here instead of RDBMS conventions

 Descriptor Systems:

Now that you have a MyCustomer class in the image, let's try asking a session to materialize one of them
from the database:

GlorpSession new readOneOf: MyCustomer where: [:each | each custNo = 3].

I hope you didn't expect the above to succeed, because it will fail due to a “MessageNotUnderstood:
descriptorFor:” error. Although you might not have realized exactly why it was going to fail, you should
have expected some kind of failure because there is nothing there that tells the session where to read the
MyCustomer instance from. But the interesting thing to notice here is what the debugger shows. So,
look at the error in the debugger. You'll notice that #descriptorFor: is being sent to the system instance
variable of the session, but system is currently nil. Then, if you browse senders on the #system
message, you will discover that it is sent to the session from a wide variety of places. So evidentally,
whatever the system is, and whatever it does, it is important!

So what should system be set to?

You can think of system as a sort of centralized controller for all of the mapping machinery. It should be
an instance of a custom subclass of DescriptorSystem, and you need to explicitly set it.

To see this, try browsing class references to the GlorpSession class. I believe you will discover that
every reference includes code that sends a #system: message to the new instance, and in every case I
believe you will find that the argument to that message is an instance of a subclass of DescriptorSystem.

A properly set system is paramount to the functioning of GLORP. And to satisfy the system
requirement, you must create a new subclass (of DescriptorSystem) of your own. Thus, the normal
operation of GLORP does not merely depend upon creating instances of existing GLORP classes and
telling them what to do, but you must also actually create your own new subclasses as well. That might
not be exactly what you expected, but it is not difficult either.

Your DescriptorSystem subclass will need to implement the following methods:

#constructAllClasses - This returns a collection of your domain classes.
#allTableNames – This is an array of strings which are the names of the tables that you are

mapping the domain classes to.

Now for each of the classes you will need to create a #descriptorFor{theName}: method. For example,
suppose Company is one of the your classes —you will need to create a #descriptorForCompany:
method. It will be passed in a descriptor instance, and must set its values to describe the mapping from
the Company class to the database table(s). How to do this will be discussed in more detail later. Also,
GLORP comes with an extensive test suite, which includes a number of different DescriptorSystems.
You can look at these for examples of how to do many of the common things in GLORP.

Next, for each of the names in the #allTableNames array, you will need to create a #tableFor{theName}:
method. For example, suppose your RDBMS has a 'CUSTOMER' table—you would create a

#tableForCUSTOMER: method that expects an instance of DatabaseTable for an argument, and will
define fields for that table.

In addition to the information about tables and classes, the descriptor system holds onto some
miscellaneous “global” information about the session. For example, this is where you tell GLORP
whether to use direct instance variable access or accessor methods and what type of caching to use by
default (individual descriptors can override this). It's also the place that remembers what platform (i.e.
what database) we're using.

 Descriptors:

For each persistent class, there is a descriptor. This is what tells GLORP how to read and write objects
of this class. The descriptor is not actually a very complicated object, because most of the information is
in the mappings described below. But the descriptor does keep hold of a few per-class pieces of
information, notably
· tables - what tables does this class map to. It's common that a class maps to a single table, but not

required. If you do specify a class with multiple tables, then you also need to specify how the rows
from those tables are joined together. See the method addMultipleTableCriteria:, and the descriptor
for GlorpPassenger in the tests.

· inherited reading - Inheritance can be a special case of objects mapping to multiple tables (although
they can also be mapped within a single table). In that case you need some different APIs. See
GlorpInheritanceDescriptorSystem for examples.

But mostly what you do with descriptors is add mappings to them...

 Mappings:

A mapping defines the way in which one particular instance variable is mapped to the database. There
are 3 different aspects to mapping. How we read it, how we write it, and what it means to query against
it. There are several different kinds of mapping, and which one you use affects the way that these three
things happen.

 Direct Mappings:

The simplest mapping is DirectMapping. It specifies a direct correspondence between an instance
variable and a field. The object containing the instance variable is not specified, because you later
explicitly tell it what object to get/set values to or from. It will then move the data between that object
and the table column as needed.

Here is an example of DirectMapping between the 'my_customer' database table (represented by the
instance of DatabaseTable previously created, which I will just call table because that's what the
previous code in the prior section above called it) and instances of the MyCustomer (also previously
created above). Since that table has two columns, and since the myCustomer instance has two matching
instance variables, we need two instances of DirectMapping:

nameMapping := DirectMapping

from: #custName
to: (table fieldNamed: 'cust_name').

numberMapping := DirectMapping
from: #custNo
type: self platform integer
to: (table fieldNamed: 'cust_no').

By default, a direct mapping will make its best guess at the type of the instance variable based on the
type of the corresponding database field. However, you can specifically tell it what type to use if you
use the #from:type:to: method to create the instance, as in our second example. The argument to the
type field is a Smalltalk class. The platform knows how to do common types of conversions. For
example, if we said that the customer name was an instance of Symbol (not very realistic, but it's just an
example), then GLORP would automatically handle the conversion back and forth between Symbols in
memory and Strings in the database. If you need a conversion that isn't supported, then you'll have to
extend the DatabasePlatform class to handle it.

Operations for a direct mapping are simple. To read, we convert from the database type to the Smalltalk
type (we assume we've gotten the appropriate rows from somewhere). To write we do the reverse
conversion and write it out. When we query, we convert the value and use it as part of the SQL
statement. For example
 session readOneOf: Customer where: [:each | each custName = 'Foo'].

 One to One Relationships:

Direct mappings only go so far. OO programs are about relationships between objects, and we need to
be able to describe those. So, for example, suppose that we have an Order and a Customer. Each order
knows the customer with which it's associated.

orderTable := self tableNamed: 'ORDER'.
customerTable := self tableNamed: 'CUSTOMER'

Note that “self” in this case is a descriptor system, and knows how to give us back tables. It's also
important that we get back the identical instance every time we ask for a table.

mapping := OneToOneMapping new
attributeName: #customer;

 referenceClass: Customer;
mappingCriteria: (Join

from: (orderTable fieldNamed: 'CUSTOMER_ID')
to: (customerTable fieldNamed: 'ID')).

So, we've defined the attribute, exactly as we did for a direct mapping. We also need to know what sort
of object will go in the instance variable, in this case a Customer. Then we have to define the database-
level relationship that corresponds. In this case we define that to find an order's customer, we can join
the field ORDER.CUSTOMER_ID with the field CUSTOMER.ID.

We're done. Based on just this information, GLORP knows how to read, write, and query against this
relationship. Let's look at each individually.

To read, suppose that we have an Order already in memory. When we read it in GLORP will have
populated all the instance variables of the object. If the instance variables are mapped with a direct
mapping, then it will just put the values in right away. But if they're mapped with a relationship
mapping, like the “customer” instance variable, then it will put a special Proxy in place (by default, there

are ways to turn this off if you want to). The Proxy knows how to get the customer if it needs to. It
knows, because when we read in the row for the order, we will have read in the CUSTOMER_ID field.
That value is saved in the proxy, along with the query that says “get me the customer whose ID is X”,
where X is a parameter. When we access the proxy, it executes the query, providing the parameter that
was saved with it, and reads the Customer.

Recall that when we write, we never write out individual objects, but rather all the objects that were
affected by a particular “unit of work”, a sort of object-level transaction. So chances are that we'll be
writing out both the order and the customer at the same time. What the mapping criteria does is tell
GLORP about a constraint on the values that are written out. So we know that for a particular order and
its customer, the CUSTOMER_ID field and the ID field from the corresponding tables must be the
same. When we combine that with the information about the ID field from its direct mapping in the
descriptor for CUSTOMER, that's enough to know what values to write. If that doesn't make sense,
don't worry too much about it, the important thing to know is that by specifying the information
GLORP needs to read the right object from the relationship you've also specified enough information for
it to write them out again.

Finally, the same information can be used for querying. Suppose we write a query that says
session readManyOf: Order where: [:each | each customer zipCode = 12345]

This query is expressed at the object level, in terms of the order->customer relationship. But in the
database this has to be translated into a join, something like

SELECT ... FROM t1 ORDER, t2 CUSTOMER WHERE t1.CUSTOMER_ID=t2.ID AND
t2.zipCode=12345

Again, the mapping criteria we provided (note that it was described as a Join between two fields) is
enough for GLORP to create the appropriate query automatically.

 One To Many and Many To Many Relationships:
Similarly, we can describe relationships to multiple objects. Smalltalk doesn't distinguish at the
implementation level whether a relationship is one to one or one to many. It's just collections. GLORP
does distinguish these, based on the way they're implemented in the database.

Relational databases don't have a concept of collections. Instead, everything has to be represented as
sets, joined together via foreign keys. So, in our previous example each Order had exactly one Customer.
The reverse relationship, though, would be one to many. A Customer can have many Orders. In
Smalltalk we represent this by a Customer object holding a collection (perhaps an OrderedCollection) of
Orders, in addition to the Order having an instance variable “customer”. In the relational database,
though, we don't need any extra information. The foreign key from ORDER to CUSTOMER is enough
to compute both relationships. In GLORP we could define this as

aDescriptor addMapping: (
OneToManyMapping new

attributeName: #orders;
referenceClass: Order;
mappingCriteria: (Join

from: (table fieldNamed: 'ID')
to: ((self tableNamed: 'ORDER') fieldNamed: 'OWNER_ID'))).

where we assume that table is a temporary variable that's holding the CUSTOMER table. In this case we
just specify the reverse join to what we did for the one to one relationship and tell GLORP that it's a one
to many, and therefore represented as a collection. If we want to specify the kind of collection, we can
do that as well by adding the line

collectionType: Set;
This may be useful, because one of the properties of putting things into a relational database is that we
lose ordering, because relational databases only deal with sets. If we want things to be ordered, then we
need to specify the ordering as a sort, and it has to be based on some value from the data that's coming
back, e.g.

orderBy: [:each | each amount];
The ordering can be based on complex criteria, but you have to be a bit careful because if the ordering
involves a join, you may end up missing values in the result unless you use an outer join.

orderBy: [:each | each billingAddress asOuterJoin zipCode].
 This is one of those places where transparency can break down, and it can be important to understand a
bit about what the database is actually doing, particularly the difference between Smalltalk's nil and the
database's NULL, and the way joins work.

Often these kind of relationships are represented in the database with an additional layer of indirection: a
link table in between the two main objects. This is required in many-to-many relationships, but can also
be used to implement one-to-many's. In order to use this kind of relationship you use the GLORP
ManyToManyMapping. so, suppose that we have classes Customer and BankAccount. A customer can
have several bank accounts. An account can be joint, so it can have multiple account holders. We can
represent this as

ManyToManyMapping new
attributeName: #accounts;
referenceClass: BankAccount;
mappingCriteria: (Join

from: (table fieldNamed: 'ID')
to: ((self tableNamed: 'CUSTOMER_ACCT_LINK')

fieldNamed: 'CUSTOMER_ID'))).
Note that this looks an awful lot like a one to many relationship, the only difference is that we use a
different mapping class, and we refer to a link table rather than directly to the account table. There may
or may not be a corresponding reverse relationship in the BankAccount class.

To do the join, a bit more information is needed, to know which field in the CUSTOMER_ACCT_LINK
table matches the ACCOUNT table. However, for a simple link table, it's likely that GLORP can
automatically figure out which field(s) to use. This is because GLORP knows about foreign key
constraints in the database, and can examine them. In more complex cases, such as link tables with more
than one foreign key to the target table, you may need to tell GLORP which fields to use, using

mapping relevantLinkTableFields: (Array with: (linkTable fieldNamed:
'ACCOUNT_ID'))

 Embedded Values:

We've already seen that GLORP can handle the case where a class maps to more than one table. But the
opposite case is also important, where a single row can contain more than one instance. A common
example for this sort of case is a Money object, which has instance variables for currency and amount.
For efficiency, we don't want to store this in a separate Money table, but as two fields within the parent
object. GLORP refers to this as an embedded value, where the word “embedded” here means that the
object doesn't have its own identity (because it doesn't have its own primary key), but is associated with
the identity of its parent object.

To make this more complicated, we often want to re-use these kind of embedded objects in multiple
contexts. So, for example, an Order might have a money object associated with it, which is stored in

fields in the ORDER table. However, a Purchase may also have a money object, stored in different fields.
We'd like these to be instances of the same class in memory. And in fact, an Order might actually have
multiple instances of money associated with it, perhaps one for the base amount and another for tax.

To support these kinds of cases, an embedded value mapping is allowed to define aliases for the fields it
maps to. The basic descriptor for the Money object would refer to fields in one table (which need not
even exist as a real table). When we define the embedded mapping we tell it the correspondence between
those fields and the ones it should use in this table.
 EmbeddedValueOneToOneMapping new

attributeName: #amount
referenceClass: Money
fieldTranslation: (Join new

addSource(transactionTable fieldNamed: 'MONEY_AMT')
target: (moneyTable fieldNamed: 'AMOUNT');
addSource: (transactionTable fieldNamed: 'MONEY_CURR')

target: (moneyTable fieldNamed: 'CURRENCY'))
The presence of the OneToOne in the name suggests the possibility of embedded to-many relationships
in a set of fields (ADDR1, ADDR2 etc.), but this is not yet supported.

 Queries
We've seen some examples of queries, but haven't yet talked about how they work, or their syntax.
Basically queries are specified using expression blocks. An expression block is a block which uses a
restricted set of messages and operations, and can be translated into all or part of an SQL statement. For
example

Query
returningOneOf: Customer
where: [:each | each id = 12].

Query
returningManyOf: Customer
where: [:each | each bankAccounts anySatisfy: [:eachAccount |

eachAccount balance < 1000]].
This looks a lot like we were using a normal Smalltalk select statement, but in fact what is happening is
that we execute the block once, build up a parse tree out of it, use the descriptors and mappings to figure
out the corresponding database operations, and then generate and execute a query. The mechanism for
parsing is to pass in a special doesNotUnderstand: proxy which simply records the messages to it, and
then builds up a data structure out of it. This implies that certain operations won't work in these blocks.
This includes operations that are optimized by Smalltalk, such as == (which doesn't make much sense in
a database context anyway), and:, or: (use AND: and OR: instead, or the non-optimized & and |). We
also can't do things like loops. Well, we can, but only certain kinds. Just recognize that none of the
messages you're sending to the block argument or anything derived from it will actually do their
operations. So

each bankAccounts do:
doesn't make sense, because we can't translate do: into database terms. The selector anySatisfy: is a
special case that we can translate sensibly. There's a lot more we could say about what's possible, but
the best bet for the moment is simply to look at how queries are used in the tests.

Queries also have a lot of options for indicating what to retrieve. The #retrieve: method allows you to
bring back only particular fields from an object, or to automatically bring back related objects at the same
time. #alsoFetch: is similar, but just puts the related objects into cache, not into the result set. #orderBy:
allows you to specify the order in which the results will be brought back. #collectionType: brings back
results in a particular kind of collection (by default an array).

To execute a query, you need the session
session execute: aQuery.

As a shortcut, the session has API's to directly create and execute a simple query
session readManyOf: Customer.
session readManyOf: Customer where: [:each | each id > 0].

 Unit of Work
GLORP doesn't support any sort of API for writing a single object at a time. Instead, everything is done

with a unit of work, a sort of object-level transaction. This is distinct from the database level
transactions, although the two will often happen together. For example

session beginUnitOfWork.
session register: aCustomer.
aCustomer name: 'Foo'.
aCustomer addOrder: (SomeOrderGeneratingThing newOrder).
(Dialog confirm: 'Save changes?')

ifTrue: [session commitUnitOfWork]
ifFalse: [session rollbackUnitOfWork].

This is an extremely powerful paradigm. We only need to register the objects that we may be changing.
Objects read in after the start of the unit of work are automatically registered. Objects that are related to
things we register are also automatically registered. We can then make as many changes as we want.
When we're finished, if we roll back the unit of work, then all the changes will go away and the objects
will revert to the state they had when they were first registered. If we commit the unit of work, then
those changes are automatically saved into the database.

 Appendix

—

Class Reference

 DatabaseAccessor

 Inherits from: Object

 Class Description

It is an instance of a platform-specific subclass of the DatabaseAccessor class that issues SQL code
from your application to your RDBMS, whether that SQL is autogenerated (the preferred approach), or
hand-coded (which is generally discouraged). However, while the DatabaseAccessor subclass is
platform-specific, it is instantiated in a platform-neutral manner, through the DatabaseAccessor class
itself. Thus, you don't need to know which subclass of DatabaseAccessor to instantiate.

This class has a few methods that are implemented as 'self subclassResponsibility'. And of course, the
presence of such methods usually indicate that the class is an abstract superclass. Strictly speaking, this
class is an abstract superclass, however from your perspective, you won't treat it as abstract, because
you will typically send the #forLogin: instance creation message to this class, and it will select the
concrete subclass to instantiate and hand back to you. Therefore, from your perspective, this class
appears to violate the “subclassResponsibility indicates abstract superclass” rule. But it really isn't
violating the rule.

To use this class, you first create an instance of Login (see the separate documentation for that class),
and then create a platform-specific DatabaseAccessor subclass instance thus:

accessor := DatabaseAccessor forLogin: aLogin.

Now, for Squeak, your 'accessor' from above will automatically end up being an instance of
SqueakDatabaseAccessor. For VisualWorks, it will automatically be an instance of
VWDatabaseAccessor. For Dolphin, it will automatically be an instance of DolphinDatabaseAccessor,
and for VisualAge, it will automatically be an instance of VA55DatabaseAccessor.

For the most part, instance methods of this class are either DDL-oriented, or else overridden by
subclasses (or both).

 Instance Variables

connection An instance of the database connection class that is used for your database.
For Squeak, it will be an instance of the PGConnection class.

currentLogin Contains an instance of Login, which is a data structure containing login
parameters for your connection class.

platform The current platform class. For Squeak this will be the class
PostgreSQLPlatform.

logging A Boolean. Indicates whether or not to log SQL statements to the transcript.

 Instance Method Types

accessing #connection
#connectionClass
#currentLogin
#currentLogin:
#platform

executing #createTable:ifError:
#doCommand:
#doCommand:ifError:
#dropConstraint:
#dropTable:ifAbsent:
#dropTableNamed:
#dropTableNamed:ifAbsent:
#dropTables
#externalDatabaseAccessorSignal

initializing #initialize
logging #log:

#logError:
login #login

#loginIfError:
#showDialog:

 Class Method Types

instance creation #classForThisPlatform
#forLogin:
#new

 Instance Methods

connection

A getter for the connection instance variable. There is no setter, and no other access to this instance
variable exists in this class. Therefore, subclasses are expected to set it, and they typically will
within their #loginIfError: method.

For Squeak, the connection will typically be an instance of PGConnection.

See also: #connectionClass

connectionClass

I don't see why you would ever care to call this method yourself. It is instead called from the
#loginIfError: method, during database login, so that it knows what to set the connection instance
variable to.

For Squeak, this method returns the PGConnection class, which is a class for representing the
connection to a PostgreSQL database. For VisualWorks, it will return the VWDatabaseAccessor
class. For Dolphin and VisualAge, it will return their respective database accessor classes.

In reality, this method just defers to #connectionClassForLogin:. However, curiously enough,
that particular method only exists in subclasses. For Squeak, this DatabaseAccessor class will
instantiate an instance of SqueakDatabaseAccessor, and for SqueakDatabaseAccessor,
#connectionClassForLogin: returns returns the PGConnection class.

See also: #connection, #loginIfError:

createTable: aGLORPDatabaseTable ifError: aBlock

Attempts to create a database table based on the instance of DatabaseTable that is passed in. I
personally don't see me using this method, except for within Sunit tests, as I prefer that my table
creation code be scripts in external files.

currentLogin

Answers the currentLogin instance variable, which is meant to be an instance of Login, which is just
a data structure describing the current database login parameters.

See also: #currentLogin:

currentLogin: aLogin

Sets the currentLogin instance variable. The parameter aLogin will be an instance of Login, which is
just a data structure describing the current database login parameters.

See also: #currentLogin

doCommand: aBlock

Calls #doCommand:ifError:, but with 'self halt' expression as the error expression to execute if an
error occurs.

See also: #doCommand:ifError:

doCommand: aBlock ifError: errorBlock

This is a simple method that just wraps the #executeSQLString: method inside of a standard #on:do:
error handling block. aBlock is expected to either send the #executeSQLStatement: message to me,
or else reference another method that sends it to me. Thus it is #executeSQLStatement: that actually
does the work, and I expect aBlock to contain code that either directly or indirectly causes
#executeSQLStatement: to be sent to me. All I do is wrap it (i.e., the #executeSQLStatement: call)
within a standard error handler.

See also: #doCommand:, #executeSQLStatement:

dropConstraint: aConstraint

Drops a foreign key constraint. ForeignKeyConstraint is a class for specifying standard RDBMS
foreign key constraints, and the argument is an instance of one.

Except for the SUnit tests, I doubt you will ever need this method.

dropTable: aTable ifAbsent: aString
dropTableNamed: aString
dropTableNamed: aString ifAbsent: aBlock
dropTables: aCollectionOfTables

Used for programmatically dropping tables from your RDBMS. It will generate the appropriate
SQL for your RDBMS for dropping the table, and then cause that SQL to be sent to the RDBMS
and committed. However, I personally prefer such code to be in external scripts.

externalDatabaseErrorSignal

Defined as 'self subclassResponsibility'.

For Squeak, though, the appropriate subclass will typically return the class Error. For VisualAge, it
will typically return the class ExError. For VisualWorks, it returns an error signal class that is
typically defined by some existing connection class within the existing VisualWorks EXDI database
framework.

initialize

Returns self. This method exists because the #new method on the class side implements the simple
'^super new initialize' pattern, and so we needed a default “do nothing” #initialize implementation.

log: aString

Sends aString to the Transcript on it's own line. At some point, this should probably be changed to
write aString to a logStream, where that logStream can be directed anywhere (to the Transcript, to a
file, internally to a ReadWriteStream, or whatever).

logError: anErrorObject

anErrorObject can be anything that responds to #printString. Of course, everything responds to
#printString, because #printString is implemented in Object. But, typically anErrorObject will be an
error exception instance.

login

Defers to #loginIfError:, with a standard Transcript message written as the error block.

loginIfError: aBlock

Implemented as 'self subclassResponsibility'. Subclasses will, of course, login to the database, and
evaluate aBlock if an error occurs.

platforms

Returns the current platform class. For Squeak this will be the class PostgreSQLPlatform.

showDialog: aString

Implemented as 'self subclassResponsibility'. Subclasses will put up a modal dialog window
containing aString as the dialog message. Modal dialogs are platform-specific, hence this behavior is
deferred to the subclasses.

 Class Methods

classForThisPlatform

Contains a big case statement for selecting and returning a platform-specific subclass of
DatabaseAccessor. For Squeak, the class will be SqueakDatabaseAccessor.

new

Implemented as '^super new initialize'. Actually, you probably don't have a need to ever call this
method, but instead just let #forLogin: call it.

forLogin: aLogin

aLogin is an instance of Login, which is just a data structure containing database login parameters.

This method calls #new, and then sets the currentLogin of that instance to aLogin.

 DatabasePlatform

 Inherits from: Object

 Class Description

This is an abstract superclass.

Much of the support in DatabasePlatform (and all of it's subclasses) is DDL-oriented (Data Definition
Langauge, which is the part of SQL that deals with database schema creation and manipulation). I
believe that most of your DDL code is going to be for table creation, and I personally prefer to keep such
code as external shell scripts, hence I personally don't see myself as using the DatabasePlatform class (or
any of it's subclasses) at all, except to create a Login instance.

There appears to be some additional support in this class (as well as subclasses) to assist the GLORP
machinery with generating proper SQL for the chosen RDBMS. For example, some RDBMS's might
want column names to be upper case, and others lowercase. Some might prefer variable characters to be
denoted as VARCHAR, while others might prefer VARCHAR2. If these differences exist, they can be
handled transparantly via different subclasses of DatabasePlatform. The appropriate subclass will in
turn be the concrete class that is used by the programmer when instantiating a Login instance.

In practice, however, GLORP limits it's SQL-generating machinery to (pretty much) simple and standard
SQL. That means that subclasses of this class do very little.

In any case, you can pretty much ignore this class while learning the GLORP framework.

 DatabaseTable

 Inherits from: Object

 Class Description

I am used to describe a table within the RDBMS to the GLORP framework. The table description will
include things like: what the column names and column data types are, what column or columns
comprise the table key, what the foreign keys are and what other tables and columns they map to.

This description is necessary in order for GLORP to generate the appropriate SQL code for the table. In
other words, it is necessary if you want me to create the table for you, or if you want me to drop the
table for you, or if you want me to tell the database about the primary and foreign keys that I know of,
etc.

So, as a storage place for the table definition, I am mainly like a data structure, with no real behavior.
However, because I can also generate table creation SQL based on that table definition, I am more than
just a data structure. I'm a real object.

I have some other “real behavior”, too. For example, I can tell a DatabaseAccessor that I want the
ForeignKeyConstraints that I know about to be dropped from the database. If I do that, then obviously
somewhere along the line some other object will end up generating and issuing an appropriate 'ALTER
TABLE' SQL statement to the database to accomplish it. So my actions can cause other objects to
generate SQL of their own, as well.

 Instance Variables

name The name of the database table that I represent, as a string.
creator The schema in which the table exists. This has been renamed to schema in

current versions of GLORP. If it is set, then the table will print a
schema.tableName rather than just tableName.

fields A collection of instances of DatabaseField that represent the columns of the
table that I represent.

primaryKeyFields A collection of instances of DatabaseField that represent the primary key
columns of the table that I represent.

foreignKeyConstraints A collection of instances of ForeignKeyConstraint, which represents the
foreign key relationships in the table that I represent.

parent Appears to be intended for an instance of DatabaseTable, but I don't think it
is currently used. See the discusion about the #creator: method for more
information.

 Instance Method Types

accessing #creator
#creator:
#fields
#foreignKeyConstraints
#name
#name:
#parent
#parent:
#primaryKeyFields
#qualifiedName
#sqlTableName

create/delete in db #creationStringFor:
#dropForeignKeyConstraintsFromAccessor:
#dropFromAccessor:
#primaryKeyConstraintName
#primaryKeyUniqueConstraintName
#printDelimiterOn:
#printFieldsOn:for:
#printForeignKeyConstraintsOn:for:
#printPrimaryKeyConstraintsOn:for:

fields #addField:
#addForeignKeyFrom:to:
#createFieldNamed:type:
#fieldNamed:
#newFieldNamed:

initializing #initialize
printing #printOn:

#printSQLOn:withParameters:
#sqlString

testing #hasCompositePrimaryKey
#hasConstraints
#hasFieldNamed:
#hasForeignKeyConstraints
#hasPrimaryKeyConstraints

private/fields #addAsPrimaryKeyField:

 Class Method Types

instance creation #named:
#new

 Instance Methods

addAsPrimaryKeyField: aDatabaseField

A private message sent from instances of DatabaseField that you have sent #bePrimaryKey to. So,
you tell the field (aDatabaseField) to be a primary key, and it takes care of informing me, the table
(aDatabaseTable). But once this has been done, there is no way to have it undone. This means that
if you need to change the primary key, you need to start over and create a new DatabaseTable
instance to represent the changed table. That's actually not as restrictive as it sounds, when you
realize that many (most? all?) RDBMS's don't let you change the primary key of a table anyway.
For such RDBMS's, if you really need to change the primary key, you first must unload the data
from the table that you want to change, then destroy the old table, then recreate a new table with the
desired primary key change, and then reload the data into the new table. So this really is similar to
the need to destroy your current DatabaseTable instance, and then recreate a new one with the
changed primary key. So it's not really any more onerous than what RDBMS's make you do
anyway.

The table (me) can have a composite of several fields that together comprise the primary key (in
other words, the primaryKeyField instance variable is a collection).

See also: #hasCompositePrimaryKey

addField: aDatabaseField

Adds aDatabaseField to the collection of fields recorded for this table. Returns aDatabaseField.

The instance variable fields is an OrderedCollection. That means that the same database field could
be added multiple times via this method, but that shouldn't ever happen because this method should
probably be considered private (and marked that way). Use the method
#createFieldNamed:type: to add a field—it will call this method as needed.

See also: #createFieldNamed:type:

addForeignKeyFrom: sourceField to: targetField

Creates a ForeignKeyConstraint instance from the arguments, and adds that instance to the
ForeignKeyConstraint collection.

You can add the same ForeignKeyConstraint multiple times, so be careful.

createFieldNamed: aString type: dbType

The dbType argument is is one of the types returned from the class methods such as #int4,
#sequence, #varChar, for the subclasses of DatabasePlatform. Hmmm, actually, those three seem
to be the only supported types!

creationStringFor: aDatabaseAccessor

Generates and returns a SQL “CREATE TABLE” statement (as a string) based on the receiver's
known definition of that table. The generated SQL statement will be appropriate for your chosen
RDBMS, which is why the aDatabaseAccessor argument must be passed in.

creator

A private getter for the creator instance variable, which is initialized to an empty string '' in the
#initialize method. This is the user space name, as described in the setter message #creator:.

See also: #creator:

creator: aString

A private setter for the creator instance variable. (This method has been renamed to schema in
current versions of GLORP, to be more consistent with standard database terminology)

Some databases (such as Oracle) put tables within a user space. For such databases, a table reference
outside of the current user space must be prefixed with the user space name (and tables within the
current user space can optionally be prefixed with the user space name). This user space name is
sometimes referred to as the creator in other literature. For example, purchasing.purchase_orders
references the purchase_orders table within the purchasing user space, so in this case the creator
will be set to purchasing.

If the creator is set, and if the currently active DatabasePlatform subclass is for a database that
requires such prefixing, then any generated SQL will have the table names prefixed by the creator,
followed by a period, as the above example shows.

For a given RDBMS, creators can often be nested. For example, the reference
retail.purchasing.purchase_orders references the purchase_orders table from within the purchasing
user space that in turn is within the retail user space. For such a nested reference, the
#sqlTableName method will return the entire reference. For such situations, the parent instance
variable and associated methods (getter and setter) appear to be the planned design to handle it, thus
allowing a hierarchy of DatabaseTable instances. However, I don't think that this is completely
implemented yet, as I don't think the parent attribute is implemented yet.

For PostgreSQL, the creator does not appear to be used (or needed). Thus, I really don't have any
experience with it, which means the above discussion could contain errors.

See also: #name:, #sqlTableName

dropForeignKeyConstraintsFromAccessor: aDatabaseAccessor

I will iterate through all of ForeignKeyConstraints that I know about, and tell each of them to drop
themselves from the database. Consequently, those ForeignKeyConstraints will either generate SQL
to do that, or somehow cause SQL to be generated, and then sent to the RDBMS indicated by the
argument aDatabaseAccessor.

See also: #foreignKeyConstraints

dropFromAccessor: aDatabaseAccessor

When you send this message to me, I will tell the RDBMS to drop the table I represent. I generate
SQL to do that, and send it to the RDBMS indicated by the argument aDatabaseAccessor. If
necessary, I will first generate SQL (and send it to the RDBMS) for dropping primary key
constraints before asking the RDBMS to drop the table.

fieldNamed: aString

I will search the OrderedCollection of instances of DatabaseField, looking for one that has a name
matching aString. If none are found, I throw an Error exception, with the string 'Object is not in the
collection'. If you want to test if the field exists before calling me, use #hasFieldNamed: to test.

See also: #createFieldNamed:type:, #hasFieldNamed:

fields

Returns the OrderedCollection of instances of DatabaseField, one field for each column of the table
represented by me.

See the discussion about the message #foreignKeyConstraints to see why I think this method should
either implement what I call “collection protection”, or else be eliminated entirely.

See also: #fieldNamed:, #createFieldNamed:type:, #hasFieldNamed:

foreignKeyConstraints

A private getter for this instance variable.

For Squeak, the foreignKeyConstrants will be an OrderedCollection of instances of
ForeignKeyConstraints.

Note: if this method truly is supposed to be private, as it indeed appears to be, my own preference
would be to eliminate this method entirely, and let senders of this message reference
foreignKeyConstraints directly. In other words, I don't believe in private accessors. Furthermore,
my philosophy is that public accessors that return collections should employ “collection
protection”, which is a pattern whereby you always return a copy of the collection instead of the
original. That way, other objects cannot mess around with the contents of a collection that this
object intends to manage—i.e., the collections are “protected” from external manipulation.

See also: #addForeignKeyFrom:to:, #dropForeignKeyConstraintsFromAccessor:

hasCompositePrimaryKey

Tests to see if the primaryKeyFields collection has a size greater than 1, which if true indicates that
there are more than one field that has been designated as a primary key.

See also: #primaryKeyFields

hasConstraints

Tests to see if there are any primary or foreign key constraints defined.

See also: #hasForeignKeyConstraints, #hasPrimaryKeyConstraints

hasForeignKeyConstraints

Tests to see if there are any foreign key constraints defined.

See also: #hasConstraints, #hasPrimaryKeyConstraints

hasPrimaryKeyConstraints

Tests to see if there are any primary key constraints defined.

See also: #hasForeignKeyConstraints, #hasConstraints

hasFieldNamed: aString

Tests to see if I know about any field in the table I represent whose field name is aString. You
might want to test if the field exists before calling #fieldNamed: to get the field.

See also: #createFieldNamed:type:, #hasFieldNamed:, #fieldNamed:

initialize

This method is automatically called when a new instance is created. It just sets the various collection
instance variables to empty collections, and initializes the creator instance variable to an empty
string.

name

 A private getter for the name instance variable. This is the base table name.

See also: #name:

name: aString

A private setter for the name instance variable. This is the base name of the table. For the
purchasing.purchase_orders example previously given, the table name is purchase_orders.

See also: #creator:, #sqlTableName

newFieldNamed: aString

Just generates an error exception telling you to instead use #createFieldNamed:type:. I don't
understand why we don't just delete this method. It's existence isn't for polymorphic reasons, as this
message name is only implemented in this class, and this method doesn't do anything.

See also: #creatFieldNamed:type:

parent

A getter for the parent instance variable. I don't think this is actually being used yet. See the
discussion about #creator: for more information.

See also: #creator:

parent: aDatabaseTable

A setter for the parent instance variable. I don't think this is actually being used yet. See the
discussion about #creator: for more information.

See also: #creator:

primaryKeyConstraintName

I return '^ self name, '_PK', which is my table name following by '_PK'.

The constraint name is later used by other mechanisms to generate appropriate SQL that defines
and/or drops constraints in the database.

See also: #primaryKeyUniqueConstraintName

primaryKeyFields

A getter for the primaryKeyFields instance variable, which is an Array. The instances within the
array are instances of DatabaseField, and they describe a field, or column, within the table that I
represent .

See my discussion on “collection protection” for the foreignKeyContraints method for more
comments.

See also: #foreignKeyConstraints

primaryKeyUniqueConstraintName

I return '^ self name, '_UNIQ', which is my table name following by '_UNIQ'.

The unique constraint name is later used by other mechanisms to generate appropriate SQL that
defines and/or drops constraints in the database. It is used for SQL that requires the UNIQUE
keyword for the CONSTRAINT in the SQL.

See also: #primaryKeyConstraintName

printDelimiterOn: aStream

You can consider this method to be private, as I see no reason you will need to send this message
yourself.

The delimiter I print is the standard SQL delimiter that is used to separate field names within the
generated SQL. Currently this is always the comma character, and I don't particular see a situation
when it would ever need to be different from that. So, I'm not quite sure why this method even
exists.

printFieldsOn: aCreationStream for: aDatabaseAccessor
printForeignKeyConstraintsOn: aCreationStream for: aDatabaseAccessor

These two methods probably should be considered private methods used by the
#creationStringFor: method. While that method generates the SQL for a 'CREATE TABLE'
statement, these methods generate the SQL for the fields portion of that SQL statement, and the
foreign key constraints portion of that SQL statement respectively. The SQL is written to the
stream specified in aCreationStream. Since the SQL might be database-specific, aDatabaseAccessor
must also be passed in.

printOn: aStream

Standard #printOn: statement. Puts the table name enclosed in parenthesis into the stream, or an
empty string if the table name is not yet defined. Standard stuff.

printPrimaryKeyConstraintsOn: aCreationStream for: aDatabaseAccessor

Just like #printForeignKeyConstraintsOn:for:, only for the primary key instead of foreign key.

See also: #printForeignKeyConstraintsOn:for:

printSQLOn: aStream withParameters: aDictionary

This appears to me to be an unfinished method, and I'm not sure what it's design intent is. Right
now it just prints the table name onto aStream. The aDictionary argument is ignored.

qualifiedName
sqlString

Both of these methods just return the name, which is the table name. I'm not sure why they exist as
a separate methods, unless it is to preserve polymorphic behavior with other objects. Both
DatabaseTable and DatabaseField implement the instance method #qualifiedName, but only
DatabaseTable implements #sqlString. So, either there is some unfinished business here, or else
these are potentially some superfulous methods.

See also: #name

sqlTableName

Returns the complete name reference of the table, complete with user name (i.e., creator, if
appropriate for your RDBMS), and nested table path (whenever they become implemented).

In other words, this is the complete table reference as appropriate in any list of tables in any given
SQL statement for your particular RDBMS.

See also: #creator:

 Class Methods

named: aString

Creates a new instance, and sets the name (i.e., the table name) to aString

new

Implemented as '^super new initialize'. Actually, you probably don't have a need to ever call this
method, but instead just let #forLogin: call it.

 DescriptorSystem

 Inherits from: Object

 Class Description

I am used to

 Instance Variables

descriptors A collection of
typeResolvers A collection of
tables A collection of instances of DatabaseTable.
session An instance of GlorpSession.
cachePolicy Normally an instance of CachePolicy, but can be changed to some other cache

policy (which I assume would always be a subclass of CachePolicy).
platform An instance of one of the subclasses of DatabasePlatform. For Squeak, this

will be PostgreSQLPlatform.

 Instance Method Types

accessing #allClasses
#allDescriptors
#allTables
#cachePolicy
#cachePolicy:
#defaultTracing
#platform
#session
#session:

api #descriptorFor:
#existingTableNamed:
#hasDescriptorFor:
#tableNamed:
#typeResolverFor:

private #initialize
#newDescriptorFor:
#newTableNamed:
#newTypeResolverFor:

 Class Method Types

instance creation #forPlatform:
#new

 Instance Methods

allClasses

Sends 'self allClassNames', and then looks up the classes associated with those names, and returns a
collection of those classes.

#allClassNames is only implemented in subclasses. There should probably be a
#subclassResponsibility implementation of it in this class.

In the subclass, #allClassNames needs to return a collection of names (as symbols) of the domain
classes that we are using GLORP to map to the RDBMS.

See also: #allTables

allDescriptors

Returns a collection of descriptors (instances of Descriptor) that each describe a mapping of a class
(one of those returned via #allClasses) to the tables (returned via #allTables). A descriptor in
turn will know what class it maps, and all the details of how it maps it.

See also: #allClasses, #allTables

allTables

Sends 'self allTableNames', and then looks up the table associated with those names, and returns a
collection of those tables. The “tables” are instances of DatabaeTable, and the lookup for those
instances occurs by #tableNamed: to self. #tableNamed: in turn looks at the internal tables collection
for tables with that name.

#allTableNames is only implemented in subclasses. There should probably be a
#subclassResponsibility implementation of it in this class.

In the subclass, #allTableNames needs to return a collection of names (as symbols) of the tables that
exist in the RDBMS that we are using GLORP to map to the domain objects.

See also: #allClasses

cachePolicy

Answers the cachePolicy. The cachePolicy is the default cache policy that will be used for
descriptors that don't specify their own policy. The default is can be set via #cachePolicy:, but if
it is not set, it is found by sending CachePolicy>>default, and then set based on what that message
returns.

Hmm, this means that if the default cachePolicy isn't set, then the default cachePolicy is set to the
default cache policy of the CachePolicy. Interesting.

defaultTracing

Answers a new instance of the Tracing class.

descriptorFor: aClassOrObject

Answers the descriptor for the argument. If need be, a new descriptor is created (the descriptors are
kept in the descriptors collection internally).

existingTableNamed: aString

Searches the tables collection for a DatabaseTable instance whose name is aString. Throws an error
exception by sending #error: if one is not found (why not just let the normal 'key not found' error
exception happen instead of explicitly sending #error: in this case? Also, shouldn't we implement
#existingTableNamed:ifAbsent:?)

hasDescriptorFor: aClassOrObject

This method seems to be broken, because it will always return true. The reason it returns true is it
uses #descriptorFor:, which will create the descriptor if it needs to. Consequently the descriptor
will always exist once you call this method.

initialize

Standard initialize stuff.

newDescriptorFor: aClass

Private. You should never call this yourself. Use #descriptorFor: instead.

Answers a new instance of the Descriptor, initializing it as a descriptor for aClass. Subclasses must
create a #descriptorForaClass method for this to work (where aClass is the actual class name).

See also: #descriptorFor:

newTableNamed: aString

Private. You should never call this yourself. Use #tableNamed: instead.

Answers a new instance of the DatabaseTable, initializing it as needed for that table in the RDBMS.
Subclasses must create a #tableForaString: method for this to work (where aString is the actual table
name), and that method is what is used to initialize the DatabaseTable instance that is created here.

NOTE: #tableForaString: expects you to pass to it the uninitialized DatabaseTable instance—well,
uninitialized all except for the name. Thus, the table name information is duplicated, because it exists
in the argument, plus it exists as a part of the #tableForaString: method name. So, why not just let
#tableForaString: create the DatabaseTable instance itself, and thus eliminate the need to pass in an
argument?

See also: #tableNamed:

newTypeResolverFor: aClass

Private. You should never call this yourself. Use #typeResolverFor: instead.

Answers a type resolver for aClass. Subclasses must create a #typeResolverForaClass method for
this to work (where aClass is the actual class name)

See also: #typeResolverFor:

platform

Raw getter for the platform instance variable.

platform: dbPlatform

Raw setter for the platform instance variable. dbPlatform will be an instance of one of the subclasses
of DatabasePlatform.

session

Raw getter for the session instance variable.

session: anObject

Raw setter for the session instance variable. session will be an instance of DatabaseSession.

tableNamed: aString

Searches the tables collection for an instance of DatabaseTable whose name is aString. If one is not
found, one is created and put into the tables collection. Returns that instance.

Actually, a new instance of DatabaseTable is only created if the subclass properly implemented a
#tableForaString: method. Otherwise it looks like a MessageNotUnderstood error is generated.

See also: #newTableNamed:

typeResolverFor: aClassOrObject

Searches the typeResolvers collection for a type resolver for the argument. If one is not found, one is
created and put into the typeResolvers collection. Returns that instance.

Actually, a type resolver is only created if the subclass properly implemented a
#typeResolverForaClass method, where aClass is the name of the class of the argument. Otherwise
it looks like a MessageNotUnderstood error is generated.

See also: #newTypeResolverFor:

 Class Methods

forPlatform: dbPlatform

Implemented as '^super new initialize; platform: dbPlatform'.

new

Implemented as '^super new initialize'.

 GlorpSession

 Inherits from: Object

 Class Description

The GlorpSession is the heart of the applications interface to the GLORP layer. It manages the database
accessor, the UnitOfWork transaction management, the object/table/row caches, and the object-to-
relational mapping model, where the mapping model includes the descriptors, descriptor systems, and
actual mappings. In short, it manages just about everything in GLORP, where “manage” here means that
anywhere your application accesses those “managed” resources, you almost always do it via a
GlorpSession. In some cases, the GlorpSession manages the resource directly, and in other cases, you
ask the GlorpSession for the resource, and then you communicate with that resource directly. But in
pretty much all the cases, your doorway into the rest of GLORP is via the GlorpSession.

 Instance Variables

system An instance of a custom subclass of DescriptorSystem that represents your
complete O/R mapping model.

currentUnitOfWork An instance of UnitOfWork if we are currently within a unit of work.
Otherwise nil (because #commitUnitOfWork sets it to nil).

cache A CacheManager, which is a handle on the cache subsystem. Private.
accessor An instance of a custom subclass of DatabaseAccessor. For Squeak, this will

be an instance of SqueakDatabaseAccessor..
applicationData I don't think this is currently used.

 Instance Method Types

accessing #accessor
#accessor:
#applicationData
#applicationData:
#system

api #descriptorFor:
#hasDescriptorFor:
#register:
#registerAsNew:
#system:

api/queries #delete:
#execute:
#hasExpired:

#readManyOf:where:
#readOneOf:where:
#refresh:

api/transactions #beginTransaction
#beginUnitOfWork
#commitTransaction
#commitUnitOfWork
#hasUnitOfWork
#rollbackTransaction
#rollbackUnitOfWork

caching #cacheAt:forClass:ifNone:
#cacheAt:put:
#cacheContainsObjectForClass:key:
#cacheContainsObjectForRow:
#cacheLookupForClass:key:
#cacheLookupObjectForRow:
#cacheRemoveObject:
#hasExpired:key:
#hasObjectExpiredOfClass:withKey:
#isRegistered:
#lookupRootClassFor:

copying #copy
#postCopy

events #sendPostFetchEventTo:
#sendPostWriteEventTo:
#sendPreWriteEventTo:

initializing #initialize
#initializeCache
#reset

internal/writing #createDeleteRowsFor:in:
#createRowsFor:in:
#shouldInsert:
#sqlDeleteStringFor:
#sqlInsertStringFor:
#sqlStringFor:
#sqlUpdateStringFor:
#tablesInCommitOrder

read/write #filterDeletionFrom:
#filterDeletionsFrom:
#writeRow:

testing #isNew:
#isUninstantiatedProxy:

private #expiredInstanceOf:key:
#privateGetCache
#privateGetCurrentUnitOfWork
#realObjectFor:

 Class Method Types

instance creation #forSystem:
#new

 Instance Methods

accessor

Answers the database accessor.

See also: #accessor:

accessor: aDatabaseAccessor

Sets the database accessor, which is a custom subclass of DatabaseAccessor. For Squeak, this will
be an instance of SqueakDatabaseAccessor.

applicationData

I can't tell that this is being used for anything.

applicationData: anObject

I can't tell that this is being used for anything.

beginTransaction

Tells the database accessor to begin a database transaction. You normally wouldn't send this
yourself, instead you would normally send #beginUnitOfWork. However, suppose you want
GLORP to write and/or update rows in the database, including an explicit #commitUnitOfWork, but
with the intent of rolling back the transaction so that they are not permanent after committing the
unit of work. In that case, you would first explicitly send #beginTransaction before sending
#beginUnitOfWork. If the UnitOfWork notices you are already in a transaction, it won't commit it's
changes. Otherwise it will start a transaction when you #beginUnitOfWork, and commit it with
#commitUnitOfWork (or roll it back with #rollbackUnitOfWork).

But usually you don't send #beginTransaction yourself.

See also: #beginUnitOfWork

beginUnitOfWork

Creates a UnitOfWork instance and sets the 'currentUnitOfWork' to it. See the Object Reference for
the UnitOfWork class for more information.

cacheAt: aKey forClass: aClass ifNone: failureBlock

Probably should be considered a private method.

cacheAt: keyObject put: valueObject

Probably should be considered a private method.

cacheContainsObjectForClass: aClass key: aKey

Probably should be considered a private method.

cacheContainsObjectForRow: aDatabaseRow

Probably should be considered a private method.

cacheLookupForClass: aClass

Probably should be considered a private method.

cacheLookupObjectForRow: aDatabaseRow

Probably should be considered a private method.

cacheRemoveObject: anObject

Probably should be considered a private method.

commitTransaction

Tells the database accessor to commit the transaction. You probably won't send this directly, just as
you probably won't send #beginTransaction directly.

See also: #beginTransaction

commitUnitOfWork

See the documentation on the UnitOfWork class for more information on this. When done, though,
the 'currentUnitOfWork' instance variable will be nil.

See also: #beginUnitOfWork

copy

Makes a shallow copy, and then runs #postCopy afterwards (which in turn initializes the cache and
resets the unit of work). Used to clone the session, although I'm not sure why you would want to do
that.

createDeleteRowsFor: anObject in: rowMap

Private. Sent from the UnitOfWork.

createRowsFor: anObject in: rowMap

Private. Sent from the UnitOfWork.

delete: anObject

anObject is a domain object that GLORP is mapping to the RDBMS. This method marks anObject
for deletion from the RDBMS, and it does it within a UnitOfWork. It begins a UnitOfWork if one
has not already been started. When the UnitOfWork is committed, the rows in the RDBMS that
anObject is mapped to will be deleted, and anObject is also removed from the object cache. The
specific rows that get deleted from the RDBMS is entirely dependent upon the mappings.

descriptorFor: anObject

Returns the descriptor for anObject. The descriptor in turn manages the specific mappings that map
anObject to specific rows within the RDBMS. Therefore, via the descriptor, you can fetch the
mappings if you desire.

You need to know what descriptors are (and how to create them) in order to do the O/R mapping
correctly. But once you've set up your descriptors, and handed them to your system (a
DescriptorSystem subclass), which in turn is handed to the GlorpSession when you create it, you
normally don't need to deal with descriptors afterwards. Hence, I doubt you'll use this method,
excepts possibly in test cases that test internals.

execute: aQuery

aQuery is a concrete subclass of Query. Query provides a programmatic way to put together queries
for domain objects that happen to reside in the RDBMS. This method will execute the query once it
is built, and returns the result of executing it.

You might be tempted to think of this method in terms of a SQL query which returns rows from the
database. However, this method is only loosely related to that idea. This method does not return
rows from a database. It returns one or more domain objects which happen to prove true for the
query. Hence, this method is more like the standard Smalltalk #select: method for collections. As
you know, for #select: a collection of objects is returned for which the argument block evaluates true.
In a similar vein, this method returns a collection of objects (or possibly a single object) for which the
argument query evaluates true.

Of course, since the objects returned by this method happen to be persistent domain objects,
GLORP will fetch rows from the database on an as-needed basis in order to build the domain objects
needed to satisfy the request (and it will do that based on the mappings). Hence, GLORP might
fetch rows from the database in response to this method (or it might just get domain objects from the
object cache instead), but the semantics of this method are that it returns domain objects—not rows.

expiredInstanceOf: aClass key: keyObject

Private cache method.

filterDeletionFrom: anObject

Should be considered private. Potentially anObject has been marked for deletion by the UnitOfWork.
This method is used by the #execute: method to filter out such objects that have been marked for
deletion.

filterDeletionsFrom: aCollection

Should be considered private.

See also: #filterDeletionFrom:

hasDescriptorFor: aClass

Does the descriptor exist? Yes or no (true or false).

See also: #descriptorFor:

hasExpired: anObject

Should be considered private. The cache subsystem uses this (and some unit tests do as well).

hasExpired: aClass key: key

Should be considered private. The cache subsystem uses this (and some unit tests do as well).

hasObjectExpiredOfClass: aClass withKey: key

Should be considered private. The cache subsystem uses this (and some unit tests do as well).

hasUnitOfWork

Is the 'currentUnitOfWork' not nil?

See also: #beginUnitOfWork

initialize

Initializes the cache.

See also: #initializeCache

initializeCache

Creates a CacheManager.

isNew: anObject

If the cache does not contain an object for the class of anObject, then anObject is new. I don't see
why you would ever need to send this yourself, as it looks like it is private to the object registration
subsystem.

isRegistered: anObject

GLORP ignores any object that is not reachable from a registered object. So, is anObject registered?

isUninstantiatedProxy: anObject

Private. Only sent from #register:

lookupRootClassFor: aClass

Private. Sent from the CacheManager.

postCopy

Private. Sent from #copy.

See also: #copy

privateGetCache
privateGetCurrentUnitOfWork

Private.

readManyOf: aClass where: aBlock

Very similar to #execute:, but builds a ReadQuery for you from the arguments. In fact, uses
#execute: to execute the query once it is built.

See also: #execute:

readOneOf: aClass where: aBlock

Like #readManyOf:where:, but stops after the first object is found.

See also: #readManyOf:where:

realObjectFor: anObject

Private. If anObject is a proxy, the object it represents is materialized and replaces the proxy.
Returns the materialized real object, or anObject if it is already a materialized real object.

refresh: anObject

If anObject is in the object cache, it's instance variables are refreshed from the database. If anObject
is not already in the object cache, it is materialized into the cache from the database.

register: anObject

Registers anObject with the current UnitOfWork, so that GLORP can manage it's persistence in the
database.

See also: #registerAsNew:

registerAsNew: anObject

Does stuff.

See also: #register:

reset

Does stuff.

See also: #

rollbackTransaction

Does stuff.

See also: #

rollbackUnitOfWork

Does stuff.

See also: #

sendPostFetchEventTo: anObject

Does stuff.

See also: #

sendPostWriteEventTo: anObject

Does stuff.

See also: #

sendPreWriteEventTo: anObject

Does stuff.

See also: #

shouldInsert: aDatabaseRow

Does stuff.

See also: #

sqlDeleteStringFor: aDatabaseRow

Does stuff.

See also: #

sqlInsertStringFor: aDatabaseRow

Does stuff.

See also: #

sqlStringFor: aDatabaseRow

Does stuff.

See also: #

sqlUpdateStringFor: aDatabaseRow

Does stuff.

See also: #

system

Does stuff.

See also: #

system: aSystem

Does stuff.

See also: #

tablesInCommitOrder

Does stuff.

See also: #

writeRow: aDatabaseRow

Does stuff.

See also: #

 Class Methods

#forSystem:

Does stuff.

#new

Implemented as '^super new initialize'.

 Login

 Inherits from: Object

 Class Description

This class is not particularly important for understanding the GLORP framework. It is just a data
structure with no behavior. It contains the individual data elements that are needed for connecting to the
database of your choice. The data elements are defined as:

1. database
2. username
3. password
4. connectString

There are simple getter and setter methods for each of these four attributes. That's all this class has or
does.

As an example, for the PostgreSQL database, you might create an instance of Login thus:

login := Login new database: PostgreSQLPlatform new;
 username: 'username';
 password: 'password';
 connectString: 'host' , '_' , 'db'.

The above example would be for accessing the 'db' PostgreSQL database residing on the machine named
'host', and with user name of 'username' and password of 'password'. Obviously your installation would
have different names for each of these four items.

See the DatabaseAccessor class documentatin for more informatin.

 ObjectTransaction

 Inherits from: Object

 Class Description

This can be considered a private class for the exclusive use of the UnifOfWork class. It implements
most of the undo mechanism, and is also the actual registrar for registering objects to GLORP.

This means that the UnitOfWork class must be the primary handler of database transactions. If you
instead bypass the UnitOfWork functionality, thinking to instead go straight to lower layers to explicitly
issue transaction begins, commits or aborts (perhaps because you think all you need is a little bit of SQL
executed, and not the entire GLORP framework), you will not be able to use the undo mechanism built
into GLORP. Plus, since objects won't be registered to GLORP, you will not be able to use any of the
automatic mechanisms of GLORP.

The lower layers would include any other mechanism that allows you to issue SQL straight to the
datbase. This would include the EXDI layer (for VisualWorks), or straight to the
PGConnection>>execute: code for PostgreSQL on Squeak, or even to other GLORP layers like
DatabaseAccessor>>doCommand:.

 Instance Variables

undoMap An identity dictionary. Each element is an original object, and it's copy. Should
the original object change, and you wish to restore it, you can restore it from the
copy

 Instance Method Types

accessing #undoMap
begin/commit/abort #abort

#begin
#commit

registering #isRegistered:
#realObjectFor:
#register:
#registerTransientInternsalsOfCollection:
#registeredObjectsDo:
#requiresRegistrationFor:

private/registering #instanceVariablesOf:do:
#shallowCopyOf:ifNotNeeded:

private/restoring #isShapeOf:differentThanThatOf:
#restoreIndexedInstanceVariablesOf:toThoseOf:
#restoreNamedInstanceVariablesOf:toThoseOf:
#restoreShapeOf:toThatOf:
#restoreStateOf:toThatOf:

initializing #initialize
#initializeUndoMap

 Class Method Types

instance creation #new

 Instance Methods

abort

Sets each object in the undoMap back to it's copy. Does this via #restoreStateOf:toThatOf:.

See also: #restoreStateOf:toThatOf:

begin

Initializes the undoMap to an empty dictionary, thus preparing it for the next “undo” session.

See also: #commit

commit

There is currently no difference between this method and #begin.

See also: #begin

initialize

Calls #initializeUndoMap

See also: #initializeUndoMap

initializeUndoMap

Sets the undoMap instance variable to a new, empty IdentityDictionary instance.

instanceVariablesOf: anObject do: aBlock

There are no senders of this method. As near as I can tell, it is not currently being used. It is also
marked as private, so in any case, you shouldn't need it.

aBlock is a one argument block. Each of the instance variables of anObject are passed to the block in
turn. Following that, if anObject is an indexable object (like an Array, String, etc.), then what is
found at each index is sent to aBlock, beginning at the first index.

isRegistered: anObject

For anObject to be registered, it will be found as a key in the undoMap. If it's not in the undoMap,
then it is not registered.

Well, that's almost accurate. anObject might also be a proxy (an instance of Proxy) that has already
been instantiated, thus the real object will be in the undoMap rather than the proxy. In this case, the
real object is retrieved from the proxy, and then the real object is tested to see if it is in the undoMap.

Nils can't be registered, so if the argument anObject is nil, we know we need to return false. But it is
slightly more complicated than that, because anObject might be a proxy whose real object is nil. We
can handle both of these cases by just testing to see if the real object is nil, and if so, return false, and
so that is what we do.

See also: #realObjectFor:

isShapeOf: original differentThanThatOf: copy

Private. Tests to see if the classes and basicSize of the original vs. copy are the same.

realObjectFor: anObject

anObject is the real object unless it is an instance of Proxy and has also been previously instantiated.
In this case we ask the proxy for it's real value, and return that. Otherwise we just return anObject.
Notice that this method does not force a proxy to instantiate itself.

See also: #isRegistered:

register: anObject

Make anObject be a member of the current transaction, if it is not already a member. Return anObject
if we registered it with this call, or nil otherwise.

The process of registering means we make a shallow copy of anObject, and then do the following:
 'undoMap at: realObject put: copy'.

This method also handles anObject just fine if it is a collection, by explicitly registering any internal
structures of the collection as needed.

registeredObjectsDo: aBlock

aBlock is a one argument block. Each of the keys of the undoMap are passed to this block, one at a
time.

requiresRegistrationFor: anObject

Answers whether or not anObject can be registered. For it to be registerable, it's real object must not
be nil, and it must not already be registered.

Note that there is a little bit of code duplication between this method and #isRegistered: that
probably should be factored out eventually.

See also: #isRegistered:

restoreIndexedInstanceVariablesOf: original toThoseOf: copy

Private. Does just what the method name says.

See also: #restoreStateOf:toThatOf:

restoreNamedInstanceVariablesOf: original toThoseOf: copy

Private. Does just what the method name says.

See also: #restoreStateOf:toThatOf:

restoreShapeOf: original toThatOf: copy

Private. Does a #basicNew on the class of the copy, then has the original become the copy. The
#become: method swaps the object pointers, thus after this method is called, the copy is the old
original, and the new original is a fresh, uninitialized instance of that same class.

See also: #restoreStateOf:toThatOf:

restoreStateOf: original toThatOf: copy

Private. If needed, restores the shape of the original (via #restoreShapeOf:toThatOf:). Then
restores the values of everything found in copy back into the original.

shallowCopyOf: anObject ifNotNeeded: aBlock

Private. If anObject and a shallow copy of anObject are the exact same object, then evaluates aBlock
and returns the result. Otherwise returns the shallow copy.

undoMap

Returns the undoMap.

 Class Methods

new

Implemented as '^super new initialize'.

 OraclePlatform

 Inherits from: DatabasePlatform : Object

 Class Description

This class is not particularly important for understanding the GLORP framework13. You will only use
this class to create a login instance, and you can look at the PostgreSQLPlatform class documentation for
an example of doing this.

See the Login and DatabasePlatform classes for more information.

13 Unless you are trying to create or extend support for other RDBMS's.

 PostgreSQLPlatform

 Inherits from: DatabasePlatform : Object

 Class Description

For the reasons mentioned below, this class is not important for understanding the GLORP
framework14. You will only use this class to create a login instance.

The support in DatabasePlatform and all of it's subclasses (including this one) is DDL-oriented (Data
Definition Langauge, which is the part of SQL that deals with database schema creation and
manipulation). Most of your DDL code is going to be for table creation, and I personally prefer to keep
such code as external shell scripts, hence I personally don't see myself as using the DatabasePlatform
class (or any of it's subclasses) at all, except to create a Login instance.

In the example below, we create a login instance for accessing the 'db' PostgreSQL database residing on
the machine named 'host', and with user name of 'username' and password of 'password':

login := Login new database: PostgreSQLPlatform new;
 username: 'username';
 password: 'password';
 connectString: 'host' , '_' , 'db'.

Once you have created your Login instance, you create a platform-specific DatabaseAccessor subclass
instance thus:

accessor := DatabaseAccessor forLogin: aLogin.

Then you use the accessor instance for the rest of things, as described elsewhere.

14 Unless you are trying to create or extend support for other RDBMS's.

 PSQLInt4DatabaseType

 Inherits from: DatabaseType : Object

 Class Description

This appears to be another one of those classes you can ignore.

The purpose of this class is to support the database-specific way of specifying four byte integer
numbers. For PostgreSQL, a four byte integer is specified via 'int4', hence that is the value returned by
the #typeString method of this class. In contrast, MS Access uses 'integer' to specify a four byte
integer.

Creating a class for this simple functionality seems to me to be extreme overkill, but we'll see later.

 PSQLSequenceDatabaseType

 Inherits from: DatabaseType : Object

 Class Description

This appears to be another one of those classes you can ignore.

The purpose of this class is to support the database-specific ways of generating sequence numbers.

 PSQLTextDatabaseType

 Inherits from: DatabaseType : Object

 Class Description

This appears to be another one of those classes you can ignore.

The purpose of this class is to support the database-specific way of specifying text data in the database.
For PostgreSQL, text data is specified via 'text', hence that is the value returned by the #typeString
method of this class.

Creating a class for this simple functionality seems to me to be extreme overkill, but it does seem rather
obvious that more is planned for this class, and similar classes, at some future time.

 PSQLVarCharDatabaseType

 Inherits from: VariableDatabaseType : DatabaseType : Object

 Class Description

This appears to be another one of those classes you can ignore.

The purpose of this class is to support the database-specific ways of generating code for variable length
character data within the database.

 Session

 Class Description

This class has been renamed to GlorpSession because of a name collision with the Session class of the
PWS system in Squeak. Please see the section on GlorpSession for more information.

 Tracing

 Inherits from: Object

 Class Description

This class doesn't seem to do much accept keep a collection of mapping expressions. Those mapping
expressions in turn are added from a mapping class.

 Instance Variables

base An instance of BaseExpression
allTracings A collection of mapping expressions

 Instance Method Types

accessing #addTracing:
#base
#base:

initialize #initialize
querying #traceNodeSets

#tracesThrough:

 Class Method Types

instance creation #new

 UnitOfWork

 Inherits from: Object

 Class Description

Takes responsibility for managing normal RDBMS transactions, but also integrates them into an undo
mechanism. Also handles registering to GLORP so that they can be automatically updated.

This means that the UnitOfWork class must be the primary handler of database transactions. If you
instead bypass the UnitOfWork functionality, thinking to instead go straight to lower layers to explicitly
issue, say, transaction begins, commits or aborts (perhaps because you think all you need is a little bit of
SQL executed, and not the entire GLORP framework), you will not be able to use the undo mechanism
built into GLORP. Plus, since objects won't be registered to GLORP, you will not be able to use any of
the automatic mechanisms of GLORP.

The lower layers would include any other mechanism that allows you to issue SQL straight to the
datbase. This would include the EXDI layer (for VisualWorks), or straight to the
PGConnection>>execute: code for PostgreSQL on Squeak, or even to other GLORP layers like
DatabaseAccessor>>doCommand:. You should not try to manage transactions through any of those
layers, but instead let the UnitOfWork class do it.

 Instance Variables

session An instance of GlorpSession, which can be thought of as the interface between
your application and the RDBMS.

transaction An ObjectTransaction, which can be considered a private class for the exclusive
use of the UnifOfWork class. An ObjectTransaction takes responsibility for
most of the undo mechanism, and is also the actual registrar for registering objects
to GLORP.

deletedObjects The actual objects that are going to be deleted at the next commit. This is different
from the deletePlan, which is a collection of DatabaseRows built from each
deletedObject.

newObjects The collection of objects that have been registered with this UnitOfWork. Either
that, or else I'm misuderstanding, because if this is what I just said, it really
doesn't seem to be needed, because I could just ask the transaction for it's
undoMap for this.

rowMap A collection of RowMap's which were generated from the commitPlan objects or
the deletePlan objects.

commitPlan A collection of rows (instances of DatabaseRow) that need committing (writing)
to the database.

deletePlan A collection of rows (instances of DatabaseRow) that need deleting from the
database.

 Instance Method Types

accessing #correspondenceMap
#newObjects
#session
#session:

begin/commit/abort #abort
#begin
#commit
#createMementoRowMapFor:
#createRowMapFor:
#createRows
#createRowsForCompleteWrites
#createRowsForPartialWrites
#isNewObject:
#mementoObjects
#postCommit
#preCommit
#registerTransitiveClosure
#registeredObjects
#rollback

deletion #delete:
#hasPendingDeletions
#willDelete:

enumerating #registeredObjectsDo:
#rowsForTable:do:

initializing #initialize
#reinitialize

registering #isRegistered:
#register:
#registerAsNew:

private #privateGetRowMap
#privateGetTransaction
#sendPostWriteNotification
#sendPreWriteNotification

private/mapping #addObject:toCacheKeyedBy:
#addToCommitPlan:
#addToDeletePlan:
#buildCommitPlan
#readBackNewRowInformation
#registerTransitiveClosureFrom:
#updateSessionCache
#updateSessionCacheFor:withRow:
#writeRows

 Class Method Types

instance creation #new

 Instance Methods

abort

Sends #reinitialize. This is the same thing as #begin does, which means that conceptually, a begin has
an implicit abort, and visa-versa.

See also: #reinitialize

addObject: anObject toCacheKeyedBy: key

Private. Tells the session to put the anObject into the cache, at the requested key.

addToCommitPlan: aRow

Private. Adds aRow to the commitPlan collection.

addToDeletePlan: aRow

Private. Adds aRow to the deletePlan collection.

begin

Sends #reinitialize. This is the same thing as #abort does, which means that conceptually, a begin has
an implicit abort, and visa-versa.

See also: #reinitialize

buildCommitPlan

Private. Initializes and populates the commitPlan and deletePlan collections. It queries the
GlorpSession instance for information that it needs to populate them.

commit

Commits everything to the database.

correspondenceMap

Answers the undoMap of the transaction (which is a private instance of ObjectTransaction). The
undoMap is an IdentityDictionary containing keys of original objects, and values of copies of those
original objects before the original objects were changed.

Why is this now being called the correspondenceMap?

createMementoRowMapFor: objects

Create a rowmap for the objects in the argument whose state was already known. At some later time,
we will subtract this from the rowmap of all known objects to get the rows that need to be written.

Off hand, I don't see why you would ever call this directly, as the public API is #createRows.
Perhaps this method should be moved to 'private'?

See also: #createRows

createRowMapFor: objects

Create a rowmap for all of the objects in the argument, regardless of whether or not those objects
were already known.

Off hand, I don't see why you would ever call this directly, as the public API is #createRows.
Perhaps this method should be moved to 'private'?

See also: #createRows

createRows

Currently just sends #createRowsForPartialWrites.

I don't think you need to directly call this. The #preCommit method calls it, which in turn is called
by #commit, which is the method that you would call.

See also: #createRowsForPartialWrites

createRowsForCompleteWrites

Not used. This is just a reference implementation. Use #createRowsForPartialWrites instead.

See also: #createRowsForPartialWrites

createRowsForPartialWrites

Creates needed rows in the cache, in advance of actually writing those rows to the database.

Off hand, I don't see why you would ever call this directly.

delete: anObject

Adds anObject to the deletedObjects collection.

Off hand, I don't see why you would ever call this directly.

hasPendingDeletions

Is deletedObjects empty?

initialize

Standard initialization stuff

isNewObject: anObject

Checks to see if anObject is in the newObjects collection, which is a collection of objects that have
been registered with this UnitOfWork. What is the difference between what this returns, and what
#isRegistered: returns?

isRegistered: anObject

Asks the transaction if anObject is registered.

See also: #isNewObject:

mementoObjects

Answers the correspondenceMap, which in turn is the undoMap of the transaction. The method has
the following comment:

Warning: Excessive cleverness!!! The mementoObjects we want to iterate over are the values in the
correspondenceMap dictionary. We were getting the values and returning them, but if all we need to
do is iterate, then the dictionary itself works fine.

newObjects

Getter for the newObjects instance variable. See the instance variable comments for more
information.

postCommit

Does stuff.

preCommit

Does stuff.

privateGetRowMap
privateGetTransaction

Private methods.

readBackNewRowInformation

Does stuff.

register: anObject

Does stuff.

registerAsNew: anObject

Does stuff.

registerTransitiveClosure

Does stuff.

registeredObjects

Does stuff.

registeredObjectsDo: aBlock

Does stuff.

reinitialize

Does stuff.

rollback

Does stuff.

rowsForTable: aTable do: aBlock

Does stuff.

sendPostWriteNotification

Does stuff.

sendPreWriteNotification

Does stuff.

session

Does stuff.

session: anObject

Does stuff.

updateSessionCache

Does stuff.

updateSessionCacheFor: anObject withRow: aRow

Does stuff.

willDelete: anObject

Does stuff.

writeRows

Does stuff.

